

38

 $\pi_{i} \in \{1, \dots, n\}$ 

Institutionen för Vattenbyggnad Chalmers Tekniska Högskola

Department of Hydraulics Chalmers University of Technology

Beräkning av vågkrafter på en gravitationsplattform

Torbjörn Persson

Examensarbete 1985:3

Göteborg 1985

Adress: Institutionen för Vattenbyggnad Chalmers Tekniska Högskola 412 96 Göteborg Telefon: 031/81 01 00

### FORORD

Rapporten Ni håller i handen är slutprodukten av ett examensarbete, utfört vid institutionen för Vattenbyggnad vid Chalmers Tekniska Högskola i Göteborg. Arbetet har pågått under tiden Juni 1984 till Mars 1985.

Jag skulle vilja tacka nedanstående personer för det stöd och den hjälp jag erhållit under examensarbetets gång.

| professor | Lars Bergdahl   | Vattenbyggnad  | CTH |
|-----------|-----------------|----------------|-----|
| assistent | Henriette Melin | Vattenbyggnad  | СТН |
| univ lekt | 0lov Friberg    | Byggnadsstatik | СТН |
| forsk ing | Harald Tägnfors | Byggnadsstatik | СТН |

Göteborg i mars 1985

#### Torbjörn Persson

· · ·

. .

Ι

# INNEHALLSFORTECKNING

.

| <b>-v</b> | . 1                            | Ŧ  |  |  |  |
|-----------|--------------------------------|----|--|--|--|
| Forora    |                                |    |  |  |  |
| Inneł     | Innehållsförteckning I         |    |  |  |  |
| Inlec     | lning                          | IV |  |  |  |
|           |                                |    |  |  |  |
| 1.        | Programbeskrivning             |    |  |  |  |
| 1.1       | Allmänt                        | 1. |  |  |  |
| 1.2       | Programstruktur                | 2  |  |  |  |
| 1.3       | Flödesschema                   | 3  |  |  |  |
| 1.4       | Styrkort                       | 4  |  |  |  |
|           |                                |    |  |  |  |
| 2.        | Förutsättningar och antaganden |    |  |  |  |
| 2.1       | Allmänt                        | 5  |  |  |  |
| 2.2       | Vågkrafter                     | 6  |  |  |  |
| 2.3       | Inspänning i bottnen           | 8  |  |  |  |
| 2.4       | Dynamik                        | 8  |  |  |  |
| 2.5       | Enheter                        | 9  |  |  |  |
|           |                                |    |  |  |  |
| 3.        | Indatagenerering               |    |  |  |  |
| 3.1       | Allmänt                        | 10 |  |  |  |
| 3.2       | Vågdata                        | 11 |  |  |  |
| 3.3       | Plattformens geometri          | 13 |  |  |  |
| 3.4       | Jordparametrar                 | 14 |  |  |  |
| 3.5       | Transfer funktioner            | 14 |  |  |  |
| 3.6       | Logiska variabler 15           |    |  |  |  |

÷

ΙI

| 4.    | Testkörningar           |    |
|-------|-------------------------|----|
| 4.1   | Allmänt                 | 17 |
| 4.2   | Plattformens utseende   | 17 |
| 4.3   | Plan sinusvåg           | 19 |
| 4.3.1 | Utskrifter på terminal  | 20 |
| 4.3.2 | Plottningar             | 25 |
| 4.4   | Oregelbunden våg        | 27 |
| 4.4.1 | Utskrifter på terminal  | 28 |
| 4.4.2 | Plottningar             | 33 |
| 4.5   | Utskrifter på skivpacke | 36 |
|       |                         |    |

| 5. | Utvärdering | av | programmet |
|----|-------------|----|------------|
|----|-------------|----|------------|

40

# Figurbilaga

(\* 19<u>8</u>1)

# Referenser

.

.

III

Målet har varit att för olika sjötillstånd skapa tidserier av vågkrafter på en offshoreplattform av gravitationstyp. På den plattform som finns beskriven i kapitel 1, har sedan variationen hos signifikant respons kontra d:o våghöjd studerats. Rikningsspridningen hos vågorna inverkar på förhållandet ovan. Hur stor den är utgör steg 2 istudien.

Till min hjälp har jag haft "WAVEFIELD". Det är ett datorprogram skrivet i FORTRAN-77. Författare är Henriette Melin, assistent på Vattenbyggnad. Efter att "WAVEFIELD" ändrats, så att det passade mina syften bättre, integrerades det i mitt eget program "GRAVPLAT", även det skrivet i FORTRAN-77.

GRAVPLAT skapar indata till en FEM-modell av en rymdram (se fig 2.1). Vidare belastar programmet ramens noder med tidsserier av krafter och moment. Dessa är beräknade med de av WAVEFIELD skapade hastigheterna och accelerationerna hos vattenpartiklarna.

För att utföra den tidigare nämnda responsanalysen krävs att rymdramsprogrammet SFVIBAT-II, ingående i ChalmFEM-paketet, aktiveras. Resultat från körningar med GRAVPLAT och SFVIBAT, med därpå följande FFT-analys av utdata finns redovisade i kapitel 5.

#### 1. PROGRAMBESKRIVNING

#### 1.1 Allmänt

GRAVPLAT är tillgängligt på GD's (Göteborgs Datacentral) stordator IBM 3081-D. Det består av ett huvudprogram och 33 st subrutiner. Beräkningarna sker i enkel precision, d v s med ungefär åtta siffrors noggrannhet.

1

Programmet genererar enbart indata till SFVIBAT, och har två huvuddelar. Den första är Henriette Melinis våggeneringsprogram. Detta har dock justerats något. Z-axeln pekar i GRAVPLAT nedåt. Vidare har det tillåtna antalet beräkningspunkter utökats jämfört med originalversionens 10. I Henriettes upplaga kan både antalet tidssteg och tidsstegets längd variera kraftigt, beroende av vågtyp och vattendjup. I GRAVPLAT är dessa variabler konstanta. Vågtåget består av 250 tidssteg om 1 sekund.

Del 2 består av de programdelar som beskriver modellen av plattformen. Noder numreras, element indelas, fjäderstyvheter tilldelas grunden o s v. Till noderna reduceras sedan tidsserierna av krafter och moment. Antaganden och begränsningar för beräkningarna återfinns i kapitel 2.

Således utgör körningen av GRAVPLAT det första steget då man vill studera hur en plattform beter sig under vågors inverkan. Steg nr 2 består i att göra en dynamisk analys av plattformen. Det enklaste är att begära plottningar av de snittkrafter och/eller förskjutningar man är intresserad av. Via SFVIBAT sker det med endast två indatarader. Trots att man behöver utföra två körningar, anser jag att GRAVPLAT-SFVIBAT utgör ett kraftfullt programpaket, beroende på att både sinusvågor och oregelbundna d:o kan simuleras, då en konstruktion i havet ska dimensioneras för vågbelastning. Ytterligare ett plus är att både en strömprofil och riktningsspridning hos vågorna kan tillfogas.

## 1.2 PROGRAMSTRUKTUR



WAVEFIELDS subrutiner befinner sig inom det streckade området ovan.

1.3 FLÖDESSCHEMA-



etur e alfyr

나라는

+ 11 - 1

.

2

.

.

·

.....

#### 1.4 STYRKORT

Vid testkörningarna har nedanstående styrkort för filhantering, kompilering och plottning använts.

), TP, CONDEEP 00010 //CVHTPB JOB ( MSGCLASS=A, MSGLEVEL=(2,0), REGION=3600K, USER=CVHTP 00020 // 00030 /\*JOBPARM LINES=20K, RTIME=6 00040 //STEG1 EXEC FORTVRUN, PRINT= 00050 //FT08F001 DD VOL=REF=PUB002,DSN=CVHTP. .TOBBE, DISP=(OLD, KEEP), 00060 // SPACE=(CYL, (3, 1), RLSE), DCB=(RECFM=FB, LRECL=66, BLKSIZE=7458) 00070 //SYSGRAPH DD UNIT=SYSSQ, SPACE=(CYL, (10,5)), DISP=(, PASS) 00080 //SYSGRAF DD VOL=REF=\*.SYSGRAPH, DSN=\*.SYSGRAPH, DISP=(MOD, PASS), 00090 // DCB=BUFNO=1600100 //COMPIN DD \* 00110 /INC CVHTP.MAIN 00120 /INC CVHTP.JOINTS 00130 /INC CVHTP.MODEL 00140 /INC CVHTP.DIAMTJ 00150 /INC CVHTP.MEMPRO 00160 /INC CVHTP.SPRING 00170 /INC CVHTP.AXLOAD 00180 /INCL CVHTP.MAINWA 00190 /INCL CVHTP.SINUSW 00200 /INCL CVHTP.IRREGW 00210 /INCL CVHTP.PM 00220 /INCL CVHTP.JNSWP 00230 /INCL CVHTP.JNSWPF 00240 /INCL CVHTP.ISSC 00250 /INCL CVHTP.TRUNC 00260 /INCL CVHTP.PLSPEC 00270 /INCL CVHTP.DIRSEA 00280 /INCL CVHTP.SWOP 00290 /INCL CVHTP.HSTZ 00300 /INCL CVHTP.WAVFLD 00310 /INCL CVHTP.TRIGF 00320 /INCL CVHTP.CURRNT DO330 /INCL CVHTP.VELACC 00340 /INCL CVHTP.PLWAVF 00350 /INCL CVHTP.WSCALE DO360 /INCL CVHTP.EXVAL 00370 /INCL CVHTP.PLCOMP 20380 /INC CVHTP.LOADIN 00390 /INC CVHTP.MORIS1 DO400 /INC CVHTP.MORIS2 DO410 /INC CVHTP.TRFUNK DO420 /INC CVHTP.PLTRAN 00430 /INC CVHTP.PLOMTR DO440 /INC CVHTP.MULSPE DO450 /INC CVHTP.EVAL )0460 //SYSIN DD \* )0470 /INC CVHTP.TRLLIS DO480 //STEG2 EXEC GUTSGEN, NAME= 'VÅG', COND=(0, NE), REPLACE=, NEW1=1, )0490 // INCR=1)0500 //SYSIN DD DSN=\*.STEG1.GO.SYSGRAF, DISP=(OLD, DELETE) )0510 /\*

## 2.1 Allmänt

378 (A.).

. Sector 240 Figur 2.1 nedan visar hur en plattform är tänkt att modelleras. Den ska bestå av en cirkulär bottendel. Tornen placeras på en cirkel och knytes i toppen ihop till ett däck. Nod- och elementindelning sker uppifrån och ner.





Materialet antas vara betong med elasticitetsmodulen 30 GPa, tvärkontraktionstalet v=.15 och densiteten p=2.65 ton/m<sup>3</sup>.

#### 2.2 Vågkrafter

Vågkrafterna på tornen beräknas med Morison's formel, se<4>, enl

$$F(t) = \frac{1}{2} \cdot C_{d} \cdot \rho \cdot A \cdot u \cdot |u| + C_{m} \cdot \rho \cdot V \cdot u , dar$$

C<sub>d</sub> =0.7 ( Dragkoefficient ),

 $C_{m} = 2.1$  ( Added Mass-koefficient),

 $\rho$  =1.03 ton/m<sup>3</sup> ( Vattendensitet ),

A = exponerad area av belastad kropp,

V = Volym hos belastad kropp,

 $u, \dot{u}$ = hastighet och acceleration hos vattenpartiklar, beräknade

👾 med linjär vågteori (se WAVEFIELDS manual).

• Då hastigheter och accelerationer i vattnet ska beräknas för vågor, genererade ur ett vågspektrum, delas detta först upp i 200 frekvenser i intervallet 0 till 1 Hz. De frekvenser som har mindre än 1% av maxenergin trunkeras. Aterstoden tilldelas en lottad fasvinkel. Vågtåget simuleras sedan genom att överlagra alla delar av spektrumet som blivit kvar.

Vågkrafterna på bottendelen bestämmes med spektrummetoden, se fig 2.2 samt <4>,<6> och <8>. För varje frekvens beräknas kraften genom att multiplicera vågamplituderna med en transferfunktion. Samma sak gäller för det stjälpande moment,bottendelen utsättes för. Efter det att frekvensens lottade fasvinkel tilldelats,samt fasförskjutning mellan våg och kraft adderats, överlagras alla bidrag.

