
Improving landfill monitoring programs
with the aid of geoelectrical - imaging techniques
and geographical information systems
Master’s Thesis in the Master Degree Programme, Civil Engineering

KEVIN HINE

Department of Civil and Environmental Engineering
Division of GeoEngineering
Engineering Geology Research Group
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2005
Master’s Thesis 2005:22

Optimization of Fast Factorized
Backprojection execution performance
Master of Science Thesis in Computer Science: Algorithms,
Languages and Logic

Christian Lidberg and Johan Olin

Department of Computer Science and Engineering
Chalmers University of Technology
Gothenburg, Sweden, 18/06/2012

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial pur-
pose make it accessible on the Internet. The Author warrants that he/she is the author
to the Work, and warrants that the Work does not contain text, pictures or other mate-
rial that violates copyright law.
The Author shall, when transferring the rights of the Work to a third party (for example
a publisher or a company), acknowledge the third party about this agreement. If the
Author has signed a copyright agreement with a third party regarding the Work, the
Author warrants hereby that he/she has obtained any necessary permission from this
third party to let Chalmers University of Technology and University of Gothenburg store
the Work electronically and make it accessible on the Internet.

Optimization of Fast Factorized Backprojection execution performance

CHRISTIAN LIDBERG
JOHAN OLIN

c©CHRISTIAN LIDBERG, June 18, 2012
c©JOHAN OLIN, June 18, 2012

Examiner: SALLY MCKEE

Chalmers University of Technology
Department of Computer Science & Engineering
SE-412 96 Göteborg
Sweden
Telephone +46 (0)31-772 1000

SAR raw data and the backprojected image, used with courtesy of FOI

Deparment of Computer Science & Engineering
Göteborg, Sweden, June 18, 2012

Abstract

Real-time signal processing often requires high computational performance from the sig-
nal processing system. In order to increase performance computer systems have moved
from the traditional one-core CPU to multi-core systems. This requires, however, par-
allel software to use all the available performance. It is therefore not only important to
have efficient algorithms but also efficient parallel implementations of them.

The signal processing for a low-frequency synthetic aperture radar system, used to create
high-resolution radar maps of the ground, is studied in this master’s thesis. The datasets
used to create the maps are often very large and therefore the computational burden is
high. The efficient Fast factorized backprojection algorithm is used to create the images
but still the images cannot be produced in real-time on a single core system.

This thesis describes how the Fast factorized backprojection is optimized and paral-
lelized. OpenMP and vector instructions are used to reach real-time performance on a
multi-core platform, for small and medium sized images.

Acknowledgements

We would like to thank our supervisors at Saab AB, Anders Åhlander, Jonas Lindgren
and Hoai Hoang Bengtsson, and our supervisor at Chalmers University of Technology,
Sally McKee, for their help and feedback throughout the project.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Scope of work . 2

2 Radar 3
2.1 Radar basics . 3

2.1.1 Range determination . 3
2.1.2 Sampling . 4
2.1.3 Frequency . 4
2.1.4 Resolution and pulse compression 5

2.2 SAR . 6
2.2.1 Geometry . 7

3 SAR signal processing 10
3.1 Radar echo model . 10
3.2 Image creation in the time domain . 12

3.2.1 Global backprojection . 12
3.2.2 Fast factorized backprojection . 14

3.3 The SAR system used in this project . 16
3.3.1 Signal Processing . 17
3.3.2 Data structure . 18
3.3.3 Image creation . 19
3.3.4 Interpolation . 21
3.3.5 Data representation in memory . 21
3.3.6 Adressing pattern . 22

4 Parallelism 24
4.1 Motivation . 24
4.2 Limitations . 25
4.3 Granularity . 26
4.4 Exploiting parallelism . 26

4.4.1 Instruction-level parallelism . 27

4.4.2 Data parallelism . 27
4.4.3 Task parallelism . 28

5 OpenMP 29
5.1 Execution and memory model . 29
5.2 Programming with OpenMP . 29

5.2.1 Internal control variables . 30
5.2.2 OpenMP directives . 30
5.2.3 Example . 32
5.2.4 Overhead . 33
5.2.5 Behaviour of an OpenMP program 34

6 Optimizing and parallelizing the FFB 35
6.1 Data collection . 35
6.2 Merging . 36
6.3 Vectorization . 37

7 Test environment 39

8 Result 42
8.1 Small test case with delay . 43
8.2 Small test case without delay . 44
8.3 Medium test case with delay . 45
8.4 Medium test case without delay . 46

9 Performance analysis 47
9.1 FLOPS . 47
9.2 Cache utilization . 48
9.3 Cycles per instruction . 49

10 Discussion 50
10.1 Performance . 50

10.1.1 Small system . 50
10.1.2 Medium system . 51

10.2 Portability . 51
10.3 Scalability . 52
10.4 Engineering efficiency . 52

11 Conclusion and further work 54

Bibliography 56

1
Introduction

This master thesis is carried out at Chalmers University of Technology and Saab AB.
The goal of this thesis is to optimize and parallelize an image creation algorithm to reach
real-time performance with respect to portability, scalability and engineer efficiency.

1.1 Background

Synthetic Aperture Radar (SAR) is a type of radar that simulates a long antenna, by
using the antennas movement, to create high-resolution images of the ground. SAR can
operate on lower frequencies, than conventional radar, which can penetrate foliage and
detect camouflaged objects in forests.

The images for a SAR system can advantageously be created in the time domain to
be able to compensate for non-linear flight-tracks. An effective algorithm to create the
images in the time domain is the Fast Factorized Backprojection (FFB) algorithm that
uses approximations and factorization to reduce the computational burden. However,
the large data sets produced by a SAR system still makes it hard to reach the high per-
formance that is required for real-time image creation, i.e. when the images is created
during the flight. There is however, an unavoidable latency from when the last data is
collected until the image is finished, so to create images in real-time the processing of
the next image need to catch up the processing during the data collection.

1

CHAPTER 1. INTRODUCTION

1.2 Scope of work

Saab AB has developed and implemented a version of the FFB, utilizing one core, and
a test bench written in C++, which will be used in this project. This version has been
developed to obtain the desired image quality. Since the code produce an image with
desired quality no optimizations that change the image has been done e.g. rearranging
floating point operations.

The current version of the FFB does not meet the real-time requirements. The op-
timizations and parallelizations carried out are done to enable processing of data and
image creation in real-time. This must be taken in consideration when parallelizing the
algorithm since we do not have the whole data set at once but collect data continuously
during the flight.

The project will include studies of the FFB algorithm, parallelization- and optimiza-
tion techniques. The existing C++ implementation is rewritten and adapted to one or
more techniques. The algorithm is then evaluated with respect to performance, porta-
bility, scalability and engineering efficiency.

Even though a big motivation for using image creation algorithms in the time domain
is the ability to compensate for non-linear flight tracks this will not be applied in this
scope of work. The evaluation of the result will only consider linear flight-tracks.

The report starts with a chapter with basic theory for radar and SAR, and then signal
processing for creating SAR images is described. Basic theory about parallelism, and
how to exploit it, is followed by a description of an API to add parallelism to C++ code
before it is described how the FFB is optimized and parallelized. Before discussion and
conclusions the results for two test cases along with a performance analysis is given.

2

2
Radar

2.1 Radar basics

A Radio Detection and Ranging (radar) system emits electromagnetic pulses and detects
the returned echo from reflecting objects. From the echo the radar can determine the
distance and direction of the target. Distance is easily calculated since electromagnetic
energy travels at constant speed, 300 000 km/s. The transmitter and receiver is usually,
but not always, placed together. If that is the case, the power received by the antenna,
Pr, is given by the following radar equation.

Pr =
PtGtArσF

4

(4π)2R4
(2.1)

Where Pt is the transmitter power, Gt is the gain of the transmitting antenna, Ar is
the effective aperture of the receiving antenna, σ is the radar cross section of the target,
F is the pattern propagation factor and R is the distance between transmitter/receiver
and the target. It is important to notice that the power will decrease severely with the
distance to the target.

2.1.1 Range determination

The slant range R, i.e. the line of sight distance between the radar and the target, is
calculated from the time, t, it takes the transmitted pulse to return and the wave velocity
c.

R =
ct

2
(2.2)

3

CHAPTER 2. RADAR

However, the radar cannot transmit and receive pulses at the same time because the
receiver need to reset the timing system each time a pulse is transmitted to determine
the distance. So if an echo returns after a new pulse has been transmitted it will incor-
rectly be identified as a target much closer to the radar than it really is. Therefore, to
determine the range to a target the receiving time must be long enough for the echo to
return. The receiving time depends on the pulse width, Pw, which is the duration the
pulse is transmitted, and the pulse repetition frequency (PRF). The PRF is the number
of pulses that are transmitted every second. The receiving time will be the pulse repeti-
tion time (PRT), which is 1/PRF, minus the pulse width. This gives that the maximum
range, Rmax, that can be unambiguously determined is:

Rmax =
c(PRT − Pw)

2
(2.3)

For the Equation (2.3) to be valid the power of the received signal, as described by
Equation (2.1), must be larger than the noise in the receiver. For an ideal receiver the
noise is kTB, where k is the Boltzmann’s constant, T is the temperature and B is the
receiver bandwidth[1].

