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Abstract
In this thesis we have compared two numerical methods for pricing an American
put option, the binomial model and a finite difference scheme. The two methods
have been compared with regard to accuracy and computational speed. Thus, the
best model is the one with the highest computational speed, which at the same time
generates accurate results. We compare their exercise boundaries, see how they are
affected by the amount of iterations and grid size, and analyze the theory behind
the two methods. Since option pricing depends on market parameters, the methods
have been compared multiple times, for different market parameters to obtain a
complete comparison for multiple aspects. The thesis also includes the derivation
of the binomial model algorithm as well as the theorem and a sketch of the proof
for the boundary value problem of the partial differential equation used to price
American put options.

v



Acknowledgements
I would like to thank my advisor and examiner, Simone Calogero for his assistance
through this thesis, as well as Anders Bergh, CEO of Highlander Downtown North
AB and computer scientist Fredric Rosengren for their valuable help.

Filip Johansson, Gothenburg, June 2021

vi



Contents

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 American options . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Highlander Downtown North AB . . . . . . . . . . . . . . . . . . . . 3
1.3 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Code-optimization . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Theory 5
2.1 Market assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Black Scholes model . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The American put option . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Methods 11
3.1 Introduction to the Binomial model . . . . . . . . . . . . . . . . . . . 11
3.2 Derivation of the Binomial model algorithm . . . . . . . . . . . . . . 13

3.2.1 Arbitage free pricing: . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.2 Doob’s decomposition theorem and the Snell envelope: . . . . 16
3.2.3 Theorem and proof of the binomial model algorithm: . . . . . 17

3.3 Theorem and proof of the free-boundary problem . . . . . . . . . . . 20
3.3.1 Finite Difference Scheme . . . . . . . . . . . . . . . . . . . . . 24
3.3.2 Difference Approximation . . . . . . . . . . . . . . . . . . . . 25
3.3.3 Implicit method: . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.4 PSOR - algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Results 29
4.1 Binomial Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Finite Difference Scheme . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Summary & Conclusion 41

Bibliography 43

vii



Contents

viii



List of Figures

1.1 Pay-off for long and short positions on a call and put option [1]. . . . 2

2.1 Illustration of a volatility smile. If the market behaved exactly as
the Black-Scholes theory suggests, then this convex function would
instead be a straight horizontal line. [3] . . . . . . . . . . . . . . . . . 7

3.1 Illustration of the a Binomial tree, where the numbers at the nodes
represent the stock price for different time instances [4]. . . . . . . . . 12

3.2 Illustration of the exercise boundary and the two regions; holding
region and stopping region, as the options approaches maturity, the
price goes to the strike price. . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Illustration of the grid for finite difference scheme that replaces the
PDE space for the implicit method. The red line illustrates maturity
T , the blue line is the maximal allowed stock value Smax. Πi,j is the
option price at node (i, j), where i represents the time instances and
j represents the stock prices. . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Binomial model for different values of the volatility σ: 2000 iterations,
K = 30, σ = 0.2, r = 0.01, T = 1, α = 0.01 . . . . . . . . . . . . . . 30

4.2 Binomial model - exercise boundary figures for different amount of
iterations. K = 30, σ = 0.2, r = 0.01, α = 0.1, T = 1. The region
under the orange curve is the exercise region, plots are generated in
Python but times comes from Cython. . . . . . . . . . . . . . . . . . 31

4.3 Binomial model for different values of the volatility σ and different
rate r, 2000 iterations, K = 30, σ = 0.2 for rate comparison and
r = 0.01 for σ comparison, T = 1, α = 0.01 . . . . . . . . . . . . . . 32

4.4 Finite difference scheme - exercise boundary figures for different grid
size [t × S(t)], K = 30, σ = 0.2, r = 0.01, ε = 10−6, ω = 1.2,
Smax = 150, T = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5 Finite difference scheme for different values of the volatility σ and
different rate r, [4000 × 2000] , K = 30, σ = 0.2 for comparison of
different rates, and r = 0.01 for σ comparison, T = 1, ε = 10−6,
ω = 1.2, Smax = 150. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.6 illustration of the different tolerance ε, where the error is calculated
with Π̂Bin

Y (0) = 1.489125, for 12 000 iterations using the binomial
model as a reference point. Error = |Π̂Bin

Y (0) − Π̂FD
Y (0)|, σ = 0.2,

K = 30, S(0) = 32, r = 0.01, α = 0.01, T = 1, ω = 1.2, Smax = 200 . 35

ix



List of Figures

4.7 Comparison of the exercise curves for the finite difference scheme and
the binomial model with different volatilities. Number of iterations =
5000, [4500× 1500], K = 30, r = 0.01, T = 1, Smax = 150, ε = 10−6,
ω = 1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.8 Comparison of the exercise curves for the finite difference scheme and
the binomial model with different rates. Number of iterations = 5000,
[4500× 1500], K = 30, σ = 0.2 T = 1, Smax = 150, ε = 10−6, ω = 1.2 37

4.9 Comparison of computational speed, reference is the binomial model
for 12000 iterations, σ = 0.2, K = 30, S(0) = 32, r = 0.01, α = 0.01,
T = 1, ε = 10−6, ω = 1.2, Smax = 200. . . . . . . . . . . . . . . . . . . 39

x



List of Tables

4.1 Table for difference grid composition, Π̂Y (0) = 1.489125. σ = 0.2,
K = 30, S(0) = 32, r = 0.01, T = 1, ε = 10−4, ω = 1.2, Smax = 200 . 34

4.2 Table for different value of the tolerance ε, σ = 0.2, K = 30, S(0) =
32, r = 0.01, α = 0.01, T = 1, ω = 1.2, Smax = 200 . . . . . . . . . . . 35

4.3 Table for different value of the relaxation factor ω. Reference point
- Binomial model 12000 iterations: Π̂Y (0) = 1.489125. σ = 0.2,
K = 30, S(0) = 32, r = 0.01, α = 0.01, T = 1, ε = 10−4, Smax = 200 . 36

4.4 Comparison between the binomial model and a finite difference scheme
in Cython, the difference in value for both models is the absolute value
measured against the Binomial model for 12 000 iterations. σ = 0.2,
K = 30, S(0) = 32, r = 0.01, α = 0.01, T = 1, ε = 10−4, ω = 1.2,
Smax = 200. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5 Comparison between the binomial model and a finite difference scheme
in Cython, the difference in time for both models is measured against
the Binomial model for 12 000 iterations. Greater positive value -
faster computational compared to the reference (9.21 s) and increased
negative value means slower computational speed compared to the
reference value. σ = 0.2, K = 30, S(0) = 32, r = 0.01, α = 0.01,
T = 1, ε = 10−6, ω = 1.2, Smax = 200. . . . . . . . . . . . . . . . . . . 38

4.6 Speed comparison for the two methods between Python and Cython,
clearly the binomial method has been better optimized than the finite
difference scheme, T = 3. σ = 0.2, K = 10, S(0) = 11, r = 0.01,
α = 0.01, ω = 1.2, ε = 10−6, Smax = 200. . . . . . . . . . . . . . . . . 39

4.7 Comparison of speed and calculation accuracy for differences in volatil-
ities in Cython. Π̂B

Y (0) - 8000 iterations, Π̂FD
Y (0) - [3000 × 1000].

K = 30, S(0) = 32, r = 0.01, α = 0.01, T = 1, ε = 10−6, ω = 1.2,
Smax = 200. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

xi



List of Tables

xii



List of Symbols

S - Stock price
S(t) - Stock price at time t
hS - Number of shares in the stock
hB - Numbers of shares in the risk-free asset
K - Strike price
ΠY - Price of European option
Π̂Y - Price of American option
Y (t) - Pay-off for the option
σ - volatility or instantaneous volatility
F - σ-algebra filtration
T - Maturity
r - Risk-free rate
er - Continuously compounded rate
V (hB(t), hS(t)) - Portfolio Value
τ - Stopping time
T - Family of stopping times
A - Family of self-replicating and predictable portfolio strategies
g(S(t)) - Pay-off function
α - Instantanous mean of log return
p - Physical (or real world) probability
h - Step length
v(t, x) - Price function for the Black-Scholes formula



1
Introduction

1.1 Options
An option is a financial derivative that is based on a underlying asset, such as a
stock, S(t). The option constitutes of a contract between two entities, a buyer and
a seller, which gives the buyer the opportunity to buy the stock for a specific price
called strike price K, if the option is a call option. If the option is a put option,
the buyer of the option is provided with the possibility to sell the stock at a specific
price, strike price K. If this happen, the option is said to be exercised. It is clear
that the buyer of the option holds a long position of the option (hoping that it will
increase in value), while the seller holds a short position on the option (hoping that
it will decrease in value). The difference between the stock price and the strike
price is called pay-off, denoted Y (t). Since options are based on one or multiple
underlying asset, the options behavior are highly correlated with the behavior of
the underlying asset but they are not the same. To get an option, the buyer pays a
premium, denoted Π̂ for American options in this thesis and Π for European options.
In this respect options are not free but they come with the advantage that they may
be less risky than stocks in some situations and offer strategic alternatives when
investing. Examples of this is that they are stable against big gap openings on the
stock market, since options do not shut down when the market closes, which is the
case for stocks. For the same reason, owning an option for the potential of a huge
increase or decrease in value is a less risky strategy than owning the stock, where
the option could be sold or exercised if it is in the money. But if the underlying
asset should make a big move in the opposite of the desired direction, the investor
will only have paid the price of the premium, but not suffered from the movement
of the underlying asset. Another typical usage of call and put option is to use them
for hedging, a type of insurance to offset losses. If an investor is long a stock then
having a put option on the same stock will be an insurance that the loss won’t be
greater than the premium of the put option. The pay-off Y (t) is also called the
intrinsic value of the option and it is defined differently depending on the type of
option.