Transferfunktionerna ska ges som indata på dimensionslös form, och är för horisontalkraften på kassunen  $\hat{F}/a \cdot h \cdot \rho \cdot g \cdot amp(f)$ , där är  $\hat{F}$  horisontalkraftens amplitud. För det stjälpande momentet ska funktionen ha formen  $\hat{M}/a^2 \cdot h \cdot \rho \cdot g \cdot amp(f)$ , där  $\hat{M}$  är momentets amplitud. Vidare är

a = kassunens radie,

h = kassunens höjd,

 $\rho$  = vattendensiteten

g = tyngdaccelerationen

amp(f)= amplituden i amplitudspektrumet vid frekvensen f

Observera att fasvinklarna mellan våg och kraft/moment kan variera med frekvensen,beroende på om "drag"- eller tröghetskrafterna dominerar.



Figur 2.2 Vågspektrummetoden

Vattenytans variation medför att en tätare nod- och elementindelning utföres på tornens mittdelar. Totalt består tornen var för sig av 8 element och 9 noder. Ytterligare 2 noder behövs. Dels nod nr 1 som tillsammans med toppnoderna på tornen bildar däcket. Dels bottennoden som har det högsta numret. Nod- och elementnummer tilldelas, likt en spiral, uppifrån och ner i stigande nummerordning.

De element som befinner sig under medel vattenytan har förutom massan av betongen även erhållit en "added mass". Elementstyvheter o d beräknas med Euler-St Venant sk balkteori. Andra ordningens teori inkluderas genom att kompressiva laster från däck och torn placeras i noderna.

#### 2.3 Inspänning i bottnen

Plattformens inspänning i bottenmaterialet beskrivs av fjädrar och medsvängande massor, beräknade enl teorin för ett cirkulärt fundament vilande på ett halvoändligt medium. I <4> och <5> ges formlerna för fjäderstyvheter:

$$K_{X}, K_{y} = \frac{4 \cdot G \cdot R}{1 - v}$$

$$K_{z} = \frac{32 \cdot (1 - v) \cdot G \cdot R}{7 - 8 \cdot v}$$

$$K_{\theta} = \frac{8 \cdot G \cdot R^{3}}{3 \cdot (1 - v)}$$

$$K_{dt} = 16/3 \cdot G \cdot R^{3}$$

. Marine

297

Formlerna för medsvängande massor ser ut som följer.

 $M_{z} = 1.08 \cdot \rho \cdot R^{3} / (1 - \nu)$   $M_{x}, M_{y} = 0.76 \cdot \rho \cdot R^{3} / (2 - \nu)$   $M_{\theta} = 0.64 \cdot \rho \cdot R^{5} / (1 - \nu)$   $M_{\psi} = 0.24 \cdot \rho \cdot R^{5}$ 

G = jordartens skjuvmodul i Mpa.  $\rho$  = ---- densitet i ton/m<sup>3</sup>. v = ---- tvärkontraktionstal. R = fundamentradie.

#### 2.4 Dynamik

Tyvärr klarar SFVIBAT inte av multipla egenfrekvenser, orsakade av t ex. symmetri. Därför har strukturen måst störas. Exempelvis har fjäderstyvheten i x-led gjorts 5 % större, för att SFVIBAT ska kunna skilja den från y-styvheten.

Dämpningen i systemet är dels strukturell dels rent viskös. Som vanligt är den svår att uppskatta, men DnV har i <5> stipulerat att de tillsammans kan sättas til 5 % av den kritiska dämpningen. För att mjukt svänga in plattformen till stationärt förlopp, har de 100 första sekunderna av vågkrafternas tidsserier multiplicerats med en "tapering"-funktion. Denna ökar linjärt från värdet 0.0 till 1.0 vid 100 sekunder. Därefter är den konstant lika med 1.0.

## 2.5 Enheter

ja jez

Alla indata till GRAVPLAT har inte SI-systemet som bas. T ex anges densiteten hos bottenmaterialet i ton per kubikmeter.

Utdata har däremot meter, sekunder, newton etc som grundenheter. Detta medför att även SFVIBAT's utdata är baserade på SI-enheter.

#### 3. INDATAGENERERING

#### 3.1 Allmänt

Cesto p

Här följer en detaljerad beskrivning av hur indata till GRAVPLAT skrivs på en GUTS-area (Gothenburg University Terminal System). Innan inmatningens början är det bra att känna till några saker.

Varje grupp av indata föregås av en rubrik, t ex WAVE DATA,
 LOGICALS etc. Därefter kan variablerna skrivas i fritt format,
 dock måste ordningen inom gruppen bibehållas. Indatagruppena be höver inte nödvändigtvis följa den ordning som återfinnes i manualen.

2. Indata, bestående av logiska-, reella- och heltals-variabler, kan kontrolleras med den kontrollutskrift som erhålls vid körning. Man kan då lätt upptäcka om t ex den förargliga decimalpunkten efter reella variabler kommit med eller ej.

3. En indatarad får inte bestå av fler än <u>åtta</u> variabler, åtskilda med ett mellanslag eller ett kommatecken.

4. De indatarader som är irrelevanta ska utelämnas.

5. För att användaren ska kunna skilja på variabeltyperna gäller följande: \*heltalsvariabler begynner med bokstaven I eller N. \*logiska variabler har L som första bokstav. \*övriga variabler är reella.

I den efterföljande texten föregås varje indatarad av en '\*'. I kapitel 4 finns dessutom indatafilerna till två st testkörningar, för att ytterligare förtydliga tillvägagångsättet.

#### 3.2 Vågdata

För att kunna beskriva sjötillståndet runt plattformen börjar inmatningen med rubriken

\* WAVE DATA .

Därefter ska vattendjupet DEPTH och vågtypen IW anges. Vågorna kan antingen bestå av en plan sinusvåg eller ett oregelbundet vågtåg, genererat ur ett typspektrum.

\* DEPTH, IW

Om IW=1, vilket motsvarar en sinusvåg, ska amplituden SINAMP och perioden TIMAX skrivas på nästa rad.

SINAMP, TIMAX

Härmed är indata för sinusvågen klara. I de fall IW=2, d v s ett vågspektrum ska beskrivas,krävs en mer komplicerad inmatning. Spektrumtypen beskrivs med variabeln

\* IIR.

IIR kan anta värdet 1 t o m 4.

- IIR=1, motsvarar ett Pierson-Moskowitz-spektrum.

- IIR=2, \_\_\_\_ Jonswapspektrum.

- IIR=3, -"- -"- , där hänsyn tas till strykningslängden.

- IIR=4, motsvarar ett ISSC-spektrum.

Om nu IIR=1 skrivs ytterligare två rader innehållande

· IPM

samt

\* WIND/IBWIND/HS/TZ .

Inparametern till ett PM-spektrum består av antingen vindhastigheten WIND i m/s ( IPM=1 ), vindstyrkan IBWIND i Beaufort ( IPM=2 ),

💉 signifikanta våghöjden HS i m ( IPM=3 ) eller

nollgenomgångsperioden TZ i sek ( IPM=4 ).

En av dessa ska väljas.

I de fall ett Jonswap-spektrum ska genereras, ska inparametrarna bestå av Phillips' parameter ALPHA, spetsighetsfaktorn GAMMA samt formfaktorn TAU och frekvensen för energimaximum FREQO i Hz enligt

\* ALPHA , GAMMA , TAU , FREQO .

Ar däremot IIR=3 krävs två rader,

\* IJNF, FETCH

och

\* WIND/IBWIND.

IJNF står för huruvida vindhastigheten i m/s, WIND ( IJNF=1 ), eller vindstyrkan i Beaufort, IBWIND ( IJNF=2 ), ska användas som indata. Variabeln FETCH ska ange stryklängden i km.

Slutligen kan även ett ISSC-spektrum skapas. Dataraden ska i så fall bestå av

\* HS, TZ, ITZ.

HS = signifikant våghöjd i m.

TZ = nollgenomgångsperiod i sekunder."

ITZ kan anta värdet 1 eller 2. Om ITZ = 1, betyder det att spektrumet skapas m h a 1:a ordningens moment. Motsvarande gäller då ITZ =2.

De olika spektrumtyperna finns utförligt beskrivna i <3> och <4>. GRAVPLAT kan som kontroll även plotta spektrumet, i de fall det skulle kunna vara av intresse ( logiska variabler ) .

#### 3.3 Plattformens geometri

Efter rubriken

\* PLATFORM DATA

ska gravitationsplattformens huvuddimensioner ges på raden

\* DECKW , ITOWER , HTOWER , DIATOW , HCAIS , DCAIS , VV Där anger DECKW däcksvikten i ton. ITOWER är antalet torn, HTOWER höjden på tornen samt DIATOW diametern på den cirkel, vilken tornen är placerade på. HCAIS betecknar höjden på den cirkulära cylinder som antas utgöra plattformens bottendel. DCAIS är diametern på densamma. VV är den vridningsvinkel i grader, som plattformen vrides.



Figur 3.1 Tornplacering

Varje torn ska sedan beskrivas med två rader. Här ska höjden till 1:a, HBR1, och 2:a, HBR2, "brytpunkten" i tornets ytterkontur anges. Vidare ska diametern TOWTH och väggtjockleken THI ges i 4 punkter, se fig 3.2.



För torn nummer I ska exempelvis skrivas

HBR(I,1), HBR(I,2)

\*

TOWTH(I,1),THI(I,1), TOWTH(I,2), THI(I,2), TOWTH(I,3), THI(I,3), TOWTH(I,4), THI(I,4)

Mellan HBR1 och HBR2 gör programmet en tätare indelning. Därför bör dessa två punkter placeras på varsin sida om medelvattenytan, enär vågkrafterna är störst därikring.

#### 3.4 Jordparametrar

För att kunna beskriva plattformens inspänning i undergrunden, skapar GRAVPLAT fjädrar och massor enligt formlerna i kap 3. Efter överskriften

\* SOIL PARAMETERS

ska raden

\* RSOIL, GMODSO, SOILNY

komma.

GMODSO är jordens dynamiska skjuvmodul uttryckt i MPa. SOILNY ska vara tvärkontraktionstalet för samma jord. Slutligen ska RSOIL ange densiteten i ton/m<sup>3</sup>. För en kohesionsjord skrivs lämpligen <u>totaldensiteten</u> in, medan man för en friktionsjord ska sätta in <u>effektivdensiteten</u>, beroende på att vattnet inte hinner dränera undan i en kohesionsjord under snabba deformationsförlopp. (se <10>)

#### 3.5 Transfer funktioner

Inmatningen av transferfunktionerna för horisontalkraft, TRANHF, och stjälpande moment, TRANOM, på bottendelen ska föregås av titeln

\* TRANSFER FUNCTIONS .

De dimensionslösa värdena kan ges för maximalt 20 frekvenser i intervallet 0.0-1.0 Hz. Mellan dessa värden interpolerar programmet rätlinjigt. OBSERVERA att frekvens(n+1) > frekvens(n). Kontroll av att inmatningen skett rätt kan göras genom att begära plottning av våg spektrumet. då erhålls samtidigt transferfunktionerna. Följ de formler som finns i kapitel 2 !!!!!!! Först anges horisontalkraftens funktion.

\* NHF

\* TRANHF(1), TRFREQ(1), PHASE(1), TRANHF(2) .....PHASE(NHF)

Där NHF är antalet punkter och TRANHF(I) är transferfunktonens värde vid frekvensen TRFREQ(I). Fasvinkeln mellan våg och kraft ges för alla punkter med PHASE(I).

Motsvarande gäller för det stjälpande momentets funktion TRANOM vid frekvensen TRFREQM. Först kommer antalet punkter på kurvan

\* NOVMOM .

Därefter

\* TRANOM(1), TRFREQM(1), PHASEM(1) .....PHASEM(NOVMOM) .
Fasvinkeln PHASEM ska även den ges för varje frekvens.

#### 3.6 Logiska variabler

Rubriken för denna grupp av indata är

\* LOGICAL .

De fyra logiska variabler som ska tilldelas antingen värdet .TRUE. eller .FALSE. är

\* LDIR , LCURR , LPSPEC , LTOLP .

LDIR tar hänsyn till om vågorna från ett spektrum ska riktningsspridas. LCURR anger om en strömprofil ska överlagra hastigheterna. LPSPEC styr plottning av spektrum och transferfunktioner. LTOLP anger till sist om hastighet, acceleration och vattenytans variation i origo ska plottas som funktion av tiden.

Normalt faller de av programmet genererade vågorna in från O-riktningen, d v s LDIR = F. Då LDIR = T erhålls en riktningsspridning. Frekvensuppdelningen av spektrumet göres samtidigt tätare, för att öka noggrannheten vid Swop-fördelningen runt O-riktningen. Här kan både vindhastigheten WIND, i m/s, och vindstyrkan IBWIND, i Beaufort, användas som inparameter.

