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Autonomous Car and Truck Navigation and Parking
Implementation of Path Planning and Trajectory Generation
ANTHONY LABBÉ
JAYESH BHATT
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Path planning and trajectory generation are in an important layer of an autonomous
vehicle system. This layer is used to generate feasible trajectories for a vehicle so
that it can navigate comfortably, safely and according to the road rules. A trajectory
is a continuous sequence of states that forms a path and includes a suitable velocity.
The trajectories are computed based on the information from a perception and an
environment model. In this thesis, the aim is to achieve a trajectory generation
layer such that an autonomous valet parking can be completed in a simulation
environment. This can be solved by various methods. To accomplish the task, two
different methods are used. One method is to used to navigate the vehicle on a
road to a parking lot, the other method is used to park the vehicle once it has
reached the parking lot. Subsequent to this, static and dynamic obstacles are to be
avoided throughout the navigation. Road boundaries and other necessities have to
be respected.
The proposed algorithms are a Conformal Spatiotemporal State Lattice algorithm
and a Hybrid-A* algorithm. In the State Lattice, cubic polynomials are generated
to given waypoints along a road and numerous velocity profiles are applied. These
are the trajectories from which a suitable one is chosen based on a defined cost
function. The Hybrid-A* provides waypoints to the goal based on a shortest-path
search method. Continuous (Reeds-Shepp) curves are generated to the waypoints.
The results showed successful trajectory generation according to the aim. The State
Lattice method strongly obeyed the defined constraints but were dependent on well
placed waypoints. The Hybrid-A* method completed the task but was discovered
to be narrowed to specific scenarios.
Improvement of both algorithms are needed to make them more generic. Opti-
misation of the cost function, the computational time and the waypoint definition
are factors to be investigated for improvements in the former method. The latter
method revealed to be less reliable in terms of safety and accuracy. This is because
the method is highly dependent on constructively defined prior maps. Additionally,
a good controller is needed to proceed with further optimisation of both methods.

Keywords: Path planning, Trajectory generation, Hybrid-A*, Reeds-Shepp’s model,
Algorithms, Polynomial method, State Lattice planner, Autonomous drive, Parking,
Navigation
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1
Introduction

The idea of having autonomous vehicles emerged in the year 1925, invented by Fran-
cis Houdina; yet it was not until the year 1969 that the idea of autonomous vehicles
rose again due to John McCarthy - one of the fathers of Artificial Intelligence. Since
then, a lot of focus has been oriented towards autonomous vehicles, specifically in
the field of Robotics, Computer Science and Engineering. With the increase of pro-
cessing power and artificial intelligence, the implementation has been realised in
on-road vehicles. Three major milestones in the development of autonomous vehi-
cles are the DARPA Challenges in years 2004, 2005 and 2007. The first challenge
summarised a 230km long, off-road track to be completed autonomously as fast as
possible. Although, no competitor was able to complete the first race, five of twenty
three teams finished within ten hours in the 212km long desert terrain track of the
DARPA Grand Challenge 2005. In the DARPA Urban Challenge (2007), six teams
completed the race in an urban environment indicating the possibilities of urban
autonomous vehicles, contributing to the state-of-the-art development of today’s
algorithms.
In the year 2016, there were almost 1.1 million reported accidents in European
Union, whereof 25.6 thousand led to fatal consequences [10]. According to the
National Highway Traffic Safety Administration (NHTSA), 37461 people died in
a traffic in USA, of which 28% were alcohol-impaired, 9.2% were distraction af-
fected crashes and 2.1% involved drowsy drivers [11]. An estimated rating of 94%
of collisions in USA are associated to drivers’ error [12]. Numerous benefits can be
introduced by including autonomous features in a vehicle on the roads, among the
major factors, such as safety, time saving.e.g. searching for free parking spots [13],
stress reduction and fuel efficiency.

1.1 Background
Autonomous vehicle systems are generally composed of three essential stages. An
example of the hierarchy can be seen in Figure 1.1. From a high-level point of
view, in the first stage the vehicle system collects and pre-processes information
through numerous sensors (e.g. LiDAR, RADAR, Cameras, GPS). The processed
information is fused to obtain a good perception of the environment, estimation of
states, localisation and classification of objects and object-motion prediction. The
system creates a perception and environment model of the world.
Using the perception and environment model retrieved from the first stage, the
second stage comprises of decision making along with the provision of planned paths
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and generated trajectories for the vehicle. The generated trajectories shall respect
the constraints of the vehicle’s kino-dynamics (kinematics and dynamics), be feasible
(achievable), satisfy the passengers’ comfort and perform manoeuvres that are safe
for the passengers, as well as for the environment. Concurrently, the rules and laws
shall be obeyed as the vehicle navigates to the desired destination.

Typically, the last stage of an autonomous system includes the local motion con-
troller of the vehicle. After obtaining data from the first and second stages, the
vehicle shall act according to the generated trajectories, where the controller is
responsible for actuating the brakes, throttle and steering wheel to follow the tra-
jectories.

All the three stages are crucial and are dependent on each other. In this thesis,
the focus is narrowed down to the second stage, specifically in path planning and
trajectory generation; a memory consuming and computationally heavy process.
The foundation of this planning is derived from mobile robotics, yet one major issue
is the non-holonomic nature of a vehicle, defined in Section 4.

Path planning and trajectory generation is approached with various techniques. In
some techniques, the path planning and trajectory generation is computed as a sin-
gle entity, while in other techniques the trajectory generation is a process that is
posterior to path planning. Stage two can be divided into three or four classes. For
example, the top-level represents Route planning, a global route from current po-
sition to destination acting as a reference for the lower level classes. Subsequently,
the other levels represent Decision making and Path/Trajectory planning, i.e. de-
ciding the manoeuvre of the vehicle, such as overtaking another vehicle, stopping or
turning. The scope of this thesis is focused towards path planning and trajectory
generation. Route planning and decision making are excluded.

Figure 1.1: Example of the architecture of an autonomous system.

1.2 Aim
The purpose of the project is to demonstrate a valet parking scenario where, in
theory, a driver exits the vehicle and the vehicle proceeds autonomously towards a
parking lot and parks itself in a free parking space. The project is divided into two
sub-parts.
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The first part implicates to accomplish an autonomous navigation algorithm, for a
vehicle in a structured road simulation environment. A structured road implies a
road with lanes including alignments. The intention is to frequently generate trajec-
tories for the vehicle to act upon accordingly, that is geometric reference paths along
with velocity applications. This is done from the initial position at a given location
to a desired parking area. The performed action derived from the trajectories should
result in a way such that the driverless vehicle avoids static and dynamic obstacles,
execute feasible actions, stays within the road boundaries and travels below or equal
to the speed limit. The autonomous vehicle shall operate safe as well as comfortable
for passengers and the surrounding environment.
The second part consists of developing an algorithm that parks the vehicle au-
tonomously, by generating frequent paths and trajectories that are feasible, com-
fortable and safe. The algorithm should be developed such that the system is able
to park the vehicle both forward or reverse. The desired parking spot (including
position and orientation) will be given. By regulating the vehicle according to the
given trajectories, the parking action should result in a collision free motion in an
environment including obstacles. In the second part of the thesis, the environment
is assumed to be unstructured, thus there are neither lanes nor alignments in the
environment. The system should find the shortest way to the given parking spot,
without crossing other parking spots.

1.3 Scope and Limitations
The scope of the thesis is fulfilled based on the software tools; Matlab, Simulink
and PreScan. The development of the algorithms are limited to Matlab where
evaluation of the code is done offline. The real-time testing and evaluation of the
algorithms is done in PreScan with Simulink as a foundation tool. The scope includes
performances in generic scenarios. The scenarios are created by the authors of the
thesis.
The thesis is primarily limited to path planning and trajectory generation algo-
rithms. The default controller of the vehicle (steering angle, acceleration and brak-
ing) is modified in the simulation software, in order to try the different algorithms.
This is not the main focus of the thesis.
As the aim is targeting stage two of the three stages, stage one which includes
the sensor framework, is considered to be ideal and adhering the ground truth.
Accurate coordinates and velocities of the ego-vehicle, exact obstacle locations, the
map data and lane boundaries are accessed through the simulation environment.
The structured roads are assumed to be symmetric and plane.
On the structured roads, waypoints including (x, y) coordinates are given to the
vehicles manually, approximately every 2nd metre from initial position to the parking
lot. The waypoints are placed in the centre of the desired lane to follow. In the
parking lot, the desired parking spot is acquired as one final destination point with
the initial and final vehicle coordinates (x, y) and vehicle orientation (θ). The goal
in the unstructured environment is to generate the points of the shortest path from
the initial position of the parking area to the desired parking spot and autonomously
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generate trajectories between the points at every instance until the vehicle reaches
the destination. As mentioned, both these algorithms should generate trajectories
that avoid obstacles.
Once the vehicle (a car, a truck or a bus) has entered the parking lot, a switch
between the algorithms shall be performed automatically. This part comes under
decision-making and so, it shall not be deeply included to evaluate the results of
this project. Further, the limitations are rules and laws of the environment. Speed-
limits and road boundaries shall be considered, whereas other rules as right-lane
rule or vehicle precedence shall not be taken into account as this is generally a part
of decision-making layer in an autonomous system. Therefore, overtaking of other
vehicles will be disregarded.
Another limitation to be encompassed is the dimension of the environment. The
vehicle is limited to move in two dimensions, (x, y). In simulation, the dynamics
of the vehicle is modelled as a bicycle model. The dynamics are developed by the
developer of PreScan and handles the kino-dynamic actions of the vehicle based on
various inputs such as wheel angle, acceleration and braking.
The methods should work for both cars and trucks. The difference between these
vehicles are the dynamics.

1.4 Thesis Outline
The outline of the remaining chapters of this thesis is as follows: Chapter 2 provides
theory regarding the definitions and theoretical background about different concepts,
as a preparation for the remainder of the thesis. The search techniques and planning
algorithms are briefly presented. In Chapter 3, the techniques adapted for this thesis
are presented in detail, with the first part describing the navigation algorithm on
a structured road, i.e. driving to the parking lot, and the second part describing
the parking algorithm of the vehicle. Chapter 4 presents the results and parameter
values obtained by implementing the algorithms in the simulation environment.
The behaviour of the vehicle in different scenarios is illustrated. Further, Chapter
5 reflects the observations made from the results. The pros and cons of the chosen
algorithms are emphasised. Finally, in Chapter 6, the overall thesis is concluded
with a reflection of the results to the aim. A brief motivation for future work is also
mentioned.
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2
Theory and Related work

In this chapter, definitions and mathematical preliminaries that are used in the
context of this thesis are introduced in Section 2.1 and Section 2.2. The vehicle model
used for this thesis is expressed in Section 2.3. The remainder of this chapter consists
of various search techniques and algorithms used for path planning and trajectory
generation problems, whereas the theory behind some of the base algorithms is
presented in depth. The last two sections of this chapter, Section 2.5 and Section 2.6,
explain about the basic principle followed in this thesis. The important algorithms
followed are State lattice including cubic polynomials, A* path planning and Reeds-
Shepp’s curve generation.
To complete a path planning and trajectory generating method, different algorithms
are fused together. There are numerous methods of performing these actions. Dif-
ferent authors use different combinations of methods depending on the scenario, for
instance, structured, unstructured or semi-structured environments.

2.1 Theoretical Preliminaries and Definitions
The differentiation between path planning and trajectory generation is mainly done
by the time parameter. Path planning is based on finding a feasible path in a geomet-
ric and spatial sense. Trajectory generation includes time and velocity parameters.
These are used to decide a suitable speed throughout the manoeuvre considering
the dynamics of the vehicle based on the geometric path.
Paths and trajectories are defined differently by various authors. In the context of
this thesis, path and trajectory are defined as in [2] and [1], seen in Definition 1,
Definition 2 and Definition 3.

Definition 1 The configuration space (C-space)

C = {(x, y, θ, κ)}, (2.1)

implies that all the possible states which a robot can have, can be comprised as a set
C. (x, y, θ, κ) represents the robot coordinates, heading and curvature respectively.

Definition 2 A path is defined as a continuous sequence of configurations starting
with an initial configuration and ending with a goal configuration.

Definition 3 A trajectory is a path with explicit parameterisation of time, that is
velocity.
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Definition 4 A holonomic system is the one in which the number of controllable
degrees of freedom is equal to the total degrees of freedom, for a given configuration
space.

Definition 5 A geodesic is relating to or denoting the shortest possible line or arc
between two points on a sphere or a curved surface.

2.1.1 Path Planning
With reference to Definition 4, a moving car-like robot is non-holonomic as it cannot
move laterally without also moving longitudinally. The heading has to be considered
in order to point out the possible movement that the robot can have from a certain
state.

With reference to Definition 1 and Definition 2, path planning is the problem of
finding a geometric path in set C from an initial configuration to a final configuration
while also satisfying the global and local constraints. These constraints are, for
example, the non-holonomic nature along with obstacles. The complications of path
planning is to generate a feasible path while respecting the constraints. Additional
constraints may be to acquire smoothness of the path.

2.1.2 Trajectory Generation
Trajectory generation refers to the vehicle transition from a feasible initial config-
uration to the next configuration including time as a parameter. A trajectory is
produced from a path by applying a time-parameterised quantity such as accelera-
tion or velocity. Once a trajectory has been generated, it is possible to evaluate its
characteristics in terms of smoothness and safety.

2.2 Mathematical Preliminaries
The mathematical background of the algorithms presented in Chapter 3, are show-
cased in this section. Further calculations that are explicitly applied to the trajectory
generation are presented in the above mentioned chapter.

2.2.1 Composite Simpson’s Rule
The Composite Simpson’s Rule is used to approximate an integral numerically. The
Rule is written as

∫ b

a
f(x)dx ≈ h

3

[
f(x0) + 2

n
2 −1∑
j=0

f(x2j) + 4
n
2∑
j=1

f(x2j−1) + f(xn)
]
, (2.2)

where xj = a + jh for j = 0, 1, ..., n. h = b−a
n
, x0 = a, xn = b. n is the number of

evenly spaced sub-divisions in [a, b].
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2.2.2 Newton-Raphson Method
Newton-Raphson’s Method is a method for numerically finding the roots of a func-
tion, iteratively. For non-linear systems, Newton-Raphson method is presented as

xn+1 = xn − JF (xn)−1F (xn)m, (2.3)

where, xn is the current approximation and xn+1 is the next approximation. Pro-
vided the current approximation, i.e. the initial guess, the method usually converges
to 0. JF represents the Jacobian of the function. m is a scalar representing the step-
size of the convergence, ranging between 0 and 1.

