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Aire, and ye Elements the eldest birth
Of Natures Womb, that in quaternion run
Perpetual Circle, multiform; and mix
And nourish all things, let your ceasless change
Varie to our great Maker still new praise.
-John Milton, Paradise Lost



Abstract

The recent surge in popularity of Smart Phones and other mobile devices equipped
with inertial sensors has made Indoor Positioning a hot research area. This report
covers the conception, implementation, and evaluation of a Pedestrian Dead Reckon-
ing System. Such systems often serve as bases for Indoor Positioning Systems which
are used to track persons, vehicles, or goods inside indoor spaces. A Pedestrian
Dead Reckoning system provides an estimate of trajectories walked by pedestrians.
They do so by manipulating measurements of the accelerations and angular rates
the device is subjected to. The system is intended to be used in conjunction with
other systems that provide information about the absolute position such as networks
of IR-beacons or Wifi-devices.

The system’s purpose is to produce good positional estimates for mobile devices
placed in the pocket. For the system to work under such circumstances, its orien-
tation has to be estimated. A quaternion representation of the orientation is used
for its many advantages. The orientation estimation is done by fusing data from
gyroscopes and accelerometers. Three different filters are evaluated for the fusion,
two types of Extended Kalman Filters and one Complementary Filter. One of the
Kalman Filters uses a Gauss-Newton iteration algorithm to convert measurements
of the acceleration to quaternion form. A part of the orientation, the tilt, is used by
a separate step detection and step length estimation algorithm. The remaining part
of the orientation, the heading, is combined with the step information to produce
the trajectory. Additionally, a mapping algorithm, is created and added on top of
the dead reckoning algorithms to further improve the accuracy of the system. It
exploits knowledge of the physical surroundings in which the person moves about.
This information is used to correct drift in position and heading.

The average error in position during 80 meter walks inside an office building without
the mapping algorithm was 1.6 meters. With the mapping algorithm that error was
reduced to 0.52 meters.

Keywords: Inertial Navigation, Indoor Positioning, Pedestrian Dead Reckoning,
Quaternions, Indoor Environment, Kalman Filters, Map-Matching, Motion Mea-
surements
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Nomenclature

IPS Indoor Positioning System

GPS Global Positioning System

IN Inertial Navigation

INS Inertial Navigation System

DR Dead Reckoning

GNSS Global Navigation Satellite System

RFID Radio Frequency Identication

UWB Ultra-Wide Band

SHS Step-and-Heading System

MEMS Microelectromechanical System

EKF Extended Kalman Filter

G-N Gauss-Newton
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1 INTRODUCTION

Due to the ever-growing capabilities of today’s mobile devices, those of the Smart
Phones in particular, and to their abundance, the market for Indoor Positioning Sys-
tems (IPSs) is expanding, (Harle 2013). An IPS estimates the position of objects,
devices, or persons inside buildings. Applications for IPSs can be found in security
critical environments such as prisons or hospitals - when an employee sounds the
alarm, help can quickly be sent. Fire fighters can be guided inside burning buildings
to victims in need of rescue, (Stella et al. 2012). They can also be used to monitor
and log the movements of personnel, goods, or AGVs to optimize resource utiliza-
tion, (Lu et al. 2013). Other applications are in the retail sector, a well-organized
customer, for example, can make a shopping-list before going shopping and then
be guided to the items by an application using information about his position as
he roams about in the store. He can also be given tailor-made information about
special offers on items as he walks past them, (Kopytoff 2013). An elderly nurs-
ery home resident at large can, if wearing a device communicating with an IPS, be
tracked and subsequently returned back to safety and confinement yet again.

For a long time, tracking technologies have existed. Among the most well-known
are the Global Positioning Systems (GPSs). Inside indoor spaces, however, many
signals, such as those used by GPSs, are prone to be blocked or distorted, rendering
such technologies impracticable indoors. The accuracy requirements of IPSs are
also often higher than those of their outdoor counterparts. Technologies already
deployed often rely on wireless short range beacons, bluetooth or wifi beacons for
example, which can substitute GPSs indoors, (Liu et al. 2007). They are called
wireless IPSs. It can, however, be costly to deploy a great number of beacons. To
reduce that number, and to enable positioning where the beacons are few and far
between, Inertial Navigation (IN) can be used. Inertial Navigation Systems (INSs)
require motion sensors such as accelerometers, magnetometers, and gyroscopes to
produce estimates of changes in position. A combination of these two techniques
forms a hybrid IPS (Harle 2013).

The accuracy can be further improved if the information given by the INSs and
wireless IPSs is combined with knowledge about the physical surroundings, that is,
map information. This process is called mapping. An array of different mapping
techniques exists, most of them compare the estimated trajectory against physically
possible trajectories, that is, ones that do not transgress walls or other, most likely,
impassable objects, (Attia et al. 2013).

A big part of today’s research concerning IPSs is focused on the positioning of
pedestrians due to their recent inclination toward always carrying Smart Phones
with them. These devices come equipped with the motion sensors required by INSs
as well as the ability to communicate with a variety of beacons, making them poised
to serve as indoor tracking devices, (Lee et al. 2002). The process of calculating
the trajectory of a pedestrian with data from inertial sensors is called Pedestrian
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2 Chapter 1 Introduction

Dead Reckoning (PDR). Magnetometers are also often included in PDR systems. A
fundamental part of PDR is to use accelerometers and gyroscopes to measure linear
accelerations and angular rates to determine the device’s position and orientation,
(Kang et al. 2012).

The gyroscopes and accelerometers found in Smart Phones and many other mobile
devices are cheap as well as microscopical in size. They are so called MEMS-sensors,
(Jimenez et al. 2009). For all their advantages, though, there is one department in
which they lack; the quality. The gyroscopes often suffer from both noise and bias.
Integrating a noise-ridden and biased signal will inevitably lead to a drift in what-
ever is estimated. This drift grows large over time and will, if not corrected, lead
unacceptable errors in orientation. Accelerometers, too, suffer from these imper-
fections, and if the measurements they provide were to be integrated twice into a
traveled distance, the errors would be vast. To reduce the drift brought on by the
signals’ noise and bias, the greatest adversaries of Dead Reckoning, it is common to
go about the problem in other, not as brute-force, ways.

A PDR system is often divided into two parts, one estimating the length of each
step and the other the heading, (Harle 2013). The orientation is often estimated
with the use of both the gyroscope and accelerometer data. The perpetual force
of gravity is measured by accelerometers, and the measurements give an absolute
estimate of a part of the device’s orientation, namely the tilt angles. Thus part of
the gyroscope’s drift can be compensated for by an accelerometer. The drift of the
remaining part of the orientation, the heading, can be reduced measuring the earth’s
magnetic field or by using mapping. For the step length estimation it is popular to
use the vertical acceleration of the device. In order to get it even when the device
is tilted, the device’s orientation has to be estimated, (Roetenberg 2006).

When carried in the pocked, which is common, phones and other devices are often
tilted in various ways. To be able to update the heading no matter how the phone
is tilted, its orientation must be estimated, both in relation to the person carrying
it, and to the world. One of the main objectives of this project was to intertwine
data from different sensors, riddled with noise, into a precise estimate of the ori-
entation. A quaternion-based model was chosen to describe this orientation. The
gyroscope and the accelerometer are used to estimate the tilt angles, the gyroscope
is also used to estimate changes in the heading. Methods that try to find pure
measurements of the earth’s magnetic field and subsequently use that data to get
absolute measurements of the heading are evaluated. Multiple filters fusing the data
from the different sensors are compared. A simple mapping algorithm was devised,
implemented, and tested.

1.1 Background

This master’s thesis was carried out at the company Ascom in Gothenburg, Sweden.
Ascom is a company whose focus is on wireless solutions, on-site communication,
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and network testing.

1.2 Purpose

The purpose of this thesis project is to develop a PDR system that estimates changes
in position, and that can be used in between updates from overlying wireless IPSs.
It should utilize the sensors that modern mobile devices are commonly fitted with
and interfere as little as possible with user habits. It should be able to exploit map
information to further improve accuracy.

1.3 Scope

The PDR system is to use accelerometers, magnetometers, and gyroscopes. Other
sensors which often come in the same package as the aforementioned are pressure
sensors and thermometers. The PDR system is limited to only detect changes in
position in the horizontal plane, that is, it will not detect if a user walks up a flight of
stairs or takes the elevator to another floor. For that reason pressure sensors, which
are commonly used to detect changes in altitude, will not be used. Thermometers
can be used for calibration purposes, but due to time limitations they have not been
utilized. The mobile device is limited to be carried either in the pocket or on the
hip.



2 Introduction to the Research Areas and
Relevant Work of Others

Indoor Positioning, inertial navigation, and Pedestrian Dead Reckoning have been
hot research areas for the past decade or so. Some of the work done in previous
research is presented below, divided into sections based on technologies used and
where the tracking device is placed on the body.