\* IWI

\* WIND/IBWIND

IWI kan ha värdet 1 (WIND) eller 2 (IBWIND). Observera att de ovanstående två raderna ska utelämnas om LDIR = F .

I programmet kan även en havsström simuleras. Det finns två olika strömprofiler att välja mellan, linjär eller exponentiell. I de fall LCURR = T , ska på nästa rad skrivas

ICTYPE, CDIR, CUO, CUB.

ICTYPE kan anta värdet 1 eller 2. En linjär profil skapas om ICTYPE = 1. ICTYPE = 2 medför att strömhastigheten avklingar exponentiellt mot botten. Se fig 3.3 . CDIR anger strömmens angreppsriktning, CUO strömhastigheten i m/s vid ytan och CUB står antingen för stömhastigheten vid bottnen för en linjär profil eller avklingningskonstanten  $\frac{\Delta Cu}{\Delta z}$ för en exponentiell.





Figur 3.3

Olika strömtyper

Som tidigare nämnts kan GRAVPLAT rita upp vågspektrumet som funktion av frekvensen. LPSPEC = T medför att såväl transferfunktionerna för kraft och stjälpmoment på bottendelen plottas i samma frekvensintervall som det aktuella spektrumet.

För att slutligen kontrollera vågtåget kan användaren sätta LTOLP = T . Då plottas vattenytans läge i origo,tillsammans med hastighet och acceleration, som funktion av tiden.

Indata är nu klara och ska avslutas med raden

\* END OF DATA .

Skulle det finnas några oklarheter kan den som ska använda programmet studera de två testexemplen i kapitel 4.

#### 4. TESTKORNINGAR

#### 4.1 Allmänt

Indata till GRAVPLAT består inte av särskilt många rader. Utdata blir däremot svårhanterliga, eftersom det i alla noder, som befinner sig under vattenytan, ska anges 250 värden på vågkraften. Enkel matematik ger att från outputens 6200 rader ska dras ifrån 200. De senare beskriver plattformen, medan de övriga enbart är vågkrafter i noderna som funktion av tiden. Svårhanterligheten blir än större då riktningsspridning används. Då ökar antalet vågkraftsrader till det dubbla. I testexemplen här belastas samma plattform med två olika vågor. Först en plan sinusvåg, därefter belastas den med ett oregelbundet vågtåg orsakat av ett Jonswap-spektrum.

Utskrifter och plottar redovisas för båda exemplen. Utskrifterna består dels av en kontrolldel, som matas ut vid terminalen, dels av inputen till SFVIBAT. Den senare lagras, i denna version, på en skivpacke på Göteborgs Datacentral. Plottningarna hammar på en GUTS-fil, och är avsedda att ritas av en Hewlett-Packard flatbäddsplotter.

För att kunna köra SFVIBAT är det nödvändigt att hämta informationen från skivpacken till en GUTS-fil. I kapitel 5 visas ett sätt att använda SFVIBAT. Ska man däremot spänningskontrollera en plattform är det enklare att begära plottningar av snittkrafter i önskade punkter. Det sätt på vilket utdata analyserats i kapitel 5 är både klumpigt och tidsödande.

#### 4.2 Plattformens utseende

Bilden från kapitel 2 är tänkt att förklara plattformens huvuddimensioner. Den existerar i och för sig inte, men huvuddragen är fullt tänkbara. Jordparametrarna som valts är dock verkliga. De är hämtade ur <10> för en plats med 150 m vattendjup, någonstans ute i Nordsjön. Bottenmaterialet har

- densitet 2.0  $t/m^3$  ,
- poissons tal 0.5 samt den
- dynamiska skjuvmodulen 13.5 MPa.



Plattformens huvuddimensioner

Huvuddimensioner torn

18

Bottenkassunens dimensioner har valts så att de transferfunktioner som finns i <8> kan användas. Elva värden på horisontalkraftens och åtta värden på det stjälpande momentets transferfunktioner är med i indata-filerna för de två testkörningarna. Fasvinkeln är 90<sup>0</sup> mellan våg och kraft. Våg och stjälpande moment ligger i fas. Listade in- och ut-filer följer..

#### 4.3 Plan sinusvåg

. H B (

Först belastas den förut beskrivna plattformen med en sinusvåg. Våghöjden är 11 meter och perioden 11 sekunder. Om plottning av vågtåget begäres och en strömprofil enligt figur 4.2 adderas, ska indata se ut som följer.

00010 WAVE DATA 00020 150. 1 00030 11. 11. 00040 LOGICALS 0005C F T T F 00060 1 .0 2. .75 00070 PLATFORM DATA 00080 20000. 3 100. 50. 75. 120. 45. 00090 55. 90. 00100 20. 1.0 10. .5 10. .5 15. .6 00110 55. 90. 00120 25. 1.2 15. .6 15. .6 18. .5 00130.55.90. 00140 25. 1.2 16. .6 16. .6 19. .6 00150 SOIL PARAMETERS 00160 2.0 13.5 .5 **00170 TRANSFER FUNCTIONS** 00171 11 00180 0. 0. 90. .872 .023 90. 00190 1.31 .033 90. 1.375 .039 90. 00200 1.31 .045 90. 1.187 .049 90. 00210 .851 .063 90. .68 .075 90. 00220 .408 .092 90. .22 .109 90. 00230 .0 .156 90. 00240 8 00250 0. 0. 0. .188 .017 0. 00260 .258 .033 0. .243 .043 0. 00270 .216 .048 0. .153 .057 0. 00280 .1 .063 0. 0. .075 0. 00290 END OF DATA





# 4.3.1 Utskrifter på terminal

| 0001<br>0002 ³ | <b>****</b> GRA | VPL        | AT. A           | GENERAT                                 | OR OF        | INDA           | TA*****      |                              |
|----------------|-----------------|------------|-----------------|-----------------------------------------|--------------|----------------|--------------|------------------------------|
| 0003           |                 |            |                 |                                         |              |                |              |                              |
|                | ****            | ₩ 1J       | ለህወ ከለ          | ጣለ ***                                  | *****        | *              |              |                              |
| 0007           | _               | n.         |                 |                                         |              |                |              |                              |
| 0008<br>0009   | Ţ               | HE         | WATER           | DEPTH ]                                 | IS 150       | • M•           |              |                              |
|                | A               | PL         | ANE SI          | ENUSOIDA                                | AL WAV       | E IS           | CREATED.     |                              |
| 0012           | Ţ               | HE         | WAVE_           | MPLITU                                  | DEIS         | 11.0           | M            |                              |
| 0013           | A               | ND         | THE PI          | ERIOD IS                                | 5 11.0       | S.             |              |                              |
| 0015           | 110 ****        |            |                 | າມນາມ<br>ເປັນເປັນ                       | אזאד פ       | F19            |              |                              |
| 0017           |                 | nne<br>    | WII I           | JINECIT(                                | лац о        | ың (           | LTOID:       |                              |
| 0018<br>0019   | ł               | RAN        | D= 1            |                                         |              |                |              |                              |
| 0020           | g               | URR        | ENT W           | ITH LIN                                 | EAR PR       | OFILI          | JECREES      |                              |
| 10022          | ğ               | URR        | ENT V           | ELOCITY                                 | AT TH        | ESU            | RFACE 2.00   | M/S.                         |
| 10023          | *               | CUR        | RENT            | VELOCIT                                 | YATT         | HE BO          | OTTOM 0.7    | 5 M/S.                       |
| 0025           | ******          | י כד       | ៱៣ចល់ចា         | איד ארד א                               | *****        | ****           | ·            |                              |
| 0020           |                 | L L        | IATI (U)        | M DATA                                  |              |                |              |                              |
| 10028<br>10029 | ŋ               | THE        | DECK            | WEIGHS                                  | 20000        | ) <b>.</b> TO  | NS.          |                              |
| 10030          | Ī               | ΗĒ         | 3 SHA           | FTS ARE                                 | 100.         | O ME           | TRES HIGH.   |                              |
| 10032          | 3               | HE         | BOTTO           | M CAISS                                 | ON IS        | 75.            | METRES HIGH  | [,                           |
| 10033          | l<br>T          | ND<br>HE   | HAS A           | DIAMET                                  | ER OF        | 120.           | METRES.      | 50. M.                       |
| 10035          | -               |            |                 |                                         |              | 320 4 C        | O DECEMENTS  | <i>) . . . . . . . . . .</i> |
| 10036          |                 | CHE:       | PDATE           | URM 15                                  | ROTATI       | שיי 45<br>יייי | • U DEGREEO• |                              |
| 10038          |                 | **         | DATA            | OF SHAF                                 | Ψ            | 1 **           |              |                              |
| 10040          | 1               | BRE        | K POI           | NT NO 1                                 | IS 55        | 5.0 M          | O M          |                              |
| 10041          | . 1             | ABOI       | BREAK<br>VE THE | BOTTOM                                  | OF TH        | IE SH          | AFT.         |                              |
| 10043          |                 |            |                 | DTAMET                                  | RA           |                | THICK        | IESS                         |
| 0045           |                 |            |                 | 17 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |              |                |              |                              |
| 10046          | SECTION         | NO         | 1               | 20.0                                    | M            |                | 1.00         | М                            |
| 10048          |                 |            |                 |                                         |              |                |              |                              |
| 10050          | SECTION         | NO         | 2               | 10.0                                    | М            |                | 0.50         | М                            |
| )0051<br>)0052 |                 |            |                 |                                         |              |                |              |                              |
| 10053          | SECTION         | NO         | 3               | 10.0                                    | М            |                | 0.50         | М                            |
| 10055          |                 |            |                 |                                         | -            |                |              |                              |
| 10056          | SECTION         | NO         | 4               | 15.0                                    | М            |                | 0.60         | Μ                            |
| 10058          |                 | **         | DATA            | OF SHAF                                 | ΡŢ           | 2 **           | · .          |                              |
| 10059          | -               | BRE.       | AK POI          | NT NO 1                                 | IS 5         | 5.0 M          |              |                              |
| 0061           | -               | AND<br>ABO | BREAK<br>VE THE | C POINT<br>BOTTON                       | NO 2<br>OF T | IS 90<br>HE SH | .О М<br>АРТ. |                              |
| 10063          |                 |            |                 |                                         |              |                |              | maa                          |
| 10064          |                 |            |                 | DIAMET                                  | CER          |                | THICK        | NESS                         |
| 10066          | SECUTON         | NO         | 1               | 25 0                                    | M            |                | 1 20         | м                            |
| 0068           | 10 T T O T      | 10         | I               | √•ر∠                                    | 1.1          |                | 1•20         | 11                           |
| 00069          | SECTION         | NO         | 2               | 15.0                                    | M            |                | 0.60         | М                            |
| 0071           |                 |            | _               |                                         | -            |                |              |                              |
| 10073          | SECTION         | ·NO        | 3               | 15.0                                    | М            |                | 0.60         | M                            |
| )0074<br>)0075 |                 |            |                 |                                         |              |                | •            |                              |
| 10076          | SECTION         | NO         | 4               | 18.0                                    | M            |                | 0.50         | M                            |
| 2011           |                 |            |                 |                                         |              |                |              |                              |