2.1.2 Sampling

The receiver samples the received signal according to the Nyquist sampling theorem
which states that if a signal is sampled with a frequency twice as large as the bandwidth
the analog signal can be perfectly reconstructed (under ideal conditions). If the signal is
sampled complex, i.e. both the amplitude and phase information is stored, the signal only
have to be sampled with the bandwidth frequency. Each sample will then correspond to
a range so each sample for a pulse will be stored in its range bin. This is done for all
the pulses so the radar data will be stored in a matrix with pulses on one axis and range
bins on the other.

2.1.3 Frequency

The frequency used in a radar system is determined by many factors. The size of the
radar system is proportional to the wavelength because a longer wavelength needs a
larger antenna to obtain a given lobe width. Thus, a high frequency radar system will
be small and light which is an advantage for airborne systems. On the other hand,
a larger system allows higher power because of better cooling and that increase the
detection range. The frequency also decides how much an object of a certain size affect
the signal. Shorter wavelengths will be more affected by small objects so for example
weather radar need a wavelength that will be reflected by water drops which is around
6 cm (or 5 GHz). If it is undesirable for the radar to be affected by a certain object, e.g.
clouds, the wavelength can be increased. If a long enough wavelength is used the signal

4

CHAPTER 2. RADAR

can remain unaffected by leaves and branches which make it possible to see through
foliage which enables detection of hidden objects in forests.

2.1.4 Resolution and pulse compression

The resolution of a radar system is the ability to distinguish between two targets that
are close to each other in either range or azimuth. The range resolution, ∆r, is the
smallest distance where two targets on the same azimuth can be separated. To separate
two targets the time it takes for the pulse to travel back and forth between the two
targets need to be larger than the pulse width[2].

∆r =
cPw

2
(2.4)

Using a lower pulse width will increase the range resolution but at the same time, the
maximum detection range will be lower since the received signal will disappear in the
noise faster than if a longer pulse width was used. To come around this problem pulse
compression, which is a method to get the advantages of both the high energy of a long
pulse width and the high resolution of a short pulse width, can be used. The transmitted
pulse is changed so that each part of it has a unique frequency, which can be done by
either frequency or phase modulation. The most commonly used modulation is linear
frequency modulation, also called chirp pulse, where the frequency is changed with con-
stant speed throughout the whole pulse. See Figure 2.1 for an example of a chirp pulse.

Figure 2.1: Chirp pulse

The receiver demodulates the signal with a compression filter that adjusts the relative
phases so that a narrow pulse is created. The resulting pulse width is then 1

B where B
is the transmitted pulse bandwidth.

The azimuth resolution in meter, ∆a, is the smallest distance that two targets can be
separated on the same range. It depends on the slant range to the target and the lobe
width, which approximately is the wavelength, λ, divided by the length of the antenna,
L.

∆a ≈ λR

L
(2.5)

5

CHAPTER 2. RADAR

Therefore, either a higher frequency or a larger antenna can obtain an increase in azimuth
resolution.

2.2 SAR

The azimuth resolution for long distances is often insufficient since if a too high fre-
quency is used the signal will be reflected by objects that are not of interest, e.g. clouds,
or an unrealistically long antenna has to be used. Synthetic aperture radar (SAR) is a
type of radar that circumvents that problem by simulating a long antenna by using the
antennas movement. The synthetic aperture is created by using the pulses from the real
physical aperture that has been collected during the flight. The radar operates on the
same PRF the whole flight and the responses is stored in the same way as mentioned
above, i.e. in a matrix with pulses on one axis and range bins on the other. All the
pulses are processed together to create a high-resolution image.

There are three different modes for SAR, stripmap, spotlight and scan, see Figure 2.2.
Since stripmap is the mode used in this project, the theory for the other modes will not
be discussed.

Figure 2.2: Different methods for SAR[3].

6

CHAPTER 2. RADAR

The echoes from different targets can be separated since they have different Doppler
frequency because of the movement of the radar, see Figure 2.3.

Figure 2.3: The targets Q and P will have different relative velocity, Vr, to the radar which
lead to that they also have different Doppler frequency[3].

The length of the synthetic aperture is limited by the antennas physical lobe width since
the region that is imaged need to be in the antenna beam for the entire time as the
aircraft flies by it. The theoretical azimuth resolution obtainable is half the length of
the antenna[4].

2.2.1 Geometry

The start-stop approximation is used so the movement of the radar between transmitting
a pulse and receiving it is assumed to be zero. The reason for this simplification is to
leave out the change in position in the geometry calculations and often the movement
is negligible since the pulse travels at the speed of light. The different targets can still
be separated with the Doppler frequency since it can be seen as a change in the range
between the pulses. The echo from a target has a different distance to travel for each
pulse so the phase for each pulse will be different.

7

CHAPTER 2. RADAR

The airborne SAR travels linear along the x-axis at a constant height z = h. The
antenna has a lobe directed against the y-axis with a lobe width of 2θ. On the ground
there is a single point target P located at (x0,y0,0), which can be seen in Figure 2.4.

Figure 2.4: Geometry for a simple SAR-model[3].

The radar transmits a pulse, with centre frequency fc and wavelength λc = c
fc , that

reflects from P and is sampled in the receiver. When the antenna is at position x = 0
the target P is located at the edge of the lobe, i.e. at angle θ from the centre of the lobe
and at range rmax. The echo is sampled in the receiver and the amplitude and the phase
is stored in the range bin that corresponds to rmax. When the antenna moves along the
track the distance to P will decrease until it reaches r0, when the antenna is at position
x0, and then it will increase until it reaches rmax again at the other side. In the data
matrix the echo from P will look like a hyperbola, see Figure 2.5.

Figure 2.5: The behavior of the echo, from two targets, through the aperture positions.
The arrows represent the phase for each aperture position[3].

8

CHAPTER 2. RADAR

The phase, φn, will vary between a pulse n and the centre aperture according to the
formula[2]

φn = 2∆rn
2π

λc
(2.6)

Focusing means that for each point, or pixel, the echo is phase shifted with the phase
φn for each aperture position n. The phase shift for each echo will be different for each
point so each point can be separated in azimuth. If there is a target located in the point
the amplitude will be high since constructive interference will occur due to the echoes
having the same phase. If no target is located in the point the amplitude will decrease
since destructive interference will occur.

9

3
SAR signal processing

Signal processing for SAR has been solved earlier with methods in the frequency domain,
e.g. the Fourier-Hankell- and Range-Migrationmethod that are very computational ef-
ficient. The drawback has been that they are developed for a linear flight-track and to
handle a nonlinear flight-track the computational efficiency would be much lower. The
fact that it could not handle a nonlinear flight-track is not an issue with microwave SAR
since it uses a small lobe width. However, with VHF SAR where broader lobes are used
this is a big issue[2][5].

SAR signal processing can also be solved in the time domain with the ability to handle
nonlinear flight-tracks, which is discussed further in Section 3.2[6].

3.1 Radar echo model

A radar echo model can be created with a number of assumptions. It is assumed that
it is a monostatic radar, i.e. the transmitter and receiver are located at the same place.
It is also assumed that the wave velocity c is constant. The ground is assumed to be a
collection of single-scattering objects so that superposition can be applied. This gives
the model in Figure 3.1.

Figure 3.1: The radar echo model. The pulse p(R) is reflected and received[3].

10

CHAPTER 3. SAR SIGNAL PROCESSING

For a single object at position r0 and with the radar antenna positioned at r we get the
radar echo, g(r,R), as a function of the antennas position and the pulse delay.

g(r,R) =
p(R− |r − r0|)
|r − r0|2

(3.1)

where p(R) is the band-limited radar pulse after pulse compression and R is given by
Equation (2.2).

The equation is limited to the case when the object and antenna is stationary to each
other but since the start-stop approximation is used, as described in Section 2.2.1, that
is not a problem. There are also some scaling factors of the echo, which is ignored in
the equation that for simplicity are assumed equal to 1, however practically these cor-
rections will be decided with stationary phase methods [7]. This model is applicable to
most SAR-problems.

If a linear flight-track is assumed the equation can be simplified because then a cylindri-
cal symmetry along the flight-track axis can be used. The cylindrical coordinates (ρ,θ,x)
is used, where x is the flight-track axis, ρ is the radius and θ is the angle around the
x-axis, see Figure 3.2.

Figure 3.2: Model with cylindrical geometry[3].

11

CHAPTER 3. SAR SIGNAL PROCESSING

This lead to the following function for the radar echo data:

g(x,R) =
p(R−

√
(x− x0)2 + ρ20)

(
√

(x− x0)2 + ρ20)
2

(3.2)

The range history for a single object is hyperbolically dependent on x. The single
objects angle coordinate θ is not included in the formula, which means that objects on
both sides of the antenna is contributing to the same pixel which lead to right-left as
well as topographic ambiguities. The advantage with the rotation symmetry is though
that we can produce a SAR-image from a linear flight-track without any knowledge of
the ground topography[2][5].