2.1 Wireless Indoor Positioning Systems

Historically, a majority of the work on IPSs has been based on the same principle
as Global Navigation Satellite Systems (GNSS), i.e. triangulation. These wireless
indoor positioning systems are often based on technologies already commonly de-
ployed, for example WiFi systems. The advantage of using existing technologies is
that in many buildings the infrastructure is already there. However, a downside
is that the infrastructure is not optimized for position tracking. An infrastructure
designed to be used by IPSs can achieve high accuracy though. Different IPSs have
different demands on location information. Some need an absolute position, others
a relative or a symbolic. A symbolic position can be, for example, which room the
device is located in. Depending on the application, the tracking coordinates are
expressed in 2-D, a map, 2.5-D, a map with floors, or in 3-D (Liu et al. 2007).

Existing wireless IPSs technologies are primarily based on technologies such as
GPS, Radio Frequency Identication (RFID), WLAN, Bluetooth, Ultra-Wide Band
(UWB), as well as cellular technologies such as Global Systems for Mobile Communi-
cations GSM technology. There have been a lot of improvements recently in receiver
technologies, which has led to that the performance of wireless IPSs has increased,
e.g. UWB systems have reached accuracies down to decimeters. Some problems
still exist with these technologies, though, usually related to the environment where
they are used, e.g. inside buildings, where multipath noise and other noises exist.
Nonetheless, these problems can be circumvented and a high enough accuracy can
be acquired for most applications. The main remaining issue with wireless IPSs is
the cost to set up the system and its infrastructure, (Harle 2013), (Liu et al. 2007).
The in-depth details of these technologies, and their problems, are outside the scope
of this thesis.

4



2.2 Pedestrian Dead Reckoning 5

2.2 Pedestrian Dead Reckoning

A branch of IPSs that gains increasingly more attention consists of the PDR systems.
They utilize inertial measurements to track the user using various dead reckoning
methods. An important aspect of PDR is that it only provides relative position,
thus a starting position is most often needed. For this reason PDR systems are
usually hybrid systems, employing a position update from a wireless IPS from time
to time, from which the PDR system takes over, (Harle 2013).

The inertial sensors PDR systems use are accelerometers and gyroscopes. They can
also utilize; magnetometers to estimate the direction toward the magnetic north,
pressure sensors to estimate changes in altitude, and thermometers to estimate
changes in temperature. The temperature is not used in the position estimation
directly but used to model temperature dependent behaviors of the other sensors,
(Kourogi et al. 2010), (Fang et al. 2005).

The methods used in PDR differ with field, what kind of walking movements are
considered, and where the sensors are attached, on a boot, in a backpack, in a
pocket, et cetera. They also differ with environment, in a similar fashion wireless
IPSs do. In some buildings disturbances in the magnetic field limit the possibility
of using magnetometers, thus creating a need for new magnetometer models.

Generally PDR systems rely on one of two different constellation of sensors. The first
utilizes inertial sensors together with magnetometers, where the magnetometers give
the absolute heading which gives the possibility to correct the gyroscope’s bias drift.
Also, gyroscopes only give relative heading, whereas magnetometers can provide
an initial heading. The other is a more basic approach that makes use of only
inertial sensors, with the reasoning that there are too many disturbing magnetic
fields indoors, (Foxlin 2005) and (Kwanmuang et al. 2011). In both approaches the
combination of a 3-axis gyroscope together with a 3-axis accelerometer is standard.

Most PDR systems are designed to work when the user is walking normally, they
detect the steps and then estimate the distance with the help of the steps. This
means that they do not work as good under other circumstances, for example when
the user is crawling or strafing. There are, however, other systems that instead
estimate the position with the planar acceleration measurements provided by the
accelerometer, (Watanabe and Minegishi 2009). These systems are not as limited
with regard to the way the user is moving as the general PDR systems.

The focus here is on so called Step-and-Heading Systems (SHSs). They model the
motion of a person as a sequence of steps. Each step has a length and a heading that
when combined become a Step Vector. The trajectory is then created incrementally
by adding each new Step Vector to the previous, (Harle 2013). One common method
for detecting the steps is to analyze the measured vertical acceleration. The same
measurements are also used to determine the step’s length. Another method is to
analyze the pendulum motion the sensors are subjected to when they are worn on
the leg or the hip. The heading is usually estimated by integrating the gyroscope’s
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angular rates. A magnetometer has been utilized by (Faulkner 2010) to reduce the
drift in the heading angle which stems from the gyroscope’s bias and noise.

Some different types of PDR techniques commonly used are detailed below, grouped
after where on the body the inertial sensors they rely on are located. Depending on
this location, the sensors are subjected to different motions and these can be used
in various ways to improve the accuracy of the position estimate. The restrictions
on the sensors’ size and weight are also somewhat location dependent.

Backpack-Mounted Inertial Navigation

One branch of the PDR systems consists of the Backpack-mounted PDRs. The sen-
sors these systems rely on are the same as those other PDR systems usually rely on;
accelerometers, gyroscopes, and magnetometers. They are often of high performance
but heavy. Backpack-mounted PDR systems could be relevant in application areas
wherein the users are carrying heavy equipment for other reasons. The additional
weight of the sensors would not have as large an impact in those cases as it would
in other. A backpack strapped hybrid solution using a 1 degree per hour drift gyro-
scope, and accelerometers, together with a GPS was tested in (Jussi Collin 2003).
The performance for a 1-axis, and a 3-axis gyroscope was tested, and it was con-
cluded that a 1-axis gyroscope is sufficient if two requirements are met.

1. The initial angle between the local frame’s vertical axis and the sensor frame’s
vertical axis is known, and

2. No rotation along the local frame’s horizontal axes occurs.

The Backpack-mounted PDRs generally produce good results, with only a minor
drift in heading over time. However, gyroscopes of equal quality to those used by
such systems are generally only found in vehicles because they are not convenient
to carry around in most cases, nor are they possible to put inside mobile devices,
due to their weight and size, (Jussi Collin 2003).

Boot-Mounted Inertial Navigation

The inertial sensors can also be put on or inside a boot. This is often the case when
rescue workers are the ones who are to be tracked. This location has the advantage
that it is known that the module is fixed relative to the foot. In addition, there
will be intervals during gait where the sensors are not moving. These intervals take
place when the foot is on the ground and can be used to estimate the sensors’ bias
(Castaneda and Lamy-Perbal 2010). A more refined gait model to estimate bias
drift was proposed by (Suh and Park 2009). Their model effectively increased the
heading accuracy. However, it was only tested on 14 meter long intervals so it can
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not be completely concluded that their sophisticated gait model increases the overall
tracking performance.

Pocket Placed Inertial Navigation

A majority of people have their phone placed in the trouser pocket, it is particularly
common among young males, (Ichikawa et al. 2005). These phones often have built-
in inertial sensors. Because of that, much of the research focuses on how PDR
systems work under these conditions. The device is subjected to more or less the
same motions when worn on the hip as when placed in the pocket. In (Judd and
Vu 2008), they evaluated how their PDR system worked when the device was put in
different places on and around the hip. They found that mounting the module on the
front or the back of the torso produced the best results, whereas accuracy is reduced
when it is attached to the side of the hip. Their method is based on the assumption
that the module is fixed with respect to the body. However, if this assumption does
not hold and the phone’s orientation relative to the body changes, the model could
faultily interpret that as a change in heading. Thus, their approach is somewhat
unrealistic when it comes to normal Smart Phone usage. The assumption that the
phone is fixed relative the body does generally not hold when it is worn in a pocket.

Allowing for a non-fixed position in the pocket opens up for a new problem, that
the device’s orientation is not fixed with respect to the body. Methods that make
use of the placement of the device by analyzing the swing motion during gait are
proposed in (Bissig et al. 2013), and (Steinhoff and Schiele 2010). They use the
gyroscope together with the accelerometer to determine the orientation angles of
the phone. The start and the end of the step are estimated using the extrema in
the orientation. The orientation transition provides the length of each step. This
method is allegedly better at detecting low frequency steps compared to methods
using the accelerometer as a pedometer.

A novel approach where a more relaxed view on where the phone is located on the
body was made in (Blanke and Schiele 2008), and (Kunze et al. 2005). They tried
to detect the phone’s position on the body and act accordingly, with relatively good
results.



3 THEORY

The inner workings of PDR are described in detail in the following section. To be
able to convert measurements from the built-in sensors of today’s mobile devices
to changes in position, some knowledge of kinematics, sensor theory, and filtering
theory is required. The angular rates taken from a gyroscope, for example, can be
used to detect changes in the walking direction, no matter how the device is borne
by a person. The mathematics allowing for such conversions is one of the topics
that will be touched upon in the following section. Furthermore, methods for the
fusing of different sources of information are described.

3.1 Pedestrian Dead Reckoning

When modeled, a person’s movement can be divided into three parts, the first
determining when steps occur, the second the steps’ lengths, and the third the
person’s heading each step. The step detection and the step length estimation are
often strongly connected. As mentioned before, PDR systems are often Step-and-
Heading systems. The three steps a SHS takes are:

1. Detect when a step occurs

2. Estimate its length

3. Estimate its heading

In a coordinate frame where the x-axis points toward north, the y-axis east, and
the z-axis toward the Earth’s core, the motion of a person can be mathematically
described by

xk+1 = xk + Lk sin(ψk) (3.1)

yk+1 = yk + Lk cos(ψk) (3.2)

where ψ is the heading angle and L the step length. The system has to be provided
with initial values for x and y, that is, it has to be provided with a starting position.

