
Improving landfill monitoring programs
with the aid of geoelectrical - imaging techniques
and geographical information systems
Master’s Thesis in the Master Degree Programme, Civil Engineering

KEVIN HINE

Department of Civil and Environmental Engineering
Division of GeoEngineering
Engineering Geology Research Group
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2005
Master’s Thesis 2005:22

Hierarchical Temporal Memory
for Behavior Prediction
Master’s Thesis in Intelligent Systems Design

DAVID BJÖRKMAN

Department of Applied Information Technology
Chalmers University of Technology
Gothenburg, Sweden 2011
Report No. 2011:081
ISSN: 1651-4769

Summary
This thesis is about researching and analyzing Hierarchical Temporal Memory, specifically the
newly developed "HTM Cortical learning algorithms"[3] developed by Jeff Hawkins and the

company Numenta. Two problems are addressed. Can this type of hierarchical memory system
make an internal representation of simple data sequences at the input? And if so, does it take

long to learn? Two C++ applications were developed in this thesis. The first program is used to
analyze the algorithm, and the second program is used to visualize the internal states of the

network. The results is very dependent of how the system is configured. If enough resources are
available, the system can learn sequences, and it does not take long for the system to learn.

Keywords: HTM: Hierarchical Temporal Memory

Acknowledgments
I would like to thank my supervisor at Bitsim Kalle Lindbeck, my supervisor at Chalmers Claes

Strannegård, and my parents Mats and Anna-Lena Björkman for their support.

Göteborg, January 2, 2012
David Björkman

ii

Contents

1 Introduction 1

1.1 Background . 1

1.2 Purpose . 1

1.3 Motivation . 1

1.4 Problem specification . 1

1.5 Method . 2

2 Hierarchical Temporal Memory: An overview 3

2.1 Background . 3

2.2 The Spatial Pooler . 3

2.3 The Temporal Pooler . 4

2.4 The result of combining spatial and temporal poolers 4

2.5 The Hierarchy . 5

3 Implementation details 6

3.1 SpatialPooler(): . 6

3.2 TemporalPooler(): . 7

4 Temporal learning: One layer 9

4.1 Set up . 9

4.2 Analysis . 10

5 Tweaking of parameters 14

5.1 Shared: . 14

5.2 Spatial Pooler: . 14

5.3 Temporal Pooler: . 15

6 Results 16

6.1 Result . 16

6.2 Conclusion . 16

iii

7 Discussion/Future work 17

7.1 HTM as a novelty detector . 17

7.2 HTM as a predictor . 17

7.3 HTM for hardware implementation . 17

References 19

Appendices 20

A HTM Code 20

B Qt application output 37

iv

1 Introduction

1.1 Background

In many AI applications, a specific algorithm will work with only one type of problem. In order to
build more powerful systems that can classify many different types of sensory data a new approach
is needed. There is one biological system known for this type of capability: the mammalian brain,
or more specifically the neocortex. There has not been a unified theory of how the neocortex
works as a whole, until a book was released on the subject called On Intelligence[2] written by
Jeff Hawkins and Sandra Blakeslee, published in 2004. In it Hawkins lays the foundation for a
technology called Hierarchical temporal memory, abbreviated HTM. Hawkins has sins started a
company called Numenta to develops this technology to make it possible to build what he calls
"truly intelligent machines".

If a system is intelligent or not has previously been defined by its behavior i.e. it must act in
an intelligent way to be intelligent. Hawkins definition of intelligence is by prediction. He states
that if a system constantly makes predictions, and matches incoming data to those predictions in
order to make new more refined predictions, it can be called intelligent.
This is a system that constantly strives for a better understanding of what is going on. A system
that continuously learns and updates its inner model of the world around it.

1.2 Purpose

The purpose of this theses is researching and analyzing Hierarchical Temporal Memory, specifically
the newly developed "HTM Cortical learning algorithms"[3] developed by Numenta.

1.3 Motivation

In the search for a good algorithm for intelligent systems I had three important criteria.

• Time series functionality: The algorithm must be able to recognize sequences.

• Biological plausible: The algorithm should not be based on complex mathematics, but based
on simple rules.

• Generality: The algorithm should not care what kind of data it is classifying.

The motivation for this thesis is understanding how these algorithms work. Therefor this thesis
will be good for people who want to learn more about htm’s.

1.4 Problem specification

• Can the system make an internal representation of the data sequence at the input?

• Does it take long for the system to make such a representation?

1

1.5 Method

In order to analyze Numentas HTMs, the algorithm, or the "HTM Cortical learning Algorithms"
as it is called, was implemented in C++. The code was written from pseudo code found in [3], on
Numentas web page [1] and can be found in appendix A. The analysis is limited to one layer of
HTM, learning a sequence of zeros and ones. A Qt application was also developed for visualization.
Output prom the Qt application can be seen in appendix B.

2

2 Hierarchical Temporal Memory: An overview

2.1 Background

HTM is based on a theory of how the different regions of the neocortex uses a common algorithm
to make sense of the world by constantly predicting what might happen next and in the future.

Hierarchical temporal memory is modeled after the human brains intuitive ability to discover and
predict patterns. HTM regions are connected in an hierarchy. Each region consists of two parts.
The Spatial Pooler and the Temporal Pooler. In the examples below HTM is applied to image
analysis, although HTMs can be applied to any input space.

2.2 The Spatial Pooler

Figure 2.1: The spatial poolers input is the input bits to all the columns in the region.

The Spatial Pooler creates a sparse distributed representation of its inputs. The spatial pooler
learns to represent a pattern in the best possible way with it’s given resources. Even if an image is
noisy or warped, it will roughly give the same output to the temporal pooler. The spatial poolers
output to the temporal pooler is a set of active columns.

3

2.3 The Temporal Pooler

Figure 2.2: The temporal poolers output is the combination of what is currently occurring and what is
predicted.

The Temporal pooler tries to predict what input will come next. Each column has a number of
associated cells. The cells in a column represent different temporal contexts that the column can
be a part of. If two particular columns are activated in sequence again and again, one of the
second columns cells will create a connection between itself and a cell in the other column. By
doing this, the first sell remembers the sequence and can predict when it will be active next.

A cell can be in a predictive state and/or in a active state. A cell enters the predictive state if
it expects to be active in the following time step. A cell enters the active state if it was in the
predictive state the last time step. If no cell was predicted the last time step (no connections),
all cells in the column will enter the active state to show that the input was not recognized.

The output from the temporal pooler is the logical OR of the active and predictive state of each
cell in all columns. These zeros and ones are then the input to the spatial pooler in the next
higher layer in the hierarchy.

2.4 The result of combining spatial and temporal poolers

The result is a very robust noise tolerant system that dynamically will adapt to its environment.
Like the human brain it is robust and failure tolerant. Because HTMs uses sparse distributed
patterns, it can lose much of its resources (cells, columns), and still be able to make the exact same
predictions. The connections between cells is dynamic and is constantly adapting to represent
what the HTM is exposed to.

4

2.5 The Hierarchy

Figure 2.3: The representation of a dog stored hierarchically.

The output from each level in the hierarchy is more stable than its input. This will result in
slower changing pattern at the top, and faster changing patterns at the bottom. A typical low
level concept is for example the pixels in an image that change color from frame to frame in a
video. At this level nothing can be said of the overall events in the video, but it is vital in creating
a higher understanding of events. A typical high level in the hierarchy can for example represent
a running dog. lower in the hierarchy is all the parts that a dog generally consists of, for example
legs, a head and a tail. At the high level nothing can be said about the rapid color changes of the
incoming pixels, but it can easily distinguish if the dog in the i video is running or standing still.

5

3 Implementation details

Two application was created to test the properties of HTMs. To analyze a single level in the
hierarchy a Console application written in C++ was sufficient. To visualize of many layers put
together in an hierarchy a more powerful visualization tool was needed. Qt offered a fast way to
create a GUI Application that lets the user experiment with the algorithm already coded in C++.
While this analysis will be about only one layer of HTM, output images from the Qt application
is presented in appendix B.
Both applications were coded with readability and not performance in mind.

Figure 3.1: The sequential flow from input to output in the implementation.

The main Class is called HTM, and consists of all functions needed for a Hierarchy of HTM regions
to classify its inputs over time. Each time step, the function "HtmTimeStep" is called. It keeps
track of all the levels/regions and calls the functions "SpatialPooler" and "TemporalPooler" for
each.

