
Testing a Software Block with QuickCheck

Master of Science Thesis in Computer Science and Engineering

JIA WANG
SHYUN SHYUN YEOH

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Göteborg, Sweden, June 2009

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Testing a Software Block with QuickCheck

JIA. WANG,
SHYUN SHYUN. YEOH,

© JIA. WANG, June 2009.
© SHYUN SHYUN. YEOH, June 2009.

Examiner: PATRIK. JANSSON

Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden June 2009

iii

Abstract

This thesis has delivered a prototype to prove that it is technically feasible
to test a software block written in C++ with QuickCheck in Erlang. The
prototype consists of two parts. The first part solves the message passing
communication problem and presents a scheme to translate Erlang messages
to C++ objects automatically and vice versa. The second and final part is a
QuickCheck state machine implementation with automatically generated test
case generators. The correctness of the system under test is established by
verifying the expected output signals based on QuickCheck generated input
signals.

iv

Acknowledgments

We would like to express our greatest gratitude to the following individ-
uals in making this thesis project possible and a success.

We would like to thank Roger Holmberg, Mike Williams and John Hughes
for giving us the opportunity to perform this thesis work.

We would like to thank our examiner Patrik Jansson for his guidance and
patience.

We would like to thank our supervisor, who happens to be one of the
greatest snow boarders in the company history, for facilitating and helping
us to complete the project.

We would like to thank Hans Svensson and John Hughes for their enor-
mous assistance during the course of the project.

We would like to thank Tomas Johansson for sharing his work on how to
connect C++ and Erlang.

We would like to thank Pers Karlsson and Lars Jonsson, for showing us
the software block and test framework.

We would like to thank Thomas Arts for the QuickCheck course.

v

How to Read This Report ?

• Chapter 1 Introduction
The first chapter presents the motivation, problem definition, goal, task
and scope of this project.

• Chapter 2 Background
Chapter two prepares the readers with sufficient background knowledge
to follow all the topics of this project comfortably.

• Chapter 3 QuickCheck
We dedicate a chapter to introduce QuickCheck to the readers.

• Chapter 4 Analysis
This chapter documents the design of our solution.

• Chapter 5 Implementation
All the implementation details are captured in this chapter. We present
the interplay between all the related components by examples.

• Chapter 6 Test Results
This chapter discusses a bug in the application found by QuickCheck.

• Chapter 7 Conclusion
Here we conclude our thesis report by sharing the lessons we learned
during the course of the project and future work proposals.

vi

Terms & Abbreviations

• CEM, Cell Manager: A software block in the SCC subsystem. It handles
cell capabilities. This is the SUT.

• PBC, Pray Before Compile. A non technical procedure to peace the god
of compiler.

• RAN, Radio Access Network: The mobile telecommunication network
between end users and the core network.

• RBS, Radio Base Station: A component in RAN. It handles radio con-
nections from mobile devices users.

• RBSOS, Radio Base Station Operating System: The main application
running on and controlling the RBS.

• RNC, Radio Network Controller: A component in RAN. It controls
RBS’s and manages their connections to the core network.

• RoseRT, Rational Rose RealTime: A UML based development tool used
to develop complex, realtime, concurrent system.

• SCC, Sector & Cell Control: A subsystem of RBSOS. It controls radio
hardware and manages carriers.

• SUT, System Under Test.

• UML, Unified Modeling Language: A standardized general-purpose mod-
eling language for software development. It include graphical notation
to visually represent a system at an abstract level[8].

• XMI, XML Metadata Interchange: Object Management Group (OMG)
standard for exchanging metadata information via XML[9].

• XML, eXtensible Markup Language: General-purpose specification for
creating custom markup language[7].

Contents

Abstract iii

Acknowledgments iv

How to Read This Paper ? v

Terms vi

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Purpose . 1

1.2 Problem Definition . 2

1.3 Goal . 2

1.4 Task . 2

1.5 Scope . 2

1.6 Deliverable . 3

2 Background 4

2.1 Mobile Telecommunication Networks 4

2.2 RBSOS . 6

2.3 Sector & Cell Control, SCC 7

2.4 Cells . 8

vii

CONTENTS viii

2.5 Rational Rose RealTime, RoseRT 8

2.6 Scripted Regression Testing Today 9

2.7 Software Testing . 10

3 QuickCheck 14

3.1 Quviq QuickCheck . 14

3.2 Properties . 15

3.3 Generators . 16

3.4 QuickCheck State Machine . 18

4 Analysis 21

4.1 Where to Start and End . 21

4.2 Communication . 22

4.3 How to Use QuickCheck . 24

4.4 Signal Specifications . 25

4.5 Usability . 26

4.6 Pointers and Private Attributes 26

5 Implementation 29

5.1 Communication . 29

5.2 Marshaling Code Generation 33

5.3 QuickCheck . 35

5.4 General Measure . 39

6 Test Results 41

6.1 Error Found . 41

6.2 Test Conclusion . 42

7 Conclusion 43

7.1 Lessons Learned . 43

7.2 Future Work . 43

Bibliography 45

List of Tables

5.1 The gen server callback functions 32

5.2 Callback functions for QuickCheck statem behavior module . . 36

5.3 Other modules used to run QuickCheck 36

5.4 The gen server callback functions 39

ix

List of Figures

2.1 Radio Access Network . 5

2.2 Subsystems of a RBSOS . 6

2.3 CEM as a block in SCC . 7

2.4 Geographical view of cells . 8

2.5 Two connected capsules . 9

3.1 A complete cycle of a QuickCheck state machine test case . . 19

4.1 Current Deployment . 21

4.2 Finished prototype . 22

4.3 Just another Erlang node . 23

4.4 A and its public clone ghost A 28

5.1 Connecting Nodes . 30

5.2 Sequence diagram showing how erlAdapterC works 31

5.3 How to generate marshaling code 33

5.4 How we generate QuickCheck generators 37

5.5 Erlang side architecture . 39

x

Chapter 1

Introduction

This chapter outlines the purpose, problem definition as well as the goal of
this thesis project.

1.1 Purpose

This project is commissioned by a world-leading supplier in telecommunica-
tions. Telecommunication applications are some of the most complex applica-
tions ever produced. While applications with increasing complexity promise
more functionality, such complexity often comes with a side effect of creating
more room for errors.