|                | 00078          | ** DATA OF SI       | HAFT 3 **                       |                                                                                                           |                       |
|----------------|----------------|---------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------|
|                | 00080          | BREAK POINT NO      | ) 1 IS 55.0 M                   | <b>A</b> W                                                                                                |                       |
|                | 00082          | ABOVE THE BOT       | T NO 2 IS 90.<br>TOM OF THE SHA | O M<br>FT.                                                                                                |                       |
|                | 00085          | DIA                 | METER                           | THICKNESS                                                                                                 |                       |
| st de          | 00085          |                     |                                 |                                                                                                           | •                     |
|                | 00087<br>00088 | SECTION NO 1 25     | •O M                            | 1.20 M                                                                                                    |                       |
|                | 00089          | SECTION NO 2 16     | . O M                           | 0.60 M                                                                                                    |                       |
|                | 00091          |                     |                                 | 0.00 M                                                                                                    | , /                   |
|                | 00093          | SECTION NO 3 16     | • O M                           | 0.60 M                                                                                                    |                       |
| 115            | 00095          | CECTAN NO 4         | <b>A</b> 14                     |                                                                                                           |                       |
|                | 00096          | SECTION NO 4 19     | •O M                            | 0.60 M                                                                                                    |                       |
| abia           | 00098          | ******* MATERIAL PA | RAMETERS *****                  | ****                                                                                                      |                       |
|                | 00100          | CONCRETE YOUN       | S MODULUS=                      | 30.0 CP1                                                                                                  |                       |
|                | 00102          | POISSONS RATI       | ) =                             | 0.15                                                                                                      |                       |
|                | 00104          | SOIL PARAMETE       | RS:                             |                                                                                                           | a /27a                |
|                | 00106          |                     | SHEAR                           | $\begin{array}{rcl} \text{MODULUS} = & 2.0 \text{ TON} \\ \text{MODULUS} = & 13.5 \text{ MP} \end{array}$ | S/M3.<br>A.           |
|                | 00108          |                     | P0188                           | ONS RATIO = 0.50                                                                                          |                       |
|                | 00109          | ***** TRANSFER FU   | NCTIONS ******                  | ***                                                                                                       |                       |
|                | 00111          | TRANSFER FUNCTION   | FOR HORISONTAL                  | FORCES IS GIVEN FOR                                                                                       | 11 FREQUENCIES.       |
|                | 00113          |                     |                                 |                                                                                                           |                       |
|                | 00115          | POINT NR            | FREQ <hz></hz>                  | TRAN. F PH                                                                                                | ASE ANGLE <deg></deg> |
|                | 00117          | 1                   | 0.000                           | 0.000                                                                                                     | 90.0                  |
|                | 00119          | 2                   | 0.023                           | 0.872                                                                                                     | 90.0                  |
|                | 00120          | 3                   | 0.033                           | 1.310                                                                                                     | 90.0                  |
|                | 00123          | 4                   | 0.039                           | 1.375                                                                                                     | 90.0                  |
| <u>.</u>       | 00124          | 5                   | 0.045                           | 1.310                                                                                                     | 90.0                  |
|                | 00126          | 6                   | 0.049                           | 1,187                                                                                                     | 90.0                  |
|                | 00128          | . 7                 | 0,063                           | 0.851                                                                                                     | 90.0                  |
|                | 00130          | 8                   | 0.075                           | 0.690                                                                                                     | 90.0                  |
| 015)<br>(      | 00132          | 0                   | 0.000                           | 0.000                                                                                                     | 90.0                  |
|                | 00134          | · 10                | 0.092                           | 0.408                                                                                                     | 90.0                  |
|                | 00136          | 10                  | 0.109                           | 0.220                                                                                                     | 90.0                  |
|                | 00157          | 11                  | 0.156                           | 0.000                                                                                                     | 90.0                  |
|                | 00139          | TRANSFER FUNCTION   | FOR OVERTURNIN                  | G MOMENT TS GIVEN FO                                                                                      | R 8 FREQUENCIES       |
|                | 00141 00142    |                     |                                 |                                                                                                           |                       |
| <br><u>-</u> - | 00143          | 1                   | 0.000                           | 0.000                                                                                                     | 0.0                   |
|                | 00145          | 2                   | 0.017                           | 0.100                                                                                                     |                       |
|                | 00147          | 2 <u></u>           | 0.017                           | 0.188                                                                                                     | 0.0                   |
|                | 00149          | 3                   | 0.033                           | 0.258                                                                                                     | 0.0                   |
|                | 00151          | 4                   |                                 |                                                                                                           |                       |
|                | 00152          | 4                   | 0.043                           | 0.243                                                                                                     | 0.0                   |
| , st           | 00154          | 5                   | 0.048                           | 0.216                                                                                                     | 0.0                   |
|                | 00156<br>00157 | -                   |                                 | 0.210                                                                                                     | 0.0                   |
|                | 00158<br>00159 | 6                   | 0.057                           | 0.153                                                                                                     | 0.0                   |
| •              | 00160          | 7                   | 0 067                           | 0.400                                                                                                     | ,                     |
|                |                | ſ                   | 0.000                           | 0+100                                                                                                     | 0.0                   |
|                | 00164          | 8                   | 0.075                           | 0.000                                                                                                     | 0.0                   |

WAVEFIELD

THIS PROGRAMME HAS BEEN DEVELOPED AT THE DEPARTMENT OF HYDRAULICS CHALMERS UNIVERSITY OF TECHNOLOGY

••••X

COORDINATE SYSTEM USED IN THE PROGRAMME

CALMWATER LEVEL

THE DIRECTION O. DEGREES IS EQUAL TO THE POSITIVE X-DIRECTION THE MAIN WAVE DIRECTION IS O. DEGREES ANGLES ARE POSITIVE ANTI-CLOCKWISE

THE FOLLOWING ABREVIATIONS ARE USED :

| ETA | : | WATER LEVEL                 |
|-----|---|-----------------------------|
| ប   | : | VELOCITY IN X-DIRECTION     |
| V   | : | VELOCITY IN Y-DIRECTION     |
| W   | • | VELOCITY IN Z-DIRECTION     |
| DU  | : | ACCELERATION IN X-DIRECTION |
| DV  |   | ACCELERATION IN Y-DIRECTION |
| DW  | : | ACCELERATION IN Z-DIRECTION |
| P   | • | DYNAMIC PRESSURE            |

INPUT DATA ARE MARKED WITH AN ASTERISK \*

\*WATER DEPTH 150. M \*DIAMETER OF SMALLEST OBJECT ON WICH FORCES ARE CALCULATED 1.00

\*TYPE OF WAVE : PLANE SINUSOIDAL

PLANE SINUSOIDAL WAVE

| *WAVE AMPLITUDE   | 11.00 | M  |
|-------------------|-------|----|
| *WAVE PERIOD      | 11.00 | S  |
| FREQUENCY         | 0.09  | ΗZ |
| ANGULAR FREQUENCY | 0.57  | ΗZ |
| TIMESTEP          | 1.00  | S  |

DOŹ'

\*COORDINATES FOR THE POINTS WHERE WAVE FIELD COMPONENTS ARE TO BE CALCULATED

| POINT<br>NUMBER | (M)    | (M)    | $\binom{\mathrm{Z}}{\mathtt{M}}$ |
|-----------------|--------|--------|----------------------------------|
| 8               | 17.68  | 17.68  | -11.11                           |
| 9               | -24.15 | 6.47   | -11.11                           |
| 10              | 6.47   | -24.15 | -11.11                           |
| 11              | 17.68  | 17.68  | -2.36                            |
| 12              | -24.15 | 6.47   | -2.36                            |
| 13              | 6.47   | -24.15 | -2.36                            |
| 14              | 17.68  | 17.68  | 6.39                             |
| 15              | -24.15 | 6.47   | 6.39                             |
| 16              | 6.47   | -24.15 | 6.39                             |
| 17              | 17.68  | 17.68  | 15.14                            |
| 18              | -24.15 | 6.47   | 15.14                            |
| 19              | 6.47   | -24.15 | 15.14                            |
| 20              | 17.68  | 17.68  | 33•75                            |
| 21              | -24.15 | 6.47   | 33•75                            |
| 22              | 6.47   | -24.15 | 33.75                            |
| 23              | 17.68  | 17.68  | 61.25                            |
| 24              | -24.15 | 6.47   | 61.25                            |
| 25              | 6.47   | -24.15 | 61.25                            |

\*ONE WAVE TRAIN WILL BE CALCULATED, NO TAPERING FUNCTION IS APPLIED

\*THE EFFECT OF CURRENT WILL BE CONSIDERED IN THE CALCULATION OF THE WAVE FIELD

| DURATIO | N O | F ONE | WAVE  | TRAIN |     | 11.0 | S |
|---------|-----|-------|-------|-------|-----|------|---|
| TIMESTE | Ρ   |       |       |       |     | 1.00 | S |
| NUMBER  | OF  | TIMES | EPS I | ISED  | 251 |      |   |

00

ÕÕ

ÓŌ 00 00

00 Ó(

ŏc oc

00 00 00

00 00 ŌŌ

3456

9

Õ 1

## CURRENT

\*CURRENT WITH LINEAR PROFILE \*CURRENT DIRECTION 0.0 DEGREES \*CURRENT VELOCITY AT THE SURFACE 2.00 M/S \*CURRENT VELOCITY AT THE BOTTOM 0.75 M/S

CALCULATED CURRENT VELOCITIES

| POINT<br>NUMBER | U, X-DIRECTION<br>M/S | V, Y-DIRECTION<br>M/S |
|-----------------|-----------------------|-----------------------|
| 8               | 2.09                  | 0.00                  |
| 9               | 2.09                  | 0.00                  |
| 10              | 2.09                  | 0.00                  |
| 11              | - 2.02                | 0.00                  |
| 12              | 2.02                  | 0.00                  |
| 13              | 2.02                  | 0.00                  |
| 14              | 1.95                  | 0.00                  |
| 15              | 1.95                  | 0.00                  |
| 16              | 1.95                  | 0.00                  |
| 17              | 1.87                  | 0.00                  |
| 18              | 1.87                  | 0.00                  |
| 19              | 1.87                  | 0.00                  |
| 20              | 1.72                  | 0.00                  |
| 21              | 1.72                  | 0.00                  |
| 22              | 1.72                  | 0.00                  |
| 23              | 1•49                  | 0.00                  |
| 24              | 1.49                  | 0.00                  |
| 25              | 1.49                  | 0.00                  |
| 26              | 1.38                  | 0.00                  |
| 27              | 1.38                  | 0.00                  |
| 28              | 1.38                  | 0.00                  |
| 29              | 0.75                  | 0.00                  |
| 30              | 2.00                  | 0.00                  |

4.3.2 Plottningar





VELOCITY IN X-DIRECTION FOR POINT NR

• •

. .

#### 4.4 Oregelbunden våg

I denna andra testkörning har ett Jonswap-spektrum, med inparametrarna  $\alpha$ = 0.0121,  $\tau$ = .0829, f<sub>0</sub> = 0.080 Hz och  $\gamma$ = 2.26, skapats. För att simulera riktningsspridningen antas att vinden blåser med 30 m/s.

Indatafil:

00010 WAVE DATA 00020 150. 2 00030 2 00040 .0121 2.26 .0829 .080 00060 LOGICALS 00070 Т F Т Т 00071 1 00072 30. 00080 PLATFORM DATA 00090 20000. 3 100. 50. 75. 120. 45. 00100 55. 90. 00110 20. 1.0 10. .5 10. .5 15. .6 00120 55. 90. 00130 25. 1.2 15. .6 15. .6 18. .5 00140 55. 90. 00150 25. 1.2 16. .6 16. .6 19. .6 00160 SOIL PARAMETERS 00170 2.0 13.5 .5 **00180 TRANSFER FUNCTIONS** 00190 11 00200 0. 0. 90. .872 .023 90. 00210 1.31 .033 90. 1.375 .039 90. 00220 1.31 .045 90. 1.187 .049 90. 00230 .851 .063 90. .68 .075 90. 00240 .408 .092 90. .22 .109 90. 00250 .0 .156 90. 00260 8 00270 0. 0. 0. .188 .017 0. 00280 .258 .033 0. .243 .043 0. 00290 .216 .048 0. .153 .057 0. 00300 .1 .063 0. 0. .075 0. 00310 END OF DATA

# 4.4.1 Utskrifter på terminal

\_ ......