In most PDR systems the heading estimate is the major source of error in position,
the exception being when the user moves about in an extraordinary style, for example
when crawling or strafing. (Harle 2013). Moreover, if the system is to work when
the device is tilted, this tilt has to be estimated and compensated for. The tilt
angles can be estimated by fusing angular rates from the gyro with measurements
of the gravitational force from the accelerometer (Madgwick et al. 2010).

8



3.1 Pedestrian Dead Reckoning 9

Step Detection

It is common to use the accelerometer’s signal to detect steps, but the signal has
different characteristics depending on where the device is placed on the body. The
focus here has been on methods that work when the device is placed on the hip,
in the leg pocked, or in the breast pocket. If the device is placed on the boot, the
accelerometer signal do not exhibit the characteristics these models require to work
optimally (Godha and Lachapelle 2008).

The measured vertical acceleration can be used to detect when steps occur, a model
that does so is the one proposed by (Weinberg 2002), which uses a single axis
accelerometer. There are two key accelerations that act on the device during each
step. The first happens at the beginning of the step when the leg the pushes the
body upwards which leads to a large negative vertical acceleration. The second
takes place when the leg swings back and the body moves forward which leads to a
large positive vertical acceleration. These values can also be used to estimate the
length of the steps, assuming that the acceleration increases with longer steps. A
plot of the estimated vertical acceleration of a device carried in the pocket is shown
in Figure 3.1.
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Figure 3.1. The accelerometer signal during some steps.

For cases when the sensors are located in a pocket, on the leg, or on a shoe, the
device’s orientation can be used for step detection. (Steinhoff and Schiele 2010),
(Bissig et al. 2013). These methods are based on that the orientation of the leg
changes periodically during walk. They derive and use the equations

L = LC · L + (1− LC) · g (3.3)
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r = g× L (3.4)

H = HC ·H + (1−HC) · r (3.5)

Φ = arccos((L×H) · g) (3.6)

in which L is the vector aligned with the leg, H is the vector pointing away from the
hip, g the gravitational vector expressed in the Sensor Frame, and r is the rotation
axis vector. The vectors L and H are low-pass filtered with the constants LC and
HC . The angle Φ is the inclination angle between the g and L×H. An illustration
of the vectors and Φ is shown in Figure 3.2. The maxima and minima of Φ can then
be used to detect when steps occur.

Figure 3.2. Depiction of the vectors L, H, g, and r at the two extrema of a step.

Step Length Estimation

The step length could be estimated by integrating the horizontal acceleration twice
over each step. Doing so with noisy data would bring on vast errors. Instead the
information from the step detection models described above can be used to estimate
the steps’ length.

The equation

L = K(max(acc)−min(acc))1/4 (3.7)

has been used by many, and was first proposed by (Weinberg 2002). In Eq. 3.7
K is a constant which has to be tuned for each person. This model is based on
the assumption that the difference between these two extrema increases with longer
steps.

The model that (Bissig et al. 2013) proposed calculates the angle between the two
opposite extrema of the leg orientation and uses it to estimate the step length. This
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angle, denoted as α, is the difference between the two extrema of the angle Φ in Eq.
3.6

α = Φmax − Φmin. (3.8)

The step length, L, is then calculated as

L = c sin
α

2
(3.9)

where c is constant tuned for the individual tracked.

Step Heading

There are many ways of estimating the step heading, many make use of gyroscopes
while others use magnetometers or a combination of the two. Changes in the heading
angle can be estimated by integrating angular rates from gyroscopes. This can be
done in numerous ways, some of them will be described later. The heading can be
calculated from the ratio between measurements of the Earth’s magnetic force in
two perpendicular directions that lie in the horizontal plane. These are denoted as
hx and hy, respectively. The equation

Ψ = arctan

(
−hy
hx

)
. (3.10)

is then used to calculate the heading. If x points toward the magnetic north and y
toward the magnetic east, then the estimated heading should be zero.

The problem with the approach using the gyroscope is that its long term accuracy
is poor due to the noise and bias that exist on the gyroscope’s signal. The other
approach, using the magnetometer, does not suffer from the same drift but is instead
very noisy. On top of that, indoors there are many disturbing magnetic fields which
come from electronic equipment as well as ferromagnetic materials, (Kwanmuang et
al. 2011). One way to reduce the drift in the first approach is to estimate the bias
of the gyroscope. That was done by (Madgwick et al. 2010).

Both approaches can be used in conjunction, and if successfully done so, the imper-
fections of each of sensors can be compensated for by the other. This has been done
by many, for example by (Marins et al. 2001).

3.2 Gyroscopes

A gyroscope is a sensor that can be used to measure angular rates. A wide range
of gyroscopes exists, some are simple mechanical devices while others rely on far
more advanced technologies, such as the quantum gyroscopes. Their sensitivity
ranges from the coarse precision of the MEMS-gyroscopes to the stellar accuracy of
the quantum gyroscopes. The gyroscopes found in Smart Phones and other mobile
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devices are based on MEMS-technology, and have thus limited precision. These
gyroscopes are affected by temperature, and will for that reason have to be re-
calibrated from time to time to maintain even a modest precision (Jay Esfandyari
2010).

3.3 Accelerometers

Unable to transgress nature’s laws, accelerometers measure not only actual changes
in velocity but also the force that gravity inexorably exerts on them. They are
said to measure the proper acceleration. The proper acceleration is the acceleration
relative to a free-fall observer whose acceleration is g toward the core of the earth.
Many modern mobile devices come equipped with 3-axis accelerometers, each of
their axes are perpendicular to the others. If one of the axes of an accelerometer
moving with constant velocity points directly toward the earth’s core, it should
measure an acceleration of −g while the other two should measure no acceleration.
This can be exploited to get an absolute measurement of the device’s tilt angles
(Pedley 2013).

3.4 Magnetometers

A magnetometer is an instrument that measures magnetic fields. It can measure the
magnetization of a magnetic material, the Earth’s magnetic strength in a specific
direction, or the direction of the earth’s magnetic field. In a lot of new devices mag-
netometers are included, high and medium end Smart Phones and GPS receivers,
for example, often have 3-axis magnetometers, and cars often have 2- or 3-axis
magnetometers. These magnetometers are commonly used as electronic compasses
(eCompass) (Pedley 2013).

First, some basic theory on the earth’s magnetic field and how to determine the
direction of the true magnetic north, for a certain location on Earth three pieces of
information are needed.

1. The declination angle. The angle between the magnetic north and the true
north.

2. The inclination angle. The angle between the Earth’s horizontal plane and
the Earth’s magnetic field lines.

3. The strength of the magnetic field.

The inclination angle naturally varies between - 90◦ in the south hemisphere to +
90◦ in the north. The magnetic field strength ranges from 25 to 65 µTesla based on
location and it also varies over time. When it comes to navigation the declination
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angle is of special interest, and over time it has undergone a lot of changes. Local
differences affecting these three variables are due to the variations in the Earth’s
core, and the composition of the ground, a high composition of iron ore, for example,
interferes with the magnetic field. There are also significant time-variant changes,
where the declination angle changes up to 0.4◦ a day. Changes in time are due to
magnetic storms in short terms, and secular variation that has variations on a big
time scale ranging from milliseconds to millions of years. Secular changes reflect
changes in the Earth’s core, (Magnetic declination 2014) and (Gauss 2014). As of
the date 2014-03-20, in the Gothenburg region, the declination and the inclination
angles were, 2◦47′37” and 71◦23′59” respectively. The magnetic field strength was
50,653.4 nT, (NOAA 2014).

The Earth’s geographic coordinate system is defined as a perpendicular x-y-z system,
the x-axis pointing north, the y-axis pointing east, and the z-axis pointing down.
To estimate the direction of the magnetic north two magnetometers are needed. A
common setup is to have the two sensors representing the Earth’s x-axis and the
y-axis respectively. The heading is defined as clockwise rotation along the Earth’s z-
axis. In the Earth’s horizontal plane a magnetic component is only detected toward
the magnetic north, along the west-east axis no magnetic field is seen, and with
given magnetometer readings the heading is

Heading = atan2(
−my

mx

) (3.11)

The function atan2 gives a full coverage of the range [−π, π]. The heading must
then be adjusted for the declination angle.

As with all sensors, magnetometers accuracies range over a wide spectrum, where
microelectromechanical systems (MEMS) sensors are found in the very low regions.
Due to the low accuracy of these MEMS magnetometers there is no point in being
overly anal about a perfect adjustment of the declination angle for these sensors. It
is more critical to calibrate the sensors with respect to gain and bias than it is to
find a good estimate of the declination angle. Because the sensors are located where
they are, on a chip, magnetic interference from that chip is present. Thus a big part
of the offset is due to this interference, (ST 2010). By knowing the magnetic field
strength of the Earth, the chip’s magnetic field can be compensated for.

Outlier Detection

When ambulating indoors, the magnetometer measures constantly changing mag-
netic fields. It is, however, the Earth’s magnetic field it needs to measure if it is to
give an absolute estimate of the device’s and the person’s heading. Therefore, if the
magnetometer is to be used to that end, an outlier detector, that discriminate the
pure readings of the Earth’s magnetic field from the disturbed, has to be used.

