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Simulink based modelling of technical safety concepts and automatic creation of fault 
trees within AD and ADAS solutions 
MARCUS ANJEMARK, OSKAR NILSSON 
Department of Electrical Engineering  
Chalmers University of Technology 
 

Abstract 
Safety is the most important criteria for vehicle manufacturers. It is important that 
functions are implemented correctly and fulfills the requirements in case of hardware 
and software failure. One way to ensuring correct behavior, according to the industry 
standard ISO-26262, is to validate functional safety concept with fault trees. By today 
fault trees are created manually which is time consuming. The goal of this thesis is to 
explore the possibility to use Simulink to see how signals propagate through the 
system and to automatically generate fault tree. 

A method to create a Simulink model given a functional architecture design has been 
developed. The Simulink model includes fault injections that are made general by 
overriding signal values with injected values.  From the model it is possible to 
automatically generate fault trees by analyzing the model. 

The method was applied on a remote park assistant pilot function for verification. The 
automatically generated fault trees were confirmed correct by safety experts. More 
signal faults and normal events were included compared to the manual created fault 
trees. This was mainly due to the modeling opportunities offered by the Simulink 
model.  

Keywords: Technical Safety Concept, Functional Safety Concept, Simulink model, 
automatically generated fault tree, ISO-26262 
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1 Introduction 
A modern vehicle consists of multiple electronic systems and software components 
which are connected to be able to execute different tasks for different functions. If a 
fault causes a function to gain access to execute a task at the wrong time, the vehicle 
could behave oddly and the consequences could even be dangerous. An example 
would be if an autonomous parking function would gain faulty access to request 
steering while driving on the highway. To avoid this, safety evaluations are performed, 
and safety functions are introduced to prevent dangerous situations, [1]. 

The industry standard ISO-26262, [2], is an adaptation of the IEC 61508 series of 
standards to address the sector specific needs of electrical and/or electronic (E/E) 
systems within road vehicles. This standard provides an automotive specific risk-
based approach to determine integrity levels called Automotive Safety Integrity Levels 
(ASIL), which is used to specify which of the requirements of ISO-26262 are applicable 
to avoid unreasonable residual risk, [3, 4].  

Modern vehicles have rapidly increased in complexity level when connecting software 
components and fundamental functions together, [5]. The possibilities of maintaining 
a great understanding of the connections between components is a challenge for 
safety developers. An example is the investigation of the automotive manufacturer 
Toyota’s unintended acceleration case which concluded that the development did not 
meet industry standard, [6], to ensure the avoidance of single-point failures. Single-
point failures in components led to dangerous events including both severe damage 
and death.  

Fault tree analysis (FTA) is one tool that is used to prove that the requirements of ISO-
26262 are fulfilled, [7]. FTA is an analytic tool that was developed during the 60s, [8, 
9]. When it is done manually, it is a time-consuming method to identify potential fault 
sources and weak points in the system. A missing fault source can both be very safety 
critical and costly. For example, if the vehicle system goes into series production 
before the fault source is found, is more expensive than if the fault source is found 
during the development of the vehicle system.  

One of the main challenges to automatically generate fault trees is identified as to 
achieve a suitable level of details in the fault tree, [10]. The reason to automate the 
fault tree creation process is to reduce the time, increase the confidence that the 
design works and reduce the risk for human errors. The possibility to use the process 
at an early stage in an iterative design development phase of a new product is also 
considered valuable, [11]. The automation can increase the efficiency in the validation 
of new products and functions in a larger system.  

1.1 Aim 

The project aims to create a method for how a Simulink model could work as a 
fundamental source of information for automatic creation of fault trees. The fault tree 
should comply with requirements to work as a support when validating the safety of a 
system. 

The appearance of the Simulink model is to be designed to match the system 
architecture and work as a map to understand the connections between the 
components in the system. The model should be a tool for engineers when developing 
a safety architecture and verifying requirements for the function and to encourage 
them to maintain an industry standard procedure.  
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To provide engineers with a tool that gives a deeper understanding of how 
components influence each other, the functionality behavior is modeled in the Simulink 
model. The aim is also to allow engineers to interpret specific signals from components 
to visualize the impact of a fault and how the fault propagate in the system. 

1.2 Research questions 

The project addresses three research questions split into two groups. The first 
question focus on fault injection and what benefits it will have on the understanding of 
the system during system safety work. The last two questions are related to fault trees 
and how automatic generation of fault trees can improve the work with system safety.  

The research questions are formulated as follows: 

• Which parts of the fault injection tool need to be generalized to enable the 
possibility to use it on other functions? 

• What type of failure differences is concluded between an automatically 
generated fault tree and a manually created fault tree? 

• What would be the benefits and challenges by using the Simulink modelling 
method instead of the manual FTA with regards to time efficiency, possible 
safety gaps and fully validated design?  

1.3 Scope 

This report presents a method to be used by engineers working in the automotive 
industry. The method is an assistant tool for engineers when evaluating the safety of 
a function in a vehicle. An overview of the method is presented in Figure 1. The input 
is a function or product description and includes information on the technical setup. 
The scope is to create a Simulink model based on the description and to automatically 
generate a fault tree from the model. The Simulink model includes the functionality 
behavior for the signals and the possibility to inject a signal fault to the model during 
simulation. The fault trees are generated automatically and based on the information 
in the Simulink model. 

An important limitation is that the method will not perform any analysis of the fault tree. 
However, concerns regarding how a fault tree analysis is performed will be taking into 
consideration when developing the process. 

The source for information and the details regarding input and output to the method is 
mainly connected to Volvo Cars. The developed method will be validated and tested 
on the vehicle function remote park assistant pilot (RPAP), [12, 13]. 

Figure 1 The input for the process is a function. The output from the process is a Simulink model and a fault tree 
which can be used for Fault Tree Analysis (not covered in the report). 
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1.4 Method 

Initially, literature studies were performed to understand the automotive industry safety 
standards together with collecting knowledge on what methods and tools was 
available on the market to generate fault trees. A known method from the studies acted 
as a starting point for the project.  

The two main scopes, Simulink modelling and automatically generate fault tree, were 
developed iteratively throughout the project. Starting with fabricated requirements and 
easy logic. Then continue with actual requirements but in small scale. To finally add 
more requirements iteratively until the model was up to date with all available 
requirements for RPAP. Every iteration included an evaluation on how to organize the 
blocks, display signal values, fault inject, and to analyze the model in the best way. 
The iterations made the manually validation of the fault tree easier and faster.  

Discussions and comparison of the automated generated fault tree was made with 
safety experts from the automotive industry. The layout with correct events, prefixes 
and notations for the faults was focus on to match a manually created fault tree.   

1.5 Outline of the thesis 

The rest of the report is structured with background theory and related work for how 
the safety work is performed in the automotive industry in Chapter 2. Followed by 
Chapter 3, which includes assumptions and logic implementation of how faults can 
propagate in a Simulink model. Chapter 4 and 5 presents the method, first in general 
and then a specific example with the method applied to a function named RPAP. The 
results are discussed in Chapter 6 and in Chapter 7 and 8 are future work and 
conclusion presented. 
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2 Safety within the automotive industry 
Safety is addressed with a risk-based approach, supported by industry specific 
standards, since risk-levels are different in terms of the number of needed safety 
layers. In general, the nuclear industry contains of seven safety barriers to prevent a 
critical meltdown and the aerospace industry includes tripled systems for flight control. 
For the automotive industry single point failures are to be avoided. The industry 
standard for the automotive industry is ISO-26262, [2].  

There are some different definitions that are used when describing safety: product 
safety, system safety and functional safety. An overview of the definitions is shown in 
Figure 2. Product safety covers the complete vehicle, which includes many safety 
functions, both passive and active. Functional safety covers the safety for one of the 
vehicles functions, for example steering, braking, and charging. System safety covers 
systems within the vehicle that uses one or more vehicle functions. System safety is 
a structured method to identify potential hazards of a vehicle function and to reduce 
the risks of these hazards by implementing safety mechanisms and ensuring their 
integrity.  

2.1 ISO-26262 

ISO-26262 is a functional safety standard for the automotive industry. It was first 
released in November 2011 and a second edition was later released in December 
2018. All major automotive original equipment manufacturers and suppliers have with 
joint effort contributed to the standardization. 

ISO-26262 should be applied to safety-related systems that include one or more E/E 
systems and that are installed in series production road vehicles, excluding mopeds. 
It addresses possible hazards caused by malfunctioning behavior of safety-related E/E 
systems, including interaction of these systems. It does not address hazards related 
to electric shock, fire, or similar events unless they are directly caused by 
malfunctioning behavior of safety-related E/E systems. The focus for ISO-26262 is on 
faults in design (including software), ageing and wear and tear on the hardware 
components. ISO-26262 does not address the nominal performance of E/E systems, 
but the methods in the standard provide insight which may influence on the design of 
the nominal performance of a functionality.  

