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Abstract

This thesis will use two abstract computational models to investigate a number of out-
standing questions related to human cultural evolution. Using simulations explanations
for a number of phenomena within the archaeological record will be put forward. These
will include the discontinuous cultural evolution patterns, the broadening of human diet
and the extinction of the Neanderthals. The central theme throughout these findings is
that it is the fidelity of transfer, and by extension the increase in complexity of early
hominid culture, that constrains the subsistence strategies used within the Palaeolithic
era, whilst the form of the resources dictates the form that these strategies will take.
Key to these dynamics is the territorial competition between groups, with a more diverse
strategy leading to more efficient groups that can encroach on the less efficient, reducing
the carrying capacity and causing the population to move below the minimum group
size allowed, thereby becoming extinct.

Key words: Palaeolithic culture, dietary evolution, fidelity, glass ceiling, punctuated
equilibrium, Broad Spectrum Revolution.
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Chapter 1

Introduction

The Stone Age did not end because we ran out of stones
- Björn Lomborg, The Skeptical Environmentalist

The journey from the simple beginnings of human culture to the complex times
that we currently live in has been a long one, taking in many different technologies and
geographical regions. This began with basic stone flakes used within the Oldowan culture
2.6 Mya [1, 2], through to the first sightings of stone axes 1.8 Million years ago (Mya)
and on to the change to agriculture and the beginnings of civilisation approximately 10
thousand years ago (kya). Along with advances in technology a change in diet is also
observed [3, 4], within the Upper Palaeolithic around 45 kya with what appears to be a
broadening in the types of resources that were consumed.

The questions that this thesis will address are questions of why human culture
changed at all? Above all, why has human culture exploded in complexity, whereas
animal complexity has remained at a very low level. And, as we know that human
culture did become more complex, what were the mechanisms behind these changes?

In order to investigate these questions in more detail this thesis will study only a
small part of human history, taken from the Middle to Upper Palaeolithic era (300 kya
to 10 kya). Within this time a great many changes took place, moving from a hunter-
gatherer lifestyle with the use of spears and big game hunting [5] all the way through to
sedentary agriculture, over a time span of 200 kya to approximately 10 kya.

The first aspect of human culture to observe is that it exists at all. Humans are
the only animals that are able to exhibit open-ended cumulative culture, e.g. the idea
that the culture that you or I are part of today is built upon many previous generations
of evolution within our culture. Whilst there are many examples of animals with the
ability to use tools [6, 7], and even teach some methods to others there is no open-ended
accumulation of technology and culture. The development of both more advanced tools
and fire is a clear indication that early humans were able to move beyond their animal
cousins. This mystery of the cumulative nature of human culture is one of the major
themes of this thesis.

This thesis will also try to address the mechanisms behind these changes to the
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1.1. TRANSFER OF KNOWLEDGE CHAPTER 1. INTRODUCTION

culture and diet of early humans. Rather than a gradual change it appears that there is
a large leap between the Middle Palaeolithic (MP) and the Upper Palaeolithic (UP) at
around 40 kya [1, 8], moving from a simple culture consuming mainly large game to a
more developed culture supplemented with smaller, faster moving fauna.

Most explanations of these ‘jumps’ in culture use either environmental or population
changes to explain the developments, and it can be seen that the increases in diet are
accompanied by pulses of population increase [3, 9]. Within this thesis two abstract
models will be built to test these ideas, and see how closely these models match the
reality in the archaeological record.

1.1 Transfer of knowledge

In order to investigate the existence of cumulative culture, and the ways in which this
may have affected the evolution of our diet a model of the transfer of information between
generations will need to be built. The central theme in this case is the idea of fidelity
e.g. how exactly information is able to pass between generations, or the probability of a
piece of information making it across the ‘jump’ between generations [10].

Due to the lack of writing or any other permanent method of storing information
within MP and UP societies transfer of knowledge through permanent artefacts is diffi-
cult. Although certain possibilities exist for knowledge to be kept in a permanent state
(such as in the form of a finished tool) the only consistent way for information to be
propagated between generations is through a Knower-To-Knower-Knowledge (KTKK)
transfer system [8]. Although it may be difficult to assume that all knowledge would be
passed on in this manner, it is difficult to see that all aspects of a culture would not have
some KTKK component involved.

In order to model the transfer of knowledge between generations this thesis will
therefore take a master/apprentice system of knowledge transfer. This means that the
ability to make tools and to hunt certain prey are passed between the generations by
one member of a generation teaching a member of the next. Within this thesis the
information that is passed between the generations will be represented by units of culture.
These will be the simplest units of the culture that can be known, and will have the ability
to be combined to create more complex cultural parts.

The representation of how complex a culture is embodies a difficult conceptual chal-
lenge. There have been examples of anthropological studies using ‘technological units’
(TU’s) in order to measure the advancement of different technologies [11], which can
aid in providing a metaphor for stone age cultural complexity, and examples of various
levels of technology can also be found in models of cumulative culture [12]. However,
it can be noted that many of the constituents of culture can be represented as a set of
instructions, and that these instructions can be broken down into their separate parts.
In order to make this representation there are three assumptions about culture that need
to be considered [10],

• Cultural representations can be decomposed into smaller units.
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1.2. PUNCTUATED EQUILBIRUM CHAPTER 1. INTRODUCTION

• These components are functionally linked.

• Each component is transferred separately, but in order for the final technology to
be active all parts need to be transferred perfectly.

The first two of these assumptions lead on from the previous arguments. The third
can be assumed, as if just one instruction is missing from a list of actions then this would
most likely cause the failure of the entire process of cultural construction.

There have been a number of previous studies that have modelled fidelity [10]. These
include Enquist [13] who has shown that higher fidelity is able to support longer tra-
ditions, and Lewis and Laland [1] who have shown that fidelity is a large factor in the
creation of cumulative culture. However, in many of these studies of fidelity it is assumed
that culture takes on an atomic form, and that each unit of culture passes on to the next
generation whole, with little error involved [10], and so the discussion of culture then
uses the paradigm of population genetics and simple ratios of the cultural units.

This is not the approach taken by Andersson [8, 10]. He argues that with KTKK
methods of cultural transfer the errors of transfer would not be negligible, but instead
would be large enough to have an effect on the transfer of the knowledge, and that rather
than using the low error biological transmission model of genes in higher life forms a
much more appropriate model for the transfer of information is that of the high error
viruses, bacteria and RNA replicators. Taking inspiration from the work of Eigen and
Schuster [14], here it can be shown that if cultural knowledge is taken to be a string
of units that are each individually transmitted with fidelity then the total volume of
knowledge that can be transmitted is exponentially proportional to this fidelity. This
model leads to a number of very interesting phenomena that are able to give a number
of insights into the mechanisms behind cultural evolution within the Palaeolithic era.

1.2 Punctuated equilbirum

One such phenomenon is that of the punctuated equilibrium found within the archaeo-
logical record. The standard view of the Palaeolithic era is that there are long periods of
stasis followed by very short periods of intense technological and cultural advancement
[8]. A good example of this is the jump in the complexity of technology between the MP
and the UP. Somewhere between the time of 35-45 kya there was a large expansion in the
complexity of tools [1]. These increases are found to bring increases in both population
[3] and cultural and technological complexity, along with a change in diet within these
human cultures. However, recent discoveries suggest that there were times within these
periods of stasis when there have been isolated incidents of increased technology, both
geographically and temporally.

The standard explanations of the step-like nature of increases in cultural complexity
are two fold. The first is environmental, with a more suited environment leading to
higher population, which then enables the ability to sustain more complex cultures [13].
The second explanation is physiological. As human brains get larger, or our bodies
change to survive more easily within the environment this can lead to an increase in
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conceptualisation skills. This in turn will lead to the ability to make better tools, and
then to higher populations [8].

The problem with both of these explanations is that the archaeological record only
supports them loosely, if at all. The skeletal changes that may be found in the ar-
chaeological record are only weakly in sync with the times at which the large jumps in
cognition are found, with a time lag of 100,000 years not uncommon. Allied to this is the
fact that there are also sporadic appearances and then disappearances of more advanced
technologies, which do not agree with a physiological explanation.

Along with these questions there are also many queries about why any change would
be needed at all. If the environment was still conducive to these groups way of life then
why would they change their strategy? Even if there was a physiological increase in
cognition, this still does not provide a driving force for the changes found within the
fossil record. As well as this, it does not appear to be the negative impacts of change
that caused the increase in cultural complexity.