3.1 SpatialPooler():

The Spatial Pooler Function operates on all the columns on a specific level and has the main task
of calling the functions "overlap", "inhibition" and "spatialLearning". The input to the spatial
pooler is an array of zeros and ones with a length of "numInputBits"(see chapter Tweaking of
parameters). This input can come from sensors or a region lower down in the hierarchy. The input
bits are randomly selected to be included in a list of potential synapses (potential connections)
for each column. It is this randomization that creates the distribution of what columns that

6

can be activated by which input bits. Each synapse has a permanence value associated with it.
This value is a metric of how permanent or constant the connection is. If this value is above a
threshold, the synapse is considered connected and can transfer information from an input bit to
the column.

overlap():
Calculates how much overlap (how many of its connected synapses that have active input) each
column has. There is a threshold which has to be exceeded in order for a column to count its
overlap. The overlap value for each column is also multiplied by a boost value.

inhibition():
Sets the columns, within a neighborhood, with the highest overlap as active. It is this function
that creates the sparseness of the active columns, so that only a small percentage is active at any
given time.

spatialLearning():
Increases the permanence (i.e how constant a connection is) of the synapses (connections) with
the input one, and decreases it for synapses with the input zero. This is done for active columns
only. It also increases the boost value for columns that has a low activation rate compared to its
neighbors, and increases the permanence values for synapses of columns that frequently has overlap
values below the threshold to be counted. Lastly the function calculates a new neighborhood size
for the layer. The size of the neighborhood affects how sparse the sparse distributed representation
of activated columns get.

3.2 TemporalPooler():

Some new concepts needs to be introduced in order to understand the temporal pooler. The spatial
pooler operates on columns, and the temporal pooler operates on the cells within a column. Each
cell can send distal dendrite segments (short: segment) far away form its column and form synapses
with other cells in other columns. There are two types of segments. Normal segments, just referred
to as segments, and sequence segments. If any of a cells segments, sequence or not, is activated the
cell enters the predictive state. The sequence segments are segments that is formed to represent a
transition in a sequence of column activations. If a cell in column has an active sequence segment,
the cell can be expected to enter the active state next time step.The non sequence segments are
added to give the output extra stability. They does not try to specifically predict what will happen
in the next time step, but sometime in the future. The segments and their synapses are what
creates the temporal context for a particular column, and it is these segments and synapses that
are trained and constantly adapting. In the spatial pooler there are only one segment per column
with multiple synapses, one for each input bit from below. In the temporal pooler on the other
hand, there are many segments per cell with multiple synapses on each segment.

The Temporal Pooler Function has the main task of calling the functions "calcActiveState",
"calcPredictiveState" and "temporalLearning".

7

calcActiveState():
CalcActiveState operates on cells in active columns only, and has two main tasks.
Choosing active cells: Choose which cells (in an active column selected by the Spatial Pooler)
that should become active. There are two scenarios. The first one is if any cell predicted its
activation with a sequence segment in the previous time step. If this is the case, those cells will
become active. The second scenario is that no cells was in the predictive state in the previous
time step, in which case all cells in the column will become active.

Choosing learn cell: Choosing which single cell in the column will be in the learn-state for this
time step.The learn-state is an internal state that allows a cell to form synapses with cells of other
columns if it is not already part of a learned sequence. There are two ways of selection. The first
one is if a cells predictive state was activated by a sequence segment, that was activated by a cell
in the learn-state, in the last time step. That cell will then be chosen as the learn-cell. If no cell
was selected this way, the second way of selection is utilized, in which the best cell gets to be
learn-cell as follows.

For each cell the best segment is determined. The best segment is the segment which had the
largest number of active synapses during the previous time step. The cell is chosen that had the
highest number of active synapses on its best segment. If there was no active synapses on any
segment, then the cell with the fewest number of segments is chosen as learn-cell.

When the learn-cell is chosen the second way, it forms synapses with cells that was active in the
previous time step. Those synapses are added on the cells best segment. If there were no segment
with active synapses, a new segment is created to add the synapses to. Segments created this way
are sequence segments, segments trying to predict a cells activation in the next time step.

calcPredictiveState():
CalcPredictiveState operates on cells in all columns, active or not, and has three tasks.
Choosing predictive cells: A cell will enter the predictive state if enough of the synapses on
any of its segments are active.
Reinforce synapses: All synapses on segments that has enough active synapses are reinforced.
When a reinforcement is carried out, the permanence values of the selected synapses are increased.
Make synapses further back in time: These synapses are added to the best segment (the
segment that had the most active synapses) the previous time step. If no segments are found,
a new segment is created to add the synapses to. Segments created this way are non sequence
segments, segments trying to predict a cells activation some time in the future.

temporalLearning(): This function executes requests for changes to segments and synapses
that was made in both "calcActiveState" and "calcPredictiveState". If it is requested to add
synapses or segments, they are added here. If the segment under consideration already exists one
of two things can happen.
Positive reinforcement: All positive changes to synapses permanence values are put in a queue
until the cell associated with the changes becomes the learn cell.
Negative reinforcement: If a cell is not the learn cell and was in the predictive state last time
step but not in this one, then the queued synapses gets their permanence values decremented.

8

4 Temporal learning: One layer

In this section one layer of HTM, running the temporal pooler, will be analyzed.

4.1 Set up

The cortical learning algorithms can be set up in many ways to achieve completely different results.
Before analyzing the temporal pooler, or any other algorithm with unknown behavior, there are
three important things needs to be considered.

Reproducibility
The output must be consistent when giving the same input twice. However in this case when
analyzing patterns through time, it is also important to be aware of that the the changes of
the output is dependent of not just the current input, but prior input as well. To achieve this
reproducibility it is important for the researcher to have an clear overview of both the input and
output of the system.

As HTM’s are developed for large sparse distributed data streams from the real world, it is easy
to see that it is hard to get a clear overview, without reducing the size of the system analyzed.

When reducing the size, one thing must be absolutely certain. It is whether the algorithm will
work in the same way in a small versus a large system. From the view of the temporal pooler this
is true. The amount of cells per column can be low, and they will still function the same way. For
the spatial pooler though it is more complex. When reducing the number of columns for a layer,
the representations stored gets simpler, e.g. a recognized object is involving 5 active columns in
stead of fifty. This may be a problem for large systems, and systems with high amounts noise,
but to analyze the temporal characteristics of the algorithm, a small system will suffice.

The simplest possible test case is to look at a stream of zeros and ones just one bit wide. The
easiest then would be to have just one column, but there is one important thing to remember
about the spatial pooler. When calculating the overlap of each column, the algorithm counts the
number of active synapses it is connected to. This has the implication that when just one bit is
used and a zero is the input to the spatial pooler, the column will not be active and the temporal
pooler will not have anything to do. The solution for the simplest possible system is then to have
two columns, the first active when the input bit is one, the other active when the input bit is zero.

Informative Output
Fore these tests the HTM is set up as a novelty detector. This means that that the output will be
one when any of the columns are surprised of its activation i.e. no cell in the column was in the
predictive state the previous time step. When studying surprised columns, two interesting things
can be observed. When in a sequence new synapses are needed to update the internal model, and
how long it takes to memorize an unknown sequence for the first time.

9

Algorithm set up
In order to test the temporal abilities of the HTM region, certain parts of the algorithm was
temporarily changed or even switched off. The potential synapses that connects the input bits to
the columns was fixed in order to make the same columns active for a specific input, each time
the test ran. Spatial learning was turned off to make the activation of columns stable over the
course of the test.

In the temporal pooler, each cell is only allowed to make predictions one step ahead in the future.
This makes it easier to analyze the temporal properties of the region, although the mechanism to
predict further in the future is an integral and important part of the algorithm, as it provides the
output with more stability, each time a temporal pattern is repeated. Lastly all segments with no
active synapses are deleted at the end of each time step, to make the program run faster.