The second edition of ISO-26262 consists of 12 parts: (1) Vocabulary, (2) 
Management of functional safety, (3) Concept phase, (4) Product development system 
level, (5) Product development hardware level, (6) Product development software 

Figure 2 Scope overview of product safety, system safety and functional safety. 
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level, (7) Production, operation, service, decommission, (8) Supporting processes, (9) 
ASIL-oriented and safety-oriented analyses, (10/11) Guidelines on ISO-26262 and 
application to semiconductors and (12) Adaption of ISO-26262 for motorcycles. 

The parts of interest for this report are Part 3 and Part 4. Part 3 is concerning how to 
identify risk and how to classify them and Part 4 is about how to reduce risk and how 
to confirm that the risk is reduced enough. The degradation of requirements from 
Hazards Analysis on functional level to technical safety requirements on software 
component level is presented in Figure 3. 

2.1.1 Automotive safety integrity level 

An ASIL is a metric of risk used to classify hazards and to specify the risk reduction 
necessary. There are five different classes, one Quality Management (QM) class and 
four ASIL classes, A to D. The QM is used when the normal development process is 
sufficient. ASIL A is the lower end of additional risk reduction necessary and ASIL D 
is the higher end.  

Figure 3 Dependability’s between safety work and degradations of requirements between different abstraction 
layers. 
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To determine the ASIL three ratings are used: Exposure, Severity and Controllability. 
Each rating is from zero to three except for Exposure which also have rating four. The 
Exposure rating indicates the probability that the hazard arises. The Severity rating 
indicates the injuries that the hazard causes. The Controllability rating indicates how 
many average drivers that can contribute to avoid the damage. The ASIL is then 
determined according to the table in Figure 4.  

2.1.2 Part 3: Concept phase 

The concept phase can be divided into three main areas: (1) Item identification, (2) 
Hazard analysis and risk assessment and (3) Functional Safety Concept (FSC).  

The objective of the first area (1) is to define the items under development. An item is 
a system, or a combination of systems, that implements a function, or part of a 
function, at the vehicle level. A vehicle consists of many items. 

The objective of the second area (2) is to identify and classify hazardous events, 
together with define Safety Goals (SGs) to avoid unreasonable risk. Risk is a 
combination of probability of a hazard occurring and the related severity. Each SG 
should be assigned an ASIL. 

The third areas objective (3) is to derive Functional Safety Requirements (FSRs) that 
fulfills the SGs and allocate them to logical components. The FSRs includes detection 
and control of faults, fault tolerance or adequate mitigation of effects and verification 
and validation, [14]. They should also define the safety architecture concept, when 
and how to alert the driver. Each FSR shall have an assigned ASIL.  

2.1.3 Part 4: Product development system level 

Part 4 can also be divided into three main areas: (1) Technical Safety Concept (TSC), 
(2) System integration and testing and (3) Safety validation.  

The objective of the first area (1) is to specify safety mechanisms by Technical Safety 
Requirements (TSRs) that fulfills the FSRs, [15]. The safety mechanisms that TSRs 
specifies are related to the detection, indication and control of faults in the system 
itself, enable the system to achieve or maintain a safe state, detail and implement the 
warning and degradation strategy and prevent of latent faults, [16].  

The objective of the second area (2) is to define necessary integration activities, verify 
safety measures and demonstrate the integrated systems fulfillment of safety 
requirements. The system should be verified by design inspection, design 

Figure 4 Table for classification of ASIL with notation Exposure (E), Severity (S) and Controllability (C). 
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walkthrough, simulation, prototyping and vehicle testing, and safety analysis. To verify 
that the system design is correctly implemented fault injection tests could be executed.  

The objective of the third area (3) is to provide evidence of safety goals fulfillment in 
integrated vehicle and the appropriateness of the FSC and TSC. Different methods 
could be used to validate FSC and TSC, such as FTA and Failure Modes and Effects 
Analysis (FMEA). 

2.2 Fault tree analysis 

FTA was invented in 1961 to help in the design of US Air Force's Minuteman missile 
system, [17]. It has later been used in several fields, such as automotive, aerospace, 
and nuclear industries. FTA is a safety analysis technique to derive FSRs for a given 
SG and TSRs for a given FSR, [16].  

A fault tree is a graphic tool to visualize how low-level events can propagate through 
a system and cause a top event. A fault tree is built from the top event and down with 
Boolean logic gates and events. A top fault is the undesired top event. An example of 
a fault tree is presented in Figure 5. 

The five types of events are presented in Figure 6. 

A basic event is an initiating fault such as a communication fault or an input signal 
fault. Combinations of basic events creates intermediate events, that are usually a 

Figure 5 An example of a fault tree 

Figure 6 Five types of events: basic, normal, undeveloped, conditioning, and intermediate. 
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type of logical gate. Undeveloped events are events that is not included in the analysis 
and a conditioning event serves as a special condition/constraint for certain types of 
gates. Normal events are part of the nominal behavior of the system.  

There are several different types of fault trees, e.g. standard fault trees, [18], 
component fault trees, [19], and Pandora temporal fault trees, [20, 21]. All fault trees 
consist of events and gates. The events are same for all types, but the gates are 
different.  

 

2.2.1 Standard fault tree 

The standard fault tree has four types of logical gates: OR, AND, XOR and INHIBIT. 
The symbols for the logical gates can be seen in Figure 7. The output event of an OR 
gate occurs if at least one of the input events occur. The AND gate need that all input 
events occur for the output event to occur. The XOR gate is a special case of the OR 
gate. The output event of an XOR gate occurs only if one of the input events occur, 
but not when several input events occur. In most fault trees is the XOR gate 
considered as a two-input gate. The INHIBIT gate is a special case of the AND gate 
where one of the inputs is a conditioning event.  

The analysis of standard fault trees is usually divided into two levels: a qualitative level 
and a quantitative level. The qualitative analysis result in a minimal set that shows the 
smallest combination of basic events that result in the occurrence of a top event, [22]. 
This set can be generated by many different algorithms, [23] and the descriptions of 
these algorithms are out of scope of this project. The resulting minimal set is then used 
in the quantitative analysis to estimate the top event occurrence probability, based on 
the given failure probabilities of basic events.  

The limitation with standard fault trees is that they are unable to model dynamic 
scenarios. Dynamic scenarios often occur in modern complex systems that can 
operate in multiple modes. For example, an aircraft can operate in take-off, flight, and 
landing phase. This led to different dynamic failure characteristics such as functional 
dependent events and priorities of failure events.  

2.2.2 Component fault tree 

Component fault trees defines local fault trees for each component in the system, 
which are organized in a hierarchy structure, [19]. This makes the appearance 
between the fault tree and the system model more similar. The component fault tree 
uses the same gates as the standard fault tree. Therefore, it has the same limitations 
as the standard fault tree and is not able to model dynamic scenarios. 

Figure 7 Fault tree logic gate symbols. 
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2.2.3 Pandora temporal fault tree 

Pandora temporal fault trees extend the standard fault trees with three temporal gates: 
Priority-AND (PAND), Priority-OR (POR) and Simultaneous-AND (SAND). The PAND 
and POR gates represent a sequence of some event X and another event Y. For 
PAND, event X must occur before event Y, but both need to occur. For POR, event X 
must occur before event Y if Y occurs at all. The SAND gate represents when events 
occur simultaneously.  

The presence of the temporal logical gates results in new logical laws that is used in 
the analysis. This makes it possible to extinguish the sequence of the arisen events in 
the model, which enables the pandora temporal fault tree to model dynamic scenarios.  

2.3 Model-based dependability analysis 

Model-based dependability analysis (MBDA) is a tool used to analyze more complex 
systems by automatically generate fault tree, [24, 25, 26, 27]. There exist several 
different MBDA methods and the ones that are covered in these subsections are 
Failure Propagation and Transformation Notation (FPTN), Hierarchically Performed 
Hazard Origin and Propagation Studies (HiP-HOPS) and Formal Safety Analysis 
Platform - New Symbolic Model Verifier (FSAP/NuSMV-SA). 

2.3.1 Failure propagation and transformation notation  

FPTN is the first modular and graphical method to provide a simple and clean notation 
on how faults propagate through the system architecture, [28, 29]. FPTN is built with 
modules that consist of definitions of the failure propagation, transformation, 
generation, and detection. A module can contain several sub-modules to form a 
hierarchical structure.  

Each module has a set of input and output failure modes that can be classified into 
several broad categories, [30]. For example, timing failures, value failures, 
commission, or omission. For each output failure mode is the relation to the input 
failure modes in the same module expressed as a single Boolean equation. Input and 
output failure modes of different modules are connected to each other.  