. \_ . . . . . . . . . . . . . .

| 00001<br>00002<br>00003 | **** GR  | AVPI            | LAT.        | A GENERATOR (  | OF INDATA*****                   |
|-------------------------|----------|-----------------|-------------|----------------|----------------------------------|
| 00004<br>00005<br>00006 | *****    | ** ĭ            | WAVE        | DATA ******    | ***                              |
| 00007                   |          | THE             | WATE        | R DEPTH IS 1   | 150. M.                          |
| 00009                   |          |                 |             |                |                                  |
| 00011                   |          | TIP             | E OF        | SPECTRUM:      |                                  |
| 00012                   |          |                 |             | JOI            | DNSWAP.                          |
| 00014                   |          |                 |             |                |                                  |
| 00015                   |          | *PH]<br>*DU     | ILLIP       | S PARAMETER    | ALFA 0.012100                    |
| 00017                   |          | *SH/            | APE P       | ARAMETER. TAI  | GR, GAMMA 2.260<br>AU 0.083      |
| 00018                   |          | *FRI            | EQUEN       | CY FOR THE P   | PEAK OF THE PM SPECTRUM 0.080 HZ |
| ŏŏŏźŏ                   | *****    |                 |             |                |                                  |
| 00021                   | ***** () | URRI            | ENT?        | DIRECTIONAL    | SEA? PLOTS? ***                  |
| 00023                   |          | IRAI            | ND=         | 1              |                                  |
| 00025                   |          | DIR             | ECTIO       | NAL SPREAD -   | -YES.                            |
| 00026                   |          | тмр             | កោ ស        | יב -תפיססף תאד |                                  |
| 00028                   |          |                 |             |                | 0.0 m/ 5.                        |
| 00029                   |          | THE             | WAVE        | SPECTRUM IS    | 5 TO BE PLOTTED                  |
| 00031                   | ****     | *               |             |                |                                  |
| 00033                   |          | • FI            | LATFO       | RM DATA ****   | ******                           |
| 00034                   |          | ការកោ           | אייישת      | WETCHE 200     |                                  |
| 00036                   |          | THE             | 3 SH        | AFTS ARE 100   | DO.0 METRES HIGH.                |
| 00037                   |          | ጥዠፑ             | BOጥጥ        | OM CATSSON TO  | IS 75 MEMORY UTAU                |
| 00039                   |          | AND             | HĂŚ         | A DIAMETER O   | DF 120. METRES.                  |
| 00040                   |          | THE             | SHAF        | TS ARE PLACE.  | GD ON A CIRCLE. D= 50. M.        |
| 00042                   |          | THE             | PLAT        | FORM IS ROTA   | ATED 45.0 DEGREES.               |
| 00044                   |          | **              | DATA        | OF SHAFT       | 1 **                             |
| 00045                   |          | BRE             | AK PO       | INT NO 1 IS    | 55.0 M                           |
| 00047                   |          | AND             | BREA        | K POINT NO 2   |                                  |
| 00049                   |          | шDФ             | ,<br>,<br>, | DOLTON OF      | IRE SHAFT.                       |
| 00050                   |          |                 |             | DIAMETER       | THICKNESS                        |
| 00052                   | SEGUITON | NO              | 4           |                | ·                                |
| 00054                   | ORCITON  | NO              | 1           | 20.0 M         | 1.00 M                           |
| 00055                   | SECUTON  | NO              | 2           | 10 O M         | 0 50 10                          |
| 00057                   |          | 110             | -           | 10.0 M         | 0.50 M                           |
| 00059                   | SECTION  | NO              | 3           | 10.0 M         | 0.50 M                           |
| 00060                   |          |                 | -           |                | 0. )0 H                          |
| 00062                   | SECTION  | NO              | 4           | 15.0 M         | 0.60 M                           |
| 00063                   |          | **              | ጋልጥል        | ባፑ ናዛላምጣ       | 2 **                             |
| 00065                   |          | त्य <b>स</b> ्य |             |                |                                  |
| 00067                   |          | AND             | BREA        | K POINT NO 2   | 55.0 M<br>2 IS 90.0 M            |
| 00068                   |          | ABO             | VE TH       | E BOTTOM OF    | THE SHAFT.                       |
| ŏŏŏ7ŏ                   |          |                 |             | DIAMETER       | THICKNESS                        |
| 00071                   |          |                 |             |                |                                  |
| 00073                   | SECTION  | NO              | 1           | 25.0 M         | 1.20 M                           |
| 00075                   |          |                 |             |                |                                  |
| 00076                   | SECTION  | NO              | 2           | 15.0 M         | 0.60 M                           |
|                         | dudator  |                 | -           |                |                                  |
| 00080                   | 2 POLTON | MО              | 2           | 15.0 M         | 0.60 M                           |
| 00081<br>00082          | SECTION  | NA              | A           | 18 A M         | 0 50 %                           |
|                         |          | 2.0             | -т          | U U 11         |                                  |

| 00084 | ÷                                                            | ** D.  | ATA (       | ЭF                | SHAI        | T              | 3             | **           |                     |       |      |       |         |                 |      |  |
|-------|--------------------------------------------------------------|--------|-------------|-------------------|-------------|----------------|---------------|--------------|---------------------|-------|------|-------|---------|-----------------|------|--|
| 00085 | BI                                                           | REAK   | POI         | T                 | NO 1        | IS             | 5 <u>5</u> .0 | ) M          | ~                   |       |      |       |         |                 |      |  |
| 00088 | AI                                                           | BOVE   | REAK<br>THE | PO<br>BO          | INT<br>TTOM | NO 2<br>I OF ' | LS<br>THE     | 90.0<br>SHAI | O M<br>FT.          |       |      |       |         |                 |      |  |
| 00089 | DIAMETER THICKNESS                                           |        |             |                   |             |                |               |              |                     |       |      |       |         |                 |      |  |
| 00091 |                                                              |        |             |                   |             |                |               |              |                     |       |      | 2.010 |         |                 |      |  |
| 00093 | SECTION 1                                                    | NO     | 1           | 2                 | 5.0         | М              |               |              |                     | 1.2   | 20   | M     |         |                 |      |  |
| 00095 | anamron .                                                    |        | -           |                   |             |                |               |              |                     |       |      |       |         |                 |      |  |
| 00096 | SECTION 1                                                    | NO     | 2           | 1                 | 6.0         | Μ              |               |              |                     | 0.    | 60   | M     |         |                 |      |  |
| 00098 | SECUTON                                                      | MO     | 3           | 1                 | 6 0         | ัพ             |               |              |                     | 0     | ~~   | 76    |         |                 |      |  |
| 00100 | OPOTTON 1                                                    |        | <i>)</i>    | 1                 | 0.0         | £1             |               |              | -                   | 0.1   | 50   | 191   |         |                 |      |  |
| 00102 | SECTION 1                                                    | NO     | 4           | 1                 | 9.0         | М              |               |              |                     | 0.    | 60   | м     |         |                 |      |  |
| 00103 |                                                              |        |             |                   | -           |                |               |              |                     |       |      | **    |         |                 |      |  |
| 00105 | *****                                                        | MAT    | ERIA        | ĿΡ                | ARAN        | (ETER          | S **          | ****         | ****                | ŧ     |      | •     |         |                 |      |  |
| 00107 | 7 CONCRETE YOUNGS MODULUS= 30.0 GPA.                         |        |             |                   |             |                |               |              |                     |       |      |       |         |                 |      |  |
| 00108 | P                                                            | OISS   | ONS 1       | RAT               | IO =        |                |               | = (          | 0.15                |       |      |       |         |                 |      |  |
| 00110 | O SOIL PARAMETERS:                                           |        |             |                   |             |                |               |              |                     |       |      |       |         | <b>-</b> .      |      |  |
| 00112 | $\frac{\text{DENSITI}}{\text{SHEAR}} = 2.0 \text{ TONS/M3}.$ |        |             |                   |             |                |               |              |                     |       |      |       |         |                 |      |  |
| 00115 |                                                              | -      |             |                   |             |                | P             | DISS         | ons i               | RATI  | )=   | 0.50  | Ô       |                 |      |  |
| 00115 | ***                                                          | ע צויח | NSFR        | ਸ਼ਾਵ              | TIMO        | PTONS          | **            | ****         | ****                | 6     |      |       |         |                 |      |  |
| 00117 |                                                              | הד כות | INGT E      | л <i>г</i><br>том | . 1101      |                | TOO           | T (5) 4 -    | <b>T</b> O <b>D</b> |       |      |       |         |                 |      |  |
| 00119 | THANSE                                                       | er f   | UNCT.       | TON               | TOF         | K HOR          | 1201          | NTAL         | FOR                 | JES . | IS   | GIVEN | FOR 11  | FREQUENCI       | ES.  |  |
| 00120 | P                                                            | ÓTNT   | NR          |                   |             | 0.ज न म        | < H'          | 7.5          |                     | ηı.   | RAN  | ਸ਼ਾ   | סמאפס   | א אומד גיי עריק | A.V. |  |
| 00122 |                                                              | 1      |             |                   |             |                | ~~            |              |                     |       |      |       | THUDH   | ANGUE (DE       | G/   |  |
| 00124 | •                                                            | 1      |             |                   |             | 0.0            |               |              |                     | •     | 0.0  | 00    |         | 90+0            |      |  |
| 00125 |                                                              | 2      |             |                   |             | 0.0            | 23            |              |                     | (     | 0.8  | 72    |         | 90.0            |      |  |
| 00127 |                                                              | 3      |             |                   |             | 0.0            | 33            |              |                     |       | 1.3  | 10    |         | 90.0            |      |  |
| 00129 | ÷                                                            | 4      |             |                   |             | 0.0            | 39            |              |                     |       | 1.3  | 75    |         | 90.0            |      |  |
| 00131 |                                                              | 5      |             |                   |             | 0.0            | 45            |              |                     |       | 1.3  | 10    | •       | 90.0            |      |  |
| 00133 |                                                              | 6      |             |                   |             | 0.0            | 49            |              |                     |       | 1.1  | 87    |         | 90.0            |      |  |
| 00134 |                                                              | 7      |             |                   |             | 0.0            | 63            |              |                     | ,     | ົ່   | 51    |         | 00.0            |      |  |
| 00136 | Q                                                            |        |             |                   | 0.075       |                |               |              |                     | 0.600 |      |       |         | 90.0            |      |  |
| 00138 | Ö                                                            |        |             |                   | 0.075       |                |               |              |                     | 0.680 |      |       |         | 90.0            |      |  |
| 00139 |                                                              | 9      |             |                   |             | 0.0            | 92            |              |                     | 1     | 0•4  | .08   |         | 90.0            |      |  |
| 00141 |                                                              | 10     |             |                   |             | 0.1            | 09            |              |                     | I     | 0.2  | 20    |         | 90.0            |      |  |
| 00143 | •                                                            | 11     |             |                   |             | 0.1            | 56            |              |                     | (     | 0.0  | 00    | 2       | 90.0            |      |  |
| 00145 |                                                              |        |             |                   |             |                |               |              |                     |       |      |       |         |                 |      |  |
| 00146 | TRANSF                                                       | ER F   | UNCT        | ION               | FOI         | R OVE          | RTUI          | RNIN         | G MOI               | IENT  | IS   | GIVE  | N FOR a | B FREQUENC      | IES. |  |
| 00148 |                                                              | 1      |             |                   |             | 0.00           | ^             |              |                     | 0     | ~~   | ^     |         |                 |      |  |
| 00150 |                                                              | 1      |             |                   |             | 0.00           | U             |              |                     | 0     | • 00 | 0     |         | 0.0             |      |  |
| 00151 |                                                              | 2      |             |                   |             | 0.01           | 7             |              |                     | 0     | .18  | 8     |         | 0.0             |      |  |
| 00153 |                                                              |        |             |                   |             |                |               |              |                     | Ŭ     |      | 0     |         | 0+0             |      |  |
| 00155 | ÷                                                            | 3      |             |                   |             | 0.03           | 3             |              |                     | 0     | - 25 | 8     |         | 0.0             |      |  |
| 00156 |                                                              |        |             |                   |             |                |               |              |                     |       |      |       |         |                 |      |  |
| 00158 |                                                              | 4      |             |                   |             | 0.04           | 3             |              |                     | 0     | •24  | 3     |         | 0.0             |      |  |
|       |                                                              |        |             |                   |             |                | _             |              |                     | _     |      |       |         |                 |      |  |
| 00162 |                                                              | 2      |             |                   |             | 0.04           | 8             |              |                     | 0     | • 21 | 6     |         | 0.0             |      |  |
| 00163 |                                                              | 6      |             |                   |             | 0.05           | 7             |              |                     | 0     | .15  | 3     |         |                 |      |  |
| 00165 |                                                              |        |             |                   |             |                | 1             |              |                     | U     | •1)  | )     |         | 0.0             |      |  |
|       | -                                                            | 7      |             |                   |             | 0.06           | 3             |              |                     | 0     | •10  | 0     |         | 0.0             |      |  |
| 00169 |                                                              |        |             |                   |             |                |               |              |                     |       |      |       |         |                 |      |  |
| 00170 |                                                              | 8      |             |                   |             | 0.07           | 5             |              |                     | 0     | . 00 | Ο.    |         | 0.0             |      |  |

•

. المحمد المستحد الأراسية الم

29

د. مستحد والمورد روان

\_\_\_\_\_\_\_ THIS PROGRAMME HAS BEEN DEVELOPED AT THE DEPARTMENT OF HYDRAULICS CHALMERS UNIVERSITY OF TECHNOLOGY COORDINATE SYSTEM USED IN THE PROGRAMME CALMWATER LEVEL ....X . ż Y THE DIRECTION O. DEGREES IS EQUAL TO THE POSITIVE X-DIRECTION THE MAIN WAVE DIRECTION IS O. DEGREES ANGLES ARE POSITIVE ANTI-CLOCKWISE THE FOLLOWING ABREVIATIONS ARE USED : ETA : WATER LEVEL U : VELOCITY IN X-DIRECTION V : VELOCITY IN Y-DIRECTION W : VELOCITY IN Z-DIRECTION ACCELERATION IN X-DIRECTION ACCELERATION IN Y-DIRECTION ACCELERATION IN Y-DIRECTION ACCELERATION IN Z-DIRECTION DU ΰŤ DW : DYNAMIC PRESSURE Ρ INPUT DATA ARE MARKED WITH AN ASTERISK \* \*WATER DEPTH 150. M \*DIAMETER OF SMALLEST OBJECT ON WICH FORCES ARE CALCULATED 1.00 \*TYPE OF WAVE : IRREGULAR ENERGY SPECTRUM \*JONSWAP SPECTRUM. EFFECT OF FETCH LENGTH IS NOT CONSIDERED \*INPUT PARAMETERS : \*PHILLIP'S PARAMETER, ALFA \*PEAKEDNESS PARAMETER, GAMMA \*SHAPE PARAMETER, TAU \*FREQUENCY FOR THE PEAK OF THE PM SPECTRUM 0.012100 2.260 0.080 HZ