This is where the model by Andersson [8, 10] is able to shed some light. If each unit
of cultural complexity is passed between generations with a certain fidelity then this
introduces the concept of the glass ceiling (the maximum amount of knowledge that can
be contained within the system). Information at a level higher than the glass ceiling
will not be transferred to the next generation correctly, causing a loss of all knowledge
in the model and destabilisation in more realistic settings. Therefore, if at any point
there was a sudden increase in fidelity this would raise the glass ceiling, and allow more
technologies to suddenly leap to a higher level.

This model is therefore able to explain two of the quandaries involved in these finds.
The first is the lack of correlation between the skeletal developments and the jump in
the cultural complexity. This can be explained by the fact that the leap in fidelity allows
the glass ceiling to rise, but that culture takes a while before it reaches the maximum
KTKK volume.

The second phenomena that the Andersson model can aid in explaining is the isolated
expansions in culture and population. These can now be interpreted as the culture of a
society gaining a complexity that is higher than the glass ceiling, and only being able to
maintain this for a short time as the fidelity of transfer is too low, or that the complexity
within the model was distributed in a more focussed way for a short amount of time.

Explaining the driving force behind these changes is more difficult. As was mentioned
above, why the culture of a society should change at all if there are no external factors is
difficult to understand. One suggestion that this thesis will attempt to expand on is the
Broad Spectrum Revolution (BSR), which invokes population pressure to help explain
the changes found.

1.3 The Broad Spectrum Revolution

The original suggestion for the BSR comes from Flannery [15], based on work by Binford
[16]. Binford postulated that early groups were able to reach a cultural equilibrium
point, at which they would remain before external factors pushed them away, whilst
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Flannery observed changes in diet in the fertile crescent (in the region of Iran) towards
groups eating a larger variety of plants around 20 kya. The broadening also led to the
consumption of more grain and smaller fauna such as crabs and partridges. Before the
change ungulates (hoofed animals) accounted for 99% of the food consumed by these
groups by weight, but after the change the amount shifted downwards towards 90%.

The primary cause suggested by Flannery was that population pressure was behind
the broadening of diet that he found at this time. However, many other causes have been
suggested, such as environmental changes, and finding the true causes of this broadening
of the diet has not been simple. It has been suggested that starvation is not a cause for
the change, and BSR is found to occur in regions of high resource density [17]. In other
words, it does not seem to be negative impacts that drive the changes in diet that are
seen in the archaeological record.

Evidence for the diets of early humans and Neanderthals comes from isotopic mea-
surements and bone remains. Here there is a lot of evidence that both Neanderthals
and early humans were top level carnivores [18, 19] hunting deer, mammoth and bison.
However, whilst the Neanderthal diet remained constant throughout this time it is seen
that modern humans developed a much broader diet, supplementing the large game
with hares, birds and fish [20]. There is also evidence that there may have been cultural
diffusion between humans and Neanderthals [21].

Strong evidence for the broadening of Palaeolithic diet has also been found in work
by Stiner et al [3], where they were able to show a broadening in human diet in two
areas around the Mediterranean throughout the Palaeolithic era. Here it was found that
sessile (slow moving) fauna were constantly present within the diets whereas it was the
fast moving animals such as hares and small birds that begin to appear much later in
the diet of these early humans.

Stiner was able to find these results by reclassifying the prey that were consumed by
these groups. If a simple Linnaean classification system is used, grouping the animals
into their taxonomic groups, then it is hard to see any kind of clear pattern within the
fossilised remains. However, once the animals are grouped by the methods that they
used to evade capture e.g. by moving fast or slow, using armour or residing in groups
then the broadening of the diet becomes much clearer [22]. It could now be seen that
the groups clearly change their strategy from that of capturing large and slow moving
game to the smaller, faster and more difficult to catch animals. These results can be
taken to be general as they are found within two geographically separate sites.

There were also suggestions that the BSR strategies spread through “the budding
off of ‘daughter’ groups” [17] into regions where there was a smaller amount of resource
density present. This involved more successful strategies building up large populations
and then splitting, before pushing into outer regions. Due to these groups more successful
strategies they would have been able to possibly drive less populated groups with simpler
strategies to extinction. There is a suggestion that this was the cause of the extinction
of the Neanderthals within mainland Europe [23].

In order to test the validity of these ideas in this thesis both computer and mathe-
matical models will be created to simulate some of the key points addressed above.
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1.4. SIMULATION IN ANTHROPOLOGY CHAPTER 1. INTRODUCTION

1.4 Simulation in anthropology

The advantage of computer simulations in anthropology and archaeology cannot be
overestimated. Many of the problems in palaeo-anthropology involve missing pieces of
data, where important artefacts preserve poorly, or that there are so few sites to be
discovered. Simulation (and to a lesser extent, mathematical modelling) can take any
suggestions for the development of certain archaeological finds and test them. The ability
to repeat experiments within the computer that cannot be repeated in the real world
can also give valuable insights. Obviously, building a complete model that is able to
account for all of the possible factors involved within any evolution of the early humans
is impossible, and so what is needed instead are abstract models that investigate certain
factors and give clues to what is and is not possible.

These abstract models include ‘Stepping Out’ [24], where the movement of peoples
from Africa and out into Eurasia are modelled, that of Stiner et al [3] to model the
behaviour of fast and slow moving prey under sustained predation, Andersson [8, 10] to
investigate the role of fidelity on the glass ceiling and Laland and Lewis [1] who have
simulated the effect of fidelity on cumulative culture.

Using the techniques found in these examples this thesis will create two models in
an attempt to investigate the evolution of Palaeolithic humans. The first of these will
extend the Andersson model using ideas from Lewis and Laland to observe if an RNA
inspired fidelity model can replicate some of the latter’s findings, and if a more complex
method of culture can still give the glass ceiling phemoneon as found by Andersson.

Having then tested the phenomena found through the transmission of culture through
the generations, and how the concepts surrounding the application of these units of
culture can be applied to abstract models of cumulative culture, the evolution of the
diet of the early humans will then be modelled. Here, a less abstract model consisting
of caricatures of the resources consumed will be modelled on a geographical grid, with
hopes of finding some of the key aspects of the BSR.

6



Chapter 2

Investigating Fidelity

In order to investigate the possibilities of combining the Lewis-Laland model [1] and
the Andersson model [8, 10] and whether a fusion of these models can demonstrate the
creation of cumulative culture, a computational model will be built. This model will
look for aspects from the work from both Andersson and Lewis and Laland, including
cumulative culture and the glass ceiling phenomenon.

Within the Andersson model complexity of knowledge is represented as a string of
units, with the length of the string corresponding to the complexity and utility of the
technology. This technology is then passed on between groups in a KTKK way i.e. one
member of a stone age group teaching certain skills to another member of the same
group. Within this model an error of transmission is built, the fidelity of transmission,
which gives the probability of each technological unit being transferred correctly between
generations. If an error is made then it is assumed that the technology becomes useless,
and the knowledge will therefore be removed from the knowledge base of the society.

A mathematical form can be derived to show the maximum complexity that a tech-
nology can be expected to take within this society, given by,

Nc = − 1

ln q
(2.1)

where here q is the fidelity of transfer for each unit of complexity, and Nc is the
critical length of the string representing the technology. The derivation of this result
was inspired by the quasi-species model developed by Eigen and Schuster [14].

Whilst this model gives a number of very useful insights into early human cultural
evolution there exists an implicit relationship between complexity and utility, with the
technologies within this model propagated with higher probability for longer string se-
quences. However, this is not necessarily how technologies are selected. There are some
very simple technologies that are incredibly useful, and this model does not address this
fact. There are also a number of other issues that need to be addressed within this
model. The first is that this representation of technologies as one dimensional strings is
simplistic and maybe a more interesting way of forming complex technologies will need
to be investigated. Another factor is that this model is not able to demonstrate the

7
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creation of cumulative technology within these early human societies. The final aspect
missing from this model that may affect the selection of technologies is how much time
they take to teach, and how much time should be allocated to this. The volume of
knowledge that is below the glass ceiling could be distributed in a number of different
ways, in either few, very complex tools or many simple ones.

One model that has tried to address some of these issues is that developed by Lewis
and Laland [1]. This model begins with a number of combinable seed technologies,
representing the smallest units of technology or culture that can be found. For example,
the idea of a sharpened point and the concept of attaching two objects together can
lead to a spear. As time moves on larger and more complex technologies are built by
combining these initial seed technologies. Each technology is also assigned a utility,
dependent on the utility of the technologies combined to create it.