The method for FPTN is to first create modules for each component of the system and 
for each module is a component fault tree created. These trees are then combined to 
obtain a fault tree for the whole system. This indicates that the module needs to be 
update if some changes are done in the system model.  

FTPN can only perform static analysis on models when using the standard gates (OR, 
AND, NOT and INHIBIT). The temporal gates can also be used in this method which 
enable it to perform dynamic analysis, [31].  

2.3.2 Hierarchically performed hazard origin and propagation studies 

HiP-HOPS are compatible with Simulink-based models and consists of three main 
phases: (1) system modelling and failure annotation, (2) fault three synthesis and (3) 
fault tree analysis and FMEA synthesis, [32, 33]. In phase (1) is information about all 
component in the system provided. It is information of how the components are 
interconnected with each other and how each component can fail.  

The information from phase (1) is then used in phase (2) to generate a fault tree. First 
generate a local fault tree of each component by looking at the inputs and outputs. 
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Further, it goes back to the outputs of the system and merge the local fault trees into 
a single fault tree that represent the whole system. The approach is combining the 
local failure to only appear once in the fault tree. 

In phase (3) is a qualitative analysis first performed on the generated fault tree. The 
qualitative analysis uses a version of MICSUP algorithm, [34], that gives a set of 
minimum cut sets. These sets are then used in the quantitative analysis that is based 
on the component’s failure probability. The result from this analysis is used to generate 
an FMEA that shows direct connections between component and system failures. 

2.3.3 Formal safety analysis platform - new symbolic model verifier  

FSAP/NuSMV-SA is a platform with the structure shown in Figure 8, where the SAT 
Manager is the central module. It can call all other modules on the platform and stores 
all the information that is useful for the verification, such as models, safety 
requirements and analyses. The method starts with three input modules Model 
capturing, Failure mode editor and Safety requirements editor, [35]. 

The model in the Model Capturing module can be a formal safety model or a functional 
system model that is described as finite state machine with the NuSMV language, [36]. 
The Failure Mode Editor is used together with another module, Failure Injector, to 
inject failure modes in the system model to create an extended system model. The 
Safety Requirements Editor is used for another module, Analysis Task Manager, that 
defines the analysis tasks that are required to be performed.   

The extended system model is then assessed against its FSRs in the NuSMV-SA 
Model Checker module. This module uses a model checker technique that also 
generates counter examples and fault trees. The results are presented for the user via 
the Result Extraction and Displayers module. 

The FSAP/NuSMV-SA platform have some limitations when generating fault trees. 
The generated fault tree cannot show how faults propagate through different level of 
the system model. The fault tree only shows the relation between top events and basic 
events. This makes the fault trees less visible understandable for complex systems.  

Figure 8 Module structure for FSAP/NuSMV-SA. 
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3 Model analysis basics 

To be able to analyze how a fault can propagate through a Software Component 
(SWC) in a system, the whole system first needs to be modelled. This project uses 
Simulink to model all SWCs in the system. Knowledge about how a Simulink model is 
built is presented in section 3.1. 

Each SWC in the system can have several inputs and outputs. Inside each SWC are 
modelling blocks that connect the inputs to the outputs, to replicate the functionally 
behavior of the system. The combination of the modelling blocks determine how input 
faults can propagate through the SWC and cause an output fault to occur.  

This chapter presents analysis on how input faults can propagate through simple 
SWCs. Each SWC contains only one of the most common modelling blocks. By 
combinate the result of the analysis can more complex SWCs with several different 
modelling blocks be analyzed. An example SWC with several inputs, outputs and 
modelling blocks are displayed in Figure 9. The procedure is to start with an output 
fault and backpropagate through the SWC, where each modelling block are handled 
as a subsystem.  

3.1 Simulink 

Simulink is a block diagram environment for model-based design and multidomain 
simulation, [37]. It provides a graphical editor, solvers for modeling and simulating 
dynamics systems. Simulink is a toolbox for Matlab which enables that Matlab 
algorithms can be used by Simulink models as well as that the algorithm can analyze 
the Simulink model.  

A Simulink model is built up with blocks and lines, [38]. There are many different types 
of blocks, which are explained in [39], and can for example be simple addition blocks 
to advanced Matlab functions. The model can also include notes and annotations to 
help users to understand the model. These annotations can contain text, images, 
equations, and hyperlinks.  

Each block, line and annotation have a unique Simulink Identifier. This identifier can 
either be accessed with the path to the object or with a double value called handle. 
The parameters of the blocks, lines and annotations can be viewed and edited with 
the handle.  

The most common block is a subsystem that can be described as a model within the 
model. A subsystem can have multiple inputs and outputs. A SWC is modeled as a 
subsystem in Simulink.  

Figure 9 SWC with four inputs, three outputs and three logical gates. 
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The signals that are sent over a line in the model can be of different types. Some of 
the types are Boolean, numeric and strings. A line can also represent a bus signal, 
which includes many signals. Bus signals are created by merging multiple signals with 
a bus creator block. To get a specific signal from a bus can a bus selector block be 
used.  

It is possible to define enumerate types by pair together strings with numeric values. 
For example, a third state can be introduced for a Boolean signal by pair together True 
with 1, False with 0 and NoFaultInjection with another value.  

To model sequences in Simulink, a Stateflow chart can be used. The chart is a 
subsystem which contains Stateflow objects that are either states or transitions. Only 
one state can be enabled at a time. Stateflow transitions are used to move from one 
state to another. The transitions have a logic condition that needs to be fulfilled to go 
between states. An action can either be a function call or a value change of the chart’s 
outputs. Actions can be performed when a state is enabled or when a transition is 
made. 

An example Stateflow chart is shown in Figure 10 with four states and six transitions. 
The initial state is determined by the transition that have a circle in one end. If the 
condition, inside hard brackets, for a transition is valid the current state is updated. If 
a transition consists of actions, inside curly brackets, it is executed when the transition 
is performed. The chart in Figure 10 have only two transitions which have actions that 
can change the output value for the chart.  

Figure 10 Example of a Stateflow chart with four states and six transitions. 
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3.2 Logical OR-gate 

A logical OR-gate can have different number of inputs, but the behavior is the same 
as an OR-gate with two inputs. Figure 11 shows a simple SWC that only consists of 
one logical OR-gate, two inputs (A and B) and one output (C). 

For the case in Figure 11, each input signal can either be true or false and either 
correct or wrong. This result in that each input can be in four difference states and a 
combination of both inputs gives 16 different combinations.  

The notation 𝐴1
1 states that signal A is supposed to be true and is true, while 𝐴0

1 say 
that the signal A is supposed to be true but is false. The elevated value shows the 
wanted value as a superscript of the signal and the subscript value is the value that 
the signal is. With this notation, four different states of the output can be derived, 

{
 
 

 
 
𝐶1
1 = (𝐴1

1 ∧ 𝐵1
1) ∨ (𝐴1

1 ∧ 𝐵0
0) ∨ (𝐴0

0 ∧ 𝐵1
1) ∨ (𝐴0

1 ∧ 𝐵1
1) ∨ (𝐴1

1 ∧ 𝐵0
1) ∨ …

… (𝐴1
0 ∧ 𝐵1

1) ∨ (𝐴1
1 ∧ 𝐵1

0) ∨ (𝐴0
1 ∧ 𝐵1

0) ∨ (𝐴1
0 ∧ 𝐵0

1)

𝐶0
0 = 𝐴0

0 ∧ 𝐵0
0

𝐶0
1 = (𝐴0

1 ∧ 𝐵0
0) ∨ (𝐴0

1 ∧ 𝐵0
1) ∨ (𝐴0

0 ∧ 𝐵0
1) ∨ 𝐼𝐹

𝐶1
0 = (𝐴1

0 ∧ 𝐵0
0) ∨ (𝐴0

0 ∧ 𝐵1
0) ∨ (𝐴1

0 ∧ 𝐵1
0) ∨ 𝐼𝐹

  (1) 

where 𝐼𝐹 is a notation for an internal fault inside the logical gate. When an internal 
fault in a SWC is present, will the output always inverse the output to the opposite 
value. 

Only single faults need to be investigated and included in the fault tree, according to 

ISO-26262. This implies that (𝐴0
1 ∧ 𝐵0

1) can be removed from 𝐶0
1 and (𝐴1

0 ∧ 𝐵1
0) from 

𝐶1
0. The result is that different input faults will only propagate to the output if the other 

input is correctly false. This imply that the nominal behavior of the SWC needs to be 
considered. For OR-gates with more inputs, all other inputs need to be correctly false 

Figure 11 SWC with two inputs that are connected to a logical OR-gate which result is the output. 
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for an input fault to propagate to the output. Figure 12 shows a fault tree with top event 
as a false positive output fault for the SWC shown in Figure 11.  