WAVEFIELD

00264

00265 00266

00267 00268 00269

002 002

ററ

00284 00285

00286

00292 00297

00

002

002

00

00

00

00 00 00

00

00

00

00

00

00322

00300 00301

0 00287

00244

00245

SPECTRUM COMPONENTS SMALLER THAN 1.0 PERCENT OF THE PEAK ARE DISCARDED OF THE INITIAL 1000 FREQUENCIES NR 51 TO 219 REMAIN

MAX ENERGY IN THE SPECTRUM 147.6 M2/S

SIGNIFICANT WAVE HEIGHT AND ZERO CROSSING PERIOD CALCULATED FROM OTH AND 2ND MOMENT OF WAVE ENERGY SPECTRUM

HS = 4\*SQRT(MO) 8.8 M T2 = SQRT(MO/M2) 9.5 S

VARIANCE OF WATER LEVEL 4.79 M2 SHOULD BE APPROXIMATELY EQUAL WITH OTH MOMENT OF ENERGY SPECTRUM 4.71 M2

\*A SPECTRUM WITH DIRECTIONAL SPREAD IS SIMULATED

DIRECTIONAL SPREAD OF ENERGY

\*DIRECTIONAL SPREAD OF ENERGY ACCORDING TO THE SWOP DISTRIBUTION \*WIND SPEED 30.0 M/S

\*THE SAME RANDOM VARIABLES ARE USED IN EACH SIMULATION, IT CAN BE REPRODUCED EXACTLY ANY NUMBER OF TIMES

RESULT OF THE ENERGY DISTRIBUTION AS PERCENT OF THE TOTAL ENERGY IN EACH DIRECTION INTERVAL (THE DIRECTION O. DEGREES IS THE MAIN WAVE DIRECTION) :

ENERGY ANGLE (DEGREES) (PERCENT) 20 40 60 10 0 80 -90. - -80. 2.0 -80. - -70. 3.9 -70. - -60. 4.0 -60. - -50. 8.2 -50. - -40. 4.2 -40. - -30. 3.9 -30. - -20. 11.1 -20. - -10. 8.3 -10. -0. 12.7 0. -10. 6.1 10. -20. 12.2 20. -30. 8.0 30. -40. 5.5 40. -50. 1.0 50. -60. 6.1 60. -70. 1.2 80. 70. -0.4 80. -90. 1.0
\*COORDINATES FOR THE POINTS WHERE WAVE FIELD COMPONENTS ARE TO BE CALCULATED POINT NUMBER (M) Ϋ́(M) (M)17.68 17.68 8 -11.11 6.47 -11.11 9 -24.15 10 6.47 -24.15 -11.11 17.68 11 17.68 -2.36 12 -24.15 6.47 -2.36 6.47 -24.15 -2.36 13 6.39 14 17.68 17.68 15 -24.15 6.47 6.39 16 -24.15 6.39 6.47 17 17.68 17.68 15.14 18 -24.15 6.47 15.14 19 6.47 -24.15 15.14 20 17.68 17.68 33.75 21 -24.15 6.47 33.75 22 6.47 -24.15 33.75 23 17.68 17.68 61.25 6.47 61.25 24 -24.15 25 6.47 -24.15 61.25

\*NO EFFECT OF CURRENT WILL BE CONSIDERED IN THE CALCULATION OF THE WAVE FIELD

\*ONE WAVE TRAIN WILL BE CALCULATED, NO TAPERING FUNCTION IS APPLIED

| DURATIO | N C | )   | ONE  | WAVE | C | TRAIN |   |    | 200 | •0 | S |  |
|---------|-----|-----|------|------|---|-------|---|----|-----|----|---|--|
| TIMESTE | IP  |     |      |      |   |       |   |    | 1.  | 00 | ន |  |
| NUMBER  | OF  | ጥተእ | กษณา | TEPS | П | SED   | 2 | 51 |     |    |   |  |



ENERGY OF JONSWAP SPECTRUM, NO FETCH













## 4.5 Utskrifter på skivpacke

Naturligtvis är indata för rymdramen till SFVIBAT exakt lika i båda testkörningarna. Det enda som skiljer dem åt är antalet rader med vågkrafter. För sinusvågen erhölls ungefär 6 000 rader, medan det spektrumgenererade bestod av 11 000. Dessa rader får givetvis inte plats i denna skrift, och har därför strukits.

| 00002 Ji<br>00002 Ji<br>00003<br>00004<br>00005<br>00006<br>00007<br>00008<br>00007<br>00008<br>00010<br>00012 10<br>00012 11<br>00012 11<br>00013 1<br>00014 11<br>00015 1<br>00017 11<br>00017 11<br>00017 11<br>00017 11<br>00017 11<br>00017 11<br>00017 11<br>00017 11<br>00020 11<br>00022 22<br>00023 22<br>00024 22<br>00025 22<br>00025 22<br>00026 22<br>00026 22<br>00026 22<br>00027 22<br>00026 22<br>00027 22<br>00027 22<br>00027 22<br>00027 22<br>00026 22<br>00027 22<br>000070 22<br>00070 20<br>00070 20<br>00070 20<br>00070 20<br>00070 20<br>00070 20<br>00070 20<br>00070 20<br>0000 | $ \begin{array}{c} \text{NDAT} \\ \text{OOOO} \\ \text{SD} \\ \text{SD} \\ \text{OOOO} \\ \text{SD} \\ \text{OOOO} \\ \text{SD} \\ \text{SD} \\ \text{SD} \\ \text{OOOO} \\ \text{SD} \\ SD$ | $ \begin{array}{c} \text{INACL} \\ I$ | AS -22255.000<br>-1111222.0000000<br>-22255.000000<br>-1111222.0000000000000000000000000000000 | TATIONS | BI | GRAVPLAT |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------|----|----------|--|
| 00040<br>00042<br>00042<br>00043<br>00043<br>00043<br>00045<br>00046<br>1<br>00046<br>1<br>00046<br>1<br>00046<br>1<br>00046<br>1<br>00046<br>1<br>00046<br>1<br>00046<br>1<br>00046<br>1<br>00050<br>1<br>00052<br>20<br>00055<br>22<br>00055<br>22<br>00057<br>22<br>00057<br>22<br>00057<br>22<br>00057<br>22<br>00057<br>22<br>00057<br>22<br>00057<br>22<br>00057<br>22<br>00057<br>22<br>00057<br>22<br>00057<br>22<br>00057<br>22<br>00057<br>22<br>00057<br>22<br>00057<br>22<br>00057<br>22<br>00057<br>22<br>00057<br>22<br>00057<br>22<br>00057<br>22<br>00057<br>22<br>00057<br>23<br>00067<br>23<br>00066<br>23<br>00066<br>33<br>00065<br>33<br>00065<br>33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -89012345678901234567890123<br>1112345678901234567879890123<br>111234567890123345678798896<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 <t< td=""><td></td><td></td><td>•</td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                |         | •  |          |  |

| 00066<br>00067<br>00068 | Мымвык PROPERTIES .23194E+02 .42809E+03 .42809E+03<br>0.300000E+11 0.130435E+11 0.000000E+00 0.000000E+00<br>1 T0 3 | •85618E+03                     |
|-------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------|
| 00069<br>00070<br>00071 | MEMBER PROPERTIES .23194E+02 .42809E+03 .42809E+03<br>0.300000E+11 0.130435E+11 0.614637E+05 0.836048E-02           | •85618E+03                     |
| 00072                   | MEMBER PROPERTIES .17107E+02 .22720E+03 .22720E+03<br>0.300000E+11 0.130435E+11 0.453335E+05 0.896603E-02           | •45440E+03                     |
| 00075                   | MÉMBER PROPERTIES .15708E+02 .19635E+03 .19635E+03<br>0.300000E+11 0.130435E+11 0.416262E+05 0.921604E-02           | •39270E+03                     |
| 00078                   | MEMBER PROPERTIES .15708E+02 .19635E+03 .19635E+03<br>0.300000E+11 0.130435E+11 0.107152E+06 0.574417E-02           | •39270E+03                     |
| 00081                   | MEMBER PROPERTIES .15708E+02 .19635E+03 .19635E+03<br>0.300000E+11 0.130435E+11 0.107152E+06 0.574417E-02           | •39270E+03                     |
| 00084                   | MEMBER PROPERTIES .19880E+02 .34946E+03 .34946E+03<br>0.300000E+11 0.130435E+11 0.135614E+06 0.556020E-02           | •69892E+03                     |
| 00087                   | MEMBER PROPERTIES .35343E+02 .11597E+04 .11597E+04<br>0.300000E+11 0.130435E+11 0.241092E+06 0.487437E-02           | •23194 <b>E</b> +04            |
| 00089                   | MEMBER PROPERTIES .55223E+02 .25886E+04 .25886E+04<br>0.300000E+11 0.130435E+11 0.376707E+06 0.426318E-02           | •51772E+04                     |
| 00092                   | MEMBER PROPERTIES .28495E+02 .94669E+03 .94669E+03<br>0.300000E+11 0.130435E+11 0.755124E+05 0.873674E-02           | •18934E+04                     |
| 00095                   | 2<br>MEMBER PROPERTIES .28377E+02 .81807E+03 .81807E+03<br>0.300000E+11 0.130435E+11 0.752002E+05 0.844976E-02      | •16361E+04                     |
| 00098                   | MEMBER PROPERTIES .28274E+02 .79522E+03 .79522E+03<br>0.300000E+11 0.130435E+11 0.749271E+05 0.841305E-02           | •15904E+04                     |
| 00102                   | MEMBER PROPERTIES .28274E+02 .79522E+03 .79522E+03<br>0.300000E+11 0.130435E+11 0.228986E+06 0.481248E-02           | •15904E+04                     |
| 00104                   | MEMBER PROPERTIES :28274E+02 .79522E+03 .79522E+03<br>0.300000E+11 0.130435E+11 0.228986E+06 0.481248E-02           | •15904E+04                     |
| 00108                   | MEMBER PROPERTIES .34459E+02 .12249E+04 .12249E+04<br>0.300000E+11 0.130435E+11 0.270915E+06 0.469120E-02           | •24498E+04                     |
| 00111                   | MEMBER PROPERTIES .56549E+02 .31809E+04 .31809E+04<br>0.300000E+11 0.130435E+11 0.417814E+06 0.423681E-02           | •63617E+04                     |
| 00114                   | MEMBER PROPERTIES .83940E+02 .62299E+04 .62299E+04<br>0.300000E+11 0.130435E+11 0.596382E+06 0.380072E-02           | .12460E+05                     |
| 00117                   | MEMBER PROPERTIES .33694E+02 .12610E+04 .12610E+04<br>0.300000E+11 0.130435E+11 0.892881E+05 0.827743E-02           | •25220E+04                     |
| 00120                   | MEMBER PROPERTIES .30866E+02 .10109E+04 .10109E+04<br>0.300000E+11 0.130435E+11 0.817954E+05 0.836447E-02           | •20217E+04                     |
| 00123                   | MEMBER PROPERTIES .30159E+02 .96510E+03 .96510E+03<br>0.300000E+11 0.130435E+11 0.799222E+05 0.841305E-02           | •19302E+04                     |
| 00126                   | MEMBER PROPERTIES .30159E+02 .96510E+03 .96510E+03<br>0.300000E+11 0.130435E+11 0.257117E+06 0.469053E-02           | •19302E+04                     |
| 00120                   | MEMBER PROPERTIES .30159E+02 .96510E+03 .96510E+03<br>0.300000E+11 .0.130435E+11 0.257117E+06 0.469053E-02          | •19302E+04                     |
| 00132                   | MEMBER PROPERTIES .36315E+02 .14187E+04 .14187E+04<br>0.300000E+11 0.130435E+11 0.297545E+06 0.458326E-02           | •28374E+04                     |
| 00135                   | MEMBER PROPERTIES .57962E+02 .33790E+04 .33790E+04<br>0.300000E+11 0.130435E+11 0.436486E+06 0.418241E-02           | •67581E+04                     |
| 00138                   | MEMBER PROPERTIES .84381E+02 .62956E+04 .62956E+04<br>0.300000E+11 0.130435E+11 0.601914E+06 0.378818E-02           | <ul> <li>12591 E+05</li> </ul> |
| 00141                   | MEMBER PROPERTIES .27612E+03 .17033E+06 .17033E+06<br>0.300000E+11 0.130435E+11 0.388302E+07 0.110843E-01           | •34067E+06                     |
| 00144                   | 33<br>MEMBER PRODUCTES OF CORPORT AFORED OF CONTRACT                                                                |                                |
| 00147                   | 0.300000E+11 0.130435E+11 0.376707E+06 0.110843E-01                                                                 | •34067E+06                     |
| 00150                   | <u>3</u> ž                                                                                                          |                                |