2.3 Vehicle Model
To approximate the behaviour of a car-like robot, a proper vehicle model has to
be chosen. While a high-fidelity model may reflect a vehicle’s response rigorously,
the complexity of such a model yields a more complicated planning for the path
planner. A solution has to be found such that the planner is simple, but also the
vehicle model matches the behaviour of the vehicle’s response. In terms of the
kinematics of a bicycle model, there is a fixed rear wheel along with an extra degree
of freedom on the front wheel, hence it reflects a car in an approximated manner.
By also assuming no-slip on the vehicle, the model gets simplified yet stays accurate
enough to describe the motion and the non-holonomic nature.
From Figure 2.1, introducing no-slip assumption, similar to [2], gr and gf are as-
sumed to be collinear with the corresponding wheel orientation. To calculate the
motion of the rear-wheel, which is the reference point in this thesis, the coordinates
are expressed as

xr = gr · êx, (2.4a)

yr = gr · êy, (2.4b)

where xr and yr denote the current coordinates of the vehicle, in the global Cartesian
frame. gr and gf are the contact points on the ground, for the rear and front wheels.
êx and êy are the unit vectors along the X and Y axes. Calculating the vehicle speed,
vr, which is the magnitude of ġr, yields

vr = ġr
gf − gr
||gf − gr||

. (2.5)

By having the rear wheel as a reference point, the kinematics in terms of (x, y, θ) is
presented as

ẋr(t) = vr(t)cos(θr)(t), (2.6a)

ẏr(t) = vr(t)sin(θr)(t), (2.6b)

θ̇r(t) = vr(t)κr(t), (2.6c)

where θr represents the heading angle of the ego-vehicle. κr is the curvature, which is
the rate of change as a function of distance, for the ego-vehicle. The Equation (2.6a)
to Equation (2.6c) are calculated with respect to time, t. The planning approach in

7



2. Theory and Related work

Figure 2.1: Kinematic bicycle model with no-slip assumption, as seen in [2]. L is
the length between the front and rear axle. δ is the front wheel angle, θ represents
the heading angle of the vehicle, i.e. gf − gr. gr and gf indicate the ground contact
point of the rear and front wheel, respectively. êx and êy are unit vectors in (x, y)
coordinates.

this thesis separates the path planning and the trajectory generation. This implies
that, firstly, the geometrical paths are generated and then the speed trajectories are
applied.
By deriving the motion equations with respect to the arc length, s, the equations
with respect to arc length are expressed as

dxr
ds

= cos[θr(s)], (2.7a)

dyr
ds

= sin[θr(s)], (2.7b)

dθr
ds

= κr(s). (2.7c)

The path model is presented as

xP (s) =
∫ s

0
cos[θP (s)]ds, (2.8a)

yP (s) =
∫ s

0
sin[θP (s)]ds, (2.8b)
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θP (s) =
∫ s

0
κP (s)ds, (2.8c)

κP (s) = tan(δ(s))
L

. (2.8d)

(xP , yP , θP , κP ) are the states of a path. δ is the wheel angle and L is the length
between the rear and front wheel axles. The vector of these states is collectively
expressed as

XP (s) = [xP (s) yP (s) θP (s)]. (2.9)

Seen in Equation (2.8d), the curvature and wheel angle are dependent on each other.
By setting the maximum and minimum wheel angle, the curvature is constrained as

κr ∈
[
tan(δmin)

L
,
tan(δmax)

L

]
. (2.10)

2.4 Planning Algorithms
In this thesis, the path planning and trajectory generation algorithms are approached
in two ways. The first goal, among the two presented in Section 1.2, is considered in
structured environments, where the alignments are fixed to the road. The main idea
is to be able to navigate on a road from the initial position to a parking lot. The
second goal is considered in unstructured environments, where the vehicle should
navigate to the desired spot in an open space, such as a parking depot.

As this is an important part of an autonomous system, a lot of research in this
field is carried out, leading to a huge diversity of different approaches. From the
results of the DARPA Urban Challenge (2007), the top four autonomous cars had
different solutions to solve these problems. Some approaches were split up by first
finding a feasible or optimal path, followed by the trajectory generation. Other
approaches included the trajectory generation as a part of the path planning search.
In these approaches, the paths were generated using different search techniques in
the configuration space.

One of the first search techniques presented in the context of shortest path algo-
rithms is Dijkstra’s algorithm. Another more efficient technique for finding the
shortest path to a fixed point from an initial position is the A* (pronounced as
A-star) algorithm. This is computationally more efficient than Dijkstra’s algorithm.
The first step of executing this algorithm is by discretising the configuration space,
followed by which the vehicle path is generated based on different criteria in discrete
steps.

Some common path search algorithms are Dijkstra’s, A* and Rapidly-exploring
Random Trees (RRT). Advancements of these algorithms, such as Dynamic A* (D*),
Anytime A*, Weighted A*, RRT* and many other variants are focused towards
specific applications. A common way of using a path search algorithms is to first
generate the shortest path to a goal which avoids obstacles, and then post-process
the path, such that it becomes feasible with respect to the kinematics of the vehicle.
A brief classification of path-finding algorithms can be found in Appendix B.1.
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2.4.1 Working of A* Algorithm
In the Dijkstra’s algorithm, from [17], the path from an initial node to the goal node
is obtained by collecting the nodes to the goal in a queue. The queue has nodes
placed in an order of priority. In general, the priority is based on the weight or cost
assigned to every node. Further improvements in the above mentioned algorithm
led to the A* algorithm, as seen in [18], which is a basis of the second part of the
thesis. The A* algorithm has a working principle similar to Dijkstra’s algorithm.
The improvement in this method is that the cost to every neighbouring node is
evaluated based on a heuristic from every neighbour to the goal. Thus, this method
has proven to be an efficient path planning candidate in terms of avoiding obstacles
and still achieving the shortest path.

5 10 15 20 25

x
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20
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y

Start

Goal

Figure 2.2: Illustration of A* path, showing all possible neighbouring nodes to the
current node. Here, the cyan circle at (5, 5) is the initial node. The green circle at
(15, 15) is the current node and the red circle is the goal node, the magenta circles
represent the neighbours surrounding the current node. The X and Y axes represent
the dimension of the map.

The working of the traditional A* algorithm is explained as following. The goal
of this algorithm is to search for the shortest path from the initial point to the
final point. The neighbour-based search approach involves checking of the cost from
current node to each neighbour node and from each neighbour to the final node.
There are two major lists in the A* algorithm that keep track of the visited nodes.
They are Open List and Closed List. Initially, the Open List consists of the initial
node, while the Closed List is empty. From the start node, until the final node is
reached, each node is checked based on a cost calculated by the cost function. The
cost function includes weighting of parameters such as the distance to the goal or a
safety distance from an obstacle for each neighbour node on the provided map. The
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two costs that contribute to the cost function are the actual cost, which penalises the
node to move from current node to the corresponding neighbour, and the heuristic
cost, which penalises a node based on the distance to move from the neighbour
to the goal node. The heuristic cost is usually the Euclidean distance, Manhattan
distance or a similar mathematical weighing function. A neighbour-based search
is carried out, in which usually eight neighbours surrounding the current node are
compared, based on the cost from each neighbour node to the goal node, as seen
in Figure 2.2. The decision to choose a neighbour node is by prioritising the nodes
based on the least cost, shown in Figure 2.3. Hence, the search continues and the
information regarding the position, orientation and total cost of each node is stored
in the different lists. All the visited nodes are placed in the Open List, while the
nodes with the optimal solution leading to the goal are moved to the Closed List.
The path obtained by this search method can be seen in Figure 2.4 and Figure 2.5.
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Figure 2.3: Zoomed view of the A* path calculating the next step. This figure
shows the chosen node among the neighbour nodes, from the current node. The
green circle is the current node and the red circle is the goal node, the dark green
circle is the chosen node added to the path, towards the goal node. The X and Y
axes represent the dimension of the map.

2.4.2 Explanation of Reeds-Shepp Algorithm
The above explained algorithms provide paths from one point to another without
considering the kinematics of a vehicle. This leads to generation of non-traversable
paths, since a vehicle cannot turn without moving longitudinally. To overcome this
constraint, different methods have been developed. Two of the foremost methods of
generating geometrical paths between two points are the Dubins’ path and Reeds-
Shepp’s path, where the latter method is used as basis in the second part of this
thesis. These approaches include the fact that a vehicle is non-holonomic and there-
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fore, generate paths by forming arcs to reach a goal position. In this subsection,
the Reeds-Shepp approach is explained. The explanation of Dubins’ method can be
seen in Appendix B.2.
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Figure 2.4: The blue line illustrates a path by A* algorithm, showing the shortest
path between two points. The goal is depicted to be inside the parking place, which
is represented by the red circle. An A* path is generated from the initial position,
represented by the green circle, to the goal.
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Figure 2.5: Illustration of the A* path, showing that the path also avoids obstacles,
placed in-between the environment (the black boxes).
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2.4.2.1 Reeds-Shepp’s method

In order to implement reverse parking in a vehicle, the vehicle has to be able to plan
a path that is the shortest and will allow the vehicle to manoeuvre forwards and
backwards. Reeds-Shepp’s model is implemented to obtain a path for the vehicle to
move forwards and backwards. Considering the kinematics of a vehicle model (bi-
cycle model), which is subjected to non-holonomic constraints, this method should
result in providing the shortest and feasible path. This method neither requires
holonomic path planning nor does it require construction of the configuration space.
The only necessary states are the positions (initial and final coordinates) and the
heading angles (initial and final orientation). The working of this method is similar
to that of Dubins’ method, but the scalar equations used to calculate the parame-
ters, that represent the length of the curves, are slightly different, as showcased in
[31].
Explained in [32], a brief working of this method is as follows:

• The initial and final coordinates are obtained in the Cartesian coordinate
system.

• Using the scalar equations, Equation (2.20) to Equation (2.27), the parameters
corresponding to the length of the segments are obtained. During this, the
segments of the curve are decided to be forward or reverse depending on the
required orientation of the vehicle at that point.

• This is carried out for each curve until the goal point is reached with the
desired orientation.

• Finally, the curves are interpolated to obtain a smooth and traversable path
which also consists of the reverse curves.

The preliminary Lemmas to generate the geometric curves can be found in Dubins’
primary study of generation of curves. These obey the non-holonomic constraints
of a car-like robot, [27]. The Reeds-Shepp equations defined for a vehicle to move
forwards and backwards are found in Reeds-Shepp’s study for a vehicle to move
forwards and backwards.
A path of a vehicle between two points is bound by its radius of curvature, cusps,
and change of direction (forward or reverse). Therefore, to move between the points
and also have the shortest possible distance, a path can be defined by calculating
the length of all possible paths with all possible cusps that the vehicle can make to
have a proper manoeuvre. The generated path from the vehicle’s current position
and orientation, (xr, yr, θr), at any instance s, where s is the arc length of the path,
can be obtained from

xP (s) = xr +
∫ s

0
ε(s)cosθP (s)ds, (2.11)

yP (s) = yr +
∫ s

0
ε(s)sinθP (s)ds, (2.12)

θP (s) = θr +
∫ s

0
κP (s)ds, (2.13)

where, (xP , yP , θP ) are the coordinates and orientation along the generated path.
κP is the curvature. These equations are formulated using the Equation (2.8a) to
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Equation (2.8d). ε represents the forward or reverse motion of the vehicle on the
path.
A path is divided into curves. Each curve consists of at least three segments. A
combination of segments gives the geodesic to reach a goal point. Each segment may
consist of an arc of a unit circle of minimum turning radius, represented as C, or
a line segment, represented as S. The combination of segments or cusps is referred
as ‘word’. For example, a word may be CCC, which represents a curve with three
segments consisting of three cusps. A word, therefore, is a finite string of segments.
In Reeds-Shepp’s paths, cusps are considered such that each geodesic has ‘+’ or ‘-’,
representing forward or reverse motion on the path. It is possible to have a curve
with more than three cusps. Each segment has a parameter that gives an angle
of the arc on a unit circle or length of the line segment from the initial point or
the point of cusp. The position and orientation are calculated using the following
notations,

Lλ : R3 → R3, (2.14)

Rλ : R3 → R3, (2.15)

Sλ : R3 → R3, (2.16)

in which λ is the parameter that is used to represent either the length of the current
segment in case of a straight line, (S) or the final angle of the arc (L, R) on a unit
circle.
According to [31], a curve (CSC, CCC or similar) starting from a point (xr, yr, θr),
must end at (xg, yg, θg). The segments to reach this position are calculated based
on general scalar equations such that,

Lλ(xg, yg, θg) =
(
xr+sin(θr+λ)−sin(θr), yr−cos(θr+λ)+cos(θr), θr+λ

)
, (2.17)

Rλ(xg, yg, θg) =
(
xr−sin(θr−λ)+sin(θr), yr+cos(θr−λ)−cos(θr), θr−λ

)
, (2.18)

Sλ(xg, yg, θg) =
(
xr + λcos(θr), yr + λsin(θr), θr

)
, (2.19)

where, (xr, yr, θr) represents the initial point of the curve and (xg, yg, θg) represents
the final point of the curve.
Similar to Equation (8.1) to Equation (8.3) of [31], the equations to calculate the
parameters based on the type of word are given by

λ1 = tan−1
(
yr − 1 + cosdθ

xr − sindθ

)
, (2.20)

λ2 =
√

(xr − sindθ)2 + (yr − 1 + cosdθ)2, (2.21)

λ3 = dθ − λ1, (2.22)

for a curve of type CSC, the parameters of lsl are shown to be calculated, and for
a curve of type CCC, the parameters of lrl are calculated as,

λ̄1 = tan−1
(
yr − 1 + cosdθ

xr − sindθ

)
, (2.23)
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λ̄2 =
√

(xr − sindθ)2 + (yr − 1 + cosdθ)2, (2.24)

λ2 = −2sin−1
(
λ̄2

4

)
, (2.25)

λ1 = λ̄1 + λ2

2 + π, (2.26)

λ3 = dθ − λ1 + λ2. (2.27)

It is understood that, for example, a curve, say Lλ1Sλ2Lλ3, starting at (0, 0, 0),
where λ1, λ2, λ3 are the parameters representing the lengths of segments or angles
of the arcs of a unit circle, must end at (xg, yg, θg). The segments for this curve
are calculated as Lλ3(Sλ2(Lλ1(0, 0, 0))), by substituting the parameters in Equation
(2.17) to Equation (2.19). This can be obtained such that, initially,

Lλ1(0, 0, 0) = (sinλ1,−cosλ1 + 1, λ1), (2.28)

In physical terms, the point attained by performing a turn (Left), for a parameter
λ1, is given above. Following this, the next segment is calculated as

Sλ2(Lλ1(0, 0, 0)) = (sinλ1 + λ2cosλ1,−cosλ1 + 1 + λ2sinλ1, λ1). (2.29)

Finally,

Lλ3(Sλ2(Lλ1(0, 0, 0))) = (sinλ1 + λ2cosλ1 + sin(λ3 + λ1 − sinλ1),
−cosλ1 + 1 + λ2sinλ1 − cos(λ3 + λ1) + cosλ1, λ1 + λ3).