Therefore, in order to develop complex applications with less errors and
in a shorter time, our commissioner is constantly searching for faster and
more cost efficient software testing solutions. QuickCheck, a relatively new
testing tool developed in Erlang by a company called Quviq, presents itself
as a potential candidate that fits the profile. Some of the areas in which
QuickCheck excels over current test tools are automatic test cases generator
and the ability to locate the heart of any errors found by shrinking the test
case that causes an application to fail to a minimal one. With these promis-
ing features, our commissioner would like to know whether it is technically
feasible to test software blocks with Quviq QuickCheck.

1

CHAPTER 1. INTRODUCTION 2

1.2 Problem Definition

The problem we will answer: Can QuickCheck be used to test software on
the block level?
We break this problem in two:

1. Since QuickCheck is implemented in Erlang and the software block in
C++, can Erlang communicate effectively with the software block using
a message passing mechanism?

2. If so, by using the result from question 1, can we test the software block
using QuickCheck?

1.3 Goal

The goal of this project is to prove that it is technically possible to a test
software block with QuickCheck and we support our claim by developing a
working prototype.

1.4 Task

1. Build an infrastructure allowing Erlang and C++ to communicate using
message passing mechanism.

2. Implement QuickCheck to test the software block on top of the result
from task 1.

1.5 Scope

This prototype is not a finished product directly usable in a software devel-
opment environment. It is limited to the scope defined in this section and
served as a proof of concept.

1. The software block is SccCem.

2. SccCem is implemented in C++.

CHAPTER 1. INTRODUCTION 3

3. We test the SUT using four signals, namely, createCell, deleteCell,
setupCell and releaseCell.

4. We will not evaluate non-technical aspects of QuickCheck, e.g. time,
cost etc.

1.6 Deliverable

Beside this written report, all implementations during the course of this
project, namely the prototype, will be delivered internally to our commis-
sioner upon the completion of this thesis project. Due to confidentiality
issues, we obscure all the implementation details without loss of academic
values to this report.

Chapter 2

Background

This chapter provides the background information needed to read through
this report. It is our goal to make this report as self-contained as possible.

We offer a non-technical view starting from the telecommunication net-
works for mobile networks down to the location of the SUT in such networks.
Subsequently, we introduce the Rational Rose RealTime since the SUT and
part of our implementation are implemented using this tool. We will then
end this chapter with topics in software testing apart from QuickCheck which
will be presented in a dedicated chapter.

2.1 Mobile Telecommunication Networks

Up until the year 2008, there were approximately 3.4 billion mobile phones[2],
three times as many as there were fixed line telephones[1], globally. To be
functional, each and every one of these mobile phones needs to connect to
the mobile telecommunication networks.These networks are gateways, figura-
tively, to the connected world be it fixed telephones, other mobile networks or
the Internet. A typical and simplified version of a mobile telecommunication
network is shown in figure 2.1 and it is called RAN, radio access network.
End users access these networks with mobile devices, typically cell phones,
capable of transmitting radio signals in a predefined frequency range.

4

CHAPTER 2. BACKGROUND 5

Figure 2.1: Radio Access Network

The RAN is the first network a mobile user connects to before any further
communication with the rest of the world is possible. It enables the connec-
tivity between the users equipments (mobile phones) and the core network.
The core network represents the rest of the connected world, namely fixed
telephones, other mobile phones and more recently the Internet. There are
several components inside a RAN, they are the Radio Network Controller
and the RBS’s, Radio Base Stations. Radio base stations handles the radio
connections directly from mobile users. RNC, in turn, controls the RBS’s
and manages their connections to the core network. The software block we
are testing lives in the operating system of an RBS as explained in the sub-
sequent section.

CHAPTER 2. BACKGROUND 6

2.2 RBSOS

Figure 2.2: Subsystems of a RBSOS

RBSOS is the operating system running in a RBS. Like the more familiar
operating system for your computer, it manages resources and interfaces
RBS to other components in a network. The RBSOS consists of four major
subsystems as shown in figure 2.2. The system under test is a software block
resides in the SCC, Sector & Cell Control subsystem.

RBSOS subsystems, figure 2.2:

• NC, Node Control handles the interface to the RNC using NBAP pro-
tocal externally.

• EC, Equipment Control configures and supervises hardware.

• SCC, Sector & Cell Control controls radio hardware and manages car-
riers.

• CHC, Channel Control manages common and dedicated channels.

CHAPTER 2. BACKGROUND 7

2.3 Sector & Cell Control, SCC

Figure 2.3: CEM as a block in SCC

The software block, CEM, assigned by the commissioner is part of the SCC
subsystem as shown in figure 2.3.

• RC, Radio Configuration sets up and supervises sectors and carriers.

• CEM, Cell Managers handles cell capabilities. It is to this block that
we will send signals to create, delete, setup and release cells and observe
the corresponding returned signals.

CHAPTER 2. BACKGROUND 8

2.4 Cells

Figure 2.4: Geographical view of cells

We test signals which manipulate cells. Figure 2.4 illustrates geographically
three cells (shaded) of different radio frequencies covered by a radio tower.
In this project, we will send a sequence of commands manipulating certain
aspects of cells to the SUT and verify the returned signals. Some of the
signals are illegal like an attempt to delete a non-existing cell.

2.5 Rational Rose RealTime, RoseRT

The software block is modeled with a tool called RoseRT[6]. RoseRT is a
development tool used to develop software in UML, the Unified Modeling
Language. On top of the strength of UML to express high-level system prop-
erties visually, RoseRT adds some realtime notation to UML. One of the
features this added realtime notation provides is the actor model concur-
rency. In actor model concurrency, each concurrent entity is self-contained
(no shared memory) and can only communicate with other entities by pass-
ing messages. The connection between RoseRT and C++ is that every time

CHAPTER 2. BACKGROUND 9

Figure 2.5: Two connected capsules

we try to build a RoseRT model, RoseRT will first generate the C++ code of
that model and build the C++ code.
Some of the realtime modeling constructs are:

• Capsule: capsules are light weight concurrent objects of a special form
of class defined in RoseRT. They are highly encapsulated and only com-
municate with other capsules through a message-based interface called
ports. Erlang users should be able to recognize the similarities to Er-
lang process since the concurrency in both languages are modeled, to
a different degree, after the actor model.