3.3 Logical AND-gate 

The reasoning that all inputs are Boolean signals with four states and that only single 
faults should be investigated can be used on a logical AND-gate, in the same way as 
for a logical OR-gate. Figure 13 shows a simple SWC with only one AND-gate, two 
inputs (A and B) and one output (C). The different states that the output can take, 
depending on the inputs state,  

{
 
 

 
 

𝐶1
1 = 𝐴1

1 ∧ 𝐵1
1

𝐶0
0 = (𝐴0

0 ∧ 𝐵0
0) ∨ (𝐴1

1 ∧ 𝐵0
0) ∨ (𝐴0

0 ∧ 𝐵1
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1 ∧ 𝐵0
0) ∨ (𝐴0

1 ∧ 𝐵1
0) ∨ …

… (𝐴0
0 ∧ 𝐵1

0) ∨ (𝐴1
0 ∧ 𝐵0

0) ∨ (𝐴0
0 ∧ 𝐵0

1) ∨ (𝐴1
0 ∧ 𝐵0

1)
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1 = (𝐴0

1 ∧ 𝐵1
1) ∨ (𝐴1

1 ∧ 𝐵0
1) ∨ (𝐴0

1 ∧ 𝐵0
1) ∨ 𝐼𝐹
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0 = (𝐴1

0 ∧ 𝐵1
0) ∨ (𝐴1

1 ∧ 𝐵1
0) ∨ (𝐴1

0 ∧ 𝐵1
1) ∨ 𝐼𝐹

  (2) 

Figure 13 SWC with two inputs that are connected to a logical AND-gate which result is the output. 

Figure 12 Fault tree for SWC with only an OR-gate and top fault as SWC output fault false positive. 
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The input faults will only propagate to the output if the other input is correctly true. The 
nominal behavior of the SWC needs to be evaluated to determine if an input fault 
should be included in the fault tree or not. Figure 14 shows a fault tree with top event 
as a false positive output fault for the SWC shown in Figure 13.  

3.4 Complexity with growing number of inputs 

Inputs to OR- and AND-gates with Boolean values can take four different values for 
each input, true or false and correct or wrong. For the case with only two inputs will 
result in totally 16 different combination of the inputs. By only consider single faults 
will that number be reduced to 12 combinations.  

The totally number of combinations and the combinations with only single faults will 
increase with the number of inputs. The totally number of combinations can be 
computed as, 

𝑔(𝑛) = 4𝑛, ∀𝑛 ∈ ℤ+     (3) 

where n is the number of inputs, and the number of combinations with only single 
faults can be computed as, 

𝑓(𝑛) = 2𝑓(𝑛 − 1)+2𝑛, ∀ {
𝑓(0) = 1

𝑛 ∈ ℤ+
    (4) 

Figure 14 Fault tree for SWC with only an AND-gate and top fault as SWC output fault false positive. 
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The complexity for how many combinations present is rapidly growing with number of 
inputs. For a case with three inputs, the total number of combinations are 64 and only 
32 combinations when consider only single faults. A graph presenting different number 
of inputs and corresponding combinations is given in Figure 15. 

3.5 Switch 

Figure 16 shows a SWC that only includes one switch gate. The SWC has three inputs 
where A and B can be values of any kind, while C is a Boolean. Non-Boolean types 
can be modelled as a Boolean by comparing the signal to a specific value. Here are A 
and B considered as Booleans. All inputs can therefore take four different states each, 
which result in 64 different states.  

In (5) are the different fault output states where the conditions with multiple faults 
removed. The condition is simplified such that an input will be excluded if its value 
does not affect the outcome.  

{
𝐷0
1 = (𝐴0

1 ∧ 𝐶1
1) ∨ (𝐵0

1 ∧ 𝐶0
0) ∨ (𝐴0

0 ∧ 𝐵1
1 ∧ 𝐶1

0) ∨ (𝐴1
1 ∧ 𝐵0

0 ∧ 𝐶0
1) ∨ 𝐼𝐹

𝐷1
0 = (𝐴1

0 ∧ 𝐶1
1) ∨ (𝐵1

0 ∧ 𝐶0
0) ∨ (𝐴0

0 ∧ 𝐵1
1 ∧ 𝐶0

1) ∨ (𝐴1
1 ∧ 𝐵0

0 ∧ 𝐶1
0) ∨ 𝐼𝐹

  (5) 

Figure 17 shows the fault tree for the SWC in Figure 16 for when the output fault is 
false positive. The result is that a fault on input A or B are only depending of the value 
of input C, while a fault on input C require specific values on both A and B. An input 
fault will only propagate to the output D if one or both the other inputs have specific 
values.  

Figure 15 Combinations for given input with multiple and single faults. 

Figure 16 SWC with inputs and output connected to a switch gate. 
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3.6 Stateflow chart 

The value of an output of a Stateflow chart can only be changed by an action, which 
is executed in a transition between states or when a state is enabled. In this project, 
the assumption is made that actions are only performed in a transition. Therefore, all 
transitions are evaluated to determine whether input faults can propagate through the 
chart.  

A transition is expressed with conditions within hard brackets and actions within curly 
braces. An example transition is [𝐴 == 𝑡𝑟𝑢𝑒 ∧ 𝐵 == 𝑓𝑎𝑙𝑠𝑒]{𝐶 = 𝑡𝑟𝑢𝑒} where A and B 
are inputs to the chart and C is an output. This transition can be compared to the SWC 
in Figure 13 which also have two inputs with an AND condition. The difference is that 
input B signal is inverted but the fault trees will have similar structure. The fault tree 
for the example transition is shown in Figure 18.  

Figure 17 Fault tree for SWC with only a switch gate. The top fault is specified to output is false positive.  

Figure 18 Fault tree for transition [𝐴 == 𝑡𝑟𝑢𝑒 ∧ 𝐵 == 𝑓𝑎𝑙𝑠𝑒]{𝐶 = 𝑡𝑟𝑢𝑒}. 
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If the chart has several transitions with actions that change the value of output C, all 
the cases will be combined. In Figure 19, two transitions can change the output C to 
true,  [𝐴 == 𝑡𝑟𝑢𝑒]{𝐶 = 𝑡𝑟𝑢𝑒}  and [𝐵 == 𝑡𝑟𝑢𝑒]{𝐶 = 𝑡𝑟𝑢𝑒} . The corresponding fault 
tree is presented in Figure 20. 

 

Figure 20 Fault tree for transition [A==true]{C=true} and [B==true]{C=true}. 

Figure 19 Example statechart with two transitions to change the output value. 



 

19 

 

3.7 Default blocks 

Analysis of blocks which are not OR-gates, AND-gates, Switches or Stateflow charts 
are made that each input fault can propagate to any output fault independent from 
other inputs. An example of a SWC with two inputs and single output connected with 
a relationship block, presented in Figure 21. The analysis of the system would result 
in inverted output for C if there is a fault in either A or B. If A==1 correct and B==1 
faulty or if A==1 faulty and B==1 correct, then C will be faulty true. 

3.8 Reduce fault tree with conditions on the system state 

The top fault in a fault tree is either based on a SG or an FSR. It describes the 
forbidden state of the system. Faults in the fault tree that are depended on a normal 
event, that cannot be present during the forbidden state, should be removed from the 
tree because the faults cannot propagate to the top fault.  

For example, an FSR for the SWC in Figure 16 could be: SWC is not allowed to send 
𝐷 == 1 when 𝐵 == 1. The condition of the SWC state in this case is that 𝐵 == 1. The 
normal event 𝐵 == 0 in Figure 17 will clearly never happen because it is known that 
𝐵 == 1. This indicates that the input fault 𝐶 == 1 cannot propagate through the SWC 
and cause the top fault to happen. The result is shown in Figure 22 where the input 
fault 𝐶 == 1 and the connected symbols are removed from the tree shown in Figure 
17.  

Figure 21 An example of a SWC including two input and single output. 

Figure 22 Fault tree for SWC with only a switch gate, where top fault is specified to output is 

wrong true when input B is true. 
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4 The method 
The resulting method developed in this thesis work is divided into two steps and an 
overview of the method is shown in Figure 23. The inputs to the method are an 
architecture drawing, FSC and TSC which consists of multiple FSR/TSR. In the first 
step is a Simulink model created from the information of the architecture drawing and 
the TSRs. The second step of the method is to automatically generate fault tree with 
information from the Simulink model and a manually chosen FSR.  