As well as being combined, technologies can also disappear, and will disappear at
a rate that is inversely proportional to the utility of the technology. In this way the
more useful technologies will be preferentially selected for within the population over
time. The results that this model provides are claimed by the authors to demonstrate
the importance of fidelity to the creation of cumulative culture. However, there are a
number of flaws that the model developed within this thesis will try to address. The
first is that the Lewis and Laland model still falls into the trap of absolute fidelity of
transfer, something that was argued in the introduction to this thesis is a problematic
assumption. The second problem is that this model is run for a set number iterations,
and not to equilibrium. It is the opinion of this author that this may bias their results.

The model being described in this thesis will attempt to fuse the ideas represented
within the Andersson and Lewis-Laland models to investigate the transfer of knowl-
edge between different generations of pre-historic societies. In order to do this complex
technologies will be built from smaller, less complex seed technologies that will then
combine over time. These technologies will then transfer between generations using the
mechanism based on fidelity e.g. the more complex a technology the more difficult it
is to transmit between generations. Within this model it will be desired to remove the
complexity/utility connection that is found within the Andersson model, whilst also in-
cluding the ideas of fidelity of transfer and more explicit knower-to-knower technological
transfer within the Lewis-Laland model.

The final aspect of the evolution of early human culture that this model will attempt
to capture is the broadening of the diet as time progresses. Moving from the Oldowan,
through the Middle to the Upper Palaeolithic it can be seen that the human diet broad-
ened from one that was mainly based on scavenging to one that included the hunting
of many large fauna supplemented with fish and other small game. Within this model
the steady access of new resources with increasing complexity will be attempted. The
following simulations were written and run in MATLAB.
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2.1 Brief model description

2.1.1 The Technologies

In the model described here each tool will be represented as a collection of connected
seed technologies. These seed technologies are the building blocks of all other technolo-
gies, and can be combined in a variety of ways. These seeds can be considered to be
raw materials or very simple technologies, but they can also be thought of as simple
techniques, representing ideas that cannot be broken down below this level, but which
are needed in order to create the tools and cultures possessed by early human societies.
Each final technology is then a combination of each of these simple raw materials and
the instructions on how to assemble them.

Two identical sets of instructions and seed technologies may be combined in a dif-
ferent order to create two entirely different technologies. To represent the complex
aggregation of these seed technologies as they may be combined the tools will be charac-
terised as networks of seed technologies. An example of this is shown in Figure 2.1. Here
each letter represents a seed technology and each of the connections are representations
of the instructions used in order to create the final technology.

Figure 2.1: An example of a network of seed technologies, representing a single technology.

In order for the technologies to be recorded more easily than in the graphical form
an adjacency matrix will be used to represent each technology. Here a link between
one seed technology and another is represented by a 1. The adjacency matrix for the
technology shown above is shown in Table 2.1.

If a technology has more seed technologies than another, then it will be defined as
being more complex. But, if there are more connections between the seed technologies
then this will also make the technology more complex, and more difficult to pass between
generations. Therefore within this model the total complexity of a technology will be
represented by the sum of the number of seed technologies plus the number of links
between these seeds.

In order to combine technologies two tools will be selected at random. Random edges
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Table 2.1: The adjacency matrix for the technology shown in Figure 2.1.

A A B C C A

A 0 1 0 0 0 0

A 1 0 1 1 0 0

B 0 1 0 0 0 0

C 0 1 0 0 1 1

C 0 0 0 1 0 0

A 0 0 0 1 0 0

will then be made between the seeds in each separate technology to create a new, more
complex technology. An example of this is shown in Figure 2.2.

Figure 2.2: An example of the combination of two technologies.

Within this model technologies can also be broken apart in order to create new,
smaller technologies. This will occur by taking a small sub-network within the larger
network of the original technology and removing it. An example of this selection of a
part of the network is shown in Figure 2.3.

Figure 2.3: An example of the breaking apart of a technology.

The reason for including these two possibilities is that a new technology may be taken
and combined with another in a more interesting way than just linear connection. In this
methodology it is possible to take two technologies and intermingle the components and
instructions so as to create something completely new. Whilst this may not be exactly
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how new technologies were created within early human societies, it does represent a
useful caricature of the creation of new technologies and cultures, and is certainly in line
with the methods used by Lewis and Laland.

Breaking apart technologies is also a useful technique to include as technological ad-
vancement is not just created by increasing the complexity and combining technologies,
but by taking the seeds and then recombining them in interesting ways. When tech-
nologies are combined they may lead to sub-units that are themselves inherently useful
in their own right, but which can only be found to be useful by breaking them away
from their parent technologies. Also, by breaking apart the technologies a less complex
technology that is able to perform the same function of the more complex parent may
be found, which would create space under the glass ceiling for other tools.

2.1.2 The Resources

In order to develop the idea of tool utility within this model a number of resources
will be included. These resources represent certain flora and fauna that were available
to prehistoric human societies. For any set of resources there will be some that are
harder to access and some that are more useful than others to the group. For example,
in order to catch certain fish a net will be needed, and this technology needs to be
developed before any fish can be acquired, whilst some fish will also be more nutritious
than others.

Each of these resources will therefore have two parameters associated with them.
The first is the minimum complexity that is needed to access the resource, and the
second is the utility of the resource, with the latter indicating how useful the resource
is to the group. By assigning the utility to the resource rather than the technology the
link between complexity and utility can be severed. This is because the utility will not
necessarily be correlated with the minimum complexity to access the resource. In this
way, even if a tool has a particularly low complexity, if it is accessing a resource with
a low minimum complexity but a high utility it will still be propagated into the next
generation.

Each tool will then be randomly allocated a resource on which it is to work. The
only resources that each tool will be able to be allocated to will be those with a lower
minimum complexity than the complexity of the technology. Within this model there are
an infinite number of resources, with the minimum complexity matching the complexity
of the first technology assigned to it.

2.1.3 Propagation of Tools Between Generations

In order to propagate the tools between generations it will be assumed that there is
a maximum amount of time that is available for the KTKK transfer. Each tool will
be reproduced in the next generation by copying each unit of complexity, with fidelity
q. Therefore, the probability of a successful transfer is given by qC , where C is the
complexity of the tool. If any part of the tool is not copied exactly then it is assumed
that the transfer has failed and that technology will not be present in the next generation.
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It is also presumed that the more useful a technology is the more a group will want to
transfer it between generations. Therefore, the time that each individual tool will then
be allocated will be proportional to it’s utility. The time that each tool will be assigned
is given by,

T =
ui∑N
i=1 ui

Tmax (2.2)

where here ui is the utility of the resource level that the tool i has been allocated to,
N is the total number of tools, and Tmax is a constant within the model denoting the
total amount of time for transmission of the tools from one generation to another.

The chance of failing to transfer a tool in the time allocated is given by (1 − qC)T ,
and so the final probability of a tool being transferred to the next generation is,

p = 1− (1− qC)T (2.3)

This expression suggests that if a tool is not very complex, but is useful then it has a
higher chance of being transmitted to the next generation, which is the behaviour that is
desired. Also, if the fidelity is increased then the probability of a tool being propagated
also increases.

The following section will now describe the algorithm used to run these dynamics.

2.2 Algorithm

2.2.1 Initialisation

Initially N0 of single seed technologies will be selected at random (from a fixed, finite
number of seeds) to form the first generation of technologies. The lowest complexity
resource level will also be initialised, with a minimum complexity of 1, and a random
utility (taking a value as described in Section 2.2.5).

2.2.2 Calculate Complexities

In order to calculate the complexities of each of the technologies the number of seed
technologies and the number of edges between them are added together. In terms of the
adjacency matrices this can written as the (size of the matrix -1) + (total number of 1’s
within the matrix divided by 2).

2.2.3 Combining Technologies

Each technology within the population will stochastically combine with another with
probability pc. If it is decided that a combination will occur then the second parent
technology will be randomly selected from all members (including the initial technology)
of the population. The adjacency matrices for each technology will then be placed into
the top left and bottom right corners of the newly formed adjacency matrix. After this
an edge will be placed in the remaining parts of the adjacency matrix with probability
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1
2 , so linking the two technologies as in Figure 2.2. The adjacency matrix then needs to
be checked to ensure that it is diagonal as the edges within these networks are two way.
Therefore any edge that is created in one direction needs to be replicated in the other.

If the resulting combined technology is small there is a chance that no new edges
will be created. If this is the case then a seed from each parent technology needs to be
randomly selected and an edge created between them. Once this process is complete
both parent technologies and the newly combined tool are placed into the population of
tools.

2.2.4 Breaking Apart Technologies

Each technology can also be broken apart with probability pb. In order for this to occur a
complete unit of the network of seed technologies is removed from the parent technology,
with both parent and child then placed into the population.