Call option: Y (t) = (S(t)−K)+

Put option: Y (t) = (K − S(t))+
(1.1)

The plus sign indicates that the parenthesis is always equal to or greater than zero,
an option does not have a negative pay-off. For a call option the theoretical gain
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1. Introduction

is unlimited while for a put option it is limited by the value of the strike price K.
When Y (t) > 0 the option is said to be in the money, hence S(t) > K for call
options and S(t) < K for put options. When this occurs it is advantageous for the
investor to either sell or exercise the option, but can also chose to do nothing and
just keep the option.
The decision whether to sell or to exercise the option depends on which alternative
is more profitable, if Π̂Y (t) > Y (t) the profit of selling the option is greater than for
exercising it, hence selling the option is the obvious choice. Most of the times, it is
more profitable to sell an option instead of exercising it.

Figure 1.1: Pay-off for long and short positions on a call and put option [1].

1.1.1 American options
There are many types of options; European, American, Asian, Barrier options etc.
But the focal point of this thesis is the American put option. There will be some
reference to European options and therefore the difference should be explained. A
European option, both call and put, can only be exercised at a specific time, called
maturity, denoted T . Maturity is the expiration date of the option and is specified
beforehand. After maturity, the option can no longer be exercised, which is the
case for all types of options. Since the time in which the derivative can be exer-
cised is known for the European derivative, the price depends only on the pay-off
at this time, T . This gives rise to the fact that a closed form solution exists, the
famous Black-Scholes formula, which is a solution of the partial differential equation
modeling the dynamics of the financial market that have derivative investment in-
struments. In contrast to European options, American options can be exercised at
any time, both prior to and including maturity. This extra benefit comes with the
cost of a higher premium. The fact that the option can be exercised at any time prior
to maturity, gives rise to a free-boundary problem, for which there exist no closed
form solution. A free-boundary problem is a partial differential equation with both
unknown function and unknown domain. For the American option, the unknown
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1. Introduction

function is the pricing function, which as stated above, is solved by Black-Scholes
formula for European options and the unknown domain is the time instant in which
to exercise the option. For an American call option that does not pay dividend,
it is never optimal to exercise prior to maturity, since the premium price is always
greater than the pay-off; Π̂Y (t) > Y (t). Thus, it is advantageous to sell the option
instead of exercising it, since it generates more money. Hence, Black-Scholes formula
can be used to price them as well. But for American call options that pay dividend
and American put options this is not the case, hence Black-Scholes formula can not
be used and we are instead dependent on using numerical methods for solving the
problem. Specifically, the premium Π̂Y (t) at all times t needs to be calculated using
numerical methods. Most options traded on the markets are American, hence giv-
ing a fair correct price and avoiding arbitrage opportunities clearly has important
practical implications.

1.2 Highlander Downtown North AB
Highlander Downtown North AB is a financial start-up company, which is in the
process of developing a system solution for global management of institutional assets
that handles today’s requirements for real-time updated data, using Kafka conflu-
ent. Confluent Platform is a full-scale event streaming platform that enables you
to easily access, store, and manage data as continuous, real-time streams. Today at
the capital market, relational database are used, which are not suited for real-time
updated data. Financial derivatives are part of their product catalog. It is of crucial
importance that the financial derivatives are correctly calculated, preferably with a
high computational speed as well. Therefore, the coding performed in this thesis
should offer a reliable and fast computational method for Highlander.

1.3 Problem formulation
Since many traded stocks and commodity options in today’s markets are American,
a fast and accurate numerical method is of crucial importance. For numerical pric-
ing of options there are multiple suggested methods, such as the binomial method,
Monte Carlo simulations, finite difference scheme and finite element methods. The
standard method for American put options is the binomial model but other meth-
ods such as finite difference scheme and finite element method can also be used,
Monte Carlo simulations are better fitted when the option has multiple sources of
uncertainty or complicated features. Typically this would be the case for Asian or
lookback options. But in the case of American put options, Monte Carlo simula-
tions are typically too slow to be competitive. This thesis investigates the pricing
of American put options, priced on a single underlying asset, thus Monte Carlo
simulations will not be treated but instead the thesis aims to compare the binomial
model with a finite difference scheme. The finite element method is not treated.
Specifically, this thesis answers the following questions, as well as derive the proof
of each method:

3



1. Introduction

• Derive the binomial model algorithm and implement the binomial model.
• Derive the free boundary problem for the pricing PDE of American put op-

tions.
• Implement the finite difference scheme for the American put option, how

should the grid be configured to obtain optimal results? and what are the
optimal values for the parameters in this method?

• Compare the results of the two methods with respect to computational speed
and investigate other advantages and disadvantages for the two methods.

Both methods will be implemented first in Python and afterwards optimized in
Cython to achive maximal performance and then compared the results of the two
methods with regards to computational speed.

1.3.1 Code-optimization
Optimization of code is an important aspect of the thesis, since it is of great im-
portance for Highlander to have a fast calculating algorithm. One crucial aspect to
have in mind is that the thesis focuses on measuring the performance of two dif-
ferent methods. Hence, keeping the coding implementation difference between the
methods to a minimum is important. When optimizing the code, smaller things like
multiplying a variable with itself instead of writing as an exponential function can
save valuable time when iterating over many steps.
The coding will initially be performed in Python, largely with the help of standard
libraries. To increase the performance for Highlander the code will be translated to
Cython, which is a combination of Python and C/C++. Cython is mostly written
in Python language with the addition of C/C++ syntaxes which result in an aston-
ishing performance increase with regard to speed, up to ∼ 100 times faster. Python
is a interpreted language, meaning that it directly executes code without before-
hand being compiled to a machine language program. Cython on the other hand
is a compiled language, where the compiler does not run the program, but instead
it translates the code into machine code. Compiler language is considerably faster
than interpreted languages. Cython uses annotated Python code that is compiled
to C code and then produces extensions that are used in Python but with faster
computations than the original Python code.
To summarize, the Cython compilers will convert the Python code into C/C++
code, the Cython compiler is a set-up file which produces extensions that are used
in Python but with faster computations than the original Python code, and a final
python file is then needed to run the Cython file. Python variables are declared to
have C data types - hence saving an incredible amount of time during large amounts
of iterations. Thus the advantage of Cython is that it combines the best of two
worlds; the easy to implement and all built in function advantage of Python with
the advantageous speed of C/C++.

4



2
Theory

2.1 Market assumptions
In this thesis the following basic assumptions are made:

• The market is arbitrage free - meaning that there is no sure way of making
money without bearing any risk. Thus there exist at least one probability
measure called martingale measure Q (or risk neutral measure) which is a
probability measure such that the discounted price of assets in the market are
martingales.

• The stocks that are being analyzed do not pay dividend.
• There is no bid/ask spread.
• There are no transaction costs and trades occur instantaneously.
• An investor can trade any fraction of shares.
• Both the volatility σ and the risk-free rate r are constant from t = 0 to

maturity, T .

The Black Scholes equation is used to price the European derivative and is the time
continuum version of the binomial model.

2.1.1 Black Scholes model
The Black Scholes methods was derived in 1973 by Fischer Black, Robert Merton,
and Myron Scholes and is still today, widely used when it comes to option pricing
[9]. The formula makes the assumption that the volatility σ and the rate r are
constant, an assumption which received criticism [10]. The main idea from the
Black-Scholes equation is that a perfect hedging strategy exists for the option by
buying the underlying asset and thereby eliminating risk [8].

∂ΠY

∂t
+ 1

2σ
2S2∂

2ΠY

∂S2 + rS
∂ΠY

∂S
− rΠY = 0 (2.1)

The components that decide the price of an option are the difference between the
underlying asset price and the strike price – the pay-off Y (t), the risk-free rate r,
the time to maturity T , and the volatility σ. The risk-free rate is the return on
a risk-free investment, such as a bond. The volatility measures the dispersion of
returns for the asset. It can be measured in multiple ways but the most popular
way is to define it as the standard deviation of returns for the assets, or standard
deviation of log-returns. Since the volatility describes how much the stock varies
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2. Theory

in price for a specific time region, it is often an indication of risk, higher volatility
implies a higher risk. When applied to options, a higher volatility means a higher
price, since there is a bigger swing in the market and thus the potential of the option
is greater. Equation 2.1 also does not include the expected return of the stock α,
which stems from the risk-neutral probability measure, or martingale measure Q,
which will be explained below. But first we define the Brownian motion Wt, which
is a stochastic process that has the following characteristics:

• W0 = 0
• Wt - has almost surely continuous paths
• Wt - has independent increments
• Wt−Ws ∼ N (0, t−s) - Normally distributed with zero mean and variance
t− s, for (0 ≤ s ≤ t)

In the theory, the stock price {S(t)}t≥0 is a positive time continuous stochastic
process called a geometric Brownian motion (exponential Brownian motion) given
by:

S(t) = S0e
αt+σW (t) (2.2)

where σ represents the instantaneous volatility of the stock and α is the mean of
log-returns of the stock. Next, by Girsanov’s theorem, a Brownian motion can be
defined in the Girsanov probability measure with parameter Q:

WQ(t) = W (t) +Qt (2.3)

Using this, equation 2.2 can be written as:

S(t) = S0e
(α−Qσ)t+σWQ(t) (2.4)

By the fact that martingales have constant expectations, the discounted expected
stock value is also a constant in the risk-neutral probability measure:

E[S(t)] = S0e
rt (2.5)

which holds if and only if the parameter in equation 2.3, Q = θ, where:

θ = α− r
σ

+ σ

2 (2.6)

In other words, the expected return of the stock is the same as the return on the
risk-free asset in the martingale measure Q. Thus, leading to the definition of the
martingale probability Q:

PQ(A) =
∫
A
pQ(x)dx, pQ(x) = 1√

2πT
e
−(x+qT )2

2T , q = α− r
σ

+ σ

2 (2.7)

For σ > 0, T > 0, r ∈ R, α ∈ R. Rearranging equation 2.6 gives the following
expression for the instantaneous mean of log-return α in the martingale measure Q:

α = θσ + r − σ2

2 (2.8)
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2. Theory

substituted in equation 2.2 and we obtain the following expression for the stock price
in the risk neutral measure:

S(t) = S(0)e(r−σ
2

2 )t+σWQ(t) (2.9)

which describes the stock price in the risk-neutral probability measure, and notably
without any dependence on the expected return of the stock α. In conclusion, the
Black-Scholes formula is widely used but it is commonly understood that it has
some drawbacks for it to work, such as constant volatility and the fact that stocks
are log-normally distributed (they tend to be fat-tailed distributed). The incorrect
assumption that the stocks are log-normally instead of fat-tailed distributed means
that the Black-Scholes models tends to underestimate extreme moves in the market.
In practice, this means that buying or selling deep in the money or far out of the
money options, are more expensive than what the Black-Scholes model says, giving
rise to what’s called a volatility smile. A volatility smile says that the further a
stock is from being at the money, the more the option is overpriced.