3.2 Image creation in the time domain

The images are created with backprojection in the time domain. Global backprojection is
the most basic backprojection method but it is computationally heavy, so fast factorized
backprojection, which uses approximations, can be used instead.

3.2.1 Global backprojection

Using two cylindrical coordinates, a radar map can be created where every object has
the position (x, ρ) where x is the flight-track position and ρ is the distance to the object.

With the SAR radar echo data Equation (3.2) this gives the following backprojected
signal h(x,ρ).

h(x,ρ) =

∞∫
−∞

g(x′,R)Rdx′ (3.3)

Where g(x,R) is the radar echo data as a function of the flight-track position x and
range R, R =

√
(x′ − x)2 + ρ2. The radar echo data has been sampled from the original

continuous signal according to the Nyquist criteria and can therefore be fully reproduced.
The correct value for every position (x, ρ), in the resulting image, is given by summariz-
ing the integral over the aperture positions x′, with the interpolated and phase shifted
value, at the specific range R. R corresponds to the range between the antenna and the
image position.

12

CHAPTER 3. SAR SIGNAL PROCESSING

Figure 3.3 illustrates how one image position, h(x, ρ) is created by integrating over the
contributing values.

Figure 3.3: Illustration over how GBP integrates over the contributing aperture positions
to create one image position[8].

When the backprojection is modified to handle a non-linear flight track the focusing
becomes dependent on the ground topography if a one-dimensional aperture is used.
The reason for this is that that the data inversion becomes a three-parameter problem
that requires a two-dimensional aperture to solve exactly. Therefore the backprojection
integral is expressed as a function of the three-dimensional image position vector r0 ac-
cording to

h(r0) =

∫
g(x′,R)Rdx′ (3.4)

where R = R(x′) = |r(x′)− r0| is the range between the antenna and the image position.
This equation can handle all track geometry but exact inversion is only possible for a
linear flight track.

The global backprojection is very inefficient considering the number of operations. Con-
sider an image with M ∗N pixels and an aperture with L positions. For every received
aperture and pixel position, the range between the antenna and the pixel need to be
calculated, then the radar echo need to be interpolated to find the correct value to add
to the image. This is proportional to L ∗M ∗ N operations which with large images
is very computationally heavy. Global backprojection is still efficient for small images

13

CHAPTER 3. SAR SIGNAL PROCESSING

and has the advantage that it only need to hold the radar echos until they have been
backprojected and therefore saves memory[2][5].

3.2.2 Fast factorized backprojection

To speed-up global backprojection other backprojection methods can be used. If another
coordinate system is used it can be seen that it is unnecessary to backproject the aperture
data to all image pixels for every new aperture position. This can be seen by looking at
the geometry in Figure 3.4.

Figure 3.4: Illustration of the data redundancy if all aperture data is stored[8].

The figure shows concentric range circles centered in two different aperture positions. It
is along these circles that the radar echo data is projected over the image. The circles
are matched along the beam centre line, which corresponds to the beam focusing in this
direction. Successive aperture positions have almost the same circular pattern inside
an angle sector. This means that one single range data line can be used to represent
the angular sector with minor error. For points further away from this line the circular
pattern differ, because of increasing phase errors. Polar coordinates are used to represent
the data, in the image plane, in an effective way. The bigger the aperture, the smaller
is the angular sector that can be represented by a single data line. On the other hand,
the amount of data lines that is needed to represent a subimage is increased with the
subapertures length.

14

CHAPTER 3. SAR SIGNAL PROCESSING

The principle is to split up the calculations, using polar coordinates, in several itera-
tions instead of computing the Cartesian image with full resolution at once. In every
iteration, the angular resolution increases by combining more and more apertures and
creating smaller and smaller lobes, which represents the different angles out from the
aperture[2][5].

If raw data with L aperture positions are used with a base n, that is the number of sub-
apertures that is combined in every processing stage, the number of subapertures after
the first processing stage will be L/n. If every L subaperture represent different ranges
in a large lobe at approximately θ degrees then every new L/n subaperture will have n
data lines, each representing a smaller lobe of θ/n degrees in different directions. This
goes on until the full image is created with L data lines each representing a small lobe of
θ/L degrees in different directions. In Figure 3.5, it can be see how the subapertures are
merged together and for every iteration creating a larger subaperture. In every iteration,
each subaperture get better angular resolution.

Figure 3.5: As the subapertures are merged together and become larger, the azimuth
resolution improves[8].

15

CHAPTER 3. SAR SIGNAL PROCESSING

In Figure 3.6 it can be see how an image position is created with FFB compared to the
GBP in Figure 3.3.

Figure 3.6: Illustration over how FFB creates the resulting image position over the
iterations[8].

The computational burden compared to global backprojection is much less. Considering
the same case as with the global backprojection where an image with M ∗N pixels and
L positions were used. In each iteration, K, n subapertures are merged to a larger sub-
aperture. Every M ∗N pixels in the resulting image need n calculations in each iteration
and there are K = logn(L) iterations. This gives a total of nMNlogn(L) operations..

The minimum of this expression is reached when n = e but since the base needs to be an
integer the minimim is at n = 3. The final number of operations is then 3MNlog3(L).
Compared to the GBP, this is a huge speedup. Worth noticing is that a base of 2 or 4
gives approximately the same result i.e. 6% more operations than with a base of 3.

3.3 The SAR system used in this project

The system investigated in this thesis is a SAR system that operates on the low VHF-
band (20-90 MHz) with wavelengths between 3-15 m. This gives it the ability to pene-
trate foliage and detect concealed objects with good spatial resolution. It is also useful
for mapping forest biomass and, to some extent, finding targets in the ground. The
SAR system has two bi-conical wideband antennas placed on an aircraft. Since the sys-
tem is located between 20-90 MHz strong radio-frequency interference is present such as
FM-radio and communication for emergency services, which need to be suppressed.

16

CHAPTER 3. SAR SIGNAL PROCESSING

3.3.1 Signal Processing

The FFB algorithm is used for image creation. It is much faster than the GBP but still
requires a good amount of memory and bandwidth. Together with the FFB calculations,
the geometric calculations for the flight-track and ground topography compensations
need to be considered. Figure 3.7 shows the signal processing chain used for the SAR
system.

Figure 3.7: A typical signal processing chain. The scope of this project highlighted,
excluding the handling of GPS data.

The radar system continuously processes incoming data while working in stripmap mode,
see Figure 3.8, and outputs the full resolution image after processing all data from the
integration length L. The time for processing all data is at least the time for flying along
the integration length.

Figure 3.8: The blue triangular area is fully integrated when using stripmap processing[8].

17

CHAPTER 3. SAR SIGNAL PROCESSING

The processing of data is done during flight but the iterations are dependent of each
other as seen in Figure 3.9. We collect the data at different times and as we can see, the
processing of data from t0 cannot start until t0 + 1 has been received. The dependency
is most visible when we have collected all data along the integration length and have a
delay at t0 + 7 where all iterations need to be processed to get the full resolution image.
However, already at t0 + 3 its possible to produce a low resolution image.

Figure 3.9: Graph over the FFB data processing and its dependencies[8].

3.3.2 Data structure

To handle the data in this project a ping-pong technique is used. This technique uses
two buffers to create the image, storing data from every two iterations. The received
range data lines are stored in the pingbuffer ordered by the time they were received.
When enough data has been received in the pingbuffer, to merge the first iteration,
the algorithm starts to merge them together to a new subaperture in the pongbuffer.
To be able to merge the next iteration, enough subapertures need to be created in the
pongbuffer. Then the algorithm starts to merge the contributing subapertures from the
pongbuffer to a new subaperture in the pingbuffer.

18

CHAPTER 3. SAR SIGNAL PROCESSING

The principle is seen in Figure 3.10, though in this example the processing of data is not
done in real-time, all data is already received when the merging begins. This proceed
until one buffer only have one subaperture and then we got the final image.

Figure 3.10: Merging two contributing subapertures from the ping- to the pongbuffer and
then merging two larger subapertures from the pong- to the pingbuffer. The blue dot in the
subaperture represents a specific target in the picture, which for every step is represented
with a better angular resolution. In this figure the data isn’t processed until all data is in
the pingbuffer[8].

3.3.3 Image creation

When creating an image using the FFB there are many calculations to take in consider-
ation. For every element calculated in the merged subaperture the contributing element
need to be located from each contributing subaperture. This is not trivial since finding
the right element is dependent on both flight-track geometry and ground topography.
Additionally, an interpolation method has to be used to find the right element.

A polar coordinate system is used to represent positions in a subaperture according
to Figure 3.11 where r is the range to the target from the center of the subaperture, and
θ is the Doppler angle.