• Ports: ports are objects used by capsules to send messages to other
capsules.

• Protocols: Every port is associated with a protocol. A protocol defines
what messages can be sent and received from a port.

Figure 2.5 shows a simple example of RoseRT model built using capsules,
ports and protocol. In this example, there are two communicating capsules,
capOne of type One and capTwo of Two are connected to each other using the
Talk protocol through port portOne and port portTwo respectively.

2.6 Scripted Regression Testing Today

We identify some of the disadvantages of the scripted regression tests used
today in contrast to QuickCheck.

The first problem is that the telecommunication software is so complex
that the traditional script based testing approach is unable to cover the
execution paths effectively. For a particular module, there are dozens of
protocols defined by the specification and each protocol contains a group of
corresponding signals to achieve different goals. Applying some automated

CHAPTER 2. BACKGROUND 10

testing tools makes it easier to repeat the whole test suite automatically, but
the system testers still have to create a great many test cases manually. For
example, the cell creation operation is a basic step during an RBS operation
and each cell is created by a create cell signal containing seven arguments.
It is impossible to create test cases to cover all the combinations of possible
values for all the arguments. Consequently, only a few typical values are used
in current test cases. Moreover, the problem will increase exponentially as
more cells get involved.

The second problem is that even if a test case leading the system to an
error state is found after 1000 signals are sent, it might be very difficult for
the programmers to recognize the root of the error let alone correct it unless
a small enough case leading to the same problem can be found. Although
there are some available guidelines to shrink the failure cases to smaller ones,
it is still costly to create these smaller test cases manually and repeat the
test again and again. During this process, a lot of time is wasted in creating
these similar failing test cases.

Another serious problem is the lack of flexibility to adapt static test cases
to cover system changes and this will decrease the reusability. As communica-
tion technology developes, the product will update accordingly. The system
was designed to be flexible. However, this is not true for static test cases
since each test case is a fixed group of data. To update the test code, system
testers have to locate all the changes in the new version requirement and
change the test cases accordingly. During this time, the working test cases
have to be rewritten and validated one more time. When finding a mismatch
between expected results and actual ones, the testers have to make sure the
test code is correct and the real errors are indeed error in the system code.
This is why the testers can not reuse existing test code to test a new version
of the software.

2.7 Software Testing

Software testing[4] is a process in which a program is executed with the inten-
tion of finding errors in the system under test. Testing is all about finding the
yet undiscovered errors. Contrary to common beliefs that successful testings
are those that discover no errors in the system under test, a test should only
be considered successful if it does discover errors of some kind. From this
perspective, testing should not be geared towards the direction of establish-
ing the correctness or compliance of a piece of software to its specifications,
but to find errors. Compliance and correctness are only the conclusion we

CHAPTER 2. BACKGROUND 11

draw after failing to find any errors under the given resources. However, we
will conform with the convention that a test is successful if no errors are
found since QuickCheck, our testing tool, adopts this convention.

2.7.1 Principles of Software Testings

There exists no perfect software. We will try to convince readers of the
non existence of perfect software by arguing that it is practically impossible
to establish that a software is perfect. Since there is no perfect software,
software testing is a not process to establish that a piece of software is correct
but to find the maximum number of errors with the least resources.

2.7.2 Black Box Testing

Black box testing is testing without knowledge of the internal workings of
the SUT. During the test, a set of input data is fed into the SUT and the
corresponding outputs are compared against the expected outputs, according
to specifications. Black box testing, in some ways, models the end users’
experience and expectations of using a software application. End users, when
using an application, with no concerns over how it works, would make inputs
according to their needs and expect a reasonable outcome. Black box testing
assumes the role of end user but rigorously tests all the outcomes against the
specifications.

2.7.3 Exhaustive black box testing

One of the most direct, probably the only, ways of establishing full confidence
in a software application is to test it exhaustively. In a black box setting, the
testers would feed all possible and allowed input combinations into the system
under test and observe the results. This approach is totally reasonable and,
if succeeds, would instill full confidence. However the catch is computational
and economical implausibility of exhaustively testing an application with
all possible inputs. Say we have a program that would sort ascendingly 10
integers ranging from 1 to 100. This is a common program in our everyday
lives and features in the first chapter of the introduction to algorithms course.
In order to exhaustively test it, we have 10010 = 1020 different combinations
of inputs to be tested on. Even if we are able to test 1000 cases per second
it still requires approximately 3 · 1010 years to complete the test. And this
is not even a commercially valuable program, for example a program that

CHAPTER 2. BACKGROUND 12

sorts 1000 files in a directory in a file system according to file size, where the
volume of data is usually much higher.

2.7.4 White Box Testing

On the opposite end is white box testing. White box testing takes full ad-
vantage of the knowledge of the internal workings of the system under test.
Instead of just feeding inputs and observing outputs, we use the logical struc-
ture of the system to design our test cases.

2.7.5 Exhaustive White Box Testing

However, the advantage of being able to exploit the internal structure of a
system does not contribute to efficient exhaustive testing. An exhaustive
white box testing requires the testers to traverse all logical paths of the
system under test. In a 30-statements program with a finite loop where the
loop body consists of several if branches, we need to traverse all possible
combinations of paths from the starting point until end as many times as
the finite loop. Mathematically, it is similarly unachievable as in the case of
exhaustive black box test.

2.7.6 Grey-Box Testing

A hybrid of white and black box testing is the grey box testing. Test cases
are derived or enhanced with the knowledge of the internal workings of the
system under test but the tests executed as if the system under test is a
black box. This is the strategy we are adopting for our testing. We would
identify some of the signals needed for testing from the UML model (white
box) and feed the signals to the system under test and test the returned
signals (black-box).

2.7.7 Regression Testing

Regression testing means running the same test before and after changes are
made to the system under test. This test is important to ensure that changes
made do not break the original code. New tests however have to be devised
to ensure the correctness of the new code.