Figure 2.1: Illustration of a volatility smile. If the market behaved exactly as the
Black-Scholes theory suggests, then this convex function would instead be a straight
horizontal line. [3]

The Greeks

The Greeks are used in option pricing to measure sensitivity, and are defined as the
partial derivatives on the different parameters that decided the price in the Black
Scholes model model:

∆ = ∂V

∂S
(2.10)

Γ = ∂2V

∂S2 (2.11)

7



2. Theory

ν = ∂V

∂σ
(2.12)

Θ = −∂V
∂τ

(2.13)

ρ = ∂V

∂r
(2.14)

The Greeks are important tools for an investor to better understand risk and po-
tential reward of an option position [13]. In this thesis, some aspects of delta will
be investigated and implemented using the binomial model. Delta describes the ex-
pected price change of the option with respect to the change of the underlying asset
and ranges differently depending on the type of option; ∆ ∈ [0, 1] for call options
and ∆ ∈ [−1, 0] for put options. For put options, ∆ = −1 means that an increase of
1 dollar in stock price generates a 1 dollar decrease in put price. The typical value
for delta at the money is 0.5 and the more in the money the put option is the closer
delta is to -1, reversely the more out of the money the put option is, the closer delta
will be to 0.

2.2 The American put option
Pricing of American put options is a free-boundary problem, where the boundary
itself is also a part of the solution, for free-boundary problems no closed form solution
exist. The boundary for the American put option is the optimal exercise curve and
the solution is the price at this unknown exercise time. Thus, as previously stated,
the American put option can not be calculated using the Black-Scholes model.
In the case of American put options there exist a critical exercise boundary, and if the
stock price falls below this boundary, then it is optimal to exercise the option. Thus,
for American put options, one could divide the option in to two regions; the early
exercise region and the hold region. Moreover, by the no arbitrage assumption,
we have that the return from a portfolio in the risk-free probability, should not
exceed the return in the risk-free asset, thus the Black-Scholes equation becomes
the inequality:

∂Π̂Y

∂t
+ 1

2σ
2S2∂

2Π̂Y

∂S2 + rS
∂Π̂Y

∂S
− rΠ̂Y ≤ 0 (2.15)

The assumption that the market is arbitrage-free implies; Π̂Y (t) ≥ Y (t), since oth-
erwise the option would allow for arbitrage by exercising immediately and guarantee
a profit at no risk. Denote the stock price S∗(t) for the value in which it is advan-
tageous for the holder of the option to early exercise. Hence, S∗(t) represents the
stock price in the exercise region, 0 ≤ S(t) ≤ S∗(t) and it is optimal to exercise
since, Π̂Y (t) = Y (t) = (K − S(t))+, thus the buyer takes full advantage of the
option. In the region S(t) > S∗(t), the option should be held since, Π̂Y (t) > Y (t),
in this region it is similar to European option since Black-Scholes equality holds for
this region. Conclusion is that the option can be early exercised when the present
value of the intrinsic value Y (t) is greater the remaining option value of holding to
maturity T . This typically happens when the option is very deep in the money and

8
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interest rates are high. The problem of the optimal exercise time is called stopping
time, and is the first time the stock enters the exercise region. The stopping time is
denoted τ and is a random variable for a given filtration Ft taking values in (0,∞)
and satisfies:

τ ≤ t ∈ Ft (2.16)
Denoting Tt,T the set of all stopping times for S(t) with values in interval (t, T ), the
American option is given in the following way in the martingale measure Q, where
v(t, S(t)) = Π̂Y (t) denotes the price process of the option:

v(t, S(t)) : = max
τ∈Tt,T

EQ[e−r(τ−t)(K − S(τ))+|Ft] (2.17)

This is a probabilistic representation of the price and as the case with the European
option there is a close connection to a deterministic, partial differential equation
based representation of the price, which is represented by the system of inequalities,
including equation (2.15):

∂v

∂t
+ 1

2σ
2S2 ∂

2v

∂S2 + rS
∂v

∂S
− rv ≤ 0

v(t, S(t)) ≥ (K − S(t))+(
∂v

∂t
+ 1

2σ
2S2 ∂

2v

∂S2 + rS
∂v

∂S
− rv

)
(Y (t)− v(t, S(t))) = 0

(2.18)

Equation 2.17 and 2.18 are derived and proved in section 3.3 and are then used for
implementation of the finite difference scheme, section 3.3.1.
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3
Methods

3.1 Introduction to the Binomial model
The binomial model is the most used method for finding an arbitrage free price of
the American put option. It works by the construction of a tree that represents
different stock prices from the initial time t = 0 to maturity time T . The model
builds on the initial price of the stock and then the assumption that in each time
step the stock price is either increasing or decreasing in value, giving rise to the tree
structure, figure 3.1. The amount of iterations that is performed in the calculation
is equal to the number of time steps. The valuation of the option price using the
binomial tree is done iteratively, starting at maturity and then calculating the price
of the option backwards in time. At maturity the price of the option is the same as
for the European option, which can be calculated using the final step in the binomial
tree for the stock price.

Π̂Y (T ) = (K − S(T ))+ (3.1)
Before describing the recurrence formula used for calculating the price in previous
time steps some necessary descriptions are needed. The description is short and for
a deeper understanding see [5].
Firstly, p represents the physical (or real world) probability, where p is the probabil-
ity that the stock price increases and the probability (1− p) is the probability that
the stock price decreases. For maximal convergence speed this probability is set to
p = 0.5. Thus, a specific node in the binomial tree has the following possibilities for
the next time step:

S(t) =
S(t− 1)eu − Stock price increases with probability p
S(t− 1)ed − Stock price decreases with probability 1 - p

(3.2)

The two quantities u and d represent the fact that the stock price is increasing or
decreasing and are calculated using the physical probability p, the instantaneous
mean of log return α and the instantaneous volatility σ. The instantaneous mean of
log return is the logarithm of the expected future return of the stock price and the
instantaneous volatility is the expected volatility for the future of the stock. Where
d < r < u, thus the binomial model does not admit arbitrage and h is the step
length of the time instances in the binomial model.

u = αh+ σ

√
1− p
p

√
h (3.3)

11
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d = αh− σ
√

1− p
p

√
h (3.4)

These properties are used in the following ways for the reccurance formula:

qu = er − ed

eu − ed
∈ (0, 1), qd = 1− qu (3.5)

Equation 3.1, 3.2, 3.3, 3.4 and 3.5 together gives the following recurrence formula
which is used to calculate the binomial price recursively, proved below.

Π̂Y (t) = max[(K − S(t))+, e
−r(quΠ̂u

Y (t+ 1) + qdΠ̂d
Y (t+ 1))] (3.6)

The price at maturity calculated by equation 3.1, is the last column in the price
matrix. As the number of iterations for the binomial model increases it tends to the
Black Scholes formula. Thus, a larger number of iterations generates a more precise
option price, but it comes at the expense of computational time. The precision is
decided based on the number of decimals which do not change when the amount of
iterations change. The Binomial model is the time discrete approximation of the
Black Scholes model. Through the derivation of this method one obtains the tools
to give a fair arbitrage free price of the American option and also an optimal exercise
strategy of the option.

Figure 3.1: Illustration of the a Binomial tree, where the numbers at the nodes
represent the stock price for different time instances [4].
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Delta using the Binomial model:

From the theory section we learned that using the Black Scholes model, it is pos-
sible to measure sensitivity of the option price, using the Greeks. In this thesis,
different relationship for delta will be investigated, hence a definition of delta using
the Binomial model will be necessary.

∆(t) = ∂Π̂Y (t)
∂S(t) (3.7)

Translating delta from the time continuum case using Black Scholes to the time
discrete binomial method we obtain the following equation to calculate.

∆(i, j) = Π̂Y (i, j + 1)− Π̂Y (i+ 1, j + 1)
S(i, j + 1)− S(i+ 1, j + 1) (3.8)

3.2 Derivation of the Binomial model algorithm
In the coming sections the binomial model algorithm will be described and proved
along with the necessary definitions and proofs along the way.

The following basic notations is used through the rest of the chapter:

• Early exercise - must describe the price Π̂Y at all times t, where t = {0..., N},
and N is the time at maturity.

• V (hS(t), hB(t)) denotes the value of a portfolio at time t, hS(t) are the number
of stocks in the portfolio and hB(t) are the number of shares in the risk-free
asset.

