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Abstract
The calculation of nuclear properties from QCD, the underlying theory of the strong
nuclear force, is still an open problem in physics. Effective field theories provide a
possible solution by describing nuclei in terms of effective degrees of freedom; neu-
trons, protons, and pions. The effective description comes at a cost, namely unde-
termined parameters known as low-energy constants (LECs), that need to be fixed
by experimental data. Furthermore, while renormalization-group (RG) invariance
of predictions is a field-theoretic requirement, it is known that interaction potentials
constructed with Weinberg power counting (WPC) are not RG invariant at leading
order.

The purpose of this thesis is to study a leading order modified Weinberg power count-
ing potential, with additional counter terms and their associated LECs promoted
to leading order. We show that the modified potential gives RG invariant predic-
tions of nucleon-nucleon scattering phase shifts in partial waves that are otherwise
problematic in WPC. Moreover, Bayesian inference is used to determine LECs from
measured total scattering cross sections, which allows to account for both experimen-
tal and model uncertainties. RG-invariant predictions of scattering cross sections
are demonstrated using the obtained posterior distributions of LECs. In conclusion,
we find that the modified potential performs better, producing RG-invariant results
for phase shifts and cross sections. We also show that total scattering cross sections
do not impose very hard constraints on all LECs which calls for the inclusion of
more experimental data in the inference.

Keywords: nuclear physics, χEFT, renormalization, neutron-proton scattering,
Bayesian inference, LECs, power counting, modified Weinberg power counting
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1
Introduction

The goal of physics, and science in general, is to combine experimental observations
and theoretical models to increase the understanding of the world and phenomena
around us. Nuclear physics is a sub-field that studies properties of atomic nuclei,
such as their binding energies, how their constituents interact via the nuclear forces,
and their properties as quantum-mechanical many-body systems. Having a good
understanding of atomic nuclei is not only of academic interest that, for exam-
ple, could help explore questions in the fields of particle physics, astrophysics, and
cosmology. It is also important for various practical applications such as nuclear
reactors, medical physics, and materials science.

Finding an accurate description of the strong nuclear force has been a challenge in
physics since the first description by Yukawa [1], and is one of the long-standing un-
solved problems in theoretical physics. Since Yukawa’s model in the ’30s—describing
the nuclear fore as arising from the exchange of a massive boson—there has been an
enormous theoretical development, alongside experimental advancements [2]. Over
the years, many accurate phenomenological models have been developed, see e.g.
Ref. [3].

During the later half of the 20th century, the theory of quantum fields—Quantum
Field Theory (QFT)—was used to develop models of fundamental particle interac-
tions with enormous success. This led to what is now called the standard model
(SM) of particle physics, which describes all observed forces in nature (except grav-
ity) with unprecedented success. The part of the standard model describing the
strong force, involving quarks and gluons, is Quantum Chromodynamics (QCD)
which was formulated in the ’80s [4]. Since QCD is believed to be the underlying
theory governing the behavior of nuclear physics, it has been a long-standing goal
to compute nuclear properties from this underlying fundamental theory.

Unfortunately it turns out that it is hard to describe nuclear properties using QCD.
The coupling constant becomes very large at nuclear energy scales ∼ MeV, which
means that perturbative calculations are not applicable. Lattice QCD is an approach
to deal with this problem by doing the non-perturbative calculations numerically by
brute force on a discretized space-time lattice. However, the successes so far for
predicting nuclear properties and forces are limited [5]. In the ’90s Weinberg in-
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1. Introduction

troduced, and pioneered, the approach of using effective field theories (EFT) to
describe the low-energy effective behavior of QCD, applicable at energy scales rele-
vant to nuclear physics, see Refs [6]–[8]. The key to formulating a theory that can
hope to be perturbative is to use other degrees of freedom, namely nucleons and
mesons—which appear as relevant bound states at nuclear energy scales. However,
the effective description comes at a cost, namely undetermined parameters known
as low-energy constants (LECs), that need to be fixed by experimental data.

An EFT has a connection to the underlying theory (in this case QCD) via symmetries
and broken symmetries—which constrain the allowed interactions. Such connections
are not present in phenomenological models. Since the relevant symmetry is the
chiral symmetry of low-energy (massless) QCD, the effective field theory is called
chiral EFT (χEFT). This theory is perturbative in the nuclear energy regime, and
the infinite number of interaction terms allowed by the symmetries can be ordered
by importance via a so-called power counting. Effectively this yields a finite number
of relevant interaction terms at a given order in the power counting. Weinberg
introduced a power counting which is referred to as Weinberg power counting (WPC)
[6], which is widely used.

In χEFT, a phenomena called infrared enhancement arises due to a large nucleon
mass. This requires a non-perturbative resummation of certain irreducible Feynman
diagrams, containing nucleon-nucleon intermediate states, to obtain nuclear scatter-
ing amplitudes. However, the resummation causes some problems. The countert-
erms present at a given order in the power counting are not necessarily enough to
properly renormalize the resummed amplitude, which can lead to results that are
not invariant under the renormalization group (RG) flow. This is indeed found to
be the case; see Ref. [9]. To fix the problem of non-RG-invariant amplitudes, Nogga
et al. [9] proposed to promote certain counterterms—appearing at higher-order in
WPC—to lower orders, with the hope of getting RG invariant results. This power
counting is sometimes referred to as modified WPC (MWPC). MWPC has been
studied, e.g., in Refs. [9], [10], where the focus has been on inferring LECs from
scattering phase shifts. What has not been done is to use Bayesian inference to
determine LECs with proper uncertainty quantification in MWPC.

This thesis will study leading order χEFT in Weinberg- and modified Weinberg
power counting—in particular the RG behavior and the inference of LECs. The
purpose of the thesis is to study the following questions:

1. How is a leading order χEFT Lagrangian constructed from QCD?

2. How do leading order MWPC nucleon-nucleon potentials perform at predicting
RG-invariant phase shifts for neutron-proton (np) scattering, compared to
leading order WPC?

3. How well can the LECs of a MWPC nucleon-nucleon potential be determined
using Bayesian inference from total np scattering cross sections? To which
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degree do the inferred LECs produce RG invariant predictions of np cross
sections?

The target audience for this thesis is second-year master’s students in physics with
a theoretical orientation. The text assumes; familiarity with the basics of QFT, a
good understanding of quantum mechanics as well as a basic knowledge of nuclear
and particle physics.

The thesis is organized in two main parts as follows. In Part I, relevant theory is
presented and question (1) is addressed. Relevant concepts of QFT are introduced
in Chapter 2, followed by χEFT in Chapter 3 and quantum-mechanical scattering
theory in Chapter 4. Part II of the thesis describes the methods and results regarding
questions (2) and (3). In Chapter 5 np scattering phase shifts in WPC and MWPC
are studied, and a Bayesian inference of LECs in MWPC is performed in Chapter 6.
Results are summarized and conclusions are made in Chapter 7. For reference,
some commonly used abbreviations are summarized in Table 1.1. Natural units
(c = ~ = 1) are used throughout the thesis while other conventions are summarized
in Appendix A.

Table 1.1: Frequently used abbreviations.

Abbreviation Meaning
χEFT Chiral Effective Field Theory
χPT Chiral Perturbation Theory
cm center-of-mass
DoB degree-of-belief
EFT Effective Field Theory
LO leading order
LS Lippman Schwinger
MCMC Markov Chain Monte Carlo
MWPC modified Weinberg power counting
np neutron-proton
NN nucleon-nucleon
pdf probability density function
QFT Quantum Field Theory
QCD Quantum Chromodynamics
rel relative
RG Renormalization group
SSB Spontaneous Symmetry Breaking
WPC Weinberg power counting
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2
Quantum Field Theory

Quantum Field Theory (QFT) is the framework in which the standard model of
particle physics is formulated, and is a product of combining quantum mechanics
and special relativity. The part of the standard model describing the strong nuclear
force is Quantum Chromodynamics (QCD), and is the main part of interest for
nuclear physicists as well as this thesis. As stated before, the reader is assumed to
have some knowledge of QFT, corresponding to an introductory course. This mainly
includes treating canonical quantization of the scalar field and the Dirac field, as
well as how to compute matrix elements of an interacting theory using Feynman
diagrams. These parts roughly corresponds to Chapters 1-4 and parts of Chapter 5
in Ref. [11].

This chapter starts with an introduction to QCD starting from the well-known
theory of Quantum Electrodynamics (QED). Furthermore, some important QFT
concepts are introduced to give a solid ground to understand effective field theories,
that is the subject of Chapter 3. These concepts are: the path integral formulation,
renormalization and spontaneous symmetry breaking. For a more thorough intro-
duction the reader can consult any introductory QFT textbook. The material in
this chapter in mainly built on Ref. [11].

2.1 Gauge Theories and QED
Before diving into QCD, it is worth taking a step back and looking into the more
familiar theory of QED describing the interactions between leptons and photons.
The QED Lagrangian reads,

LQED =
∑

f=e,µ,τ
ψ̄f
(
iγµ∂µ −mf

)
ψf −

1
4FµνF

µν − eψ̄fγµψfAµ, (2.1)

where the sum is over the lepton flavors e, µ and τ with corresponding mass denoted
by mf . The lepton Dirac fields are denoted by ψf , the photon field by Aµ and e is
the electromagnetic coupling. Fµν is the field strength tensor defined by [11]

Fµν ≡ ∂µAν − ∂νAµ. (2.2)

7



2. Quantum Field Theory

The gamma matrices, γµ, satisfy the Clifford algebra {γµ, γν} = 2gµν id, where id is
the identity in Dirac spinor space1.

At first glance this Lagrangian may seem rather arbitrary. Two interesting questions
that can arise are why the interaction term,

Lint = −eψ̄fγµψfAµ, (2.3)
has this particular form, and if there can be higher order interaction terms. These
questions are very interesting and fortunately have rather good answers. In fact,
both these questions are key in understanding the general structure of so called
gauge theories and will be answered during this chapter.

There are some postulates that govern the procedure for how relativistic QFT La-
grangians are constructed, which heavily constrain possible terms. The validity of
this procedure is of course nothing one can prove, but rests on the empirical facts
that these theories turn out to work really well describing observed phenomena in
nature [12]. Apart from the rather obvious postulate that Lagrangians should be
Lorentz scalars, that is, invariant under Lorentz transformations, a concept called
gauge invariance has proven very helpful. A theory with gauge invariance is called a
gauge theory and has the additional postulate that the Lagrangian should be gauge
invariant.

Gauge invariance is similar to Lorentz invariance. In the same way that all con-
stituents, parameters and fields, have a particular transformation properties under
the Lorentz group, for example

mf 7→ m′
f = mf , (Lorentz scalar) Aµ 7→ A′

µ = Λ ν
µ Aν , (Lorentz vector), (2.4)

the matter fields get a postulated transformation property under a gauge group, G;
ψf

G7−→ ψ′
f . The principle of gauge invariance then requires the Lagrangian to be

invariant under a gauge transformation. More specifically, the equations of motion
need to be invariant, so the Lagrangian is allowed to change up to a total derivative
L G7−→ L+ ∂µK

µ.

The special thing about the gauge transformations is that they are local, that is,
the group elements depends on the spacetime coordinate, xµ. As an example, take
QED with only one flavor of leptons, e.g. electrons ψe, where the e subscript is
dropped from now on. For QED the gauge group is G = U(1) and the local gauge
transformation of the matter field, ψ, is given by

ψ(x) G7−→ ψ′(x) = eiα(x)ψ(x), (2.5)
where α(x) is a real, spacetime-dependent phase. The QED Lagrangian is invariant
under the transformation in Eq. (2.5) provided that Aµ transforms as

Aµ
G7−→ A′

µ = Aµ −
1
e
∂µα(x), (2.6)

1For some more information about the gamma matrices see Appendix A
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2.2. QCD—the Gauge Theory of Strong Interactions

which is the familiar gauge invariance of the electromagnetic vector potential.

One can invent a procedure that can be used to derive the QED Lagrangian starting
from the free Lagrangian for the electron field ψ,

Lfree = ψ̄
(
iγµ∂µ −m

)
ψ. (2.7)

The reason why such a procedure is useful is because it can give guidance about
how to construct more general gauge theories. By staring with the free Lagrangian
in Eq. (2.7) and postulating G = U(1) gauge invariance (see. Eq. (2.5)) one can
derive the existence of a vector field Aµ that transforms according to Eq. (2.6) and
gives rise to the interaction term in Eq. (2.3). The term −1

4FµνF
µν is constructed

as the simplest Lorentz- and gauge invariant term involving Aµ.

In summary, start with a free Lagrangian of the matter fields and postulate a trans-
formation under some gauge group, G. This gives interactions between the matter
fields and, possibly multiple, vector fields. Finally, construct the simplest free La-
grangian involving only the vector fields that emerged in the former step.

QED is sometimes called an abelian gauge theory, since the gauge group U(1) is an
abelian group and hence a gauge theory based on a non-abelian group is called a
non-abelian gauge theory. For more details the reader is referred to Chapter 15 in
Ref. [11].

2.2 QCD—the Gauge Theory of Strong Interac-
tions

Having studied QED in the last section the attention is now turned to QCD, the
theory of strong interactions. Using the procedure outlined in the last paragraphs in
the previous section about the construction of a general gauge theory, QCD can be
understood as a direct generalization of QED. Of course, this recipe-like construction
of theories is not in any way how the theories were first discovered2, but serves a
purpose for understanding the characteristics of the theories. The other purpose of
presenting the general ideas of the construction of QCD is that the same principles
will be used when constructing a low-energy effective field theory of nucleons and
pions in Chapter 3.

The first step is to specify the matter fields and a gauge group. The matter content
of QCD is spin 1

2 quarks which are described by Dirac spinors. The gauge group
for the quarks is SU(3)c, where the subscript c stands for color, which is the name
for the gauge degrees of freedom in QCD. The action of the gauge group transforms
the fields, which is achieved by letting the fields transform in some representation of
the gauge group. The choice is to have the fields transforming in the fundamental
representation of SU(3)c [11]. The fundamental representation3 is the representation

2For a historical overview of QCD see Ref. [4].
3Also called defining representation
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2. Quantum Field Theory

that defines the group. SU(3) is, as familiar, the group of unitary 3×3 matrices that
have determinant +1. Hence, these matrices act on a complex three dimensional
vector space W called color space.

Let D denote the space of Dirac fermion fields. The quark fields for each flavor f ∈
{u, d, c, s, t, b} is formally an element of the tensor product of D and W; ψf ∈ D⊗W.
A conventional and convenient way to represent ψf is as a vector in color space, W,

ψf =

ψf,rψf,g
ψf,b

 , ψf,i ∈ D, i = r, g, b. (2.8)

This is of course equivalent to choosing a basis in W. The color names, red (r), green
(g) and blue (b) are purely conventional [11]. An important note is that the gauge
degrees of freedom of ψ in W are not physical degrees of freedom, but can be seen
as auxiliary degrees of freedom introduced by the gauge-theory scheme. It is the
color components that the gauge group acts on, and this is conveniently described
in the index notation introduced in Eq. (2.8).

A group element in the fundamental representation of SU(3), which is allowed to
depend on xµ, is denoted w(x) : W→W. By using the generators of the Lie algrbra
T a, a = 1, ..., 8 in the fundamental representation, called the Gell-Mann matrices,
w(x) can be written as

w(x) = exp
[
iαa(x)T a

]
. (2.9)

αa(x) are real parameters that depend on xµ [11]. The gauge transformation can be
written in terms of color indices as

ψi(x) 7→ ψ′
i(x) = wij(x)ψj(x) = exp

[
iαa(x)T aij

]
ψj(x), (2.10)

where i, j ∈ {r, g, b} and the flavor index f on ψ is suppressed.

The fact that the group elements wij(x) can depend on xµ, is the source of needing
to introduce interactions of the fields ψi with vector fields Aaµ, a = 1, . . . , 8 to make
sure derivatives of ψi have well-defined gauge-transformation properties. A covari-
ant derivative Dµ, that makes Dµψi transform as ψi under gauge transformations,
needs to be constructed. By introducing a so called compensator field Uij(x, y) that
transforms as

U(x, y) 7→ w(x)U(x, y)w†(y), (2.11)
the derivative Dµ can be defined as

Dµψi(x) ≡ lim
εµ→0

ψi(x+ ε)− U(x+ ε, x)ψi(x)
εµ

. (2.12)

By Taylor expanding U , with the first order expansion coefficients, Aaµ, it can be
shown that the covariant derivative takes the form

Dµ = ∂µ − igAaµT a, (2.13)

10



2.2. QCD—the Gauge Theory of Strong Interactions

where g is the strong coupling constant and T a are the Gell-Mann matrices [11]. It
can also be shown that the covariant derivative of ψ transforms as

Dµψi(x) 7→ exp
[
iαa(x)T aij

]
Dµψj(x). (2.14)

Starting from the free Lagrangian for the quarks,

Lfree =
∑
f

ψ̄f
(
iγµ∂µ −mf

)
ψf , (2.15)

it is seen that gauge invariance is spoiled since ∂µψf do not transform in the correct
way. To fix it, let ∂µ → Dµ, which introduces an interaction term similar to the
one in QED by expanding Eq. (2.13). In analogy with QED one can define a field
strength tensor for the vector fields Aaµ introduced by the covariant derivative as

F a
µν ≡ ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν , (2.16)

where fabc are the structure constants of the Lie algebra of SU(3) appearing in the
commutation relations of the generators [11]

[T a, T b] = ifabcT c. (2.17)

The simplest possible Lorentz- and gauge invariant term that can be built from F a
µν

is −1
4F

a
µνF

µν
a which is added to get the full QCD Lagrangian

LQCD =
∑
f

ψ̄f (i /D −mf )ψf −
1
4F

a
µνF

µν
a . (2.18)

It is actually possible to construct an infinite number of Lorentz- and gauge invariant
terms involving more fields, for example:

(ψ̄fψf )2, (2.19)
(F a

µνF
µν
a )2, (2.20)

(ψ̄f /Dψf )2, (2.21)

and so on. The requirement that the theory should be renormalizable, which implies
that the operators in each term must have mass dimension≤ 4, excludes these terms.
The mass dimensions of the fields ψf and Aaµ are calculated using that the action,
S, is dimensionless in natural units ~ = c = 1. Since

S =
∫
d4x L, [S] = M0, (2.22)

and dimension of length is the inverse dimension of mass giving [d4x] = M−4, the
mass dimension the Lagrangian is [L] = M4. Examining the kinetic terms for ψf
and Aaµ gives the mass dimensions [ψf ] = M3/2 and [Aaµ] = M. By constructing all
possible Lorentz- and gauge invariant combinations of the fields ψf and Aaµ it can
be shown that the terms appearing in LQCD are the only ones with mass dimension
≤ 4 [11]. The issue of renormalization will be discussed more in Section 2.4, and is
an important aspect in QFT.
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2. Quantum Field Theory

2.3 The Path Integral Formulation
A very powerful tool in quantum mechanics, and QFT in particular, is the so called
path integral formulation first proposed by Feynman in 1948 [13]. In this approach
to quantum mechanics, as opposed to canonical quantization, one starts with an
ansatz for correlation functions, or transitions amplitudes, which is a generalization
of the classical action principle. The great advantage with this approach is that
one can go from a Lagrangian to correlation functions, also called Green’s functions,
much easier than in the framework of canonical quantization. It is also easier to
analyze symmetries, renormalization and effective field theories in this formulation,
which will be discussed later in the thesis. The material in this section will mostly
follow Ref. [11].