The input sequence used for these tests are twenty bits long and sufficiently complex in order to
observe how learning occurs. There are three mechanics to extend and reduce the memory:

Number of cells per column
Permanence decrementation value
Number of synapses per segment

4.2 Analysis

There are two aspects that will be analyzed. When during a specific sequence will the network
be surprised, and when will it correct or extend its connections to increase its understanding of
its inputs. The latter will happen even though the column is not surprised. The red in the tables
below denotes when in the input sequence the HTM becomes surprised and creates new synapses

Test 1:
Cells per column: 3
Permanence dec: 0
Synapses per segment: 3

Iteration Input pattern
1 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1
2 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1

Table 4.1: It takes only one iteration to remember the pattern

10

Test 2:
Cells per column: 3
Permanence dec: 0
Synapses per segment: 2

Iteration Input pattern
1 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1
2 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1
3 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1

Table 4.2: Decreasing synapses per segment to two slows the learning process down

Test 3:
Cells per column: 3
Permanence dec: 0
Synapses per segment: 1

Iteration Input pattern
1 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1
2 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1
3 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1
4 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1
5 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1
6 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1
7 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1
8 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1
9 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1
10 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1

Table 4.3: When synapses per segment is decreased to one, the pattern cannot be fully learned

Test 4:
Cells per column: 3
Permanence dec: 0.007
Synapses per segment: 3

Iteration Input pattern
1 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1
2 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1
3 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1

Table 4.4: When Making Permanence dec non zero the system will start forgetting learned connections

11

Test 5:
Cells per column: 3
Permanence dec: 0.01
Synapses per segment: 3

Iteration Input pattern
1 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1
2 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1
3 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1
4 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1
5 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1
6 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1
7 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1
8 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1
9 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1
10 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1

Table 4.5: When Making Permanence dec bigger (0.01 in this case), the system is forgetting so fast that
certain parts of the sequence must be re-learned each iteration

Test 6:
Cells per column: 2
Permanence dec: 0
Synapses per segment: 3

Iteration Input pattern
1 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1
2 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1
3 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1
4 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1
5 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1
6 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1
7 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1
8 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1
9 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1
10 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1

Table 4.6: Decreasing the number of cells per column to two will force the system to represent its inputs
in simpler context

12

Test 7:
Cells per column: 1
Permanence dec: 0
Synapses per segment: 3

Iteration Input pattern
1 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1
2 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1
3 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1
4 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1
5 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1
6 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1
7 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1
8 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1
9 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1
10 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1

Table 4.7: When there is only one cell per column there are only one context per column that can be
learned (in this case 01 and 10 because it is the first context in the sequence)

13

5 Tweaking of parameters

The parameters can be divided in groups according to what part(s) of the algorithm that uses
them.

5.1 Shared:

These parameters are used by both the spatial and temporal poolers, because they apply to all
synapses. If he permanence value for a synapse is greater than connectedPerm, the synapse
becomes connected and can transfer information. If this value is constant the other parameters in
this category can be tweaked to achieve different things. InitialPerm is the initial permanence
value assigned to a newly created synapse. If this value is close to the value of connectedPerm it
does not take much training to ether exceed or fall below connectedPerm. InitialPerm is typically
larger than connectedPerm, but how much depends on how hard it should be for a newly formed
synapse to become active. PermanenceInc controls how fast a synapse’s permanence value can
be increased, as the value is added each time a synapse is reinforced. The same procedure is
also true for permanenceDec, but instead of controlling the reinforcement, it controls how fast
the permanences values can be decreased. PermanenceDec determines how fast a HTM network
forgets learned connections. The last parameter iterations controls how many previous time
steps that is used to calculate the average activity for a column in the spatial pooler. Decreasing
this parameter will make the columns forget past activations faster, and the system will be more
focused on more recent activity.

5.2 Spatial Pooler:

NumColumns controls how much memory is allocated to the spatial pooler, i.e. how large the
sparse distributed representations the spatial pooler will have. More columns will result in a more
robust and redundant system, as many columns will be part of the representation of any one
thing.
MinOverlap dictates the minimum number of active synapses in a columns input to participate
in the inhibition. A column with overlap below MinOverlap has no chance of being active.
DesiredLocalActivity is a number that controls how many columns that should be active within
a neighborhood after inhibition.

14

5.3 Temporal Pooler:

These prameters are the specific to the temporal pooler.
CellsPerColumn determines how many different contexts a column can represent. Increasing
the number of cells per column will allow the column to store longer and more complex patterns.
MaxSynapesCount indicates how many synapses there is room for on one segment. If the
allowed amount of synapses on a segment is too low, only simple patterns can be stored. If the
amount on the other hand is increased, more complex patterns can be learned if the number of
cells per column is sufficiently large.
ActivationThreshold controls how many active synapses on a segment is needed for the segment
to be active and make a cell enter the predictive state. If activationThreshold is bigger, it takes
more active cells to activate the segment.
MinThreshold: If a segment has fewer active synapses than MinThreshold, it cannot be chosen
as the best segment.

15

6 Results

6.1 Result

The results of the tests carried out is highly dependent on how the system is configured. The
following was noted during the tests:

• Decreasing synapses per segment slows the learning process down.

• When decreasing the number of synapses per segment too much, the pattern cannot be fully
learned.

• When Making Permanence dec non zero the system will start forgetting learned connections.

• When Making Permanence dec too big, the system is forgetting so fast that certain parts of
the sequence must be re-learned each iteration.

• Decreasing the number of cells per column will force the system to represent its inputs in
simpler context.

• When there is only one cell per column there are only one context per column that can be
learned.

6.2 Conclusion

When there are a sufficiently large number of cells per column, many synapses per segment, and
no to little permanence decremantation (forgetting of connections), then the system is a really
fast learner. However when limits are imposed, the system still learns to the best of its ability. In
terms of the problem specification the Conclusions can be described:

• Yes the HTM can make an internal representation of the data sequence at the input.

• No it does not take long for the system to make such a representation if enough resources
are assigned.

16

7 Discussion/Future work

This chapter will cover what is needed to use HTM’s in its current form in real world applications.

7.1 HTM as a novelty detector

As shown in the analysis section of this thesis, an HTM can be used to find out when something
unexpected happens in an incoming stream of data. This is of value in many applications where
it is critical that things stay the same. If for example the temperature in a building is critical,
an HTM can for example sense a fluctuation in the outside temperature long before it can be
measured on the inside of the building. In such an example the HTM would have sensor input
form both inside and outside of the building. If everything stays the same the HTM would do
nothing, but if a difference was found i.e. the HTM became surprised on some level, an alarm
would go of.

7.2 HTM as a predictor

In its current state a cell don’t make a distinction between predicting the next and future events.
To specifically access the prediction for the next time step, it is the sequence segments that are
useful to look at, as they carry information of what cells were active in the previous time step.

7.3 HTM for hardware implementation

The first thing to remember about HTM’s systems is that they operate mainly in parallel. Each
cell receives its input and produces its output in parallel to the other cells in the same layer. The
code written in this thesis runs on one processor. This is not ideal, as this processor has to loop
through cells and compute their output sequentially, which takes time.

Even though there can be many cells to loop through, there are many more synapses to keep track
of. As each cell learns it creates a number segments. These segments has in turn many synapses
each, and each synapse has a floating point permanence value. The system learns through making
connections between cells, so more experience and accuracy means more and more synapses. The
amount of memory is linearly increasing with the number of synapses the system uses.

Memory usage is also affected by how many time steps back in time that states (active, predictive
and learn-states) for each cell are stored. The memory usage can only be reduced by tweaking the
appropriate parameters to fit the problem the HTM will operate on. Execution time though, can
be increased by for example run the HTM code on a multi core processor or a computer cluster.

One step further in the speedup direction would be to simply implement the algorithm in an
FPGA. By using an FPGA for implementation of the HTM the speed can be significantly in-
creased, but the the large amount of resources needed to keep track of the connections required
can still cause problems. The currency for FPGA:s is logic-cells. A logic-cell in an FPGA is used
to perform a boolean operation of some kind. all these operations can be run in parallel, which

17

fits HTM:s perfectly. One aspect of FPGAs that could be used is dynamic reconfiguration. This
could be used to mimic how a HTM system makes or removes connections between cells.

To use an FPGA or ASIC to its full potential the algorithm must be implemented in concurrent
code. To make this conversion of the HTM code, the first step would be to find the parts of the
code that can be run in parallel.

A column must work as an autonomous unit. There can’t be any overarching control program
for all the columns, a column must be able to work independently to its neighbors. To achieve
this it is the competition between columns, described in the spatial poolers inhibition function,
must work on a column by column basis, but for obvious reasons have connections to neighboring
columns. In the temporal pooler there is similar requirement. The cells within a column need
access to many cells in neighboring columns. The bottleneck will not be the number of neurons
or speed that can be achieved, it will be connectivity.

18

References

[1] Numenta. URL www.numenta.com.

[2] Sandra Blakeslee Jeff Hawkins. On Intelligence. Times Books, a division of Henry Holt and
Company, 2004.

[3] Inc. Numenta. Hierarchical temporal memory including htm cortical learning algorithms, 2011.

19

Appendices

A HTM Code

/∗Numenta L icense f o r Non−Commercial Use
Copyright (c) 2011 David Bjorkman

Al l r i g h t s r e s e rved .