CHAPTER 2. BACKGROUND 13

2.7.8 Block Testing

A block is a package of classes that work as a collective unit to provide a
well-defined functionality. Our software block of interest is the cell manager
block in the sector & cell control subsystem. In terms of RoseRT, it is a
package of communicating capsules that is responsible for cell management;
namely the creation, deletion, setup and release of cells just to name a few.
Therefore, we classify block testing as a grey box testing of this particular
block of software. We use QuickCheck to generate signals that can be fed to
the block and check the returned signals.

Chapter 3

QuickCheck

This chapter gives an introduction to basic QuickCheck usage and the QuickCheck
state machine which will be used to implement our tests.

3.1 Quviq QuickCheck

QuickCheck[5] is a property based testing tool originally written in Haskell
and has now been implemented in other major languages. The version we
are using is Quviq QuickCheck, a version of QuickCheck implemented in
Erlang produced by a company called Quviq. The tool runs tests based on
properties, not manually written test cases. QuickCheck frees up the intense
labor of writing individual test cases, which are often insufficient in capturing
the essence of the specifications, allowing testers to focus on a larger picture
of writing properties in a concise way that the system under test ought to
fulfill.

This chapter should provide enough background information so that the
readers are able to follow the QuickCheck related discussions in subsequent
chapters.

There are two features that set QuickCheck apart.

1. QuickCheck randomly1 generates a large number of test cases using
generators, and runs tests against the given properties.

1not in the mathematical sense since QuickCheck would start with generating small
values

14

CHAPTER 3. QUICKCHECK 15

2. Should the test case fail, QuickCheck will not just return the found
counter example but a (locally) minimal counter example, this feature
is called shrinking.

3.2 Properties

Properties are logical (first order logic) descriptions, for example a logical de-
scription that says for all empty list, the length of the list is zero. QuickCheck
represents properties as functions.

prop_lists_doubleReverse()->

?FORALL(L, list(int()),

L == lists:reverse(lists:reverse(L))).

Code 1: QuickCheck property to test lists:reverse twice

This is a property, Code 1, that tests the reverse function provided in
the standard Erlang lists module. What it describes is that for all lists L of
arbitrary length and of random integer elements, the result of reversing it
twice is the same as the original list L. Imagine the effort needed to test this
function by manually writing test cases. But QuickCheck is able to randomly
generate test cases (one hundred of them by default) and check that the list
that has been reversed twice is still the same as the original one.

3> eqc:quickcheck(test:prop_lists_doubleReverse()).

..

..

OK, passed 100 tests

true

Code 2: successful test

This, Code 2, is the result of running QuickCheck on the previous prop-
erty. the prefix test is just the module name in which prop lists doubleReverse

is defined. It takes no time to finish the 100 tests. We should not read any-
thing more from the test result than what is stated. It says that the property
has passed 100 tests, but by no means a guarantee that lists:reverse a list

CHAPTER 3. QUICKCHECK 16

twice will always return the original list. What we might get after running a
large number of these tests is that we have more confidence in the behavior
of lists:reverse.

Next, we will show what a failing test looks like. For example assume
we misread the lists documentation and come to believe that lists:usort

is just a sorting function (it is more than that), then it should hold that the
length of the list before and after lists:usort are the same. We have:

prop_lists_usort()->

?FORALL(L, list(int()),

length(L) == length(lists:usort(L))).

Code 3: QuickCheck property to test lists:usort

we get:

11> eqc:quickcheck(test:prop_lists_usort()).

.......................Failed! After 24 tests.

[-5,-5,3]

Shrinking.(1 times)

[-5,-5]

false

Code 4: QuickCheck property

This shows that prop lists usort() does not behave as expected, i.e.
the length of list before and after lists:usort are different, and the test failed
after 24 test cases. The counterexample is [-5,-5,3], and the minimal coun-
terexample after shrinking, is [-5,-5], i.e. length(lists:usort([-5,-5]))
is not equal to length(list:usort([-5,-5])). Further investigation re-
veals that lists:usort sorts and removes all duplicates from the list, namely
lists:usort([-5,-5,3]) = [-5,3].

3.3 Generators

A crucial component in random test case generation is the QuickCheck gen-
erators (with built-in shrinking behavior). QuickCheck provides a number of

CHAPTER 3. QUICKCHECK 17

basic generators for example:

• int(): a random integer generator.

• bool(): a random boolean generator.

• list(int()): generates integer list of arbitrary length.

By combining the generators, we can define any test data generators we need.
Here, Code 5, we define an Erlang record that represents a signal named
connectCall which is a C++ object of class call with an integer attribute and
a boolean attribute.

-record(signal,{name, type, values})

signal()->

#signal{

name = connectCall,

type = call,

values = [int(), bool()]

}.

Code 5: Signal Generator

Some possible generated values for generator signal() in Code 5 are
listed in Code 6.

{signal,connectCall,call,[9,false]}

{signal,connectCall,call,[6,true]}

{signal,connectCall,call,[-11,false]}

{signal,connectCall,call,[6,true]}

Code 6: possible generated values for signal()

A example scenario to put all these together:
For the test environment, we have connected to another Erlang node acting
as an echo server. The echo server is implemented in C++ and will instantiate
(according to protocol) the Erlang tuples it receives into C++ objects, the

CHAPTER 3. QUICKCHECK 18

process is called unmarshaling, and translate them back to Erlang tuples,
marshaling, and send them back to the Erlang node from where the tuples
are received. A property that would test the correctness of the marshaling
and unmarshaling code is:

prop_signals()->

?FORALL(S, signal(),

S == send_receive(S)).

Code 7: QuickCheck property to test marshaling and unmarshaling code

Referring to Code 7, signal() is a generator for generating all the sig-
nals as defined in the marshaling and unmarshaling protocol. And the
send receive(S) function will send the signal S to the echo server and return
the received the echoed signal.

3.4 QuickCheck State Machine

Unlike the lists:usort example shown in previous section where we were
testing a pure function, the SUT is a stateful machine with side effects, so
we need to model it with a state machine in order to run a better test.
For our test, we implement QuickCheck state machine to model the SUT.
By implementing a state machine, we are able to generate more meaningful
commands instead of a random sequence of commands which are not very
helpful in testing a stateful machine.