The step to automatically generate fault trees are built on the HiP-HOPS synthesis 
phase approach. The main difference is that the manual work to annotate inside the 
model how faults propagate through components is avoided. Instead, each component 
in the model is analyzed and evaluated to see how faults could propagate by using 
combinations of the analyses that are presented in Chapter 3.  

4.1 Simulink modelling 

The top layer of the Simulink model contains the same SWCs as in the architecture 
drawing. Each SWC is modelled as a subsystem with the same inputs and outputs as 
in the architecture drawing. The signals in the model can also be bus signals that 
contains several signals. The subsystems are placed such that the appearance of the 
top layer match the architecture drawing.  

In architecture drawings based on an agile framework, all SWCs belongs to an Agile 
Release Train (ART), [40]. Each architecture drawing is focused on one ART and 
SWCs that belongs to another ART are placed as inputs and outputs of the ART. The 
SWCs within the specific ART can be grouped together as product capabilities (PCs) 
and is visualized with color coding. 

Figure 23 Method overview from input of architecture drawing and TSC to output Simulink model and fault tree. 
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The Simulink model, presented in Figure 24, is an example where each SWC within 
the ART is modelled. The SWC is color coded such that the SWCs from the same PC 
have the same color. Goto tags are used for signals in the model to reduce winding 
lines and to get a cleaner overview. 

A TSR often include the information how different inputs should affect the output of a 
SWC. The TSRs are modelled inside each SWC to replicate the behavior of the SWC 
and its output signals. Signals are often simplified without changing the functionality. 
For example, a signal that consist of coordinates to estimate a position can be 
simplified to a Boolean signal. A true value then relates to that an object is positioned 
inside a specific zone and a false value that it is outside the zone.   

Dependencies on signals from SWCs outside of the ART are modelled in two areas, 
input and output, to distinguish those from the scope. The inputs are modelled as 
constant blocks which are connected to a dropdown menu that make it possible to 
decide the value of the input. The outputs are modelled using displays.  

If an input to the ART is depending on an output of the ART can the nominal behavior 
of the input be modelled. For example, the vehicle speed should decrease when a 
brake request is sent to an output. The nominal behavior is modelled inside a 
subsystem, such as Input1 at PC_NAME 2 in Figure 24.  

To inject faults into the Simulink model, manipulations of the signal value are required. 
By adding a Switch gate before the output block inside each SWC can fault injection 
be made. An example is presented in Figure 25. The driver position output will have 
the correct value if the constant FI_DriverPosition have the same value as the 
parameter NoFaultInjection. The value of FI_DriverPosition is controlled by a 
dropdown menu, placed outside the SWC at the top layer of the model.  

The dropdown menu must be individually configured to each signal due to that each 
signal have its own domain. For example, the dropdown menu for a Boolean signal 
will have the values True, False and NoFaultInjection, where the last one needs to be 
the same as the parameter with the same name.  

Figure 24 An example of a Simulink model. 
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4.2 Automatically generate fault tree 

The Simulink model will be examined from a model perspective and the fault tree will 
be generated incrementally. By starting at a manually selected signal, work backwards 
and joining causes of failure from each component, a fault tree is drawn. Each 
component has its own local fault tree which are added to the fault tree.  

There are three inputs needed for this step: the Simulink model, a faulty signal, and a 
set of conditions. The faulty signal and the set of conditions are determined by interpret 
the top fault of the tree, which comes from a FSR, that also needs to manual be 
interpreted. For example, if the FSR say: SWC is not allowed to send a brake request 
when the vehicle speed data is unreliable. Then will the top fault be: SWC send a 
brake request when the vehicle speed is unreliable. The interpretation will be that the 
fault signal is brake request, with value logical true, with the condition of the system 
that vehicle speed is unreliable.  

The method creates the final fault tree in three steps. The first step is to get information 
from the Simulink model into a graph structure. The second step is to create the fault 
tree in a tree structure from the given top fault and the graph structure. The last step 
is to convert the tree structure into a block structure that can be imported into 
visualization tool that display the fault tree.  

4.2.1 Create graph structure 

The graph structure includes nodes and edges, where a node represents a component 
in the model and an edge represent a signal from one SWC. The graph can be 
described with only edges by including the connected nodes for each edge. An edge 
can represent a bus signal which makes that it contains several signals.  

One edge contains name, id, source node and a set of destination nodes. The name 
is a string of the goto tag and the id is a unique double value for the signal that the 
edge is representing. The source node is the SWC that sends that signal. The set of 
destination nodes contain all nodes where the corresponding SWCs receives that 
signal.  

Figure 25 Example of a fault injection implementation. 



 

23 

 

The step to get the graph structure is made by creating an edge for each signal in the 
top layer of the model. All edges are collected by using the function get_edges, that 
are described in Pseudo-code 1. It searches for all goto blocks in the top layer of the 
model and create an edge for each signal.  

 

4.2.2 Create tree structure 

The process to create the tree structure is divided into two steps and takes the top 
fault and the graph structure as inputs. The top fault includes both the faulty signal and 
the set of conditions that applies when the top fault should be investigated.  

The first step creates a fault tree with tree structure from the faulty signal and the graph 
structure. This tree contains all signal faults that can propagate to the faulty signal. 
The second step removes all faults that contradicts to one of the given conditions by 
proving that the faults cannot propagate to the top fault.  

4.2.2.1 Create tree structure with all faults 

The tree structure is built as shown in Figure 26 where each part represents a signal 
fault that can happen. Signal faults, such as the faulty signal, are defined with the 
signal name, value and a relation sign. For example, VehicleSpeed > 15 km/h, 
EmergencyBrake==1 or DriverEngagementLevel~=InTheLoop. Each part has also a 
corresponding edge in the model and normal events. The normal events are 
expressed as a logical expression that need to be fulfilled to make it possible for the 
signal fault to cause that the fault above occur.  

The tree structure is created by first create the part for the given faulty signal and 
analyze the SWC that sends the faulty signal. The analysis result in a set of input faults 
of the SWC that can propagate through the SWC and cause the output fault of the 

Pseudo-code 1 get_edges(model). 

get_edges(model) 
1 Get all goto blocks in the top layer of model 
2 For each goto block 
3  Save the name, id and source for the goto block  
4  Get all from blocks with the same goto tag in model 
5  For each from block 
6   Save the destination for the from block 
7 Return a set with all the edges 
end 

Figure 26 Fault tree with tree structure with four parts visible. 
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faulty signal. Then will the same procedure be made for the obtained input faults, one 
by one, until a part has been made for all obtained input faults.  

The parts of the tree structure are created with the recursive function get_part that is 
described in Pseudo-code 2. To analyze the SWCs uses get_part another recursive 
function find_source that walks through the logic within a SWC and finds the inputs 
that the given block is connected to. It also saves the normal events needed for the 
signal fault to propagate though the SWC.  

The function find_source takes four inputs: block handle of a block inside the SWC, 
the sign between the signal and value, the value that the block should output, and a 
list of the blocks inside the SWC that already have been visited. The function returns 
a set of inputs that includes name of edge, name of signal, sign, value, and normal 
events. Both the name of the edge and the signal are needed to be able to handle bus 
signals in the model. The sign and value describe how the fault occur and the normal 
events what conditions that need to be present for the fault to propagate through the 
SWC. Each normal event includes a signal name, a sign, and a value.  

Depending on which type of block the given block handle is connected to will 
find_source do different things. The function is based on the analyses that are 
described in Chapter 3 and is presented in Appendix A.  

4.2.2.2 Remove faults that cannot happen 

The tree will be analyzed based on the given set of conditions to determine if any parts 
of the tree can be removed. A part can only be removed if it can be proven that the 
fault cannot propagate in the system and cause the top fault. This is done in two steps.  

First, the tree will be searched for any faults with the same signal name as one of the 
conditions. If such a fault is found will it be compared with the condition. The result is 
whether the signal can have the same value as the fault in the condition in nominal 
behavior or not. The signal name and the state that cannot appear in nominal behavior 
will be saved to the next step. The recursive function find_signal, that is described in 
Pseudo-code 3, is used for this step and takes the tree structure and a given condition 
as inputs. The function returns a set of expressions that will never occur in a nominal 
behavior, where each expression contains a signal name, sign, and value, such as a 

Pseudo-code 2 get_part(edges,input). 

get_part(edges, fault) 
1 find edge within edges for the fault 
2 save part with edge and fault 
3 if the source of the edge is an SWC 
4  find the correct outport block inside the SWC 
5  get block handle of the fault injection 
6  if logic is implemented to the fault injection 
7   get block handle for block before fault injection 
8   get inputs for the outport with find_source 
9  else 
10 set inputs as an empty set 
11  for each input in inputs 
12   get parts of part by give input to get_part  
13 return part 
end 



 

25 

 

signal fault. The function is called once for all given conditions, one by one, and the 
results are merged to one set of expressions.  