2.3.1 Derivation and the Generating Functional
In quantum mechanics the unitary time evolution operator in position space is de-
fined by

U(xa, xb;T ) ≡ 〈xb|e−iHT |xa〉 , (2.23)
which satisfies the Schrödinger equation

i
∂

∂T
U(xa, xb;T ) = HU(xa, xb;T ). (2.24)

The time evolution operator measures the probability amplitude of the initial state
|xa〉 to evolve into |xb〉 in time T for a system with Hamiltonian H. Motivated
by the superposition principle and the double slit experiment, an ansatz for U was
proposed [13], that includes summing over possible classical paths the system can
move from state |xa〉 to |xb〉. This sum is formally a functional integral and reads

U(xa, xb;T ) ≡
∫
Dx(t) eiS[x(t)], (2.25)

where S[x(t)] is the classical action corresponding to the Hamiltonian H. Dx(t)
is the so-called functional measure which represents that the functional eiS[x(t)] is
integrated over all possible paths x(t) from xa to xb. The functional measure can
be defined by discretizing the integral in time-steps 0 = t0 < t1 < ... < tn = T . By
letting ∆t ≡ ti+1− ti go to zero, one can show that this ansatz for U indeed satisfies
the Schrödinger equation. For details see Chapter 9 in Ref. [11].

The path integral formulation can be generalized from quantum mechanics to QFT,
where one instead considers the evolution of a given field configuration φa(x) to
another, φb(x), by the Hamiltonian of the field theory. A scalar field, φ(x), is used
here to illustrate the procedure, and the generalization is straight forward to spinor
fields and vector fields [11]. The generalization of Eq. (2.25) to QFT reads

〈φb(x0 = T,x)|e−iHT |φa(x0 = 0,x)〉 =
∫
Dφ exp

(
i
∫ T

0
d4x L

)
(2.26)

where the functional integration is over field configurations Dφ.

12



2.3. The Path Integral Formulation

The main goal of QFT is however to compute scattering amplitudes, and for that
purpose the correlator in Eq. (2.26) is not that helpful. The important correlation
functions to compute are of the form

〈Ω|T {φ(x)φ(y)}|Ω〉 , (2.27)

where T is the time-ordering operator, and |Ω〉 is the vacuum of the full interacting
theory. Correlation functions, also called Green’s functions, can be generalized to
arbitrary many fields,

G(n)(x1, ..., xn) ≡ 〈Ω|T {φ(x1) . . . φ(xn)}|Ω〉 . (2.28)

One can show that these Green’s functions can be related to the definition in
Eq. (2.26) and they can be expressed in terms of path integrals as [11]

G(n)(x1, ..., xn) = lim
T→∞(1−iε)

∫
Dφ φ(x1) . . . φ(xn) exp

(
i
∫ T

−T d
4x L

)
∫
Dφ exp

(
i
∫ T

−T d
4x L

) (2.29)

where the −iε has the same role as in Feynman propagators. The T limit is usually
omitted.

A useful object called generating functional is defined as

Z[J ] ≡
∫
Dφ exp

[
i
∫
d4x[L(φ) + J(x)φ(x)]

]
, (2.30)

which is a functional of J(x) and J(x)φ(x) is called a source term. Using functional
derivatives4, δ

δJ(x) , and Eq. (2.29) one can show that the n-point Green’s functions
can be obtained from the generating functional as

G(n)(x1, ..., xn) = Z[J ]−1
(
−i δ

δJ(x1)

)
. . .

(
−i δ

δJ(xn)

)
Z[J ]

∣∣∣∣
J=0

. (2.31)

This relation shows the power of the path integral formalism in its full glory. It is a
direct connection between the Lagrangian of the theory, L(φ), and the time ordered
correlation functions G(n), which relates to observables. The generating functional
is an object that, in analogy with the partition function in statistical mechanics,
encodes all information of the theory in the sense that all possible correlation func-
tions can be computed from it. This formalism will now be used to discuss the
role of symmetries in the theory and how symmetries of the Lagrangian will affect
symmetries of Green’s functions G(n).

2.3.2 Symmetries in the Path Integral Formulation

In the path integral formulation the Green’s functions, G(n), are encoded in the
generating functional Z[J ], see Eq. (2.31). This makes it manifest that field trans-
formations φ 7→ φ′ leaving L invariant, i.e. L(φ) = L(φ′), will be a symmetry of

4See eg. [11]
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2. Quantum Field Theory

the generating functional, and hence produce the same Green’s functions G(n) and
quantum dynamics5.

Recall that in the classical theory a symmetry is a field transformation φ(x) 7→ φ′(x)
that leaves the equations of motion in variant, which is equivalent to the Lagrangian
being invariant up to a total divergence term

L(φ) 7→ L(φ′) + ∂µK
µ. (2.32)

An equivalent formulation is that the action is invariant S[φ] = S[φ′], since a total
divergence term vanish if the fields are assumed to decay rapidly towards infinity.
Noether’s theorem states that to every such symmetry there exists a conserved cur-
rent jµ(x) satisfying ∂µj

µ = 0. A crucial step in deriving this conservation law is
to use the Euler-Lagrange equations derived from the Lagrangian. In the quantum
theory the Euler-Lagrange equations can not be assumed to hold for the fields. In
the path integral formulation, the quantization is achieved by integrating over all
possible classical field configurations. It is thus clear that the classical derivation
does not hold [14].

The analogue to Noether’s theorem in the quantum theory can be derived using
the generating functional, and in the same spirit as in the classical case subject
the fields to a symmetry transformation. Exactly as in the classical case where a
symmetry is a transformation that leaves the equations of motion invariant, which
is equivalent to S[φ] = S[φ′], a symmetry of the quantum theory is a symmetry of
the quantum dynamics, that is, a symmetry of the Green’s functions G(n). From
Eq. (2.31) it is manifest that a transformation that satisfies S[φ] = S[φ′] leaves the
Green’s functions unchanged, and is thus a symmetry of the quantum theory6.

Assume that the infinitesimal transformation

φ(x) 7→ φ(x) + iαaT aφ(x) (2.33)

is a symmetry of the action, where αa is infinitesimal and T a are generators some
Lie group. This is equivalent to

L(φ) 7→ L(φ) + αa∂µK
µ,a. (2.34)

The trick is now to promote the parameters αa to functions αa(x). By considering
a variable change in the generating functional, given by the infinitesimal symmetry
transformation in Eq. (2.33) where αa → αa(x) , one can derive the relation

〈∂µjµ〉 = 0, (2.35)

where
jµ = ∂L

∂(∂µφ)iT
aφ−Kµ (2.36)

5There are subtleties related to so called quantum anomalies. The statement that the generating
functional is invariant provided that the Lagrangian is invariant implicitly assumes the measure
is invariant Dφ = Dφ′, which in some special cases are not true, see Chapter 19 in Ref. [11].

6Again, with the caveat that there is no quantum anomaly, see Chapter 19 in Ref. [11]
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2.4. Renormalization in QFT

is the usual Noether current and 〈·〉 denotes the vacuum expectation value.

One can also obtain a more general equation with insertions of a number of fields
in the expectation value. These equations are called the Schwinger-Dyson equations
and are relations among different Green’s functions. The derivation and more details
can be found in Chapter 9 in Ref. [11].

In summary, one can use the path integral formalism to generalize the concept of
symmetries and conserved currents to the quantum formalism, where the objects of
interest are the Green’s functions, and not the equations of motion. Considering
spacetime dependent parameters αa(x) is purely a mathematical trick at this stage,
but it hints about a connection with Gauge theories [11].

2.4 Renormalization in QFT
Renormalization is one of the more confusing topics in QFT, and was subject to
enormous study in the context of QED in the ’30s and ’40s. The theory of QED
took shape after the Dirac equation was introduced in 1928 [15]. It was found that
divergences appear when trying to calculate certain quantities, such as the vacuum
polarization, or bare charge of the electron in perturbation theory. The divergences
appear since certain loop integrals diverge, which can be both due to high momentum
(UV) or low momentum (IR). To be able to match theory and finite experimental
results a procedure called renormalization was developed. For a historical overview
see e.g. Ref. [16].

The idea of renormalization is to get rid of the divergences by first Regularizing
the integrals, i.e. making them finite, at the cost of introducing some parameter,
call it d. When d is taken to some limit d0 the original theory is restored. So
called renormalized parameters are introduced at some energy scale, µ, and related
to the original bare parameters through a finite relation regulated by d. By doing
the same procedure for a different scale µ′, the renormalized parameters of the two
different scales µ and µ′ can be related, and should not depend on d if the theory
is renormalizable, and hence the d → d0 limit can be taken to restore the original
theory [11].

There are several different approaches to renormalization, see Ref. [16], and a more
modern approach is due to Kenneth Wilson, and is reviewed in Ref. [17]. Wilson’s
approach is convenient since it connects very well with effective field theories.

2.4.1 Wilson’s Approach to Renormalization
Wilson’s approach to renormalization is based on the path integral formulation. The
idea of this approach is to isolate high- and low energy degrees of freedom and absorb
high-energy loop effects in renormalized parameters. This section follows Chapter
12 in Ref. [11].
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2. Quantum Field Theory

To illustrate this approach, consider a scalar field theory with Lagrangian

LΛ = 1
2(∂µφ)2 − 1

2m
2
Λφ

2 − λΛ

4! φ
4 (2.37)

using the same notation as in Section 2.3. The Lagrangian LΛ that define the theory
is called bare Lagrangian and its parameters are called bare parameters.

In Wilson’s approach one considers a QFT with a momentum cutoff Λ, which is
considered so big that the theory cannot be resolved to this scale. It can be taken
of the order of the Planck scale for example [11]. The scalar field theory is defined
by the generating functional, which can be expressed in Euclidean space time after
a Wick-rotation (ix0 = x0

E),

Z[J ] =
∫

[Dφ]Λ exp
− ∫ d4xE

(
1
2(∂µφ)2 + 1

2m
2
Λφ

2 + λΛ

4! φ
4 − J(x)φ(x)

) ,
(2.38)

LEΛ ≡
1
2(∂µφ)2 + 1

2m
2
Λφ

2 + λΛ

4! φ
4, (2.39)

where [Dφ]Λ means that only Euclidean momenta p with |p| ≤ Λ are considered
when performing the integration. Note that this theory is defined with the explicit
cutoff Λ, which means that no divergences appear. However, having an explicit
cutoff Λ in the definition of the theory can cause some trouble regarding symmetries
[11], which is a technical issue and not considered in this thesis7.

With an explicit cutoff already in the definition of the theory Eq. (2.38) there is
no need for regularization. In all the loop integrals that Eq. (2.38) produces, the
momenta are limited by 0 ≤ |p| ≤ Λ, and therefore converge8. Since the bare pa-
rameters of the theory, mΛ and λΛ, are not of any practical interest, they need to be
related to experimental measurements on physically relevant scales µ < Λ. Relating
the bare parameters (mΛ, λΛ) to measured parameters (mµ, λµ) is the renormaliza-
tion

(mµ, λµ) ren.←→ (mΛ, λΛ). (2.40)

The next step in Wilson’s approach is to separate scales. The experiments are
performed at some scale µ can not excite field modes with |p| > µ, the theory
Eq. (2.38) can be divided into two momentum regimes

0 ≤ |p| ≤ µ

µ < |p| ≤ Λ.
(2.41)

The Fourier components of the field φ(p) for µ < |p| ≤ Λ cannot be excited and can
be integrated out in the generating functional in Eq. (2.38) by dividing the field into

7There are some more sophisticated methods of regularizing a theory taking Lorentz- and Gauge
invariance into account, see eg. Ref. [18]

8In this analysis in φ4 theory, only UV divergences appear so the limit |p| → 0 is not problematic.
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Fourier components

φ̃(p) = φ(p), 0 ≤ |p| ≤ µ

φ̂(p) = φ(p), µ ≤ |p| ≤ Λ
(2.42)

and dividing the integration
∫
Dφ =

∫
Dφ̃

∫
Dφ̂. Not allowing φ̂ to be external states

means that only φ̃ couple to J . The generating functional becomes

Z[J ] =
∫
Dφ̃

∫
Dφ̂ exp

[
−
∫
d4xE

(
LEΛ − Jφ̃

)]
(2.43)

Performing the integration over φ̂, dropping the tilde on the remaining φ, and instead
using the notation [Dφ]µ gives

Z[J ] =
∫

[Dφ]µ exp
[
−
∫
d4xE

(
LEµ − Jφ

)]
. (2.44)

The theory is now given in terms of an effective Lagrangian LEµ , but since the
generating functional is the same the theory is also unchanged, just expressed in a
different form. The effective Lagrangian takes the form9

LEµ = 1
2(∂µφ)2 + 1

2m
2
µφ

2 + λµ
4! φ

4 + higher order interactions. (2.45)

The relation between the Lagrangians LEΛ and LEµ can in principle be computed, but
are in practice hard, at least exactly.

The effect of integrating out the high momentum modes and lowering the cutoff,
at the expense of changing the Lagrangian parameters and getting higher order
interactions is illustrated in Fig. 2.1. The relation between the bare and renormalized
Lagrangian parameter λ can be expressed

λµ = λΛ + ∆λ, (2.46)

for some ∆λ that is called counterterm. The counterterm can be interpreted as
parameterizing the physics of higher momentum that has been integrated out.

The discussion about effective Lagrangians, like the one in Eq. (2.45), will be con-
tinued in Chapter 3. The main difficulty in constructing an effective field theory is
doing the integral over φ̂ in Eq. (2.43). This step can be avoided using Weinbergs
approach to effective field theories, which will be explained in Section 3.2, which in
short gives for the form of the effective Lagrangian using symmetries.

9To have a canonically normalized field φ it needs to be renormalized. Assuming that φ is prop-
erly normalized after the integration of heavy modes this effect can be included in the effective
couplings, see Ref. [11].
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Figure 2.1: Illustration of how a 2→ 2 amplitude in φ4-theory with cutoff Λ is
transformed by renormalization to the scale µ. The quantum loop effects are
divided into loop effects that are resolved in the theory defined with cutoff µ
(upper blob) and the effective coupling λµ = λΛ + ∆λ, where ∆λ is containing
the quantum loop effects of momenta that are integrated out.

2.4.2 The Renormalization Group
The discussion of renormalization will be concluded by briefly introducing the Renor-
malization Group (RG), and connect it to relevant, marginal and irrelevant oper-
ators. By introducing a parameter b = µ/Λ and rescaling the effective theory,
transforming the momentum region from 0 ≤ |p| ≤ µ back to 0 ≤ |p| ≤ Λ, a general
coupling constant, g, of an operator with mass dimension, d, in the Lagrangian will
scale as

gµ = gΛb
εbd−4. (2.47)

bε is the so-called anomalous scaling due to quantum loop effects and is in general
small, and bd−4 is the dominant scaling [11]. Thus, at small energies an operator
with mass dimension d > 4 will become very small and are thus called irrelevant.
The marginal operators have d = 4 and there the quantum effects determine the
overall scaling. For d < 4 the operators will become large at small energies, and are
hence called relevant. This re-scaling of the theory defines a flow in the space of
couplings and is called the renormalization group flow [11]. This scaling of operators
is important for assessing the relevance of operators at different scales, and making
an effective field theory manageable by having some control over terms in Eq. (2.45)
that are denoted “higher order interactions”.
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2.5. Spontaneous Symmetry Breaking and Goldstone’s Theorem

2.5 Spontaneous Symmetry Breaking and Gold-
stone’s Theorem

The last topic in this chapter is spontaneous symmetry breaking, which is a con-
cept of great importance in a variety of physical systems ranging from condensed
matter to particle physics [11], [19]. The proof of Goldstone’s theorem is given in
Appendix B and is recommended to be reviewed by readers not already familiar
with it. In Chapter 3 the theory of Goldstone bosons will turn out to be very useful,
since pions can be identified as Goldstone bosons of the broken chiral symmetry of
QCD. Hence, a brief overview of the Goldstone’s theorem is provided here. For more
details see Chapter 11 in Ref. [11].

The theorem will be discussed and stated in the context of a theory of n scalar fields,
φi(x), i = 1, . . . , n with Lagrangian given by

L(φ) = Lkin(φ)− V (φ), (2.48)

where Lkin(φ) is the kinetic part and V (φ) is the potential. Assume that the theory
is invariant under some global symmetry described by a Lie Group, G. The fields,
φi(x), then transforms under some n-dimensional representation of G according to

φi(x) G7−→ exp
(
iαaT aij

)
φj(x), (2.49)

where T aij denote generators of the group G in the given representation. nG denotes
the dimensionality of the Lie algebra and the index a = 1, . . . , nG. The global
symmetry G is said to be spontaneously broken to a subgroup H ⊂ G if the ground
state of the theory is only invariant under the subgroup H ⊂ G. The generators of
G are then divided into nH < nG generators of H and nG−nH generators for G/H:

T a, a = 1, . . . nH , generate H
T b, b = nH + 1, . . . , nG, generate G/H,

(2.50)

the nG − nH generators T b are called broken generators.

Goldtone’s theorem sates that for each broken generator, T b, there exist a mass-
less scalar particle in the spectrum. The proof of this statement is given in Ap-
pendix B.

An important note is that even when some symmetries are spontaneously broken, G
is still the full symmetry group of the theory. Although, the full symmetry of G is
partly hidden in the fact that the ground state, also called vacuum, spontaneously
choose a configuration that appears to break the symmetry. Since the vacuum con-
figuration is arbitrarily and spontaneously chosen, the effect of choosing a particular
vacuum has no observable effect in the theory10.