For instance if we try to QuickCheck a lock state machine with two stages
open and locked, at some stage, we might want to generate an unlock com-
mand only when the machine is in the locked state which correspond to how
we actually use a lock, instead of depending on randomness to occasionally
stumble upon such coincidence.

QuickCheck state machine offers the ability to:

• initialize the model with predefined state data.

• model a stateful machine by passing state data around.

• generate a sequence of commands.

CHAPTER 3. QUICKCHECK 19

• use precondition to decide what commands may be added to the
sequence

• use postcondition to verify the state after a command is invoked.

Figure 3.1: A complete cycle of a QuickCheck state machine test case

There are two stages involved when running the QuickCheck state ma-
chine, the generation stage and the execution stage. Figure 3.1 illustrates
how a test case is generated and executed. It is as easy to run one such test
case with QuickCheck as it is one thousand.

The cycle is started by the QuickCheck property function. Then QuickCheck
will generate a sequence of commands which will be invoked in the execu-
tion stage. One main distinction between generation stage and execution
stage is that, no command is actually invoked during the generation stage,
or in QuickCheck terminology, those commands are symbolic calls. Symbolic
calls are just a symbolic counterpart of commands that are actually invoked.
When we discuss the state machine, we are referring to the QuickCheck state
machine (model), not the state machine of the SUT.

Generation

CHAPTER 3. QUICKCHECK 20

1. initial state: initialize the state machine to a predefined state.
This guarantees that every command generation starts from a com-
mon ground.

2. command: generate command sequence. The length of the sequence can
be a predetermined or a more random one provided by the QuickCheck
size parameter.

3. preconditon: filter the generated command from command (in 2). The
function precondition is called to determine if a generated command
is actually what we want based on state data. We have no control
over what commands are actually generated by command once they are
defined, however we can decide whether a generated command will be
added to the command sequence.

4. next state: update the generation stage state machine.

5. 2,3,4 constitute a cycle of generating one valid (passed the precondition
test) command which will be added to the sequence. This cycle will
loop until the a certain length, as mentioned in 2, of the sequence is
reached.

6. The generated sequence (symbolic calls) will be passed to the execution
stage where they will be actually invoked.

Execution

1. initial state: similar to initial state in generation stage.

2. invocation: invoke one command from the command sequence.

3. postcondition: verify that the result of actually invoking a command
corresponds to our model of the SUT.

4. next state: update the execution stage state machine.

5. 2,3,4 constitute a cycle of invoking a command from the command
sequence. This cycle will loop until the command sequence is empty or
a failed test case is found.

6. return to property

Chapter 4

Analysis

This chapter presents a guided tour of the problem solving strategy and
design decisions. All the implementation details are presented in chapter 5.

4.1 Where to Start and End

Figure 4.1: Current Deployment

Figure 4.1 depicts what we are assigned to by the commissioner and the
current test environment. The ultimate goal is to develop a prototype as in

21

CHAPTER 4. ANALYSIS 22

figure 4.2. This figure will be further explained in chapter 5 and the subse-
quent sections in this chapter, the main idea to get from these two figures
are that we have replaced the scripted test framework with QuickCheck.

Figure 4.2: Finished prototype

4.2 Communication

4.2.1 Communicating Nodes

The first problem is to develop a framework to send messages from Erlang
to the SUT and vice versa. We use the ei and erl interface libraries,
they are C interface libraries for communication with Erlang. These two are
standard libraries in the Erlang distribution and support the following:

1. manipulation of data represented as Erlang data types.

CHAPTER 4. ANALYSIS 23

2. conversion of data between C and Erlang formats.

3. encoding and decoding of Erlang data types for transmission and stor-
age.

4. communication between C nodes and Erlang processes.

From Erlang point of view, we have wrapped the SUT as a Erlang node,
called cnode, as in figure 4.3. Now we can view the whole problem as an
Erlang problem. This is an ideal scenario because QuickCheck can then be
used to test the SUT as any other Erlang application.

Figure 4.3: Just another Erlang node

4.2.2 Marshaling Code Generation

We call the translation of data structures from C++ to Erlang marshaling
and unmarshaling the opposite. However, we will use the term marshaling
for general discussion purpose.

The result from the previous subsection 4.2.1 allows Erlang and the SUT
to hear each others voices, without understanding the content of the con-
versation. In order to understand each other, we need a protocol for the
translation of data structures between C++ and Erlang. We need a scheme,
marshaling, to translate an Erlang representation of C++ data structures to
C++ and back.

The reasons we want to have automatic marshaling code generation are:

• the data needed for marshaling code generations are well-structured
XMI. This makes it easier to run filters or extract information that we
need.

CHAPTER 4. ANALYSIS 24

• the number of classes involved are overwhelming.

• less human coding errors.

• works for other software blocks.

4.3 How to Use QuickCheck

QuickCheck is used to generate a large number of signal sequences using the
QuickCheck State Machine and verify the returned signals. This is achieved
by implementing the QuickCheck state machine call back module.

4.3.1 Properties, Preconditions and Postconditions

We write QuickCheck properties, preconditions and postconditions based on
the signal specifications that will be discussed in the coming section 4.4

4.3.2 State Machine

We implement the QuickCheck state machine as a callback module to the
QuickCheck statem behavioral module.

The reason is that we want to have some degree of control over the gen-
erated sequences of signals instead of total randomness. By using a state
machine, we are able to model the SUT and generate signals based on our
state machine model.

4.3.3 Generators

Writing QuickCheck generators manually is a tedious job because the number
of data classes involved are overwhelming. For example, one of the signals
that we implement, the setupCell signal, contains 20 attributes some are
which are arrays and other data classes. Furthermore, we want to automate
as many processes of using this prototype as possible to facilitate its probable
incorporation into development environment. Therefore, instead of writing
individual generators, we implement a generator of QuickCheck generators
to automatically generate all the QuickCheck generators needed from the
SUT model.

CHAPTER 4. ANALYSIS 25

4.4 Signal Specifications

We run our tests by sending sequences of QuickCheck generated input signals
to the SUT and verify the corresponding output signals from the SUT.