Figure 3.11: An image position represented with a polar coordinate system[8].

19

CHAPTER 3. SAR SIGNAL PROCESSING

To merge two subapertures is simple when the fligh-track is linear as picture 1 in Fig-
ure 3.12. Though in reality that is not the case, see picture 2 in Figure 3.12, so compen-
sations for the nonlinear flight has to be done with e.g. GPS coordinates.

Figure 3.12: An image position is created using elements from two contributing subaper-
tures, both with a linear flight-track and a nonlinear flight-track[8].

The ground topography also need to be taken into consideration. In the case with a
linear flight-track the ground topography is irrelevant for focusing. However, it is deter-
mining when the image data is projected on a ground grid. The data need to be placed
on the correct ground range by angling down the received data with respect to its slant
range. This is computationally heavy, but it can be approximated.

This is done by assuming that the topography does not change considerably in a fixed
range interval δrlimit. By using constant difference in range and angle within this inter-
val only a fraction of the geometrical calculations for the ground topography has to be
done, see Figure 3.13.

Figure 3.13: When finding the correct element from the contributing subaperture, a con-
stant range and angle difference is assumed within a range interval δrlimit[8].

20

CHAPTER 3. SAR SIGNAL PROCESSING

3.3.4 Interpolation

The calculated element to pick from the contributing subaperture does not exist very
often because of the sampled signal. Therefore, an interpolation method has to be used
to approximate the value to use in the merge. The simplest method is to use nearest-
neighbor interpolation where the element closest to the calculated is used, but this comes
with a reduction in resolution. To obtain a better resolution more complex interpolation
methods can be used, e.g. sinc or polynomial interpolation. However, a more complex
interpolation method will increase the computational burden so in this project nearest-
neighbor interpolation is used since the given resolution is good enough.

3.3.5 Data representation in memory

The radar data is represented in the computer memory according to Figure 3.14. Every
subaperture consists of a number of range data lines, each having a number of range
bins. Each pair (r,θ) represent a floating point complex value in every subaperture. r
corresponds to the range bin and the angle θ represent a specific range data line.

Figure 3.14: Representation of data in memory using range and angle[8].

This way of representing data in memory is not very economic which is shown in Fig-
ure 3.15 where a linear strip is mapped to memory.

Figure 3.15: Projection of data in memory using a polar coordinate system[8].

Since the number of range data lines will increase when the subapertures are merged to-
gether, for every iteration, the subapertures will grow and so will the amount of memory
for representing a subaperture[9].

21

CHAPTER 3. SAR SIGNAL PROCESSING

3.3.6 Adressing pattern

The resulting data row is created from elements that are fetched in contributing sub-
apertures, however the correct contributing element is found along non-linear paths in
memory as seen in Figure 3.16.

Figure 3.16: Contributing data is collected along nonlinear paths[8].

Finding these paths requires lots of geometrical calculations, especially since the paths
get more and more distorted for every merging iteration as seen in Figure 3.17.

Figure 3.17: 8 range data sectors represented in memory, for every merge the data get
more and more distorted[8].

22

CHAPTER 3. SAR SIGNAL PROCESSING

However, this can be approximated if we assume fixed values (∆r,∆θ) inside an interval
δrlimit. I.e. we approximate the curved path with a linear path in that interval as seen
in Figure 3.18.

Figure 3.18: Approximation of the memory read path[8].

Along these linear paths, an interpolation kernel is used to pick the correct contributing
element[9].

23

4
Parallelism

The high computational burden in a typical SAR system prevents the FFB algorithm
to reach real-time requirements. Parallelization is needed to increase speed and meet
the timing constraints. Parallelization can be applied with different level of granularity.
The problem is though not easy to fully parallelize because of dependencies, which is
illustrated in Figure 3.9, and other factors.

4.1 Motivation

Historically the development of integrated circuits have been following Moore’s law,
which says that the number of transistors that can be placed on a single die is doubled
approximately every two years[10]. When the number of transistors increased, the clock
frequency increased, so the performance of an application increased without the need to
make any changes in the code. The development of transistors will still follow Moore’s
law but the increase of clock frequency is limited to the power consumption of a chip,
P :

P = CV 2F (4.1)

C is the capacitance switched per clock cycle, V is the voltage and F is the proces-
sor frequency. When this peak was reached, the industry switched to parallel techniques
in the shape of multicore architectures.

24

CHAPTER 4. PARALLELISM

4.2 Limitations

Parallelization of code puts the programmer in a hotspot since the sequential code need
to be rewritten to some extent, except in some cases when the compiler parallelizes the
code. The programmer need to take into consideration, when parallelizing code, that
there could be race conditions, mutual exclusion and synchronization problems. Nev-
ertheless, just because the code is parallelized and a dual-core processor is used the
program will not always run twice as fast. There is a limitation due to Amdahl’s law,
which says, given the number of processing elements and the portion of code that can
be parallelized, what possible speed-up can be gained, see Figure 4.1. If 10% of the
code is not possible to parallelize it is not possible to get more than a ten times speedup
disregarding how many extra cores are used[11].

Figure 4.1: Graph illustrating Amdahl’s law[12].

25

CHAPTER 4. PARALLELISM

In contradiction to Amdahl’s law, that assume a fix data set, Gustafson’s law says that
given a data set that increases with the number of processors the sequential portion of
the code will decrease and the speed-up will approach the number of processors, see
Figure 4.2[13].

Figure 4.2: Graph illustrating Gustafson’s law[14].

4.3 Granularity

Parallelizable applications can be classified into three groups. Fine-grained is the case
when the created subtasks are small and need to synchronize often, this kind of par-
allelization requires some overhead for communication and synchronization. Coarse-
grained is when the subtasks are bigger and does not need to synchronize that often,
which leads to less overhead. Embarrassingly parallel is when the subtasks hardly ever
need to synchronize which also means little or almost no overhead. This need to be taken
into consideration by the programmer so the overhead does not exceed the performance
gain when the application is parallelized.

4.4 Exploiting parallelism

Exploiting parallelism can be done in several ways depending on the application and the
hardware used.

26

CHAPTER 4. PARALLELISM

4.4.1 Instruction-level parallelism

Instruction-level parallelism makes use of the pipeline and re-orders the instructions so
they can be performed in parallel, without changing the result of the program. Processors
that have N-stage pipelines can hence execute N different instructions at the same time.
There are also superscalar processors, which can, if there is no data dependency, execute
more than one instruction at once.

4.4.2 Data parallelism

Data parallelism can be used in loops where the different iterations can be divided
upon several threads. This is natural for many loops where the same operations will be
executed over big data sets.
Though if the data is dependent throughout the loops and an iteration rely on results
from the previous iteration then the loop can’t be parallelized. Though the programmer
can sometimes rewrite the loop and make it data independent. However, if the data
is dependent throughout the loops and an iteration relies on results from the previous
iteration, the loop cannot be parallelized. The programmer can sometimes rewrite the
loop and make it data independent.

Data parallelism can also be exploited with vector instructions, sometimes called Single-
Instruction-Multiple-Data (SIMD) instructions. Vector instructions are applied to a
vector register, available on most modern CPUs, which contain several elements so the
same operation is performed on all elements simultaneously. Using vector operations can
be done explicitly by using intrinsic functions, i.e. primitive functions that are translated
to one or a few machine instructions, to tell the compiler which vector operations to use.
Some modern compilers can also automatically vectorize the code to some extent. The
parallelism has to be obvious to the compiler and the data accesses or the expression
cannot be too complicated. The speed up of using vector instructions depends on the
size of the vector registers that depend on the architecture and range from 64-bit to
256-bit.

The following code example will be vectorized with a good compiler.

const i n t s i z e = 512 ;
i n t a [s i z e] , b [s i z e] ;
f o r (i n t i = 0 ; i < s i z e ; i++) {

a [i] = b [i] + 3 ;
}

A 128-bit vector register will be used to put four elements of b which will be added with
another vector register holding four elements (3,3,3,3). The result will be stored in a.
Optimally the size of the array is divisible by four in this case. Otherwise, it is preferable
to add dummy values to the end of the array to achieve this. This operation will be
done 512/4=128 times with a speed-up up to four times.

27

CHAPTER 4. PARALLELISM

4.4.3 Task parallelism

Task parallelism could be compared to data parallelism with the exception that it can
also be applied to different calculations and not only the same calculations as in a loop.
I.e. one task can be assigned one part of the code and another task can be assigned a
completely different part of the code.

28

5
OpenMP

Open Multi-Processing (OpenMP) is an Application Program Interface (API) that sup-
ports shared-memory parallel programming in C, C++ and Fortran. The OpenMP
Architecture Review Board (ARB) is a non-profit corporation that oversees the spec-
ification, produces, and approves new versions of it. The majority of the ARB con-
sists of representatives from major software and hardware vendors, which in turn create
OpenMP products. This makes OpenMP a portable and scalable model that can be
used to develop applications for platforms ranging from laptops to supercomputers[15].