The detector used by (Lee and Park 2009) calculates the difference between the
magnitude of the magnetometer’s measurement vector and a reference magnitude,
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which often is the Earth’s magnetic field vector. If this difference is larger than a
certain threshold, the magnetometer is not used to update the orientation estimate.
Mathematically this condition can be put as

||mM | − |h|| < εM (3.12)

where mM is the measurement vector, h the Earth’s magnetic field vector, and εM
the threshold.

In the system proposed by (Sabatini 2006) the ratio between the magnitude of the
horizontal components and the total magnitude of the measured magnetic fields is
used. They call this ratio the Dip Angle. They calculate it as

α = arccos


√
m2
M,x +m2

M,y

|mM |

 (3.13)

where α is the Dip Angle. The Dip Angle is then compared to a location dependent
reference angle

|α− αref | < εdip. (3.14)

According to (Callmer et al. 2013) no one of the two outlier detection conditions
above succeeds in singling out the good measurements. In their stead, they propose
that the difference in angular rates from the gyroscope and magnetometer should
be looked at. They calculate this difference, λ, as

λk = yhk − yhk−1 − Tyωk−1 (3.15)

where yh is the heading according to the magnetometer, T the sampling time, and
Tyω the change in heading according to the gyroscope. This λ can sometimes be
small even though the magnetometer is disturbed, just by coincidence. To reduce
the impact of such coincidences, the average of λ over a number of samples,

λ̄k =
1

N

k∑
i=k−N+1

|λi| (3.16)

is used to determine how disturbed the reading is instead.

3.5 Kinematics

If an object is to be tracked in a three-dimensional frame, it is reasonable to describe
its motion with a mathematical model that considers three dimensions as well. The
mathematics describing the motion of a rigid body, be it linear or angular, is called
Kinematics. Linear motion and acceleration can be described the same way in three
dimensions as in two, they can be decomposed into components along arbitrary
axes with simple trigonometry. The same does not quite go for rotations in three
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dimensions. It is, however, key to correctly handle rotations in 3-space when the
angular rates from the gyroscope, measured in the device’s frame, are to be used to
update the heading of the device, and of the person carrying it. For that reason, a
summary of the workings of 3-space rotations will be given below.

Rotations in 3-space

A rotation, whether two- or three-dimensional, can either be point- or frame-fixed.
The former is a rotation of the coordinate frame with respect to a fixed point, or a
vector, the latter the rotation of a point, or a vector, with respect to a fixed frame
(Kuipers 1999, p. 47). Both types can be expressed mathematically with so called
rotation matrices. A rotation matrix either maps a point from one coordinate frame
to another, or rotates a point within a frame. Mathematically such a coordinate
transformation can be put as

pω = Rb/ωpb

where Rb/ω is the matrix and pω and pb are the point coordinates expressed in their
respective frames.

It so happens that the rotation matrix pertaining to a frame-fixed rotation is the
inverse, and transpose, of the corresponding point-fixed rotation.

R−1 = RT

and
Rb/ω = Rω/bT

(Kuipers 1999, p. 53).

In order to use the device’s measurements, given in the body frame, to track its
position in the world frame, the relationship between those two frames has to be
known, or estimated.

Euler Angles

The device’s orientation is defined, here, as the device’s angular position in relation
to the world frame. It can be described by three subsequent rotations about a
certain set of axes. These align the world frame’s axes with the device’s. The angles
related to those rotations are called the Euler Angles. In this thesis the axes rotated
round are those of the rotating coordinate system, namely the body axes. The same
body axis can be rotated round twice, but not back to back. For example; XYX
is a valid sequence whereas XXY is not. There are 36 different sequences in total,
(Kuipers 1999, p. 52).

The definition used in this project of the world frame’s axes is; the x-axis points
toward the north, the y-axis east, and the z-axis toward the earth’s core. This
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definition agrees with the so called right hand rule. The rotation sequence used is
the so called Aerospace Sequence in which the sequence of rotation axes is ZYX,
where the final total rotation matrix is calculated as

T = TφTθTψ =

1 0 0
0 cosφ sinφ
0 − sinφ cosφ

cosθ 0 − sin θ
0 1 0

sin θ 0 cos θ

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 (3.17)

The three angles, Ψ, θ, and φ, of the Aerospace Sequence are called heading, ele-
vation, and bank, respectively. The heading is the rotation about the Z-axis of the
world, the elevation the angle about the intermediate Y-axis, and the bank the rota-
tion about the device’s final X-axis. A depiction of an example Aerospace Sequence
is shown in Figure 3.3.

Figure 3.3. The Aerospace Euler Angles, heading ψ, elevation θ, and bank φ

Given a rotation matrix, the measurements from both the accelerometer and mag-
netometer can be easily converted from one of the frames to the other, since they
are linear quantities. Converting angular rates from one frame to another is not as
straightforward. A substantial amount of algebra has to be done to arrive at the
equation

φ̇θ̇
ψ̇

 =

1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ sec θ cosφ sec θ

ωxωy
ωz

 (3.18)

which can be used to update the Euler Angles given angular rate measurements
in the body frame (Kuipers 1999, p. 259). It is easy to notice that there exist
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singularities in Eq. 3.18 at θ = ±π
2
. These stem from a phenomenon called a

Gimbal Lock which essentially causes the loss of one degree of freedom.

Quaternions

The existence of singularities among the Euler Angles is one drawback. Another
is that concatenating rotations is both unintuitive and computationally expensive.
For those reasons, Euler Angles are unfit to represent the orientation in applications
wherein incremental angular updates of constantly changing frames are present. In
their stead, quaternions, or rather unit quaternions, can be used. The Quaternions
can be viewed as extensions of the complex numbers into 3-space. A complex number
has a one-dimensional imaginary part, whereas a quaternion has a three-dimensional.
A quaternion is often written as

q = [q0, q1, q2, q3]T (3.19)

where the first element, q0 represents an angle and the other three a vector. It is a
so called angle - axis representation. Given an angle α and axis v the corresponding
quaternion is given by

q =

[
cos (α/2)
sin (α/2)v

]
(3.20)

Compared to Euler Angles they are computationally sounder in the sense that it
is easier to keep a quaternion normalized than maintaining orthonormality when
updating a rotation matrix with many small rotational perturbations. Like Euler
Angles, a quaternion can easily be converted into a rotation matrix with the formula

T (q) =

2(q2
0 + q2

1)− 1 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) 2(q2

0 + q2
2)− 1 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) 2(q2
0 + q2

3)− 1


(Kuipers 1999, p. 126).

Concatenating rotations expressed in an ever-changing frame is simple with quater-
nions. The quaternion related to the incremental rotation, ω̄, is calculated with Eq.
3.20 and is then right hand quaternion multiplied with the quaternion describing
the previous orientation

qk+1 = qk ⊗ ω̄. (3.21)

This means that gyroscope measurements can be used easily to update a device’s
orientation. There exists an even simpler form yet, when the incremental angles are
small

qk+1 = qk + T q̇k = qk +
T

2
Ω(ωk) (3.22)
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where

Ω(ω) =


0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0

 (3.23)

(Kuipers 1999, p. 264).

3.6 Extended Kalman Filter

In PDR it is common to combine data from different sensors in filters. This process
is often called Sensor Fusion. The orientation of the device is commonly estimated
using Sensor Fusion of the gyroscope, accelerometer, and magnetometer in various
constellations. The orientation consists of the device’s tilt and heading angles, but
does not describe its position.

If the noise-characteristics of the sensors used are known, or closely estimated, the
Kalman Filter is often a candidate worthy of consideration. The filter most fre-
quently used in PDR systems is the Extended Kalman Filter (EKF). This filter
allows for nonlinear models. The nonlinear system is modeled as a number of states
with corresponding difference equations, and an observation model

xk = f(xk−1,uk−1) + wk−1 (3.24)

zk = h(xk) + vk (3.25)

where wk and vk are process and measurement noise, respectively. Both are uncor-
related zero-mean white noises with known covariances. Their covariance matrices
are denoted here as Qk and Rk. The state vector could for example consist of a
quaternion, then the prediction in Eq. 3.24 is done using Eq. 3.22. The observation
of the state, the orientation, can be done by measuring the force of gravity with
the accelerometer and the Earth’s magnetic field with the magnetometer, (Kim and
Golnaraghi 2004).

The filter algorithm is divided into two steps, the prediction and measurement up-
date step, which estimate the new mean value and variance of the state variable’s
distribution, N(x̂, P ) . The prediction step consists of the following equations

x̂k|k−1 = f(x̂k−1|k−1, uk−1) (3.26)

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk−1 (3.27)
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and the update of

ỹk = zk − h(x̂k|k−1) (3.28)

Kk = Pk|k−1H
T
k

(
HkPk|k−1H

T
k +Rk

)−1
(3.29)

x̂k|k = x̂k|k−1 +Kkỹk (3.30)

Pk|k = (1−KkHk)Pk|k−1 (3.31)

where Fk and Hk are the Jacobians of f and h, and higher order terms are neglected

F = Jf =
∂f

∂x

∣∣∣∣
x̂k−1|k−1,uk−1

(3.32)

H = Jh =
∂h

∂x

∣∣∣∣
x̂k|k−1

. (3.33)

The matrix P is the states’ estimated covariance matrix, (Terejanu 2003).