Even after we have decided to take the signal verification approach, we
still have to decide on the signals to be verified. We pick the following
signals because they represent the main functionality of the software block
and they cover all of the more complex C++ data structures defined in the
SUT, namely enumerations, private attributes, pointers and arrays. Even
though not all data classes defined in the SUT are tested, the not tested
signals are structurally similar to one of the data structures that is covered
by one of these four signals. A valid signal (signal that fulfills its condition
in the following list) triggers a corresponding confirmation signal from the
SUT, otherwise a rejection signal.

1. createCell:
function: create a cell.
condition: parameters different from any current cells1.

2. deleteCell:
function: delete a cell.
condition: delete a current cell that has not been set up.

3. setupCell:
function: set up a cell.
condition: set up a current cell that has not been set up

4. releaseCell:
function: release a cell
condition: release a cell that has already been set up.

Examples of valid sequences of these signals are:

• createCell X → setupCell X → releaseCell X → deleteCell X.
SUT output signals sequence: createCell X confirmation→ setupCell

X confirmation → releaseCell X confirmation → deleteCell X con-
firmation.

• createCell X → deleteCell X.
SUT output signals sequence: createCell X confirmation→ deleteCell

X confirmation.
1cells that have been created and not been deleted

CHAPTER 4. ANALYSIS 26

Examples of invalid sequences of these signals is:

• createCell X → deleteCell Y.
SUT output signals sequence: createCell X confirmation→ deleteCell

Y rejection.
Reason: cell Y has not been created yet.

• setupCell X.
SUT output signals sequence: setupCell X rejection.
Reason: cell X has not been created yet.

From the above examples, the signals that we verify are the sequences of
output signals (dependent on our input signals) from the SUT.

4.5 Usability

We want to make our prototype reusable with minimal modifications. The
usability considerations result in the following:

1. Separate module and capsule to hide the connection implementation
for Erlang and RoseRT respectively.

2. Automatic marshaling code generation.

3. Generator of QuickCheck generators.

4.6 Pointers and Private Attributes

4.6.1 Pointers

When we first encounter a pointer, we look at it as an integer since a pointer
is a memory location. But soon we realize it is not reasonable for QuickCheck
to generate random integers for pointers since we have no control over what
object really is at that random memory location. So instead of generating
random memory address for a pointer, we generate random object of type
similar to the base type of that pointer.

In this example, X is the randomly generated object of type ClassA (or
NULL for null pointer) represented by the Erlang tuple for pointer ptr. So

CHAPTER 4. ANALYSIS 27

when this message is received at the C++ side, we will first unmarshal the
object X, then assign its memory location to ptr.

Erlang

{pointer, ptr, ClassA, X}

C++

ClassA* ptr=&unmarshal_ClassA(X);

or

Erlang

{pointer, ptr, ClassA, NULL}

C++

ClassA* ptr = NULL;

Code 8: pointer representation in Erlang and its corresponding unmarshaling
code in C++

The marshaling of a pointer is the opposite process.

4.6.2 Private Attributes

Some of the data classes we encounter contain private attributes. This poses
a problem to our approach of directly assigning unmarshaled values to all
attributes. For the sake of completeness, we want QuickCheck to have the
freedom of generating values for both private and public attributes. To over-
come this barrier, for every data class with private attributes, we define a
ghost class with the same attributes with one exception that all the ghost
attributes are public. The idea is that we could then manipulate the pointer
of the ghost class and therefore manipulate the private attributes.

CHAPTER 4. ANALYSIS 28

Figure 4.4: A and its public clone ghost A

On the same region of memory, from A perspective, there are certain
memory locations that cannot be accessed directly, but to ghost A, every
memory location is directly accessible(figure 4.4).

We summarize our strategy as follows:

1. for each class A with private attributes, we define a clone of A called
ghost A with one major difference that all attributes in ghost A are
public.

2. ghost A is an exact public copy of A solely to allow us to manipulate
the private attributes of A through ghost A.

3. cast and assign the pointer, ptr ghost A, of object ghost A to a pointer
to the object type A that we wish to manipulate.

4. now we manipulate the all attributes of object type A through ptr ghost A

”legally” (though breaking all the rules of abstraction barriers) since
all attributes in ghost A are public.

Chapter 5

Implementation

This chapter contains a description of the implementation of this project.

5.1 Communication

A gen server is a generic server Erlang behavior module. This module
provides a generic client-server server on top of which a server of specific
functionality are built. This generic server takes care of all the underlying
communication details allowing us to focus on the function of the server. The
module that defines the functionality of the server, for instance as a HTTP

web server or chat server etc., is the call back module to the generic server
behavior module.

We have implemented a gen server callback module, cells server on
the Erlang side and a capsule erlAdapterC in RoseRT to handle the com-
munication using the erl interface and ei libraries as shown(shaded) in
figure 5.1.

29

CHAPTER 5. IMPLEMENTATION 30

Figure 5.1: Connecting Nodes

The erlAdapterC in figure 5.1 is a wrapper around the erl interface

and ei libraries API handling connections set up, sending and receiving of
messages and name registration on the RoseRT side. On the other hand,
the cells server is the equivalent in the Erlang side. It implements the
gen server callback functions instead of library functions.

5.1.1 erlAdapterC on the RoseRT side

There is another capsule, erlMessageReceiverC, inside erlAdapterC, and
its main job is to listen to messages from Erlang. The two capsules are
packaged as a RoseRT package called rrt2erl to ease the process of porting
it to other software blocks.

CHAPTER 5. IMPLEMENTATION 31

Figure 5.2: Sequence diagram showing how erlAdapterC works

erlAdapterC works as follows(figure 5.2):

• erlAdapterC initializes communication with Erlang.

• It then sends the socket and delegates the listening job to erlMessageReceiverC.

• If any messages are sent from Erlang, erlMessageReceiverC will send
the message to erlAdapterC.

• Once a message is received from erlMessageReceiverC, erlAdapterC
will unmarshal the message and send it to the SUT.

• As soon as the SUT replies, erlAdapterC will then marshal the reply
and send it to Erlang.

5.1.2 cells server on the Erlang side

The cells server module is a callback module to Erlang gen server generic
server.
cells server implements the following callback functions:

CHAPTER 5. IMPLEMENTATION 32

Callback functions Summary
start link start the server
init initialize the internal state of the server and

the SUT.
handle call handle specific requests to the server.