10The spontaneous choosing of vacuum is analogous to choosing a gauge in a gauge theory [11].
The theory and all the predictions are still gauge invariant even after choosing a particular gauge
to work in.
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It is important to distinguish spontaneous symmetry breaking from explicit sym-
metry breaking where the symmetry is not a symmetry anymore. Explicitly broken
symmetries can also be of interest. For example, if the explicit symmetry breaking is
small, the symmetry can often first be considered exact and the symmetry breaking
effect can be treated in perturbation theory. Explicit symmetry breaking also play
an important role in chiral perturbation theory (χPT) where it gives mass to pions,
which will be discussed in the next chapter.
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3
Chiral Effective Field Theory

In the previous chapter some important topics in Quantum Field Theory was re-
viewed, which will be important in this as well as coming chapters. This chapter
will take QCD as a starting point, and with the help of Chiral Perturbation Theory
(χPT) and Chiral Effective Field Theory (χEFT), construct an effective descrip-
tion of interactions between nucleons and pions. An EFT description is convenient
since it automatically provides a systematic expansion of interactions in terms of
some expansion parameter. This makes it possible to systematically improve the
theory by including higher orders in the expansion parameter. In this chapter, and
in the thesis is general, only the leading order (LO) contribution to the EFT will be
studied.

Using symmetries, explicitly broken symmetries and spontaneously broken symme-
tries one can find an EFT for nucleons and pions, analogous to the effective field
theories that were discussed briefly in the previous chapter. The effective field theory
is called chiral Effective Field Theory since it relies on the broken chiral symmetry
of low energy QCD, which will be described in more detail. The material in this
chapter is largely built on, and inspired by, Ref. [20].

3.1 Chiral Perturbation Theory
Chiral perturbation theory (χPT) is a framework for studying the consequences of
global flavor-symmetries of the light quarks in QCD. In this section the the dynamics
of the Goldstone bosons of a spontaneously broken symmetry will be derived. For
more details the interested reader can consult Chapter 4 in Ref. [20] for an excellent
description.

3.1.1 Spontaneous Symmetry Breaking in QCD
The Lagrangian of QCD reads

LQCD =
∑
f

ψ̄f (i /D −mf )ψf −
1
4F

a
µνF

µν
a , (3.1)

which is familiar from Chapter 2. The quark flavors, f , can be divided into three
light quarks u (mu = 5 MeV), d (md = 9 MeV), s (ms = 175 MeV) and three heavy
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quarks c, b, t with masses over 1 GeV. For the energy scales relevant to nuclear
physics (. 1 GeV) only the u and d flavors are considered, and since mu,md � 1
GeV they can to a good approximation be considered massless [20]. With these
approximations the Lagrangian of low energy QCD becomes

L0
QCD =

∑
f=u,d

ψ̄f i /Dψf −
1
4F

a
µνF

µν
a . (3.2)

The limit where mu,md → 0 is called the chiral limit since the Lagrangian L0
QCD

acquires an exact chiral symmetry G ≡ SU(2)L × SU(2)R, as the massless Dirac
equation do not mix the chiralities of the quarks [11]. The chiral projection operators
that project onto the left-handed (L) and the right-handed (R) part of the Dirac
field are defined as

PR = 1
2
(
1 + γ5

)
, PL = 1

2
(
1− γ5

)
. (3.3)

Defining a composite spinor ψ as,

ψ ≡
(
ψu
ψd

)
, (3.4)

it can be divided into left-handed ψL = PLψ and right-handed ψR = PRψ compo-
nents as

ψ = ψL + ψR =
(
ψL,u
ψL,d

)
+
(
ψR,u
ψR,d

)
. (3.5)

An element (L,R) ∈ G act as (
ψL,u
ψL,d

)
G7−→ L

(
ψL,u
ψL,d

)
(3.6)(

ψR,u
ψR,d

)
G7−→ R

(
ψR,u
ψR,d

)
(3.7)

where L,R are SU(2) matrices. It is straightforward to check that L0
QCD expressed

in terms of ψL and ψR is invariant under G.

There are several pieces of evidence that the approximate low energy chiral symmetry
of QCD is spontaneously broken to a subgroupH ≡ SU(2)V 1, and that the Goldstone
bosons produced are the three pions [20]. χPT is used to derive the Lagrangian of
the pions using symmetry arguments, which will be discussed in the next sections.

3.1.2 General Transformations of Goldstone Bosons
To construct a Lagrangian for Goldstone bosons, the desired symmetry properties
must be taken into account. The goal is to construct the most general Lagrangian,
invariant under G, describing the Goldstone bosons. The discussion follows Ref. [20]
and the foundations of this treatment of Goldstone bosons were laid out by Refs.

1The subscript V stands for ”vector” and will be discussed more later.
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[21]–[23]. The derivation in this section is done for general groups, G and H, but
the case to have in mind for the purpose of this thesis is

G = SU(2)L × SU(2)R, H = SU(2)V , (3.8)

where nG and nH denote the number of generators for the respective groups.

Each Goldstone boson is described by a scalar field φi(x) which can be collected in
a vector Φ(x) ≡

(
φ1(x), ..., φn(x)

)
, where n = nG − nH is the number of fields. The

Goldstone bosons, Φ, are expected to transform in some way under G. By finding
how they transform, Lagrangians invariant under G can be constructed.

Let M4 denote Four-dimensional Minkowski space. Consider the space of fields
φi : M4 → R which satisfies appropriate smoothness properties, which will be
implicit2. Define a vector space by

M1 ≡ {Φ : M4 → Rn}. (3.9)

The fact that Φ is a function of x will be suppressed since the analysis can be made
imagining constant functions Φ and then adding the spacetime dependence where
needed in the end [20].

G can act on the vector space M1 by a group action ϕ : G×M1 →M1. By definition,
the group action has to satisfy the properties

ϕ(id,Φ) = Φ, ∀ Φ ∈M1, id ∈ G, (3.10)
ϕ(g1, ϕ(g2,Φ)) = ϕ(g1g2,Φ), ∀ g1, g2 ∈ G, ∀ Φ ∈M1. (3.11)

where id is the identity element in G [20].

The ground state of the theory corresponds to Φ = 0, since the theory is just contain
in Goldstone bosons. The subgroup H ⊂ G leaves the ground state invariant which
imposes the constraint

ϕ(h, 0) = 0, ∀ h ∈ H, (3.12)
on the group action. An equally important constraint comes from the assumption
that G/H does not leave the ground state invariant. This means that ϕ can not be
the trivial action, just leaving everything invariant, which a priori could be the case
for a general group action.

A connection between the vector space of the Goldstone boson fieldsM1 and the coset
space G/H ≡ {gH | g ∈ G} can be established given the constraint in Eq. (3.12).
One can show that there exist an isomorphic mapping3 between the coset space
G/H and M1. Ref. [20] shows that

ϕ(·, 0) : G/H →M1 (3.13)

2In general the fields has to be smooth enough to be able to satisfy the equations of motion.
3Isomorphic mapping is here referring to a injective and surjective map between the spaces.
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is an isomorphic mapping, which means that all Φ ∈M1 can be written as

Φ = ϕ(f, 0) = ϕ(gh, 0) = ϕ(g, 0), g ∈ G, h ∈ H (3.14)

for some representative f = gh ∈ gH. Note that this result in some sense just is a
mathematical formalization of the properties of Goldstone bosons.

It can be investigated how G act on Φ by using properties of the group action. The
action of g̃ ∈ G on Φ ∈M1 is

ϕ(g̃,Φ) = ϕ(g̃, ϕ(gh, 0)) = ϕ(f ′, 0) = Φ′ (3.15)

where f ′ = g̃gh ∈ (g̃g)H is a representative of the coset.

The arguments leading to the transformation property in Eq. (3.15) are now summa-
rized. The first assumption is that the Goldstone bosons Φ ∈M1 transform in some
way under the group G by the action, ϕ. By observing that Φ = 0 represents the
ground state, and using the assumption of spontaneous symmetry breaking (SSB)
that H leaves the ground state invariant but G/H does not, give the isomorphism in
Eq. (3.13) which establishes a one-to-one connection between elements of G/H and
M1. These assumptions lead to the necessary condition that the Goldstone bosons
transform non-trivially under G, and can be represented with elements of the cosets.
Both these properties will now be used when applying this general formalism to the
case of chiral symmetry breaking in QCD to derive the dynamics if its Goldstone
bosons, the pions.

3.1.3 Pions as Goldstone Bosons
The formalism derived in the previous section will be applied to the spontaneously
broken chiral symmetry of QCD. The chiral symmetry G = SU(2)L × SU(2)R is
broken to the subgroup H = SU(2)V ⊂ G. Since SU(N) has N2 − 1 generators
[11], the SSB G → H will give n = nG − nH = 3 Goldstone bosons, which can be
identified as the pions (π0, π+, π−) [20]. The superscript on the pions denotes their
electric charge. The so-called vector subgroup H ⊂ G is the subgroup of the chiral
symmetry group, G, where both the right-handed and left-handed fields are rotated
an equal amount:

G = {(L,R) | L,R ∈ SU(2)}, (3.16)
H = {(L,R) | L,R ∈ SU(2), V = L = R} ⊂ G. (3.17)

For a general group element g = (L,R) ∈ G the coset gH can be represented by
U = RL† ∈ SU(2) [24] which is seen by

gh = (LV,RV ) = (LV,RL†LV ) = (id, RL†)(LV, LV ), (LV, LV ) ∈ H (3.18)

and implies that
gH ≡ (id, RL†)H
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3.1. Chiral Perturbation Theory

Hence, choosing the first element as id, the coset is represented by U = RL†. The
general result of the previous section gives further that U is isomorphic to Φ. Phys-
ically speaking, this isomorphism means that U and Φ contain the same degrees of
freedom, and U can be parameterized with Φ. The transformation of U under G is
obtained by applying a group element g̃ = (L̃, R̃) to the representative of the coset
in analogy with Eq. (3.15) [20]

(L̃, R̃)(id, RL†)H = (id, R̃(RL†)L̃†)H. (3.19)

The x dependence can safely be added again, which gives the general transformation

U(x) G7−→ RU(x)L†, (R,L) ∈ G. (3.20)

Mathematically speaking Eq. (3.20) is how a representative for a coset transforms
under G. This transformation property is important since the result from the previ-
ous section states that Φ(x) and U(x) are isomorphic, which can be used to express
U(x) in terms of Φ(x), and hence obtain the transformation property of Φ(x) under
G.

The isomorphism between Φ(x) and U(x), or more exactly, between M1 and M2 ≡
{U : M4 → SU(2)}, can be found by observing that the Lie algebra su(2) has the
same dimension as M1. Hence, Φ can be expanded in a basis of su(2); the Pauli
matrices, τ i. To not confuse notation, φ is introduced as the expansion of Φ in this
basis

φ(x) =
3∑
i=1

φiτi =
(

φ3 φ1 − iφ2
φ1 + iφ2 φ3

)
≡

 π0 √
2π+

√
2π− −π0

 . (3.21)

One can now define
U(x) ≡ exp

(
i
φ(x)
fπ

)
, (3.22)

where fπ is a dimensionful constant with the same dimension as φ called the pion
decay constant. A candidate for the isomorphism is thus

α : M1 →M2 (3.23)

α : (φ1, φ2, φ3) 7→ exp
(
i
φ(x)
fπ

)
. (3.24)

α is by definition an isomorphism if it is injective and surjective. This is the case
since the map α is the exponential map from the Lie algebra su(2) to SU(2), which
is injective and surjective, see Chapter 4 in [25].

A representation of the Goldstone bosons Eq. (3.22) which have a known transfor-
mation property under G Eq. (3.20) is finally known. The reason why the represen-
tation of the Goldstone bosons as the vector Φ ∈M1 is less convenient than U or φ,
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3. Chiral Effective Field Theory

is that in the latter, the coset representation is built in. And, as we saw, to derive
the transformation property of the coset representation under G straightforward.

The result of this derivation is an explicit realization of a group action (call it ϕ
again), that act on a space M2 isomorphic to M1

ϕ : G×M2 →M2 (3.25)
ϕ : [(L,R), U(x)] 7→ RU(x)L†. (3.26)

Even though this derivation was quite detailed, it is no proof that this representation
is unique. For details regarding uniqueness, see Ref. [23].

3.1.4 Effective Pion-Pion Lagrangian
Using the results of the previous section, a leading order effective Lagrangian for pi-
ons in the low-momentum limit can derived. The condition that pions are Goldstone
bosons of the spontaneously broken chiral symmetry gave the parameterization U(x)
with known transformation under G, summarized as [20]:

U(x) = exp
(
i
φ(x)
fπ

)
, U(x) G7−→ RU(x)L†, (L,R) ∈ G (3.27)

where

φ(x) =
3∑
i=1

φiτi =
(

φ3 φ1 − iφ2
φ1 + iφ2 φ3

)
≡

 π0 √
2π+

√
2π− −π0

 . (3.28)

The effective Lagrangian should be invariant under G, since the theory is still invari-
ant under the full symmetry group even in the presence of spontaneous symmetry
braking, as discussed in Section 2.5. The effective theory is only expected to be
valid at low energies, and hence a minimal amount of pion derivatives in the lowest
order effective Lagrangian is considered, since they correspond to pion momenta in
momentum space [20].

Some possible terms and their transformation properties under G are:

U † G7−→ LU †R†, (3.29)

∂µU
G7−→ R ∂µUL

†, (3.30)

∂µU∂
µU † G7−→ R∂µU∂

µU †R†. (3.31)

The most general G-invariant effective Lagrangian with minimal number of deriva-
tives is given by

Leff = f 2
π

4 Tr(∂µU∂µU †) (3.32)
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3.2. Chiral Effective Field Theory for Nucleons and Pions

with the property Leff 7→ Leff under G, which is easily shown, see Ref. [20]. By
expanding Leff in powers of the pion field it can be shown that the given prefactor
gives a canonical kinetic term for the pion fields.

As a last step in deriving the low energy effective Lagrangian for pions one has to
take into account that the chiral symmetry is also explicitly broken by the non-zero
quark masses mu and md, which gives rise to a non-zero pion mass mπ. Since these
masses are small, the explicit symmetry breaking is also small which still makes the
analysis in the previous sections valid to a good approximation. In Ref. [20] it is
shown how the non-zero masses can be included in the effective Lagrangian in a
consistent way. Adding this to the Lagrangian Eq. (3.32) and expanding to leading
order (LO) in the number of pion fields give, with the notation π = (φ1, φ2, φ3),

Lπ = 1
2∂µπ∂µπ − 1

2m
2
ππ2. (3.33)

3.2 Chiral Effective Field Theory for Nucleons
and Pions

In this section the effective theory for the pions, derived in chiral perturbation the-
ory (χPT) will be extended to an effective theory also including nucleons, which
is usually called χEFT. First, the general structure of an effective filed theory of
fermions (nucleons) and scalar-particles (pions) is studied to develop an organiza-
tional scheme, called power counting, for assessing the importance of certain inter-
actions in the EFT. When the power-counting procedure is established the leading
order Lagrangian for nucleons and pions will be derived in the non-relativistic limit.
Finally a leading order nucleon-nucleon potential is obtained, and is the most essen-
tial product of this chapter to understand, since it will be the piece of information
that summarize the analysis in theses first two chapters.

3.2.1 Weinberg Power Counting
Stephen Weinberg investigated and laid the foundations of using EFT in nuclear
physics in a series of important papers, see Refs. [6]–[8]. For the development
of EFT in nuclear physics, the so-called separation of scales in the meson mass
spectrum is crucial. There is a large mass gap between the the pion mass (∼ 140
MeV) and the heavier mesons ρ (∼ 770 MeV) and ω (∼ 782 MeV). This suggests an
expansion in the soft scale Q ∼ mπ over the hard scale, also called chiral symmetry
breaking scale, Λχ ∼ 1 GeV [26]. External nucleon momenta are considered to be of
order Q.

In the previous sections the effective pion Lagrangian was derived. The fact that the
effective Lagrangian in principle contained all terms consistent with the symmetries
was not actually explained properly, but relied on a theorem by Weinberg called
the folk theorem [6]. In short, the theorem states that the effective Lagrangian
will contain all possible terms consistent with the symmetries of the underlying
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3. Chiral Effective Field Theory

theory4. The power counting procedure developed by Weinberg is crucial, since
it systematically orders these (possibly infinite) number of terms in the effective
Lagrangian as powers

(
Q/Λχ

)ν
, where ν is called the chiral order and Q/Λχ ∼ 0.1

[26]. This scheme is called Weinberg power counting (WPC).

The power-counting scheme will in some ways rely on that the general structure
of the pion-nucleon Lagrangian is known, and the construction of the pion-nucleon
Lagrangian will depend on the power counting. Having this in mind, some things
introduced can not really be well motivated until the end of this chapter. This is
unfortunately an inevitable consequence of trying to explaining an iterative process
in a non-iterative way. The following analysis will be done assuming an interacting
theory of pions and nucleons. Pions are scalar particles and are depicted by dashed
lines in Feynman diagrams, whereas nucleons are fermions and are depicted by solid
lines.

3.2.1.1 Chiral Dimension of Feynman Diagrams

The chiral dimension, ν, was first analyzed in Ref. [7]. For diagrams only involving
pions, with two external pions, the chiral dimension is given by

ν = 2 + 2L+
∑
i

(di − 2)Vi, (3.34)

where L is number of loops in the diagram, di is the number of derivatives/pion
masses for vertex type i, and Vi is the number of vertices of type i, see Ref. [26].
Two examples are shown in Fig. 3.1.

ν = 2 ν = 4

Figure 3.1: Chiral dimension of pion diagrams with four external legs.

In the two nucleon (NN) sector with pions included, the chiral dimension of a given
diagram is given by [26]

ν = 4L− 2Iπ − IN +
∑
i

diVi, (3.35)

where L, di and Vi denote the same quantities as in the pion sector, and Iπ (IN) are
the number of pion (nucleon) propagators. In Fig. 3.2 and Fig. 3.3 some examples
of nucleon-pion diagrams are shown.

4To connect back to Chapter 2, this is the statement that gives you a way of constructing the EFT
without explicitly performing an integral of the type Eq. (2.43) which was pointed out as difficult.
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3.2. Chiral Effective Field Theory for Nucleons and Pions

(a) Pion-nucleon diagrams with
the lowest chiral order ν = 0.
These diagrams are two-particle
irreducible.

(b) Example of two-particle re-
ducible pion-nucleon diagrams of
chiral order ν = 2.