Secondly, the tree will be searched for any parts with normal events that are included 
in the resulting set of the first step. The parts with normal events that will not appear 
in a nominal behavior will be removed from the tree. This step is done with the 
recursive function remove_parts that is described in Pseudo-code 4. The function 
takes the tree structure and a set of expressions as inputs and returns an updated tree 
structure and a Boolean that indicates if the given tree structure should be removed 
from the complete tree or not.  

4.2.3 Create block structure 

One block is used for each symbol in the fault tree. Each block includes an id, a text, 
a block type and a set of ids. The id is unique string and the text is the string that will 
be displayed on the symbol in the tree. The block type can either be Top fault, OR-
gate, AND-gate, Basic event, or External event. The set of ids are for other blocks that 
are connected to the block.  

The block structure is created by first create a block for the top fault, then will it go 
through all parts of the given fault tree iteratively. The function get_tree, that is 
described in Pseudo-code 5, uses a queue to iterate through all parts in the tree 
structure. The function takes two inputs: the fault tree with tree structure and the name 
that the fault tree should have.  

Pseudo-code 3 find_signal(tree, condition). 

find_signal(tree, condition) 
1 if tree and condition have the same signal name 
2  if tree expression will never appear in nominal behavior 
3   return tree expression 
4  else 
5   return an empty set 
6 else 
7  for each part of tree 
8   call find_signal with part and condition 
9   add the returned expression to result 
10  if result is not empty 
11   add tree expression to result 
12  return result 
end 

Pseudo-code 4 remove_parts(tree, expressions). 

remove_parts(tree, expressions) 
1 if a normal event of tree is included in expressions OR two normal events  

contradict each other 
2  return tree and logical true 
3 else 
4  for each part in tree 
5   call remove_parts with part and expressions 
6   if part should be removed 
7    remove part from tree 
8   else 
9    replace part with the result from the function call 
10  return tree and logical false 
end 
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If a part does not have any normal events will only one OR-gate block be created, 
labeled as signal fault. Otherwise, an AND-gate block and an OR-gate block will be 
created, both labeled as signal fault. The OR-gate block will be connected to the AND-
gate block. Then will one External event block be created and connected to the AND-
gate block for each normal event of the part. An example of this is shown in Figure 27.  

A Basic event block labeled as communication fault will be created and connected to 
the OR-gate block labeled as signal fault. If a part does not have any connected parts, 
then will another Basic Event block be created, shown on the left side in Figure 28. 
This will be labeled as system input fault.  

If a part has more parts connected, then will three more blocks be created, shown on 
the right side in Figure 28. First one OR-gate block connected to the signal fault block 
is labeled as output fault.  

If the SWC, that sends the signal that is related to the current part, belongs to the 
same PC that the FSR is connected to. Then will the output fault block be connected 
to a Basic Event block, labeled as internal fault, and a OR-gate block, labeled as input 

Pseudo-code 5 get_tree(tree, top_fault). 

get_tree(tree, top_fault) 
1 Create OR block for top_fault 
2 Connect tree to OR block and add tree to queue 
3 While queue is not empty 
4  Pop part from queue 
5  if part have normal events 
6   Create AND block labeled 
7   Create OR block labeled as signal fault and connected to AND block 
8   for each normal event for part 
9    Create Basic event block connected to AND block 
10  else 
11   Create OR block labeled as signal fault 
12  Create Basic event block labeled as communication fault and connected to signal  

fault 
13  if part do not have any parts 
14   Create Basic event block labeled as system input fault and connected to  

signal fault 
15  else 
10 Create OR block labeled as output fault and connected to signal fault 
11   if part belongs to same PC as top_fault 
12    Create Basic event block labeled as internal fault and connected  

to output fault 
13    Create OR block labeled as input fault and connected to output  

fault 
14    for each input part for part 
15     Connect input part to input fault block 
16     add input part to queue 
17  Return set of all blocks  
end 

Figure 27 Example of signal fault with two normal events. 
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fault. The input fault block needs to relate to all signal fault blocks that will be created 
for the parts.   

Figure 28 Two transition examples to go from tree structure 

to block structure for a fault tree. 
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5 Validation on remote park assistant pilot  
The method presented in Chapter 4 was validated by applying it to the vehicle function 
RPAP. A model was created in Simulink from an architecture drawing and a TSC. The 
architecture drawing and the Simulink model are presented in Figure 30 and Figure 
29.  

 

The appearance of the two models are similar by color, structure and signals. 
Differences in the visual Simulink model is the fault injection with display block and the 
goto tags. The Simulink model was able to simulate the parking maneuver and 

Figure 29 The architecture drawing for RPAP. 

Figure 30 The Simulink model for RPAP. 
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included the possibility to fault inject. Fault trees were generated automatically with 
the algorithms with inputs from FSC supplied by safety experts. 

5.1 Remote park assistant pilot 

This automatic parking function allows the vehicle to park autonomous with the 
presence of the driver, who has the responsibility of the safety of the maneuver. In 
Figure 31 is an example scenario where RPAP can be used.  

The driver can use the RPAP in two different ways. Either with a “virtual leash” or by 
using a keep alive signal from an authorized remote device, for example a mobile 
phone or the key. The initial process for the maneuver is equal for both ways.  

5.1.1 Initialization process 

The driver will initiate the parking system remotely with an authorized remote device 
or from the instrumental panel inside the vehicle. The driver will choose which direction 
the vehicle should drive. The end position of the vehicle, called parking area in Figure 
31, is about one vehicle length from the initial position. Further should the driver 
perform an authorization procedure to prove that the driver is present and have the 
intention to do the maneuver.  

The vehicle has six ultrasound sensors mounted in front and six sensors in the rear. 
The driver should walk to one of the corner sensors and then walk to the other side of 
the vehicle, to complete the initialization process. There are two reasons why the driver 
needs to walk past all the sensors. The first is to ensure that the sensors work and 
that there are not any dirt or snow that blocks the sensors visibility. If the sensors can 
detect the driver during the authorization procedure, they should also be able to detect 
objects during the parking maneuver. The other reason is to ensure the position of the 
driver, that the driver have the intention to do the maneuver and that the driver have 
overview to see pedestrians nearby.  

The system uses two different sensors: ultrasounds sensors to position objects around 
the vehicle, and ultra-wide band to the position of the authorization device. This is 
because the vehicle should not start the maneuver if someone else than the driver that 
have initiated the system is walking around the vehicle.  

Figure 31 An example scenario where the remote park assistant pilot can be used to park out the vehicle. 
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5.1.2 Remote parking with virtual leash 

As mentioned earlier, there are two ways to perform the parking maneuver. The first 
is to park with virtual leash. After the initialization process will the driver walk to one of 
the go zones, shown in Figure 32, to ensure that the maneuver is intended. Then start 
to walk towards the parking area. If the driver stops, then the car will stop as well. It 
can be visualized as that the driver has a virtual leash to the vehicle. The vehicle will 
also stop if it notices an obstacle in the maneuver zone, either the driver or any other 
obstacle.  

The driver needs to be positioned in a go zone relative from the vehicle throughout the 
whole parking maneuver. Since the go zone is relative to the vehicle, the speed 
difference between the vehicle and the driver is measured to determine if the driver is 
in the go zone. If the driver walks too fast or too slow, the car will stop and paus the 
maneuver.  

5.1.3 Remote parking with remote device 

The other way to perform the parking maneuver is with a remote device. When the 
initialization process is done, the driver will use the remote device to ensure that the 
driver’s intention is to do the maneuver. To eliminate the possibility for frozen data 
requires the driver to move a finger on the screen in a specific pattern, such as a circle 
or from side to side. The pattern should not be too difficult because the driver should 
stay alert for any obstacle appear in front of the vehicle during the parking.  

While the vehicle receives the correct keep alive signal from the remote device will the 
car continue the maneuver. If the driver stops to follow the pattern on the device or an 
obstacle is recognized by the vehicle, the vehicle will stop. 

5.2 Visual model comparison 

The Simulink model created for RPAP include some modifications to match the 
supplied architecture drawing and TSC. The following modifications were done, 
simplified signal values, bus signals and the nominal behavior. 

5.2.1 Simplification of signal values 

Several signal values were simplified where the value was complex. Instead, prefixes 
were used and covered the functionality outcome in a similar way. This was done to 
avoid complex logic inside the SWC which was of no interest for the safety evaluation. 

Figure 32 Go zones for parking with virtual leash. 
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An example is the driver position, which usually has signal values in terms of 
coordinates related to the vehicle, see left side in Figure 33. Instead of coordinates, 
the area around the vehicle was divided into 13 zones where the driver only can be in 
one at a time, see right side in Figure 33. The blue zones are two zones each, one for 
when the driver moves from left to right and one for the opposite direction. The last 
zone, outside region, is not shown in Figure 33. It is active when the driver is not in 
one of the other zones.   