Table 5.1: The gen server callback functions

The following is a list of features of cells server:

• the init function performs a series of message exchanges with the
SUT to initialize the SUT. One of the signals for instance, is an array
of parameters representing a license of that cell. License restricts the
types of cells that can be created.

• the init function waits for the initialization message and the process
ID, Pid of erlAdapterC and stores the Pid as internal state.

• Distribute messages between the SUT and QuickCheck.

CHAPTER 5. IMPLEMENTATION 33

5.2 Marshaling Code Generation

Figure 5.3: How to generate marshaling code

The code generation is implemented in Erlang and we obtain all the class,
signal, port and protocol definitions needed from the RoseRT model as shown
(shaded) in figure 5.3 and in the following steps:

1. export script: Export the RoseRT model to an XMI model, the script to
do this job is readily available.

2. xml2structs: Process the exported XMI model and extract all the re-
lated classes into Erlang list of tuples (these tuples are the representa-
tion of C++ classes, protocols, and ports).

3. marshal generator: generate the marshaling code from the list of
tuples.

CHAPTER 5. IMPLEMENTATION 34

4. Include the generated and static marshaling code into the SUT (the
static marshaling code is the marshaling for basic data types, e.g. int,
float etc.).

For a concrete example, we will walk through an example of marshaling code
generation and the process of unmarshaling. For simplicity, we only consider
one class, namely:

class MyClass{

public:

int n;

float x;

}

Unmarshaling code generation

1. from the XMI of the model1, xml2structs exports a list of Erlang tuples
representing C++ classes. [{MyClass, [{int, n}, {float, x}]}] is
the Erlang list (of one element) output by xml2structs.

2. From the list from 1, marshal generator generates the following un-
marshaling function:

void unmarshal_MyClass(MyClass* Tgt, ETERM *Erl){

// the first element in Erl is class name, MyClass

// the data is stored starting from the 2nd element,

// erl_element(2,Erl) and erl_element(3,Erl).

// attribute n is an integer

unmarshal_int(Tgt->n, erl_element(2,Erl));

// attribute x is a float

unmarshal_float(Tgt->x, erl_element(3,Erl));

}

Code 9: the unmarshaling function for MyClass

1the actual exported XMI model is approximately 10MB

CHAPTER 5. IMPLEMENTATION 35

ETERM, namely Erlang term, is a type defined in erl interface library
to express Erlang data structures in C, in our case it holds the received
Erlang tuple. The job of the marshaling code is to transform this ETERM
object into a C++ MyClass object defined in the SUT.

Unmarshaling

1. When an Erlang tuple {MyClass,1,2.0} is received, unmarshal MyClass

is called. Erl is an ETERM pointer to the received tuple (Code 9).

2. The second element, which is an integer 1, is unmarshaled and assigned
to Tgt→n. Similarly for the third element.

3. The outcome is that the pointer Tgt of type MyClass now points to a
MyClass object in which n = 1 and x = 2.0.

The code to unmarshal basic data types, namely unmarshal int and
unmarshal float, is not automatically generated but is provided in a static
marshaling code module that will be included into all generated code to
handle basic data types.

Currently, the code generation works for all C++ basic types, enumeration,
pointer and array.

5.3 QuickCheck

This section describes the interplay among all the modules needed to run
QuickCheck.

5.3.1 QuickCheck State Machine and Other Modules

The module cells eqc is the main QuickCheck module. In it, we implement
all the callback functions as required by the QuickCheck state machine as
summarized in table 5.2.

CHAPTER 5. IMPLEMENTATION 36

Statem Callback Summary
initial state initialize the state machine before generation

and execution
command generate a sequence of commands. This se-

quence is the test data
next state state transition function
precondition the precondition to be met before a command

is added to the sequence of generated com-
mand

postcondition the postcondition to be met after command
has been evaluated

prop X QuickCheck property

Table 5.2: Callback functions for QuickCheck statem behavior module

Beside cells eqc, we need other modules to run QuickCheck in agree-
ment with our modularized design. We delegate different jobs to specialized
modules as listed in table 5.3 and figure 5.5.

Other Modules Summary
gengen the generator of QuickCheck generators
cells.hrl Erlang records definition for all the classes

that will be sent to or received from the SUT.
These are the records that will be generated
by QuickCheck

cells generator the QuickCheck generators generated by gen-
gen. The scope of the generators is limited
to those records defined in cells.hrl

cells eqc callback module for QuickCheck statem(the
main module)

scccem control use system process to kill any unterminated
instances of the SUT. There can only be one
instance of the SUT running since the reg-
istered name used for communicating with
Erlang is hard coded.

SccCem the executable SUT

Table 5.3: Other modules used to run QuickCheck

We separate the records definition and generators from the main code
into a header file, cells.hrl, and a normal module, cells generators.erl,

CHAPTER 5. IMPLEMENTATION 37

respectively(figure 5.5). The advantage of doing this is that the header file
can be included whenever needed.

The process of generating QuickCheck generators is shown in figure 5.4.
This process is almost identical to the process for marshaling code generation.

Figure 5.4: How we generate QuickCheck generators

Given an XMI file, all the classes definitions are available, thus it is conve-
nient to extract all the class fields information from this file. For each class
in XMI file, there should be a corresponding record in header file, then this
transforming approach, from XMI file to an Erlang header file can be done
easily.

The record generators are defined in a similar pattern. We just need to
define a function named with each record and return a new record, giving
each field an initial value. This value may be a basic type or composition

CHAPTER 5. IMPLEMENTATION 38

type. For a basic type, such as integer or bool, the QuickCheck’s default
generators can do this job. For a composition type, we can define another
record generator recursively and finally, all the fields can be specified by basic
values.

Since these two jobs follow the same pattern for we can simply define
a generator of generators, that is a function to extract all the information
from the XMI file and generate a file to contain all the record definitions and
another one consists of various generators for each record. This is especially
useful for those complex signals such as setupCell, which contains dozens
of fields in total. The major advantage of this automation approach is that
it not only can avoid errors introduced by hand writing, but this generator
of generator is also available to any other blocks even without any change.