This so f tware i s based upon or i n c l ud e s c e r t a i n works and a lgor i thms r e l a t e d
to h i e r a r c h i c a l temporal memory ("HTM") technology publ i shed by Numenta Inc .
Numenta ho lds patent r i g h t s r e l a t e d to HTM and the a lgor i thms used in t h i s
so f tware . Numenta has agreed not to a s s e r t i t s patent r i g h t s aga in s t
development or use o f independent HTM systems , as long as such development
or use i s f o r r e s ea r ch purposes only , and not f o r any commercial or product ion
use . Any commercial or product ion use o f HTM technology that i n f r i n g e s on
Numenta ’ s patents w i l l r e qu i r e a commercial l i c e n s e from Numenta .

Based on the fo r ego ing , t h i s so f tware i s l i c e n s e d under the terms below , f o r
r e s ea r ch purposes only and not f o r any commercial or product ion use . For
purposes o f t h i s l i c e n s e , " commercial or product ion use " i n c l ud e s t r a i n i n g an
HTM network with the i n t en t o f l a t e r dep loy ing the t ra in ed network or
app l i c a t i on f o r commercial or product ion purposes , and us ing or permit t ing
o the r s to use the output from HTM technology f o r commercial or product ion
purposes .

Red i s t r i bu t i on and use in source and binary forms , with or without
mod i f i ca t i on , are permitted (sub j e c t to the l im i t a t i o n s in the d i s c l a ime r
below) provided that the f o l l ow i n g cond i t i on s are met :

∗ Red i s t r i bu t i on s o f source code , i n c l ud ing any mod i f i c a t i on s or d e r i v a t i v e
works , must r e t a i n the f u l l t ex t o f t h i s l i c e n s e and the f o l l ow i ng d i s c l a imer ,
and be sub j e c t to the terms and cond i t i on s o f t h i s l i c e n s e .

∗ Red i s t r i bu t i on s in binary form , i n c l ud ing any mod i f i c a t i on s or d e r i v a t i v e
works , must reproduce the f u l l t ex t o f t h i s l i c e n s e and the f o l l ow i n g
d i s c l a ime r in the documentation and/ or other mat e r i a l s provided with the
d i s t r i bu t i o n , and be sub j e c t to the terms and cond i t i on s o f t h i s l i c e n s e .

∗ Neither the name o f Numenta , Inc . , David Bjorkman , nor the names o f other
c on t r i bu t o r s may be used to endorse or promote products der ived from th i s
so f tware without s p e c i f i c p r i o r wr i t t en permis s ion .

NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT RIGHTS ARE GRANTED BY THIS
LICENSE . THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES ; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT, STRICT LIABILITY ,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ∗/

#inc lude <vector>
c l a s s HTM
{
pub l i c :

HTM (i n t numInputBits , i n t numColumns , unsigned numCells , f l o a t permDec , i n t maxSyn) ;
~HTM () ;

20

void SpatialPooler (unsigned t , std : : vector<int> input) ;
void TemporalPooler (unsigned t) ;
std : : vector<std : : vector<int>> activeColumns ;

p r i v a t e :
// s t r u c t u r e s
s t r u c t synapse
{

f l o a t permanence ; //permanence value
i n t sourceInput ; // index to r eg i on input

} ;
s t r u c t syn
{

f l o a t permanence ; //permanence value
i n t column_index ; // index to a column
in t cell_index ; // index to a c e l l

} ;
s t r u c t synapseUpdate
{

f l o a t permanence ; //permanence value
i n t column_index ; // index to a column
in t cell_index ; // index to a c e l l
i n t synapse_index ;

} ;
s t r u c t segmentUpdate
{

i n t segIndex ;
bool sequenceSegment ;
std : : vector<synapseUpdate>activeSynapses ;

} ;
s t r u c t segment
{

f l o a t activity ;
bool sequenceSegment ;
unsigned num_active_synapses ;
std : : vector<syn>potentialSynapses ;
std : : vector<syn>connectedSynapses ;

} ;
s t r u c t cell
{

i n t predictSegmentIndex ;
std : : vector<bool>predictiveState ;
std : : vector<bool>learnState ;
std : : vector<bool>activeState ;
std : : vector<segment>segment ;

} ;
s t r u c t column
{

std : : vector<f l o a t > overlap ;
f l o a t boost ;
f l o a t activeDutyCycle ;
f l o a t minDutyCycle ;
f l o a t overlapDutyCycle ;
i n t lastLearnCell ;
std : : vector<synapse>potentialSynapses ;
std : : vector<synapse>connectedSynapses ;
std : : vector<int>neighbors ;

std : : vector<cell>cell ;
std : : vector<bool>surpriseState ;

} ;
//Constants
unsigned iterations ;
f l o a t minOverlap ;
f l o a t connectedPerm ;
f l o a t permanenceInc ;

21

f l o a t permanenceDec ;
i n t desiredLocalActivity ;
f l o a t inhibitionRadius ;
unsigned cellsPerColumn ;
i n t activationThreshold ;
i n t minThreshold ;
i n t maxSynapseCount ;
f l o a t initialPerm ;
enum state {activeState , learnState } ;
// Var iab l e s
std : : vector<std : : vector<int>> mInput ;
std : : vector<std : : vector<std : : vector<segmentUpdate>>> segmentUpdateList ;

/∗Functions Spa t i a l Pooler ∗/
void overlap (unsigned t) ;
void inhibition (unsigned t) ;
f l o a t kthScore (std : : vector<int>cols , i n t k , unsigned t) ;
void spatialLearning (unsigned i n t t) ;
f l o a t maxDutyCycle (i n t i) ;
f l o a t updateActiveDutyCycle (i n t c , unsigned t) ;
f l o a t boostFunction (i n t c) ;
f l o a t updateOverlapDutyCycle (i n t c , unsigned t) ;
void increasePermanences (i n t c , f l o a t permInc) ;
f l o a t avaragereceptiveFieldsize () ;

/∗Helper f unc t i on s f o r Spa t i a l Pooler ∗/
void updateConnectedSynapses () ;
void updateNeighbors () ;
f l o a t computeDistance (i n t i , i n t j) ;
i n t randInt (i n t low , i n t high) ;
f l o a t randFloat (f l o a t low , f l o a t high) ;

/∗Functions Temporal Pooler ∗/
void calcActiveState (unsigned t) ;
void calcPredictiveState (unsigned t) ;
void temporalLearning (unsigned t) ;
i n t getActiveSegment (i n t c , i n t i , i n t t , state cellState) ;
bool segmentActive (i n t c , i n t i , i n t s , i n t t , state cellState) ;
i n t getBestMatchingCell (unsigned c , unsigned t , unsigned wrongPredCell , i n t& seg) ;
i n t getBestMatchingSegment (i n t c , i n t i , i n t t) ;
segmentUpdate getSegmentActiveSynapses (i n t c , i n t i , i n t s , i n t t , boo l newSynapses=←↩

f a l s e) ;
void adaptSegments (i n t c , i n t i , bool positiveReinforcement) ;

/∗Helper f unc t i on s f o r Temporal Pooler ∗/
f l o a t getSegmentActivity (i n t c , i n t i , i n t s , i n t t , state cellState) ;
void updateCellSynapses (i n t c , i n t i) ;

pub l i c : void initTimeStep () ;
pub l i c : std : : vector<HTM : : column> col ;
} ;

22

/∗Numenta L icense f o r Non−Commercial Use
Copyright (c) 2011 David Bjorkman

Al l r i g h t s r e s e rved .

This so f tware i s based upon or i n c l ud e s c e r t a i n works and a lgor i thms r e l a t e d
to h i e r a r c h i c a l temporal memory ("HTM") technology publ i shed by Numenta Inc .
Numenta ho lds patent r i g h t s r e l a t e d to HTM and the a lgor i thms used in t h i s
so f tware . Numenta has agreed not to a s s e r t i t s patent r i g h t s aga in s t
development or use o f independent HTM systems , as long as such development
or use i s f o r r e s ea r ch purposes only , and not f o r any commercial or product ion
use . Any commercial or product ion use o f HTM technology that i n f r i n g e s on
Numenta ’ s patents w i l l r e qu i r e a commercial l i c e n s e from Numenta .

Based on the fo r ego ing , t h i s so f tware i s l i c e n s e d under the terms below , f o r
r e s ea r ch purposes only and not f o r any commercial or product ion use . For
purposes o f t h i s l i c e n s e , " commercial or product ion use " i n c l ud e s t r a i n i n g an
HTM network with the i n t en t o f l a t e r dep loy ing the t ra in ed network or
app l i c a t i on f o r commercial or product ion purposes , and us ing or permit t ing
o the r s to use the output from HTM technology f o r commercial or product ion
purposes .