(2.30)

The observation made from this is that, the change in angle of this curve is con-
tributed by the parameters, λ1 and λ3, as mentioned in Equation (2.22). The relation
between arc length and angle of a unit circle is expressed as

θr = l

r
, (2.31)

where θr is the heading angle of the vehicle, l is the length of the arc and r is the
radius of the circle. Thus, θr = l, for a unit circle. Therefore, the parameters λ1 and
λ3 indicate angles of the arcs (Left) and λ2 indicates the length of the line segment
(Straight).
As it is seen that, in some cases, the end conditions are less than the number of
parameters to be calculated. This refers that one of the parameters is redundant,
which means that it is either equal to one of the other three parameters or has an
arbitrary value. Reeds-Shepp’s article presents 48 formulae that suffice to generate
path for any given case, as shown in Table 1 of [31]. According to the Lemmas
stated by Reeds-Shepp,

• A word of the form SCS, SCC, CCCC can be shortened to a word of the form
CSC or CCC,

• A word with more than two segments having less than two cusps must have
one of the parameters equal to ±π

2 .

15



2. Theory and Related work

-10 -5 0 5 10 15 20 25 30

x (m)

-10

-5

0

5

10

15

20

25

30

y
 (

m
)

Start node

Path

Goal node

Start Node 90

Goal Node 270

Figure 2.6: Illustration of Reeds-Shepp curve, showing the L−S−L− curve which
is generated by the CSC word of the algorithm. The curve, depicted by the blue
path, is generated with an initial angle of 90◦ and goal angle of 270◦.
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Figure 2.7: Illustration of Reeds-Shepp curve, showing the L+S+L+ curve which
is generated by the CSC word of the algorithm. The curve, depicted by the blue
path, is generated with an initial angle of 0◦ and goal angle of 90◦.

A few examples of the Reeds-Shepp curves can be seen in Figure 2.6 to Figure 2.9.
It is observed that, based on the initial and the final angles, a short path is obtained
that obeys the curvature constraint of the assumed vehicle.
It is not necessary to explicitly obtain formulae for all the different words. By
making use of different transformation properties it is possible to obtain curves in
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different directions. Using the “timeflip” transform it is possible to interchange all
the ‘+’ with ‘-’. Therefore, a word of form CSC having segments L−S+L− will have
time-flipped segments of L+S−L+. Thus, a point moving from (0,0,0) to (x,y,θ),
for example in the reverse direction, will go from (0,0,0) to (-x,y,-θ), in the forward
direction.
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Figure 2.8: Illustration of Reeds-Shepp curve, showing the R−L−R+ curve which
is generated by the CCC word of the algorithm. The curve, depicted by the blue
path, is generated with an initial and goal angles of 90◦.

Similarly, a curve R+S+R+ can be transformed to L+S+L+ by interchanging ‘L’
with ‘R’ and vice verse. This property is referred as “reflect” transform. By this
transformation the reflected path changes from (x,y,θ) to (x,-y,-θ). The “backward”
transform can be used to execute the curve in reverse order, i.e. L+R+L− will
transform to L−R+L+, having (x,y,θ) transformed to (xcos θ+ysin θ, xsin θ-ycos θ,
θ). Thus, by using these properties many redundant calculations can be eliminated.

An incremental search algorithm was also used by ‘Talos’, the autonomous vehicle
by the MIT-team that finished in fourth place in DARPA Urban Challenge (2007),
as mentioned in [3]. The team used RRT algorithm, [22], later optimised to RRT*.
One of the disadvantages of this algorithm was the computational time. The jagged
paths and efficiency had a trade-off with the number of samples, seen in [1].

The winner of DARPA Urban Challenge (2007), Boss [4] from The Stanford Uni-
versity, used a second-order spline profile for on-road navigation and a state lattice
generation together with Anytime-D* for path planning in static environments, such
as parking lots or off-road navigation. The second-order spline generated trajecto-
ries to follow the right lane and avoid obstacles along the road. The state lattice,
[5], generated possible states that a vehicle could reach which included (x,y) coor-
dinates and orientation of the vehicle. A path was generated on the state lattice
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using Anytime-D* algorithm to perform the manoeuvre. A switching of these two
algorithms was done to avoid the time to search for possible paths using the spline
approach in unstructured environments.
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Figure 2.9: Illustration of Reeds-Shepp curve, showing the S+R+S− curve which
is generated by the SCS word of the algorithm. The curve, depicted by the blue
path, is generated with an initial angle of 0◦ and goal angle of 270◦.

Some most common but critical aspects to be analysed, before deciding to take-up a
certain algorithm for path planning, are the minimum safety distance from obstacles,
feasibility of the path, computational time. When information regarding a path is
given to an autonomous vehicle, it is important to generate paths to the goal from
the current position such that the paths avoid obstacle collisions.

2.5 State lattice

The approach followed for navigation of the vehicle in this thesis is a modified
Conformal Spatiotemporal method, which uses State Lattice as a foundation, seen
in [6]. A state lattice is generally a grid on a map, consisting of nodes that can
be traversed by a vehicle, an example can be seen in Figure 2.10. Feasible arcs
respecting the non-holonomicity are generated between each node. The method in
this thesis has the same concept, but is adapted to a structured road environment,
illustrated in Figure 2.11, which will be further explained in Section 3.1. This
method includes both path planning as well as trajectory generation to generate
feasible trajectories by sampling future trajectories and numerically picking the best
calculated trajectory based on a cost function. Paths are generated to states in front
of the vehicle to a particular horizon. Along with it, the trajectories are generated.
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Figure 2.10: Illustration of a State lattice for an unstructured environment, show-
ing a grid in which a vehicle can traverse.
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Figure 2.11: Illustration of a State Lattice approach for a structured environment,
showing waypoints on a road with one lane. The road may also contain sign boards,
which has to be considered while the autonomous vehicle manoeuvres to a goal
position. Along the X-axis is the longitudinal road and the Y -axis is lateral road.

2.6 Hybrid-A*
The approach followed for parking the vehicle in this thesis is a version of the A* al-
gorithm combined with Reeds-Shepp curve generation. This algorithm takes up the
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path planning from the point where the vehicle enters an unstructured environment
Figure 2.5 (parking depot or a parking lot), explained more in Section 3.2. The
vehicle navigates through the waypoints and performs reverse parking, if required,
once it is near the parking spot. The points to follow are extracted from the A*
algorithm in an offline unstructured environment. The paths are generated in the
simulation environment by using Reeds-Shepp curves for the vehicle to follow. A
simple bicycle model is utilised to calculate the wheel angle from the orientation of
the vehicle obtained from the Reeds-Shepp curves. The reverse curves are generated
by the Reeds-Shepp model based on the final orientation required.
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3
Method of Path Planning and

Trajectory Generation

In this chapter, the methods applied for generating paths and trajectories are pre-
sented in depth. The first method presented is targeting the structured road environ-
ment, which consists of a speed limit and obstacles. The second method is targeting
unstructured environments including obstacles. As the idea is to merge the algo-
rithms so that it can demonstrate trajectory generations in valet parking scenarios,
the algorithms switch at a pre-defined waypoint from the method in Section 3.1 to
the method in Section 3.2. The Section 3.1 is inspired by Conformed State Lattice,
[7], and the Section 3.2 is inspired by Hybrid-A*, [16]. The offline validation of the
algorithms is done in using Matlab plots and the online implementation is done in
PreScan simulation environment.

3.1 Structured Road Method

The idea behind this approach is inspired from [7] and [8], that are State Lattice
based. The concept is realised by sampling a range of trajectories to future states
of the vehicle as a function of time. The trajectories are numerically evaluated in a
cost-function both for the generated geometrical paths as well as the speed profiles
applied on the paths. The best trajectory is chosen accordingly.
The inputs to this algorithm are the current position, (xr, yr), current heading angle,
θ, current velocity, vr, the coordinates of the waypoints, (xwi , ywi), and an object
detection camera providing the distance and Doppler velocity for the obstacles. In
practice, a radar would be better to use regarding Doppler velocity. These inputs
are assumed to reflect the ground truth in this project, i.e. the sensors are ideal.
Given these inputs, cubic polynomials are generated to certain sets of waypoints
in front of the vehicle, where these polynomials represent paths. Applying speed
profiles on the paths, they are transformed into trajectories consisting of various
parameters such as duration of trajectory, acceleration, jerk and centripetal accel-
eration. The trajectories are numerically evaluated based on numerous parameters.
The most suitable trajectory is chosen with respect to safety, efficiency and com-
fort and output from the trajectory generator. This procedure is repeated for every
iteration. The desired velocity is fed through a motion controller, consecutively
converted to throttle percentage and brake pressure by a given conversion model.
The curvature is based on the arc length whereas it is integrated to find the head-
ing, (x, y) coordinates according to the bicycle model presented in Equation (2.8).
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The algorithm is pre-evaluated in MATLAB, tested and evaluated in the real-time
simulation environment PreScan/Simulink.
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3.1.1 Architecture of Online Structured Road Method

Waypoint ProcessingActive Waypoints (WP)

Closest WP in
Front of Vehicle Vehicle States

Generate Paths

Generate Trajectories

Trajectory Evaluation Env. Observation

Steering angle,
Des. Velocity

Output to vehicle

Best trajectory

Figure 3.1: Flowchart of actions of the structured road method. The yellow box
represents one pulse of input, in terms of given waypoints, to the algorithm. The ini-
tial action block, ’Waypoint Processing’, approximates the states for every waypoint,
addressing the heading and curvature at each waypoint, and increases the number
of waypoints laterally along the lane. By receiving the states of the waypoints, the
closest longitudinal point from the vehicle, along the road, is extracted. This is
followed by path generation from the initial position, to each waypoint neighbour
laterally. The red boxes represent frequently received data from the sensors, such as
detected obstacles or vehicle states. Trajectories are applied and evaluated whereas
the most suitable one is chosen according to a fixed cost function. The wheel angle
and desired velocity are output from the algorithm. The green box represents the
output.
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The procedure of the algorithm for navigation in a structured road environment is
seen in Figure 3.1. While running in a real-time environment, the algorithm follows
a top-down approach and the sensor data is received continuously. The waypoints
are given and assumed to be on the centre of the desired lane to follow. They
are only computed once, in order to get the heading, curvature. If desired, the
number of waypoints can be laterally increased. The paths are generated using
cubic polynomials that are fit to the next set of waypoints in front of the vehicle,
where the minimum distance to the waypoints is greater than a certain distance.
The polynomials are converged to these set of waypoints using Newton-Raphson
method, seen in Section 3.1.1.3, followed by speed profile application. Subsequently
evaluating the trajectories based on a cost function that numerically computes the
cost for the generated paths and speed profile applications, the best trajectory is
chosen. The best trajectory’s characteristics are output to the next layer, the motion
control.

3.1.1.1 Waypoint Processing

Defining the given waypoints as

ηi = [xwi ywi ] (3.1)

where i = 1, 2, ..., N . N is the amount of waypoints given in the map, ηi repre-
sents the ith waypoint including the (x, y) coordinate for the waypoints, denoted
as (xw, yw). The distance between each consecutive waypoint is approximately 2
metres and the heading angle and the curvature for each point are approximated as

θwi = tan−1
(
ywi+1 − ywi
xwi+1 − xwi

)
, (3.2)

κwi = θwi+1 − θwi
Ei

. (3.3)

Ei represents the euclidean distance between ηi and ηi+1 as the curvature is the
derivative of the heading with respect to the arc length. θwi and κwi represent the
heading angle and curvature of the ith waypoint, respectively.
Extending Equation (3.1) to

ηi = [xwi ywi θwi κwi ], (3.4)

each waypoint now consists of four states. In Figure 3.2, given waypoints are illus-
trated longitudinally along a one-way road, where each point includes the coordi-
nates, the heading angle (orientation) and the curvature.
By adding a variable, d, defining the lateral offset from the sampled waypoints, an
increased number of waypoints are sampled along the road, as in [8], written as

xw(i, d) = xwi + d cos
(
θwi + π

2

)
, (3.5a)

yw(i, d) = ywi + d sin
(
θwi + π

2

)
, (3.5b)
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Figure 3.2: Illustration of waypoints given along a one-way road, starting from
the left-hand side. The solid, black lines represent the road boundaries of a one-
way road, the orange arrows represent the heading angle of each point and the grey
points represent the given waypoints along a road, i.e. the stations.

θw(i, d) = θwi , (3.5c)

κw(i, d) = (κ−1
wi
− d)−1, (3.5d)

illustrated in Figure 3.3. This augmentation requires information about the width
of the road. Here, (xw, yw, θw, κw) represent the coordinates, heading angle and
curvature of the ith waypoint and the dth lateral offset, respectively. For clarity,
let i be called station, representing the longitudinal point along the road. Let the
laterally increased waypoints at a station be called vertices, represented as d. The
final vector is presented as

ηwi,d = [xwi,d ywi,d θwi,d κwi,d ]. (3.6)

3.1.1.2 Path Planner

As in [7], the path is defined as a cubic polynomial spiral, based on arc length, s,
from current state to the goal state, implied as the desired waypoints. The current
state of the vehicle, Xr, is defined as

Xr = [xr yr θr κr], (3.7)

where (xr, yr) are the coordinates of the ego-vehicle in the global Cartesian coor-
dinate system. θr is the heading angle of the ego-vehicle and κr is the current
curvature.
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Figure 3.3: Illustration of increased number of vertices at each station along the
road. The black, solid lines represent the road boundaries, the orange arrows repre-
sent the heading angle of each waypoint, the blue points represent the stations, i.e.
the given waypoints. The grey points represent additional vertices at each station,
i.e. the augmented waypoints at each station.