Figure 3.2

Figure 3.3: Example of two-particle irreducible pion-nucleon diagrams of chiral
order ν = 2. The square in the leftmost diagram indicated that is has higher
chiral order than the four-point interaction in Fig. 3.2a.

It turns out that due to an effect called infrared enhancement, reducible diagrams
with purely nucleonic intermediate states (e.g. diagrams in Fig. 3.2b) are enhanced
and do not scale as their chiral order indicates [27]. This calls for a non-perturbative
treatment of such diagrams, meaning that all diagrams need to be taken into ac-
count.

3.2.1.2 Potential from Irreducible Diagrams

The non-perturbative summation of reducible diagrams can be captured as follows.
The full scattering amplitude for NN scattering is denoted by M, and is depicted
by a round blob in Feynman diagrams. The amplitude can be expanded in terms of
the sum of all irreducible diagrams, denoted V . For an illustration see Fig. 3.4. If
G denotes the two nucleon propagator, then the amplitude satisfies

M = V + VGM (3.36)

which is equivalent to the infinite sum in Fig. 3.4 [3].

29



3. Chiral Effective Field Theory

N

N

N

N

= V

N N

N N

+ V V

N N

N N

+ . . .

Figure 3.4: The total scattering amplitude M can be written as a sum of two-
particle irreducible diagrams V that are summed with two-nucleon intermediate
states which have the propagator G.

Skipping some details that are explained in Refs. [26], [27], the non-relativistic
effective potential can be identified as the irreducible diagrams, V . The LO (ν = 0)
potentials that will be used in this thesis consists of the following diagrams,

V
[LO]

WPC =

N

NN

N

+ π

N N

N N

(3.37)

and

V
[LO]

MWPC =

N

NN

N

+ π

N N

N N

+

N

NN

N

+

N

NN

N

. (3.38)

The last two contact interactions in V
[LO]

MWPC symbolizes higher order counterterms
that are promoted to leading order in modified Weinberg power counting (MWPC).
The LECs corresponding to the promoted counterterms are the ones in NN scattering
channels with LS-terms: 3P0, 3P2 and 3D2 [26]. The potentials can be computed
from the pion-nucleon and nucleon-nucleon effective Lagrangians, which will be done
in coming sections.

3.2.1.3 EFT Expansion and Expected Errors

When computing observable quantities in χEFT, e.g. cross sections σ, they are
expected to have expansions

σ = σref

∞∑
ν=0

cν

(
Q

Λχ

)ν
where σref are some reference scale and cν are observable coefficients of order one.
Since c1 = 0 the induced model error from just keeping the LO (ν = 0) in the above
sum is expected to be

σerr = σ − σrefc0 =
∞∑
ν=2

cν

(
Q

Λχ

)ν
.
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3.2. Chiral Effective Field Theory for Nucleons and Pions

Knowing the model error is a great advantage, since it can be taken into account
when doing inference, see Ref. [26].

3.2.2 Pion-Nucleon Effective Lagrangian
The next step is to include the lightest baryons in the picture, i.e. the nucleons. If
the mass difference of the up- and down quark is assumed to be zero, the isospin
symmetry is exact and the proton (p) and neutron (n) can be described as the +1

2
and −1

2 projections of an isospin 1
2 particle, Ψ, called the nucleon

Ψ =
(
ψp
ψn

)
. (3.39)

ψp and ψn are the four component Dirac spinors describing the proton and neutron
respectively. As before, let

U(x) = exp
(
i
φ(x)
fπ

)
(3.40)

be the SU(2) matrix containing the pion fields φ(x) (see Eq. (3.28)). In the same
spirit as in the pure pionic case, the goal is to infer a transformation property of the
physical degrees of freedom under the chiral symmetry group G.

Following Ref. [20] one can construct a group action, ϕ, on the set

M ≡ {
(
U(x),Ψ(x)

)
}

by

ϕ : G×M →M (3.41)

ϕ(g) :
(
U(x)
Ψ(x)

)
7→
(

RU(x)L†

K(L,R, U(x))Ψ(x)

)
(3.42)

where
K(L,R, U(x)) =

√
RU(x)L†

−1
R
√
U(x). (3.43)

Ref. [20] shows that ϕ defines a group action and that Ψ transforms linearly5 under
the subgroup H = SU(2)V of this group action. Why this particular K is chosen
is not obvious. K naturally arises as a compensator field6 for u ≡

√
U , which is

analogous to the compensator field introduced in a gauge theory. More details are
found in Ref. [28].

If one sets aside the somewhat mysterious appearance of K and accepts the trans-
formation properties of (U,Ψ) under G, the nucleon-pion interaction Lagrangian,
LπN , can be derived. The interactions are introduced in the same way as in a gauge

5Transform linearly refers to that under this subgroup the group action ϕ(h), h ∈ H is also a
linear function, and hence a representation.

6The name is inspired by the same type of compensator field that is needed in gauge theories to
be able to construct gauge invariant Lagrangians [11, Chapter 15].
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theory—promoting the global symmetry G to a local symmetry where the group
elements g = (L,R) ∈ G are allowed to depend on the spacetime coordinate as
g(x) = (L(x), R(x)) ∈ G. The local G symmetry will lead to necessary interactions
via covariant derivatives in analogy with how it works in gauge theories, discussed in
Section 2.2. There are some good field theoretic arguments involving the generating
functional and Ward identities for promoting the symmetry to a local symmetry, see
Ref. [29] for a detailed discussion.

The starting point is the field content and the transformation property under G =
SU(2)L × SU(2)R which is promoted to a local transformation

ϕ(g(x)) :
(
U(x)
Ψ(x)

)
7→
(

R(x)UL†(x)
K(L(x), R(x), U(x))Ψ(x)

)
. (3.44)

In the same way as in a gauge theory case one needs to introduce a covariant
derivative Dµ with the property that DµΨ transforms in the same way as Ψ to be
able to have G-invariant derivative terms.

The most general Lagrangian, to leading order in the number of derivatives, is given
in Ref. [30] and looks like

LπN = Ψ̄
(
i /D −MN + gA

2 γ
µγ5uµ

)
Ψ, (3.45)

where MN = 938.9 MeV is the nucleon mass7 and gA is the axial coupling. The
covariant derivative is given by

Dµ = ∂µ + Γµ, (3.46)

Γµ = 1
2
(
u†∂µu+ u∂µu

†
)
, (3.47)

where uµ is called the vielbein which is defined as

uµ ≡ i
(
u†∂µu− u∂µu†

)
. (3.48)

More details regarding the construction of the effective Lagrangian is found in Ref.
[20].

As pointed out in Ref. [31] the relativistic form of the above effective Lagrangian
in Eq. (3.45) is somewhat problematic, due to the fact that ∂0 acting on Ψ does not
give a small quantity in the chiral limit. To this end, a non-relativistic reduction of
LπN is needed to have a consistent power counting.

Before doing the non-relativistic reduction some simplifications can be made to
Eq. (3.45), since only the leading order interactions are of interest. It will turn out
to be sufficient to expand the vielbein as

uµ = i(u†∂µu− u∂µu†) = − 1
fπ

τ · ∂µπ +O(π3) (3.49)

7The nucleon mass MN ≡ 2mN , where mN = (mpmn)/(mn + mp) is the reduced mass of the
neutron-proton system [26].
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and the connection in the covariant derivative as

Γµ = 1
2(u†∂µu+ u∂µu

†) = i

4f 2
π

τ · π × ∂µπ +O(π4) = O(π2). (3.50)

Here τ = (τ 1, τ 2, τ 3) denotes the Pauli matrices and π = (φ1, φ2, φ3) the pion fields.
Inserting this into Eq. (3.45) gives

LπN = Ψ̄
(
i/∂ −MN −

gA
2 γ

µγ5 1
fπ

τ · ∂µπ +O(π2)
)

Ψ. (3.51)

Keeping only the leading order interaction one obtains

L[LO]
πN ≡ Ψ̄

(
i/∂ −MN −

gA
2 γ

µγ5 1
fπ

τ · ∂µπ

)
Ψ. (3.52)

This Lagrangian will be the starting point for the non-relativistic reduction in the
next section.

3.2.3 Non-Relativistic Reduction and the Non-Relativistic
Nucleon Field

The non-relativistic reduction of the nucleon field can be done in the so called
heavy baryon formalism, as described in [31]. Starting with the LO Lagrangian in
Eq. (3.52), the four momentum of the nucleon can be decomposed as

pµ = MNvµ + qµ, (3.53)

with vµv
µ = 1 and vµqµ/MN � 1. A new field, ψ(x), satisfying

Ψ(x) ≡ e−iMNv
µxµψ(x),

is defined to separate out the kinematical dependence of Ψ on the nucleon mass.
Substituting ψ(x) into Eq. (3.52) the leading order Lagrangian will take the form

L[LO]
πN = ψ̄

(
i/∂ + (/v − 1)MN −

gA
2 γ

5 1
fπ

τ · /∂π

)
ψ. (3.54)

The expression can be simplified by introducing projection operators

P v
± = 1± /v

2 (3.55)

that are defined for a general four vector, vµ, satisfying v2 = 1 and v0 ≥ 1. Ref. [20]
shows that these operators satisfy the necessary properties for projection operators,
namely:

P v
+ + P v

+ = 1,
(
P v

±

)2
= P v

±, P v
±P

v
∓ = 0. (3.56)

These operators are used to decompose the four-component spinor, ψ(x), to N(x)
and h(x) as follows

ψ(x) = N(x) + h(x), N(x) = P v
+ψ(x), h(x) = P v

−ψ(x). (3.57)
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N and h is called the light and heavy component of ψ respectively. Following Ref.
[20], this decomposition can be motivated by considering positive energy plane wave
solutions to the Dirac equation

ψp(x) = us(p)e−ipx (3.58)

us(p) =
√
E(p) +MN

 χs
σ·p

E(p)+MN
χs

 (3.59)

where p is the three momentum, E(p) =
√

p2 +M2
N is the energy, χs is a two

component Pauli spinor and σ is a vector of the Pauli matrices σ = (σ1, σ2, σ3). For
the special case of choosing vµ = (1,0) the projectors P v

± are, in 2 × 2 component
form, given by

P v
+ =

(
1 0
0 0

)
, P v

− =
(

0 0
0 1

)
. (3.60)

This gives that N(x) and h(x) correspond to the upper- and lower components of
the four spinor ψ,

N(x) =
√
E(p) +MN

(
χs
0

)
e−i(E(p)−MN )x0

e−ipx, (3.61)

h(x) =
√
E(p) +MN

 0
σ·p

E(p)+MN
χs

 e−i(E(p)−MN )x0
e−ipx. (3.62)

In the non-relativistic limit, (E(p)−MN)/MN � 1, h(x) is suppressed by a factor
of M−1

N compared to N . By redefining N and h as two-component spinors,

N(x) ≡
√
E(p) +MNχ

(α)eiMNx
0
e−ipx, (3.63)

h(x) ≡
√
E(p) +MN

σ · p
E(p) +MN

χ(α)eiMNx
0
e−ipx, (3.64)

the notation can be simplified since the four component spinor ψ can be written as

ψ(x) =
(
N(x)
h(x)

)
. (3.65)

Now, in our case we do not have the free Dirac equation, but motivated by this
discussion we do the same decomposition of ψ(x) to a light general field N , and a
heavy field h that is suppressed by M−1

N compared to N [20].

In the non-relativistic limit the Lagrangian in Eq. (3.54) can be simplified to

LπN = N †
(
i∂0 −

1
2gA(σ ·∇)τ · π

fπ

)
N, (3.66)

where all positive powers of M−1
N are not included anymore [31] and hence the h(x)

field is not included. Relativistic corrections to Eq. (3.66) are also of order M−1
N

[20], hence the Lagrangian is valid in frames that are “close to” the rest frame of the
nucleon, vµ = (1,0). In Eq. (3.66) the leading order pion-nucleon interaction term
can be identified as

Lint = − gA
2fπ

N †(σ ·∇)(τ · π)N. (3.67)
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3.2.4 Nucleon-Nucleon Effective Lagrangian
So far the pion Lagrangian Lπ and the nucleon-pion Lagrangian LπN has been
constructed and the last piece is the nucleon-nucleon Lagrangian LNN .

Ref. [32] states that the most general Lagrangian involving only two nucleons,
described by the non-relativistic nucleon field, N , is:

L = N †
(
i∂0 + ∇2

2MN

+ ...

)
N − C0t(N †PtN)2 − C0s(N †PsN)2 + ... (3.68)

where
P i
t = 1√

8
σ2σ

iτ2, P a
s = 1√

8
τ2τ

aσ2, i, a = 1, 2, 3. (3.69)

The dots stands for terms with more derivatives, which will be sub-leading consider-
ing small momenta. The projectors P i

t and P i
s are the projectors into spin triplet and

spin singlet respectively, which is the two total spin states that the the two nucleon
system can occupy. The convention used is that σi act in spin space and τ i act in
isospin space. C0t and C0s are LECs in spin triplet, and spin singlet respectively.
Hence, the LO Lagrangian reads

L[LO]
NN = N †

(
i∂0 + ∇2

2MN

)
N − C0t(N †PtN)2 − C0s(N †PsN)2 (3.70)

Contrary to the one-nucleon sector, the kinetic piece N †
(
∇2/(2MN)

)
N is included

at LO. This term is responsible for infrared enhancement of nucleon diagrams which
contain purely nucleonic intermediate states, meaning that the importance of dia-
grams with many loops will not decrease, as discussed earlier.

3.3 NN potential in Weinberg- and Modified Wein-
berg Power Counting

This last section will summarize the LO Lagrangian, and state the potentials that
can be obtained by calculating the Feynman-diagram expressions of the potentials
given in Eq. (3.37) and Eq. (3.38).

The full leading order non-relativistic Lagrangian in WPC describing the dynamics
of pions, π, and nucleons, N , read

L[LO]
WPC = 1

2∂µπ∂µπ − 1
2m

2
ππ2 +N †

(
i∂0 + ∇2

2MN

)
N

− gA
2fπ

N †(σ ·∇)(τ · π)N − C0t(N †PtN)2 − C0s(N †PsN)2.

(3.71)

As a reminder, gA is the axial coupling, fπ is the pion decay constant, MN is the
nucleon mass and mπ is the pions mass. σ and τ are the spin and isospin operators.
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In MWPC, more counterterms are promoted to LO, which will be shown in the
computed potentials.

Having the LO Lagrangian 3.71 it is only a matter of calculations to obtain the NN
potentials defined in Eq. (3.37) and Eq. (3.38). In MWPC, the only difference is
extra LECs in higher partial waves, so this Lagrangian is not explicitly written out.
Using the notation p (p′) for the ingoing (outgoing) nucleon momenta, q = p′ − p
for the momentum transfer, and p = |p|, p′ = |p′|, the potentials read [26]

V
[LO]

WPC(p′,p) = − g2
A

4f 2
π

(σ1 · q)(σ2 · q)
q2 +m2

π

(τ1 · τ2) + C1S0 + C3S1 , (3.72)

V
[LO]

MWPC(p′,p) = − g2
A

4f 2
π

(σ1 · q)(σ2 · q)
q2 +m2

π

(τ1 · τ2)+

+ C1S0 + C3S1 + (C3P0 + C3P2)pp′ + C3D2(p2 + p′2).
(3.73)

σ1 and σ2 are the spins of the respective nucleons in the interaction, and τ1 and τ2
are their respective isospin. The LECs, CX , are indicated by which partial wave8

they act in, e.g. 1S0 or 3S1. These potentials are the most important thing to
remember and understand from this chapter going forward in the thesis.

8The quantum numbers of NN states will be described in detail in Chapter 4.
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4
Scattering Theory

Scattering theory is roughly the theory about how a well-defined initial (quantum)
state is transformed to a well-defined final state through the action of some interac-
tion process. A scattering process can in general involve any number of particles in
the initial and final state. However, the focus of this thesis is to describe the process
of two nucleons scattering of each other, which is a process with two particles in the
initial and final state. The description of two particle scattering can be reduced to
the simpler problem of one particle scattering of a fixed potential.

First, one particle scattering of a fixed potential is considered to develop some intu-
ition for the basic ingredients of scattering theory such as the S- and T - operators,
the scattering amplitude, and the observable cross section. Furthermore, the rela-
tion between scattering operators and the system Hamiltonian is obtained from the
Lippmann-Schwinger (LS) equation. It is shown that the two-particle scattering
problem can be reduced to one particle scattering of a fixed potential by considering
relative coordinates. Finally, the developed theory is applied to neutron-proton (np)
scattering in χEFT. The content of this chapter is largely inspired by the book by
J. R. Taylor, Ref. [33] as well as Chapter 6 in Ref. [34].

4.1 Cross Sections and the S-operator
An important observable in particle scattering experiments is the differential cross
section, dσ. A scattering experiment typically has two important measurable quan-
tities; the incoming flux of particles, jin [s−1m−2], and the number of particles per
unit time that end up in a region of solid angle dΩ, Nout [s−1]. From these quantities
the differential cross section is defined as

dσ ≡ NoutdΩ
jin

, =⇒ dσ

dΩ = Nout

jin
. (4.1)

The total cross section, σ [m2]1, is defined as the integral of the differential cross
section over all solid angles,

σ ≡
∫
dΩ dσ

dΩ . (4.2)

1A common unit to use for the cross section is barn, which is defined as 1 barn = 10−28 m2.
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4. Scattering Theory

The goal of non-relativistic scattering theory is to compute observables, e.g. differ-
ential cross sections Eq. (4.1), using quantum mechanics.

A quantum mechanical system consisting of one particle with mass m with canonical
coordinates (r,p) that is subject to some interaction potential, V (r), is described
by the Hamiltonian

H = H0 + V (r), H0 = p2

2m. (4.3)

The Hilbert space of states for this system is denoted H . To be able to treat this
as a scattering problem a necessary assumption is that the potential is strong in a
fairly small region in space compared to the length-scale of the experiment, and that
the potential goes to zero sufficiently fast2 as |r| → ∞. Assume from now on that
these assumptions hold. The general solution to the time-dependent Schrödinger
equation can be written as

|ψ(t)〉 = U(t) |ψ〉 ≡ e−iHt |ψ〉 , (4.4)

where U(t) is the time evolution operator, |ψ(t)〉 ∈H is the state of the system at
time t and |ψ〉 ∈ H is the state of the system at time t = 0. The time parameter
is chosen such that the particle is in the vicinity of the region of non-zero potential
around time t = 0. This choice of time parameter implies that at times ti ≈ −∞ and
tf ≈ ∞ the time evolution operator U(t) will approximately be the time evolution
operator for the free particle U0(t) ≡ e−iH0t, since V ≈ 0 at these times.