In order to find a complete network within the parent technology firstly a random
number of the seed technologies present will be selected (this can be anywhere up to
s− 1, where s is the number of seeds present in the tool), with these forming the seeds
for the new tool. Then each link between the selected seeds is also taken and placed in
the new adjacency matrix.

2.2.5 Allocating Resources

Each new technology found by either combination or splitting will be assigned to a
resource level. This can be any of the resource levels present that have a minimum
complexity lower than the complexity of the current tool.

However, if all of the resource levels present within the dynamics have complexities
that are lower than the complexity of the new tool this means that a new resource
level can be created. If a tool is randomly allocated to this ‘new’ higher level, then the
minimum complexity of that resource level is set to the complexity of the tool that has
just been allocated.

If a new resource level is created, then it will also be assigned a new utility. This
value will be a random number selected from a normal distribution N(0,0.5), with the
absolute value then taken. The reason for this is to allow any value of utility to be
possible, but to generally keep the values around 1.

2.2.6 Propagation of the Technologies

After finding the complexity and utility for each technology the tools can be stochasti-
cally reproduced in the next generation. For each technology the probability of trans-
mission to the next generation is given by Equation 2.3. If a technology is selected to
be transmitted then it is retained within the population, and if it is not then it is lost.
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2.2.7 Final Algorithm

Taking Sections 2.2.1 to 2.2.6 into account the final algorithm will be given by the
following.

1. Initialise population of technologies consisting of single seeds.

2. Initialise utility and complexity of first resource level.

3. Combine each tool with a randomly selected partner with probability pc.

4. Break each tool apart with probability pb.

5. Calculate complexities.

6. Find possible levels for each tool to be allocated to. If the complexity of the tool
is higher than the largest minimum complexity then allow an extra level to also be
selected.

7. Randomly allocate all new tools to possible resource levels.

8. If a new resource level is selected, assign it a random utility and a minimum
complexity.

9. Repeat.

The results of running these simulations will now be shown.

2.3 Results

Within the following simulations each set of parameters were run until the dynamics
have reached equilibrium. In this case equilibrium was taken to be reached when the
change in the mean complexity over each window of size 500 time steps was smaller than
10−4.

The initial parameters used in generating the following results were,

• Ns = 5

• N0 = 1000

• Tmax = 10000
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Figure 2.4: Evolution of the mean complexity, utility and number of tools.

2.3.1 Evolution of the Dynamics

Firstly taking q = 0.99, Pc = 0.5 and, Pb = 0.1 the dynamics were run to equilibrium.
With these parameters it was desirable to observe how the tool number, mean tool
complexity and utility evolved over time. The results of these measurements are shown
in Figure 2.4.

From Figure 2.4 it can be seen that very quickly the mean complexity of the tech-
nologies increases before hitting a maximum of 15 complexity units. The number of
tools, although starting high very quickly decreases to around 10,000. This equilibrium
level then remains for the rest of the simulation. From these plots it can be seen that the
dynamics of the simulations are very quick to find equilibrium, and are very stable once
they have. Also in Figure 2.4 it can be seen that the mean utility, whilst it takes longer
to reach equilibrium still does reach this point, with the fluctuations around this mean
value also remaining small. In order to see what is happening within the simulations it
is useful to plot the maximum and minimum complexity and utility, which is shown in
Figure 2.5.

In Figure 2.5 it can be seen that the maximum and minimum utility are very quickly
reached, as the complexity of the tools increases through combination. This is due to
the maximum complexity also being reached within the first 20 time steps. After this
point all of the resource levels that can be occupied are, and so there will be very little
change in utility.

From the complexity graph it can be seen that although the mean complexity remains
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Figure 2.5: Evolution of maximum, minimum and mean complexity and utility.

at a stable value for the majority of the simulation the maximum complexity is able to
jump by large amounts. The reason for this is that through combination the technologies
will be able to form very complex tools. However, due to this high complexity they will
not be able to transmit between generations for many time steps, and so we see the large
oscillations within the maximum complexity. It is these large oscillations that lead to
the fluctuations in the mean complexity that can be seen in Figure 2.4.

The relationship between the tools and the resources will now need to be investigated.
The first question is, how are the complexities and the utilities between the technologies
related? Are the more complex tools based on the resource levels with a higher utility,
or is there no correlation between them? A scatter plot of the complexity and utility of
each of the tools is shown in Figure 2.6.
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Figure 2.6: Distribution of complexities and utilities.
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This scatter plot (Figure 2.6) shows that there is no relation between the complexity
and the utility of a tool, which is what was originally desired.

The next question is how are the tools distributed across the resource levels? Are all
of the tools present on the resource with the highest utility, or are they evenly spread?
The following figure (Figure 2.7) shows the final distribution of the tools within the
resource levels for the utility and minimum complexity.
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Figure 2.7: Population of the resource levels for both complexity and utility

In Figure 2.7 it can be seen that nearly all of the technologies are present on a few
levels, with the majority based on just one. The most occupied level is the level that
has the lowest minimum complexity. The reason for this may be that when a tool of
high complexity is created it can randomly be assigned to any level with lower minimum
complexity. This means that just by straight chance the lowest level will become the
most occupied.

From the scatter diagram of resource population against utility it can be seen that
there is no real distribution between them, and that the population in each resource level
of a certain utility is random.

2.3.2 Investigation of the Glass Ceiling

Now that the dynamics of the system have been explored the next question that this
model is intended to answer is whether the glass ceiling, as demonstrated within the
Andersson model [8, 10], also exists here. In other words, are there periods when the
mean complexity of the technology is at a steady (but fluctuating) level, before rising
with an increase in fidelity? The next plot shows the dynamics run with increasing
fidelity levels at each intervals of 100 time steps, shown in Figure 2.8 for the complexity
and Figure 2.9 for the utility.

The results here show that when the fidelity is increased to a larger value the mean
complexity also rises (as shown in Figure 2.8). This is because there is now a larger
probability of a tool of a certain complexity being transmitted to the next generation.
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Figure 2.8: Increased fidelity at intervals throughout the dynamics and the mean com-
plexity.

Also, it can be seen that the jumps between each equilibrium mean complexity get larger
as the fidelity increases. The reason for this is the fact that (as will be shown in Section
2.3.4) the fidelity is exponentially proportional to the mean complexity.
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Figure 2.9: Increased fidelity at intervals throughout the dynamics and the mean utility.

From Figure 2.9 it can be seen that the mean utility actually decreases with an
increase in fidelity. However, the steps are not as clear as those of Figure 2.8, and the
range of decrease is very small. The reason for this is that the utility values for each
resource level are assigned randomly. So, as the complexity increases, and new levels are
accessed by the larger technologies, there is little change to the mean utility. However,
as the mean complexity increases with increased fidelity the number of levels that the
tools can be assigned to grows, causing a small reduction in the mean utility.

These two figures are able to show that the characteristics that were found in An-
dersson’s model have also been reproduced within this one. The complexity of the tools
that occur within these populations are shown to increase as the fidelity of transfer in-
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creases. Also, there are fluctuations within the mean complexity and utility which show
that although there are occasional large increases the dynamics quickly return to the
equilibrium point. In the next section the behaviour of this model under the varying of
the different parameters will now be investigated.

2.3.3 Varying Parameters

In order to investigate how the parameters affect the final results of the model the
dynamics will be run with various values of fidelity, probability of combination and
probability of break down. At the end of each simulation measurements will be made
on the final tool population, and then these will be averaged over five iterations.

The first parameter to be varied will be that of Tmax. This is the amount of time
that is available to each of the groups to transmit the tools to the next generation. The
results of increasing this value are shown in the Figure 2.10.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

15

20

25

30

35

TMax

M
e
a
n
 C

o
m

p
le

x
it
y

Relation of tool characteristics to the time to transmit ,N0=1000, noOfSeeds=5, q=0.99, Pc=0.5, Pb=0.1

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0.65

0.7

0.75

0.8

0.85

0.9

0.95

TMax

M
e
a
n
 U

ti
lit

y

Figure 2.10: Effect of increasing Tmax on the mean complexity and utility.

As can be seen from Figure 2.10 the increase in the amount of time that can be
allocated to each of the tools makes very little difference to the mean complexity of the
system. However, there does appear to be a trend in the increase of the mean utility as
time moves on, suggesting that the more useful technologies may be selected if there is
more time.