The target is to find a path connecting the current state Xr and a goal point ηwi,d .
A polynomial spiral representing the path is defined as

κ(s) = κ0 + κ1s+ κ2s
2 + κ3s

3, (3.8)

in which arc length s = 0, starts from the vehicle’s rear axle. κ is the curvature of
a generated path, with respect to arc length, s. (κ0, κ1, κ2, κ3) are the coefficients
to be found. From Equation (3.8), the coefficients might vary largely in magnitude
as s increases which might lead to round-off errors. In [7], a stable-path method is
introduced where the coefficients in Equation (3.8) are parameterised with a vector
P introduced as

P = [p0 p1 p2 p3 sf ], (3.9)

with sf as the total arc length of generated path. The variables from Equation (3.9)
are defined as

p0 = κ(0), (3.10a)

p1 = κ
(sf

3
)
, (3.10b)

p2 = κ
(2sf

3

)
, (3.10c)

p3 = κ(sf ), (3.10d)
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subsequently, the variables are treated to be of equal distribution along the path’s
arc length with κ representing the curvature throughout the generated path. The
parameterisation yields the final definition as

κ(s) = κ0(P ) + κ1(P )s+ κ2(P )s2 + κ3(P )s3. (3.11)

On solving Equation (3.11) for s = 0, s = sf
3 , s = 2sf

3 , s = sf , the vectorised
coefficients are found to be

κ0(P ) = p0, (3.12a)

κ1(P ) = −11p0 − 18p1 + 9p2 − 2p3

2sf
, (3.12b)

κ2(P ) = 92p0 − 5p1 + 4p2 − p3

2s2
f

, (3.12c)

κ3(P ) = −9p0 − 3p1 + 3p2 − p3

2s3
f

. (3.12d)

Consequently, the known variables are p0 and p3 since these variables represent the
initial curvature of the path, κ(0), for a given initial state, and the curvature of
the goal point, κwi,d , respectively for a desired i and d. The unknown variables are
p1, p2, sf . Further, having the curvature along the arc referred from the bicycle
model in 2.3, the heading and (x, y) coordinates are retrieved along the arc length
by integrating the curvature. These are obtained from Equation (2.8a) to Equation
(2.8d) and are expressed as

κP (s) = κ0(P ) + κ1(P )s+ κ2(P )s2 + κ3(P )s3, (3.13a)

θP (s) = θr + κ0(P )s+ κ1(P )s2 + κ2(P )s3 + κ3(P )s4, (3.13b)

xP (s) = xr +
∫ s

0
cos[θP (s)]ds, (3.13c)

yP (s) = yr +
∫ s

0
sin[θP (s)]ds, (3.13d)

where (κP , θP , xP , yP ) represent the states of the generated path from the current
states, along s. The variable P differs for different paths, yet chosen such that
p0 is the initial curvature of a path, p3 is the curvature of a chosen waypoint and
the remainders are unknown, initialised with a guess. The integration for xP , yP
along the path are approximated using Simpson’s rule, from Equation (2.2). With
p1, p2, sf as initial guesses, the problem converges to find the unknown parameters
such that

∆ρ = [xwi,d ywi,d θwi,d ]︸ ︷︷ ︸
goal

− [xP (sf ) yP (sf ) θP (sf )]︸ ︷︷ ︸
path−end

≈ 0, (3.14)

for a chosen waypoint of i and d and where
(
xP (sf ), yP (sf ), θP (sf )

)
starts from

vehicle’s initial or current states. Thereby, sf represents the path length from the
initial coordinates to the chosen waypoint. ∆ρ is the vector of differences between a
chosen waypoint and the generated path endpoint vector, XP , including the initial
guesses.
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With the number of unknowns equal to the number of boundary conditions, the prob-
lem is solved using Newton-Raphson method, presented in Section 3.1.1.3, where the
goal is to fulfil Equation (3.14). The minimisation problem is formulated as

min
P,e

e

s.t.
e ≥ ∆ρ
e ≥ −∆ρ
p0 = κr
p3 = κwi,d

(3.15)

where p0 is either the curvature of the current vehicle position or of any waypoint
that should connect a path to a desired waypoint, κwi,d .
Conclusively, let a generated path be denoted as τp(s) connecting the initial states,
s = 0, and goal states, s = sf .

3.1.1.3 Newton-Raphson Solution

Newton-Raphson method, presented from Equation (2.3), is introduced as

P n+1 = P n − JPn
(
XPn(sf )

)−1
∆ρ m, (3.16)

which is used to solve the problem of converging a path from the current position to
a chosen waypoint. The Jacobian, JP , is found by forward differences as calculated
in [9], using small perturbations on (p1, p2, sf ).
The goal is to find a path that converges to one chosen waypoints from the current
position or any initial position, as seen in Figure 3.4. By the use of augmented
waypoints, several paths are generated, Figure 3.5, and the vehicle has the possibility
to avoid obstacles by choosing an appropriate candidate. In this case, each τp (path)
has different coefficients, P , and different goal states. For the lateral and longitudinal
distances of the chosen waypoints, even unfeasible paths would theoretically be
generated. This can be overcome by introducing a threshold that removes paths
which include curvature greater then the vehicle’s limited wheel angle, see Equation
(2.10).
The procedure of the Newton-Raphson method is the same as in [7] and [9]. The
steps are as following:

∆ρ← [xwi,d ywi,d θwi,d ]− [xP (sf ) yP (sf ) θP (sf )], (3.17a)

JPn
(
XPn(sf )

)
←


δxP (sf )
δp1

. . .
δxP (sf )
δsf... . . . ...

δθP (sf )
δp1

. . .
δθP (sf )
δsf

 , (3.17b)

∆P̂ ← −JPn
(
XPn(sf )

)−1
∆ρ, (3.17c)

P n+1 ← P n + ∆P̂ , (3.17d)
where i, d are integers. Equation (3.17a) to Equation (3.17d) are repeated until
∆ρ ≈ 0.
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Figure 3.4: Illustration of one generated path, τp. The red line represents the path
(cubic polynomial) after (p1, p2, sf ) have converged to fit the polynomial at station
3 from station 2. The first waypoint on the left-hand side represents station 1. The
black, solid lines represent the road boundaries and the grey points represent the
given waypoints.

0 10 20 30 40 50 60 70 80

x (m)

-15

-10

-5

0

5

10

15

y
 (

m
)

Generated Path

Aug. Waypoints

Boundaries

Initial Waypoints

Figure 3.5: Illustration of generated paths, a set of {τp}, after (p1, p2, sf ) have
converged for each vertex at station 3 from the lowest vertex of station 2. The
blue points represent the given waypoints, the grey points represent the augmented
waypoints. The generated paths do not consider any steering limits.
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3.1.1.4 Speed Generation

After generating geometric paths based on arc length, to turn the paths into trajec-
tories (paths parameterised by time), a set of velocity profiles are applied to each
path. The approach of this thesis is based on the idea that a fixed number of velocity
profiles are applied to the set of all paths, {τp}. The velocity profiles are generated
as cubic polynomials to provide smooth acceleration, as in [8]. The trade-off of this
approach is between computational time and accuracy. If more velocity profiles are
generated, there are more velocity profiles to choose from resulting in a more ac-
curate selection. For instance turns, where centripetal acceleration is the point of
interest, or deviation from speed limit, where velocity is the point of interest.
Consider the following

σinit = (s0, v0, a0), (3.18a)
σgoal = (s1, v1, a1) (3.18b)

where σinit and σgoal represents the initial states and desired states of any chosen
waypoint, respectively, s0 and s1 represents the initial and final arc length of the
vehicle, respectively. For instance, s0 is the initial position of a path, τp, and s1
is the arc length, sf , of the same path reaching to a waypoint. v0 and a0 serve as
the obtained velocity and acceleration at the current state. v1 represents a range of
different, final velocities of a given path to a waypoint. a1 is the final acceleration
of the path.
The velocity polynomial is defined as

v(s) = β0 + β1s+ β2s
2 + β3s

3 (3.19)

where s represents the arc length and v represents the velocity. The polynomial is
constrained by the known parameters (v0, a0, v0, v1). To calculate the coefficients of
Equation (3.19), the arc length is set such that s = 0 and s = sf . Coefficients are
found to be

β0 = v0 (3.20a)
β1 = a0 (3.20b)

β2 = −2a0 + a1

s1
− 3v0 − 3v1

s2
1

(3.20c)

β3 = a0 + a1

s2
1

+ 2v0 − 2v1

s3
1

. (3.20d)

To obtain the uniform distribution from minimum end-velocity to maximum end-
velocity of a path, the different end-velocity profiles, v1i , are found as

v1i = vmin + vmax − vmin
Nprofiles−1

i, i = 0, 1, ..., Nprofiles − 1. (3.21)

vmin represents the lowest possible end-velocity and vmax represents the highest
possible end-velocity. Nprofiles represents the amount of distributed profiles to be
generated. End-velocity implies the last velocity value to be reached at the end of
the path.
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3. Method of Path Planning and Trajectory Generation

In Figure 3.6, 10 different velocity profiles are applied to each τp from Figure 3.5,
distributed equally between 0 ms−1 up to 10 ms−1 end-velocities. The paths are
converted into trajectories, denoted as τt(s). Each τt consists of the corresponding
path’s states including a velocity profile. The acceleration and jerk are obtained
from the velocity as

a = dv

ds

ds

dt
= (β1 + 2β2s+ 3β3s

2)v, (3.22)

J = da

ds

ds

dt
= (2β2 + 6β3s)v2, (3.23)

where a is the acceleration, J is the Jerk. v is the derivative of s with respect to time,
also written as ṡ. The velocities represent the speeds throughout the trajectories
with the direction along the paths.
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Figure 3.6: Illustration of applied velocity profiles as cubic polynomials, to the
set of all {τp}. By applying velocity profiles on the paths, the paths turn into
trajectories, seen in the red lines starting from station 2 generated to station 3.
A trajectory is denoted as τt(s). Here, the initial velocity is 3 ms−1 and the final
velocities are equally distributed between 0 ms−1 to 10 ms−1. Some trajectories
may be unfeasible. The Z-axis represents the velocity, the black lines represent the
road boundaries.

3.1.1.5 Cost Functions

Cost functions are a critical choice of the desired behaviour of an autonomous vehicle.
Crucial factors in this field are safety, efficiency, comfort, where the key is to find a
good balance that satisfies the stochastic nature.
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Influenced by [8], the cost function is constituted by the parameters in Table 3.1,
which target the geometric paths. The parameters in Table 3.2 target the time-
parameterised paths, i.e. the dynamic cost.

Table 3.1: Cost function parameters for generated paths

PATH COST
Parameter Mathematical Expression Symbol
Path length s1 Cl

Curvature ∑n
k=0 |κk| Cc

Curvature rate ∑n
k=0 |κ̇k| Ccr

Lateral offset from mid point o Clat

Static obstacle coord. ∑n
k=0 |dpk |2 Cdp

Based on Table 3.1, n points are extracted from a trajectory, τt, to represent the
cost, s1 is the path length for a chosen τt. κk and κ̇k are the curvature and curvature
rate, respectively, for each extracted point, k. o is the euclidean distance between
τt(sf ) and the corresponding middle-vertex of that station. o is calculated as

o =
∣∣∣∣∣∣[xP (sf )− xwi,d yP (sf )− ywi,d]

∣∣∣∣∣∣. (3.24)
In Table 3.1, “Static obstacle coord.” represents an exponential function of euclidean
distance from each extracted point of a trajectory to static obstacles on the road.
dpk is calculated as

dpk = e
− ||[xP (k) yP (k)]T−[xobs yobs]T ||

ψp , (3.25)
where xP (k) and yP (k) is extracted points from a trajectory. xobs and yobs is an
obstacle location and ψp represents a bandwidth. Using this setup, the obstacle dis-
tance is formed as an exponential function where the value increases as the euclidean
distance decreases. The functional criteria is formulated such that, if the distance
to an obstacle is closer than a certain threshold, the cost is set to infinity.
In Table 3.2, t is the duration of a trajectory, vg represents the end-velocity of a
trajectory and vref represents the reference velocity on the road, i.e. the speed
limit. The velocity, acceleration and jerk are represented by v, a and j respectively.
The expression dt represents the difference between the end-velocity of a trajectory
and the Doppler velocity to an obstacle, computed with an object detection camera
mounted on the vehicle, only for online purposes. The difference, dt, is calculated
as

dt = (vg − φ)2, (3.26)
where φ is the Doppler velocity to the closest obstacle, ds is an exponential function
of the euclidean distance to an obstacle. The function, ds, is calculated as

dsi = e
− ||[xP (i) yP (i)]T−[xobs yobs]T ||

ψt , (3.27a)
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where ψt represents the bandwidth. In this thesis, the bandwidth is set to be the
end velocity of a trajectory. Adding a threshold as, if

∃i ∈ τt, ||[xP (i) yP (i)]T − [xobs yobs]T || < tdistance (3.28)

holds, then the weight for Cds is greatly increased. The variable tdistance represents
a threshold value of maximum distance allowed. Using this parameter, if any of the
extracted trajectory points are closer than tdistance, the cheapest outcome is chosen,
resulting in a trajectory with a low speed.
Both acceleration and jerk are limited. By adding a threshold to these parameters,
the cost is set to infinity if the limit is violated.

Table 3.2: Cost function parameters for the dynamic cost

DYNAMIC COST
Parameter Mathematical expression Symbol
Duration t Cdur

Speed limit deviation ∑n
k=0(vg − vref )2 Cs

Acceleration ∑n
k=0 a

2
k Ca

Jerk ∑n
k=0 j

2
k Cj

Centripetal acceleration ∑n
k=0 v

2
kκk Cca

Transformed distance to object dt Cdt

Static obstacle coord. ∑n
=0 |dsk |2 Cds

From Table 3.1 and Table 3.2, the total cost is calculated using the following equa-
tions,

Cpath = wlCl + wcCc + wcrCcr + wlatClat + wdpCdp
n

, (3.29a)

CTraj = wdurCdur + wsCs + waCa + wjCj + wcaCca + wdtCdt + wdsCds
n

, (3.29b)

Ctotal = Cpath + Ctraj, (3.29c)
where Cpath is the total of Table 3.1, Ctraj is the total of Table 3.2 and Ctotal is the
sum of these costs. The w’s represents weights for each parameter where a higher
weight implies more influence on the cost.

3.1.1.6 Trajectory Application

Each trajectory is compared and evaluated to each other through the cost functions.
Path generation to 5 different waypoints along with 10 different speed profiles results
in 10×5 = 50 different possibilities of trajectories. The cheapest trajectory is chosen.
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From Equation (2.8d), depending on the architecture of the system, the curvature
can be transformed to wheel angle, as in this project. The concept implies that
the closest waypoint further than a fixed threshold in front of the vehicle is chosen,
whereas the trajectories are generated to the given waypoint along with each of the
laterally augmented waypoints at every instance, hence the cheapest among them is
chosen.
Once trajectories have been generated the waypoints in the next station closest to
the vehicle, the best one is chosen. By advancing the trajectory generation from
that station to the next upcoming station and its vertices, the horizon is extended.
This results in extra computational time yet more information of the forthcoming
future states. The use of longer horizon can offer significant performance benefits
in terms of smoothness, comfort, safety and efficiency.

Another way to extend the horizon is, except from generating to the forthcoming
station, to also generate trajectories to the 2nd and 3rd forthcoming station, from the
current position. A dynamic programming algorithm then compares the cheapest
way to go to the station by comparing all possible trajectories from the current
position. This method results in more smoothness, efficiency, comfort and safety.
By repeating this pattern to a desired horizon, as the end state of each trajectory
acts as the next initial state, an adaptive model-predictive planner is achieved.

There are many different ways of using the outputs from the trajectory generator.
As in Equation (2.8d) of Section 2.3, the wheel angle of the best trajectory is, in
this thesis, calculated after the curvatures of the best trajectory have been found.
The trajectory states are the outputs containing positions, headings, curvatures and
velocities.