• Standard American derivatives: Y (t) = g(S(t)), t = 0, 1, .., N , where g denotes
the pay-off function of the derivative, for the American put: (K − S(t))+.

• When to exercise an American option depends only on the information up to
that time period, i.e an adapted process.

• Vτ and Yτ denotes the portfolio value and the pay-off with respect to the
exercise strategy τ , which is a random variable.

3.2.1 Arbitage free pricing:
Definition of exercise strategy, also called stopping time

τ : Ω −→ {0, 1, ..., N}
s.t {τ = t} ∈ Ft, t = {0, 1, ..., N}

(3.9)

An assumption is that there is an underlying probability space Ω, where Ω has a
finite number of elements and hence all the expectations of τ exist and are finite.
The exercise strategy for the American derivative (stopping time), τ(ω), represents

13



3. Methods

the time steps from 0 to N , which are the different time steps in the Binomial model,
under the filtration Ft. Where ω denotes a probability event on the probability space
(Ω,F ,P). Equation 3.9 specifies that the decision to exercise the option at time t
only depends on Ft, the information available at that time instant. The exercise
strategy is part of the collection of subsets that is used to model the information
available at time t.
Denote T0 the family of all exercise strategies, i.e all nodes in the Binomial tree.

Pay-off definition for the American put option derivative

Y (t) = (K − S(t))+, t = {0, ..., N} (3.10)

The pay-off is a random variable, where the stopping time τ ∈ T0

(Yτ )(ω) = (Y )τ(ω)(ω), ω ∈ Ω (3.11)

This is the pay-off relative to the exercise strategy, or time instant τ . For a martin-
gale measure Q, the stock price is the discounted expectation of this stock price, i.e
the stock price is recalculated to its current value. We call a stopping time optimal,
τ0, for the pay-off Y (t) in the Martingale measure Q if:

EQ[Y ∗τ0 ] = max
τ∈T0

EQ[Y ∗τ ] (3.12)

Where EQ[Y ∗τ ] is the risk-neutral price for an early exercise. For American options
it is in general not possible to decide upon a replicating strategy, due to the early
exercise option. This is since for the option to be a replicating strategy Y (t) =
V (hS(t) , hB(t)) for all time instances t. The portfolio value V (hS(t), hB(t)) is a
Q-martingale but the discounted pay-off Y ∗τ is only an adapted process and not a
Q-martingale [2].

But by the Arbitage free property, a lower and upper bound can be decided for
the price of the derivative, Π̂Y (t). The initial price of the option-process is denoted
Π̂Y (0), A denotes the family of self-replicating and predictable strategies. Therefore,
A+
Y represents the super-replicating family of portfolios and A−Y represents the sub-

replicating family of portfolios for a general American option, which are denoted.

A+
Y = {(hS(t), hB(t)) ∈ A|V (hS(t), hB(t)) ≥ Y (t), t = {0, .., N} (3.13)

A−Y = {(hS(t), hB(t)) ∈ A| ∃ τ ∈ T0 s.t Yτ ≤ Vτ (hS, hB)} (3.14)

To avoid arbitrage opportunities, the initial price Π̂Y (0) has to be less than or
equal to the initial value of the portfolio V (hS(0), hB(0)) for any number of shares;
(hS(0), hB(0) ∈ A+

Y ).

Π̂Y (0) ≤ inf
(hS(t), hB(t))∈A+

Y

V (hS(0), hB(t)) (3.15)

analogously, to avoid arbitrage when taking a short position of the option, the initial
price must be greater than or equal to the initial portfolio value.
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Π̂Y (0) ≥ sup
(hS(t), hB(t))∈A−Y

V (hS(0), hB(0)) (3.16)

equation 3.15 and 3.16 combined gives the following for the initial price of the
derivative for an arbitrage free market with a martingale measure Q:

sup
(hS(t), hB(t))∈A−Y

V (hS(0), hB(t)) ≤ Π̂Y (0) ≤ inf
(hS(t), hB(t))∈A+

Y

V (hS(0), hB(t)) (3.17)

this defines an interval for arbitrage free prices of the initial option price.

The risk-neutral pay-off value, for an optimal exercise strategy belongs
to this same interval:

sup
(hS(0), hB(0))∈A−Y

V (hS(0), hB(0)) ≤ max
τ∈T0

EQ[Y ∗τ ] ≤ inf
(hS(0), hB(0))∈A+

Y

V (hS(0), hB(0))

(3.18)
For proof, the Optional sampling theorem will be needed and it is defined by:

E[Mτ ] = M0 (3.19)

The Optional sampling theorem says that under certain conditions the expected
value of the portfolio at later time is the same as the initial expected value.

Proof equation (3.18)

For each (hS, hB) ∈ A+
Y there exist a process τ0 ∈ T0 such that the value of

the portfolio process is less than or equal to the pay-off process of the derivative:
V (hS(τ0), hB(τ0)) ≤ Yτ0 .
Moreover, the discounted portfolio value: V ∗(hS(t), hB(t)) is a Q-martingale and
therefore by the Optional sampling theorem, we have for (hS(t), hB(t)) ∈ A−Y :

V (hS(0), hB(0)) = V ∗(hS(0), hB(0)) = EQ[V ∗(hS(τ0), hB(τ0))] ≤
EQ[Y ∗(τ0)] ≤ Sup

τ∈T0

EQ[Y ∗τ ] (3.20)

And for (hS(t), hB(t)) ∈ A+
Y , again by the optional sampling theorem, we have for

each process τ ∈ T0

V (hS(0), hB(0)) = EQ[V ∗(hS(τ), hB(τ))] ≥ EQ[Y ∗τ ] (3.21)

Which concludes the proof of equation (3.18)
�
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The proof of equation (3.18) demonstrates that it is possible to generate a repli-
cating and hedging strategy for the American option. To give a unique price of
the American derivative, not just the initial price, we assume that the market is
arbitrage free and to derive the proof we shall need the following theorem first.

3.2.2 Doob’s decomposition theorem and the Snell enve-
lope:

Every adapted process can be decomposed in a unique way into the sum X = M +
A, where M is a martingale such that M0 = X0 and A is an adapted process with
A0 = 0. Moreover, X is a super-martingale if and only if A is a decreasing process,
for proof [2].
Another tool that is needed for deciding upon a hedging and the optimal exercise
strategy for a arbitrage free market is the Snell envelope of the process Y (t) that
defines the American derivative. The Snell envelope is the smallest super-martingale
which dominates the process Y (t) ⇔ Y (t) ≥ E[Y (t)].

The American derivative is defined recursively in the binomial model

Π̂Y (t) =
Y (N) t = N

max{Y (t), e−r[quΠ̂u
put(t+ 1) + qdΠ̂d

put(t+ 1)]} t = {0 , . . . , N − 1}
(3.22)

and the discounted value of the derivative:

Π̂∗Y (t) =
Y ∗(N) t = N

max{Y ∗(t), e−r[quΠ̂∗u(t+ 1) + qdΠ̂∗d(t+ 1)]} t = {0 , . . . , N − 1}
(3.23)

In this case: Π̂Y (t) dominates the pay-off Y (t), i.e Π̂Y (t) is always equal to or greater
than Y (t). Π̂u

Y (t) represent the price of the derivative when the price is moving up
in the next node of the binomial tree and Π̂d

Y (t) represent the price is moving down
in the next node of the binomial tree.

Proof of the Snell envelope:
Π̂∗Y (t) is an adapted and non-negative process. For each time instant t, the price of
the derivative fulfills:

Π̂∗Y (t) ≥ EQ[Π̂∗Y (t+ 1) | Ft] (3.24)

Hence that Π̂∗Y is a Q-super-martingale. Moreover, Π̂∗Y (t) is the smallest Q-super-
martingale that dominates the pay-off process Y ∗(t). In fact if Z is a super-
martingale such that Z(t) ≥ Y ∗(t), then we have:

Π̂∗Y (N) = Y ∗(N) ≤ Z(N) (3.25)

The statement follows by induction, assuming that Π̂∗Y (t) ≤ Z(t), we obtain:
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Π̂∗(t− 1) = max{Y ∗(t− 1), E[Π̂∗Y (t− 1) | Ft−1]} ≤
max{Y ∗(t− 1), E[Z(t) |Ft−1] ≤ max{Y ∗(t− 1) , Z(t− 1)} = Z(t− 1)

(3.26)

And the proof of the Snell envelope is complete.
�

3.2.3 Theorem and proof of the binomial model algorithm:
Assuming there exits a unique martingale measure Q, then there exist a strategy:

(hS(t), hB(t)) ∈ A+
Y ∩ A−Y (3.27)

Such that:

a) V (hS(t), hB(t)) ≥ Y (t), t ∈ {0, ..., N}
b) There exist a stopping time, τ0 ∈ T0 such that the process
V (hS(τ0), hB(τ0)) = Y (τ0)

Moreover,
EQ[Y ∗(τ0)] = V (hS(0), hB(0)) = max

τ∈T0
EQ[Y ∗(τ)] (3.28)

Where Y ∗(τ) is the discounted pay-off process and this value defines the initial
arbitrage free price Π̂Y (0) of the process and τ0 is equal to an optimal stopping
time.