Red i s t r i bu t i on and use in source and binary forms , with or without
mod i f i ca t i on , are permitted (sub j e c t to the l im i t a t i o n s in the d i s c l a ime r
below) provided that the f o l l ow i n g cond i t i on s are met :

∗ Red i s t r i bu t i on s o f source code , i n c l ud ing any mod i f i c a t i on s or d e r i v a t i v e
works , must r e t a i n the f u l l t ex t o f t h i s l i c e n s e and the f o l l ow i ng d i s c l a imer ,
and be sub j e c t to the terms and cond i t i on s o f t h i s l i c e n s e .

∗ Red i s t r i bu t i on s in binary form , i n c l ud ing any mod i f i c a t i on s or d e r i v a t i v e
works , must reproduce the f u l l t ex t o f t h i s l i c e n s e and the f o l l ow i n g
d i s c l a ime r in the documentation and/ or other mat e r i a l s provided with the
d i s t r i bu t i o n , and be sub j e c t to the terms and cond i t i on s o f t h i s l i c e n s e .

∗ Neither the name o f Numenta , Inc . , David Bjorkman , nor the names o f other
c on t r i bu t o r s may be used to endorse or promote products der ived from th i s
so f tware without s p e c i f i c p r i o r wr i t t en permis s ion .

NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT RIGHTS ARE GRANTED BY THIS
LICENSE . THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES ; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT, STRICT LIABILITY ,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ∗/

#inc lude "HTM. h"
#inc lude " time . h"
us ing namespace std ;
HTM : : HTM (i n t numBits , i n t numColumns , unsigned numCells , f l o a t permDec , i n t maxSyn)
{

srand ((unsigned i n t) time (NULL)) ; //Get seed f o r randomizer
connectedPerm=0.2f ;
minOverlap = 1 ;
permanenceInc=0.01f ;
permanenceDec=permDec ;
desiredLocalActivity = 2 ;
iterations = 5 ;
cellsPerColumn = numCells ;
activationThreshold = 0 ;
minThreshold = 0 ;

23

maxSynapseCount = maxSyn ;
initialPerm =0.21f ;
column col_tmp ;
synapse syn_tmp ;
cell cell_tmp ;
f o r (i n t c=0; c < numColumns ; c++)
{

col . push_back (col_tmp) ;
col [c] . overlapDutyCycle = 0 ;
col [c] . activeDutyCycle=0;
// potent i a lSynapse s i s a random s e l e c t i o n o f input b i t s
i n t j=0;
/∗ f o r (i n t i = 0 ; i < numBits ; i++)
{

i f (randInt (0 , 1))
{

syn_tmp . source Input=i ;
c o l [c] . po t ent i a lSynapse s . push_back (syn_tmp) ;

}
}∗/

/∗ Spe c i a l Case For Test ing ∗/
i f (c < numColumns /2)
{

syn_tmp . sourceInput=0;
col [c] . potentialSynapses . push_back (syn_tmp) ;

}
e l s e
{

syn_tmp . sourceInput=1;
col [c] . potentialSynapses . push_back (syn_tmp) ;

}
/∗ // ∗/

f o r (unsigned i n t s=0; s < col [c] . potentialSynapses . size () ; s++)
{

//permanence va lue s range from 0 .0 to 1 .0
f l o a t min = connectedPerm ∗1 .1 f ; // ∗0 .9 f ;
f l o a t max = connectedPerm ∗1 .1 f ;
col [c] . potentialSynapses [s] . permanence = randFloat (min , max) ;

}
col [c] . boost = 1 ;
std : : vector<std : : vector<segmentUpdate>> segmentUpdate_tmp ;
std : : vector<segmentUpdate> segment_tmp ;
segmentUpdateList . push_back (segmentUpdate_tmp) ;
f o r (unsigned i = 0 ; i < cellsPerColumn ; i++)
{

col [c] . cell . push_back (cell_tmp) ;
segmentUpdateList [c] . push_back (segment_tmp) ;

}
}
updateConnectedSynapses () ; //ConnectedSynapses depends on ←↩

the permanence value on the synapses
inhibitionRadius = avaragereceptiveFieldsize () ; // A f f e c t s wish columns are ←↩

ne ighbors
updateNeighbors () ; // Ca l cu l a t e s ne ighbors f o r each ←↩

column
}
HTM : : ~ HTM () {}
/∗ Spa t i a l Pooler ∗/
void HTM : : SpatialPooler (unsigned t , std : : vector<int> input)
{

mInput . push_back (input) ;
overlap (t) ;
inhibition (t) ;
// spa t i a lL ea rn ing (t) ;

24

//Update s t u f f ! ! !
updateConnectedSynapses () ;
updateNeighbors () ;

}
void HTM : : overlap (unsigned t)
{

f o r (unsigned c=0; c < col . size () ; c++)
{

col [c] . overlap . push_back (0) ;
f o r (unsigned s=0; s < col [c] . connectedSynapses . size () ; s++) // f o r every ←↩

connected synapse
{

col [c] . overlap [t] = col [c] . overlap [t] + mInput [t] [col [c] . connectedSynapses [s←↩
] . sourceInput] ;

}
i f (col [c] . overlap [t] < minOverlap)
{

col [c] . overlap [t] = 0 ;
}
e l s e
{

col [c] . overlap [t] = col [c] . overlap [t] ∗ col [c] . boost ;
}

}
}
void HTM : : inhibition (unsigned t)
{

std : : vector<int>tmp ;
f l o a t minLocalActivity = 0 ;
activeColumns . push_back (tmp) ;
activeColumns [t] . clear () ;
f o r (unsigned i n t c=0; c < col . size () ; c++)
{

minLocalActivity = kthScore (col [c] . neighbors , desiredLocalActivity , t) ;
i f (col [c] . overlap [t] > 0 && col [c] . overlap [t] >= minLocalActivity)
{

activeColumns [t] . push_back (c) ; //Extend activeColumns with column c
}

}
}
f l o a t HTM : : kthScore (std : : vector<int>cols , i n t k , unsigned t)
{

//Returns the k ’ th h i ghe s t over lap value
i f (cols . size () != 0)
{

i n t index=cols [0] ;
std : : vector<column>tmp = col ;
std : : vector<f l o a t >v ;
f o r (i n t i = 0 ; i < k ; i++)
{

f o r (unsigned i n t c = 0 ; c < cols . size () ; c++)
{

i f (tmp [cols [c]] . overlap [t] >= tmp [index] . overlap [t])
{

index = cols [c] ;
}

}
v . push_back (tmp [index] . overlap [t]) ;
tmp [index] . overlap [t]=0;

}
re turn v [k−1] ;

}
e l s e
{

re turn 0 ;
}

25

}
void HTM : : spatialLearning (unsigned t)
{

f o r (unsigned i=0; i < activeColumns [t] . size () ; i++)
{

in t c = activeColumns [t] [i] ; // Active Column index
f o r (unsigned s=0; s < col [c] . potentialSynapses . size () ; s++)
{

i f (mInput [t] [col [c] . potentialSynapses [s] . sourceInput] == 1)
{

col [c] . potentialSynapses [s] . permanence = col [c] . potentialSynapses [s] .←↩
permanence + permanenceInc ;

col [c] . potentialSynapses [s] . permanence = min (1 . 0 f , col [c] .←↩
potentialSynapses [s] . permanence) ;

}
e l s e
{

col [c] . potentialSynapses [s] . permanence = col [c] . potentialSynapses [s] .←↩
permanence − permanenceDec ;

col [c] . potentialSynapses [s] . permanence = max (0 . 0 f , col [c] .←↩
potentialSynapses [s] . permanence) ;

}
}

}
f o r (unsigned i n t c=0; c < col . size () ; c++)
{

col [c] . minDutyCycle = 0.01 f ∗ maxDutyCycle (c) ;
col [c] . activeDutyCycle = updateActiveDutyCycle (c , t) ;
col [c] . boost = boostFunction (c) ;

col [c] . overlapDutyCycle = updateOverlapDutyCycle (c , t) ;
i f (col [c] . overlapDutyCycle < col [c] . minDutyCycle)
{

increasePermanences (c , 0 . 1 f ∗ connectedPerm) ;
}

}
inhibitionRadius = avaragereceptiveFieldsize () ; // A f f e c t s wish columns are ←↩

ne ighbors
}
f l o a t HTM : : maxDutyCycle (i n t i)
{

std : : vector<int> cols = col [i] . neighbors ;
//Returns the maximum ac t i v e duty cy c l e o f the columns in c o l s
f l o a t max=0;
f o r (unsigned i n t c = 0 ; c < cols . size () ; c++)
{

i f (col [cols [c]] . activeDutyCycle > max)
{

max = col [cols [c]] . activeDutyCycle ;
}

}
re turn max ;

}
f l o a t HTM : : updateActiveDutyCycle (i n t c , unsigned t)
{

//Computes a moving average o f how o f t en column c has been
// a c t i v e a f t e r i n h i b i t i o n

// Simple moving average :
i n t acc=0;
// unsigned i t e r = 1000 ;
i n t size = min (iterations , activeColumns . size ()) ;
i n t j = t ;
i n t limit = j − size ;

f o r (; j > limit ; j−−) // 0−0 ,1−0 ,2−0.. . .999−0 ,1000−1 ,1001−2.. .