3.1.2 Real-Time Configuration
To visualise the results of the Trajectory generation in PreScan and Simulink, a
solution to track the generated trajectories has to be found. With the given way-
points and by obtaining the ego-vehicle’s (x, y) coordinates, heading angle, velocity
and information from the object detection camera, the algorithm in this thesis gives
the curvature and desired velocity of the trajectory, at every iteration in the simula-
tion environment. The curvature of the trajectory is stored in a vector representing
the cubic polynomial, whereas the first elements are used to calculate the desired
steering angle. The steering angle is fed through a PID-controller together with a
low-pass filter to avoid fast changes. A saturation block limits the wheel angle to
exceed the wheel angle limit of the vehicle.
The data from the object detection camera is processed such that the closest obstacle
in front of the ego vehicle has its Doppler velocity measured. The output velocity
from the algorithm is regulated with a PID-controller together with a low-pass filter
and saturation. The output from PID-controller is converted via a given conversion
model, to desired throttle and braking for the ego-vehicle. Due to the cost function
presented in Section 3.1.1.5, the ego vehicle is able to adapt its velocity to obstacles
detected by the camera by either adjusting to the velocity differences or by braking
to reach a stationary state, further elaborated in Section 4.3.
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3.2 Unstructured Environment Method
This section is focused towards the second part of the thesis, i.e. to perform the
parking action once the vehicle is off the structured road. In the field of autonomous
vehicles, unstructured or semi-structured environments represent the map for nav-
igation of the vehicle in which there are neither structured lanes, that provide a
set of waypoints, here mentioned as path points, along the path to the goal, nor
sign boards that indicate specific road instructions. The unstructured environment
is usually generated based on sample-based methods, which gives control over the
scaling of the search space, [14]. The most common unstructured environments, as
mentioned in [15], are parking lots, cross-sections in Urban environments, deserts.
According to the same article, an initial offline path is obtained on a map of this
environment. During this, the vicinity of obstacles is also included. Different al-
gorithms can be followed for generation of paths in these types of environments.
The most common path search algorithms are observed to be A*, D* or RRT*. In-
spired by an application for parking in an unknown environment by Stanford Racing
Team’s vehicle at DARPA Urban Challenge, the search algorithm chosen for this
part is similar to Hybrid-A*, [16]. The algorithm is executed in Matlab/SIMULINK
followed by the simulation in PreScan.

3.2.1 Architecture of Unstructured Environment Method
In general, the offline path to be followed is obtained by using the modified A*
algorithm, which is generated using the inputs (xr, yr, θr) and (xg, yg, θg). xr, yr, θr
are the initial and xg, yg, θg are the final global coordinates and vehicle orientation
(heading) in degrees. Points are extracted from the A* path based on a selective
distance between them, which depends on the turning radius of the vehicle. The
continuous Reeds-Shepp curves are generated to the extracted points, consecutively,
from the current position of the vehicle. The acceleration to the vehicle is varied
corresponding to the velocity throughout the manoeuvre. The control of the vehicle
is updated online in the simulation by varying the wheel angle and acceleration,
which are the outputs obtained in this thesis, with respect to the current position and
orientation of the vehicle. A flow chart explaining the algorithm can be seen in Figure
3.7. Further, this section explains the path following algorithm for unstructured
environment in detail.
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Offline Calculations
A*Static obst. coord. Init.&Final states

Find suitable
point for vehicle Vehicle states

Generate Reeds-
Shepp’s curve

Generate acc. profile

Timeout?

Env. observation

Steering angle,
Acceleration

Output

Extract coordinate points

No

Yes

Figure 3.7: Flowchart of Unstructured Environment Method. The yellow boxes
represent the inputs at the initial instance. The Offline Calculation, mentioned
in the top blue box, is an A* algorithm. Path points are extracted from the A*
path. Information regarding the vehicle state and the environment, depicted by
red boxes, are provided at every instance during the simulation. Following this,
the Reeds-Shepp curves are generated to suitable path points based on the current
position. The acceleration profile of the vehicle is adjusted by setting a threshold
velocity for the vehicle. Replanning of the Offline Calculation could be done if the
online trajectory generation times-out, as seen in the decision block ‘Timeout’. The
obtained outputs are wheel angle and acceleration, which are given to the controller
of the vehicle, seen as the green box.36
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3.2.2 Inputs and Outputs
A set of inputs are required for calculating the path and generating trajectories. The
turning radius of the vehicle shall be decided based on the scenario. The extracted
path points are similar to the waypoints in Structured Road Method.
The required inputs for offline path calculation are:

• The initial and final global coordinates of the vehicle, (xr, yr) and (xg, yg),
• The initial and final orientation of the vehicle, θr and θg,
• The turning radius of the vehicle,
• The obstacle coordinates.

The inputs for online path generation are:
• The current position and orientation of the vehicle at each instance, (xro , yro , θro),
• The path points, (xwi , ywi , θwi),
• The turning radius of the vehicle,
• The threshold velocity.

The maximum curvature, κmax of the vehicle is calculated from the turning radius
as seen in Equation (2.8d). A depiction of an environment with initial points, final
points and obstacle coordinates can be seen in Figure 3.8.
The output to the vehicle’s controller is acceleration, a, and wheel angle, δ, calcu-
lated based on the curvatures and heading angles obtained from the Reeds-Shepp
curve generation.
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Figure 3.8: Illustration of an unstructured environment, showing obstacles. The
green and red markers represent the initial and final positions between which the
path is to be generated. The blue and brown boxes represent obstacles in the
environment.
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3.2.3 Hybrid A-star
Typically, in an unstructured environment there are nodes which define a path. They
are scattered over the map and selected ones can be activated to reach the goal.
Thus, to decide which ones to activate and follow might become a difficult decision
task. To avoid this complex case, a short path is generated to the goal, beforehand.
Therefore, offline calculations are performed to obtain the reference points to be
followed. Hence, only a few points are chosen from these coordinates based on a
threshold distance. These points are referred as the path points. The path obtained
by using the A* algorithm can be seen in Figure 3.9, where straight lines are drawn
between the chosen nodes of a grid, similar to Figure 2.2. As seen, the drawback
is that the obtained path from the A* algorithm is holonomic, which means that
it is explicitly non-traversable by a vehicle. A hybrid version of this algorithm is
formulated, such that the obtained shortest path also includes approximations of the
orientations throughout each node along the path. The path on the map represents
the information about the position and orientation of the vehicle such that they are
at a minimum distance away from any obstacle coordinate. The cost to a neighbour
node is assigned from the current node as it moves towards the goal node. This is
different from the normal A* method, in which the cost for every node is assigned
based on the given map boundaries before the search starts.
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Figure 3.9: Illustration of the A* path, showing the shortest path to the goal by
avoiding the obstacle (brown box). Depicted from this figure is that the generated
path is holonomic and has sharp turns which are impossible to traverse by a vehicle.

If the map contains obstacles, a path is searched such that they are avoided. A
safety distance is maintained such that there is a margin between every node of the
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path and the obstacles. This is taken into consideration because this A* path is
obtained offline and the extracted path points are given for online tracking of the
vehicle, considering that the vehicle has a certain width and length.
The path obtained from this discrete-search based method is holonomic on the
map. Each node comprises of an approximated angle which is the angle between the
two consecutive points and does not reflect the nature of the A* path itself. The
holonomic characteristic of the A* path is solved by the curve generation between
path points by the Reeds-Shepp method. Before moving to curve generation by
Reeds-Shepp method, path points have to be derived from the nodes of the A*
path. These are similar to the waypoints in the Structured Road Method. They are
chosen from the nodes of the A* path based on the distance between two consecutive
path points, which should be greater than at least twice the length of the vehicle.
This is to avoid unwanted and congested cusps (the point where the vehicle changes
direction). Figure 3.10 shows the path points, containing the information about the
direction to move from that node. The path points are denoted as (xwi , ywi , θwi)
where the ith node is characterised with (x, y) coordinates and orientation.
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Figure 3.10: Plot illustrating the information obtained from the A* path, con-
taining the angles of each path point. The purple markers are the path points the
are extracted from the A* path. The direction of the nodes, on each path point, is
pointed by the red arrows. Each path point carries information about the position
and orientation (heading) of the node from the A* path. The green and red markers
refer to the initial and final positions.

The above method of extracting path points from the A* path works well for forward
parking scenarios, since the vehicle has to manoeuvre only in one direction. In a
case where the vehicle has to reverse-park, this method of extracting the path points
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might result in undesired curves. Hence, to overcome this problem a sub-point has
to be defined. During the offline calculation, an A* path is first generated to a sub-
point, seen in Figure 3.11. The sub-point is included in the path finding algorithm.
Initially, the path is generated to the sub-point, following which an extended path
from the sub-point to the goal is achieved. The sub point is generated such that it
is placed at a certain distance below the parking spot next to the desired parking
spot, on the opposite side of the entry direction of the path. The angle is chosen to
be perpendicular to the goal angle, which is outwards from the parking spot, and
faced away from the entry of the path. For example, if the vehicle comes from the
left, the point is placed below the parking spot to the right of the desired parking
spot, facing rightwards, and vice-verse.
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Figure 3.11: Plot illustrating the A* path to the sub-point and further extended
from the sub-point to the goal. The path points extracted from the total A* path
are the purple markers on the A* path. The red dashed line represents the A*
path to the sub-point and the blue line is the extended path. The diamond shaped
magenta marker indicates the sub-point. Here, the sub-point is placed on the left
side of the desired parking spot since the entry direction of the vehicle is seen to be
from the right side.

3.2.4 Reeds-Shepp Curve Generation
Once the points to be followed are extracted, a non-holonomic path is generated
from the current position to a certain horizon of retrieved path points. These paths
are generated by Reeds-Shepp curves.
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Reeds-Shepp method is adapted to generate a curve to the closest path point, as
the vehicle moves towards the final position. The curves are generated based on the
calculation of the Reeds-Shepp parameters, as seen in Equation (2.20) to Equation
(2.27). The curve is generated from the current position to the consecutive path
point, as depicted in Figure 3.12. A constraint is set such that, if the closest sub-
sequent path point is in a distance less than a certain value then the path point to
follow is changed to the following look-up point (i.e. the next path point), as seen
in Figure 3.13.
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Figure 3.12: Illustration of a Reeds-Shepp curve generation (the blue line) to
the next path point from the initial point. After generating the first curve to the
forthcoming path point, the initial position for the next curve is set to be the attained
path point. This would result in a continuous path from the vehicle’s current position
at any instance to the following path point and eventually to the goal.

To calculate the Reeds-Shepp parameters, to obtain a curve to the ith path point,
the vehicle states are transformed to the Spherical Coordinate System using the
obtained (xr, yr, θr), at the vehicle’s current state, and (xwi , ywi ,wi ), which are the
states at ith path point for a chosen i. The transformation can be written as

xro = ∆xcos(∆θ) + ∆ysin(∆θ), (3.30)

yro = ∆ycos(∆θ)−∆xsin(∆θ), (3.31)

θro = ∆θ, (3.32)

where
∆x = xwi − xr, (3.33)
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∆y = ywi − yr, (3.34)

∆θ = θwi − θr, (3.35)

in which xro , yro and θro are, hereby, the current vehicle coordinates in the local
coordinate system at each instance. The parameters are used to calculate the differ-
ent curves possible from the equations seen in (2.17) to (2.19). The shortest curve
among the possible curves is chosen as the path.
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Figure 3.13: Plot showing the Reeds-Shepp curve generation (the blue line) to
the following look-up path point, since the subsequent path point is closer than a
specific distance. The dark green marker represents the position of the vehicle at
an instance, assuming it is moving to the 2nd path point but generates the curve to
the 3rd path point, since it is near the consecutive path point (i.e. 2nd path point).

In Figure 3.13, the Reeds-Shepp curves can be generated between the path points,
where the initial position must be changed to be the next path point consecutively,
after a prior path has been generated. A non-holonomic path is generated from the
current position to the goal. The problem of generation of Reeds-Shepp curves to
the desired parking spot is that is does not obey the constraints of the obstacles.
This can be overcome by the sub-point generation and further, path point extraction
in the A* computations. To make this method work in an real-time configuration,
Reeds-Shepp curves are iteratively generated to the closest path point which fulfils
the criteria, having the initial position as the current position at every iteration.
That means that the horizon of 1 path point is used.
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3.2.5 Acceleration Profile and Wheel Angle
Since the environment is a parking lot or a similar open space, there is assumed
to be no speed limit. Hence, lower velocities are sufficient for the manoeuvre. A
low threshold value is set as a desired constant velocity. An acceleration profile is
generated based on the velocity of the vehicle. If the current velocity goes below
the threshold velocity, a small constant acceleration is given to the vehicle. If the
velocity exceeds the threshold velocity, no acceleration is given. Hence, a velocity
close to the threshold is maintained throughout the path. Since it is assumed that
there is no speed-limit inside an open parking lot, it is safe to have a lower threshold
velocity to perform the manoeuvre. It is necessary to change the gear for reversing
the vehicle. Thus, a deceleration is given as the output so that the vehicle slows
down and reaches a near stop position when the vehicle reaches the sub-point, to
change from the current forward gear to reverse gear. A deceleration is also provided
when the vehicle reaches the goal position so that the vehicle stops, irrespective of
the current gear.
The desired wheel angle, which is also another output to the controller, is calculated
by differentiating the heading along the path. Since the curvature is the derivative
of the heading, with respect to the arc length, the curvatures along the path are
obtained by

κP (k) = θP (k + 1)− θP (k)√(
xwP (k + 1)− xwP (k)

)2
+ (ywP (k + 1)− ywP (k)

)2
, (3.36)

where k represents the discretised step along the path, from 1, 2, ..., K. Here, K
indicates all the elements of the path. κP (k) is the curvature of the path at the
kth step. The denominator in Equation (3.36) is the approximated arc length at
each element. The curvature is translated to desired wheel angle by using Equation
(2.8d).
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4
Results

In this chapter, the finalised results along with values of different parameters are
introduced. The first section, Section 4.1, showcases the achieved results of the
on-road navigation offline. The second Section, 4.2 showcase the achieved results
of the off-road navigation offline. The remainder of this chapter investigates the
testing of the online environment simulations, for which the data is extracted from
the simulations. Online results refer to the results achieved in a simulation.

4.1 Offline Structured Road Method
For the offline generation, given the initial waypoints and the road width, roadw = 3
metres, the augmented waypoints are generated using Equation (3.5a) to Equation
(3.5d), where d is computed as

d =
[
− roadw

3 , −roadw6 , 0, roadw6 ,
roadw

3

]
. (4.1)

As the waypoints are given such that the distance between each waypoint is 2 metres,
every 2nd station is filtered out since the distance would be too close otherwise.
The initial guesses and the remaining parameters for every variable in P is initialised
as

p0 = 0, (4.2a)

p1 = 0, (4.2b)

p2 = 0, (4.2c)

p3 = 0, (4.2d)

sf = 4. (4.2e)

These values were found to achieve good results with Newton-Raphson method.
From Equation (3.21), the velocity configuration is set as

Nprofiles = 10, (4.3a)

vmin = 0, (4.3b)

vmax = 10, (4.3c)

a0 = 0, (4.3d)

a1 = 0. (4.3e)
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4.1.1 Cost Function Configuration
The weights in the cost function referred in Table 3.1 and Table 3.2 of Section
3.1.1.5, are presented in Table 4.1. The values are found by trial and error where
‘Path Cost’ is found offline, in Matlab, and ‘Dynamic Cost’ is found online, in
Simulink and PreScan. Apart from the weights in the cost function, a threshold
is added to the acceleration. The acceleration threshold, athreshold, is set to 2. A
trajectory containing any element ‘a’, such that if

∃i ∈ τt, |ai| > athreshold (4.4)

holds, acquires an increase of 104 units to the cost. To intervene emergency situa-
tions, if an obstacle is less than 5 metres in front of the vehicle, athreshold is rejected.
The bandwidth, ψp in Equation (3.25), is set to ψp = 1.

Table 4.1: Weights used in Cost Function.