3.7 Gauss-Newton

If the orientation is represented by quaternions, the filter measurement update can
be simplified by utilizing a Gauss-Newton (G-N) algorithm to find the quaternion
that best fit the measurments of the Earth’s magnetic field and the force of gravity.
Then the measurement update becomes linear, (Lee and Park 2009).

The G-N algorithm is a method for solving non-linear least squares problems, pro-
posed by (Gauss 1857). Compared to the well-known Newton method the second
derivative is not needed, which makes it simpler to derive, and possibly less compu-
tationally expensive. The objective function to minimize is

Q(x) =
1

2

n∑
i=1

(yi − fi(x))2 ≡ 1

2

n∑
i=1

(ri(x))2

in which the number of functions must be greater than the number of variables,
n ≥ m, where m is the dimension of the state vector, x ∈ Rm, (Wang 2012).
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The method is initialized with a guess, x0, of the states. The variables that minimize
the objective function can be estimated iteratively. If a local minimum is found the
gradient of the objective functions is zero,

∆Q(x∗) = ∆r(x∗)T∆r(x∗) = 0 (3.34)

(Wang 2012).

The iterative process to find such a solution can be summarized with the following
steps

1. Calculate the Jacobian matrix

(Jr)ij =
∂ri(x

a)

∂xj
(3.35)

2. Calculate the direction toward the minimum of the function

∆xa = (JTr Jr)
−1JTr r(x

a) (3.36)

3. Take a step toward the minimum

xa+1 = xa −∆xa (3.37)

4. Repeat until convergence

(Wang 2012).

3.8 Mapping

In this context mapping is the process of combining output from PDR systems or
similar information with knowledge about the surroundings in which the IPS is
operating. It could be knowledge about the position of walls, corridors, or rooms.
With that information, many erroneous trajectories can be ruled out. A typical
mapping algorithm used together with an IPS checks certain conditions each step.
One such condition can be that no wall is between the start and the end position
of the step. That a person should walk through a wall - or some other, for humans,
impassable object - is, at the very least, improbable. If the INS does, however, claim
that such a transgression has taken place, corrective measures can be imposed upon
the heading angle as well as the position.

Numerous mapping algorithms exist, some of them are of the most modest of com-
plexities, others almost arcane, (Davidson et al. 2010). A well-designed mapping
algorithm can greatly reduce the drift in both heading angle and position, (Attia et
al. 2013). The system proposed by (Attia et al. 2013) consists of a PDR part and a
mapping part. For each step they do the following
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1. Update the old position with information from the PDR system

2. Give the updated position as input to the mapping algorithm

Their mapping algorithm is based on point-to-curve matching. It projects the up-
dated position onto the nearest passageway. Information about these passageways
is stored in maps. By always placing the updated position in a passageway, walls
and other objects are avoided.

One of the more advanced, and common, ways of utilizing map information is to fuse
it with trajectory data in Particle Filters. Based on Bayesian principles, they test
many different hypotheses and cast away those that do not fulfill certain criteria.
They are most apt at handling the presence of physical obstacles (Evennou and
Marx 2006).



4 Modeling and Implementation

The entire system developed in this project and all its components are detailed in
the following sections, starting with an overview of the system, then proceeding
with its in-depth details. The system is composed of two sub-systems, a PDR and
a mapping, similar to that proposed by (Attia et al. 2013). The PDR sub-system
utilizes a 3-axis gyroscope, a 3-axis accelerometer, and a 3-axis magnetometer. The
tracking device is assumed to be placed in the leg pocket, the breast pocket, or on
the hip.

4.1 PDR Model

The PDR-model detailed here is based on a sequence of step-vectors that describe
the position of a pedestrian over time. These vectors are assumed to lie in the
horizontal plane. The norm and direction of each vector is the corresponding step’s
length and heading, respectively. The Equations 3.1 and 3.2 are used to describe
the position mathematically, and are repeated here for convenience,

xk+1 = xk + Lk sin(ψk) (4.1)

yk+1 = yk + Lk cos(ψk). (4.2)

A step length estimation model similar to (Weinberg 2002) was chosen because of
its simplicity and relatively good performance. This model requires the vertical
acceleration of the person whose steps are to be estimated. In order to attain the
vertical acceleration of a device whose vertical axis is not perfectly parallel to that of
the navigation frame, its tilt angles must be known. The orientation, which contains
the tilt angles as well as the heading, can be approximated by fusing accelerometer,
magnetometer, and gyroscope measurements. This can be done in numerous ways,
three of them have been implemented in this project.

The heading and tilt angles are extracted from the orientation quaternion provided
by each filter. The tilt angles are used in the step length estimation which is then
combined with the heading of each step to produce the trajectory.

The PDR model is split into two separate modules, the orientation estimation and
the step estimation. Output from the former module is used as input to the latter.
The information from the two is then combined to produce the final trajectory. A
block diagram of the PDR system is shown in Figure 4.1.

22
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Figure 4.1. An overview of the PDR system.

Orientation Estimation

Three different filters, each one estimates the orientation, have been created. It is
much easier to update the orientation with angular rates when it is represented by
quaternions than when represented by Euler Angles. That and the Euler Angles’
singularities tip the scale in favor of quaternions for the update of the orientation
with gyroscope measurements. The equation used to update the orientation with
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gyroscope measurements is repeated here for convenience,

qk+1 = qk + T q̇k = qk +
T

2
Ω(ωk). (4.3)

All three filters use a quaternion-representation for the orientation and exploit the
gravitational force to get absolute approximations of the device’s tilt and the Earth’s
magnetic field to get absolute estimates of the device’s heading. They differ in how
they update their states with accelerometer and magnetometer measurements. The
first filter updates the tilt angles separately with Euler Angles and trigonometry
in a complementary filter. The second is an EKF that completely operates in the
realm of quaternions, unlike the first. The last is also an EKF. It uses a G-N algo-
rithm to find the quaternion that best fits the measured accelerations and magnetic
fields to the gravitational acceleration and the Earth’s magnetic field, respectively,
and this quaternion is then used in the measurement update. The main difference
between the first model and the other two is that because they use a quaternion-
representation as opposed to an Euler Angle, they are free of singularities. For that
reason the latter two models form a sounder base for a PDR.

The way the accelerometer and magnetometer are incorporated into the orientation
estimation is different in the three filters, as mentioned before. Their purpose is the
same though, to eliminate drift in the orientation.

Step Detection and Step Length Estimation

Since it is the vertical acceleration in the World Frame that is sought, the accel-
erations measured in the Device Frame have to be transformed. The orientation
provided by each of the three filters can be used to create a rotation matrix that is
then used to perform this transformation. The equation

Wa = T (q)ba (4.4)

describes how such a transformation is done. The vertical acceleration signal is low-
pass filtered. The signal is then analyzed, to detect the steps and to estimate their
lengths, in a similar fashion as in the model proposed by (Weinberg 2002). The
difference is that a 3-axis accelerometer is used instead of a single axis which allows
the device to be tilted. To tune the K-value in Eq. 3.7, a known distance is walked
and then the K-value is adjusted so that the estimated distance becomes the same as
the real. The model was chosen for its relatively high accuracy to complexity ratio.
The accuracy of the step length estimation is also less important than that of the
heading for the total precision of the position estimation (Chen et al. 2010). Figure
4.2 depicts the vertical acceleration during walk with the indices for the beginning
and the end of each step as well as the maximum and minimum acceleration during
that step marked with crosses and dots, respectively.

The Step Detection and Step Length Estimation can be summarized as
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Figure 4.2. The vertical acceleration during normal walk

1. Low pass filter the vertical acceleration signal

2. Find when the signal crosses the gravitational force, −g, with a positive slope

3. Find when the next such crossing occurs

4. Find the minimum and maximum values of the signal between these two cross-
ings

Sometimes false crossings occur, these can, however, be detected by asserting that
the maximum value is larger than a certain threshold and the minimum smaller than
another threshold.

4.2 Hardware and Software

An inertial module, ST’s iNEMO-M1, was used. This module has built-in gyro-
scopes, accelerometers, and magnetometers, each one of them able to take measure-
ments along and about three axes. The module is programmable and can run on-line
applications. It can also store sensor data in logs and send data in real-time over
wireless networks and USB connections.

The software coming with the iNemo module, iNemo Suite, was used for logging and
sending sensor data. The data was processed off-line in MATLAB to test and verify
the models. Some of the models were implemented in C++ for real time testing of
the orientation estimation.

4.3 Calibration

The inertial unit, iNEMO, used is composed by a 3-axis gyroscope, accelerometer,
and magnetometer. There will always be disturbances present on the sensor’s mea-
surements for various reasons. These are biases, offsets, and noises. To lessen the
effects of these, calibration of the sensors can be performed.
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Gyroscope Calibration

The gyro signal ωG can be modeled as the sum of true angular velocity in the body
frame bω multiplied by a gain term αG, a bias term βG, and measurement noise vG.