The evolution U(t) |ψ〉 can be thought of as a trajectory in H , much like a classical
trajectory of a particle in three-dimensional space. The fact that the evolution
resembles free evolution for early and late times can be quantified by U(t) |ψ〉 is
approaching a free particle asymptote as t→ ±∞:

lim
t→−∞

∥∥U(t) |ψ〉 − U0(t) |ψin〉
∥∥ = 0, (4.5)

lim
t→+∞

∥∥U(t) |ψ〉 − U0(t) |ψout〉
∥∥ = 0. (4.6)

|ψin〉, |ψout〉 ∈ H are some states defined at time t = 0. The norm ‖·‖ is defined
for any |φ〉 ∈H as

∥∥|φ〉∥∥ ≡ √〈φ|φ〉. For an illustration see Fig. 4.1. One can prove
that these asymptotes exist for relevant potentials, see Ref. [33]. Using that result,
operators Ω± can be defined as follows:

|ψ〉 = lim
t→−∞

U †(t)U0(t) |ψin〉 ≡ Ω+ |ψin〉 , (4.7)

|ψ〉 = lim
t→∞

U †(t)U0(t) |ψout〉 ≡ Ω− |ψout〉 . (4.8)

These operators are called Møller operators, and relate the actual state of the scat-
tered particle at time t = 0 to the in- and outgoing asymptotic states of the system.

2We will not bother to go into the mathematical details, the interested reader can consult Ref.
[33].
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4.2. The Lippmann-Schwinger Equation

Using the definitions in Eq. (4.8) one can show that the operators Ω± are isometric,
and hence satisfy Ω†

±Ω± = id which gives the relation

|ψout〉 = Ω†
−Ω+ |ψin〉 . (4.9)

The scattering operator, S, is defined as

S ≡ Ω†
−Ω+, (4.10)

and contains all the observable information of the scattering process, since only
the asymptotic states are observable. The S-operator is directly related to the
probability of observing a particular out asymptote |φ〉 given an in asymptote |χ〉
which is denoted pr(χ→ φ). The probability is, as usual, given by the Born rule but
for the actual states of the system at t = 0 corresponding to the given asymptotes.
The relation reads

pr(χ→ φ) =
∣∣∣〈φ|Ω†

−Ω+ |χ〉
∣∣∣2 =

∣∣〈φ|S|χ〉∣∣2 . (4.11)

The probability amplitude for the scattering process, 〈φ|S|χ〉, is called an S-matrix
element3.

V

U0(ti) |ψin〉

|ψ(ti)〉

U0(tf ) |ψout〉|ψ(tf )〉

Figure 4.1: An illustration of how the quantum state |ψ(t)〉 (blue solid line) of
the system approaches asymptotic quantum states, U0(ti) |ψin〉 and U0(tf ) |ψout〉
(grey dashed lines) for early- and late times ti, tf . For times where |ψ(t)〉 are far
away from the range of the potential V the evolution will resemble the evolution
of the free Hamiltonian.

4.2 The Lippmann-Schwinger Equation
In this section, the on-shell T -operator will be defined and related to the S-operator.
From the definition of the Møller operators the following relation can be derived [33],

Ω†
±HΩ± = H0. (4.12)

3The term S-operator is synonymous with S-matrix in the literature and these terms are often
used interchangeably.
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4. Scattering Theory

Using this one can show that [S,H0] = 0, which means that the energy is conserved in
the scattering process. To exploit this symmetry, the scattering operator is evaluated
for eigenstates |p〉 of H0, which satisfy

H0 |p〉 = p2

2m |p〉 , Ep ≡
p2

2m, (4.13)

where p is the momentum, and the states are normalized as

〈p′|p〉 = δ(3)(p′ − p). (4.14)

Conservation of energy gives the following constraint on the S-matrix elements

0 = 〈p′|[S,H0]|p〉 = (Ep − Ep′) 〈p′|S|p〉 . (4.15)

The T -operator is defined in terms of the following decomposition of the S-operator,

〈p′|S|p〉 ≡ δ(3)(p′ − p)− 2πiδ(Ep′ − Ep)T (p′,p). (4.16)

The notation T (p′,p) ≡ 〈p′|T |p〉 is introduced for convenience, and will be used for
more operators than just T . The decomposition in Eq. (4.16) is convenient since
it separates the parts of the S-matrix that correspond to trivial and non-trivial
interactions, where the latter is governed by the T -operator. The T -operator is
directly linked to the differential cross section as [33]

dσ

dΩ(p→ p′) =
(
m

2π

)2∣∣∣T (p′,p)
∣∣∣2 . (4.17)

This equation encodes the important link between the quantum description and
the experimentally observable differential cross section. For a given potential it
is possible to compute the T -operator, since it can be shown that the T -operator
satisfies the Lippmann-Schwinger equation

T (p′,p) = V (p′,p) +
∫
d3k V (p′,k) 2m

p2 − k2 + iε
T (k,p), (4.18)

where limε→0 is implicit, as usual, and will amount to evaluate the Cauchy principal
value of the integral [33].

In the case where the particle of interest has other degrees of freedom (e.g. in the
case of nucleons; spin and isospin) the only thing that will change is that T (p′,p)
and V (p′,p) will be operators on the Hilbert space of those degrees of freedom as
well. By using symmetries, the T -, S- and V - operators can be further decomposed
for these additional degrees of freedom completely analogous to Eq. (4.15). Such an
analysis is described in further detail in Section 4.4.

4.3 Two-Particle Scattering
The theory introduced in the previous section will be applied to the case where two
massive particles are scattered of each other through a mutual interaction potential.
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4.3. Two-Particle Scattering

A two-particle system with masses and canonical coordinates given by (mi, ri,pi), i =
1, 2, are described by the Hamiltonian

H = p2
1

2m1
+ p2

2
2m2

+ V12(r1 − r2), (4.19)

where the interaction potential V12 is assumed to be local and transitionally invari-
ant, just depending on the relative position of the particles; rrel ≡ r1 − r2. The
state space for the composite system will be the the tensor product of the individual
Hilbert spaces for the two particles H1 and H2;

H12 ≡H1 ⊗H2. (4.20)

By introducing new momentum coordinates (p̄,prel) defined by

p̄ ≡ p1 + p2, prel ≡
m2p1 −m1p2

m1 +m2
, (4.21)

and defining the total- and reduced mass of the two-particle system as

M = m1 +m2, m = m1m2

m1 +m2
, (4.22)

the Hamiltonian in Eq. (4.19) can be written

H = p̄2

2M +
[

p2
rel

2m + V12(r1 − r2)
]
≡ Hcm +Hrel. (4.23)

prel can be shown to be the canonical conjugate to rrel ≡ r1− r2, which means that
the Hilbert space can be factored as [33]

H12 = Hcm ⊗Hrel. (4.24)

Since the Hamiltonian decomposes onto a part just acting on Hcm and one acting
on Hrel, the corresponding time-evolution operator will decompose as [33]

U(t) = e−iHcmt ⊗ e−iHrelt. (4.25)

Due to conservation of momentum4, the corresponding scattering operator reads

S = idcm ⊗ Srel, (4.26)

where Srel is the one-particle scattering operator computed from Hrel [33].

Finally, one finds that the S-matrix elements of the two-particle Hamiltonian in
Eq. (4.19) can be decomposed as

〈p′
1,p

′
2|S|p1,p2〉 = δ3(p̄′ − p̄) 〈p′

rel|Srel|prel〉 , (4.27)

4[p̄,H] = 0 since H does not depend on the canonical conjugate to p̄.
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4. Scattering Theory

where (p1,p2) and (p′
1,p

′
2) denotes the ingoing and outgoing momenta respectively.

prel and p′
rel are the relative momenta (see Eq. (4.21)) for the primed and unprimed

coordinates.

The conclusion is that the two-particle scattering problem is reduced to the one-
particle scattering problem of relative momenta with Hamiltonian Hrel. As a last
note, when p1 and p2 are expressed in the laboratory frame, prel will also be in the
laboratory frame. Since the Hamiltonian Hrel is Galilean invariant one can choose
to describe the system in the center-of-mass frame where the expressions simplifies
since p1 = −p2.

4.4 Nucleon-Nucleon Scattering
The last part of this chapter will be devoted to nucleon-nucleon (NN) scattering
utilizing the theory developed previously in this chapter. Specifically neutron-proton
(np) scattering will be the focus, see Fig. 4.2 for an illustration.

p2p1

p′
1

p′
2

nn

nn

pp

pp

Figure 4.2: Kinematics of np scattering in the center-of-mass frame. (p1,p2)
and (p′

1,p
′
2) denotes the ingoing and outgoing momenta, respectively, for the

proton (p) and neutron (n) in the center-of-mass frame.

4.4.1 Nucleon-Nucleon System
The Hilbert space of a single nucleon, denoted by H , consists of three parts;

H ≡H space ⊗H spin ⊗H isospin, (4.28)

where the nucleon has spin and isospin 1
2 . The Hilbert space of two nucleons, denoted

H12, is the tensor product of the Hilbert spaces of the two individual nucleons,
H12 = H1⊗H2. In the previous section it was shown that only the relative motion
is relevant for scattering, since the S-operator decomposes as Eq. (4.27). Thus, the
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4.4. Nucleon-Nucleon Scattering

NN-scattering problem can conveniently be described in the center-of-mass frame.
The two-nucleon Hilbert space reads

H12 = H cm. space ⊗H rel. space ⊗H spin
1 ⊗H spin

2 ⊗H isospin
1 ⊗H isospin

2 (4.29)
≡H cm. space ⊗HNN, (4.30)

with the space part decomposed in center-of-mass and relative part. The scattering
problem is reduced to the scattering problem where a NN two-particle state5 |ψNN〉 ∈
HNN is scattered through the Hamiltonian

H = p2
rel

2mN

+ VNN ≡ H0 + VNN, (4.31)

where mN is the reduced mass of the two nucleons, prel is the relative momentum of
the two nucleons (see Eq. (4.21)) and VNN is a NN potential. Since all coordinates
from now on will be relative, the subscript rel will be dropped. The potentials that
will be considered are VNN ∈ {V [LO]

WPC, V
[LO]

MWPC}; see Chapter 3.

Since the nucleons have both spin and isospin degrees of freedom the Hilbert space
HNN is a bit more complicated than the relative Hilbert space in the previous section,
see Eq. (4.24). Basis states for HNN can be formed by tensor products of basis states
for the individual Hilbert spaces as

|p, s1,ms1 , s2,ms2 , t1, tz1, t2, tz2〉 ≡ (4.32)
|p〉 ⊗ |s1,ms1〉 ⊗ |s2,ms2〉 ⊗ |t1, tz1〉 ⊗ |t2, tz2〉 (4.33)

where |si,msi
〉 are basis states for H spin

i and |ti, tzi〉 are basis states for H isospin
i ,

i = 1, 2. Consequently, s1 = s2 = t1 = t2 = 1
2 , and the projections msi

and tzi take
values ±1

2 . The spin- and isospin operators for the two nucleons are denoted6

S1,S2,T1,T2, (4.34)
respectively. The total spin- and isospin operators are defined as

S ≡ S1 + S2, T ≡ T1 + T2. (4.35)
Using the theory of spin addition, see e.g. Ref. [34], the spin states of the two
nucleons |s1,ms1〉⊗|s2,ms2〉 are related to the total spin, s, and total spin projection,
ms, through the Clebsch-Gordan coefficients7, Cs,ms

s1,s2;ms1ms2
,

|s,ms〉 =
∑

ms1 ,ms2

Cs,ms
s1,s2;ms1ms2

|s1,ms1〉 ⊗ |s2,ms2〉 . (4.36)

5In the same way as in the previous section the state |ψNN〉 can be thought of as a one-particle
state described by the relative one-particle Hamiltonian Eq. (4.31).

6Spin, isospin and angular momentum operators, e.g. S,T ,J ,L are denoted by bold-face uppercase
letters to not confuse with other operators. The corresponding quantum numbers to an operator
is denote with the same lowercase letter.

7For general angular momentum states |j1,m1〉 , |j2,m2〉 and |j,m〉 the Clebsch-Gordan coefficients
are defined as follows. The matrix denotes the so called Wigner 3j-symbol, which will also be
used later [34].

Cj,m
j1,j2;m1m2

≡ 〈j1, j2;m1m2|j1j2; jm〉 = (−1)j1−j2+m
√

2j + 1
(
j1 j2 j
m1 m2 −m

)
.
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The total spin, s, can take the values s ∈ {0, 1} and the spin-projection ms ∈
{−1, 0, 1}. The situation is completely analogous for isospin, where the total isospin
is denoted t, with total isospin projection tz. Hence, an equivalent and more conve-
nient set of basis states than the ones in Eq. (4.33) are of the form

|p, s,ms, t, tz〉 . (4.37)

The orbital angular momentum operator is denoted L and the total angular mo-
mentum operator, J , is defined as

J ≡ L + S. (4.38)

Simultaneous energy- and angular-momentum eigenstates, |p, l,ml〉, are defined to
satisfy the relations

H0 |p, l,ml,〉 = p2

2mN

|p, l,ml〉 , Ep ≡
p2

2mN

, (4.39)

L2 |p, l,ml〉 = l(l + 1) |p, l,ml〉 , (4.40)
Lz |p, l,ml〉 = ml |p, l,ml〉 . (4.41)

Momentum eigenstates |p〉 are related to |p, l,ml〉 as

|p〉 =
∞∑
l=0

l∑
ml=−l

1
√
mNp

Y
m∗

l
l (p̂) |p, l,ml〉 , (4.42)

where p ≡|p| and p̂ ≡ p/|p| [34]. Coupling L and S analogous to coupling S1 and
S2 in Eq. (4.36) gives basis states of the from

|p, j, s, l,mj, t, tz〉 . (4.43)

Such a basis is referred to as a partial wave basis. For the special case of np scat-
tering, the states satisfy tz = 0. Since these states will be the ones considered from
now on, tz will be omitted.

The LS equation for obtaining T -matrix elements reads

T (p′,p) = VNN(p′,p) +
∫
d3k VNN(p′,k) 2mN

p2 − k2 + iε
T (k,p), (4.44)

where the same notation as in Eq. (4.18) for operators T and V sandwiched between
momentum states are used; T (p′,p) ≡ 〈p′|T |p〉. The crucial difference now, com-
pared to the spinless case, is that both V (p′,p) and T (p′,p) are operators in the
remaining parts of the NN Hilbert space—namely the total spin and total isospin
parts. By doing a partial wave decomposition Eq. (4.44) will be converted from the
basis states in Eq. (4.33) to the basis states in Eq. (4.43). An important reserva-
tion is that Eq. (4.44) will change slightly when including regulators and relativistic
corrections in later sections.
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4.4. Nucleon-Nucleon Scattering

4.4.2 Symmetries
As seen in the previous section, basis states for a general NN state |ψNN〉 ∈ HNN
can be taken to be

|p, j, l, s,mj, t, tz〉 , (4.45)

where tz = 0 from now on is omitted, since a neutron-proton state is of interest.
Since nucleons are fermions, the total two-particle state should be anti-symmetric
under particle exchange. This amounts to the constraint

(−1)l+s+t = −1. (4.46)

The dynamical symmetries of the NN scattering problem comes from the operators
that commute with the Hamiltonian in Eq. (4.31) [33]. For the nucleon-nucleon
potentials used in this thesis (see. Eq. (3.72) and Eq. (3.73)), one can show that the
Hamiltonian commutes with the total isospin operator, T , total angular momentum
operator, J , and parity operator, P̂ :

[J , H] = 0 =⇒ j and mj are conserved, (4.47)
[T , H] = 0 =⇒ t and tz are conserved, (4.48)
[P̂ , H] = 0 =⇒ parity is conserved. (4.49)

These conservation laws set constraints on S-matrix elements;

〈p′, j′, l′, s′,m′
j, t

′|S|p, j, l, s,mj, t〉 , (4.50)

in analogy with the example in Eq. (4.15). By combining Eq. (4.46) with isospin
and parity conservation one gets the constraint

∆s ≡ s′ − s = even. (4.51)

Since s, s′ ∈ {0, 1}, it implies that ∆s = 0 and total spin is also conserved. For the
non-zero S-matrix elements the notation Sj,s,tl′l (p′, p) is used which is defined by

〈p′, j′, l′, s′,m′
j, t

′|S|p, j, l, s,mj, t〉 ≡
≡ δj′jδs′sδt′tδm′

jmj
〈p′, l′|Sj,s,t|p, l〉 ≡ δj′jδs′sδt′tδm′

jmj
Sj,s,tl′l (p′, p).

(4.52)

The convention is that conserved quantum numbers, {j, s, t}, are superscripts while
non-conserved ones are subscripts. The same notation will be used later for the
T -operator and the potential. There is no mj index on S, since the matrix element
cannot depend on the projection quantum number by the Wigner-Eckart Theorem
[34] (the same is true for tz). By the constraint in Eq. (4.46), isospin can be omitted
in the notation, since it becomes fixed by the other quantum numbers. However,
even if t is not explicitly written out, S-matrix elements in general still depends on
t.
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4.4.3 Regularization and Relativistic Corrections
The LS-equation, Eq. (4.44), is an integral equation over the momentum k. De-
pending on the form of the potential, the integral might diverge, which is a problem
that requires some kind of regularization and renormalization. However, even if
the integral equation does not diverge, when solving the equation numerically one
needs to truncate the integral at some maximum momentum, due to computational
reasons. This means that regularization and renormalization is important in either
case.

The momentum cutoff is usually implemented by modifying the potential with an
exponential factor of the form [26]

VNN(p′,p) 7→ VNN(p′,p) exp
[
−
(
p′

Λ

)6
−
(
p

Λ

)6
]
, (4.53)

where p′ = |p′| and p = |p| denotes the modulus of the momenta8. Λ is a constant
called the cutoff (see the discussion in Section 2.4), which in principle could be
chosen arbitrarily above the pion mass, but there are of course also constraints due
to computational reasons. There are discussions in the literature on how this cutoff
should best be treated; see e.g. [9], [35], [36]. The reason not to impose a so-called
hard momentum cutoff in the form of a step function is that the exponential factor
smooths out the cutoff, which is more numerically stable [37].

So far in this chapter the treatment of the scattering problem has been completely
non-relativistic. Let us therefore briefly discuss relativistic corrections. In short, the
approach taken in this thesis can be summarized by the following steps:

1. Construct an effective leading-order Lagrangian for nucleons and pions by
considering non-relativistic limit using the heavy-baryon formalism.