|   | 00151 | SPRINGS AND MASSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |          |    |
|---|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|----|
|   | 00152 | 29 TRANSLATION Z 0.6480E+10 0.9331E+09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |          |    |
|   | 00154 | $\frac{1}{1} \frac{1}{1} \frac{1}$ |        |          |    |
|   | 00155 | 2 TRANSLATION Z 0.0000E+00 0.6667E+07<br>3 TRANSLATION Z 0.0000E+00 0.6667E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |          |    |
| ÷ | 00157 | 29 TRANSLATION X $0.4536E+10$ $0.2189E+09$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |          |    |
| • | 00158 | 29 ROTATION X 0.1633E+14 0.1991E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |          |    |
|   | 00160 | 2  TRANSLATION X 0.0000E+00 0.6667E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |          |    |
|   | 00161 | 3 TRANSLATION X 0.0000E+00 0.6667E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ÷ .    |          |    |
|   | 00163 | 29 ROTATION 1 0.4520E+10 0.2189E+09<br>29 ROTATION Y 0.1555E+14 0.1991E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |          |    |
|   | 00164 | 1 TRANSLATION Y 0.0000E+00 0.6667E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |          |    |
|   | 00165 | 2 TRANSLATION Y 0.0000E+00 0.6667E+07<br>3 TRANSLATION Y 0.0000E+00 0.6667E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | ,        |    |
|   | 00167 | AXIAL LOAD .6540E+08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |          |    |
|   | 00169 | AXIAL LOAD .3335E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |          |    |
|   | 00170 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |    |
|   | 00172 | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |          |    |
|   | 00173 | AXIAL LOAD •3573E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |          |    |
|   | 00175 | AXIAL LOAD .3573E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |          |    |
|   | 00176 | 14<br>AXTAL LOAD - 4522E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |          |    |
|   | 00178 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |    |
|   | 001/9 | AXIAL LUAD .17108+08<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |          |    |
|   | 00181 | AXIAL LOAD .3948E+08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |          |    |
|   | 00183 | AXIAL LOAD .0000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |          |    |
|   | 00184 | 26<br>AXTAL LOAD 6540E+08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |          |    |
|   | 00186 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |          |    |
|   | 00187 | AXIAL LOAD •5533E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |          |    |
|   | 00189 | AXIAL LOAD .4696E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |          |    |
|   | 00190 | AXIAL LOAD .6432E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |          |    |
|   | 00192 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |    |
|   | 00194 | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |          |    |
|   | 00195 | AXIAL LOAD .7838E+07<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |          |    |
| - | 00197 | AXIAL LOAD .2736E+08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |          |    |
|   | 00199 | AXIAL LOAD .6001E+08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |          |    |
|   | 00200 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |    |
|   | 00202 | 27<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |          |    |
|   | 00203 | AXIAL LOAD •6540E+08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | `        |    |
|   | 00205 | ÁXIAL LOAD .6018E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |          |    |
|   | 00206 | AXIAL LOAD .5009E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |          |    |
|   | 00208 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |    |
|   | 00210 | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |          |    |
|   | 00211 | AXIAL LOAD .6860E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |          |    |
|   | 00213 | AXIAL LOAD .8261E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |          |    |
|   | 00214 | AXIAL LOAD .2804E+08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |          |    |
|   | 00216 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |    |
|   | 00218 | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |          |    |
|   | 00219 | AXIAL LOAD .0000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |          |    |
|   | 00221 | NUMBER OF EIGENFREQUENCIES 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |          |    |
|   | 00222 | ACCURACY OF EIGENFREQUENCIES .001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |          |    |
|   | 00224 | CHANGED SIGN OF EIGENMODES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |          |    |
|   | 00226 | 5000. 3000. 2000. 60.00 0. 150.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CKNESS | 1 POINTS | 10 |
|   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |    |

|     | 00227                                                          | TRANSIENT LOADING CASE                   |   |
|-----|----------------------------------------------------------------|------------------------------------------|---|
|     | 00228                                                          | 8 FORCE X                                |   |
|     | 00230                                                          | 8 FORCE Y                                |   |
|     | 00232                                                          | 11 FORCE Y                               |   |
|     | 00233                                                          | 14 FORCE X                               |   |
|     | 00235                                                          | 14 FORCE Y<br>17 FORCE X                 |   |
|     | 00236                                                          | 17 FORCE Y                               |   |
|     | 00237                                                          | 9 FORCE X                                |   |
|     | 00239                                                          | 12 FORCE X                               |   |
|     | 00240                                                          | 12 FORCE Y                               |   |
|     | 00241                                                          | 15 FORCE X                               |   |
| 1   | 00243                                                          | 8 FORCE X                                |   |
|     | 00244                                                          | 18 FORCE Y                               |   |
|     | 00246                                                          | 10 FORCE Y                               |   |
|     | 00247                                                          | 13 FORCE X                               |   |
|     | 00248                                                          | 15 FORCE Y<br>16 FORCE Y                 |   |
|     | 00250                                                          | 16 FORCE Y                               |   |
|     | 00251                                                          | 19 FORCE X                               |   |
|     | 00253                                                          | 8 MOMENT X                               |   |
|     | 00254                                                          | 8 MOMENT Y                               |   |
|     | 00255                                                          | 9 MOMENT X<br>9 MOMENT Y                 |   |
|     | 00257                                                          | 10 MOMENT X                              |   |
|     | 00258                                                          | 10 MOMENTY<br>11 MOMENTY                 |   |
|     | 00260                                                          | 11 MOMENT Y                              |   |
|     | 00261                                                          | 12 MOMENT X                              |   |
|     | 00263                                                          | 13 MOMENT X                              |   |
|     | 00264                                                          | 13 MOMENT Y                              |   |
|     | 00265                                                          | 14 MOMENT X<br>14 MOMENT Y               |   |
|     | 00267                                                          | 15 MOMENT X                              |   |
|     | 00268                                                          | 15 MOMENT Y<br>16 MOMENT Y               |   |
|     | 00270                                                          | 16 MOMENT Y                              |   |
|     | 00271                                                          | 17 MOMENT X                              |   |
| :   | 00273                                                          | 18 MOMENT X                              |   |
|     | 00274                                                          | 18 MOMENT Y                              |   |
|     | 00276                                                          | 19 MOMENT X<br>19 MOMENT Y               |   |
|     | 00277                                                          | 20 FORCE X                               |   |
|     | 00278                                                          | 20 FORCE Y<br>23 FORCE X                 |   |
|     | 00280                                                          | 23 FORCE Y                               |   |
|     | 00281                                                          | 21 FORCE X                               |   |
|     | 00283                                                          | 24 FORCE X                               |   |
|     | 00284                                                          | 24 FORCE Y                               |   |
|     | 00286                                                          | 22 FORCE Y                               |   |
|     | 00287                                                          | 25 FORCE X                               |   |
|     | 00288                                                          | 25 FORCE Y<br>29 FORCE X                 |   |
| -   | 00290                                                          | 29 FORCE Ŷ                               |   |
|     | 00291                                                          | 29 MOMENT Y<br>29 Momente y              |   |
| e.  | 00293                                                          | TRANSIENT RESPONSE 7                     |   |
|     | 00294                                                          | DAMPING                                  |   |
|     | 00295                                                          | 2 0.050  RELATIVE                        |   |
|     | 00297                                                          | 3 0.050 RELATIVE                         |   |
|     | 00298                                                          | 4 $0.050$ RELATIVE<br>5 $0.050$ RELATIVE |   |
|     | $\overline{0}\overline{0}\overline{3}\overline{0}\overline{0}$ | 6 0.050 RELATIVE                         |   |
| ÷   | 00501                                                          | ( U.U50 RELATIVE<br>EVALUATION AT TIMES  |   |
| e.  | 00303                                                          | 0. STEP 1.00 250.                        |   |
| . • | 00304                                                          | STRUCTURAL DISPLACEMENTS IN GLOBAL SYSTE | М |
|     | 00306                                                          | END OF DATA                              |   |
|     |                                                                |                                          |   |

### 5. UTVARDERING AV PROGRAMMET

Som nämndes i inledningen av rapporten är huvudändamålet med examensarbetet att studera hur en bottenfast plattform reagerar på olika sjötillstånd. Vald storhet för studien är förskjutningen i x-led hos bottenplattan.

Tillvägagångssätt:

För olika signifikanta våghöjder har indata till SFVIBAT skapats.

Ur SFVIBAT's output extraheras därefter resonsens tidsserier för olika vågor. De första 100 sekunderna av tidsförlopp hos både vågor och respons trunkeras, för att inte den efterföljande FFT-analysen ska störas av insvängningen hos plattformen.

Det responsspektrum , som erhålls vid FFT, divideras i varje frekvensintervall med motsvarande FFT-genererade vågamplitud. De transferfunktioner som skapas vid den ovanstående operationen jämföres sedan för olika H<sub>s</sub>. Om figur-bilagan, i vilken transferfunktionerna finns plottade, studeras,finner man att inverkan av H<sub>s</sub> är måttlig.

Liksom vågorna har responsen ett signifikant värde. Detta kan beräknas på två sätt.

Ur tidsförloppet kan signifikant respons fås med formeln

$$K_{s} = \sqrt{\frac{\Sigma x(t)^{2}}{N}} *2.0$$

Där är

 $X_s$  = signifikant respons, x(t) = förskjutning av bottnen vid tiden t samt N = antalet observationer.

Efter FFT-analysen kan även X $_{\rm S}$  härledas ur formeln

 $X_{s} = \sqrt{\frac{\Sigma \ \hat{x}(f)^{2}}{2}} *2.0$  (se fig 5.1)





På samma sätt beräknas den signifikanta våghöjden, för de av GRAVPLAT genererade vågorna. Den enda skillnaden är att då H<sub>s</sub> bestämmes ur FFT - spektrumet ska rotutrycken multipliceras med 4.0 i stället för 2.0.

Förhållandet mellan signifikant våghöjd och dito respons visas i figur 5.10. De värden som finns redovisade där är beräknade utgående ifrån insignalen. Signifikanta värden, beräknade via FFT, är 10-12 % större än de "sanna". Troligtvis ligger skillnaden i att insignalen erhållit en fönsterfunktion (cosine window) vid FFT.

Vid körningar av strukturdynamiska FEM-program, är den mest tidsoch kostnadskrävande momentet att generera strukturens egenmoder. En finess hos SFVIBAT är härvidlag att den första körningens egenmoder kan lagras, för att senare kunna användas till flera olika belastningsfall. För plattformen, beskriven i kapitel 4, har 10 moder lagrats på skivminne vid Göteborgs Datacentral. Plottningar på dessa finns i figur 5.2 till 5.9.

Eftersom plattformens första egenfrekvens är större än frekvensen för vågspektrumens energimaxima har endast 7 av de 10 egenmoderna använts vid den modala analysen i SFVIBAT. Teorier bakom och hur den modala analysen av en rymdram går till redovisas utförligt i <1>, och tas därför inte upp här.