ωG =b ω · αG + βG + vG

The noise term is modeled as zero mean Gaussian noise, and its variance is generally
small enough not to pose a problem. The bias term on the other hand will introduce
a drift, which limits the accuracy of the orientation estimation and it is thus vital it
is corrected. This drift, βG, can be estimated, and can also be compensated for with
other sensors. It is estimated during stationary position, when the real angular rate
of the device is zero, simply by taking the mean value of the measurements over a
period of time. The gain αG can be estimated by knowing the real angular velocity.
The sensor is rotated around its axis and the measured rotation is compared with
the real. It is calculated with

αG =
ωG − bG

bω
. (4.5)

All three axes are calibrated in the same fashion.

Accelerometer Calibration

The accelerometer signal is modeled similarly to the gyroscope’s, with a gain, bias,
and noise term. The difference is that not only is the body’s motion affecting the
signal, the perpetual gravitational acceleration is too.

aA =
(
bg +b abody

)
αA + βA + vA (4.6)

To estimate βA, the accelerometer can be aligned perpendicularly to the gravitational
field so it is not affected by gravity, but it is difficult to find a perfect alignment.
Instead, the parameters αA and βA are estimated by aligning the sensor with, and
opposite, g, where the true acceleration is ±|g|. Thus the min and max values, aminA

and amaxA , are found and used to estimate the gain and bias as

αA =
amaxA − aminA

2|g|
(4.7)

and

βA =
amaxA + aminA

2αA
. (4.8)
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Magnetometer Calibration

The magnetometer measurements are prone to be affected by greater relative distur-
bances compared to the other sensors. This is because a great portion of unwanted
magnetic fields are measured beside the Earth’s magnetic field, a part of these are
from surrounding construction materials and electric devices, and the other part is
from the chip it is located on. With this definition of disturbances the measurements
can then be modeled to include the following: the Earth’s magnetic field vector ex-
pressed in the body frame bh, the chip’s magnetic field Mchip, other magnetic fields
Mdist, bias αM , offset βM , and noise vM . As the chip’s magnetic field is relatively
constant this is included in βM giving the expression of the measurement as

mM =
(
bh + Mdist

)
αM + βM + vM

Bias αM and offset βM are estimated in a disturbance free environment, excluding the
chip’s magnetic field. All three axes are calibrated simultaneously, data is collected
where all axes are at least once aligned and opposite aligned with h. The biases and
offsets are then estimated using the min and max value, mmin

M and mmax
M .

αM =
mmax
M −mmin

M

2|h|
(4.9)

βM =
mmax
M +mmin

M

2αM
(4.10)

Mdist is time variant disturbances and can not be statically calibrated, instead outlier
detection is used to detect its presence.

When measuring the Earth’s magnetic field with a 3-axis magnetometer, the norm
of the measurement vector is ideally equal to |h|. Considering a 3-D space the
measurements should form a sphere with its center in the origin and with a radius
of |h|. An uncalibrated magnetometer with biases and offsets will form a ellipsoid
sphere with an offset, as seen in Figure 4.3. After the calibration the magnetometer
measurements better fit with the theoretical sphere, as seen in Figure 4.4.

4.4 Kalman Filter

The accelerometer and the magnetometer each give as output a measurement vec-
tor of dimension three, [x, y, z]. The acceleration in the Earth frame is the grav-
itational force vector, g = [gx, gy, gz] = [0, 0,−9.81] m/s2, and the correspond-
ing vector for the magnetic force in the Earth frame is the Earth’s magnetic field,
h = [hx, hy, hz] = [16.4, 0, 47.8] µT .
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Figure 4.3. Uncalibrated magnetometer Figure 4.4. Calibrated magnetometer

The states of the EKF are chosen to be the four quaternion components representing
the orientation of the device in relation to the World Frame.

x = [q0, q1, q2, q3]T

The angular rates from the gyroscope are taken as inputs.

u = [ωx, ωy, ωz]

The gyro measurements are after calibration modeled to be the sum of the angular
velocity in the body frame bω and measurement noise vG.

u =b ω + vG

Since the accelerometer and the magnetometer provide measurements of the gravi-
tational acceleration and the magnetic field in the body frame it is natural to choose
these as outputs of the filter. The sensors do not only give measurements of the
gravity and the Earth’s magnetic field, although it is only these that are of interest.
Outlier detection is used to estimate when the measurements are useful.

The accelerometer measurements after calibration are composed of gravitational
force in the body frame bg , the acceleration of the device in the body frame babody,
and measurement noise vA. The acceleration, however, is assumed to be zero

zA =b g +b abody + vA ≈b g + vA.

The magnetometer measurements after calibration include the magnetic field vector
in the body frame bh, a disturbance vector bd, and measurement noise vM . The mag-
netometer is assumed to only measure the Earth’s magnetic field. The disturbance
term, however, is assumed to be zero

zM =b h +b d + vM ≈b h + vM .
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Two separate measurement updates are performed with the measurements from the
accelerometer and magnetometer respectively. This because they are subjected to
uncorrelated outliers and are therefore not suitable to be used at the same time
always.

The process noise covariance matrix was through experiments chosen to be Qgyro =
I4 · e−5, and the measurement noise covariance matrices as RA = I3 · e−3, and
RM = I3 · 0.5.

Prediction Step

The predictions are done using the angular rates, given as inputs, and a sampling
time T

xk|k−1 = f(xk−1|k−1, uk−1) =

xk−1|k−1 +
T

2
ẋk−1|k−1 =

xk−1|k−1 +
T

2
Ω(uk−1)xk−1|k−1

(4.11)

which leads to the Jacobian matrix

Fk−1 = I4x4 +
T

2
Ω(uk−1). (4.12)

The prediction steps are then performed

xk|k−1 = Fk−1xk−1|k−1, (4.13)

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk−1. (4.14)

where

Qk−1 = Gk−1QgyroG
T
k−1 (4.15)

and

Gk−1 =
T

2
Ω∗(xk−1|k−1). (4.16)

The process noise is obtained from the gyroscope and thus given in terms of angular
rates. Equation 4.15 and 4.16 transforms them from angular rate process noise to
quaternion process noise. (The Institute of Technology at Linkping University 2013).

Measurement Update Step

The measurement update transforms the gravity vector and the Earth’s magnetic
field vector from the World Frame to the Body Frame. This is achieved with a
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rotation matrix given the current state, xk|k−1, multiplied with g and h respectively,
leading to measurement residuals

ỹA = zA − h(x)A (4.17)

and

ỹM = zM − h(x)M (4.18)

where

h(x)A = T (x)g = −

2(x1x3 + x0x2)
2(x2x3 − x0x1)
2(x2

0 + x2
3)− 1

 |g| (4.19)

h(x)M = T (x)h =

2(x2
0 + x2

1)− 1 2(x1x3 + x0x2)
2(x1x2 + x0x3) 2(x2x3 − x0x1)
2(x1x3 − x0x2) 2(x2

0 + x2
3)− 1

[hx
hz

]
(4.20)

which are then used to get the Jacobian matrices HA and HM .

4.5 Gauss-Newton

If an orientation quaternion were to be given as a measurement from the magne-
tometer and accelerometer data, the measurement update in the EKF filter could be
simplified significantly. The G-N iteration algorithm can be used to find a quater-
nion that fits the accelerometer and the magnetometer measurement vectors to the
known gravitational vector g and the Earth’s magnetic field vector h, respectively.
Such an approach was proposed by (Lee and Park 2009) and (Marins et al. 2001).
They also state that the gain in computational efficiency from the simplified mea-
surement update outweighs the cost of the G-N step.

The third and last filter is, like the second, a Kalman Filter. The difference is that
its measurement update is performed with a quaternion instead of an acceleration
vector. The prediction step of the Kalman filter is the same as in the EKF. The
prediction is then corrected with the quaternion given by the G-N iteration if the
outlier criteria are fulfilled. A filter diagram of the setup is presented in Figure 4.5.

Measurement vectors

The cost function to be minimized is the difference between the known gravitational
and magnetic field vectors in the World Frame and to the World Frame transformed
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Figure 4.5. The G-N filter diagram.

sensor measurements. The equations

C(q) =
1

2
ε(q)T ε(q) (4.21)

and

ε(q) =

[
g−Q(q) · yacc

ρ(h−Q(q) · ymag)]

]
(4.22)

express the cost function, where ρ is the weighting factor between the accelerome-
ter samples and the magnetometer samples (Lee and Park 2009). The number of
functions must at least be as many as the number of states, thus the magnetometer
and the accelerometer must be used in tandem.

A new better quaternion is found iteratively with the following steps.

J =

∂

[
Q(q) 0

0 Q(q)

] [
yacc
ymag

]
∂qj

; j = 0, 1, 2, 3 (4.23)

∆q = (JTJ)−1JT ε(q) (4.24)

qi+1 = qi −∆q (4.25)

The new quaternion must then be normalized

q = q/||qi+1|| (4.26)
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Equations (4.23) to (4.26) are repeated until convergences. The definition used for
convergences here is that the quaternion correction is smaller than a given threshold,
or a maximum amount of iterations is reached. Experiments have concluded that 3
iterations are typically sufficient.