To indicate that an incorrect signal value was present was implemented in two ways. 
Either was an enumerate defined with the correct signal values with additional values 
for the incorrect behavior. For example, a Boolean signal can have the values: True, 
False, False positive or False negative.  

The other way is to attach an additional signal that indicates if the signal shows a 
correct value or not. For example, sensor data on echo level side had an additional 
signal with the attributes: Correct, FalsePositive, WrongDistance, and AttributeFaults. 

5.2.2 Multiply signals into one signal route 

To match the architecture drawing completely, bus signals were used to send multiply 
signal values in the same signal route. An example is the KeepAlive signal which in 
the architecture drawing included one signal with multiply values at the same time. In 

Figure 33 Driver position signal, original signal to the left and simplified signal to the right. 
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the Simulink model a bus creator and a bus selector were used to send 
ResponseCode, FingerPosition and FingerSpeed, presented in Figure 34.  

The addition of bus signals did impact on the visual appearance of the Simulink model 
such as the position of dropdown menu and goto tag position compared to a none bus 
signal, presented in Figure 35. 

5.2.3 Nominal behavior of software components 

Additionality to the TSRs with ASIL level, several QM requirements were modeled. 
These are needed to get the correct nominal behavior of the SWC. An example for a 
SWC is shown in Figure 36, where the SteeringAngleReq should be sent if the RPAP 
function is enabled, and it existed a Path for the vehicle.  

5.2.4 Gadgets to visualize the parking maneuver  

To increase the understanding of what is happening during simulation, important 
signals are visualized with a gauge, lights and a graph. Buttons are used to easily 
reset the input values and fault injections. 

The gauge meter is presenting the vehicle speed to indicate when the vehicle was 
moving and is presented in Figure 37. Four lights were introduced to visualize the state 
for Parking Done, Parking Brake Req, Safe Stop and Emergency Brake. Additional 
one light was added to indicated if a fault injection was made at a SWC, see Figure 

Figure 34 An example of bus selector for Phone Keep Alive signal. 

Figure 35 An example of signal without the uses of bus signals. 

Figure 36 SWC with QM requirements modeled to match the nominal behavior of the SWC. 
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38. The figure also have a graph to visualize, Distance to stop, Distance Travelled, 
Max vehicle speed and Vehicle speed. 

 

The initialization process, described in 5.1.1, is used to ensure the position of the driver 
by evaluating an object position and the position of the remote device. The object 
position and position of the remote device comes from different inputs and therefor 
different dropdown menus. It is impossible to control two dropdown menus at the same 
time. It will result in driver position will not be reported as intended and impossible to 
fulfill the initialization process. An additional dropdown menu controlling both signals 
was added to the model and is visualized in Figure 39.  

  

Figure 37 Gauge display for vehicle speed and lights for Parking Done, Parking 
Brake Req, Safe Stop and Emergency Brake. 

Figure 38 A graph and reset button for fault injections in the Simulink model. 

Figure 39: Addition of dropdown menu to solve a Simulink user issue. The dropdown menu is controlling the position of 
the echo from the sensors and the keydata simultaneously. 
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5.3 Fault tree comparison 

Three FSRs for RPAP were selected to evaluate the performance for automatically 
generated fault trees. An interpretation was made for each FSR to get the top fault for 
the fault tree. The top fault includes a fault expression and the condition of the system. 
The expression has a signal name, a sign, and a value.  

The fault trees were generated in terms of seconds from the model after the 
interpretation of the top fault was given. The generated fault trees were reviewed by 
safety expert from two perspective. First if the information in the fault tree is valid and 
includes everything. Secondly how similar the fault trees were to how a manual fault 
tree would look like.  

All three automatically generated fault tree from the Simulink model did include all 
necessary parts and was validated by safety experts as correct. The parts included 
accurate SWC for the corresponding PC for the FSR and did not include any SWC 
from other PCs which is correct. 

The signals were correct and included every possible fault. However, several 
occasions included more signals and more parts than the expert would had done in a 
manual fault tree. The automatically generated fault tree did also include normal 
events to a greater extent compared to a manual fault tree. The experts were 
unfamiliarly with the large number of normal events but did not state it as incorrect. 

The event texts were in some extent harder to read in the automatically generated 
fault tree than the manual tree with more descriptive texts according to the safety 
experts. An example is an input fault that was stated as 
“DriverPosition~=OutsideRegion when driver is actually out of the loop” for the 
automatic generated tree and “False driver position” for the manually generated fault 
tree.   

Negations for the signal sign was in some cases hard to interpret and created in some 
extend confusion for the reader in the automatically generated fault tree. An example 
is the text “echo2:fault~=FalsePositive”, where echo2:fault is the signal name and 
FalsePositive is the value. The signal is an attribute that indicates if the echo2 signal 
is correct or have a type of fault, in this case FalsePositive. The text say that 
echo2:fault have another value than FalsePositive when it actually should have the 
value FalsePositive. This means that a false positive fault on echo2 is not detected. 
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6 Discussion 

The shape of the Simulink model includes the structure with SWC, PC and ART 
because the architecture for RPAP have that structure. The model cannot be made 
general due to that it should always be based on a vehicle function, and all vehicle 
functions have different system architectures. On the other hand, PC and ART was 
only divided by colored areas that did not have any effect on the methods 
performance. This makes it easy to adapt the Simulink model to other functions with 
different shape, given that all SWC are located at the top layer.  

The appearance of the Simulink model was successfully alike the given architecture 
design. This made it easy for new users of the Simulink model to navigate between 
the different SWC, assumed that they had knowledge of the architecture design.  

The fault injection blocks are hidden inside each SWC, so they create minimal 
confusion. The fault injection blocks must be located between the logics and the output 
blocks inside the SWC, otherwise will the method not work. This is due to that the 
method tries to move past the fault injection blocks when it evaluates which input 
values that can cause a specific value on the output.  

The fault injection is done by overriding the signal value with the injected one. This 
allows the method to be used on all types of signals. It is however more complicated 
to override a bus signal due to that all signals need to be overridden. A solution is to 
override the signal of interest before it is sent on to the bus.  

The simplifications that were made in the Simulink model to make it easier to get an 
overview of the functionality of the model. The simplifications had to be made to avoid 
that real sensor data needed to be used. That would have made the Simulink model 
closer to the final function solution and increase the complexity of the model a lot. The 
purpose of the model is to replicate the behavior of the function, not actually create 
the function.  

The simplifications did also affect the automatically generated fault trees, in a way that 
resulted in an increased number of normal events in the tree. The normal events can 
create confusion when in the fault tree analysis if the user is unaware of which the 
simplifications for signals are. For example, some signals in the architecture drawing 
are simplified by splitting the signal into several signals in the Simulink model. This 
gives more signal faults that can propagate to the top fault and several more normal 
events in the fault tree.  

In the Simulink model are all TSRs from the TSC modelled. Multiple TSRs inside one 
SWC increases the complexity by enable that one input fault can propagate to an 
output fault in two or more ways. This evolves into a situation where the same signal 
needs to take different values at the same time to allow a fault to propagate. Those 
scenarios are unrealistic and are therefore not included in the fault tree. The method 
backpropagate though each SWC and can identify these faults which will be removed 
from the tree due to that a signal cannot have two values at the same time.   

The information in the fault tree is highly dependent on how the function is modelled. 
The implementation of TSR and the logic to achieve the requirement is affecting how 
the method is evaluating. This is because it is hard to separate different functionalities 
inside one SWC. Furthermore, is the implementing of TSR a possible risk since it is 
done manual and human errors might occur. The method does however include the 
possibility to validate the model by simulating the behavior. In one way the risk for 
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human error has moved from when creating the fault tree to build model. Another way 
can the risk be argued to be lower since validation methods are available. 

To generate a fault tree from the model is done in terms of seconds. Of course, lot of 
time is spent on creating the Simulink model but when that is done can different fault 
trees be automatically generated fast. The FSRs are interpreted to a top fault and 
possible conditions and a fault tree is then available. This is more time efficient than if 
they would be done manually.  

It fair to say that the automatically generated fault is correct and presenting the 
possible faults that can propagate to a top fault. It on the other side also clear to state 
that the manual fault tree is easier to read and, in many ways, includes a more 
descriptive text. The text is adjusted according to the signal, value and location of the 
textbox in the fault tree to make most sense for the reader.  