PATH COST DYNAMIC COST
Symbol Weight Symbol Weight
wl 1 wdur 0.1
wc 2 ws 1
wcr 1 wa 0.5
wlat 90 wj 0.01
wdp 1011 wca 1.4

wdt 20
wds 20

In Equation (3.28), tdistance = 1.5 metres. Due to the threshold, if Equation (3.28)
holds, i.e. if a particular trajectory has any element less than 1.5 meters away from
the obstacles, wds = 1010 for that trajectory.
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4.1.2 Plot Results
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Figure 4.1: Illustration of the chosen offline generated trajectories (red lines) from
the initial waypoint, station 1 in the left of the plot, to station 12. The best tra-
jectory, to one station forward, is chosen to be used as the initial at next iteration.
The black asterisk represents a static obstacle on the road. The trajectory avoids
the obstacle and returns back to the centre of the lane. The horizon is 1 station.
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Figure 4.2: Illustration of the chosen, offline generated trajectories (red lines) from
the initial waypoint, station 1 in the left of the plot, to station 12. The black asterisk
represents an obstacle on the road. The Z-axis represents the velocity. In this figure,
the acceleration is smoothed up to the desired velocity, set to 10ms−1.
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In Figure 4.1 and Figure 4.2, the trajectories are generated to the next station in
front of the current station. As the best trajectory has been chosen among the
generated ones, the endpoint of that trajectory is assigned to be the next initial
station, i.e. the horizon is 1 station. The reference speed is set to be 10ms−1. A
static obstacle is included to be at (x, y) = (32,−2), which is considered by the
algorithm. Dynamic obstacles are not added to the offline generated trajectories.
In these figures, every second station is removed to increase the distance of the
trajectories.

Figure 4.3: Illustration of the chosen, offline generated trajectories from the initial
waypoint at station 1 in the left of the plot to station 12, where the best trajectory
to 2 stations further is chosen and the end-point is used as the initial point at next
iteration. The black asterisk represents a static obstacle on the road. The trajectory
clearly avoids the obstacle and returns back to the centre of the lane again. The red
lines represent the generated trajectories.

In Figure 4.3 and Figure 4.4, the horizon is extended to 2 stations, implying that the
algorithm checks the numerically best possible trajectory segment from 1 station to
2 stations further away. This is done by either choosing a trajectory segment that
goes straight to 2 station further away or by choosing a trajectory segment that goes
from the initial station to the forthcoming station, and another trajectory segment
from that station to the next coming station. In this case, there is no difference
between the paths of Figure 4.1 and Figure 4.3. The clearest difference is in the
acceleration profiles, seen between Figure 4.2 and Figure 4.4, where the acceleration
profile is smoother in the latter figure. Another difference is the constant velocity
that is obtained in Figure 4.2. The desired velocity of the whole plot is 10ms−1.
Another big difference is the computational time. Computing trajectories to a hori-
zon of 2 results in (5x10)+(5x10)+(5x5x10) = 350 different trajectories to evaluate
in this case, compared to (5x10) = 50 trajectory as in Figure 4.1 and Figure 4.2.
Another scenario is presented in Figure 4.5 and Figure 4.6, where an obstacle is
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Figure 4.4: Illustration of the chosen, offline generated trajectories from the initial
waypoint at station 1 in the left of the plot to station 12. The black asterisk
represents an obstacle on the road. The Z-axis represents the velocity. The desired
velocity is set to 10ms−1. A horizon of 2 stations is used.

placed in the middle of the road. As the road width is 3 metres and the threshold,
tdistance is 1.5 meters, the condition in Equation (3.28) will execute. Seen in Figure
4.5, by assuming that a vehicle is around 1.8 meters wide, the obstacle will have
an impact on the vehicle. Hence, looking at Figure 4.6, the velocity is reduced to
0ms−1, resulting in a stationary state before the obstacle.
Every 4th waypoint is used in Figure 4.5, to increase the distance between each
station. The distance between each given waypoint is 2 metres, using every 4th way-
point results in a minimum distance of approximately 8 metres for the trajectories.
As some trajectories are generated straight to 2 stations further away and include
the fact that the trajectories are arcs, the distance for some segments of a trajectory
end up to be around 20 metres or more.
Instead, by using every 6th waypoint when generating trajectories, seen in Figure
4.7, the distance can be set to be 12 metres between the initial waypoints. With
trajectories generated to 2 station further away, length of some trajectory segments
become 30 metres or more. By removing too many stations, as seen in Figure 4.7, the
distance between each station becomes too big, resulting in trajectories surpassing
the road boundaries.
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Figure 4.5: Illustration of the chosen, offline generated trajectories from the initial
waypoint at station 1 in the bottom of the plot to station 10, upper left, in another
scenario. Every 4th station is included, which is another way to extend the distance
of trajectories. The black asterisk represents an obstacle on the road. The station
horizon is 2. In this case, an obstacle is placed in the middle of the road which the
vehicle cannot avoid without adjusting the velocity.

Figure 4.6: Illustration of the chosen, offline generated trajectories from the initial
waypoint at station 1 in the bottom of the plot to station 10. The black asterisk
represents an obstacle on the road. The Z-axis represents the velocity. The desired
velocity is set to 10ms−1. A horizon of 2 stations is used. In this case, the vehicle
exceeds the threshold limit, tdistance and the planned velocity is reduced.
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Figure 4.7: Illustration of the chosen, offline generated trajectories from the initial
waypoint at station 1 in the bottom of the plot to station 7. The black asterisk
represents an obstacle on the road. A horizon of 2 stations is used. In this case, the
vehicle exceeds the threshold limit, tdistance and the planned velocity is reduced. The
planned trajectory stretches outside the road boundaries due to the long distance
between each station.

4.2 Offline Unstructured Road Method
Once the set-point is reached, which indicates that the vehicle has entered the park-
ing lot, the Unstructured Road Method takes over the path planning to the goal
position. In this section, the values used for the test cases showcased are mentioned
and the behaviour is illustrated.

4.2.1 Parameter Configuration
The parameters configured to implement parking of the vehicle are,

• The initial and final positions,
• Current vehicle angle and desired goal angle,
• Curvature of the path, based on the length of the vehicle,
• Safety distance.

The obstacles are avoided, with a certain distance to ensure safety. The map is
provided along with obstacle coordinates. The position and angle of the sub-point
(in case of reverse parking) is set in the A* algorithm to obtain obstacle free path
points.

4.2.2 Test Scenario 1
Test Scenario 1, as depicted in Figure 4.8, illustrates a case in which a vehicle is
required to park from an initial angle of 90◦ to a goal angle of 90◦. In this case, a
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sub-point generation is not required as the vehicle has to park in the same direction
as its current orientation. It is seen that the safety distance is maintained from the
obstacles, which is 10 metres for this case. The Table 4.2 specifies the information
regarding the values of the parameters that are set for this case. Here, all the other
parking spots, other than the goal, are assumed to be obstacles.

Table 4.2: Parameters for Test Scenario 1.

Parameter Value Unit
Initial Position (15,0) m
Final Position (85,94) m
Initial Angle 90 degrees
Final Angle 90 degrees

Length of the Vehicle 3 m
Safety Distance 10 m
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Figure 4.8: Illustration of Reeds-Shepp path, generated from an initial angle of
90◦ to a goal angle of 90◦. The green and red triangle markers represent the initial
and final positions, while the purple markers are the path points between which the
Reeds-Shepp curves are generated. The Reeds-Shepp paths are generated based on
the length vehicle which is 3 metres. A safety distance of 10 metres is maintained
between the surrounding objects.
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4.2.3 Test Scenario 2
Test Scenario 2, as depicted in Figure 4.9, illustrates the path generated by Reeds-
Shepp algorithm. As seen in Table 4.3, based on the given input parameters, the
A* path is generated to the goal point. It is observed that Reeds-Shepp algorithm
provides a forward path from the initial point without generating a sub-point. Then
a reverse curve is generated at the end of the path to park the vehicle in the desired
orientation. This validates the Reeds-Shepp path, showing that the path generated
between two points obeys the curvature of the vehicle’s path. Therefore, it is im-
portant to extract path points at a reasonable distance between them, from the A*
path. An important observation here is that the safety distance should be set in the
A* algorithm with respect to the size of the vehicle.

Table 4.3: Parameters for Test Sccenario 2.

Parameter Value Unit
Initial Position (0,85) m
Final Position (95,45) m
Initial Angle 0 degrees
Final Angle 180 degrees

Length of the Vehicle 5 m
Safety Distance 2 m

4.2.4 Test Scenario 3
In this scenario, another case of reverse parking is seen. In Figure 4.10, the A* path
is shown, which is generated to a sub-point and to the goal. This ensures a check
for availability of obstacles while the Reeds-Shepp path is generated to the sub-
point. From Figure 4.10, it is also seen that the Reeds-Shepp path does not exactly
follow the A* path, which explains the difference between the paths generated by
A* and Reeds-Shepp algorithms. While generating a path for the vehicle to follow,
a condition is set such that, if the current position of the vehicle is within a range
of 1 metre to a path point, the algorithm chooses the next path point to generate
the path. This case is seen in this scenario and it is observed that the Reeds-Shepp
algorithm handles it by generating the curve to the goal instead of trying to reach
the sub-point. The parameters used for this test scenario are tabulated in Table 4.4.
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Figure 4.9: Illustration of Reeds-Shepp path along with the A* path. Apart from
other parameters, the magenta coloured dotted lines represents the A* path. In this
case the safety distance to the obstacles is set to 2 metres. The length of the vehicle
is set to 5 metres.
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Figure 4.10: Illustration of Reeds-Shepp path on the A* path indicating the re-
versing action based on the sub-point generation from the A* path. An observation
made from this is that the path points taken from the A* path along with the
sub-point are chosen based on the distance mentioned while extracting the path
points.
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Table 4.4: Parameters for Test Scenario 3.

Parameter Value Unit
Initial Position (40,85) m
Final Position (115,5) m
Initial Angle 0 degrees
Final Angle 270 degrees

Length of the Vehicle 5 m
Safety Distance 4 m

4.3 Simulation Results

In this section, the algorithms are run online. In Figure 4.11, an illustration of the
simulation environment is introduced and the same map is seen as a 2-D plot in
Figure 4.12. A car is initialised on a structured road that reaches the parking area.
using the structured road method. Once the car has reached the parking area, there
is a transition to the unstructured road algorithm. A parking spot is given to the
algorithm. Static obstacles are present in the parking lot whereas dynamic obstacles
are present on the structured road, seen in Figure 4.11. The algorithms are imple-
mented in an online configuration in PreScan. A bicycle model reflects the vehicle’s
dynamics in the simulation. Generated trajectories are extracted periodically from
the simulation to illustrate the trajectories from the simulations, in a plot.

Figure 4.11: The map simulation environment run in online simulations, illus-
trating a valet-parking scenario. The ego-vehicle is in the lower end of the image,
which is highlighted by a yellow circle. The blue line in front of the vehicle is an
example trajectory desired for the whole path, reaching from the initial position to
the parking area. The upper right open-space is the entrance to a parking lot. The
darker area is the parking lot. The orange line in the centre of the image is the
trajectory of a pedestrian crossing the road.
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Figure 4.12: A simplified plot of the road and the parking area, in the simulation
environment. The darkest grey square represents the parking lot, the white lines in
the parking lot represent the parking spot alignments. The mid-grey square is the
entry space from the road to the parking area. The initial position of the road is at
(260,−90). The red box is the pedestrian-crossing on the road, the green box is the
pedestrian’s initial position and the blue boxes are parked vehicles in the parking
lot, representing static obstacles.

4.3.1 Online Structured Road Method
For the structured road, in comparison to the offline-generated results, the method
is simplified due to the computational requirements when running online. The dif-
ferences are presented below:

• only one d is used, i.e. only the initial waypoints are considered. The aug-
mented waypoints are excluded.

• The horizon is 1, i.e. trajectories are only generated to the first waypoint in
front of the vehicle, with a requirement of minimum distance of 3 metres away.
The trajectories are generated from the current position at every iteration,
meaning that the initial states are the ego-vehicle states at every iteration.

• The reference velocity is 6ms−1.
• Given the initial waypoints approximately every 2 metres apart, every other

waypoint is removed as the distance would be too close to the vehicle. The
benefit of having frequent waypoints is that the angle approximation gets
better.

• 14 different velocity profiles are applied to the generated path, ranging from
0ms−1 to 8ms−1.

• The object detection camera only detects vehicles and humans. In this case,
only the detections within a range of 25 metres are of interest, whereas the
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Doppler velocity of the closest object is measured.

200 250 300 350

x (m)

-100

-50

0

50

y
 (

m
)

Vehicle

Moving obstacle

Centre Point of Vehicle

Figure 4.13: Illustration of the motion of the vehicle in the simulation environment.
The green points represent a moving pedestrian. The pedestrian starts from the top
and moves downwards during the simulation. The red box is the pedestrian-crossing
on the road, the blue boxes represent the vehicle. The black points are the centre
point of the vehicle, at every 40th iteration. The length of the vehicle box is 4 metres.
The frequency of the simulation is 20 Hz. The data is extracted for every 2 seconds
of the simulation and the vehicle is initialised in the bottom of the plot, moving
anti-clockwise. In the blue boxes, the difference in colour-intensity is a function of
speed, i.e. the higher the speed, the stronger the intensity. The plot demonstrates
the vehicle movement after 51st seconds.