2. Use an appropriate power counting (WPC or MWPC) to construct a nucleon-
nucleon potential by considering the lowest order Feynman diagrams in the
QFT scattering process.

3. Disregard the QFT origin and use the nucleon-nucleon potential in the non-
relativistic description of two-particle scattering.

4. Obtain the scattering amplitude for nucleon-nucleon scattering by solving the
LS equation, and use scattering theory to relate the T -matrix to relevant
observables.

This approach is convenient since the different steps have a well-defined input and
output. For example, all you need to know from steps 1-2 to continue in step 3 is
the potential, and you can forget about the details that went into the derivation.
The downside is of course that it is hard to track the impact of certain assumptions
on the end result.

8In general the exponent is chosen as 2n, for some n = 1, 2, . . . . Here, n = 3 is chosen.

46



4.4. Nucleon-Nucleon Scattering

To see how relativistic corrections can be incorporated in the description used in
this thesis, one can take a look at another approach. This approach is described in
Ref. [26], and in more detail in Refs. [2], [3]. One starts with the Bethe-Salpeter
equation [38] describing the two nucleon scattering process in QFT,

M = V + VGM, (4.54)

just as in chapter Chapter 3. The non-relativistic reduction of the Lagrangian used
for calculating these diagrams is not needed up until this point. Since this equation is
expressed in four-dimensional Minkowski space it is very hard to solve without mak-
ing some approximations. Blankenbeckler and Sugar proposed an approach which
is widely used, making reasonable approximations to both the potential and the
two-nucleon propagator [39]. Under these approximations, matrix elements between
positive energy nucleons yield the following equation in momentum space

T̄ (p′,p) = V̄ (p′,p) +
∫ d3k

(2π)3 V̄ (p′,k)4m2
N

Ek

1
p2 − k2 + iε

T̄ (k,p). (4.55)

Here, the spin and isospin indices are suppressed. By doing the so-called minimal
relativity transformations

V̄ (p′,p) 7→ V (p′,p) = 1
(2π)3

√
2mN

Ep′
V̄ (p′,p)

√
2mN

Ep
, (4.56)

T̄ (p′,p) 7→ T (p′,p) = 1
(2π)3

√
2mN

Ep′
T̄ (p′,p)

√
2mN

Ep
, (4.57)

Eq. (4.55) reduces to the standard LS equation:

T (p′,p) = V (p′,p) +
∫
d3k V (p′,k) 2mN

p2 − k2 + iε
T (k,p), (4.58)

Here, T is the usual non-relativistic T -matrix and V is the the NN potential with
the additional factors from Eq. (4.56), see Ref. [26].

The takeaway from this procedure is that relativistic corrections can be included
in the non-relativistic LS-equation by doing the minimal relativity transformations.
This effectively transforms the non-relativistic description of the scattering prob-
lem, in terms of the LS equation, to an equation satisfying the relativistic equation
Eq. (4.55).

Using these results, Eq. (4.44) will take the form

T (p′,p) = V (p′,p) +
∫
d3k V (p′,k) 2mN

p2 − k2 + iε
T (k,p), (4.59)

V (p′,p) = 1
(2π)3

√
2mN

Ep′
VNN(p′,p)

√
2mN

Ep
exp

[
−
(
p′

Λ

)6
−
(
p

Λ

)6
]
, (4.60)

where both relativistic corrections and regulator function are included.
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4.4.4 Partial Wave Decomposition
Expressing the LS equation (4.59), in the basis (4.45) is known as a partial wave
decomposition. The S- and T -operators can be decomposed as in Eq. (4.52)

〈p′, j′, l′, s′,m′
j, t

′|S|p, j, l, s,mj, t〉 ≡ δj′jδs′sδt′tδm′
jmj

Sj,sl′l (p′, p), (4.61)
〈p′, j′, l′, s′,m′

j, t
′|T |p, j, l, s,mj, t〉 ≡ δj′jδs′sδt′tδm′

jmj
T j,sl′l (p′, p), (4.62)

where the conserved quantum numbers are indicated by superscripts, and the total
isospin is constrained by Eq. (4.46) and therefore omitted. Sometimes, the Kronecker
deltas are not explicitly written out due to notational convenience. Only neutron-
proton scattering is considered here, therefore tz is always zero and hence omitted.

The relevant potentials VNN that are considered in Eq. (4.60) are V [LO]
WPC and V [LO]

MWPC,
see Chapter 3. Since the relativistic corrections and regulator part of Eq. (4.60) only
depend on the magnitude of the momenta, p and p′, they are already in the correct
basis and do not need to be considered. The counterterms with LECs that appear in
both V [LO]

WPC and V [LO]
MWPC are also in in the correct basis, acting in well-defined partial

waves. The part of the potentials that need to be considered in the basis change is
the one-pion-exchange (OPE) potential

VOPE(p′,p) = − g2
A

4f 2
π

(σ1 · q)(σ2 · q)
q2 +m2

π

(τ1 · τ2) , q = p′ − p, (4.63)

see Eq. (3.72). By the same symmetry arguments used for the decomposition of S
and T , the potential can be decomposed as

〈p′, j′, l′, s′,m′
j, t

′|V |p, j, l, s,mj, t〉 ≡ δj′jδs′sδt′tδm′
jmj

(VOPE)j,sl′l (p′, p). (4.64)

Knowing how VOPE acts in the naive basis (Eq. (4.33)), the partial wave potential
matrix elements can be obtained by a basis transformation. For |Ψ〉 denoting a
basis state in the naive basis this transformation can schematically be written by
inserting the resolution of identity as

(VOPE)j,sl′l (p′, p)δj′jδs′sδt′tδm′
jmj

= 〈p′, j′, l′, s′,m′
j, t

′|V |p, j, l, s,mj, t〉 =

= 〈p′, j′, l′, s′,m′
j, t

′|
∫
dΨ′ |Ψ′〉 〈Ψ′|VOPE

∫
dΨ |Ψ〉 〈Ψ| |p, j, l, s,mj, t〉 =

=
∫
dΨ′

∫
dΨ 〈p′, j′, l′, s′,m′

j, t
′|Ψ′〉 〈Ψ′|VOPE |Ψ〉 〈Ψ|p, j, l, s,mj, t〉 .

(4.65)

The final expressions for the matrix elements (VOPE)j,sl′l (p′, p) are given in Ref. [40],
and they are used in this thesis.

After all this work, the final version of the LS equation can be written down in the
partial wave basis and reads [41]

T j,sl′l (p′, p) = V j,s
l′l (p′, p) + 2

π

∑
l′′

∫ ∞

0
dk k2V j,s

l′l′′(p′, k) 2mN

p2 − k2 + iε
T j,sl′′l (k, p), (4.66)

where V j,s
l′l (p′, p) is the potential V in Eq. (4.60) in which VNN is decomposed into

partial waves.
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4.4. Nucleon-Nucleon Scattering

4.4.5 Phase Shifts from T -operator in Partial Wave Basis
In this section the form of the T -matrix will be discussed and related to the phase
shifts parameterizing the S-matrix. Since J ,L and S satisfy the operator relation
J = L + S, the corresponding quantum numbers obey [34]

|j − s| ≤ l ≤ j + s. (4.67)
It is convenient to think of T j,sl′l as a matrix in l′l-space for a given set of (j, s). A
few important cases will be identified.

Spin-singlet (s = 0) channels imply l = j due to Eq. (4.67). Therefore, since j is
conserved, so is l. In matrix form this can be expressed as

T j,s=0 =
l = j

( )? l′ = j (4.68)

where ? denotes a non-zero uncoupled matrix element.

For spin-triplet (s = 1) channels there are two cases, where � denotes a non-zero
coupled matrix element:

j > 0 : T j,s=1 =

l = j − 1 l = j l = j + 1 � 0 � l′ = j − 1
0 ? 0 l′ = j
� 0 � l′ = j + 1

(4.69)

j = 0 : T j=0,s=1 =
l = 0 l = 1( )
? 0 l′ = 0
0 ? l′ = 1

(4.70)

The non-zero elements are deduced from the constraint ∆l = l′ − l = 0, 2, which
comes from parity conservation.

For an uncoupled channel, i.e. where j = 0 or j > 0 and j = l = l′, the phase shifts
δj,sl are easily computed from the relation9 [41]

S = 1− 4imNpT (4.71)
and read

Sj,sl = ei2δ
j,s
l =⇒ δj,sl = 1

2i ln
(
1− 4imNpT

j,s
ll

)
. (4.72)

For a coupled channel the phase shifts can be parameterized by a 2 × 2 matrix,
describing the �-elements in Eq. (4.69). The Blatt-Biedenharn (BB) parametrization
of the phase shifts (δ−, δ+, εj) are

Sj,s=1 = U−1

e2iδj,s=1
− 0
0 e2iδj,s=1

+

U, (4.73)

9The exact relation between S and T is heavily convention dependent. See e.g. Ref. [3].
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4. Scattering Theory

where
U =

(
cos(εj) sin(εj)
− sin(εj) cos(εj)

)
. (4.74)

There is also the Stapp convention,
(
δ̄j,s− , δ̄j,s+ , ε̄j

)
, which are related to the BB phases

by [42]

δ̄j,s− + δ̄j,s+ = δj,s− + δj,s+ (4.75)

sin
(
δ̄j,s− − δ̄j,s+

)
= tan 2ε̄j

tan 2εj
(4.76)

sin
(
δj,s− − δj,s+

)
= sin 2ε̄j

sin 2εj
. (4.77)

In the coming chapter, the Stapp convention will be used, and the phase shifts will
be referred to by spectroscopic notation: (2s+1)lj.

4.4.6 Cross Sections from Phase Shifts
After quite a detour, this final section will take us back to the beginning of the
chapter by relating the phase shifts to cross sections. There are several different
conventions and definitions of scattering operators that capture various important
aspects. So far the S- and T - operators have been discussed.

So-called spin-observables are important in scattering experiments and are often
written in terms of the M -operator,

M ≡ 2π
ip

(S − id) , (4.78)

where p denotes the magnitude of the on-shell relative momentum, and S is the
S-operator. Spin observables are expressed as the following matrix elements of M ,

M s′s
m′

sms
(θ, φ) ≡ 〈p′, s′,m′

s|M |p, s,ms〉 , (4.79)

where M only depends on the angle, θ, between the incident (p) and outgoing (p′)
relative momentum since S, and hence M , conserve energy. The azimuthal angle φ
can be taken to be zero by considering the rotational symmetry of the problem along
the incident momentum p. For an illustration of the kinematics, see Fig. 4.3. In the
potentials, VNN, used in this thesis spin is also conserved (s′ = s) which implies that
M s

m′
sms

(θ, φ) ≡M s′=s,s
m′

sms
(θ, φ) are the relevant matrix elements.
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4.4. Nucleon-Nucleon Scattering

ẑp, (s,ms)

p′, (s,m′
s)

θ

Figure 4.3: Kinematics of NN scattering in relative coordinates. The incom-
ing state with relative momentum p and spin (s,ms) is transformed, via the
scattering interaction, to the outgoing state with relative momentum p′ and
spin (s,m′

s). θ is the angle between the ingoing and outgoing momenta and the
azimuthal polar angle is conventionally taken to be zero, φ = 0.

Following Ref. [42] the M -matrix elements can be related to the S-matrix elements,
and hence the phase shifts, via the relation

M s
m′

sms
(θ, φ) =

√
4π

2ip
∑
j,l,l′

il−l
′(2j + 1)

√
2l + 1 Y l′

ms−m′
s
(θ, φ) (4.80)

·
(

l′ s′ j
ms −m′

s m′
s −ms

)
·
(
l s j
0 ms −ms

)
(4.81)

· 〈l′|Sj,s − 1|l〉 . (4.82)

Y l
m(θ, φ) is the usual spherical harmonics and the matrices denotes the Wigner 3j-

symbols, see e.g. [34]. The sum over j, l, l′ includes j = 0, 1, ... and for each j the
allowed l’s are summed over. In practice, this sum is truncated at some maximum
j denoted jmax.

To compute the total np-scattering cross section, σtot
np , from the M -matrix elements

the so-called Scalay-amplitudes can be used [41]. If only the total cross section is
sought after, the optical theorem can offer a helping hand giving [41]

σtot
np = 2π

p
Im

[
a(θ = 0, φ = 0) + b(θ = 0, φ = 0)

]
, (4.83)

where

a(θ, φ) = 1
2
(
M1

1,1(θ, φ) +M1
0,0(θ, φ) +M1

1,−1(θ, φ)
)
, (4.84)

b(θ, φ) = 1
2
(
M1

1,1(θ, φ) +M0
0,0(θ, φ) +M1

1,−1(θ, φ)
)
. (4.85)

The magnitude of the relative momentum, p, of the ingoing state for np-scattering
can be related to the lab-energy of the incoming particle, Elab, with relativistic
kinematics as

p2 =
Elabm

2
p(Elab + 2mp)

(mp +mn)2 + 2mpElab
, (4.86)
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4. Scattering Theory

where mp is the proton mass and mn is the neutron mass, see Ref. [43].

This chapter has introduced the necessary scattering concepts to finally be able to
compute the total np scattering cross section, σtot

np . Given an interaction potential
VNN, which is a function of (yet to be determined) LECs, the total scattering cross
section can be computed for a given lab energy.
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Implementation and Results
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5
Neutron-Proton Phase Shifts in

MWPC

The main studies and results will be described in this Part II of the thesis. The
material that was developed and presented in Part I will be used in this chapter
to numerically solve the np scattering problem and obtain phase shifts in various
channels. A specific goal is to reproduce various results from Ref. [9], demonstrating
that the MWPC potential provides RG invariant predictions of phase shifts, in
contrast to the WPC potential.

The chapter starts by briefly describing the methods used to solve the LS equation
and continues with a numerical study of how the RG-dependence of phase shifts
changes in MWPC compared to WPC.

5.1 Numerical Solution of LS Equation
The LS equation in the partial wave basis (4.66) needs to be solved numerically
for the potentials considered in this thesis. A common approach is to use a matrix
inversion method, first proposed in Ref. [37]. The method utilizes that the integral
equation can be discretized using Gaussian quadrature, which is a method for ap-
proximating an integral by a finite sum. A python code implementing the solution
of the LS equation was kindly provided by A. Ekström and S. Miller [44].

With weights {wi}Np

i=1 and momenta {ki}Np

i=1, specified by the Gaussian quadrature
algorithm, the integral equation (4.66) can be approximated by

T j,sl′l (p′, p) = V j,s
l′l (p′, p) + 2

π

∑
l′′

Np∑
i=1

wik
2
i V

j,s
l′l′′(p′, ki)

2mN

p2 − k2
i + iε

T j,sl′′l (ki, p). (5.1)

The on-shell T -matrix is given by T j,sl′l (p, p), since the energy is conserved in the
scattering process. These matrix elements are obtained by solving Eq. (5.1) for
T j,sl′l (p, p), see Ref. [41]. The phase shifts are then obtained as described in Sec-
tion 4.4.5. Physical constants used in the computation are listed in Table 5.1.

The construction of the potential, V j,s
l′l (p′, p), in the partial wave basis is the biggest
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Figure 5.1: Phase shifts in various channels produced with Λ = 450 MeV, Np =
40 and α = (−0.11,−0.087, 0, 0, 0). The red crosses indicate experimental phase
shifts from Refs. [46], [47].

computational bottle-neck. Since the same code later will be used for purposes
requiring speed, this part was first re-written in C and imported to python with the
help of the python-package cython [45].

Table 5.1: Constants used in the calculation of phase shifts.

Constant symbol value unit
axial coupling gA 1.29 1
pion decay constant fπ 92.2 MeV
pion mass mπ 138.04 MeV
proton mass mp 938.27 MeV
neutron mass mn 939.56 MeV
np reduced mass mN 469.46 MeV
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5.2. Determining LECs from Phase Shifts

5.2 Determining LECs from Phase Shifts
In this section the algorithm for determining LECs from np scattering phase shift will
be described. The experiential1 phase shifts used are from the Granada database,
[46], [47].

The basis for the proposal by Ref. [9] to promote the LECs: 3P0, 3P2, and 3D2 to LO
is that the so-called “implicit assumption” made when doing the non-perturbative
treatment of the scattering problem may not hold. It is assumed that the LECs
included at LO are sufficient to also renormalize the non-perturbative amplitude.
This assumption does not hold in general, and is indeed found to be false for specific
partial waves. Ref. [9] finds that promotion of additional LECs to LO is necessary
to obtain RG invariant phase shifts in attractive partial waves.

The inclusion of counterterms in the 3D2 and 3P2 channels at LO may in fact not
be necessary, since Ref. [48] finds that a perturbative treatment of NN scattering
is applicable in these partial waves, meaning that the effect of resummation of the
amplitude in the LS equation is small. However, in the power-counting scheme
analyzed in this thesis these counterterms are still included at LO.

5.2.1 Phase shifts in MWPC and WPC
Computed phase shifts in selected partial waves for np scattering in WPC are shown
in Fig. 5.1. For notational simplicity the LECs are collected in a vector, α, according
to

α ≡
(
C1S0 , C3S1 , C3P0 , C3P2 , C3D2

)
, (5.2)

where the units for each LEC follow the convention in Ref. [26] and are(
104 GeV−2, 104 GeV−2, 104 GeV−4, 104 GeV−4, 104 GeV−6

)
. (5.3)

These units will be used for LECs throughout this thesis unless otherwise stated.
As pointed out by various papers, e.g. Ref. [9], it is the phase shifts in attractive2

channels that are problematic in WPC. Figs. 5.2 and 5.3 show phase shifts in
channels 1S0, 3S1, 3P0, 3P2 and 3D2 computed in WPC and MWPC for various
values of the cutoff, Λ. The LECs are fitted to reproduce the experimental phase
shifts at a certain lab energy as stated in the figure captions.

The procedure used to determine the LECs for a fixed value of Λ and generate the
results shown in Figs. 5.2 and 5.3 is the following. An error function is defined as

fe(CX) ≡ δexp
X (E)− δth

X (E,Λ, CX), (5.4)

where CX is the LEC in the given partial wave, X, and δexp
X and δth

X are the ex-
perimental and theoretical phase shifts, respectively. The LEC is determined by

1These phase shifts are not purely experimental, since they are in fact model-dependent and
extracted from observed cross sections through a partial wave analysis.