Proof:
Firstly, construct the Snell envelope for the discounted pay-off process, Y ∗. Then
use Doob’s decomposition theorem to separate out the martingale part of the price
process Π̂∗Y (t) to be able to decide upon a position strategy of the portfolio, i.e
(hS(t), hB(t)) ∈ A+

Y ∩ A−Y .
The proof is concluded by stating that:

Π̂∗Y (0) = V ∗(hS(0), hB(0)) = V (hS(0), hB(0)) (3.29)

Introduce the price process of the American option; Π̂Y (t) = Π̂∗Y (t)B(t), where B(t),
denotes the risk-free asset, a bond at time t. Which is defined recursively and at
maturity N the derivative has the value:

Π̂Y (N) = Y (N) (3.30)
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i.e the price is equal to the pay-off of the derivative and at an earlier times it is
defined as:

• Y (N − 1) – if the option is exercised
• 1

1+rE
Q[Π̂Y (N) | FN−1]

hence leading to the following definition:

Π̂Y (N − 1) = max{Y (N − 1), 1
1 + r

EQ[ Π̂Y (N) |FN−1 ]} (3.31)

where
1

1 + r
EQ[ Π̂Y (N) |FN−1 ] = 1

1 + r
[quΠ̂u

Y + qdΠ̂d
Y ] (3.32)

1
1+r is used for calculating the discounted value in the time discrete case, in the time
continuous case the definition is: e−rt. Now by repeating the argument for equation
3.31 backwards in time, we get for Π̂∗Y (t) = Π̂Y (t)

B(t) , equation 3.23. Thus, we have
constructed the Snell envelope, the price is decreasing on average, meaning that it
is a super-martingale. This implies that as time goes by, the advantage of an early
exercise diminishes.

Next, we use Doob’s decomposition theorem and prove that there exist a (hS(t), hB(t)) ∈
A+
Y ∩ A−Y . Since Π̂∗Y is a Q-super-martingale, then by Doob’s decomposition:

Π̂∗Y = M + A (3.33)

where M is a Q-martingale such that at time zero, it is equal to the initial price of
the option; Π̂∗Y = M0 and A is a predictable and decreasing process such that at
time zero, A0 = 0.

Since the market is complete, i.e each derivative is replicable, there exist a portfo-
lio (hS(t), hB(t)) ∈ A which replicates the European derivative with pay-off M(N)
at maturity, in the sense that the value of the portfolio is equal to the pay-off,
V ∗(hS(N), hB(N)) = M(N). Moreover, since both M and V ∗(hS, hB) are Q-
martingales with the same value at maturity, they are equal and:

V ∗(hS(t), hB(t)) = EQ[V ∗(hS(N), hB(N)) | Ft] = EQ[MN |Ft] = Mt (3.34)

therefore (hS(t), hB(t)) ∈ A+
X , since An ≤ 0. Moreover since A0 = 0, the price of

the derivative is equal to the value which is a the initial Q-martingale.

V (hS(0) , hB(0)) = M0 = Π̂Y (0) (3.35)
To confirm that (hS(t), hB(t)) ∈ A−Y , we set:

τ0(ω) = min{ t | Π̂∗t (ω) = Y ∗t (ω)} , ω ∈ Ω (3.36)
since,

{τ0 = t} = {Π̂∗Y (0) > Y ∗(0)} ∩ · · · ∩ {Π̂∗Y (t− 1)
> Y ∗(t− 1)} ∩ {Π̂∗Y (t) > Y ∗(t)} ∈ Ft

(3.37)
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for all times t, τ0 is a stopping time. Moreover τ0 is the first time instant in which
it is advantageous to exercise the option, which is to say:

Y ∗(t) ≥ EQ[Π̂∗Y (t+ 1) | Ft] (3.38)
From Doob’s decomposition theorem we have that:

Mn = Π̂∗Y (t) +
t−1∑
k=0

(
Π̂∗Y (k)− EQ[ Π̂∗Y (k + 1) | Fk]

)
(3.39)

And from this it is obtained that the martingale-process is equal to the price at the
optimal exercise time:

Mτ0 = Π̂∗Y (τ0) (3.40)
since,

Π̂∗Y (k) = EQ[ Π̂∗Y (k + 1) |Fk] on {k ≤ τ0} (3.41)
then by equation 3.34 we have that

V ∗(hS(τ0)), hB(τ0)) = Mτ0 = Π̂∗Y (τ0) = Y ∗(τ0) (3.42)

thus, (hS(t), hB(t)) ∈ A−Y .

Conclusion:
Lastly, we want to confirm that τ0 is an optimal stopping time. From the fact that
(hS(t), hB(t)) ∈ A+

Y ∩ A−Y , by equation 3.18 we obtain:

V (hS(0), hB(0)) = max
τ∈T0

EQ[Y ∗(τ)] (3.43)

And by the Optional Sampling theorem:

V (hS(0), hB(0)) = EQ[Y ∗(τ0)] (3.44)

�

The derived algorithm can be used for the following applications; by using 3.35,
the initial option price can be calculated using the recurrence formula. An optimal
stopping time defined by equation 3.36, where we have:

EQ[Y (τ0)] = max
τ∈T0

EQ[Y (τ)] (3.45)

we also can obtain a hedging strategy for the derivative, such that V (hS(t), hB(t)) ≥
Y (t) for every t.
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3.3 Theorem and proof of the free-boundary prob-
lem

From the theory in section 2.2, we have that the stock price S(t) in the risk-neutral
measure Q is a geometric Brownian motion:

dS(t) = rS(t)dt+ σS(t)d(W )Q (3.46)
Integrating, we obtain equation 2.9:

S(t) = S(0)e(r−σ
2

2 )t+σWQ(t)

We have the following definition, theorem and proof of the free boundary problem
for the American put option.

Definition of stopping time for the free-boundary problem
Assume S(t) = x and let F (t)

u for t ≤ u ≤ T denote the σ-algebra generated by the
stock process S(v), v ∈ [t,u]. Tt,T denotes the set of stopping times in the filtration
F (t)
u for t ≤ u ≤ T taking values in [t,T]. Thus, {τ ≤ t} ∈ F (t)

u for every u ∈ [t, T ];
a stopping time in the family of stopping times Tt,T makes the decision to stop at
u ∈ [t,T] based only on the path of S(t) from t to u. Thus, the following definition
for the price of the American put option, where the price function is denoted as;
Π̂Y (t) = v(t, S(t))

v(t, x) = max
τ∈Tt,T

EQ[e−r(τ−t)(K − S(τ))|S(t) = x] (3.47)

As stated in section 2.2, the American put option satisfies the system of linear
inequalities:

v(t, x) ≥ (K − x)+ for t ∈ [0, T ], x ≥ 0 (3.48)

rv(t, x)− ∂v

∂t
− rx∂v

∂x
− 1

2σ
2x2∂

2V

x2 ≥ 0

for all t ∈ [0, T ], x ≥ 0 and for each t ∈ [0, T ]
(3.49)

Equality holds in either equation 3.48 or 3.49. As stated in section 2.2, the American
put option should be exercised as the stock price falls below a certain level, denoted
S∗(T − t), the notation is obvious because of its dependence until maturity. The
stock level in which its advantageous to exercise the option, S∗(t), is unknown, but
can be determined numerically by the presented methods (section 3.2 and section
3.3.1). Thus, creating the two regions; a hold region H - where it is advantageous
to hold on to the option and early exercise region S - where it is advantageous to
exercise the option. Defined in the following way:

H = {(t, x); v(t, x) > (K − x)+} Hold region
S = {(t, x); v(t, x) = (K − x)+} Stopping region

(3.50)
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Figure 3.2: Illustration of the exercise boundary and the two regions; holding region
and stopping region, as the options approaches maturity, the price goes to the strike
price.

The line S∗(T − t) is included in the stopping region S. In the region 0 ≤ x ≤
S∗(T − t), we have v(t, x) = K − x, thus; the left hand derivative on the curve
x = S∗(T − t) is ∂v

∂x
= −1. At x = S∗(T − t), ∂v

∂x
is continuous and hence, the so

called smooth pasting condition for the option is fulfilled:

∂v

∂x−
= ∂v

∂x+ for S∗(T − t), 0 ≤ t < T (3.51)

However, at t = T , L(T −T ) = L(0) = K and v(T, x) = (K−x)+, thus, the smooth
pasting condition does not hold:

∂v

∂x−
= −1

∂v

∂x+ = 0
(3.52)

which is clear from figure 3.2, note that this derivative is delta from the greeks in
section 2.1.1. Equation 3.51 and 3.52 give the following equations:

rv(t, x)− ∂v

∂t
− rx∂v

∂x
− 1

2σ
2x2∂

2V

x2 = 0, x ≥ S∗(T − t)

v(t, x) = K − x, 0 ≤ x ≤ S∗(T − t)
(3.53)

Equation 3.51, the terminal condition in equation 3.52 and equation 3.53 together
with the asymptotic condition: lim v(t, x)

x→∞
= 0 are used to determine the function
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v(t, x) by setting up a finite difference scheme (section 3.3.1) one can solve v(t, x)
and S∗(T − t).

We want to show that v(t, x) defined by equation 3.47 satisfies the smooth-pasting
condition, such that v′x is continuous at the curve that separates the two regions,
x = S∗(T − t) and everywhere else. But first, we show that the stopping process is
a martingale and the price process is a super-martingale.

The stopping process is a martingale:

Let S(u) be the stock price starting at S(t) = x and t ≤ u ≤ T , then the stopping
time is defined as

τ ∗ = min{u ∈ [t, T ]; (u, S(u)) ∈ S} (3.54)
The price process e−ruv(u, S(u)) is a super-martingale under the risk-neutral prob-
ability PQ and the stopping process e−r(u∧τ∗)v(u, S(u ∧ τ ∗)) is a martingale, where
u ∧ τ ∗ = min(u, τ ∗). If (u, S(u)) never enters the stopping region, S for any
u ∈ [t, T ], hence always in the hold region, is interpreted as: τ ∗ → ∞. Where
u ∧ τ ∗ = min(u, τ ∗)
Note that equation 3.54, is almost identical to equation 3.36, which is the stopping
time for the binomial model algorithm.