41



NORMALIZED EIGENMODE 1OMEGA =1.3725LENGTH SCALE1 MM = 2.0000F =0.2184DISPLACEMENT SCALE 1 MM = 0.02000N =13.1062----ORIGINAL POSITIONN =DISPLACED POSITIONN =



NORMALIZED EIGENMODE 2 LENGTH SCALE 1 MM = 2.0000

DISPLACEMENT SCALE 1 MM = 0.02000

---- ORIGINAL POSITION ----- DISPLACED POSITION

| OMEGA = | 1,3792  |
|---------|---------|
| F =     | 0.2195  |
| N =     | 13,1706 |

FIGUR 5.3

FIGUR 5.2



FIGUR 5.4

| NORMALIZED EIGENMODE 3                                 | ØMEGA = | 1.7965  |
|--------------------------------------------------------|---------|---------|
| LENGTH SCALE 1 MM = 2.0000                             |         | 0.2859  |
| DISPLACEMENT SCALE 1 MM = 0.01000<br>ORIGINAL POSITION | N =     | 17,1557 |
| DISPLACED POSITION                                     |         |         |



FIGUR 5.5

| NORMALIZED EIGENMODE 4            | ØMEGA = | 2,7125  |
|-----------------------------------|---------|---------|
| LENGTH SCALE 1 MM = 2.0000        | F =     | 0.4317  |
| DISPLACEMENT SCALE 1 MM = 0.02000 | N =     | 25,9025 |
|                                   |         |         |



FIGUR 5.6

. . . . . .

| NORMALIZED EIGENMODE 5            | OMEGA = | 2,7245  |
|-----------------------------------|---------|---------|
| LENGTH SCALE 1 MM = 2.0000        | F =     | 0,4336  |
| DISPLACEMENT SCALE 1 MM = 0.02000 | . N =   | 26.0174 |
| DISPLACED POSITION                |         |         |



FIGUR 5.7

| NORMALIZED EIGENMODE 6            | omega = | 4,7146  |
|-----------------------------------|---------|---------|
| I FNGTH SCALE 1 MM = 2,0000       | F =     | 0.7503  |
| DISPLACEMENT SCALE 1 MM = 0.02000 | N =     | 45.0208 |
| NISPLACEN POSITION                |         |         |



FIGUR 5.8

| NORMALIZED EIGENMODE 7                                 | ØMEGA = | 6.4447  |
|--------------------------------------------------------|---------|---------|
| LENGTH SCALE 1 MM = 2,0000                             | F =     | 1.0257  |
| DISPLACEMENT SCALE 1 MM = 0.02000<br>ORIGINAL POSITION | N =     | 61,5425 |
| DISPLACED POSITION                                     |         |         |



FIGUR 5.9

ŝ.

| NORMALIZED EIGENMODE 8                                 | OMEGA = | 6,8171  |
|--------------------------------------------------------|---------|---------|
| LENGTH SCALE 1 MM = 2.0000                             | F =     | 1.0850  |
| DISPLACEMENT SCALE 1 MM = 0.02000<br>ORIGINAL POSITION | N =     | 65.0987 |
| DISPLACED POSITION                                     |         |         |

## RESULTAT

5 stycken Jonswap-spektrum har fått bilda utgångspunkt för studien. Indata till spektra har hämtats ur <9>, där finns ett stort antal vågmätningar utanför Norges kust redovisade.

Ett Jonswapspektrum beskrivs med formeln

$$S_{m}(f) = k \cdot \alpha \cdot f^{-5} \cdot e^{\left(-\frac{5}{4} \cdot \left(\frac{f}{f_{p}}\right)^{-4}\right)} \cdot \gamma^{exp} - \frac{(f-f_{p})^{2}}{2 \cdot \tau \cdot f_{p}}$$

här är

 $S_m = spektraltätheten,$ 

f = frekvensen,

fp= frekvens för energimaximum,

 $\alpha \models$  Phillips' parameter,

$$k = (g/(2 \cdot \pi)^2)^2$$

 $\gamma$  = "spetsighetsfaktor" samt

 $\tau$  = "spridningsfaktor".

I tabell 5.1 finns de inparametrar, som hämtats ur <9>, jämte resultat från FFT-analys för vågor och respons med och utan riktningsspridning.

| a      | Ŷ    | τ     | f <sub>p</sub><br><hz></hz> | H <sub>s</sub><br><m></m> | R <sub>s</sub><br><mm></mm> | H <sup>dir</sup><br><m></m> | R <sup>dir</sup><br>s<br><mm></mm> |
|--------|------|-------|-----------------------------|---------------------------|-----------------------------|-----------------------------|------------------------------------|
| 0.0046 | 1.97 | 0.052 | 0.115                       | 2.00                      | 5.402                       | 2.65                        | 6.077                              |
| 0.0065 | 1.94 | 0.054 | 0.095                       | 3.48                      | 9.950                       | 3.98                        | 15:606                             |
| 0.0121 | 2.26 | 0.083 | 0.080                       | 7.00                      | 23.172                      | 9.24                        | 25.626                             |
| 0.0160 | 2.00 | 0.050 | 0.075                       | 8.60                      | 30.009                      | 10.00                       | 32.743                             |
| 0.0175 | 2.15 | 0.067 | 0.070                       | 10.94                     | 41.439                      | 14.00                       | 26.062                             |

TABELL 5.1

Ritas sambandet mellan  $H_s$  och  $R_s$  för vågor utan riktningsspridning upp, erhålles ett nästan linjärt samband. Den svaga uppåtkrökningen beror förmodligen på att större delar av tornen blir belastade ju högre vågorna blir. (se fig 5.10)





Den signifikanta våghöjden har i denna realisering råkat bli större hos de riktningsspridda vågorna.

Detta beror på att egenskaperna hos det realiserade vågtåget är "exakta" endast för realiseringen med längden T =  $1/\Delta f$ , där  $\Delta f$ är frekvensdelningen. För Gravplat gäller då att t ex H<sub>s</sub>, T<sub>z</sub> och f<sub>p</sub>, uträknade med vågtågets senaste 150 s eller FFT-analysens 128 s, inte stämmer exakt med det ursprungliga spektrumet eller inbördes. Frekvensdelningen för de plana vågorna (utan riktningsspridning) är 0.005 Hz. En exakt representation erhålles då under 200 s. H<sub>s</sub> beräknad ur 150 s med hjälp av tidsserien kan därför slumpmässigt bli större eller mindre än den "verkliga". Vid FFT har endast 128 s av den fullständiga tidsserien tagits med, vilket motsvarar 64 %. Avvikelsen från det åsyftade H<sub>s</sub>, T<sub>z</sub> eller spektrumformen blir då slumpmässigt något större än under 150 s.

För de riktningsspridda vågorna gäller att frekvensdelningen är 0.001 Hz. Således fås en riktig representation endast för 1000 s. Sannolikheten för avvikelse i  $H_s$ ,  $T_z$  eller spektrumform blir därför mycket större då analystiden 128 eller 150 s endast utgör 13 resp 15 % av den fullständiga tidsserien.

Frekvensdelningen måste vara finare för riktningsspridda vågor för att få en tillräckligt fin fördelning av vågorna i sidled. Enkelt kan man säga att sannolikheten för orepresentativtstora eller små vågor är stor, under en begränsad del av en realisering.

Beträffande riktningsspridningens inverkan på sambandet i figur 5.10, kan konstateras att den signifikanta responsen minskar med ungefär 10-20 % då vågorna sprides runt O-riktningen. Dock har vissa vågor givit en större respons. Det skulle behövas en mera noggrann analys av vågkrafterna och strukturens dynamik för att klarlägga orsaken till detta. Det får dock anse ligga utanför ramen av detta arbete.

I figur 5.11 resp 5.12 har,kraften mot bottendelen och förskjutningen av densamma, plottats för ett helt vågtåg. Man kan då, vid en jämförelse, tro att responsen är av statisk natur. Men studeras transferfunktionerna i figur bilagan, uppträder tydliga toppar vid första egenfrekvensen, 0.22 Hz.



Topparna i frekvensintervallet 0.00 till 0.10 Hertz, både i responsspektrumet och transferfunktionen, härör från krafter på bottendelen. Vid dubbla vågfrekvensen träder vattenytans fluktuationer in. Deras kvadratiska karaktär medför alltså att toppar dyker upp i intervallet 0.10 till 0.20 Hertz. Släpkraften ska i sin tur ge toppar vid 3, 5, 7 osv gånger vågfrekvensen.

Inverkan av det ovanstående syns än tydligare om plattformen sättes i harmonisk svängning, exempelvis genom att belasta den med en sinusvåg. Se figur 5.13.

RESPONSE FUNCTION, AFTER FFT



Responsfunktion för plattform belastad med en sinusvåg. A=11 m, T=11 s

Transferfunktionerna i figurbilagan uppvisar stora likheter, men för vissa vågtåg har FFT-analysen givit orimliga värden. Trots det anser jag att GRAVPLAT uppfyller de fodringar man kan ställa på ett våggenereringsprogram – det verkar vara riktiga krafter som bildas.

En korrekt analys kräver att längre vågtåg simuleras. Tyvärr ligger begränsningarna här i att endast 30 000 rader kan inneslutas i en GUTS-fil. De korta vågtåg, som skapas i denna version, duger emellertid gott till att göra utmattningsberäkningar för en betongplattform.

Den linjära vågteorin som användes i Gravplat är inte tillämplig i alla fall. Därför har figurbilagan försetts med ett diagram, hämtat ur <7>, så att den intresserade kan kontrollera hur bra den linjära vågteorin egentligen stämmer för det enskilda fallet.

## FIGURBILAGA

För varje vågtåg utan riktningsspridning har fyra figurer plottats:

1. Plottning av amplitudspektrum från GRAVPLAT

2. Plottning av FFT-spektrumet från de genrerade vågorna

3. Plottning av erhållet FFT-spektrum responsen

4. Plottning av transferfunktionen för plattformen

Längst bak finns ett diagram över olika vågteoriers giltighetsområden.

reste .

άτ; .

•

-0-

F 2

.

· · ·



F 3



F4.

 $H_{S} = 3.98$  meter

, sji

. .



AMPLITUDES OF JONSWAP SPECTRUM

F 6



RESPONSE FUNCTION, AFTER FFT

.

. F 8

· .

.....



e se

्र्य्यू हे त

![](_page_65_Figure_0.jpeg)

·

·

. .

.

F 11

,

![](_page_67_Figure_0.jpeg)

AMPLITUDES OF JONSWAP SPECTRUM

![](_page_68_Figure_0.jpeg)

-Versei

21727) •

2235Q.s

## RESPONSE FUNCTION, AFTER FFT

# $H_{\rm S}$ = 10.94 METER

## Geodi

. .

*u* 

.

.

.

.

.

![](_page_70_Figure_0.jpeg)

F 15

![](_page_71_Figure_0.jpeg)

RESPONSE FUNCTION, AFTER FFT
## GILTIGHETSOMRADEN FOR OLIKA VAGTEORIER



## REFERENSER

2223

ردين د ال

- <1> Akesson, Tägnfors och Friberg, 1980, SFVBAT-II, a computer program for space frame vibration analysis, Division of solid Mechanichs, Chalmers University of Technology, Volym 1 och 2
- <2> Bell K., Sigbjörnsson R., Smith K. E., 1975, Convib, a computer program for dynamic analysis of gravity type offshore platforms, users manual, Selskapet for industriell och teknisk forskning ved Norges Tekniske Högskole, Trondheim
- <3> Sjöberg A., 1983 Vindvågor, undervisningsskrift 1983, Institutionen för Vattenbyggnad, Chalmers Tekniska Högskola, Göteborg

<4> Hallam M. G. et al, 1978, Dynamics of marine structures, Report UR 8, CIRIA underwater group, London, 2:nd edition

<5> DET NORSKE VERITAS, 1977, Rules for the design, construction and inspection of offshore structures, Høvik, Norway Appendix B (LOADS) and G (DYNAMIC ANALYSIS) i

<6> Johti Shankar et al, 1982, september 20-22, Wave interaction with arbitrarily shaped submerged cylinders, Ocean 82 conference record of industry, Government and..., Partners in progress, Washington DC, USA

<7> Chakrabarti S. K., 1980, Impact of analytical, model and field studies on the design of offshore structures, Statens skeppsprovningsanstalt, Göteborg

<8> Gran S., 1973, Wave forces on submerged cylinders, Offshore technology conference, Dallas, Texas, Paper nr OTC 1817

<9> Håland L., Småland E., 1980, Final report. Frequency table of significant wave heights and extreme values for selected positions at the continental shelf, Norges Meteorologiska Institut, Oslo

aisti.

<10> Lunne T., Kjekstad O., 1979, Soil parameters used for design of gravity platforms in the north sea, Norges Geotekniske Institut, Rapport nr 127 ii

<11> Bergdahl L., Melin H., 1985,

Wavefield, manual till ett program för beräkning av ytvattenvågor,

Chalmers Tekniska Högskola, Göteborg

.

<12> Offshoreprojekt 83, Slutredovisning,1983, Institutionen för konstruktionsteknik, Chalmers Tekniska Högskola, Göteborg