2Attractive channels are characterized by positive phase shifts.
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Figure 5.2: Phase shifts computed with various cutoffs in the range 300 ≤ Λ ≤
800 MeV, with steps of 20 MeV. Lighter (darker) color indicates lower (higher)
Λ. The red crosses show experimental phase shifts, taken from Refs. [46], [47].
The result illustrates how the Λ-dependence of the phase shifts becomes smaller
in MWPC, i.e. when extra LECs are included and fitted to experimental data.
C1S0 (C3S1) is fitted to reproduce the phase shift at 1 (50) MeV, and C3D2 in
MWPC is fitted to reproduce the phase shift at 100 MeV. Np = 40 is used in
the computations.
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Figure 5.3: Phase shifts computed with various cutoffs in the range 300 ≤ Λ ≤
800 MeV, with steps of 20 MeV. The red crosses show experimental phase shifts,
taken from Refs. [46], [47]. Lighter (darker) color indicates lower (higher) Λ.
The result illustrates how the Λ-dependence of the phase shifts becomes smaller
in MWPC, i.e. when extra LECa are included and fitted to experimental data.
Both C3P0 and C3P2 are fitted to reproduce the phase shift at Elab = 50 MeV.
Np = 40 is used in the computation.
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Table 5.2: LECs fitted to reproduce phase shifts at various cutoffs, Λ. The units
are as in Eq. (5.3).

LEC Λ = 350 MeV Λ = 450 MeV Λ = 550 MeV Λ = 650 MeV
C1S0 -0.126 -0.113 -0.105 -0.0990
C3S1 -0.113 -0.0746 -0.0411 -0.00297
C3P0 0.756 0.800 0.934 1.49
C3P2 -0.309 -0.247 -0.197 -0.157
C3D2 -1.80 -0.307 0.0389 0.139

solving
fe(CX(Λ)) = 0 (5.5)

numerically, where the tolerance 10−5 is used to determine convergence. Since the
theoretical phase shifts depend on Λ, the inferred LECs, CX(Λ), will also depend
on Λ. This dependence is sometimes referred to as the LECs are “running”. The
dependence on Λ for the various LECs is shown in Fig. 5.4, and in Fig. C.1 in
Appendix C for a wider range of cutoff values.

To quantify the RG dependence of predictions, the phase shifts at other energies
energies E ′ 6= E are computed for the various cutoffs using the infered LECs by
evaluating the function

δth
X (E ′,Λ, CX(Λ)). (5.6)

The Λ dependence of predicted 3P0 phase shifts for various lab energies is shown
in Fig. 5.5. This figure basically illustrates the same information as Figs. 5.2 and
5.3, but as a function of Λ instead of lab energy. The RG invariance is significantly
improved in MWPC compared to WPC. However, some known features arise when
the cutoff is varied, as studied in detail in Ref. [9]. At certain values of the cutoff
some LECs seem to diverge. One example is the C3P0 LEC at the cutoff Λ ∼ 700
MeV, which is seen in Fig. 5.4. This behavior makes it numerically difficult to find
the optimal LEC, and is known as a limit cycle [9].
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Figure 5.4: Cutoff dependence of fitted LECs. The units used are as in Eq. (5.3).
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Figure 5.5: Cutoff dependence of predicted 3P0 phase shifts for various lab-
energies, Elab. In MWPC, which includes a counterterm in this channel, C3P0
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other lab energies are then made using the theoretical model, Eq. (5.6). The
dashed red line shows the experimental phase shift, taken from Refs. [46], [47].
It is seen that the Λ dependence almost disappears in MWPC.
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The behavior of phase shifts in WPC and MWPC were analyzed in the previous
chapter by performing single-energy fits. Phase shifts are not experimental quanti-
ties, but are extracted in a partial wave analysis, see Refs. [46], [47], which makes it
harder to do an adequate error analysis. In this chapter Bayesian inference of LECs
will be done from experimental total np scattering cross sections. In this analysis
both theoretical and experimental errors will be taken into account, by constructing
a Bayesian statistical model.

First, the computation of cross sections will be reviewed and some numerical ap-
proximations in this computation will be justified. Then, a small introduction to
Bayesian data analysis is provided, and the statistical model used to connect experi-
mental and theoretical data will be constructed. The LECs, α, (see Eq. (5.2)) will be
inferred in the Bayesian framework by using Markov Chain Monte Carlo (MCMC)
sampling, and results in form of posterior pdfs for LECs, and posterior predictives
for the theoretical cross sections will be presented. Finally, the RG invariance of
predictions will be investigated by varying the cutoff, Λ.

6.1 Computing np Cross Sections
Computing cross sections is relatively easy given their relation with phase shifts
(Section 4.4.6), where the latter can be obtained numerically using the method
described in Section 5.1.

There are two important hyperparameters that need to be specified when doing the
numerical cross section computations: Np, the number of momentum-grid points
when solving the LS equation (5.1) and jmax, the maximum j included in the sum
(4.82). To achieve fast computation speeds, both jmax and Np are chosen as small as
possible, while still obtaining sufficiently accurate results. The convergence in these
parameters is studied by computing the relative error between the truncated and
the fully converged calculation. It is found that a fully converged result is obtained
by using jmax = 15 and Np = 100. The outcome of this analysis is shown in Fig. 6.1.
Based on these results, the hyperparameters chosen in the computations of cross
sections are shown in Table 6.1.
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Figure 6.1: These figures show the relative error in the computation of cross
sections at various lab energies, Elab, when the hyperparameters are varied.
The cutoff Λ = 450 MeV is used.

Table 6.1: Hyperparameters used in computations of total cross sections. With
this choice of hyperparameters, the relative error is smaller than 10−2.

Parameter Value
jmax 4
Np 40
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6.2 Bayesian Data Analysis
The inference of LECs in Chapter 5 was done without taking neither experimental-
nor model errors into account. This was intentional, since the purpose was to demon-
strate how the phase shifts are affected by the inclusion of extra LECs in MWPC.
However, if one wants to infer the LECs to eventually be able to make predictions
with proper error bars, one needs to more carefully consider various sources of uncer-
tainty. Since both the EFT model and experimental data come with uncertainties,
so do the inferred LECs. To analyze this, and also be able to take additional in-
formation into account, the Bayesian framework of statistics is very useful. The
coming sections are a short interlude explaining the basics of Bayesian statistics.

6.2.1 Basics of Bayesian Statistics
Frequentist and Bayesian are two common approaches to statistics. In the frequen-
tist approach to statistics, probabilities are bases on frequencies of outcomes whereas
in the Bayesian approach a certain degree-of-belief (DoB) is assigned given the in-
formation at hand. One important and fundamental difference in these approaches
is the view of model parameters. In the Bayesian framework, parameters are consid-
ered random variables, which have some probability density function (pdf) reflecting
the knowledge about them, whereas in the frequentist approach the parameters are
thought of as numbers with a fixed true value.

Bayes’ theorem relates various pdfs involving the parameters1, θ, observed data, D,
and prior information, I, and reads

pr(θ|D, I) = pr(D|θ, I) · pr(θ|I)
pr(D|I) . (6.1)

pr(θ|D, I) is called the posterior pdf, pr(θ|I) the prior, pr(D|θ, I) the likelihood
and pr(D|I) the model evidence [49]. Since the integral of a pdf over the whole
parameter range is one, the parameter-independent model evidence does not need
to be computed when doing parameter estimation. Hence, Bayes’ theorem is often
used in the form

pr(θ|D, I) ∝ pr(D|θ, I) · pr(θ|I), (6.2)
where the likelihood and prior just needs to be determined up to a multiplicative
normalization constant.

The prior, pr(θ|I), reflects the knowledge of the parameters, θ, given the information
I—before taking any data into account. For example, in χEFT, the prior will
incorporate information about the expected size of the LECs, given by dimensional
analysis [26]. There is however an element of subjectivity in choosing the prior, even
though there are several general methods that can be applied [50]. The role of the
prior is usually one of the arguments used against the Bayesian approach, but the

1Note that in this section (Section 6.2) the notation θ is used for a general set of parameters in a
model. In later sections where the specific parameters are LECs the notation, α, will be used.
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argument can also be turned around. For example, a maximum likelihood estimation
is from the Bayesian point of view implicitly assuming a uniform prior, and the
Bayesian framework can actually modify this assumption to make the inference
more informative. To put it more concretely; just as it is important to take into
account information you do have, it is important to not implicitly take into account
information that you do not have, and this is more naturally handled in the Bayesian
framework2 [49].

6.2.2 Posterior Predictive and Error Propagation
In the Bayesian framework, predictions can be made by marginalization over the
model parameters when the posterior pdf is known. The posterior predictive pdf
for y, given some experimental data, D = {yiexp}i, and prior information, I, can be
expressed as

pr(y|D, I) =
∫
dθ pr(y|θ, D, I) · pr(θ|D, I), (6.3)

where pr(y|θ, D, I) represents a statistical model that relates the theoretical model
with reality and pr(θ|D, I) is the posterior pdf for θ. For a simple theoretical
model y = yth(θ) + ∆yth, where ∆yth is a random variable with some known pdf,
pr(y|θ, D, I) can be computed. The posterior predictive pr(y|D, I) describes the
DoB for the true value of y, given the experimental data, prior information, and
theoretical model. Making predictions using marginalization over the model param-
eters properly propagates the errors in model parameters to an induced error in the
model prediction, y [49].

The integral over θ in Eq. (6.3) can be approximated with samples from the posterior
as ∫

dθ pr(y|θ, D, I) · pr(θ|D, I) ≈ 1
N

N∑
i=1

pr(y|θi, D, I), (6.4)

where {θi}Ni=1 are usually obtained using Markov Chain Monte Carlo methods [49].

6.3 Likelihood and Prior in EFT
The Bayesian framework will now be applied to infer LECs, α, in the MWPC po-
tential, VNN, (3.73). The experimental data, yexp, with corresponding errors, σexp,
consists of total np cross sections, at 10 lab energies Elab. This data is shown in
Table 6.2. The output from the theoretical model3, yth(α), is a vector of length 10,
containing cross sections computed with the LO MWPC χEFT model with LECs
α. Using this model and data, Bayes’ theorem can be used to give an expression
for the posterior pdf for the sought-after LECs. The likelihood and prior are ob-
tained by constructing a statistical model using the prior knowledge and appropriate
assumptions.

2The use of a so-called symmetric prior in straight line fitting illustrates this point very well, see
Ref [50].

3This will be the only model considered in this chapter, and it will often be referred to as “the
model”.
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Let us start with linking the EFT description of an observable with reality. As
described in Chapter 3, observables expressed in an EFT model are expected to
converge according to the expansion

yi = (yref)i
∞∑
ν=0

cν,i

(
Qi

Λχ

)ν
, (6.5)

where ν is the chiral order, cν,i are observable coefficients of order one, Λχ is the
breakdown scale for the EFT and

Qi = max{mπ, pi} (6.6)

is the maximum of the pion mass and the magnitude of the incoming relative mo-
mentum corresponding to the lab energy (Elab)i [51]. y is the vector of true model
values for the total cross section, and yref is a reference scale which is assumed to be
equal to yexp in this analysis. Since a LO (ν = 0) theoretical model is considered,
the true model value separates into

yi =
(
yth(α)

)
i + (yref)i

∞∑
ν=2

cν,i

(
Qi

Λχ

)ν
≡
(
yth(α)

)
i + (∆yth)i (6.7)

where the theoretical/model error is defined as the second term. For convenience,
define Q̂i ≡ Qi/Λχ.

Following Ref. [51], the observable coefficients cν,i are assumed to be normally
distributed random variables, cν,i ∼ N (0, c̄2)4, where c̄ = 1 in this analysis. The
distribution for the theoretical error can be computed to be

(∆yth)i ∼ N
0, ((yref)i)2 c̄2Q̂4

i

1− Q̂2
i

 , (6.8)

since it is a geometric series of i.i.d. normally distributed random variables. The
theoretical covariance matrix, Σth, is modeled to be diagonal, i.e the errors are
assumed to be uncorrelated

(Σth)ij = ((yref)i)2 c̄2Q̂4
i

1− Q̂2
i

δij ≡
(
(σth)i

)2
δij. (6.9)

Taking both experimental and theoretical errors into account, the statistical model
that connects the experimental data yexp and theoretical model, yth, is

yexp = yth + ∆yth + ∆yexp. (6.10)

The experimental errors are assumed to be uncorrelated and normally distributed,

∆yexp ∼ N (0,Σexp), (6.11)

4A random variable, Y , which is normally distributed with mean µ and variance σ2 is denoted by
Y ∼ N (µ, σ2). The corresponding multivariable expression is Y ∼ N (µ,Σ).
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Table 6.2: Experimental data used in the inference. The data consists of total np
cross sections, yexp, at various lab energies, Elab, with corresponding standard
deviations, σexp. All these quantities are vectors of length 10.

Elab [MeV] yexp [mb] σexp [mb] Reference
0.20 9580.00 140.00 [52]
0.60 5725.00 85.00 [52]
1.00 4259.02 7.73 [53]
5.00 1621.25 13.42 [53]

10.00 949.16 21.22 [53]
24.62 358.58 49.54 [53]
51.00 163.10 1.35 [54]
99.00 75.25 0.37 [54]

150.00 51.02 0.30 [54]
200.00 42.50 0.90 [46]

which means that the covaraiance matrix, Σexp, is also assumed to be diagonal,
(
Σexp

)
ij

=
(
(σexp)i

)2
δij. (6.12)

Errors due to the choice of method, numerical implementation and other possible
errors are considered to be small and will not be taken into account in this analysis.

With the statistical model connecting experimental data and theoretical predictions
in place, the likelihood can be constructed and reads [51]

pr(yexp|α,Σexp,Σth) ∝ exp
(
−1

2rT ·
(
Σexp + Σth

)−1
· r
)
, (6.13)

where the so-called residuals are

r ≡ yexp − yth(α). (6.14)

The prior for the LECs, pr(α|I), will incorporate the information that LECs are
expected to be of a natural size, ∼ 1, with respect to some reference scale found by
dimensional analysis [26]. This condition is often referred to as naturalness. The
natural scales for the various LECs are given by

C1S0 , C3S1 ∼ 103 GeV−2, (6.15)

C3P0 , C3P2 ∼ 6 · 103
(

500
Λ

)2

GeV−4, (6.16)

C3D2 ∼ 2.5 · 104
(

500
Λ

)4

GeV−6, (6.17)
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Table 6.3: Summary of notation used in the Bayesian model.

yexp experimental cross sections at various lab energies
σexp experimental errors at various lab energies
σth theoretical errors at various lab energies
yth theoretical cross sections at various lab energies
c̄ standard deviation of cν,i’s in EFT expansion of observables
ā standard deviation in Gaussian priors for LECs
α vector of LECs as in Eq. (5.2)
β vector of natural scales see Eq. (6.18)
Q̂i EFT expansion parameter

with Λ given in MeV [26]. Let β denote the vector of natural scales in Eq. (6.17) in
the units in Eq. (5.3) i.e.

β =
0.1, 0.1, 0.6 ·

(
500
Λ

)2

, 0.6 ·
(

500
Λ

)2

, 2.5 ·
(

500
Λ

)4
 . (6.18)

The prior is chosen as a normal distribution with standard deviation ā = 4 with
respect to the natural scale for each LEC, which explicitly reads

pr(α|I) ∝ exp
(
− α2

2(āβ)2

)
. (6.19)

Finally, using Bayes’ theorem, the posterior pdf for α reads

pr(α|yexp,Σexp,Σth, I) ∝ pr(yexp|α,Σexp,Σth) · pr(α|I). (6.20)

When new data and/or information is available, one can take the posterior as a
new prior, and use Bayes’ theorem with a new likelihood and obtain an updated
posterior. This is sometimes called a Bayesian update. Table 6.3 summarizes the
notation introduced in this section.

6.4 Sampling the Posterior with Markov Chain
Monte Carlo

Due to the number of LECs and the relatively large computational time that is
needed to evaluate the model, yth(α), it is unfeasible to compute the posterior on a
sufficiently dense grid of LEC values. Instead, Markov Chain Monte Carlo (MCMC)
is a numerical approach that can be used to sample pdfs without the need for a
closed form expression, or brute-force evaluation on a grid [55]. MCMC sampling
algorithms will not be described in detail here, for details the reader is referred to
e.g. [55].

69



6. Bayesian Inference of LECs

Table 6.4: Parameters used in the emcee sampling of the posterior pdf for the
LECs α.

Parameter Value

number of walkers 50
burn-in steps 2000
number of samples, N 18000
c̄ 1
ā 4
breakdown scale Λχ 600 MeV

The sampling of the posterior given in Eq. (6.20) is done in python with the help
of the package emcee [55], which is an open-source implementation of an affine-
invariant ensemble sampler for MCMC. The sampler consists of several walkers that
“walk around” in parameter space, i.e. update their positions and try to find regions
of high probability density in the posterior. The walkers are randomly initialized at
some start positions in parameter space. Here, the starting positions for the walkers
are chosen from a normal distribution with standard deviation 0.5β, where β denotes
the natural scales of the LECs, see Eq. (6.17). It takes quite a few steps before the
walkers have stabilized after the initialization, why some of the first samples are
thrown away. This is sometimes called a burn-in period.

The emcee sampling is parallelized using multiprocessing.Pool in the python
standard library, which offers almost an order of magnitude speedup. The param-
eters used in the emcee sampling is shown in Table 6.4 as well as Table 6.1. The
result is a list of samples {αi}Ni=1, that represents samples taken from the pdf.

6.5 Posterior Sampling and Predictions
The posterior pdf for α, shown in Eq. (6.20), is sampled for some different values
the cutoff, Λ ∈ {350, 450, 550, 650, 750} MeV. These cutoffs are chosen with consid-
eration of the qualitative behavior of the LECs shown in Fig. 5.4, to avoid regions
where the LECs magnitude are not natural, or even diverge.

6.5.1 Posterior pdf for LECs
This section will focus on results for Λ = 450 MeV, and results for other cutoffs
are provided in Appendix C. The posterior pdf for α from the MCMC sampling is
visualized in Fig. 6.2. The results obtained here are consistent with the results in
Refs. [9], [56]. Fig. 6.3 shows histograms oven the marginal pdf for each LEC with
some more clarity than the so-called corner plot in Fig. 6.2.