4.3.1.1 Motion Results

In Figure 4.13, a plot of the vehicle movement is presented. This figure shows the
results, including heading, from the self-driving vehicle using the Structured Road
Method where the intensity of the blue blocks represent different velocity. Higher
intensity means higher velocities. The most visible velocity differences are at the
initial position and in the first curve. In Figure 4.13, the simulations were run in
20 Hz and the vehicle data is extracted over 51 seconds with extractions at every 2
seconds.
Figure 4.14 shows extraction over 59 seconds of simulation, where the pedestrian
has reached the road, from above. Clearly, the vehicle speed is reduced. Seen in the
simulations, the vehicle stopped for the obstacle. Figure 4.15 is the full simulation
time from initial position to the parking area. Once the pedestrian was not detected
by the camera, the vehicle started to accelerate. The velocity was slower in the
cross-section, seen around (220, 25).
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Figure 4.14: Illustration of 59 seconds run-time in simulation. The pedestrian has
reached the pedestrian-crossing and the colour-intensity of the vehicle is bright, in
front of the crossing. In the last point extraction, the vehicle is reaching stationary
state.
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Figure 4.15: A full run-time of the simulation, from start to goal. The colour-
intensity of the blue boxes turns very bright in the end, close to the parking area, as
the velocity reaches 0ms−1. The velocity is reduced at the cross-section, at (225, 20).
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4.3.1.2 Path Generations

From Figure 4.16, the trajectories are plot with the vehicle, every 4th second for a
run time of 76 seconds. The trajectories are plainly fit along the road from the initial
positions to the closest station greater than 3 meters from the centre point for every
extraction. In Figure 4.17, the data from the simulation is extracted every second.
As the motion-controller is outside the main focus in this thesis, it is seen that
the motion of the vehicle lacks smoothness in the cross-section, around (220, 20),
however, the trajectories are well generated as desired.
Figure 4.18 illustrates the whole simulation time from initial position to the parking
area, where the data is extracted every 4th second.
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Figure 4.16: Illustration of generated trajectories during simulations. The red lines
are the trajectories at different iterations, the cyan points represent the trajectories’
end. The grey points are the stations, i.e. the given waypoints. Points at every 4
seconds are extracted for a total of 76 seconds run-time of the simulation.
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Figure 4.17: Illustration of generated trajectories during simulation of 76 seconds.
Now, points are extracted from every second of the simulation.
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Figure 4.18: Illustration of the generated trajectories, from start to end. Points
are extracted every 4th second. The black arrows are indicating every 50 metres of
the road.
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4.3.1.3 Trajectory Generation

The velocity profiles with respect to the travelled distance is illustrated in Figure
4.19. Concluding the graph, the velocity is reduced in the curves, although, not
early enough. This is due to the short horizon. It is seen that the vehicle reaches
stationary state for the moving pedestrian and accelerates once the pedestrian has
moved out from the detection field. The reference velocity is 6ms−1, but due to the
aggressive curves during the path to the end, the velocity is observed to be lower in
some areas.
Figure 4.20 shows a 3-dimensional plot of the trajectories of the first half of the
navigation, where the Z-axis represents the velocity. Again, the deceleration before
the pedestrian is observable as the smooth acceleration. Examining the straight
areas of the road compared to the curved parts, the velocity appears to be higher in
the straight road segments. Figure 4.21 shows the second half of the navigation until
the vehicle has reached the destination. The lack of a well-tuned controller is noted
in these graphs, as the centre points of the vehicle are deviating from the generated
trajectories for some extractions of the data. The deviation is most apparent when
the obstacle is observed.
Further results are seen in the Appendix A.
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Figure 4.19: Illustration of the velocity behaviour for the whole track. The veloc-
ities are extracted every second. Comparing this plot with Figure 4.18, it is seen
that the velocities are reduced in the curves, although, not early enough due to the
short horizon.
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Figure 4.20: Illustration of the generated trajectories including velocities. The
trajectories are extracted from initial position to the first half of the route, i.e. from
(260,−90) to (210, 30) in Figure 4.18. The samples are extracted from every second.
The black points represent the location of the vehicle, the blue points represent the
end of each trajectory and the red lines are the trajectories. The initial velocity is
0ms−1 and reaches up to 5ms−1 at maximum.
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Figure 4.21: Illustration of the generated trajectories including velocities. The
trajectories are extracted from 2nd half to end, i.e. from (285, 14) to (400, 120) in
Figure 4.18. The samples are extracted from every second. The vehicle brakes before
the moving obstacle.
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4.3.2 Online Unstructured Road Method
For the unstructured environment, the inputs set are showed in Table 4.5. From
the generated paths, it is observed that they are smooth for the vehicle to follow.
The obstacles are avoided in the offline generation of the path points. In case of
reversing, the A* path is generated to the sub-point and then to the goal. The path
points are extracted from the total path. By this approach, it is possible to avoid
any obstacles around the sub-point. In case of forwarding, the A* path is directly
used to extract path points from it. These points are followed by the vehicle by
generating curves between the points. Based on the initial and final angle available
in the path points, the curves are generated for forward or reverse curves. It is
necessary to change the gear when the vehicle has reached the point after which it
should reverse. This is solved by setting the gear to be +1 (which means that the
forward gears are active) if the next path point is in front of the vehicle and -1 (for
the reverse gear) if the next path point is behind the current position of the vehicle.
From the test cases it is observed that the obstacle coordinates are to be well-defined.
Since the map is not generated as in the traditional A* path planning, it is necessary
to have all the coordinates defined accurately. For simulation, a constant velocity
is set to 3ms−1. An observation made is that, in the simulation environment the
wheel angle and velocity are opposite for forward and reverse motion. Therefore,
while reversing it is necessary to set conditions such that negative values are fed to
the controller.

Table 4.5: Parameters for Simulation Test.

Parameter Value Unit
Initial Position (400,122) m
Final Position (529,125) m
Initial Angle 0 degrees
Final Angle 270 degrees

Length of the Vehicle 4 m
Safety Distance 2 m

A path is generated form the current position at every instance of the simulation. It
relies on the controller to make the vehicle follow the generated path. In Figure 4.22,
the paths generated at every 4th second are seen. The path followed by the vehicle
is seen to be smooth for the vehicle to follow. The paths during the reversing action
can be seen. The acceleration, while reversing, is set to 0 to avoid higher curvature
of the path. Thus at constant velocity it reverses and decelerates once it is close
enough to the desired position.
Clearly, the vehicle does not necessarily go to every next path point, as seen in
Figure 4.23. This is due to the condition that the vehicle chooses the next path
point if the immediate next path point is too close for the vehicle to generate the
Reeds-Shepp curve. This is because, if the Reeds-Shepp curve is to be generated
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Figure 4.22: Illustration of the trajectories generated in the simulation environ-
ment. The trajectories generated in the simulation are at every 4th second, from
each path point. The green and red markers represent the initial and final point of
the vehicle. The initial position is (400, 122) with an angle of 0◦ and the final posi-
tion is (529, 125) with a desired angle of 270◦. The blue boxes are static obstacles
present in the parking environment.

until it reaches the path point, it might lead to generation of complicated curves.
Therefore, choosing the next path point will avoid this and hence maintain the flow
for the path.
In Figure 4.24, a more graphic representation of the chosen path is depicted. The
path that the vehicle follows from its current position at every 4th second in the
simulation, is seen. The simulation runs at a frequency of 20Hz.
The velocity profile, seen in Figure 4.25, depicts the velocity of the vehicle at every
point along the path. In the end of the figure it is observed that the velocity goes to
negative values. This is because the simulation environment requires positive values
to be fed to the controller for the vehicle to move in forward direction and negative
values for the opposite (reverse) direction.
Since it is sufficient for the vehicle to move in a constant speed, a threshold can be
set such that the vehicle decelerates if the value of the threshold velocity is exceeded.
A threshold of ±3ms−1 is set so that the vehicle also moves in reverse direction.
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Figure 4.23: Illustration of the path taken by the vehicle to the goal. It is seen
that the path is followed based on the trajectories generated from the algorithm.
By setting an saturation limit to the wheel angle, the vehicle can be avoided from
taking sharp turns. In this depiction, it successfully avoids the crossing of the
priority lines and safely enters into the desired position. The offline path obtained
is first generated to the sub-point and then to the goal. In this way, any object
present around the sub-point is also avoided. The purple circled markers indicate
the path points obtained offline.
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Figure 4.24: Illustration of the vehicle position and its path for the next 40 metres
from that position until it reaches the goal. The magenta markers denote the position
on the chosen path at every 4th second.
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Figure 4.25: Illustration of the velocity of the vehicle along the path. It is observed
that the negative velocity refers to the reverse motion of the vehicle in the simulation
environment. The overall depiction of the velocity is with respect to the arc length
along the path. The threshold on velocity set for this case is ±3ms−1.
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Discussion

In this chapter, the results from Chapter 4 are discussed. The aim is to evaluate
the algorithms and present a better understanding on the implementations. The
different results obtained in Structured Environment Method (offline and online)
will be mentioned in Section 5.1. In Section 5.2, the views on Unstructured Envi-
ronment Method will be discussed. The possible alternatives for the drawback will
be mentioned in the respective Sections.

5.1 Structured Environment Method
For the results of the Structured Environment Method, the same cost function is
used for the offline generation as well as for the online generation to keep consistency.
The only differences are the configurations of horizon, amount of speed profiles and
augmented waypoints. The achieved results for both the offline and online generated
trajectories have the same behaviour, although the online generated trajectories are
generated at every iteration. The offline trajectories are used for cost function tuning
and evaluation before the online generation.

5.1.1 Offline
By increasing the amount of augmented vertices, see Equation (3.5a) to Equation
(3.5d) and Equation (4.1), it is possible to have a more efficient and smooth planning
algorithm. The trade-off lies between accuracy and computational time. However,
this is highly dependent on the observed road width. The chosen values in Equation
(4.1) are not very practical in the real world and only used for demonstration, as
the car could practically move outside the lane boundaries.
Seen in the Equations (4.2), the choice of the P -vector is different to the method.
The performance of the algorithm experienced more accurate paths according to the
road when the actual values of Equation (4.2) were chosen, especially in Equation
(4.2d) that should consider the vertex curvature value. The values of Equations
(4.2b) and (4.2c) are supposed to be initial guesses. By setting these values as
0, the path generation succeeded as desired as there were no a priori guesses for
these values. Regarding the value in Equation (4.2e), this value was chosen as the
given waypoints are assumed to be 2 metres apart, along the road. The amount of
waypoints were halved due to the tight distance.
One way to generate more consistent velocity profiles throughout the trajectory
generation would be to also include different values for a1 and a0, seen in Equation
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(4.3d) and (4.3e). This is to match the incoming (or current acceleration) and out-
going accelerations. This would require more trajectories and further computational
demands.
The cost function weights in Table 4.1 are chosen such that the chosen trajectories
satisfy the requirements in generic environments. These can be tuned to match
different environments depending on the desired behaviour for the vehicle. In this
context, the obstacle weights were given superior values due to the importance of
safety. Second highest weight was given to the lateral offset from the centre point
to ensure that the vehicle stays as close to the centre of the lane as possible. The
weight for centripetal acceleration is high to satisfy smooth navigation of the vehicle
(considering the value for centripetal acceleration to be very high in general). A
constraint on the acceleration is included to get as smooth accelerations as possible,
except in emergency situations, obtained in the online results. This implies that if
an obstacle is closer than a certain distance to the vehicle, the deceleration ignores
the threshold.

In Figure 4.1 and 4.2, the horizon is 1 station. Seen in this configuration, the steering
ratio gets slightly aggressive when avoiding the obstacle. The behaviour when using
a horizon of 2 stations is exactly the same, seen in Figure 4.3. By tuning the cost
setup more carefully, a desired behaviour would be to revert to the centre of the
lane via two stations, after the obstacle, instead of doing so instantly; in Figure
4.3 between station 7 and station 8, where the desired manoeuvre would be from
7 to 9. This occasion is due to too high weight for wlat. The major difference in
these scenarios is the velocity profile, see Figure 4.2 and 4.4. The reason that the
velocity is not reaching 10ms−1 is that the cost for Cs is affecting less than Ca, Cj
and Cca from Table 3.2, since the acceleration and jerk is zero and the total cost
is lower. However, the velocity reaches the reference velocity, 10ms−1 in Figure 4.4
as 2 stations are considered and the total cost is cheaper of choosing the longer
trajectory segment. The critical distance choice, tdistance is set to 1.5 meters for
demonstrational purposes.
In Figure 4.6, the trajectory choices are as desired. An obstacle is placed in the
middle of the road where the vehicle would hit the obstacle in any vertex choice.
The only way to avoid the obstacle is to decrease the speed to 0ms−1 before the
obstacle. The trajectories are accelerating up to reference velocity posterior to the
obstacle avoidance. Depending on the scenario, it can be decided to keep the velocity
at 0 posterior to the obstacle.
Until now, horizons are a critical choice of the future vehicle behaviour. Charac-
teristics can be decided by either increasing the waypoint distance or by computing
dynamic programming to more than 2 stations (increasing horizon). As seen in Fig-
ure 4.7, too long distance between the waypoints results in road boundary crossing,
although the velocities would be better adapted to the curved roads.

5.1.2 Online
One difference between the offline generated results and the online generated results
is the lack of sensor in the offline part. In the offline section, only stationary obstacles
were considered whereas in the online section, a dynamic obstacle was included.
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There are different ways of detecting objects for an autonomous system, yet in this
part a obstacle detection camera was used to measure the Doppler velocity of any
object in front of the vehicle, which is not possible in the offline section.

In Figure 4.14, the motion of the vehicle stays within the boundaries of the road and
brakes for a detected obstacle. The problem with the current solution is that if the
camera would detect a stationary obstacle, the vehicle would stop anyway. Although,
as this is an issue concerning the Decision Layer of an autonomous system, only a
simple case was considered in this thesis, as classification and prediction is outside
this scope.
The generated trajectories are well fit to the road curvature in Figure 4.17, yet the
vehicle is not tracking the generated trajectories as desired in the cross-section in
(210, 20) and needs optimisation. This is due to the simple controller. Looking
at the velocities during the simulation, in Figure 4.19, the acceleration is smooth,
despite the short horizon the vehicle is able to slow down when the curvature of
the road is high. The reference velocity, which is set to 5ms−1 is reached when the
curvature of the road is reduced. Seen in Figure 4.18 and 4.19, the velocity is greatly
reduced in the cross-section, at the travelling distance of 250 metres .
Since the trajectory generation is updated at every iteration, small jumps of the
desired velocity may occur due to different choices of trajectories in the cost function,
at each iteration. One way to overcome this problem is to, slightly and carefully,
reduce the last generated trajectory’s cost such that the chosen velocity profile at
each moment keeps being consistent.
Another con regarding this algorithm is the critical waypoint placement. As no other
parameters are considered in this type of algorithm, the algorithm is dependent on
well-placed waypoints.
When testing this algorithm in other experiments including other vehicles in front
of the ego-vehicle, the ego-vehicle manages to stay behind the leading car without
hitting it. This is mainly due to the Detection Camera and the measured Doppler
velocity, where the leading car’s velocity is considered to be less than the reference
velocity.

5.2 Unstructured Environment Method
The paths to be followed in an unstructured environment can be obtained by method
explained in Section 3.2. There are alterations that can be performed to make it even
more generic. As seen in Figure 4.10, the sub-point has to be generated during the
offline A* path calculation. This can be made generic by setting conditions for all
possible heading angles that a vehicle can have when it reaches a distance to generate
a sub-point. Thus, by generating a consecutive offline path to a sub-point and then
to the goal can produce generic results. But this might be redundant in cases where
just forward parking is sufficient, such as in Figure 4.8. The conditions for generation
of sub-point can be chosen to be in offline-calculation, A* path points extraction,
or online-calculation, Reeds-Shepp curve generation. The advantage with having it
offline is that the obstacle avoidance can be done in the former method, whereas
in the latter approach the algorithm works in a more generic way but does not
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guarantee safety around place where the the sub-point lies.
The information about existence of obstacles is to be provided by the perception
sector, as a priori. The most important thing for offline computation is this in-
formation, which should also include information regarding the priority lines and
the parking spots, where the vehicle should not traverse. This is because, depicted
in Figure 4.22, the Reeds-Shepp curves does not obey the constraints of obstacle
avoidance. Thus, it is a safety requirement to have the path points placed as far
from the obstacles as possible. In a practical environment with dynamic objects,
the condition set to avoid such obstacles is by reducing the velocity through the
perception from sensor data. But, as it reaches a distance that is closer than the
safety distance, the vehicle stops. In this case replanning has to be done offline and
the new path points are to be fed to the vehicle to follow.
Performing manoeuvres in tight spaces, such as full parking lots or similar envi-
ronment, forces the algorithm to generate curves assuming the environment to be
structured. Thus, in this case it is necessary to acquire path points that consist
information about the heading angles of the vehicle at its current position and its
final position at every path point. In such a complex case, it is necessary to consider
the vehicle’s turning radius, obstacle coordinates, angle differences at every point.
A case in which the safety distance to the obstacles, during offline calculation, is
mandatory can be seen in Figure 4.9. Considering the path obtained in this Figure,
the vehicle might barge into obstacles if the safety distance is not sufficiently main-
tained. A more efficient way would be to follow the algorithm used for Structured
Road Method, mentioned in Section 3.1, which generates trajectories to the next
waypoint. These trajectories are also safe to follow since they are affected by cost
functions which weigh every different parameter that is important for that particular
manoeuvre.
In Figure 4.24, it is seen that the vehicle takes the shortest possible path, which is
to go towards the obstacle and then avoid it once it is at a vicinity of the safety
distance. Although, it does not seem to be as in a practical case, in which a person
would not go towards the obstacle. The desired goal position is to be given to the
algorithm while a human being would look around for a free spot and park the
vehicle in another spot. Thus, this algorithm can be adapted to also search for a
possible and valid goal position based on the sensor data obtained.
An optimal path generation algorithm can be achieved if it is possible to implement
obstacle avoidance in Reeds-Shepp curve generation. By this method, the offline
calculations can be completely avoided, although the time to reach the destination
might be more than the optimal time. Eventually, the cost functions of this upgraded
algorithm can comprise of constraints on the curvature, dynamic obstacles, static
obstacles, jerk and other factors.