26

{
f o r (unsigned i = 0 ; i < activeColumns [j] . size () ; i++)
{

i f (activeColumns [j] [i] == c)
{

acc++;
}

}
}
re turn f l o a t (acc) /iterations ;

}
f l o a t HTM : : boostFunction (i n t c)
{

//Computes a boost va lue (>=1) f o r a column c .
// I f a c t i v e i s above min the boost va lue = 1 .
//The boost i n c r e a s e s l i n e a r l y once a c t i v e s t a r t s f a l l i n g below min

f l o a t active = col [c] . activeDutyCycle ;
f l o a t min = col [c] . minDutyCycle ;
i f (active > min)
{

re turn 1 ;
}
e l s e i f (active < min)
{

re turn (col [c] . boost) ∗ (1 . 5 f) ;
}
e l s e
{

re turn col [c] . boost ;
}
r e turn 0 ;

}
f l o a t HTM : : updateOverlapDutyCycle (i n t c , unsigned t)
{

//Computes a moving average o f how o f t en column c has
// over lap g r e a t e r than minOverlap

// Simple moving average :
i n t newVal=0;
i n t oldVal=0;
i f (col [c] . overlap [t] > minOverlap)
{

newVal++;
}
i f (t >= iterations && col [c] . overlap [t−iterations] > minOverlap)
{

oldVal++;
}
return col [c] . overlapDutyCycle + (f l o a t (newVal) /iterations) − (f l o a t (oldVal) /←↩

iterations) ;
}
void HTM : : increasePermanences (i n t c , f l o a t permInc)
{

f o r (unsigned s = 0 ; s < col [c] . potentialSynapses . size () ; s++)
{

col [c] . potentialSynapses [s] . permanence = col [c] . potentialSynapses [s] . permanence ←↩
∗ 1 .0 f + permInc ;

}
}
f l o a t HTM : : avaragereceptiveFieldsize ()
{

f l o a t distance ;
f l o a t average = 0 ;
f o r (unsigned c = 0 ; c < col . size () ; c++)
{

27

distance = 0 ;
f o r (unsigned s = 0 ; s < col [c] . connectedSynapses . size () ; s++)
{

in t tmp = in t (c) − col [c] . connectedSynapses [s] . sourceInput ;
tmp = tmp ∗ tmp ;
distance += sqrt (f l o a t (tmp)) ;

}
i f (col [c] . connectedSynapses . size () != 0)
{

distance /= col [c] . connectedSynapses . size () ; // Average f o r a l l connected ←↩
synapses f o r column s

}
e l s e
{

distance = 0 ;
}
average += distance ;

}
r e turn average/col . size () ; //Average f o r a l l columns

}
/∗Helper f unc t i on s f o r Spa t i a l Pooler ∗/
void HTM : : updateConnectedSynapses ()
{

f o r (unsigned i n t c = 0 ; c < col . size () ; c++)
{

col [c] . connectedSynapses . clear () ;
f o r (unsigned i n t s = 0 ; s < col [c] . potentialSynapses . size () ; s++)
{

i f (col [c] . potentialSynapses [s] . permanence > connectedPerm)
{

col [c] . connectedSynapses . push_back (col [c] . potentialSynapses [s]) ;
}

}
}

}
void HTM : : updateNeighbors ()
{

unsigned dMin , dMax ;
f o r (unsigned c = 0 ; c < col . size () ; c++)
{

dMin = unsigned (max (0 . 0 f , f l o a t (c) − inhibitionRadius)) ;
dMax = unsigned (min (f l o a t (col . size ()) − 1 .0 f , inhibitionRadius)) ;
f o r (unsigned d = dMin ; d < dMax ; d++)
{

col [c] . neighbors . push_back (d) ;
}

}
}
f l o a t HTM : : computeDistance (i n t i , i n t j)
{

re turn 0 ;
}
i n t HTM : : randInt (i n t low , i n t high)
{

i n t r = rand () % (high − low + 1) + low ;
r e turn r ;

}
f l o a t HTM : : randFloat (f l o a t low , f l o a t high)
{

f l o a t r = low + ((high−low) ∗ (f l o a t (rand ()) /RAND_MAX)) ;
r e turn r ;

}
/∗Temporal Pooler ∗/
void HTM : : TemporalPooler (unsigned t)
{

28

initTimeStep () ;
calcActiveState (t) ;
i f (t>0)
{

calcPredictiveState (t) ;
temporalLearning (t) ;

}
}
void HTM : : calcActiveState (unsigned t)
{

// Sets the a c t i v e s t a t e f o r each c e l l and chooses a l e a rn c e l l
i n t c , s , wrongPredCell ;
bool buPredicted , lcChosen ;
segmentUpdate sUpdate ;

f o r (unsigned j=0; j < activeColumns [t] . size () ; j++)
{

buPredicted = f a l s e ;
lcChosen = f a l s e ;
wrongPredCell = −1;
c = activeColumns [t] [j] ; // Active Column index

i f (t>0) // I s the re a prev ious time−s tep ?
{

f o r (unsigned i = 0 ; i < cellsPerColumn ; i++)
{

i f (col [c] . cell [i] . predictiveState [t−1] == true)
{

//There must be an a c t i v e segment ! ! ! ! !
s = getActiveSegment (c , i , t−1,activeState) ; //Get ←↩

segment that was a c t i v e due to a c t i v eS t a t e l a s t time−s tep
i f (col [c] . cell [i] . segment [s] . sequenceSegment == true) //Was i t a ←↩

sequence segment ?
{

buPredicted = true ;
col [c] . cell [i] . activeState [t] = true ; // Set that ←↩

c e l l to a c t i v e
i f (segmentActive (c , i , s , t−1,learnState)) //Was the ←↩

segment connected to a c e l l in l e a rnS ta t e l a s t time−s tep ?
{

lcChosen = true ;
col [c] . cell [i] . learnState [t] = true ; // Set that ←↩

c e l l to l e a rn s t a t e
}

}
}

}
}
i f (buPredicted == f a l s e) //No input was pr ed i c t ed l a s t time step (no ←↩

sequenceSegment)
{

f o r (unsigned i = 0 ; i < cellsPerColumn ; i++)
{

col [c] . cell [i] . activeState [t] = true ; // Act ivate a l l c e l l s
}
// c o l [c] . s u r p r i s e S t a t e [t] = true ; // Surpr i s ed column

}
i f (lcChosen == f a l s e) //No l ea rn c e l l was chosen
{

col [c] . surpriseState [t] = true ; //Fix connect i ons
i n t s ;
i n t i = getBestMatchingCell (c , t−1,wrongPredCell , s) ; //Choose best c e l l ←↩

and best segment on that c e l l
col [c] . cell [i] . learnState [t] = true ;
i f (t>0)
{

29

sUpdate = getSegmentActiveSynapses (c , i , s , t−1, t rue) ; //Add synapses ←↩
to segment i f the r e i s any , o therw i se c r e a t e segment

sUpdate . sequenceSegment = true ; //Only sequence ←↩
segments i s added t h i s way

segmentUpdateList [c] [i] . push_back (sUpdate) ;
}

}
}

}
void HTM : : calcPredictiveState (unsigned t)
{

// Sets the p r e d i c t i v e s t a t e f o r each c e l l
segmentUpdate activeUpdate , predUpdate ;
i n t predSegment ;
f o r (unsigned c = 0 ; c < col . size () ; c++)
{

f o r (unsigned i = 0 ; i < cellsPerColumn ; i++)
{

f o r (unsigned s = 0 ; s < col [c] . cell [i] . segment . size () ; s++)
{

//For every a c t i v e segment update the best segment f o r the c e l l
i f (segmentActive (c , i , s , t , activeState))
{

col [c] . cell [i] . predictiveState [t] = true ;
col [c] . cell [i] . predictSegmentIndex = s ;

activeUpdate = getSegmentActiveSynapses (c , i , s , t , f a l s e) ; ←↩
//Old synapses on old segment

segmentUpdateList [c] [i] . push_back (activeUpdate) ; ←↩
//No new segments , r e i n f o r c e o ld ones ! ! !