The posterior clearly indicates that the data does not constrain the values of the
LECs that much, and allows multiple modes of alternative fits. This behavior can
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depend on a number of reasons that will be discussed further in the coming sections.
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Figure 6.2: Corner plot [57] of the joint posterior pdf for the LECs. The units
are as in Eq. (5.3) and Λ = 450 MeV. The blue square indicates the LEC values
fitted to the phase shifts in Chapter 5, as also shown in Table 5.2. The dashed
black lines indicate the median and 68 % DoB regions for each individual LEC,
even though they are not that informative due to a high degree of multi-modality.
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Figure 6.3: The marginal posterior pdfs for each LEC is shown together with
the prior and the point estimate from the phase shifts done in Chapter 5, shown
in Table 5.2. The units are as in Eq. (5.3) and the cutoff is Λ = 450 MeV.

6.5.2 Predicted Cross Sections
Using the obtained posterior pdf, pr(α|yexp,Σexp,Σth, I), in the from of N samples
{αi}Ni=1, shown in the previous section, a posterior predictive is constructed for the
cross section using Eq. (6.4). Fig. 6.4 shows the pdf

pr(y|yexp,Σexp,Σth, I) ≈ 1
N

N∑
i=1

pr(y|αi, I), (6.21)

where N is the number of samples and

pr(y|α, I) ∝ exp
(
−1

2
(
y − yth(α)

)T · Σ−1
th ·

(
y − yth(α)

))
. (6.22)

The Λ dependence of the posterior predictive cross sections is shown in Fig. 6.5, for
a set of lab energies not included in the inference.

Even though there are a lot of different values of the LECs that are consistent
with the data, as shown in Fig. 6.2, the validity of the inference is indicated by
the fact that the posterior predictive agrees quite well with the experimental data.
The posterior predictive serves as sanity check that the method used has produced
results that are consistent with the data.
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Figure 6.4: Posterior predictive for cross sections with Λ = 450 MeV. The data
is the same in both panels but the left (right) panel has a linear (logarithmic)
energy scale. Fit data are experimental cross sections that were used in the
inference, and test data are additional experimental values, not included in the
inference. The experimental errors are shown with error bars, but are in almost
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from phase shift fits are shown in Table 5.2.
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Figure 6.5: The posterior predictive for cross sections at various lab energies.
For each lab energy the posterior predictive is evaluated for the different Λ ∈
{350, 450, 550, 650, 750} MeV. The experimental value of the cross section is
shown for each lab energy, with accompanying standard deviation. For some
lab energies the standard deviation of the experimental value is so small that it
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6.6 Discussion
The posterior pdf in Figs. 6.2 and 6.3 clearly show that the LECs are not strongly
constrained by the data used. We note, however, that the point estimates for the
LECs obtained from the phase-shifts fits coincide rather well with regions that have
large probability density. Furthermore, the posterior predictive for the total cross
section shown in Fig. 6.4 agrees quite well with both the experimental data used in
the inference as well as additional experimental data points. This result gives some
validation to the hypothesis that the total cross section data is consistent with a
large variety of LECs. When taking the model uncertainty into account we note
that the uncertainty is rather large for a LO prediction and that it increases with
increasing lab energy. Comparing the posterior predictive for the cross section to
preliminary results in Ref. [58] shows that LO MWPC performs better than LO
WPC.

The posterior pdf in Figs. 6.2 and 6.3 do not only cover a large range of LEC values,
but also reveals distinct features such as multiple distinguished peaks. Fig. 6.6
displays the same pdf as Fig. 6.2 but four peaks are marked with colored ellipses.
The red and yellow ellipses mark the peaks which show the correlation between C1S0

and C3S1 . It is clear that the two peaks in C3S1 correspond to distinct features in
C1S0 , namely the yellow peak is narrow, while the red peak is wider.

In general more/less attraction in one channel can cancel less/more attraction in
another one, and a correlation between LECs are therefore expected. In Fig. 6.2 we
see that C3P0 , C3P2 and C3D2 are all poorly constrained—indicating that the data
does not contain much information about them.

Studying the correlation between C3S1 and C3P0 in figure Fig. 6.6, the green and
magenta ellipses mark two regions of interest. Analogously with the correlation
between C1S0 and C3S1 , the green and magenta peaks have distinct features. The
magenta peak goes sharply to zero when C3P0 goes to zero, while the green peak
has a bimodal behavior, and has a peak around C3P0 ≈ −1. This peak can more
clearly be seen in Fig. 6.3. It is clear that the red- and green peaks have a strong
correlation and that the yellow- and magenta peaks also have a strong correlation.
The correlations are revealed by the correlations with C3S1 .

Even though the data used in the inference can not distinguish enough between
which of these peaks correspond to the correct value (if any), there are some ways
this can be analyzed further without costly scattering calculations. One important
piece of information one can include is which channels contain physical bound states,
i.e. have some negative eigenvalue of the Hamiltonian. It is known that the only
bound nucleon-nucleon system is the deuteron in the 3S1 – 3D1 channel, see Ref. [59].
Some of the peaks appearing in the posterior might arise due to unphysical bound
states are appearing for certain too attractive values of the LECs—that however are
consistent with the data used in the inference.
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Figure 6.6: Same pdf as Fig. 6.2 with some ellipses marking certain peaks.
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Figure 6.7: This figure shows the values of LECs that produce a bound state in
its respective channel, for varying cutoff Λ. In the blue shaded area the channel
contains at least one bound state, and in the region above the blue line no bound
states exists. The units of the LECs are as in Eq. (5.3).

The existence of bound states in different channels can be checked by setting up
the Hamiltonian in the given channel and computing its eigenvalues for varying
LECs. Doing this for the channels containing LECs gives two regions, one in which
bound states exists, and one in which no bound states exist. The result of this small
analysis is shown in figure Fig. 6.7, where regions where there exist bound states
are shown.

By doing a Bayesian update, including the information which channels contain
bound states, a step-function likelihood is multiplied to the posterior in Fig. 6.2,
effectively discarding regions of samples. The posterior pdf after this update is
shown in figure Fig. 6.8. It is seen that this has an effect on the posterior, mainly
taking away samples in the red- and green ellipse that corresponds to unphysical
bound states. There is however not that big of an improvement since the high
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degree of bimodality is still present. Although, it is interesting that it is the red-
and green region in which samples are unphysical, since they correlate strongly with
each other. This could possibly indicate that those whole regions are unphysical
which are not accurately discarded by the data used in the inference. It can also be
seen that the peak in C3P0 around −1, discussed earlier, is correlated with the green
region, and is just above the limit for producing a bound state in C3P0 .

Although one should not make to strong conclusions of the facts emphasized above, it
is at least promising that the problematic regions are tightly linked, which indicates
that the physically relevant regions are the yellow and magenta peaks. Preliminary
results from Ref. [58] regarding LO WPC do not quite support this hypothesis
though. However, it is not entirely clear that it is an adequate comparison given that
the power counting is different, hence it is actually hard to draw any conclusions
from the comparison. The easiest way to straighten out these question marks is
including more data in the inference. Additional data that would be of interest to
include is differential cross sections, which might contain more data to constrain the
LECs with l > 0.

The cutoff dependence of posterior predictive for cross sections for various lab en-
ergies, shown in Fig. 6.5, is looking promising. Since only a LO model is used here,
the error bands are quite wide, which is expected. They are anyhow completely
consistent with the experimental data. It is seen that the Λ dependence seems to
be larger for Elab = 250 MeV, which is also expected, see Ref. [26].
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Figure 6.8: The same pdf as in Fig. 6.6 is shown after the Bayesian update.
The main difference compared to Fig. 6.6 is that samples in the red- and green
ellipse for negative values have disappeared.
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7
Conclusions and Outlook

This chapter contains a brief summary of this work and provides some conclusions
connected to the questions raised in the introduction. Finally, a number of suggested
improvements and further directions of research are outlined.

7.1 Summary and Conclusions
The thesis has gone from discussing QFT, QCD, and gauge theories in Chapter 2 to
a quantitative study of model predictions of observables in Chapter 6. This journey
has covered most parts of the process in going from a theory, to experiments, and
back again.

The theory in Chapters 2 and 3 gave quite a detailed introduction to various relevant
concepts, important to understanding how one can construct a leading order χEFT
Lagrangian. It was discussed how various approximations were made to finally give
expressions for non-relativistic quantum mechanical NN potentials. The end result
was the LO NN potentials shown in Eq. (3.72) and Eq. (3.73). Chapter 4 gave a brief
introduction to non-relativistic scattering theory in quantum mechanics, important
for solving the NN scattering problem.

In Chapter 5, np scattering phase shifts produced with the two potentials from
Chapter 3 were studied. The LS equation was solved numerically for different cutoffs,
Λ, and it was concluded that the Λ dependence is almost completely removed in the
partial waves where counterterms are promoted to LO in MWPC. This showed that
MWPC performs better than WPC at predicting RG-invariant np scattering phase
shifts in the energy- and cutoff range studied.

In Chapter 6 Bayesian inference of LECs in the LO MWPC potential in Eq. (3.73)
was performed. The data used was 10 total np scattering cross sections at lab
energies from 0.2 to 200 MeV. Naturalness of LECs was encoded in the prior and EFT
truncation errors were considered in the data likelihood. The resulting posterior pdf
for the LECs was sampled using MCMC methods and it was found that these model
parameters are note particularly well constrained using the considered calibration
data. However, the posterior predictive pdf for the cross sections was found to
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agree quite well with experimental data—in fact much better than with a LO WPC
potential. Furthermore, the Λ dependence of the posterior predictive pdf was found
to be small in the cutoff range studied. The predictions are essentially RG invariant
if one takes into account the allowed uncertainty due to the model just being a LO
approximation.

7.2 Suggested Improvements and Outlook
Here we list possible improvements and directions of further studies.

• The most obvious improvement, discussed a few times already, would be the
inclusion of additional data in the inference. In this study the data consisted of
ten total np cross sections at lab energies ranging from 0.2 – 200 MeV, as shown
in Table 6.2. The inclusion of additional observables, such as differential cross
sections, might help to better constrain the LECs in partial waves with l > 0.
Other data such as the binding energy of the deuteron and spin-polarized
scattering observables could also be of interest to include.

• The statistical error model, yexp = yth + ∆yth + ∆yexp, used in the Bayesian
inference relies on some strong assumptions and simplifications. Method errors
due to truncation of the model space as well as numerical errors were not
considered, but could be included in a future analysis. The theoretical errors
were assumed to be uncorrelated, which certainly is an assumption that should
be relaxed in further studies. The model also makes other assumptions, e.g.
yref = yexp and c̄ = 1 which should be investigated further. Better error
models for χEFT are found in several existing works, e.g. [51], [58], [60], [61].

• The optimization algorithm used in the determination of LECs from np scat-
tering phase shift in Chapter 5 could be improved to be able to study a wider
range of cutoffs with higher accuracy. The optimization of LECs was done by
fitting the theoretical phase shift to reproduce the “experimental” phase shift
at one specific (rather arbitrary) lab energy, usually 50 MeV. This procedure
could be improved to a more sophisticated method that includes less arbitrari-
ness. One can for example use phase shifts at a wide range of energies with
some proper EFT weight that incorporates the expected model error [62].

• It would be interesting to use Bayesian inference to compare WPC and MPWC
at various orders in the χEFT expansion. By doing this, the discrepancies
between WPC and MWPC at different orders in the EFT could be quantified
and the validity of the EFT expansion could be investigated.

• Apart from the assumptions already mentioned here, there are a lot of as-
sumptions made on the way. Many of these assumptions and approximations
are standard in the literature, and empirically produce quite small errors. It
would anyway be valuable to try to quantify the errors and approximations,
e.g. from relativistic corrections and the approximations in the Bethe-Salpeter
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equation, more thoroughly.
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A
Conventions

The conventions used in Part I of this thesis will largely follow those of the the book
by Michel E. Peskin and Daniel V. Schröder Ref. [11].

A.1 General
Greek indices µ, ν, ρ, σ, ... is often used as Lorentz indices and take values 0,...,3.
Latin indices i, j, k, l, ... are used for general purpose. Latin indices a, b, c, d, ... are
mostly used as indices enumerating elements in Lie algebras.

Vectors in euclidean three-dimensional space are denoted by a bold font, e.g. k.
Unit vectors in some direction p are denoted by p̂ = p/|p|. Where no confusion is
possible, the modulus of a vector will written with the same name but not bold e.g.
k = |k|.

If nothing else is stated, units where c = ~ = 1 are used.

A.2 Relativity
The mostly minus metric is used

gµν = gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (A.1)

The convention for writing Lorentz vectors is

xµ = (x0,x), gµνx
ν = (x0,−x), (A.2)

which, under Lorentz transformations, transform according to

x′
ν = Λ µ

ν xµ. (A.3)

For a massive particle with pµ = (p0,p) ≡ (E,p), the mass-shell relation reads

p2 = E2 − p2 = m2.
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A. Conventions

The derivative is often abbreviated according to
∂

∂xµ
= ∂µ = (∂0,∇) .

The quantum mechanical momentum operator has the form
pµ = i∂µ,

which gives the plane wave e−ikx momentum kµ.

A.2.1 Gamma Matrices
The clifford algebra for the gamma matrices read

{γµ, γν} = 2gµν id, (A.4)
where id is the identity in Dirac space. The representation used is the Weyl or chiral
representation of the gamma matrices which in 2× 2 block form reads

γ0 =
(

0 1
1 0

)
, γi =

(
0 σi

−σi 0

)
, (A.5)

where the Pauli matrices σi take the form

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.6)

The matrix γ5 ≡ iγ0γ1γ2γ3 satisfies the properties(
γ5
)†

= γ5, (A.7)(
γ5
)2

= id, (A.8)
{γµ, γ5} = 0. (A.9)

In the Weyl representation γ5 reads, in 2× 2 block form,

γ5 =
(
−1 0
0 1

)
. (A.10)

A.3 Fourier Transforms

The plane wave e−ikx has momentum kµ, and the Fourier transforms look like

f(x) =
∫ d4k

(2π)4 e
−ikxf(k) (A.11)

f(k) =
∫
d4x e+ikxf(x) (A.12)

which gives the delta function∫
d4x eikx = (2π)4δ(4)(k). (A.13)

There is no special notation used for the Fourier transform of a function, but it
should be clear from the context where p, q and k are almost exclusively used to
denote momentum and x, and r denotes position.
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A.4. Quantum Field Theory

A.4 Quantum Field Theory
In our conventions the free scalar field Lagrangian reads

LScalar = 1
2(∂µφ)2 − 1

2m
2φ2,

which gives the Feynman propagator in momentum space

Dφ(p) = i

p2 −m2 + iε

The Lagrangian for the free Dirac field ψ looks like

LDirac = ψ̄(iγµ∂µ −m)ψ, (A.14)

where the Feynman slash notation /∂ ≡ γµ∂µ is often used. The Dirac adjoint is
defined as ψ̄ ≡ ψ†γ0. The Feynman propagator for the Dirac field in momentum
space reads

Dψ(p) =
i(/p+m)

p2 −m2 + iε
.
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B
Proof of Goldstone’s Theorem

In this appendix the proof of Goldstone’s, theorem stated in Section 2.5, will be
given.

B.1 Proof of Goldstone’s Theorem at Classical
Level

We will first consider the proof of Goldstoneťs theorem for a classical scalar field
theory. The classical proof can then be extended to a quantum theory, which includes
quantum corrections, by using the effective action formalism, see Ref. [11].

Consider a classical theory of N scalar fields, φi(x), (i = 1, . . . , N), with Lagrangian

L(φ) = Lkin(φ)− V (φ). (B.1)

Assume that φi0 minimizes the potential, V , so that

∂

∂φi
V
∣∣∣∣
φi(x)=φi

0

= 0. (B.2)

By expanding V around φi0 one can identify the mass matrix, m2
ij,

V (φ) = V (φ0) + 1
2(φ− φ0)i(φ− φ0)j

∂2

∂φi∂φj
V
∣∣∣∣
φi

0

+ ... (B.3)

which is
m2
ij = ∂2

∂φi∂φj
V

∣∣∣∣
φi

0

. (B.4)

Since the partial derivatives commute (for reasonable potentials) the mass matrix
is symmetric, whose eigenvalues are the masses of the fields. We also know that the
eigenvalues cannot be negative, since we assume that φi0 is a minimum.

Since Lkin vanish for constant fields, V (φ) must be invariant if L is invariant. Con-
sider constant fields φi and take some group element

g(α) = exp(iαaT aij) ∈ G, (B.5)
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B. Proof of Goldstone’s Theorem

where αa are parameters and T a are the generators of G. Invariance of the potential
under the group G is the condition V (gφ) = V (φ), for all φ and g. This means in
particular that if we differentiate both sides w.r.t. αa, we get

d

dαa
V (g(α)φ) = 0 =⇒ ∂V

∂φi
iT aijφ

j = 0 (B.6)

Now, take a derivative of the above expression with respect to φj

∂2V

∂φj∂φi
T aijφ

i + ∂V

∂φi
T aij = 0. (B.7)

Evaluating this at φi = φi0 and using that φi0 is a minimum gives

∂2V

∂φj∂φi
T aijφ

i
0 = 0⇐⇒ m2

ijT
a
ijφ

j
0 = 0 (B.8)

Now, for the broken generators not leaving the vacuum invariant, i.e. {T̂ a | T̂ aijφ
j
0 6=

0}, there must exist a zero eigenvalue in m2
ij since it has to annihilate a non-zero

vector T aijφj.
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C
Extra Figures

C.1 Neutron-Proton Phase Shifts in MWPC
Fig. C.1 shows the cutoff dependence of LECs, which is the same as Fig. 5.4 but for
a larger variety of cutoffs.
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C. Extra Figures

Figure C.1: This figure shows the cutoff dependence of LECs. The regions where
no dots appear, the algorithm for finding the optimal LEC does not converge.

C.2 Bayesian Inference of LECs
Some extra figures that show the posterior pdf for the LECs are shown here. These
figures are obtained in exactly the same was as Fig. 6.2, but for varying cutoff.
Figs. C.2, C.3 and C.4 show the posterior pdf for Λ = 350 MeV, Λ = 550 MeV and
Λ = 650 MeV, respectively.
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C.2. Bayesian Inference of LECs
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Figure C.2: Corner plot [57] of the joint posterior pdf for the LECs. The units
are as in Eq. (5.3) and Λ = 350 MeV. The blue square indicates the LEC values
fitted to the phase shifts in Chapter 5, as also shown in Table 5.2. The dashed
black lines indicate the median and 68 % DoB regions for each individual LEC,
even though they are not that informative due to a high degree of multi-modality.
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Figure C.3: Same pdf as in Fig. C.2 but with the cutoff Λ = 550 MeV.
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C.2. Bayesian Inference of LECs
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Figure C.4: Same pdf as in Fig. C.2 but with the cutoff Λ = 650 MeV.
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