∆q ≤ ξ OR i ≥ a

Depending on whether the magnetometer and accelerometer vectors fulfill certain
criteria, three different inputs are given to the G-N algorithm. If both the ac-
celerometer and magnetometer vectors are deemed undisturbed, both are sent in as
input. If only the accelerometer vector fulfills them, a ”fake” magnetometer vector
is calculated as

ZA = T (q)Th (4.27)

and provided together with the accelerometer vector to the algorithm. If instead only
the magnetometer vector fulfills its criteria, a fake accelerometer vector is calculated
as

ZM = T (q)Tg. (4.28)

Kalman Filter Formulation

Now that the measurements are represented in the same form as the orientation
state, the quaternion from the measurement update of the Kalman filter becomes
less complicated. However, the selection of the measurement covariant noise matrices
is less obvious.

x1 = z1

x2 = z2

x3 = z3

x4 = z4

(4.29)

H = eye(4) (4.30)

Racc = eye(4) ∗ C1

Rmag = eye(4) ∗ C2

(4.31)

The measurement noise covariance matrices are simply selected as identity matrices
with identical constant values, eq. (4.31). The H matrix is simply a 4 x 4 identity
matrix. The discrete Kalman filter equations can be expressed as
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xk+1 = f(xk, uk) + wk = Fxk + wk

zk = h(xk) + vk = Hxk + vk
(4.32)

4.6 Complementary Filter

The implementation of the complementary filter calculates the orientation using
the gyroscope and the accelerometer alone. Similar to the Kalman filter it can be
divided into two steps, a prediction step and a measurement step using the gyroscope
and the accelerometer measurements, respectively. Thus, from the prediction step
a quaternion is given. It is then converted to Euler Angles which are then weighed
together with the ones calculated from accelerometer measurements. Given that the
accelerometer is not exposed to any changes in velocity, and using the Aerospace
Sequence the angles obtained from the measurements, the elevation φ and bank θ,
are calculated as

φacc = sin−1

(
ax
|a|

)
(4.33)

θacc = sin−1

(
−ay

|a| cos(φ)

)
(4.34)

The gyroscope has low-frequency noise components and the accelerometer high-
frequency noise components, thus, they are high-pass respectively low-pass filtered.
The low-pass filter is denoted as G(s) and subsequently the high-pass filter is 1 −
G(s).

φ = (1−G(s))φgyro +G(s)φacc (4.35)

θ = (1−G(s))θgyro +G(s)θacc (4.36)

After this step the angles are converted back to a quaternion that is used in the
next iteration.

Some problems with this method exist. The Euler angles have singularity issues
around certain angles, and the angles in the averaging equations (4.35,4.36) must
be presented in the same region to get a proper average. These issues can be taken
care of, or the problematic regions best be avoided.

To validate that the zero acceleration assumption is true, or relatively true, an
accelerometer outlier detector is used. For the case that this is not fulfilled the
low-pass filter gain is set to zero, G(s) = 0.
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4.7 Outlier Detection

The fact that the measurement updates depend on relatively pure measurements of
the gravitational force and the Earth’s magnetic field, outlier detection is needed.
The outlier detector checking the accelerometer measurements sifts away all but the
samples that contain a low portion of external acceleration, and the magnetometer
outlier detector take away samples in which it detects interfering magnetic fields. A
description of the outlier detectors the filters can use is presented below.

The total magnitude of the acceleration is compared with the well-known gravita-
tional vector’s norm. The threshold, εacc is derived from an accelerometer test in
which the device was in a fixed position and the variance of the magnitude was
calculated. εacc is set to a test decided factor of that variance.

|
√
a2
x + a2

y + a2
z − |g|| < εacc

εacc = n · var(
√
a2
x + a2

y + a2
z)

The three outlier detection methods for the magnetometer described in the theory
chapter were implemented. The first, which looks at the magnitude, and the second,
which looks at the Dip Angle, were implemented exactly as they are described in
Eq. 3.12 and in Eq. 3.14. The λ̄ calculated by Eq. 3.16 was used to calculate a
value

W = e−λ̄
2/s (4.37)

and then this value was compared to a threshold

W > εmag,3. (4.38)

Equation 4.37 is used by (Callmer et al. 2013) as a weighting function but is here
only used to more easily detect differences between values of λ̄. The parameters of
the different outlier detectors were tuned so that the detectors all removed the same
amount of samples.

4.8 Mapping

Unfortunately, the lack of reliable absolute measurements of the heading angle will
inevitably lead to a positional drift over time. This drift has to be reduced if the
system is to be used in any real application. One step toward that end is to utilize
information about the physical surroundings, that is, floor maps. To do that, a
mapping algorithm intended to be used in conjunction with the output from the
three PDR systems was created and implemented. A flow diagram of the entire IPS
is shown in Figure 4.6.
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Figure 4.6. An overview of the entire system, with both the PDR system and
the mapping algorithm.

Given a start position on the map the algorithm checks certain conditions each step.
Specifically, it checks whether the step vector intersects with an obstacle. The only
obstacles considered here were walls. If the vector does intersect at some point
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with a wall, one of two actions will be taken - depending on the angle of incidence,
denoted as α, between the vector and the wall. It should be mentioned that the
mapping algorithm was implemented in this project so that it and the orientation
estimation algorithm ran separately. That is, the orientation estimation was done
on an entire set of data from a walk, and then the mapping algorithm was added
to the output of the orientation estimation. The corrections that were made on the
heading angle were not sent back to the filter to update any states.

1. If the angle is smaller than a certain threshold, move away from the wall and
adjust the heading angle so that updated the step vector becomes closer to
being parallel to the wall.

2. If the angle is greater than a certain threshold, assume that the person has
walked through a door into another room and change the position of the end
of the step accordingly.

The two cases are depicted in Figure 4.7.

(a) Small inclination angle (b) Large inclination angle

Figure 4.7. The red arrow depicts the original step vector, the blue arrow the
change in position, and the black arrow the step vector after mapping. The angle
ψ determines what measure to take.

Mathematically put, the updated heading provided by the first corrective action can
be expressed by

Ψ+ = Ψ + ∆Ψ (4.39)

where
∆Ψ = CΨα. (4.40)

The sign of α varies with the type of collision and CΨ is a constant which is contained
within the interval 0 < C < 1.

The new step vector becomes

S+ = S + ∆S (4.41)



4.8 Mapping 37

wherein
|∆S| = D1 + CS,1 (4.42)

and the direction of ∆S is parallel to the wall’s normal, D1 is the distance to the
other side of the wall, and CS,1 is a tuning parameter.

In the second case, the heading is left untouched. The new step vector becomes,
like the first case

S+ = S + ∆S (4.43)

but with
|∆S| = D2 + CS,2. (4.44)

The direction of ∆S is parallel to the wall, D2 is the distance to the opening, and
CS,2 is a tuning parameter.

For clarification, when the heading angle is corrected, all subsequent heading angles
are as well. This means that the first type of collision can correct a drift in heading
while the second is not used to that end but instead only to correct positions.



5 RESULTS

The system’s performance was evaluated by running it and its sub-systems on data
from numerous tests. To evaluate the three orientation filters’ performance, tests
in which the device was rotated in various ways were carried out. There was no
accurate reference in these tests, though, and for that reason the filters could only
be evaluated relative to each other. Different outlier detection methods for the
magnetometer signal were evaluated. The Step Detection and Length Estimation
algorithm’s performance was assessed by running it on data from tests during which
a known distance, with a known number of steps, were walked. The PDR system
was tested by providing it with data from repeated walks about the office floor of
Ascom. The mapping algorithm was then applied the same data.

5.1 Orientation Estimation

The three filters were compared in tests during which the device was rotated about
its axes in various ways. The Euler Angles were extracted from the output and
plotted. Unfortunately, the testing equipment available was rather limited which
led to a lack of an absolute reference in the tests. The equipment consisted of the
iNemo module and the bare hands of the authors. The module was then rotated
around its axes as controlled as can be expected with that equipment. Despite this,
the results were worthy of being presented and analyzed.

In the test whose results are shown in Figure 5.1 and in 5.2 a complete revolution
of the device around its y-axis was performed. The outputs of the Kalman and the
G-N filter are almost identical in this test whereas that from the Complementary is
significantly different. There is a larger discrepancy in the bank angles than in the
elevation in the filter output.

In the test whose results are shown in Figure 5.3 the device’s elevation angle was
contained within the boundaries of the interval [−pi/2, pi/2]. In that test, and
in other similar tests, the complementary filter appears to estimate the bank and
elevation angles equally well as the other two filters.

The results of these tests shows that it is when the elevation angle goes beyond
the limits of the interval [−pi/2, pi/2] that the complementary filter’s weaknesses
become clear.