5.1 Execution and memory model

OpenMP uses the fork-join method, when a program is run, a single thread executes
it until it encounters a parallel region. When a parallel region is reached, the thread
creates a workgroup, of zero or more new threads, and the encountering thread becomes
the master thread of the workgroup. Each thread in the workgroup is assigned its own
implicit task, which is defined by the code in the parallel block.

Everything declared before the parallel region will be shared memory between the threads,
unless specified otherwise in the parallel construct, and everything declared inside the
parallel region will be private to each thread. Each thread is allowed to have a temporary
view of the shared memory, i.e. it does not have to fetch the shared variables from mem-
ory each time they are used but instead it can store them in registers, the cache or other
local storage. While introducing the need to use synchronization directives manually to
ensure the behavior of the program it avoids unnecessary synchronization to occur each
time a shared variable is used.

5.2 Programming with OpenMP

The OpenMP API gives a simple and flexible way to develop parallel applications. The
programmer uses pre-processor directives and runtime library routines to control the
program. Much of the work, such as creating and deleting threads, is hidden from the

29

CHAPTER 5. OPENMP

programmer.

The simplicity makes it easy to modify a sequential program to run in parallel if the
program is in fact parallelizable, i.e. it does not have any real data dependencies, and it
does not contain artificial dependencies. An artificial dependency is a dependency that
is not required for the correctness of the program but rather the programmer creates it.

5.2.1 Internal control variables

The Internal Control Variables (ICVs) control the behavior of an OpenMP program.
They can be modified by changing environment variables or through API routines and
can only be retrieved by the program with API routines. Two ICVs, needed to control
how the parallel regions behave and ways to modify them, are given in Table 5.1. The
first controls the number of threads that shall be used for the next parallel region and
the second is used to set if nested parallelism is allowed or not. If nested parallelism is
enabled a thread that is already in an existing workgroup with other threads is allowed
to create its own new workgroup if it encounters a new parallel region. Each thread has
its own copy of the ICV for the number of threads to use for the next parallel region,
allowing each thread to use different sizes for new workgroups.

Environment variable Routine Retrieve

OMP NUM THREADS omp set num threads() omp get num threads()

OMP NESTED omp set nested() omp get nested()

Table 5.1

5.2.2 OpenMP directives

The directives and their properties that were considered important for the project will
be presented. For a complete description of all directives and their properties the reader
is referred to the OpenMP 3.0 specification[16].

All OpenMP directives start with #pragma omp, which allow the compiler to iden-
tify it as an OpenMP directive. Then a construct follows, that specifies what OpenMP
should do, which can have optional clauses.

The parallel construct

When a thread encounters a parallel construct, it creates a new workgroup to execute
the parallel region. The number of threads in the workgroup depends on the ICV that
control the number of threads but it can be overridden by a num threads(n) clause. The
encountering thread becomes the master thread for the workgroup and the number of

30

CHAPTER 5. OPENMP

threads in the workgroup is constant for the duration of the parallel region. The task re-
gion the master thread executed before encountering the parallel construct is suspended
and instead each thread in the new workgroup, including the master thread, is assigned
a new implicit task based on the code in the parallel region. The new implicit task
assigned to each thread becomes tied, meaning that if it is suspended no other thread
can resume the execution of it. If a thread in the workgroup encounter a new parallel
region and nested parallelism is enabled it creates a new workgroup and becomes the
master thread of it.

There is an implicit barrier at the end of a parallel region and only the master thread
continues after it with the task region it suspended when it encountered the parallel
construct.

The critical construct

Protecting shared memory is done with critical regions, which bind to the enclosed
block. A critical region can have an optional name associated with it, and all critical
regions without a name have the same unspecified name. When a thread encounters a
critical region it waits until no other thread in the program, not just in the same work-
group, is executing a critical region with the same name until it enters.

The flush construct

Since the threads are allowed to have a temporary view of the shared memory, by storing
variables in local storage, it need to synchronize the memory so it can see changes made
by other threads or store it own changes. The flush construct make the encountering
thread synchronize its temporary view of the shared memory with the shared memory. If
the thread has changed a variable that is flushed, it will write it to the shared memory.
Otherwise, it will discard the temporary view of the variable, which ensures that the
next time it is used it will be read from the shared memory. An optional list can specify
which variables to flush and if no list is present, everything is flushed. If a pointer is
in the list, only the pointer itself is flushed and not the memory it points to. To flush
memory only accessible by pointers, the flush construct without a list has to be used.
Only the temporary view of the encountering threads memory is affected by a flush. A
flush with no list occurs every time a thread enters or leaves a parallel or critical region.

The for construct

To split up the iterations in a for -loop between multiple threads the for construct is
used. The for construct restricts the structure of the for -loop to the form described in
[16]. The reason that it restricts the structure of the for -loop is so that the iteration
count can be computed before the execution of the loop so the iterations can be divided
between the threads according to the scheduling method. The construct can be com-

31

CHAPTER 5. OPENMP

bined with the parallel construct to create a parallel region containing only a for -loop.
The scheduling method is defined with a schedule(method,chunk size) clause where chunk size
is optional. The different methods are:

• Static. When chunk size is specified, the iterations are divided into chunks of that
size, which are assigned to the threads in a round-robin fashion. If chunk size is
left out the iterations are divided into chunks of approximately equal size and at
most one chunk is assigned to each thread.

• Dynamic. The threads request a chunk of iterations, execute them, and then
request another until no chunks remain. Each chunk has the size chunk size, if
specified, except the last which may contain less iteration. If chunk size is left out,
each chunk will contain one iteration.

• Guided. Like dynamic each thread request a chunk of iterations, executes them,
and then request another until no chunks remain. Unlike the dynamic method,
the chunks differ in size. Each chunk is proportional to the number of unassigned
iterations divided by the number of threads and they are decreasing over time to
chunk size. When the chunk size is unspecified, the default value is 1.

5.2.3 Example

#pragma omp p a r a l l e l f o r schedu le (s t a t i c)
f o r (i n t i =0; i<n ; ++i) {

f o r (i n t j =0; j<n ; ++j) {
i n t temp = 0 ;
f o r (i n t k=0; k<n ; ++k) {

temp += matrix1 [i] [k] ∗ matrix2 [k] [j] ;
}
matrix3 [i] [j] = temp ;

}
}

32

CHAPTER 5. OPENMP

5.2.4 Overhead

Creating a parallel region cost some overhead, both to start up the threads and assigning
work to them. In addition, when a parallel region has been executed the memory is
synchronized which also takes some time. Therefore, it is important that there is enough
work in the parallel region so that the performance gain exceeds the overhead. The
overhead increases with the number of threads so there is no guarantee that increasing
the number of threads will increase the performance if the workload is small in the
parallel region. Figure 5.1 shows the performance for a different number of threads for
the matrix multiplication example from Section 5.2.3.

Figure 5.1: Example from Section 5.2.3 run with different matrix sizes and threads.

The different kind of scheduling methods for work distribution in a for-loop also comes
with different overhead. The static method has the least amount of overhead but for
it to be best performance wise there must be an even workload in the for-loop. Also if
each iteration in the loop has a lot of work it can be a big performance increase if the
threads request work each time they have finished, i.e. dynamic or guided scheduling.
It should also be noted that if a thread is interrupted, e.g. by the operating system, and
static scheduling is used the performance can be severely degraded.

33

CHAPTER 5. OPENMP

5.2.5 Behaviour of an OpenMP program

There is no way to specify how the threads are assigned to the logical processors, which
lead to that the behavior of OpenMP programs is not completely deterministic. How
the threads are assigned to the logical processors can have a big impact on the shared
cache. For example if there are two dual core CPUs and there are four threads in the
workgroup, the work consist of two different tasks that are split into two subtasks. If
the two threads that do the subtask from the same task are assigned to different CPUs
they cannot take advantage of the shared cache together, so two different runs of the
same program can differ a lot in performance. It has been announced that the ability to
assign the threads is being developed for OpenMP 3.2[17].

Running the exact same task on the same thread multiple times can result in different
running times since the core that the thread is run on is not exclusive to the OpenMP
application, e.g. the operating system can interrupt the application to run garbage
collection. Therefore, in an application with multiple threads the threads cannot be
assumed identical in speed so it is important that an application does not depend on
that false assumption.

34

6
Optimizing and parallelizing the

FFB

Over 98% of the work is spent in the merging part of the code so it would seem reason-
able to parallelize only that part. However in the first iteration when there are only a
few subapertures to merge, the workload is so small (given that the number of range bins
isn’t extremely high) that the overhead for creating the parallel region neglects the per-
formance gain that should occur when adding more threads , see Section 5.2.4.Therefore
has also the data collection been parallelized so that there are a workgroup that fetch
a subaperture from the input and store them in the ping-pong buffers. Whenever there
are enough subapertures to do a merge, one of the threads create a new workgroup to
do the merge.