Proof:
By continuity of v(t, x) we can apply Itô′s formula and use the following relation:

dS(u)dS(u) = du

dS(u) = rS(u)vx(u, S(u))du+ σS(u)vx(u, S(u))dWQ(u)

=⇒ d[e−ruv(u, S(u))] = e−ru[−ru(u, S(u))du+ v
′

u(u, S(u))du+ v
′

x(u, S(u))dS(u)+
1
2v
′′

xx(u, S(u))dS(u)dS(u))] = e−ru[−rv(u, S(u)) + v
′

u(u, S(u)) + rS(u)v′x(u, S(u))+
1
2σ

2S2(u)v′′xx(u, S(u))]du+ e−ruσS(u)vx(u, S(u))dWQ(u)
(3.55)

comparing equation 3.55 to figure 3.2, we see that the du term in equation 3.55 is:
e−rurK1{S(u)<S∗(T−t)}. As this is non-positive, e−ruv(u, S(u)) is a super-martingale
in the risk-neutral probability PQ. Starting at u = t, by the fact that it is optimal
to exercise as soon the stock price enters the stopping region =⇒ S(u) > S∗(T −t),
thus the du term is zero until τ ∗, hence the stopping process e−r(u∧τ∗)v(u∧ τ ∗, S(u∧
τ ∗)), for t ≤ u ≤ T , is a martingale.
�

Now, to show that v(t, x) is in fact the only equation that fulfills the smooth pasting
condition, such that it is continuous. Fix t with 0 ≤ t ≤ T , then the super-
martingale property e−ruv(t, S(t)) and the optional sampling theorem (equation
3.19) implies:
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e−r(t∧τ )v(t ∧ τ, S(t ∧ τ)) ≥ EQ[e−r(T∧τ)v(T ∧ τ, S(T ∧ τ))|Ft]
where r ∧ τ is defined as the minimum, min(t, τ). For τ ∈ Tt,T (family of exercise
strategies), we have t ∧ τ = t, but for τ ∧ T = τ if τ <∞ and T , if τ =∞. Hence,
for τ ∈ Tt,T :

e−rtv(t, S(t)) ≥ EQ[e−rτv(τ, S(τ))1{τ<∞} + e−rtEQ[e−rTv(T, S(T ))1{τ=∞}|Ft]
≥ EQ[e−rτv(τ, S(τ))|Ft]

(3.56)

Where e−rτ = 0 for τ = ∞ and using equation 3.48, and (K − S(t))+ ≥ K − S(t)
gives:

EQ[e−rτv(τ, S(τ))|Ft] ≥ EQ[e−rτ (K − S(τ))|Ft]
=⇒ e−rtv(t, S(t)) ≥ EQ[e−rτ (K − S(τ))|Ft]

(3.57)

Since S(t) is a Brownian motion, the last part of equation 3.57 is a function of t
and S(t), by denoting S(t) = x, we can replace the filtration and since this holds
for any stopping time τ ∈ Tt,T , we get:

e−rtv(t, x) ≥ max
τ∈Tt,T

EQ[e−r(τ−t(K − S(τ))|S(t) = x] (3.58)

Using that the stopping process is a martingale, where τ ∗ is defined by equation
3.54 and v(τ ∗, S(τ ∗)) = K − S(τ ∗) for τ ∗ < ∞. By replacing τ by τ ∗ in equation
3.56, the first inequality becomes an equality:

e−rtv(t, S(t)) ≥ EQ[e−rτv(τ, S(τ))1τ<∞ + e−rt ≥ EQ[e−rTv(T, S(T ))1τ=∞|Ft]
= EQ[e−rτ∗v(τ ∗, S(τ ∗))] = EQ[e−rτ∗(K − S(τ ∗)]

(3.59)

For the case when τ ∗ =∞, then the process is in the holding region; (T, S(T )) ∈ H.
Thus, the second inequality in 3.56 becomes an equality, hence for all τ ∗ ≥ 0:

v(t, x) = EQ[e−r(τ∗−t)(K − S(τ ∗))|S(t) = x] (3.60)
�
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3.3.1 Finite Difference Scheme
A finite difference scheme is a numerical method for solving differential equations.
This is achieved through a discrete grid and approximating the derivative part of the
PDE using finite differences. For American put options the grid consists of all the
time instances from the initial time, t = 0 to maturity, T , and the stock prices are set
to a minimum value (S(t) = 0) and a highest value Smax. The theoretical limit for
the maximal stock price is infinity, but that is both unlikely and impractical, hence
a highest unlikely to occur value is used as Smax in the grid. The option value at
the different grid points is then solved by a system of linear equations consisting of
finite differences from the closest nodes in the grid. Specifically the Euler backward
method is used in the case for American put. The transition from PDE to a finite
difference is called discretization and this gives rise to two kinds of errors compared
to an exact analytical solution. One error occurs due to the fact that computers
only handles a certain amount of decimals when performing calculations, this error
is very small. The other error is called discretization error and occurs because of
the discretization itself, error when a continuous function is represented by a finite
number of evaluations [11]. The first error is unavoidable and unchangeable when
performing this method but the discretization error can be minimized by increas-
ing the number of grid points, but it comes at the expense of computational cost [11].

Figure 3.3: Illustration of the grid for finite difference scheme that replaces the PDE
space for the implicit method. The red line illustrates maturity T , the blue line is
the maximal allowed stock value Smax. Πi,j is the option price at node (i, j), where
i represents the time instances and j represents the stock prices.
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The difference scheme has the following boundary condition at S(t) = 0 for N
number of time steps:

Π̂(i, 0) = KeT−i∆t, i = 0, 1..., N (3.61)

and initial condition at t = 0 for M number of stock values:

Π̂(0, j) = K − j∆S
K − j∆S ≥ 0, j = 0, 1...,M

(3.62)

∆t and ∆S are defined in equation 3.66 and 3.67. There are three types of ap-
proaches when applying a finite difference scheme, the explicit method, implicit
method and Crank–Nicolson method. The explicit method is the easiest to imple-
ment but can generate unstable results and negative option price, both the implicit
method and Crank–Nicolson method are reliable with Crank-Nicolson being the
most accurate while the implicit is less computationally heavy. Since this thesis
focus on computational speed comparison, the implicit method will be implemented
using projected successive over realaxation algorithm, (PSOR).

3.3.2 Difference Approximation
Discretization of the derivatives in the Black Scholes PDE is performed using Taylor
expansion:

f(x0 + h) = f(x0) + f ′(x0)
1! h+ f (2)(x0)

2! h2 + · · ·+ f (n)(x0)
n! hn +Rn(x) (3.63)

Rn(x) is the remaining term, denoting the difference between the Taylor polynomial
of degree n and the original function [11], h is small and f ∈ C(n+1). For first order
Taylor expansion:

f(x0 + h) = f(x0) + f ′(x0)h+R1(x) (3.64)

=⇒ f ′(x0) = f(x0 + h)− f(x0)
h

− R1(x)
h

(3.65)

the grid points in the finite difference scheme are defined by in the following way.

Time instances grid points:

ti = ih, i = 0, 1, ..., N, h = T

N
= ∆t (3.66)

Stock prices grid points:

Sj = Smin + jk, {Smin = 0 =⇒ Sj = j∆S} j = 0, 1, ...,M + 1,

k = Smax − Smin
M + 1 = ∆S

(3.67)
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3.3.3 Implicit method:
The implicit method finds a solution by solving an equation involving both the
current state of the system and a later time, while the explicit method only calculates
the later times from the current time [12]. The implicit method leads to a sequence
of complementary problems, which are solved iteratively using PSOR algorithm, in
other words a system of linear equations is used to solve the option value for one time
step before solving for the previous time step, figure 3.3, thus iterating backwards
in time.

Approximation of equation 2.1 with Euler backwards gives the following finite differ-
ence equations of first and second order derivative of the option price Π̂i,j = Π̂(ti, Si, )
with respect to the stock price and time:

∂Π̂
∂t

= Π̂i+1,j −Π̂i,j
∆t +O(∆t) (3.68)

∂Π̂
∂S

= Π̂i,j+1−Π̂i,j−1

2∆S +O(∆t) (3.69)

∂2Π̂
∂S2 = Π̂i,j+1−2Π̂i,j +Π̂i,j−1

∆S2 +O(∆S2) (3.70)

applying this discretizations for Black Scholes equation 2.1 and we obtain:

Π̂i+1,j −Π̂i,j
∆t + 1

2σ
2(j∆S)2 Π̂i,j+1−2Π̂i,j +Π̂i,j−1

∆S2 + r(j∆S)Π̂i,j+1−Π̂i,j−1

2∆S = rΠ̂i,j

(3.71)
which can be reformulated as:

αj = 1 + r∆t+ (σj)2∆t
βj = −1

2(σj)2∆t− rj∆t
γj = −1

2(σj)2∆t+ 1
2rj∆t

(3.72)

=⇒ αjΠ̂i,j +βjΠ̂i,j+1 +γjΠ̂i,j−1 = Π̂i+1,j (3.73)

3.3.4 PSOR - algorithm
When solving the implicit method, the projected successive over relaxation algorithm
is used. The SOR algorithm is an iterative algorithm used to solve a system of linear
equations. It is a version of Gauss–Seidel method [14], but modified to speed up
convergence by adding a relaxation factor ω ∈ (0, 2).
The algorithm works by approximating new x

(k+1)
j using the old x(k)

j , and has the
following formula:

x
(k+1)
j = max

[
K − Sj, (1− ω)x(k)

j + ω

ajj

bj −∑
i<j

ajix
(k+1)
i −

∑
i>j

ajix
(k)
i



j = 1, ...,M

(3.74)
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iteration proceeds until some predetermined convergence level;

|x(k+1)
j − x(k)

j | < ε (3.75)

where xj is an option price in the grid matrix, for a specific time instant and a
specific stock price, equation 3.74 corresponds to the discretization of equation 3.47.
In this thesis the tolerance level ε takes values 10−4, 10−6, 10−8. ajj is the tridiagonal
matrix consisting of the coefficients from equation 3.72:

ajj =



α β

γ
. . .