38



5.1 Orientation Estimation 39

650 700 750 800 850 900 950 1000 1050 1100 1150
−100

−80

−60

−40

−20

0

20

40

60

80

100
Elevation

Samples [n]

E
le

va
tio

n 
[d

eg
]

 

 
Complementary
G−N
Kalman filter

Figure 5.1. The elevation angles from the filters during a test.
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Figure 5.2. The bank angles from the filters during a test.
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Figure 5.3. The heading, elevation, and bank angles of the filters’ outputs from
a test in which the device’s elevation angle remained within the interval [-pi/2,
pi/2]

5.2 Magnetometer Evaluation

The different outlier detection methods were evaluated by testing them on data
gathered from walks about the office floors of Ascom. In these rooms and hallways
there are a vast number of electronic devices that emit magnetic fields which in turn
shroud the Earth’s magnetic field. If the outlier detectors successfully manage to
discriminate the good measurements from the bad in these places, they are likely
to work in many others as well. Due to time constraints, the magnetometer outlier
detection models were not extensively evaluated. Only a small number of tests were
carried out. They did, however, indicate that the third detection model was most
successful at singling out the pure readings of the Earth’s magnetic field from the
distorted others.

The plots in Figure 5.4 are made from data gathered from one walk around the first
floor of Ascom’s C-building. The lap was walked in a counter-clockwise direction.
During this test the device was held in the hand and its x-axis was pointing in the
direction of the gait. The samples the detectors deem good are marked with black
dots in the plots. The three plots do, like other tests, also suggest that the angular
rate difference between the magnetometer and gyroscope is the best indicator of
whether the readings are disturbed or not.

The third detection model, the angular rate model, was evaluated further by apply-
ing it to data from 8 clockwise walks about the first floor of Ascom’s C-building.
The results suggest that at the first half of the lap it reduces the accuracy of the
estimated position and heading. However, after having walked some distance, about
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(a) Magnitude of the magnetometer’s measurement vector

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−200

−150

−100

−50

0

50

100

150

200
Dip Ration

 

 G−N
Mag

(b) Dip ratio of the magnetometer’s vertical and horizontal measurements

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−200

−150

−100

−50

0

50

100

150

200
Angular Rate Difference

 

 G−N
Mag

(c) Comparing angular rate
∑N/2

i=−N/2 |δi|

Figure 5.4. The true heading is shown as a black line.
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half of the lap, it begun to improve the accuracy of the estimate of the heading angle.
This is expected due to that the drift from the gyroscope is relatively small short
term, but it increases with time. The magnetometer’s errors are not time dependent
though, so eventually, at a certain break even time instant, the magnetometer’s ac-
curacy surpasses that of the gyroscope. In addition to that, it seems most of the
good magnetic readings occur at the later parts of the lap. It is reasonable to expect
that some locations are less disturbed than others, which is probably the case on the
floor these tests were carried out on. The trajectories from these tests are shown in
Figure 5.5. The average heading errors and its variance is presented in Table 5.1

Table 5.1. Statistical results from the eight magnetometer evaluation tests. The
G-N filter was run with and without the magnetometer measurement update
activated.

Average Heading error Variance Heading error
G-N 6.22◦ 0.063◦

Magnetometer 6.87◦ 0.21◦

 

 
G−N

(a) G-N
 

 
With mag

(b) Kalman

Figure 5.5. .
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5.3 Step Detection and Length Estimation

A distance of approximately 91.5 meters was walked eight times. The true number
of steps, which was counted manually, and the true distance were compared to the
estimated. The device was worn on the hip. The G-N based filter was used to
transform the measured accelerations from the Device Frame to the World Frame.
The step detection and length estimation algorithm was run on the data from those
tests and the results are presented in Table 5.2.

Table 5.2. Results of the step detection and step length estimation. The mean
error in steps counted and mean error in total length are presented.

Mean Variance
No. of steps -1.88 steps 0.70 steps

Distance -2.13 m 1.46 m

It seems the algorithm tends to underestimate the distance and the number of steps
walked. Part of the loss in distance is probably due to the lost steps and part of it
is probably due to a not perfectly tuned K-value, and imperfections in the model
itself.

5.4 PDR System

The PDR system was further evaluated with data gathered from 10 walks about
the office floor. The trajectory walked as well as the start and end positions were
the same in all these tests. The device logging the data was worn on the hip during
all tests. The magnetometer was not used. The heading errors for each model are
presented in Table 5.3. The corresponding errors in position is presented in Table
5.4. Plots of some of the trajectories are presented in Figure 5.6.

Table 5.3. Results of the PDR system without mapping. The average heading
error is the mean value of the deviation from the true trajectory’s heading angle.
The end heading error is the difference between the true end heading and the
estimated.

Average Heading error End heading error
G-N 8.5◦ 27.2◦

Kalman 8.7◦ 27.8◦

Complementary 10.3◦ 23.9◦
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Table 5.4. Results of the PDR system without mapping. The average position
error is the mean value of the deviation from the true trajectory’s position. The
end position error is the difference in distance between the start and estimated
end position for tests 1-10.

Average position error End position error
G-N 1.6 m 3.0 m

Kalman 1.7 m 3.4 m
Complementary 1.8 m 3.2 m

5.5 Mapping

The entire system, with mapping activated, was evaluated with the same data the
PDR system were.

Table 5.5. Same as Table 5.3 but with mapping activated.
Average Heading error End heading error

G-N (mapping) 5.1◦ 36.1◦

Kalman (mapping) 5.3◦ 37.5◦

Complementary (mapping) 5.2◦ 36.8◦

Table 5.6. Same as Table 5.4 but with mapping activated.
Average position error End position error

G-N (mapping) 0.52 m 3.2 m
Kalman (mapping) 0.51 m 3.1 m

Complementary (mapping) 0.50 m 3.2 m

It is clear from the statistics presented in the Tables 5.3 to 5.6, and from the plots in
Figure 5.6, that the trajectories are improved greatly when mapping is used. They
also suggest that the G-N based filter has a slightly better performance, primarily
in the average heading error without mapping.

The mapping algorithm, though, does not always work as intended. And when it
does not, which is rare, the trajectory can sustain seemingly irreparable damage.
Such an example is seen in Figure 5.7.
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Figure 5.6. Trajectories of the different filters for 10 tests.
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Figure 5.7. A test where the mapping algorithm loses track of the true trajectory
after the PDR system incorrectly claims that the person has walked into the large
room in the middle.



6 DISCUSSION

Although it is clear from the results that no one of the three PDR systems, when
used alone, have the accuracy the more security critical applications require, they can
serve as sound bases for IPSs using them in conjunction with other technologies. The
results show that even a rather modest mapping algorithm renders the trajectories
much more pleasant to behold. If further information from IR-beacons or wireless
Bluetooth networks were to be added, an even higher precision could be achieved.
The three filters show a very similar performance in the tests, but there are reasons
why the G-N and Kalman filters are to be preferred to the complementary. They
operate completely in the domain of quaternions which means that they avoid the
problems Euler Angles are associated with. It is also advantageous not having to go
back and forth between different representations of the orientation for computational
reasons. However, since the heading angle, an Euler Angle, is extracted from the
orientation provided by each filter, the Euler Angle representation is never, by the
whole PDR system, completely avoided.

In some buildings in which there are large open spaces, for example in warehouses,
mapping cannot be relied upon so heavily. Then, the accuracy of the orientation
estimation becomes more critical. To determine which filter performs the best, more
tests would have to be conducted. If their performance is deemed indistinguishable,
their computational requirements instead become the deciding factor. The G-N
algorithm can be re-written to reduce its computational requirements (Lee and Park
2009). The Kalman filter can probably also be re-formulated and optimized, but to
what extent is unknown to the authors. For these reasons, it is hard to conclude
which filter is the best.

Calibrating the sensors better, and possibly doing it as the filters are running, could
improve the accuracy. The covariance matrices of the Kalman and G-N filters could
also probably be approximated better. Doing that could lead to a larger discrepancy
between the Kalman based filters and the complementary.

For buildings wherein there are many walls, the magnetometer will most likely not
improve the accuracy of the system if a mapping algorithm already corrects the drift
in heading. It should be stressed, however, that the full potential of the magnetome-
ter has most likely not been utilized by the system created in this project. A more
effective and adaptive disturbance detector could invalidate the statement that the
magnetometer would not improve the system’s accuracy. One such detector could
potentially use a combination of the different outlier detection methods described
here and/or utilize the characteristics of the disturbances. Moreover, as mentioned
above, mapping cannot be used everywhere to the same extent it has on the data
from the tests done in this project. For applications that are intended to be used
in such places, a system in which the magnetometer is successfully incorporated is
most likely more suitable than one heavily relying on mapping. It could also be
used to initialize the PDR system, that is, it could give a starting heading. But
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if the magnetometer is to give absolute measurements of the person’s heading, its
orientation in relation to that person has to be estimated as well.

More advanced mapping algorithms could potentially increase the precision and
robustness of the IPS further yet. Mapping puts higher demands on the accuracy of
the step length estimation, however. Due to that, it is motivated to further develop
and/or evaluate other step length and detection models. The mapping algorithm
described here somewhat alters the step length when making corrections, which is
undesirable. More advanced mapping algorithms, relying on statistical models, can
even eliminate, or greatly reduce, the need of an initial heading or position.

In conclusion it can be said that the PDR system created in this project does
what it is supposed to, that is, give positional information in-between updates from
overlying systems. Further work has to be done to increase its robustness with
respect to user habits. It is the authors’ firm belief that the greatest potential of
improvement lies within mapping. With the PDR system presented here, a robust
mapping algorithm, and the occasional update from beacons, a precision sufficient
for even the more critical applications can be achieved.
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