6.1 Data collection

Reading the subaperture from the input has to be done in a critical region so two threads
does not try to read the same subaperture. As mentioned in section Section 5.2.5, the
threads can be interrupted at any time and since reading a subaperture from the input
is very fast, even the smallest interrupt can make the subapertures to be added in the
buffer in the wrong order if the subapertures are added at the next free location. To
avoid that the subapertures are added in the wrong order, each one is assigned a number
when it is read that decides where it is added in the buffer. For the result to be correct
the right consecutive supapertures has to be merged with each other, e.g. if base two
is used the first two are merged and the next two and so on. Because the subapertures
is not necessarily added to the buffer in the right order a control structure has to be
used to keep track on when and where a merge can occur. If merges are allowed to
occur in the wrong order, with respect to the time the subapertures were collected, the
disorder ascend to the next iteration so there have to be a control structure for all the
iterations. Figure 6.1 shows an example of how the subapertures are added and merged
in the buffers.

35

CHAPTER 6. OPTIMIZING AND PARALLELIZING THE FFB

Figure 6.1: The ping pong buffer – subapertures is added to the pingbuffer in the order it
was received. In picture 5, a subaperture has not yet been added to the buffer but the data
structure handles this and leaves an empty slot that is filled in picture 6.

For each iteration the buffer can be divided into blocks where each block contains the
same number of subapertures as the merging base is. The control structure then have to
keep track of the number of blocks for each iteration, where in the buffer they are located
and how many subapertures they contain. When a block is full, the thread that added
the last subaperture performs the merge on the block. The control structure keeps track
on the same number of blocks, as there are threads so all the threads can merge at the
same time. Since the control, structure is shared between all the threads all updates,
i.e. each time a subaperture is added and each time a merge occurs, have to be done in
critical regions. Each time a merge is done the control structure replace that block with
the next one.

6.2 Merging

When a thread is going to merge together subapertures, it creates a new workgroup
with a number of threads, including itself. The work is divided over the number of rows
that is going to be created, see Figure 6.2. The number of rows that is assigned to
each thread is not divided immediately over all threads. The work is scheduled using
the OpenMP schedule dynamic, with chunk size 1, among the threads. The choice of
dynamic is because of the unbalanced amount of calculations done in different iterations.
The difference comes from the optimization to skip additions with zero when the indices
are out of range and the fact that a thread can be interrupted to take care of some other
task. If we use bigger chunk size the other threads could be idle, waiting for one thread.

36

CHAPTER 6. OPTIMIZING AND PARALLELIZING THE FFB

Figure 6.2: Different threads create the resulting rows, collecting contributing elements
from the same subapertures, independent of other each other.

A thread requests a row to create, do all calculations for that row and when it is done
asks for another one. For every row, the thread iterates over the range bins in the re-
sulting row and collects the contributing element from one subaperture, given by the
geometric calculations and interpolations that are done for every element. This is done
for every subaperture that contributes to the resulting row.

6.3 Vectorization

The calculations carried out in the merge are also vectorized. Since the geometrical cal-
culations are approximated within the range interval δrlimit, with (∆r,∆θ) fixed for each
step, the calculations within the interval are vectorized. Without vectorization the same
calculations for every (r,θ) would be executed without utilizing the Streaming SIMD
Extensions (SSE).

The compiler can vectorize code itself but then it has to be written in a way that
the compiler easily can see it. Instead of doing calculations for each range bin one at a
time in a for-loop iterating over δrlimit, we pre-calculate the values that are going to be
used inside the same interval and store them in arrays with the same size as the interval.
Then a for-loop can be written, iterating over δrlimit, for each calculation. The compiler
then notices that we are executing the same instruction on multiple data, which makes
it possible to use the vector registers, and vectorize the code.

37

CHAPTER 6. OPTIMIZING AND PARALLELIZING THE FFB

The test-machine TM1, see Chapter 7, has 128-bit vector registers, which can hold
four floating-point numbers. Since δrlimit is not always divisible by four then dummy
values could be added to the arrays to achieve this. This is not considered in this project
but will preferably be taken in consideration when δrlimit is fully decided.

Another aspect that lowered the performance of the vectorization was that not all of
the rewritten code could be vectorized. Most of the calculations was easily vectorized
but e.g. when pre-calculating the (∆r,∆θ) with multiplication and vector instructions
there were precision errors (compared to when addition is used) so the vector instruc-
tions were not used for that.

The optimization to skip additions with zero when the indices are out of range also
affects the vectorization. Since some calculations inside a δrlimit interval are removed,
the remaining calculations are done without vectorziation.

38

7
Test environment

Test cases

Three different test cases were set up that correspond to three different types of SAR
systems. The amount of ground mapped varies between the cases, which result in dif-
ferent demand on performance needed to create the image in real time. A description of
the test cases is given in Table 7.1.

Small Medium Large

Flight time 74.66 s 149.33 s 512 s

Number of merging stages 7 8 8

Memory size 2x240.3 MB 2x7.8 GB 2x99.3 GB

Table 7.1

In order to put a perspective of the differences in computational burden between the test
cases and to get an indication in how the computations is distributed over the iterations
the number of adds is counted. We define one add as the operation done in a merge when
the contribution from a contributing subaperture is added to the resulting subaperture
for a single element in the data matrix. The number of adds for the test cases are ap-
proximately 1.5 ∗ 108 for the small, 4.9 ∗ 109 for the medium and 7.1 ∗ 1010 for the large
case. The work distribution over the iterations and the portion of the computations that
require that the last pulse is collected can be seen in Table 7.2.

39

CHAPTER 7. TEST ENVIRONMENT

Small Medium Large

Iteration 1 24.1% 21.2% 30%

Iteration 2 13.8% 12.1% 10%

Iteration 3 13.8% 12.1% 10%

Iteration 4 13.8% 12.1% 10%

Iteration 5 13.8% 12.1% 10%

Iteration 6 13.8% 12.1% 10%

Iteration 7 6.9% 12.1% 10%

Iteration 8 - 6.1% 10%

After last pulse 16.1% 14.1% 13.3%

Table 7.2

For all test cases synthetic input data were used, see Figure 7.1. The resulting image
after backprojecting that data is seen in Figure 7.2.

Figure 7.1: The synthetic raw data used.

40

CHAPTER 7. TEST ENVIRONMENT

Figure 7.2: The resulting image from the raw data in Figure 7.1.

Test-machine 1

One machine used for benchmarking was a server running SUSE Linux Enterprise Server
11.2 (64-bit). It has two Intel Xeon X5675 hexa-core processors running at 3.06 GHz
and 96 GB DDR3 RAM. The processors have a 3-level cache where each core has a 32
kB instruction and a 32 kB data L1 cache, 256 kB of L2 cache. The six cores also share
a 12 MB L3 cache. Each core has a 128 bit vector register.

Test-machine 2

Another machine used for benchmarking was a desktop also running SUSE Linux En-
terprise Server 11.2 (64-bit). It has one Intel E8400 dual core processor running at 3
GHz and 3.25 GB RAM. The processor has a 2-level cache where each core has a 32 kB
instruction and a 32 kB data L1 cache and the two cores share a 6 MB L2 cache.

Compiler

The project was compiled on all machines with gcc 4.6.2, which has support for OpenMP
3.0. The flags used were -O3 to optimize for speed and -fopenmp to enable OpenMP.

41

8
Result

The two smaller test cases were benchmarked in two modes, one with delay to simulate
a real-time system and one without delay, and with two different code versions, one that
take advantage of the vector registers when merging (OMP+Vec) and one that does not
(OMP). The medium test case was only benchmarked on test-machine 1 (TM1) since
test-machine 2 (TM2) could not allocate the buffers. The largest test case could not be
run on any of the test-machines because they were unable to allocate the buffers.

The most effective thread setup depends on the number of threads that shall be used.
When only a few threads are available they are all used for the data collecting part so
each thread does a merge by itself. The reason for this is the work distribution, see
Table 7.2, and the fact that the first iterations contain relatively few computations so
the overhead, see Section 5.2.4, makes the gain of adding more threads there very small.
When more threads are available the critical regions for the data collection makes it inef-
ficient to use them in that part because of the waiting time. Therefore, it is better to use
more than one thread in the merges when many threads are available. For test-machine
1 the threshold for this transit is at six threads.

The execution times for the different systems and versions are shown and they are later
discussed in Chapter 10.

42

CHAPTER 8. RESULT

8.1 Small test case with delay

The time it takes to create an image, with different number of threads, for the small
system in real-time is shown in Figure 8.1. The figure shows the two test machines
running two versions of the code.

Figure 8.1

43

CHAPTER 8. RESULT

8.2 Small test case without delay

Figure 8.2 shows the time it takes to create an image, when all data is available from
start. Both for one core with the different versions compared to the original code and
with different number of threads run on the test machines.

Figure 8.2

44

CHAPTER 8. RESULT

8.3 Medium test case with delay

The time it takes to create an image, with different number of threads, for the medium
system in real-time is shown in Figure 8.3. The figure shows the two test machines
running two versions of the code. A graph with four threads and more is included for
better visibility.