When varying the parameters a number of graphs will be produced in order to demon-
strate the behaviour of the dynamics. The first is a surface plot of the mean complexity
or utility for each parameter, with the two graphs below showing the maximum and
the minimum of the respective measurement. Then, in order to see the behaviour for a
single varied parameter the final two plots will show the maximum, mean and minimum
for just one variable.

The first two parameters that are to be varied are the fidelity and the probability of
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combination. The fidelity was increased between 0.09 and 0.99 and the probability of
combination was increased between 0 and 1, with measurements taken at intervals 0.1.
Figure 2.11 shows how the complexity varied within as these two parameters increased.
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Figure 2.11: Surface plots of complexity (varying fidelity and probability of combination).

In Figure 2.11 the first thing to notice is that it is only at very high values of fidelity
that any change begins to become noticeable. The mean and maximum complexity
remain at low levels until high values of fidelity are reached. It can be seen that the
minimum complexity makes a jump once the fidelity increases above a certain level, due
to the fact that with a higher fidelity it is easier to support higher complexities. These
minimum complexities are also interesting because at low values of fidelity the minimum
complexity is 1. Therefore, at these low values there are still some seed technologies
present within the population, and they only disappear at higher levels of fidelity.

Finally, from the graphs of increasing fidelity and probability of combination with
constant variables increasing either parameter makes a very small amount of difference
to the final complexity. These same findings can also be seen in Figure 2.12, where the
effect of varying the probability of breaking down the tool is varied.

In Figure 2.12 it can be seen that the same effects as were found with varying the
probability of combination are found with the probability of breaking a technology down.
Once again, only when the fidelity becomes large enough is the minimum complexity able
to rise above those of the single seed technologies.

The reasons behind the lack of impact on the mean complexity that the combination
and break down probabilities have is that these are rates at which combinations and
splitting of technologies occur. However, if larger tools are being produced by combi-
nation this will not affect the complexity distribution of the population of technologies
because the chances of these tools being passed onto the next generation are minimal.
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Figure 2.12: Surface plots of complexity (varying fidelity and the probability of break
down).

The next figure (Figure 2.13) shows how variation in the combination probability
and fidelity effect the value of the utilities within the simulation.
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Figure 2.13: Surface plots of utility (varying fidelity and probability of combination).
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There are a number of features that can be seen in the graphs of Figure 2.13. The
first is that it is quite difficult to see any trend at all in the mean utility. This is to be
expected, as due to the stochastic nature of the assignment of utilities to each of the
resource levels a trend is unlikely to be found. The place where a trend can be found is
in the increase of the fidelity. Within this plot it can be seen that the minimum utility
decreases and the maximum utility increases. The mechanism behind this is that due
to the random nature of the utility values, as the fidelity increases more resource levels
are able to be created. This will therefore increase the range of the utility values within
the system. The effect of the probability of a tool breaking down on the utility was also
measured and is shown in Figure 2.14.
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Figure 2.14: Effect of probability of tools breaking down on the utility.

From this Figure it can be seen that there is no effect on the minimum, maximum or
mean utility from the probability of breaking down the utility. The reason for this is that
although a higher probability of combination will lead to a larger number of resource
levels, and therefore a higher variation in utility, the splitting of a tool does not have
this effect. Therefore, only the stochastic nature of the allocation of utility to resource
levels is shown in this figure. To finally show how the number of resource levels increases
with an increase in fidelity and combination probability the number of resource levels
present at the end of each simulation are plotted in Figure 2.15.

Within Figure 2.15 it can be seen that the number of resource levels grows once
again with both an increase in fidelity and combination probability. The reasons for the
increase in the number of levels as fidelity increases have been previously outlined, and
are due to the increase in tool complexity that accompanies the increase in fidelity.

The mechanism behind the increase in the number of resource levels following an
increase in the probability of two tools combining is a little more subtle. There is
an effect where the increase in combination probability causes a slight increase in mean
complexity, but this would not necessarily explain the large rise in the number of resource
levels. The main reason for the increase is that a new resource level is accessed if the
complexity of a newly combined technology is larger than all previous resource levels
minimum complexity. The tool that is then assigned to this high level does not have to
be transmitted to the next generation after the creation of the level, and so the reason for
the large number of resource levels for high pc is that complex technologies are created,
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Figure 2.15: Number of resources as fidelity and probability of combination vary.

which then create a high minimum complexity resource level before immediately (or in
a very small number of iterations) failing to be transferred to the next generation.

Figure 2.16 now compares two separate parameters, fidelity and probability of com-
bination, along with two different values for these variables.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

q

N
o
. 
o
f 
re

s
o
u
rc

e
 l
e
v
e
ls

No. of resource levels varying fidelity and probability of combination, N0=1000, noOfSeeds=5, Pb=0.2, TMax=10000

 

 

Pc=0.7

Pc=0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

Pc

N
o
. 
o
f 
re

s
o
u
rc

e
 l
e
v
e
ls

 

 

q=0.59

q=0.19

Figure 2.16: Number of resources compared for different values of fidelity and combination.

In Figure 2.16 we see that for larger fidelity and combination probability the num-
ber of resource levels are more, which is consistent with the ideas of larger complexity
technologies within the population.
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2.3.4 Analytical Solution to Maximum Complexity

The derivation of the mean complexity found for increasing probability of combination
or breakdown is derived using the methods given by Eigen and Schuster [14], and also
Andersson [8] in his derivation of the level of the glass ceiling.

The number of tools at each time step is given by,

N(t+ 1) = (1 + Pc)(1 + Pb)(1− (1− qC̄)τ )N(t) (2.4)

where N(t) is the number of tools at time t, (1 + Pc) is the increase in the number
of tools due to combination, and (1 + Pb) is the increase due to the break down. The
expression 1 − (1 − qC̄)τ is the probability that these tools will be transferred to the
next generation as given in Equation 2.3. However, here the complexity is replaced by
the mean maximum complexity C̄ for the entire population of tools, and the allocated
time is replaced by the parameter τ . The reason for this is that the utility of each
tool is unknown prior to the simulation as they are randomly assigned for each resource
level, and therefore this differs between tools of the same complexity. Therefore τ is a
parameter that varies depending on the particular simulation.

When the system has reached equilibrium the number of tools at each time step will
be equal, and so N(t) = N(t+ 1). Therefore,

1 = (1 + Pc)(1 + Pb)(1− (1− qC̄)τ ) (2.5)

This can be rearranged to give the mean complexity of the tools in terms of the
parameter τ , shown in the following expression.

C̄ =

ln

(
1−

(
1− 1

(1+Pc)(1+Pb)

) 1
τ

)
ln q

(2.6)

These theory lines were now tested on simulations varying both the fidelity and the
probability of combination with the results shown in Figure 2.17. The values for the
fitted parameter τ are included within the plots and were found using the MATLAB
curve fitting toolbox.

As can be seen from Figure 2.17 this theory curve seems to match the simulation
results well, and so is able to demonstrate how the glass ceiling depends on both the
fidelity and the probability of combination and breakdown. These results also show that
it is the fidelity that is the main factor behind large increases in mean complexity rather
than the combination or breakdown probabilities.

2.3.5 Maximum Number of Levels

The final simulations that were run using these dynamics introduced a maximum number
of resource levels. The reason for this is that in nature it is unlikely that there would be
an infinite number of resources that could be accessed by pre-agriculture humans, and
only allowing a certain number of resource levels may alter the final complexity. In order
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Figure 2.17: Simulation results and fitted theory lines. τ parameters for each line are
included in the plot.

to test if the number of levels has any influence on the results a finite number of possible
levels were introduced. To implement this the dynamics were run in exactly the same
way as in previous simulations, but a count was kept on the number of resource levels.
Once the maximum number had been reached then no more levels could be created, and
the only levels that it was possible for each tool to be assigned to were those already in
existence. This was run, with the results shown in Figure 2.18.
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Figure 2.18: Complexity values for increasing maximum resource levels.

The results in Figure 2.18 show that there is no effect from the introduction of the
maximum levels, to either the maximum or the mean complexity of the population of
tools. This suggests that the previous results that have been found can also be applied
to a finite number of levels, and that it is the fidelity that is the core parameter that
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defines the behaviour of the system.

2.4 Discussion

The main aim of this work was to develop a model that combined the central ideas
from work by both Andersson [8, 10] and Lewis and Laland [1]. Taking the themes of
fidelity of information transfer of culture and tools between generations, and also the
more complex formation of technologies, and a lack of correlation between the utility of a
tool and it’s technological complexity, this has been achieved. The separate results from
both Andersson and Lewis-Laland were also able to be replicated, and the question of
which were the more important features of the model was then able to be investigated.