. . .
. . . β
γ α


bj is the column vector that contains all the option values in the grid matrix Q
for one specific time instance, which is then iterated forward in time to obtain full
matrix Q, containing all the option prices and the initial condition is obtained from
equation 3.62. After fulfilling the tolerance level, bj is updated and applies the newly
approximated option prices for the next iteration:

bj =


Q(i, 2)

...

...
Q(i,M)


Generating the grid matrix containing the option prices calculated using the finite
difference scheme by the implicit method, illustrated by the following pseudocode:

Algorithm 1 PSOR
for t = 1, 2, . . . , N do

x = np.copy(GridMatrix[t 1:M])
n = len(x)
xold = 100 ∗ x

while np.linalg.norm(xold-x) > tol do
xold = np.copy(x)
for i in range(n) do

z=((d[i]-TridiagonalMatrix[i,i-1]∗x[i-1]-TridiagonalMatrix[i,i+1]∗x[i+1])
/(TridiagonalMatrix[i,i]))

x[i]=max(omega∗z+(1-omega)∗xold[i],StrikePrice - (i+1)∗ds)
end for

end while
GridMatrix[t+1,1:-1] = x

end for
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4
Results

The results from the Binomial model are presented first followed by the results from
the finite difference method. The results are then compared in different tables and
figures for different inputs. Besides the code, the performance is also hardware
dependent and the results presented comes from a laptop with AMD Ryzen™ 7
4700U processor with 16 GB DDR4 RAM.

4.1 Binomial Model

An overview of how different volatilies σ impact the exercise boundary, pay-off
function, put price against delta and also the stock price against delta. From figure
4.1 (a) its clear that as the volatility of the underlying stock increases, the exercise
boundary becomes lower. This stems from the fact that as the volatility increases,
the put price also increases, which is clear from the second part of equation 3.22,
that depends on σ in equation 3.3 and equation 3.4. An increase in volatility also
gives a greater discrepancy between the pay-off curve and the price curve figure 4.1
(d), for the same reason as the lower exercise boundary in figure 4.1 (a). Figure 4.1
(b) and (c) shows that delta decreases faster with lower volatility against the put
price and it increases faster in relation to the stock price.

Delta measures the expected change in option price with respect to changes in the
underlying stock, equation 3.8. Thus, an increase in volatility gives a higher value
for delta (closer to zero for the put option), for a specific put price. The relationship
between volatility and stock price can be described as follows: when the put option
is in the money, delta increases with volatility for a specific stock price. But as the
put option is out of the money, delta decreases as the volatility increases for a given
stock price. In practice this means that an in the money put option is less in the
money as volatility increases, i.e the option is more overpriced and an out of the
money put option is less out of the money as volatility increases.
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(a) Exercise boundary for different volatility σ, an increase in
volatility results in a lower exercise bound. (b) Put price against Delta for different volatilities.

(c) Delta against Stock price for different volatilities (d) The pay-off curve (intrinsic value) and the option value for
different volatilities

Figure 4.1: Binomial model for different values of the volatility σ: 2000 iterations,
K = 30, σ = 0.2, r = 0.01, T = 1, α = 0.01
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The area under the exercise curve represents the region for where it is advanta-
geous to exercise the option. Figure 4.2, show that the smoothness and thereby the
accuracy of the exercise curve depends on the number of iterations.

(a) 500 Iterations
Time = 0.07 (s)

(b) 1000 Iterations
Time = 0.278 (s)

(c) 4000 iterations
Time = 4.80 (s)

(d) 8000 Iterations
Time = 21.80 (s)

Figure 4.2: Binomial model - exercise boundary figures for different amount of
iterations. K = 30, σ = 0.2, r = 0.01, α = 0.1, T = 1. The region under the orange
curve is the exercise region, plots are generated in Python but times comes from
Cython.
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Comparison on the effect on the exercise boundary between the differences in volatil-
ity and differences in rate. The rate has the opposite effect compared to the volatil-
ity, when the rate increases the exercise boundary becomes lower. Hence in the
case when the rate is high, it is more often profitable for an early exercise of the
American put. This is because if the interest rate is high, exercising the option and
investing the money in the risk-free asset is more profitable than selling the option
at later times and getting the time value of the option.

(a) Exercise boundary for different volatilties σ (b) Exercise boundary for different rates, r

Figure 4.3: Binomial model for different values of the volatility σ and different rate r,
2000 iterations, K = 30, σ = 0.2 for rate comparison and r = 0.01 for σ comparison,
T = 1, α = 0.01
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4.2 Finite Difference Scheme

Initially the same graphs will be presented for the finite difference method, except for
the graphs related to delta since it has not been computed using the finite difference
model. As for the binomial model the preciseness of the method increases with the
number of time steps. As can be seen in figure 4.4 the exercise boundaries are similar
to the ones for the binomial model, where the smoothness of the curve increases as
the grid size increases.

(a) Grid: [2000×1000]
Time = 38.8 (s)

(b) Grid: [4000×1000]
Time = 233.4 (s)

(c) Grid: [8000×2000]
Time = 273.4 (s)

(d) Grid: [10000×4000]
Time = 298.1 (s)

Figure 4.4: Finite difference scheme - exercise boundary figures for different grid
size [t × S(t)], K = 30, σ = 0.2, r = 0.01, ε = 10−6, ω = 1.2, Smax = 150, T = 1
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(a) Exercise boundary for different volatilties σ (b) Exercise boundary for different rates, r

Figure 4.5: Finite difference scheme for different values of the volatility σ and dif-
ferent rate r, [4000× 2000] , K = 30, σ = 0.2 for comparison of different rates, and
r = 0.01 for σ comparison, T = 1, ε = 10−6, ω = 1.2, Smax = 150.

Table 4.1, 4.2, 4.3 and figure 4.7 show results for the finite difference method for
different combinations of grid size, tolerance ε and relaxation factor ω. Before a
more optimized composition of this parameters is presented and compared to the
binomial model in section 4.3. Calculations has only been performed in Cython and
not in Python, since the purpose if to find optimized parameters, thus the language
comparison is of no importance for this. The initial prices Π̂Y (0) are interpolated
using Cythons built in function, interp1d.

Iterations Π̂Y (0) ε = 10−4 Time (s)
[500 × 500] 1.489240 1.18
[1000 × 500] 1.488203 2.35
[1500 × 500] 1.489006 3.58
[1000 × 1000] 1.487879 6.33
[2000 × 1000] 1.488490 9.75
[3000 × 1000] 1.488956 14.83
[2000 × 2000] 1.484364 30.16
[4000 × 2000] 1.485702 41.96
[6000 × 2000] 1.488663 64.57
[3000 × 3000] 1.479573 259.93
[6000 × 3000] 1.484696 474.22
[8000 × 1500] 1.489532 67.21
[8000 × 2000] 1.488198 66.29
[10000 × 2000] 1.487164 85.09

Table 4.1: Table for difference grid composition, Π̂Y (0) = 1.489125. σ = 0.2, K =
30, S(0) = 32, r = 0.01, T = 1, ε = 10−4, ω = 1.2, Smax = 200
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It is clear from the table 4.1 that the number of stock values should be approximately
30%, thus, approximately this composition for the comparison between the two
methods.

Iterations Π̂Y (0) Π̂Y (0) Π̂Y (0) Time (s) Time (s) Time (s)
ε = 10−4 ε = 10−6 ε = 10−8 ε = 10−4 ε = 10−6 ε = 10−8

[1500 × 500] 1.489006 1.487546 1.487551 3.58 6.66 8.57
[2000 × 1000] 1.488490 1.488567 1.488569 9.75 14.03 18.96
[3000 × 1000] 1.488956 1.488631 1.488629 14.83 24.36 30.00
[6000 × 2000] 1.488663 1.488925 1.488934 64.57 90.78 126.53
[8000 × 1500] 1.489532 1.488891 1.488886 67.21 98.77 129.47
[8000 × 2000] 1.488198 1.488948 1.488949 67.86 106.86 136.65
[10000 × 2000] 1.487164 1.488952 1.488958 87.97 133.72 177.04

Table 4.2: Table for different value of the tolerance ε, σ = 0.2, K = 30, S(0) = 32,
r = 0.01, α = 0.01, T = 1, ω = 1.2, Smax = 200

Figure 4.6: illustration of the different tolerance ε, where the error is calculated with
Π̂Bin
Y (0) = 1.489125, for 12 000 iterations using the binomial model as a reference

point. Error = |Π̂Bin
Y (0)− Π̂FD

Y (0)|, σ = 0.2, K = 30, S(0) = 32, r = 0.01, α = 0.01,
T = 1, ω = 1.2, Smax = 200

35



4. Results

From table 4.2 and figure 4.6 one can see that for the finite difference method to
converge on the third decimal, then the fastest grid composition is [2000×1000] and
ε = 10−4. But for the method to converge on the forth decimal a grid composition
of approximately [8000× 2000] and ε = 10−6 is needed.