5.3 Merging Algorithms
As the Reeds-Shepp’s curves and the cubic polynomials generated in this thesis, serve
the same purpose, an interesting experiment would be to use Reeds-Shepp’s curves
in the Structured Road Method and cubic polynomials in the Unstructed Road
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Method. One constraint would be the issue of generating reverse paths using the
cubic polynomials. As the Reeds-Shepp’s algorithm does this automatically, doing
so with cubic polynomials would be more complex. Reeds-Shepp’s or specifically
Dubin’s paths were not tested for the Structured Road Environment. The problem
of using Reeds-Shepp’s or Dubins’ paths in structured environment is that the path
do not always have to be the shortest, the algorithm needs more optimisation and
small modifications.
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In this Chapter, the focus of the results in the overall autonomous classification is
mentioned. The advancements in the implemented algorithms is discussed.

The reason these two algorithms were inspired from State Lattice and Hybrid-A* is
due to the potential that was seen in the algorithms during the short literature study.
The final results achieved could have been more accurate with less computational
demands using other algorithms. Another area which showcases well performed
results is the use of traditional Model Predictive Control, as this seems to be the
state-of-the-art approach today. The State Lattice was chosen due the advantage
of computational time. In this thesis, optimisation of the code was not within the
scope, therefore, the computational time of both algorithms are more than necessary.
Without any decision making layer, only simple scenarios can be created since the
object classification and prediction part is excluded along with other rules of the
road than the presented ones. The architecture of autonomous vehicle systems
varies depending on the different developers. The trajectory generation layer is a
critical part of an autonomous system and due to continuous environmental changes,
this layer is usually run in a high frequency, hence the computational time of the
trajectory generation algorithm is required to be not more than a few milliseconds.
The Structured Road Method algorithm is dependent on the amount of augmented
vertices, amount of velocity profiles and choice of horizon, which results in a diverse
computational time relying on the configuration. Conclusively, the overall trade-off
lies between having an accurate trajectory generation and having high computational
demands. The real-time results of the Structured Road Method used in Section 4.3
ware set to use a horizon of 1 station and no augmented vertices, together with
14 velocity profiles. The experiments were conducted on a 64-bit Operating System
consisting of an i7 processor with 8GB dedicated graphics-card and a RAM of 16GB.
This setup resulted in a trajectory generation less than 0.5 seconds, although, when
the horizon and augmented vertices were increased, the computational time became
longer. As code optimisation was excluded in this thesis, this is one of the major
drawback regarding the developed algorithm.
The Structured Road Method was seen to work generically. Given waypoints along
any road, the algorithm could perform trajectory generation where the trajectories
were well fit to the roads and the chosen speed profile showcased smooth accelera-
tions.

In the Unstructured Environment method, the main aim was to implement path gen-
eration such that the trajectories avoided static and dynamic obstacles and parked
the vehicle by reversing. The paths generated according to the method explained
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in Section 3.2, can avoid the static obstacles and also enable reverse parking but
avoiding dynamic obstacle might be a critical case, in which the algorithm might
time-out if the dynamic obstacle is in front of the vehicle for a longer period of
time. The approach of this algorithm does not provide generic trajectory genera-
tion. This is mainly due to the dependency on path points obtained from the chosen
path search method. The Reeds-Shepp curves do not avoid obstacles, which is also
another reason that leads to re-planning of the path. Considering complex environ-
ments, it is necessary to validate the path points that are obtained during the offline
computation. There is no fixed method to generate the sub-point before reversing,
which in practical cases is decided based on the space available in the vicinity of the
parking spot.
The motion controller in this thesis was developed simply to visualise practical
results. The algorithms were tuned together with the current controllers. A better
controller is needed to demonstrate the algorithms’ true capacity and a consequence
of this is that the vehicle had difficulties to follow trajectories, in e.g. cross-sections,
where sharp turns were desired. Seen from the results, the presented outcome seemed
to be promising. Although by investing more time in the tuning process of the
parameters of the algorithm, the navigation of the ego-vehicle could satisfy the
smoothness, efficiency and safety criteria better.
The ultimate aim of this thesis has been to attain an autonomous valet parking
functionality. This has been experimented by combining the algorithms such that
the Structured Environment Method navigates the vehicle to the parking lot or
the depot and further, the Unstructured Environment Method parks the vehicle in
the assigned spot. In simulation, this combination works well such that the final
point of the navigation path is set to be the initial point of the parking path. Al-
though, path generation in the unstructured environment needs more improvements
in terms of computation and testing in order to be generic in cases such as dynamic
environments.
Since this algorithm allows generation of reverse paths, it is also possible to apply
this approach for reverse parking of busses or trucks attached with trailers. Al-
though, the dynamic model of these systems would be a challenge to formulate
before planning a suitable path. The algorithms works well for trucks, as for cars.
The difference between these vehicles is the dynamics, which these algorithm do not
consider when generating trajectories. The only parameter taken into consideration
is the wheelbase of the vehicle.

6.1 Future Work
For future work in this thesis, a few possible suggestions for advancements and
features that can be added to enhance the current results are discussed. It is seen
that there are various ways to enhance the autonomous behaviour.
Addition of lane marker sensors, that detect and provide information about the lanes,
for the algorithm to generate the cubic polynomials can enable automatic generation
of waypoints as the vehicle moves along a structured lane road. Additional benefits
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of using lane marker sensors is correction of waypoint placements and lane centre
estimation since in reality, the other sensors will introduce noise and experience
disturbances. This will make the algorithm more efficient and accurate even if the
given waypoints are deviated from an ideal approach in terms of lane detection.
Another approach for the same method that can be included is implementation of
quartic or quintic polynomials. As the use of quartic or quintic polynomials allows
further kinematic conditions, such as curvature rate and its derivative that may
result in better continuity of these conditions, as well as smoother paths. This would
require more computational time. Further, fine tuning of the existing parameters in
this algorithm can enable an even smoother, more efficient and safer performance.
Another interesting experiment to consider is the increase of augmented waypoints
along the horizon in real time. By obtained coordinates for static obstacles, these
can be avoided based on the a priori coordinate information obtained from the
perception without using any sensors in the online scenario. The complexity of
using more waypoints is that the cost function tuning will become more critical as
there would be more options to choose between.
The parking algorithm can be upgraded by replacing the A* algorithm with an
RRT* algorithm. The RRT* algorithm provides a non-holonomic path which can
result in generation of path points that are practically feasible for the Reeds-Shepp
curve generation. The steps of the method: generation of A* path, extraction of
path points from the A* algorithm and then generation of Reeds-Shepp, can be
automated such that feeding the information yields the result of path. This would
avoid the offline and online computation. Although, replacing the whole approach
by only attaining paths using versions of RRT* algorithm might lead to jagged
paths, which are non-feasible.
To further validate the results more scenarios can be tested with these algorithms.
The performance of the vehicle can be observed for the different scenarios and hence
different parameters can be evaluated. The most critical part of the algorithms would
be to optimise the time. The time taken to evaluate the information and provide
the paths should, at the most, be 10−3s for online path generating scenarios.
The State Lattice method is a potential candidate for future development, thus
optimisation in terms of computational demands is needed. This method is highly
dependent on the waypoints that are received such that they do not deviate from
the lane’s centre. The possibility with this algorithm is the generic approach. By
augmenting more waypoints, lane changes and car over-taking can be considered.
Another optimisation would be to also post-process the final trajectories between
the waypoints, for example, to minimise curvature and additionally optimise the
acceleration.
The Hybrid-A* method showed good results, thus until now the algorithm is rather
scenario dependent. As the Reeds-Shepp curve generation is sensitive to short dis-
tance path generation, it automatically includes reverse paths in those type of path
generations, making this method unreliable. There are other manipulated versions
of the Reeds-Shepp method that would be more reliable and fit better in these
operations.
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Figure A.1: Illustration of the generated trajectories in a difficult case, the corner.
Point extraction frequency of 1 second.
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Figure A.2: Illustration of the generated trajectories from start to end. Points are
extracted every 1 second.
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Figure A.3: Illustration of paths generated at a time interval of 2 seconds in the
PreScan simulation environment.
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plot. Both the algorithms are merged and a smooth transition is seen during the
switch of the algorithms. The waypoints for the structured road are highlighted by
the white dots and the path points for the unstructured environment are highlighted
by magenta circles. The change of algorithm takes place at (398,122) on the plot.
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B
Common Algorithms

B.1 Path Finding
A short explanation of a few variants of the A* algorithm can be seen as follows:

• The Anytime D* algorithm, [19], finds a path by not only avoiding known
obstacles but also by replanning the path in case there are any unknown ob-
stacles or changes in the map. This follows a more generic approach, making
the search to be dynamic in a simulation environment. A downside of this is
that, if the constraints for replanning are not well-defined, the path to the goal
might be longer or deviated from the map constraints. This methods makes
use of the (x, y) position coordinates on the 2-D map to navigate.

• The Augmented A* algorithm, seen in [20], is an A*-like algorithm that in-
cludes the dynamics and kinematics of a point-mass-model. This enables gen-
eration of feasible trajectories during each search. One major problem in this
is its computational heaviness.

• The Hybrid-A* algorithm is an advanced version of A* and gives assurance
that the obtained path is the shortest. This also uses two different costs to
navigate between the nodes. The continuous search enables a faster search
relative to other variants. The major difference in this method is that it
considers the continuous nature of the environment making it more realistic
to the real environment, [21]. The method makes use of the (x, y) position
coordinates and the angle, θ, between two nodes.

Another slightly different approach of the incremental search is the RRT algorithm,
found in [22]. In this approach, the map is not evenly distributed into a discretised
grid, but is explored based on a random configuration. A stepsize is decided based
on the resolution of the map. At every step a sample node is generated in random.
A node is selected in the direction of the random node at a distance of the stepsize.
The cost is calculated from the near node to the goal node. Clearly, the cost will be
higher if the near node is farther or deviated from the direction towards the goal.
Similarly, the nodes are generated based on the number of samples and a path is
obtained to the goal. It is seen that this method takes more computational time
and is dependent on number of samples, also known as probabilistic complete. Few
advancements of this method are the Rapidly-Exploring Random Graphs (RRG or
RRT*), bidirectional RRT* or RRT*-Smart, [24], Theta*-RRT, Real-time RRT*
(RT-RRT*). In general, this method is computationally heavy due to requirement
of storing the numerous nodes and also keeping track of the contained information.
An example of this can be visualised in Figure B.1.
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Figure B.1: Illustration of RRT algorithm, showing an example of random node
search mentioned as xrand and many near nodes (xnear) expanding bidirectionally
with a stepsize between xstart and xgoal, seen as red points. Here, the exploration
is seen to be in a three dimensional environment. In this figure, the obstacle is the
orange, oval shape in the middle of the map. Image taken from [33].

A short explanation of a few variants of this method can be seen as follows:
• In RRG, [23], the cost of a deviated random node is calculated similar to RRT

method, but at the same time the costs of nodes surrounding this node are
also set to the same value, therefore avoiding generation of random nodes close
to the currently chosen random node.

• In RT-RRT*, [25], the visited nodes are not discarded and hence, this enhances
the search to provide an optimal solution in a dynamic real-time environment.
Storing the sampled paths for every instance is computationally heavy.

• In Theta*-RRT, [26], a combination of an angle search with generation of a
random node is carried out. This method has application in environments
with complex non-holonomic constraints.

B.2 Path Generation

Dubins’ method, in [27], gives a set of paths consisting of circular arcs and line
segments, that can be followed by a vehicle. The proof of this is given by J.A. Reeds
and L.A. Shepp in [31]. The set of path also considers the turning angle depending
on the vehicle’s curvature along each path, as shown in [28]. This method shows
that any path can be expressed as a set of segments, called as Dubins’ set, which is a
sequence ‘CCC’ or ‘CSC’, where C and S represent a curve of a circular arc of unit
radius or a line segment of a certain length, respectively. There are six admissible
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curves, in a Dubins’ set. They are

D = {LSL,RSR,LSR,RSL,LRL,RLR}, (B.1)

where ‘L’, ‘R’ and ‘S’ represent ‘Left’, ‘Right’ and ‘Straight’, [28, 27]. Dubins’
paths consider only forward motion of the vehicle. Left and Right mean the coun-
terclockwise and clockwise arcs of radius, equal to the turning radius of the vehicle.

As explained in [30], a brief working of this method is as follows:
• The initial and final coordinates are obtained in the Cartesian coordinate

system.
• Using Dubins’ scalar equations, found in [27], the parameters that correspond

to the length of the segments are obtained.
• This is carried out for each curve until the goal point is reached.
• Finally, the curves are interpolated to obtain a smooth and traversable path.

The Dubins’ curves are limited to only forward motion of the vehicle, which can
be seen from Figure B.2. These were further extended for generation of reverse
curves by J.A. Reeds and L.A. Shepp. Reeds-Shepp’s study extended this method
to provide solution for a vehicle to be capable of moving forward and backward. The
geometric approach of Dubins’ path was also improved by Boissonnat, Cerezo, and
Leblond using optimal control theory’s principle of Pontryagin, which is mentioned
in [29]. Balkcom and Mason characterised time-optimal paths to make it capable to
move in any direction by considering a unicycle model, while Bakolas and Tsiotras
presented an approach to allow different radii for clockwise and counterclockwise
turns, as mentioned in [30].
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Figure B.2: Illustration of Dubins’ Path showing a forward manoeuvre, from the
start node to the goal node, given the initial angle (0◦) and goal angle (180◦). Here,
the blue line depicts the path, the initial and final positions are represented by the
red and the green circle, respectively.
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