The central result from this work was that the decisive parameter in the outcome of
the dynamics is the fidelity of transfer. Each of these results suggests that no matter
how complicated the dynamics between the set up of the technologies, how they are
combined and then broken up, and the number of seed technologies that can be selected
the glass ceiling effect will still be found within any system with a fidelity of transfer,
and it is this fidelity that decides how complex the final population of tools is found to
be.

It can be seen that the probability of combining or breaking up the technologies does
slightly effect the final mean complexity of the tool population. However, the increase in
tool complexity is small, and overshadowed by the increase that can be found through
an increase in fidelity. The other parameter’s main influence is on the rate at which the
dynamics occur.

Within this model it has been possible to show that the Andersson model can be
extended to include a decoupling of the complexity and the utility from each tool, and
also to make the formation of new technologies more interesting and realistic, with the
introduction of cumulative culture. It has also been possible to show that the position
of the glass ceiling of technological complexity can be found analytically, and is expo-
nentially proportional to the probabilities of forming a new technology and the fidelity
of transfer, with the same proportionality as was found by Andersson.

What has been found with these simulations is that even though extensions were
made to the Andersson model, the central results still stand. This suggests that within
the increase in tool complexity found in the archaeological record it is the fidelity of
transfer between generations, and not the utility or the complexity of a tool or the
methods used to create them that defines how complex a society will be.

Despite the success of the model, there are a number of issues that will need to be
worked on. The first is that these dynamics only focus on one population of tools, and
therefore do not represent the changes between different groups of pre-historic individ-
uals. Linked to this is the idea that there is no pressure for resources from other groups
connected to these dynamics. There are also no human population dynamics associated
with these tools, and each of the tools are only able to access one resource. Within the
results in this model the dynamics over the resources has been shown to be particularly
static, and so does not address any of the questions raised by the BSR. Finally, there is
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no large change in the utility of the resources that the tools are able to access as time
increases.

Resource pressure, either through the environment or through population pressures
(both internal and external) may create very different dynamics within these constraints.
In order to include these factors a new model has been built. Using the concept that there
are a maximum mean number of complexity units these units will now be distributed
among various resources for geographically located groups. This extended model will
then be able to take the central themes found within these simulations e.g. that the
fidelity of transfer of the total complexity of the tool population is the central cause
of advancement for the culture and diet of early human groups, and extend them to
investigate some of the causes behind the BSR.
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Chapter 3

Modelling the BSR

After the investigations of the effects of innovation and fidelity on tool complexity a
model will now be built to test some of the predictions of the BSR and to take some of
the ideas from the previous chapter into a less abstract environment.

This model will be designed to show a plausible explanation for two of the unsolved
aspects of the changes in human diet leading to the Upper Palaeolithic. The first is the
evolution from a purely scavenging strategy to a more diverse strategy where humans
would hunt large game whilst supplementing this with small game. The second aspect
is the surprisingly rapid spread of these strategies across the landscape inhabited by
these early humans. It can be seen in the fossil record that as new tools and hunting
strategies are invented they are able to spread at (relatively) fast speeds through the
population, leading to pulses of population increases [3, 9]. This model will therefore
attempt to model an evolutionary change in strategy from a simple to a more complex
(and diverse) hunting method, and show how any more diverse strategies are able spread
quickly throughout the population.

The creation of this model will draw heavily on work performed by Stiner [3] in
modelling the effects of heavy predation on fauna of different types. Here she suggests
that a number of factors may be linked to each of the prey hunted by Palaeolithic humans
that help determine how they perform under increased predation. These include the
resilience of the prey, or how resilient the prey is to being hunted over a long period of
time, and work of capture, which includes the technological and human cost of capturing
the prey.

Combining the concepts of the work in the previous chapter of units of culture and
the ideas of assigning differing attributes to various types of prey a model will be designed
where technology and resources interact to find the best strategies for surviving in various
landscapes.

3.1 The Basic Model

The basic form of this model will be to create a landscape containing a number of
groups of hunter-gatherers. This landscape will contain a variety of resources of differing
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densities at various locations, and populated by a number of groups, each with a set area.
The groups will then consume the resources present on the landscape, move position,
split or die out, depending on their circumstances. An example of a tribal landscape is
shown in the Figure 3.1.

Figure 3.1: An example of the layout of the groups. Black dots signify the boundaries
between groups.

The groups will interact with their landscape by acquiring the resources present at
that point. The amount of a resource that is able to be consumed is decided by two
factors. The first is the complexity of the tool being used. The more complex the tool,
the better it will be at harvesting a resource (e.g) a bow and arrow is better for hunting
game than a spear. The second is the number of group members that are able to acquire
the resource.

Each group will be populated by a certain number of humans, and will have a maxi-
mum number of ‘complexity units’ associated with it. The way that the population and
the tool complexities are distributed between the resources will be termed the ‘strategy’
of the group. This strategy, along with the area that the group is able to access, and
the density of the resources that are present, will then be used to calculate the har-
vest extracted by each group from the landscape. From this information the increase
or decrease of the population of the group is then calculated. A low harvest leads to a
decrease in the population, whilst a good harvest leads to an increase.

As complexity or effort is increased this should lead to an increase of the harvest, as
a larger number of workers or better tool use should lead to more of a resource being
acquired. However, as more of a resource is used it will eventually be over harvested,
leading to a diminishing and ultimately a negative return from this resource. In order
to calculate how much of a resource a group is able to harvest an extraction function
will be developed which will model the characteristics of the different resources.

As time moves on the strategy of each group is able to mutate. This involves either an
increase in the complexity of the technology used for each resource, or a shift in either
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complexity or effort (the number of group members assigned to a specific resource)
between resources. When a group mutates, it will first generate a number of possible
strategies. It will then shift to the mutation that gives the best harvest, or remain with
it’s present strategy if there is no improvement. The reason for this implementation is
that the timescales involved in this model are of the order of tens of thousands of years.
Therefore you would be unlikely to detect sub-optimal mutations appearing for a very
short amount of time within the archaeological record. The following sections will now
describe the dynamics of the model in more detail.

3.2 The Resources

The resource function will take a form that gives realistic behaviour to certain dietary
niches that have been found to have been consumed during the Palaeolithic era. The
amount of harvest extracted from the resource will be related to the number of groups
members acquiring the resource (the effort), and the complexity of the technology used
for accumulation. The amount of harvest, or the resource extraction will be given by,

X(e,c) = I(e,c)− χ(e,c) (3.1)

where e is the effort, c is the technological complexity required to harvest the resource,
I is the amount of income from the resource and χ is the cost of supporting the effort
and tool complexity used in the harvesting.

3.2.1 The Income Function

The amount of income energy that can be taken from a resource is calculated using,

I(e,c) = renergyW (e,c) (3.2)

where renergy is the amount of energy present in each unit of the resource and W (e,c)
are the work units amassed from the resource.

Within each resource there will be a minimum complexity and effort that will need to
be attained in order to access the resource. In order to gain access to certain food stuffs
(e.g) hunting horses or fishing for certain species, a minimum number of group members
or tool complexity needs to be reached before they can even begin to be collected. In the
following definitions of the resource functions the minimum complexity needed to begin
to gain any income from a resource will be represented by Zc and the minimum effort
by Ze. Therefore,

I(e,c)

> 0 if c > Zc and e > Ze

= 0 if c < Zc or e < Ze

(3.3)

The gross amount of the resource that can be amassed will be labelled the work
units, W (e,c). As the effort or complexity that is used to acquire and process a resource
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is increased the amount of the resource that can be consumed also increases. This will
be proportional to the effort and the net complexity used in gathering the resource.
Therefore,

W (e,c) ∝ e(c− Zc + 1) (3.4)

For each different resource the return for each additional unit of effort or complexity
will not be the same. Therefore the final expression for the units of work gained from
the resource is given by,

W (e,c) =
e(c− Zc + 1)rlpc

reb
(3.5)

where here rlpc is the amount of leverage gained per each additional unit of com-
plexity. So, a higher value of this parameter will mean that as each unit of complexity
is added to the technology relatively more of the resource is able to be harvested. The
parameter reb is the base effort, which relates the difficulty to extract each unit of the
resource. A higher value of this parameter means that more effort is needed to harvest
the same amount from two different resources.

3.2.2 The Access Function

The amount of the resource within a set area may not be accessed all at once. For
example, a small complexity may mean that the current tool is not advanced enough to
access all of the resource within the tribal area. In order to calculate what proportion
of the resource can be obtained an access function, represented by α(e,c) is shown in
Equation 3.6.