Iterations Π̂Y (0) Π̂Y (0) Π̂Y (0) Time (s) Time (s) Time (s)
(ω = 1.2) (ω = 1.5) (ω = 1.7) (ω = 1.2) (ω = 1.5) (ω = 1.7)

[1500 × 500] 1.489006 1.487144 1.485808 3.58 6.76 11.69
[2000 × 1000] 1.488490 1.491138 1.4895044 9.75 16.45 28.36
[3000 × 1000] 1.488956 1.490855 1.486655 14.83 25.93 41.47
[6000 × 2000] 1.488663 1.483421 1.492550 64.57 82.89 135.04
[8000 × 1500] 1.489532 1.499158 1.480144 67.21 99.61 152.14
[8000 × 2000] 1.488198 1.482195 1.489400 67.86 114.16 182.00
[10000 × 2000] 1.487164 1.480713 1.489752 87.97 140.67 225.4

Table 4.3: Table for different value of the relaxation factor ω. Reference point -
Binomial model 12000 iterations: Π̂Y (0) = 1.489125. σ = 0.2, K = 30, S(0) = 32,
r = 0.01, α = 0.01, T = 1, ε = 10−4, Smax = 200

An increase in relaxation factor does not increase the accuracy but it does affect the
computational time negatively, hence setting the relaxation factor ω = 1.2. Further
investigation into this can be performed to get closer to an optimum of the PSOR
algorithm but that is not the focus of this thesis and hence for a comparison with
the binomial model, ω = 1.2 is used.
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4.3 Comparison

Figure 4.7: Comparison of the exercise curves for the finite difference scheme and
the binomial model with different volatilities. Number of iterations = 5000, [4500×
1500], K = 30, r = 0.01, T = 1, Smax = 150, ε = 10−6, ω = 1.2

Figure 4.8: Comparison of the exercise curves for the finite difference scheme and
the binomial model with different rates. Number of iterations = 5000, [4500×1500],
K = 30, σ = 0.2 T = 1, Smax = 150, ε = 10−6, ω = 1.2

From figure 4.7 and 4.8 its clear the the two methods generates approximately the
same result, the finite difference method has a bit smoother exercise curve and its
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exercise curve tends to start a bit earlier but needs more iterations to reach the
strike price at maturity, also seen in figure 4.2 and figure 4.4.

We compare both computational speed and accuracy, where the accuracy is mea-
sured using the binomial model with 12000 iterations as benchmark, since it con-
verges to the Black-Scholes model in the limit.

Iterations Π̂B
Y (0) Π̂FD

Y (0) Difference Difference
(B) (FD)

500 [1500 × 500] 1.489240 1.487546 0.006725 0.001579
1000 [2000 × 1000] 1.489245 1.488567 0.00012 0.000558
2000 [3000 × 1000] 1.489301 1.488631 0.000176 0.000494
5000 [6000 × 2000] 1.489105 1.488925 0.00002 0.0002
8000 [8000 × 1500] 1.489138 1.488891 0.000013 0.000234
10 000 [8000 × 2000] 1.489130 1.488948 0.000005 0.000177
12 000 [10 000 × 2000] 1.489125 1.488952 0 0.000173

Table 4.4: Comparison between the binomial model and a finite difference scheme
in Cython, the difference in value for both models is the absolute value measured
against the Binomial model for 12 000 iterations. σ = 0.2, K = 30, S(0) = 32,
r = 0.01, α = 0.01, T = 1, ε = 10−4, ω = 1.2, Smax = 200.

Iterations Π̂B
Y (0) Π̂FD

Y (0) Difference Difference
Time (s) Time (s) (B) (FD)

500 [1500 × 500] 0.008 6.66 9.202 2.55
1000 [2000 × 1000] 0.042 14.03 9.168 -4.82
2000 [3000 × 1000] 0.14 24.36 9.07 -15.15
5000 [6000 × 2000] 1.47 90.78 7.74 -81.57
8000 [8000 × 1500] 2.48 98.77 6.73 -89.56
10 000 [8000 × 2000] 5.63 106.86 3.58 -97.65
12 000 [10 000 × 2000] 9.21 133.72 0 -124.51

Table 4.5: Comparison between the binomial model and a finite difference scheme
in Cython, the difference in time for both models is measured against the Binomial
model for 12 000 iterations. Greater positive value - faster computational compared
to the reference (9.21 s) and increased negative value means slower computational
speed compared to the reference value. σ = 0.2, K = 30, S(0) = 32, r = 0.01,
α = 0.01, T = 1, ε = 10−6, ω = 1.2, Smax = 200.
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Figure 4.9: Comparison of computational speed, reference is the binomial model for
12000 iterations, σ = 0.2, K = 30, S(0) = 32, r = 0.01, α = 0.01, T = 1, ε = 10−6,
ω = 1.2, Smax = 200.

By table 4.4, 4.5 and figure 4.9, the binomial model is superior. Note, that for
ε = 10−4 the error does not seem to converge for the finite difference scheme. Hence,
even if it is faster to use ε = 10−4, it is less reliable than ε = 10−6 and ε = 10−8,
which behaves very similar.

No iterations 100 1000 5000 8000 10000
[100×100] [1000×500] [5000×1500] [8000×2000] [10 000×2000]

Π̂B
Y (0) - Python (s) 0.61 1.3 16.78 45.7 77.1

Π̂B
Y (0) - Cython (s) 0.00033 0.0237 0.75 2.465 4.28

Π̂FD
Y (0) - Python (s) 0.86 10.69 189.34 403.81 428.86

Π̂FD
Y (0) - Cython (s) 0.1526 6.3754 126.12528 150.01 287.36

Table 4.6: Speed comparison for the two methods between Python and Cython,
clearly the binomial method has been better optimized than the finite difference
scheme, T = 3. σ = 0.2, K = 10, S(0) = 11, r = 0.01, α = 0.01, ω = 1.2, ε = 10−6,
Smax = 200.

Iterations σ = 0.1 σ = 0.2 σ = 0.4 σ = 0.6
Π̂B
Y (0)- Initial value 0.414423 1.489138 3.842134 6.200934

Π̂FD
Y (0) - Initial value 0.413897 1.488631 3.841569 6.200183

Π̂B
Y (0) Time (s) 1.98 2.14 2.05 2.1

Π̂FD
Y (0) Time (s) 23.08 22.64 49.1 174.4

Table 4.7: Comparison of speed and calculation accuracy for differences in volatilities
in Cython. Π̂B

Y (0) - 8000 iterations, Π̂FD
Y (0) - [3000 × 1000]. K = 30, S(0) = 32,

r = 0.01, α = 0.01, T = 1, ε = 10−6, ω = 1.2, Smax = 200.
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Grid configuration [3000 × 1000] is based on previous results for accuracy and speed
for finite difference method, section 4.2. As the volatility increases the difference in
price between the two methods decreases, but when studying the time for the two
methods there is a substantial difference; the binomial model is unaffected by an
increase in volatility, while the computational time for the finite difference scheme
increases as the volatility increases.
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5
Summary & Conclusion

After an initial summary of the theory necessary to understand the different models,
this thesis derives the binomial model algorithm and the boundary value problem,
section 3.2 and 3.3. For the binomial model there are results for differences in delta
and how it is affected by differences in volatility. For the finite difference scheme a
justification for the choice of parameters in the projected successive over relaxation
algorithm are presented, and then the exercise boundaries and performances of the
two methods are compared. The structure of the theoretical exercise boundary
from figure 3.2 is reproduced both for the binomial model and the finite difference
scheme. By figure 4.7, 4.8 it is clear that the exercise boundaries are similar for
the two methods, both when studying different volatilities and different rates, but
the binomial method tends to converge to the strike price more reliably than the
finite difference scheme, figure 4.2 compared to figure 4.4. An increase in volatility
has great effect on the computational time for the finite difference scheme, but for
the binomial model, an increase does not affect the computational speed, table 4.7.
When comparing the two models performance in regard to computational speed
and accuracy, its clear that the binomial model is the best, which can be seen in
table 4.4, 4.5 and figure 4.9. Although, a problem that was highlighted initially has
been hard to avoid; difference in performance due to to code implementation. One
big aspect of this error is the conversion from Python to Cython code. As can be
seen from table 4.6, the language conversion done using the binomial model is much
better than it is for the finite difference model, where Cython is ∼ 60 times faster
than Python for the binomial model, but only ∼ 13 times faster using the finite
difference scheme.

Further work
Firstly the implementation in Cython for the finite difference method should be
further optimized. Also, a deeper study of the optimal relaxation factor ω and the
optimal tolerance level ε would potentially benefit the finite difference model. Both
parameters have an effect on the computational speed, this becomes a further opti-
mization problem, as lower tolerance level does increase accuracy, table 4.2, but at
the cost of computational time. We also see from figure 4.6, that a lower tolerance is
needed for convergence in the finite difference scheme, but it does not seem necessary
to have ε lower than 10−6. It is important to note that Black-Scholes model itself is
also just an approximation, with many assumptions considered to be incorrect. As
stated in section 2.1.1, the stock prices tend to be fat-tailed instead of log-normally
distributed, this could potentially be overcome by applying a student-t distribution
or the Weibull distribution for modeling the stock prices. Also, another flaw in the
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5. Summary & Conclusion

Black-Scholes method is the assumed constant volatility, which potentially could be
overcome by applying a GARCH-process to the volatility in Black-Scholes model
[15]. The advantages of using the binomial model for Highlander is obvious, but
there are some situations where the finite difference model could perhaps be advan-
tageous. If the option being priced is evaluated on a stock that pays dividend, then
the finite difference model could be better than the binomial model, also to make up
for one of the drawbacks from the Black-Scholes model – the constant volatility, one
can apply local volatility to the finite difference method, more easily than for the
binomial model. In addition, the boundary condition used for the finite difference
scheme is the Dirichlet boundary condition, which is necessary to accurately price
barrier options. Thus, to implement on these types of options, it is necessary to use
a finite difference scheme instead of the binomial model. Another possible imple-
mentation is a finite element method, and see how well it performs in comparison
to the methods presented in this thesis.
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