Figure 8.3

45

CHAPTER 8. RESULT

8.4 Medium test case without delay

Figure 8.4 shows the time it takes to create an image, when all data is available from
start. Both for one core with the different versions compared to the original code and
with different number of threads run on the test machines.

Figure 8.4

46

9
Performance analysis

To evaluate the performance of an application it is often not enough to look at the
execution time, but also at the CPU utilization and the cache misses. The analyses in
this section have been done with test machine 1, described in Chapter 7, on the small
test case without delay. The performance was evaluated using Vtune Amplifier XE 2011.

9.1 FLOPS

A common way to measure performance for an application is to count Floating Point
Operations Per Second (FLOPS). Counting FLOPS can give a good indication on how
the application run on different machines because it can be assumed that the same ratio
between measured FLOPS and peek FLOPS for an application is roughly the same for
all machines. For the assumption to hold, the memory architecture has to be similar
or at least offer similar performance. FLOPS can be computed by calculating the total
number of floating point operations in an application and divide with the running time.
Calculating the total number of floating point operations in an application can be really
time consuming so another way is to use the hardware counter that are available on most
processors. Hardware counters are registers that can be used to count different events,
such as floating point operations or cache misses.

The theoretical peak performance of test-machine 1 is 147 GFLOPS [18]. This value
will be compared with the benchmarked FLOPS for the FFB implementation to give
an estimation of how well the CPUs are utilized. To estimate the FLOPS of the code
the number of floating point operations is divided with the elapsed time. This gives,
according to Vtune, the following table.

Original TM1 OMP TM1 OMP+Vec

GFlops 10.39 33.19 39.75

Table 9.1

47

CHAPTER 9. PERFORMANCE ANALYSIS

The Flops was measured for one core and then adjusted for twelve cores (multiplied with
12). Note that the value for the original code is only theoretical since it can only be run
on one core. The vectorized version utilizes 27% of the theoretical maximum.

As a comparison to this result an FFT-implementation, fftw [19], were benchmarked,
since FFT is a fast algorithm that has been refined over the years and thus should serve
as indication on practical peak performance. The FFT obtained a peak performance of
104.4 GFLOPS, which gives a utilization of 71% compared to the theoretical maximum.

9.2 Cache utilization

Another metric that is a good indicator on how well the application is performing is to
measure cache misses. Because if a cache miss occur there will be stalls to fetch the
needed data, either from a higher level cache or from the RAM. Of course, cache misses
depend heavily on the application so there is not a threshold that tells if the application
is optimal. If an application uses very few instructions per memory unit, the miss rate
will be high by default.

Table 9.2 shows the percent of cycles due to long latency data access, for the L2 and L3
cache, for the different versions of the code.

Original TM1 OMP TM1 OMP+Vec

L2 0.36% 1.83% 3.55%

L3 0.82% 2.01% 4.35%

Table 9.2

As can be seen in Table 9.2 the percent of cycles is increased in the optimized versions.
The number of actual cache misses is the same in the TM1 Original and TM1 OMP but
less in the TM1 OMP+Vec version. There is a big decrease in clock cycles used, for
every version, which leads to increasing percentage of cycles due to long latency data
access. In Table 9.3, the events used to calculate this for the last level cache (L3) is
shown.

Original TM1 OMP TM1 OMP+Vec

MEM LOAD RETIRED.LLC MISS 7 840 000 7 840 000 6 840 000

CPU CLK UNHALTED.THREAD 172 052 000 000 69 962 000 000 28 280 000 000

Table 9.3

48

CHAPTER 9. PERFORMANCE ANALYSIS

From this, it can be seen that with the increased speed-up, in every version, that the
cache misses takes up a larger part of the total runtime. The pure cache miss ratios
(miss/hit) are given in Table 9.4.

Original TM1 OMP TM1 OMP+Vec

L2 0.06 0.1 0.09

L3 0.44 0.24 0.25

Table 9.4

Table 9.4 shows that there is a big difference in cache miss ratio for the L3 cache. In
the original code there is 0.44 misses for every hit in the L3 cache. In the optimized
code, the ratio decreased to 0.24 and 0.25, which is almost half the misses compared to
the original code. The L3 cache is better utilized in the optimized versions, while the
L2 cache hits is almost the same as the original code. The hardware counters were not
able to measure the cache misses/hits for the L1 cache, which would have given a more
thorough analysis.

9.3 Cycles per instruction

Cycles per instruction (CPI) are a measure of how many clock cycles that is carried out
when an instruction is executed. It is dependent on the application and the platform.
The CPI is fairly constant in all the versions, as can be seen in Table 9.5, since both
the number of instructions and the number of clock cycles has been decreased with the
same ratio.

Original TM1 OMP TM1 OMP+Vec

CPI 0.52 0.57 0.50

Table 9.5

49

10
Discussion

The scope of this work was to optimize and parallelize the algorithm to meet real-time
requirements for the system. This has been done and evaluated in respect to perfor-
mance, portability, scalability and engineering efficiency.

The algorithm has been optimized and parallelized in steps where two versions have
been evaluated. The main difference between the two is that one utilizes the compilers
ability to vectorize code.

10.1 Performance

When we look at performance in respect to real-time, it is important to notice that
the algorithm is idle when waiting for data to be received. This means that when we
continuously produce images, along a flight-track, in stripmap mode we have time to
catch up the data collected, for the next image, during the final calculations and image
output.

10.1.1 Small system

If we consider the small system in real-time, see Figure 8.1, we have evaluated the per-
formance on both test-machines. Both machines, with vectorized code on one core,
process the data in the rate it is received, and are spending less than two seconds, on
processing, after the last pulse is received. However, the core is not idle enough during
the integration time, 74.66 seconds, which means that it is not able to catch up the
data processing from the next integration length. Both code versions are able to achieve
real-time performance if two cores are used.

When we look at the case when not considering real-time, i.e. the case when the data
already is collected and processed on the ground, we can see a huge difference in perfor-
mance with the optimizations, parallelization and vectorization. The original code take
49.33 seconds to run and the vectorized version takes 8.02 running on one core. This
gives a reduction in running time of 6.15 times with just optimizations and vectorization.

50

CHAPTER 10. DISCUSSION

When using all cores on test-machine 1, which gives a running time of 1.20 seconds, we
have a reduction of 41.1 times.

10.1.2 Medium system

The medium system is much bigger than the small system and is not as realizable as
the small one. In the real-time case we have an integration time of 149.33 seconds and
in comparison to the small system and with two cores, we are not able to process data
in the rate we receive it. We need at least four cores to be able to process the data
in the same rate as we receive it. Still with four cores, there are 23.67 seconds of data
processing after the last pulse is received. Even with twelve cores, there is 15.17 seconds
of data processing after the last pulse. However when multiple images are created in
stripmap mode we are able to catch up the data processing from the next integration
length already with four cores, which means that we are able to achieve real-time per-
formance also for the medium system.

As with the small system, we can see a huge difference in performance between the
code versions when considering the case without delay. The original time for processing
the medium system is 1882 seconds, with just optimizations we reach a time of 750 sec-
onds and when we are also using vector instructions, we reach a time of 295.62 seconds,
which is a speed-up of 6.36 times the original when using one core. If we also use the
parallelization with twelve cores, we achieve a time of 36.32 seconds, which is 51.39 times
faster than the original.

10.2 Portability

The portability have not been thoroughly investigated, we have only tested the algorithm
on two test-machines that is similar with the same compiler. Using another compiler
that support a different version of OpenMP or does other optimizations could change
the performance.

When examining the portability between the two test-machines, which has a similar
clock frequency, the time difference is probably determined by the differences in the
cache. But, we have not been able to benchmark with Vtune on test-machine 2 and can-
not be certain. The ratio between the processor frequencies is though just 1.023 while
the time differs with ratio of 1.193. The L1 cache has the same size on both machines
but test-machine 1 has a three level cache while test-machine 2 only has a two level
cache.

51

CHAPTER 10. DISCUSSION

10.3 Scalability

To measure the scalability we need to take Amdahl’s- and Gustafson’s law in consid-
eration. In the final vectorized version, we measured that 95.8% of the code can be
parallelized. According to Amdahl’s law, this gives us a possible speed-up of 8.2 times
with 12 threads. On the other hand, Gustafson’s law gives us a possible speed-up of 11.5
times given a data set big enough. The real speed-up received by pure parallelization is
though 6.66 times in the small test case and 8.04 times in the medium test case. The
reason for not achieving a speed-up closer to Amdahl’s law is believed to be the overhead
of creating a parallel region each time a merge is done, especially for the first iteration
that contain a small workload.

10.4 Engineering efficiency

When evaluating the engineering efficiency we take many factors in consideration, the
time to learn parallelizing techniques, how easy it is to implement, how much code needs
to be rewritten etc.