/∗Pred i c t f u r t h e r in time ∗/
predSegment = getBestMatchingSegment (c , i , t−1) ; ←↩

//Find the best segment l a s t time step , or c r e a t e a new one i f ←↩
none e x i s t s

predUpdate = getSegmentActiveSynapses (c , i , predSegment , t−1, t rue) ; ←↩
//New synapses to o ld (or new) segment

// segmentUpdateList [c] [i] . push_back (predUpdate) ; ←↩
//Put the updates on the wai t ing l i s t

}
}

}
}

}
void HTM : : temporalLearning (unsigned t)
{

// Learning : Adjusts the synapses o f segments in the segmentUpdateList
f o r (unsigned c = 0 ; c < col . size () ; c++)
{

f o r (unsigned i = 0 ; i < cellsPerColumn ; i++)
{

i f (col [c] . cell [i] . learnState [t] == true)
{

adaptSegments (c , i , t rue) ;
segmentUpdateList [c] [i] . clear () ;

}
e l s e i f (col [c] . cell [i] . predictiveState [t] == f a l s e && col [c] . cell [i] .←↩

predictiveState [t−1] == true)
{

// Fal se p r ed i c t i o n
adaptSegments (c , i , f a l s e) ;
segmentUpdateList [c] [i] . clear () ;

}
updateCellSynapses (c , i) ;

}
}

30

}
bool HTM : : segmentActive (i n t c , i n t i , i n t s , i n t t , state cellState)
{

//Returns t rue i f the number o f connected synapses on segment s that
// are a c t i v e due to c e l l S t a t e at time t i s g r e a t e r than ac t iva t i onThre sho ld

i n t col_index ;
i n t cell_index ;
i n t count = 0 ;
i f (cellState == activeState)
{

f o r (unsigned j = 0 ; j < col [c] . cell [i] . segment [s] . connectedSynapses . size () ; j←↩
++)

{
col_index = col [c] . cell [i] . segment [s] . connectedSynapses [j] . column_index ;
cell_index = col [c] . cell [i] . segment [s] . connectedSynapses [j] . cell_index ;
i f (col [col_index] . cell [cell_index] . activeState [t] == true)
{

count++;
}

}
}
e l s e i f (cellState == learnState)
{

f o r (unsigned j = 0 ; j < col [c] . cell [i] . segment [s] . connectedSynapses . size () ; j←↩
++)

{
col_index = col [c] . cell [i] . segment [s] . connectedSynapses [j] . column_index ;
cell_index = col [c] . cell [i] . segment [s] . connectedSynapses [j] . cell_index ;
i f (col [col_index] . cell [cell_index] . learnState [t] == true)
{

count++;
}

}
}

i f (count > activationThreshold)
{

re turn true ;
}
e l s e
{

re turn f a l s e ;
}

}
i n t HTM : : getActiveSegment (i n t c , i n t i , i n t t , state cellState)
{

/∗ ∗∗ ∗/
/∗ For column c , c e l l i r e tu rn s Segment index ∗/
/∗ Get the best segment index in f o l l ow i ng order : ∗/
/∗ ∗/
/∗ Active ∗/
/∗ Sequence segment ∗/
/∗ Most a c t i v e ∗/
/∗ ∗∗ ∗/

i n t activeCount = 0 ;
i n t sequenceCount = 0 ;
i n t activeIndex , sequenceIndex , moastActiveIndex ;
f l o a t activity = 0 ;
f l o a t a ;
f o r (unsigned s = 0 ; s < col [c] . cell [i] . segment . size () ; s++)
{

i f (segmentActive (c , i , s , t , cellState))
{

activeCount++;

31

activeIndex = s ;
i f (col [c] . cell [i] . segment [s] . sequenceSegment == true)
{

sequenceCount++;
sequenceIndex = s ;

}
a=getSegmentActivity (c , i , s , t , cellState) ;
i f (a>activity)
{

activity = a ;
moastActiveIndex = s ;

}
}

}
i f (activeCount==1) // I f j u s t one segment i s a c t i v e re turn i t ’ s index
{

re turn activeIndex ;
}
e l s e i f (activeCount > 1 && sequenceCount == 0) // Else re turn the most a c t i v e ←↩

segment ’ s index
{

re turn moastActiveIndex ;
}
e l s e i f (activeCount > 1 && sequenceCount == 1) // I f j u s t one a c t i v e segment←↩

i s a sequenceSegment re turn i t ’ s index
{

re turn sequenceIndex ;
}
e l s e i f (activeCount > 1 && sequenceCount > 1) // Else re turn the most a c t i v e ←↩

segment ’ s index
{

re turn sequenceIndex ;
}
e l s e //No a c t i v e segment , t h i s should not happen !
{

re turn −1;
}

}
i n t HTM : : getBestMatchingSegment (i n t c , i n t i , i n t t)
{

//Find the segment with the l a r g e s t number a c t i v e synapses
//The permanence value i s a l lowed to be below connectedPerm
//The number o f a c t i v e synapses i s a l lowed to be below act ivat ionThresho ld , but must←↩

be above minThreshold
// I f no segments are found , re turn −1

i n t active_synapses , cell_index , col_index ;
i n t max_syn = minThreshold ;
i n t index = −1;

f o r (unsigned s = 0 ; s < col [c] . cell [i] . segment . size () ; s++)
{

active_synapses = 0 ;
f o r (unsigned p = 0 ; p < col [c] . cell [i] . segment [s] . potentialSynapses . size () ; p←↩

++)
{

cell_index = col [c] . cell [i] . segment [s] . potentialSynapses [p] . cell_index ;
col_index = col [c] . cell [i] . segment [s] . potentialSynapses [p] . column_index ;
i f (col [col_index] . cell [cell_index] . activeState [t] == true)
{

active_synapses++;
}

}
i f (active_synapses > max_syn)
{

max_syn = active_synapses ;

32

col [c] . cell [i] . segment [s] . num_active_synapses = max_syn ;
index = s ;

}
}
re turn index ;

}
i n t HTM : : getBestMatchingCell (unsigned c , unsigned t , unsigned wrongPredCell , i n t& seg)
{

//Returns the c e l l with the best matching segment
// I f no matching c e l l : Return the c e l l with the f ewes t number o f segments
i n t s ;
seg = −1;
unsigned num_active_synapses = 0 ;
unsigned num_segments = col [c] . cell [0] . segment . size () ;
i n t matching_cell_index = 0 ;
i n t non_matching_cell_index = 0 ;
f o r (unsigned i = 0 ; i < cellsPerColumn ; i++)// i n t
{

s = getBestMatchingSegment (c , i , t) ;
i f (s !=−1)
{

i f (col [c] . cell [i] . segment [s] . num_active_synapses > num_active_synapses) ←↩
//The number o f a c t i v e synapses must have been c a l c u l a t ed here ! ! !

{
num_active_synapses = col [c] . cell [i] . segment [s] . num_active_synapses ;
matching_cell_index = i ;
seg = s ;

}
}
i f (col [c] . cell [i] . segment . size () < num_segments)
{

num_segments = col [c] . cell [i] . segment . size () ;
non_matching_cell_index = i ;

}
}
i f (num_active_synapses > 0)
{

return matching_cell_index ; // seg != −1
}
e l s e
{

re turn non_matching_cell_index ; // seg = −1
}

}
HTM : : segmentUpdate HTM : : getSegmentActiveSynapses (i n t c , i n t i , i n t s , i n t t , bool ←↩

newSynapses)
{

segmentUpdate seg ;
synapseUpdate synapse_tmp ;
std : : vector<column> column_tmp = col ;
i n t cell_index , col_index , num ;
bool learn ;

seg . segIndex = −1;
seg . sequenceSegment = f a l s e ;

i f (s !=−1)
{

//Get a c t i v e synapses
seg . segIndex=s ;
seg . sequenceSegment=col [c] . cell [i] . segment [s] . sequenceSegment ;
f o r (unsigned j = 0 ; j < col [c] . cell [i] . segment [s] . potentialSynapses . size () ; j←↩

++)
{

i f (col [c] . cell [i] . segment [s] . potentialSynapses [j] . permanence > ←↩
connectedPerm)

33

{
cell_index = col [c] . cell [i] . segment [s] . potentialSynapses [j] . cell_index ;
col_index = col [c] . cell [i] . segment [s] . potentialSynapses [j] . column_index ;
i f (col [col_index] . cell [cell_index] . activeState [t] == true)
{

synapse_tmp . cell_index = cell_index ;
synapse_tmp . column_index = col_index ;
synapse_tmp . synapse_index = j ;
synapse_tmp . permanence = col [c] . cell [i] . segment [s] . potentialSynapses←↩