α(c) =
1

2
+

1

2

c− Zc + 1

rmax − Zc + 1
(3.6)

Here rmax is the value of the complexity at which point the total resource present
can be harvested. The value of this function can range from 0.5 when c = Zc − 1, to 1
when c = rmax.

3.2.3 Resource Density

The amount of each resource present at different points on the landscape will vary, and
will be described by the parameter rd, or the resource density. Therefore, the amount of
any resource found within any region of area A of the landscape will be given by r̄d

jA,
where r̄d

j is the mean amount of resource density within this area, and j identifies the
resource that this density is referring to.

Therefore, the maximum amount of income that can be obtained for any one group
from each resource (for a given effort and complexity) is given by,

Imax(e,c) = r̄d
jA renergyα(c) (3.7)
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An example of a contour plot for the income function for various values of effort and
complexity is shown in Figure 3.2.
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Figure 3.2: An example of the income function. Parameters used are shown in the title.

As can be seen from this figure, the income function only takes a non-zero value when
the complexity is larger than the minimum complexity (c > Zc) and the effort is larger
than the minimum effort (e > Ze). Also, as both the effort and the complexity increase
after this point the income rises until it reaches the maximum allowed value (given by
Equation 3.7), which matched the desired characteristics of the income function for a
dietary niche.

3.2.4 The Cost Function

The second part of the extraction calculation (Eq. 3.1) is the cost function, χ(e,c). This
is the cost of supporting a certain effort, and also building tools of a certain complexity.
This should increase with both the complexity and the effort, and so the form of the
cost function is given by,

χ(e,c) = cC + eE (3.8)

where C is the cost per unit complexity, and E is the cost of one unit of effort.

3.2.5 The Extraction Function

The final extraction function is given by Equation 3.1 and is the sum of the income and
the cost functions for each value of effort and complexity. An example of an extraction
function is shown in Figure 3.3.

As can be seen from Figure 3.3 this function gives the desired form for the harvest
of the resources. For very small values of the complexity and effort the groups are not
able to harvest any of the resource at all. As the complexity and the effort increases
they are then able to harvest increasing amounts, until the maximum is reached. At this
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Figure 3.3: An example of the extraction function. Parameters used are shown in the title.

point the harvest decreases as too much of the resource is acquired, reaching the point
at which the resource is unable to sustain either the large amount of technology or the
large number of groups people that are harvesting the resource.

3.2.6 The Selected Resources

During these simulations the landscape will be populated by four different resources.
These four resources have been chosen as they broadly describe the different dietary
niches that are found within the Palaeolithic era. They will be labelled as,

• Opportunistic

• Scavenging

• Large Game

• Small Game

The characteristics of these resources are as follows.

Opportunistic

This is a resource represented by the kinds of material found without any effort on the
landscape, flora such as berries and mushrooms for example. All of the members of
the group will be searching for this resource at all times, but it does not give a large
amount of energy for each unit of resource that is consumed. This resource has a very
low minimum effort and complexity in order to access it, and there is not a large increase
in return for a higher effort or complexity.
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Scavenging

The scavenging resource is the act of finding animals previously hunted and killed by
large carnivores, and then taking and processing the meat, bone marrow etc. from them.
This does not need a large strategic complexity, though some is needed in order to break
open bones to access marrow and remove flesh. There is also a need for a fair number
of individuals to be present to be able to scavenge from large animals as often other
predators and scavengers will need to be scared away, and parts of the animal may need
to be carried back to a dedicated activity area.

Large Game

Large game will be those animals such as deer and horses that are easy to find and will
often be hunted using spears or bows and arrows. The hunting techniques will require
more complex tools than those needed for scavenging, and also more effort from the
group. The reason for this is that large game are often hunted using multiple members
of the tribe chasing a group of the large game into a corner, making them easier to kill.
Large game are particularly good prey as they are easily located, and give a large amount
of energy per unit of work. However, due to the fact that multiple members of the group
are already needed to hunt the prey, adding additional effort will not increase the return
by as much as adding group members to scavenging, but increasing the complexity of
the technology will increase the harvest considerably.

Small Game

The final type of resource will be small game. These are fauna such as rabbits and
small birds, which need smaller numbers of group members to capture them, but also
need much more complex technology to be acquired. The energy that is gained from
hunting the small game is not as large as that of the large game (from either scavenging
or hunting), but, at least for higher levels of resource use, does increase in harvest faster
than with an increase in effort compared to the large game.

3.2.7 Selected Parameters

With the discussion from Section 3.2.6 in mind, the following parameters were chosen
for each of the resources (as shown in Table 3.1). A number of characteristics found in
different diet niches within the early human culture will need to be filled. Firstly, for
a given area the maximum harvest that can be extracted from each resource should be
smallest for the opportunistic, followed by scavenging and small game, with large game
being the most energetically worthwhile resource. Also, as the complexity and effort are
increased the harvest should firstly increase to a maximum, before then decreasing as
the effort and complexity become too large.

The parameters have been chosen to be in the correct relative size to each other, and
to give realistic relative values for the harvest for different combinations of effort and
tool complexity. Although the choices of parameter values are arbitrary, each of them
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is tied to the other in terms of both observed characteristics and also the relative values
for each resource.

Table 3.1: Resource Parameters

Resource renergy rmax reb Zc Ze rlpc rd E C

Opportunistic 0.75 0 0.1 0 0 0.05 0.2500 1 1

Scavenging 80 5 20 1 3 10 0.0050 1 1

Large Game 400 15 40 5 10 10 0.0035 1 1

Small Game 70 25 5 12 5 12.5 0.0175 1 1

These four resources will now be shown as a contour plot in the Figure 3.4 with the
area that the resources are harvested from set to A = 75.
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Figure 3.4: A contour plot of each of the resources. A = 75

From Figure 3.4 it can be seen that the resources do indeed behave in the desired
way, with the minimum effort and complexity taking the correct relative values, and
with the large game resource being the one that contains the highest density in terms of
energy content.

If the area or the resource density that the group is able to access decreases, this
should decrease the amount of the resource that can be extracted. As can be seen in
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Figures 3.5 (reducing the area) and 3.6 (halving the resource density), as the area of the
group or the density of the resource is reduced the amount of harvest that it is possible
for the group to extract with a certain strategy is reduced. This is the desired behaviour
from the resources, as a group with a decreased area or smaller amount of resource within
that area will be able to find less of each resource and therefore generate a lower harvest.
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Figure 3.5: A contour plot of each of the resources. A = 50

The final algorithm used with these resources is now described in Section 3.3.

3.3 Algorithm

This section will describe in more detail the model used to investigate the evolution of
human diets.

3.3.1 Initialisation of Tribes

In order to begin the dynamics the group’s centres must first be placed randomly on a
lattice. Each group will be assigned an initial random population (between 20 and 30),
and an initial strategy (see Section 3.3.3). The landscape on which the groups reside
will be square (with size given by L), with a boundary on each side. The groups will
not be able to cross this boundary, and each groups influence will not extend beyond it.
The area of each group will then be calculated (see Section 3.3.2).
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Figure 3.6: A contour plot of all of the resources. A = 75, rd for each resource halved.

3.3.2 Group Areas

Each group area will consist of all of the points on the landscape that are closest to
itself in comparison to all other groups. To calculate the group’s areas the distance from
each group’s position to each point on the landscape is calculated. For each group the
point that is closest to itself compared to each of the other groups is then allocated
to this group. The points that are equidistant between two groups are then recorded
and represented using a dot. This therefore builds up the tribal landscape as shown in
Figure 3.1. The area that is now associated with each group is therefore the sum of all
the points on the landscape that are closest to itself. Once the group’s area has been
calculated, the position of the group is moved to the centre of this area.

3.3.3 Group Strategies

Each group will be assigned a strategy which gives the tool complexity and the fraction
of the group’s population that is then used to harvest each resource. An example of a
strategy is given in Figure 3.7.

The first four numbers are the complexities of the strategies in the opportunistic,
scavenging, small game and large game resources, and the final four numbers are the
fraction of individuals within the group that are assigned to each of the resources. As
all of the members of the group are always harvesting any opportunistic food then this
number is always 1, and because the total fraction of the group sums to 1 the fraction
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Figure 3.7: An example of a groups strategy.

must therefore always sum to two.
The minimum amount of total complexity that can be allocated to any resource is

Zc. This is because any smaller amount will not enable the group to harvest any income
from that particular resource.

The initial strategy for each group will be one unit of complexity in the opportunistic
and scavenging resources, with zero units in the final two resources. Therefore every
member of the group will initially be both opportunists and scavengers.