Given these modules separately, the core module cells eqc becomes very
concise. To test cells related operation, it only need to define a command gen-
erator for creating, deleting, setup and releasing cells, pre and post condition
for each command and corresponding properties to verify these commands.
All other stuff such as message generators, sending and receiving messages to
other process, maintaining the pid of SccCem are extracted out in separate
modules and this makes it easy to change different parts to apply to new
testing block.

CHAPTER 5. IMPLEMENTATION 39

Figure 5.5: Erlang side architecture

5.4 General Measure

This section summarizes the codes and their sizes as a general measure.

Code Lines of Code
cells server 460
cells eqc 190
gengen 130
marshall generator 400
xml2structs 320
generated marshaling code 1400

Table 5.4: The gen server callback functions

CHAPTER 5. IMPLEMENTATION 40

This project was carried out by the two authors of this report at a big
telecommunication company. It is a 20-week project from 19 January 2009
to 1 June 2009. We spent an estimated 7 hours every working day during
that period to work on this project. The codes are developed in pair with
the occasional but highly appreciated help from John Hughes, Hans Svensson
and Tomas Johansson. Besides the codes, 95% of this report is done during
that period.

Chapter 6

Test Results

This chapter discusses the error we found in the SUT.

6.1 Error Found

Do notice that this error was found without explicitly writing any test cases.
And the process of tracing the root of the fault has been enormously simpli-
fied by QuickCheck’s ability to shrink failing test cases to the minimal case
that triggers the same error. Apparently, this error has been missed by the
currently employed static test cases.

We describe the failing test case here and analyze where the fault might
be.

The test case that triggers this crash is a much larger one however QuickCheck
shrinks it to the following minimal case.

1. create a valid cell with parameter X.

2. create cell confirmation is received.

3. create cell with the same parameter X.

4. as expected, this is not a valid creation since duplicated cells are not
allowed. Create cell rejection is received.

5. However, cell created in 1 is a valid one and we wish to delete it now.
A request to delete cell X is sent.

6. system crashes with memory error.

41

CHAPTER 6. TEST RESULTS 42

6.2 Test Conclusion

The error has been reported and fixed. The more encouraging fact is that
QuickCheck has with relative ease revealed a bug in an application that has
been used and tested for a long time.

Chapter 7

Conclusion

The test result presented in chapter 6 consolidates that our prototype works
and that QuickCheck can indeed be used to test a C++ software block.

7.1 Lessons Learned

• Do not continuously listen for incoming messages on a socket that is
needed to send out other messages. We solved this problem with time-
outs while listening.

• Make sure the buffer for sending and receiving messages between Erlang
and the SUT is large or flexible enough for large messages. We solved
this problems using a flexible buffer.

• We built our QuickCheck state machine (property, postcondition, pre-
condition) on our understanding, which is far from complete, of the
SUT. A deeper understanding of the SUT is essential in order to pro-
duce a better test.

7.2 Future Work

These are some future work proposals:

• Evaluate the values of this prototype from non-technical and technical
aspects. The non-technical aspects being resources while the technical
ones are code coverage etc. We summarize this proposal by formulating

43

CHAPTER 7. CONCLUSION 44

a question: How good is this prototype compared with the existing
ones?

• We discussed about export the SUT into a XMI model. From this
exported model, we only extract class, signal, port and protocol def-
initions. The question is: Can we extract the state machine of the
SUT from the XMI model and automatically generate a corresponding
QuickCheck state machine? In our prototype, this is done manually.

• This prototype is not general enough. We are only confident that it will
work on the particular software block on which we based our prototype
using the four signals that we have implemented. So the next natural
extension is to further generalize the prototype. One already known
data type that fails our marshaling code generation is smart pointer.

• Model the SUT with the new QuickCheck finite state machine (this is
different from the QuickCheck state machine that we have been dis-
cussing).

Bibliography

[1] Wolfram Alpha. land line - wolfram—alpha. http://www63.

wolframalpha.com/input/?i=land+line, June 2009.

[2] Wolfram Alpha. mobile phones - wolfram—alpha. http://www.

wolframalpha.com/input/?i=mobile+phones, June 2009.

[3] erlang.org. Erlang online documentation. http://erlang.org/doc/

index.html, 2009.

[4] Glenford J. Myers. The Art of Software Testing. John Wiley & Sons.

[5] Quviq. Quickcheck for erlang users, 2009.

[6] Rational the e-development company. Rational rose realtime modeling
language guide, 2000.

[7] Wikipedia. extensible markup language. http://en.wikipedia.org/

wiki/XML, May 2009.

[8] Wikipedia. Unified modeling language. http://en.wikipedia.org/

wiki/Unified_Modeling_Language, May 2009.

[9] Wikipedia. XML metadata interchange. http://en.wikipedia.org/

wiki/XML_Metadata_Interchange, May 2009.

45

http://www63.wolframalpha.com/input/?i=land+line
http://www63.wolframalpha.com/input/?i=land+line
http://www.wolframalpha.com/input/?i=mobile+phones
http://www.wolframalpha.com/input/?i=mobile+phones
http://erlang.org/doc/index.html
http://erlang.org/doc/index.html
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/XML_Metadata_Interchange
http://en.wikipedia.org/wiki/XML_Metadata_Interchange

	Abstract
	Acknowledgments
	How to Read This Paper ?
	Terms
	List of Tables
	List of Figures
	Introduction
	Purpose
	Problem Definition
	Goal
	Task
	Scope
	Deliverable

	Background
	Mobile Telecommunication Networks
	RBSOS
	Sector & Cell Control, SCC
	Cells
	Rational Rose RealTime, RoseRT
	Scripted Regression Testing Today
	Software Testing

	QuickCheck
	Quviq QuickCheck
	Properties
	Generators
	QuickCheck State Machine

	Analysis
	Where to Start and End
	Communication
	How to Use QuickCheck
	Signal Specifications
	Usability
	Pointers and Private Attributes

	Implementation
	Communication
	Marshaling Code Generation
	QuickCheck
	General Measure

	Test Results
	Error Found
	Test Conclusion

	Conclusion
	Lessons Learned
	Future Work

	Bibliography