[j] . permanence ;
seg . activeSynapses . push_back (synapse_tmp) ;

}
}

}
}
i f (newSynapses)
{

num = max (0 , i n t (maxSynapseCount − seg . activeSynapses . size ())) ; //←↩
newSynapseCount in pseudo code = maxSynapseCount here

whi l e (num>0)
{

learn = f a l s e ;
f o r (unsigned c_i = 0 ; c_i < column_tmp . size () ; c_i++)
{

f o r (unsigned i_i = 0 ; i_i < cellsPerColumn ; i_i++)
{

i f ((i_i != i) | | (c_i != c)) //No c e l l can connect to i t s e l f !
{

i f (column_tmp [c_i] . cell [i_i] . learnState [t])
{

learn = true ;
i f (randInt (0 , 1))
{

column_tmp . erase (column_tmp . begin ()+c_i) ; //Do not←↩
l ook in t h i s column again !

synapse_tmp . cell_index=i_i ;
synapse_tmp . column_index=c_i ;
synapse_tmp . permanence=initialPerm ;
synapse_tmp . synapse_index = −1;
seg . activeSynapses . push_back (synapse_tmp) ;
num−−;

}
break ;

}
}

}
}
i f (! learn)
{

break ;
}

}
}
re turn seg ;

}
void HTM : : adaptSegments (i n t c , i n t i , bool positiveReinforcement)
{

// Adjusts permanences o f synapses , and adds new synapses to the segment
segment seg_tmp ;
syn syn_tmp ;
i f (positiveReinforcement)
{

f o r (unsigned s = 0 ; s < col [c] . cell [i] . segment . size () ; s++)
{

f o r (unsigned p = 0 ; p < col [c] . cell [i] . segment [s] . potentialSynapses . size () ;←↩
p++)

34

{
col [c] . cell [i] . segment [s] . potentialSynapses [p] . permanence −= ←↩

permanenceDec ;
}

}
}
f o r (unsigned s = 0 ; s < segmentUpdateList [c] [i] . size () ; s++)
{

i f (segmentUpdateList [c] [i] [s] . segIndex == −1 && segmentUpdateList [c] [i] [s] .←↩
activeSynapses . size () > 0)

{
//New segment !
seg_tmp . sequenceSegment = segmentUpdateList [c] [i] [s] . sequenceSegment ;
f o r (unsigned a = 0 ; a < segmentUpdateList [c] [i] [s] . activeSynapses . size () ; a←↩

++)
{

i f (segmentUpdateList [c] [i] [s] . activeSynapses [a] . synapse_index == −1)
{

syn_tmp . cell_index = segmentUpdateList [c] [i] [s] . activeSynapses [a] .←↩
cell_index ;

syn_tmp . column_index = segmentUpdateList [c] [i] [s] . activeSynapses [a] .←↩
column_index ;

syn_tmp . permanence = segmentUpdateList [c] [i] [s] . activeSynapses [a] .←↩
permanence ; //Permanense = in i t i a lPe rm !

seg_tmp . potentialSynapses . push_back (syn_tmp) ;
seg_tmp . num_active_synapses = 0 ;

}
}
col [c] . cell [i] . segment . push_back (seg_tmp) ;

}
e l s e i f (segmentUpdateList [c] [i] [s] . segIndex != −1)
{

//Old segment
col [c] . cell [i] . segment [segmentUpdateList [c] [i] [s] . segIndex] . sequenceSegment ←↩

= segmentUpdateList [c] [i] [s] . sequenceSegment ;
f o r (unsigned a = 0 ; a < segmentUpdateList [c] [i] [s] . activeSynapses . size () ; a←↩

++)
{

i f (segmentUpdateList [c] [i] [s] . activeSynapses [a] . synapse_index == −1)
{

syn_tmp . cell_index = segmentUpdateList [c] [i] [s] . activeSynapses [a] .←↩
cell_index ;

syn_tmp . column_index = segmentUpdateList [c] [i] [s] . activeSynapses [a] .←↩
column_index ;

syn_tmp . permanence = segmentUpdateList [c] [i] [s] . activeSynapses [a] .←↩
permanence ; //Permanense = in i t i a lPe rm !

col [c] . cell [i] . segment [segmentUpdateList [c] [i] [s] . segIndex] .←↩
potentialSynapses . push_back (syn_tmp) ;

}
e l s e
{

i f (positiveReinforcement) // Po s i t i v e Reinforcement
{

col [c] . cell [i] . segment [segmentUpdateList [c] [i] [s] . segIndex] .←↩
potentialSynapses [segmentUpdateList [c] [i] [s] . activeSynapses [←↩
a] . synapse_index] . permanence += (2∗ permanenceInc) ;

}
e l s e // Negative Reinforcement
{

col [c] . cell [i] . segment [segmentUpdateList [c] [i] [s] . segIndex] .←↩
potentialSynapses [segmentUpdateList [c] [i] [s] . activeSynapses [←↩
a] . synapse_index] . permanence −= permanenceDec ;

}
}

}
}

35

}
}
/∗Helper f unc t i on s f o r Temporal Pooler ∗/
void HTM : : initTimeStep ()
{

/∗Add entry f o r cur rent time step ∗/
f o r (unsigned c=0; c < col . size () ; c++)
{

f o r (unsigned i = 0 ; i < cellsPerColumn ; i++)
{

col [c] . cell [i] . activeState . push_back (f a l s e) ;
col [c] . cell [i] . predictiveState . push_back (f a l s e) ;
col [c] . cell [i] . learnState . push_back (f a l s e) ;

}
col [c] . surpriseState . push_back (f a l s e) ;

}
}
f l o a t HTM : : getSegmentActivity (i n t c , i n t i , i n t s , i n t t , state cellState)
{

//Moving average not yet implemented here , j u s t re turn the f i r s t segment
i f (segmentActive (c , i , s , t , cellState))
{

}
re turn 1 ;

}
void HTM : : updateCellSynapses (i n t c , i n t i)
{

//Update connected synapses !
bool noSynFlag ;
f o r (unsigned s = 0 ; s < col [c] . cell [i] . segment . size () ; s++)
{

noSynFlag = true ;
col [c] . cell [i] . segment [s] . connectedSynapses . clear () ;
f o r (unsigned p = 0 ; p < col [c] . cell [i] . segment [s] . potentialSynapses . size () ; p←↩

++)
{

i f (col [c] . cell [i] . segment [s] . potentialSynapses [p] . permanence > ←↩
connectedPerm)

{
col [c] . cell [i] . segment [s] . connectedSynapses . push_back (col [c] . cell [i] .←↩

segment [s] . potentialSynapses [p]) ;
noSynFlag = f a l s e ;

}
}
i f (noSynFlag)
{

col [c] . cell [i] . segment . erase (col [c] . cell [i] . segment . begin ()+s) ;
}

}
}

36

B Qt application output

The figure below shows a test with the input bit sequence 010101. There are six sub figures
(a,b,c,d,e,f), one for each bit in the input bit sequence. The HTM consists of one layer that has
two column with three cells each. When the input bit is zero the left column is activated, and
when the input bit is one, the right column is activated. A blue cell denotes a cell in the active
state, and a yellow cell denotes a cell in the predictive state. If a cell is gray it is has no active
input and is neither active nor predictive. From the beginning there are no connections between
cells, but as the learncell in a winning column is forming connections to recently activated cells,
it will soon start to predict its own activation. By doing this the cells in the columns will learn
the input bit sequence. Connections between cells are shown by thin black lines in the figure.

37

(a) The input is zero, and the left
column is surprised. It choses a
learncell but cannot create any con-
nections.

(b) The input is one, the right col-
umn is surprised. It choses a learn-
cell that creates a connection to a
cell that was chosen as learncell in
the last time step. (in this case to
the first cell in the left column).

(c) The input is zero, and the left
column is surprised. It choses a
learncell and creates a connection to
a cell that was chosen as learncell in
the last time step. The first cell in
the right column receives active lat-
eral input and enters the predictive
state.

(d) The input is one, and the right
column is now no longer surprised
because it had a cell in the predictive
state in the last time step. Only that
cell is now active, and no new con-
nections are created. The first cell
in the left column is now in predic-
tive state and anticipates activation
the next time step.

(e) The input is zero, and the first
cell in the left column is in the ac-
tive state as predicted. The first cell
in the right column is in the predic-
tive state and anticipates activation
the next time step.

(f) The input is one, and the first
cell in the right column is in the ac-
tive state as predicted. The first cell
in the left column is in the predic-
tive state and anticipates activation
the next time step.

Figure B.1: The output states of the cells in two columns during a simple input sequence.

38