An advantage with the method is that the model does not need be complete to enable 
the possibility to automatically generate a fault tree. A single TSR implemented in a 
SWC is minimum for the method to work. This gives the possibility to automatically 
generate fault trees incrementally as more TSRs are implemented in the model.  
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7 Future work 

The natural next step is to use the method on another function. That will be the true 
validation of the method and can give results that can be compared with the manual 
process in a fair way. The method has during this project been developed parallel to 
the appliance on the RPAP function. When applying the method on a new function 
can the time duration be measured where the development time is discarded. The 
result would tell if there are any time benefits on using the method instead of the 
manual way.  

Development of the method with aim to add the possibility to be used for FSC 
validation as well would increase the area of use. The same model can then be used 
for both FSC and TSC with only changes on the implementation on the requirements. 
By using the same model during a longer period of the development of a function gives 
better transparency between the involved engineers.  

Modified subsystems in Simulink where the fault injections already are included will 
make the creation of the Simulink model for a function less time consuming. A library 
could be made as a future work to simplify the transition between the traditional 
manual creating fault trees and the usage of the method that automatic generate fault 
trees. 

The method now creates a fault tree and reduces it if conditions applies to the tree. 
The algorithm could perhaps be done more efficient by directly aim to create the final 
fault tree. A solution should be investigated if it is possible to include the conditions 
already when the model is analyzed. The parts of the tree that later would be removed 
could then not be included in the tree at all.  

A feature that indicates in the fault tree that a SWC is not implemented in the model 
could be useful in the future. The RPAP model have eleven SWC, but other functions 
might have many more. Then could it be useful to indicate in the fault tree that SWC 
could not be analyzed due to that it is not yet implemented. The implication can be 
done by adding an undeveloped event in the fault tree.  

The initialization process in RPAP includes that a sequence of events happens in the 
correct order. A fault in this process could be that another person than the driver walks 
past the car and is faulty identified as the driver. This fault can propagate and cause 
other faults in the system. With the simplification by using zones for the driver position 
will a sequence of faults be needed for the initialization process to fail. This fault can 
thereby not be found by the method today.  If temporal events were added in the fault 
tree could perhaps this fault be discovered.  

Another future work is to include FTA into the method, similar to MBDA that is 
described in section 2.3.  
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8 Conclusion 

A method has been developed to create a Simulink model that include the TSC for a 
vehicle function and automatically generate a fault tree from an interpreted FSR. The 
method has been implemented on a RPAP function and the automatically generated 
fault trees have been confirmed correct by safety experts. 

The failure differences between a manual created fault tree and an automatically 
generated one comes mainly from simplifications in the Simulink model. A signal that 
is simplified to several signals will create more possible fault sources in the fault tree. 
It will also create more normal events in for input faults in the fault tree.  

The benefits of using Simulink modelling to automatically generate fault trees 
compared to manual work is the potentially time efficiency. During the development of 
the model can fault trees be generated in terms of seconds to validate the 
implementation of the TSRs. When the model is finalized can complete fault trees be 
generated from interpreted FSRs in term of seconds. Due to the development of the 
method can the complete safety work strategies not be compared in time efficiency.  

The risk for human error has been moved from the creation of fault trees to the creation 
of the Simulink model. Due to validation with the fault injection can the risk for human 
error be reduced. The solution for fault injection is made general by override signal 
values with injected values. The implementation is hidden inside each SWC and are 
not visible at the top layer in a way that it can create confusion.  
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A. Algorithm for analysis of Software Component (SWC) 
The function find_source takes four inputs: block handle of a block inside the SWC, 
the sign between the signal and value, the value that the block should output, and a 
list of the blocks inside the SWC that already have been visited. The function returns 
a set of inputs that includes name of edge, name of signal, sign, value, and normal 
events. Both the name of the edge and the signal are needed to be able to handle bus 
signals in the model. The sign and value describe how the fault occur and the normal 
events what conditions that need to be present for the fault to propagate through the 
SWC. Each normal event includes a signal name, a sign, and a value.  

Depending on which type of block the given block handle is connected to will 
find_source do different things. If it receives a constant block, then will it return one 
input with the value of the constant block and all the other fields empty. If it receives 
an input block, then will it return the signal name together with the given sign and 
value. When find_source receives a block handle connected to a relation operator 
block will it add the relation sign of the block between the inputs. The functionality is 
described in Pseudo-code 6.  

The behavior for find_source when given a logical operation block is described in 
Pseudo-code 7. If the block is a NOT-gate, then will the given value be inverted and 
sent backward in the model. In case of a OR- and AND-gate, normal events will be 
added. The normal events for each input fault are that all other inputs need to be 
logical true for AND-gates and logical false for OR-gates.  

Pseudo-code 6 find_source(handle, sign, value, visited) for a relation operator block. 

find_source(handle, sign, value, visited) 
1 if handle is of type RelationalOperator 
2  get port1 by call find_source with block handle of block that is connected to the  

input, sign, empty value and visited with handle added 
3  if port1 is empty 
4   get port2 by call find_source with block handle of block that is connected  

to the input, sign, empty value and visited with handle added 
5   if port2 is a constant  
6    get port1 by call find_source with block handle of block that is  

connected to the input, the sign of the block, value of port2 and 
visited with handle added 

7    if port1 is empty  
8     return empty 
9    else  
10     return port1 
11  else if port1 is a constant 
12   get port2 by call find_source with block handle of block that is connected  

to the input, the sign of the block, value of port1 and visited with handle 
added 

13   if port2 is empty or is a constant 
14    return empty 
15   else  
16    return port2 
17  else 
18   get port2 by call find_source with block handle of block that is connected  

to the input, sign, empty value and visited with handle added 
19   if port2 is a constant 
20    return signal of port1, sign of block and value of port2 
21   else  
22    merge port1 and port2 
23    if value is a logical false 
24     change signs of the merged ports 
25    return the merged ports 
end 
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If the given block is a switch, then will find_source behave as described in Pseudo-
code 8. First will the true and false port be evaluated by using find_source if they can 
give the value as was given. Then will the condition port be evaluated by find_source 
if it can give either logical false, logical true or both. The value of the condition port 
depends on what values the true and false port can give. 

When find_source is given a chart block then will it behave as described in Pseudo-
code 9. All the transitions in the chart will be evaluated if they can set the desired 
output to the given value. The condition of the transitions that can do so, will be break 
down to inputs with desired values. These pairs will be used to call find_source 
recursively.  

Pseudo-code 8 find_source(handle, sign, value, visited) for a logical operator block. 

find_source(handle, sign, value, visited) 
1 if handle is of type Logic 
2  if handle is NOT-gate 
3   invert value 
4   get ports by call find_source with block handle of block that is connected  

to the input, sign, inverted value and visited with handle added 
5  else if handle is AND-gate 
6   for each input to the block 
7    call find_source with block handle of block that is connected to  

the input, sign, value and visited with handle added 
8    add the result in ports 
9   if value is logical true 
10    add normal events to ports 
11   else  
12    get normal events by call find_source with value as logical true 
13    add normal events to ports 
14  else if handle is OR-gate 
15   for each input to the block 
16    call find_source with block handle of block that is connected to  

the input, sign, value and visited with handle added 
17    add the result in ports 
18   if value is logical false 
19    add normal events to ports 
20   else  
21    get normal event by call find_source with value as logical false 
22    add normal events to ports 
23  return ports 
end 

Pseudo-code 7 find_source(handle, sign, value, visited) for a switch block. 

find_source(handle, sign, value, visited) 
1 if handle is of type Switch 
2  get port_true and port_false by call find_source with block handle of block that is  

connected to the true and false input respectively, sign, value and visited with 
handle added 

3  if both port_true and port_false can give the correct value 
4   call find_source with block handle of block that is connected to the  

condition input, sign as ‘==’, logical true and visited with handle added 
5   call find_source with block handle of block that is connected to the  

condition input, sign as ‘==’, logical false and visited with handle added 
6   merge the results from the functions calls to ports 
7  else if only port_true can give the correct value 
8   get ports by call find_source with block handle of block that is connected  

to the condition input, logical true and visited with handle added 
9  else if only port_false can give the correct value 
10   get ports by call find_source with block handle of block that is connected  

to the condition input, logical false and visited with handle added 
11  else  
12   set ports as empty  
13  return ports 
end 



 

III 

 

If find_source gets a block of any other type, such as a subsystem, the given value 
will be sent backward to all the inputs in the block.

Pseudo-code 9 find_source(handle, sign, value, visited) for a chart block. 

find_source(handle, sign, value, visited) 
1 if handle is of type Chart 
2  find all transitions that set the output as the given value 
3  for each transition 
4   get the inputs and corresponding values of the condition to the  

transition 
5  for each input and value pair 
6   call find_source with block handle of block that is connected to the  

input, sign, value and visited with handle added 
7   add the result in ports 
8 return ports 
end 
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