In this thesis, we used OpenMP that only focuses on parallelizing over the CPU-cores.
OpenMP is quite easy to use since, if the code is embarrassingly parallel, you only need
to add pragma directives to the code and the compiler split the work over the different
cores. However, if there are many dependencies in the code and workload is uneven the
programmer needs to rewrite and reorganize the code.

At first, the parallelization of the merging part in the original code was straightfor-
ward, we just added the pragma directive at the outer loop since the data used for
merging every row in the resulting aperture is independent. However, when the code
was optimized and vectorized a static distribution of the work was not a good option.
Some optimizations reduced the number of calculations for some iterations and the dis-
tributed work got uneven. Still the modification of the OpenMP directives was quite
straightforward. Some analysis of the overhead when not using a static distribution was
done and the choice was to use dynamic scheduling with chunk size 1.

When parallelizing the data collection we got more complications due to data dependen-
cies and data races. When optimizing and speeding up the data collection, the data was
put in the wrong order, which gave a faulty resulting image. This was though corrected
with a different data structure that knew where to put the data. The data collection
also required critical sections, which locks all sections of the code handling the same
variables. One challenge with these sections was to minimize them to get rid off as many
stalls at possible.

52

CHAPTER 10. DISCUSSION

Another challenge was to evaluate and choose good work-groups depending on the
amount of threads that was available. The fork-join method was used where a num-
ber of threads took care of the data collection and when a merge was possible, created
a new work-group and distributed the work. This choice is dependent on the amount
of work that has to be done when processing the data and how many threads that is
needed to take care of the received data. When optimizing the merging more and more
we needed fewer threads to do the actual merge.

Besides OpenMP, we also rewrote the code to make the compiler vectorize as many
of the calculations as possible. Even if every resulting row can easily be parallelized
because they are not dependent of each other, there are many data dependencies when
creating the row. Much effort was put on splitting up and arranging the calculations in
the most efficient way in order to make the best use of the vector instructions.

53

11
Conclusion and further work

The FFB implementation has been optimized and parallelized so it can create an image
in real-time for a small SAR system without using all the computing power (if we have
more than one core) until the last pulse has been collected. This means we could reduce
the approximations and get better image quality.

The time from the last pulse is collected to the image is created is quite high for the
medium test case. There are however enough idle resources during the pulse collection
to catch up, using at least four cores (3.06 GHz), when a series of images created in
stripmap mode. Therefore, we meet the real-time demands also for a medium sized SAR
system.

Using OpenMP, we were able to carry out the parallelization with high engineering
efficiency, since it was easy to add parallelism and focus could be put on removing de-
pendencies and optimizing the code.

There are however more improvements that can speed up the implementation even
more. The part of the running time, that was stalled due to cache misses, increased
in the vectorized and optimized version, compared to the original version. So optimizing
the memory accesses would be something to look into in the future. A big motivation
is to improve the memory accesses when reading non-linear paths in memory because a
non-linear flight path will also cause distortion in the memory paths. Therefore, unlike
the case if a linear flight path where memory paths only are distorted in the later iter-
ations, non-linear read paths can arise for all iterations. To avoid reading in non-linear
paths in the memory, it could be possible to pre-compute the indices for the contributing
subapertures in a merge, before they are accessed in memory, and shuffle them to utilize
the cache better.

The merging bases were not considered in the scope of this work but that could possibly
result in another improvement if a better set up were found that reduced to overhead
for creating parallel region while still maintaining the desired image quality.

54

CHAPTER 11. CONCLUSION AND FURTHER WORK

Another possible direction to go would be to do all or part of the calculations on GPUs,
which has been studied to some extent in [20].

55

Bibliography

[1] M. Skolnik, Introduction to Radar Systems. McGraw-Hill Book Co., second ed.,
1980.

[2] A. Olofsson, Real time Signal Processing for Airborne Low-Frequency Ultra Wide-
band SAR (In Swedish). Chalmers., first ed., 2003.

[3] This image is used with courtesy of Annelie Wyholt.

[4] M. Budge, “Radar waveforms & signal processing,” Spring 2011. http://www.ece.
uah.edu/courses/material/EE710-Merv/SARPart1_11.pdf (24 May 2012).

[5] L. Ulander, H. Hellsten, and G. Stenström, “Synthetic-aperture radar processing
using fast factorized back-projection,” IEEE Transactions on Aerospace and Elec-
tronic Systems, vol. 39, no. 3, pp. 760–776, 2003.

[6] L.-E. Andersson, “On the determination of a function from spherical averages,”
SIAM Journal on Mathematical Analysis, vol. 19, no. 1, pp. 214–232, 1988.

[7] L. Ulander, P. Frölind, and T. Martin,“Processing and calibration of ultra-wideband
sar data from carabas-ii,” Proceedings of CEOS SAR Workshop, vol. 450, pp. 273–
278, 1999.

[8] This image is used with courtesy of Anders Åhlander.

[9] A. Åhlander, H. Hellsten, K. Lind, J. Lindgren, and B. Svensson, “Architectural
challenges in memory-intensive, real-time image forming,”Parallel Processing, 2007.
ICPP 2007. International Conference, p. 35, 2007.

[10] G. Moore, “Cramming more components onto integrated circuits,” Electronics,
vol. 30, no. 8, 1965.

[11] G. Amdahl, “Validity of the single processor approach to achieving large scale com-
puting capabilities,” AFIPS spring joint computer conference, pp. 483–485, 1967.

[12] “Amdahls law.” http://upload.wikimedia.org/wikipedia/commons/e/ea/

AmdahlsLaw.svg (24 May 2012).

56

http://www.ece.uah.edu/courses/material/EE710-Merv/SARPart1_11.pdf
http://www.ece.uah.edu/courses/material/EE710-Merv/SARPart1_11.pdf
http://upload.wikimedia.org/wikipedia/commons/e/ea/AmdahlsLaw.svg
http://upload.wikimedia.org/wikipedia/commons/e/ea/AmdahlsLaw.svg

BIBLIOGRAPHY

[13] J. Gustafson, “Reevaluating amdahl’s law,” Communications of the ACM, vol. 31,
no. 5, 1967.

[14] “Gustafsons law.” http://upload.wikimedia.org/wikipedia/commons/d/d7/

Gustafson.png (24 May 2012).

[15] http://www.openmp.org/ (24 May 2012).

[16] O. A. R. Board, “Openmp application program interface,” May 2008. http://www.
openmp.org/mp-documents/spec30.pdf (24 May 2012).

[17] “Openmp is being improved for accelerators, multicore and embedded systems,”
March 2012. http://openmp.org/wp/2012/03/openmp-is-being-improved-

for-accelerators-multicore-and-embedded-systems/ (24 May 2012).

[18] “Server performance summary.” http://www.dclink.com.ua/lib/userfiles/

Server_Performance_Summary.pdf (24 May 2012).

[19] “Fftw.” http://www.fftw.org/ (24 May 2012).

[20] M. Blom and P. Follo, “Vhf sar image formation implemented on a gpu,”Geoscience
and Remote Sensing Symposium, 2005. IGARSS ’05. Proceedings. 2005 IEEE In-
ternational, vol. 5, pp. 3352–3356, 2005.

57

http://upload.wikimedia.org/wikipedia/commons/d/d7/Gustafson.png
http://upload.wikimedia.org/wikipedia/commons/d/d7/Gustafson.png
http://www.openmp.org/
http://www.openmp.org/mp-documents/spec30.pdf
http://www.openmp.org/mp-documents/spec30.pdf
http://openmp.org/wp/2012/03/openmp-is-being-improved-for-accelerators-multicore-and-embedded-systems/
http://openmp.org/wp/2012/03/openmp-is-being-improved-for-accelerators-multicore-and-embedded-systems/
http://www.dclink.com.ua/lib/userfiles/Server_Performance_Summary.pdf
http://www.dclink.com.ua/lib/userfiles/Server_Performance_Summary.pdf
http://www.fftw.org/

	Introduction
	Background
	Scope of work

	Radar
	Radar basics
	Range determination
	Sampling
	Frequency
	Resolution and pulse compression

	SAR
	Geometry

	SAR signal processing
	Radar echo model
	Image creation in the time domain
	Global backprojection
	Fast factorized backprojection

	The SAR system used in this project
	Signal Processing
	Data structure
	Image creation
	Interpolation
	Data representation in memory
	Adressing pattern

	Parallelism
	Motivation
	Limitations
	Granularity
	Exploiting parallelism
	Instruction-level parallelism
	Data parallelism
	Task parallelism

	OpenMP
	Execution and memory model
	Programming with OpenMP
	Internal control variables
	OpenMP directives
	Example
	Overhead
	Behaviour of an OpenMP program

	Optimizing and parallelizing the FFB
	Data collection
	Merging
	Vectorization

	Test environment
	Result
	Small test case with delay
	Small test case without delay
	Medium test case with delay
	Medium test case without delay

	Performance analysis
	FLOPS
	Cache utilization
	Cycles per instruction

	Discussion
	Performance
	Small system
	Medium system

	Portability
	Scalability
	Engineering efficiency

	Conclusion and further work
	Bibliography