3.3.4 Calculation of Extraction

In order to find the change in population the harvest from each resource will need to be
calculated. The total extraction for each group will be found by summing the extraction
from each of the resources.

For each group, in order to calculate the size of the extraction, four pieces of infor-
mation will be needed. The first is the complexity of tool used for the resource, and the
second is the effort that the group uses in harvesting the resource. This is calculated
using,

ej = PSj (3.9)

where here ej is the effort assigned to the resource j, P is the total population of the
group and Sj is the fraction of the group assigned to that resource (as shown in Figure
3.7).

The final two pieces of information are the group’s area, and the mean density for
the resource in question, r̄d

j . This mean density is the average of the resource density
at each point within the group’s area. The extraction for each resource can then be
calculated using the resource functions and parameters described in Section 3.2, and
summed for each resource for the total extraction.

3.3.5 Moving Tribes

If the calculated extraction is negative for a particular group then this suggests that it
has a poor strategy. There are therefore a number of options that it can take to improve
this situation and attempt to move to a more favourable scenario. The first of these is

39



3.3. ALGORITHM CHAPTER 3. MODELLING THE BSR

to simply move position. In this model the groups are allowed to move one space in any
direction, unless they reside on the boundary of the landscape.

3.3.6 Updating the Population

Once the total extraction for each group has been calculated the new population can then
be evaluated. This will be calculated using the function given in Equation 3.10, which
will use the amount of energy extracted to give a change in the population. It would
be desirable to have a maximum population increase or decrease within the function, as
very large changes in population would be unrealistic with the dietary niches modelled
here.

Using these assumptions it was decided to model the change in population by,

∆P (X) = ∆Pmax tanh

(
X

Xc

)
(3.10)

where here ∆Pmax is the largest change in population and Xc is the critical value of
the extraction (a scaling parameter).

The desired form of this function will take the standard values of extraction expected
from the model (of the order of ≈ 200) and translate this into an acceptable increase
in population. Because the populations of hunter-gatherer groups were of the order of
20 − 60 [25, 26], very large increases or decreases would be unrealistic. As well as this,
with the relatively short update times within this model increases or decreases larger
than a few percent would be unlikely. Therefore, in the calculations of the change in
population the parameters used were ∆Pmax = 5 and Xc = 100. A graph of this function
is shown in Figure 3.8.
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Figure 3.8: An example of the change in population function with varying extraction
values.
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3.3.7 Removal of Tribes

If the population of the groups moves below a certain level (given by Pmin) then the
groups will be removed from the simulation. The area that was previously occupied by
that group will then be available for distribution among each of the remaining groups.

3.3.8 Splitting of Tribes

Within anthropology it is found that groups split for many reasons. These could be
because the group has become too large to support the society on which the group is
based, but it could also be for more unpredictable reasons such as conflict within the
group or environmental reasons. A number of examples of human groups being kept to
a certain size are discussed in Dunbar [26], for example.

Taking the central reason for splitting of a group to be the fact that population has
become too large the groups will split when they have a population above a certain
critical value (labelled Pc). However, due to the unpredictable nature of group division
this will not be a deterministic value, but instead will give a stochastic probability of
splitting given by,

ps =
1

2

(
tanh

(
P − Pc

2

)
+ 1

)
(3.11)

where P is the current population of the group. This function gives a probability
of splitting ps = 1

2 at the critical population. An example of this function is shown in
Figure 3.9.
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Figure 3.9: An example of the probability of a group splitting depending on its population.
Pc = 60.

If at a certain time step the groups do split then the centre of the new group moves
one space (in a random direction) away from the previous group location. The population
is split in half between the two new groups, and they each take the same strategy.
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Although the splitting of the population into exactly half for the two new groups
may not seem realistic, an unequal split would introduce a complication that would not
give any change in the dynamics of the system. The exact copying of the strategy from
the parent group to the two new groups (rather than two new mutations) was chosen
because the simulations are modelling change over large time scales indicating that the
current strategy would be the standard for this group.

3.3.9 Mutation of Strategies

Internal Mutation

As suggested in Section 3.1 a number of mutations (in this case 10) will be generated by
each group, and the extraction for each of these possible mutations calculated. The new
strategy (including the initial un-mutated strategy) that gives the highest extraction is
then selected. As well as the time scales mentioned in Section 3.1 it would be unrealistic
to have a large number of maladapted strategies within the landscape, and would also
hide many of the important results found within these dynamics.

Within these dynamics there will be two possible ways of mutating the strategies.
Either,

• Increase the tool complexity of one resource by one unit (with probability p+)

• Alter the strategy (with probability µ)

These two mutations are independent of each other and can occur together or sepa-
rately.

Increase in Complexity

To increase the complexity of a group one unit of complexity is randomly added to any
resource that already contains units of complexity. For example, if the complexity of the
opportunistic and scavenging resources are 2 and 3 respectively, and the complexities of
the small and large game are zero, then one of the opportunistic or scavenging resource
tool complexities will be randomly selected to increase by 1.

Altering the strategy

To alter the strategy either a unit of complexity or a fraction of the group assigned to
a resource can shift from one resource to another. The choice between these options is
stochastic, and will occur with equal probability.

When shifting a unit of complexity between two resources an important factor is that
the amount of complexity present in a resource must be either zero of greater than Zc.
Therefore, before shifting complexity between two different resources the first calculation
that needs to be made is how much excess complexity there is within the strategy. This
is the sum of the total number of units above Zc present for each resource.
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The next step is to choose a resource from which to move a unit of complexity and
a resource that this unit will be moved to. Selecting the resource to move a unit of
complexity from is simple, where any resource that contains units of complexity can be
selected.

Choosing the target resource is more difficult. It is possible for any resource that
has a unit of complexity to be a target for the shifted unit of complexity. However, an
‘empty’ resource (e.g one which contains no units of complexity) can only be filled if
there is enough excess complexity present in the system to fill the resource up to Zc. If
this is the case then this resource can then also be selected.

The final step is then to move the unit of complexity from the source to the target. If
the removal of a unit of complexity takes the amount of complexity within this resource
below Zc, then the remaining units of complexity are dispersed throughout the other
resources already containing units of complexity.

If the target resource initially has no units of complexity associated with it’s strategy,
then the excess present in the strategy can be randomly assigned to the new resource,
filling it up to Zc. If a resource is newly occupied by some units of complexity then 25%
of effort will be moved equally from the other occupied resources, in order that some
effort is allocated to the resource.

In summary, a unit of complexity is moved from one resource to another, but the
only moves allowed are those that keep the complexity in each resource above Zc.

The second mutation is the shift of effort. Here once again a source and a target
resource are selected, with the condition being that each must have a complexity larger
than Zc. Then 10% of the effort from the source to the target resource will be reallocated.
If the fraction is less than 10%, then as much effort as can be spared whilst leaving one
unit of effort harvesting the resource will be shifted.

3.3.10 Summary

In conclusion, the dynamics of the system are run with the following algorithm.

1. Randomly place groups across the landscape, and initialise their strategies.

2. Calculate the area of each group by finding all of the points on the landscape that
are closest to that group.

3. Calculate the extraction for each resource for each group.

4. Update the populations.

5. If the population is smaller than Pmin remove the group from the landscape.

6. If the extraction is negative, move the group one step in a random direction.

7. Stochastically split the groups.

8. Generate 10 possible strategy mutations.
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• Stochastically add a unit of complexity with probability p+.

• Stochastically alter the strategy with probability µ.

9. Select the highest extraction strategy from the present strategy and the 10 muta-
tions.

10. Repeat.

3.4 Results

The simulations were run in order to investigate the behaviour of these dynamics, with
the results represented in this section. The simulations were run on a landscape of size
L = 100, with the initial number of groups being set to 100, and the probability of each
kind of mutation having a probability of p+ = µ = 0.05. The minimum population is
set to Pmin = 20, with a critical population (for the splitting of the groups) of PC = 60.
The parameters that describe the resources will be those that are shown in Table 3.1.
Initially the distribution of the resources will be homogenous, with the resource densities
as given in Table 3.1. In the following simulations a time step will describe the process of
each group moving through points (2)-(9) in the algorithm described in Section 3.3.10.

The code for the simulations was written using C++, and the graphical displays
using the OpenGL and GLUT frameworks. The reason for this is that there are parts of
these simulations that are computationally intensive. Specifically, the calculation of the
tribal areas scales with the landscape area multiplied by the number of groups. With the
large landscape sizes and subsequent large numbers of groups a computationally efficient
language such as C++ is needed for simulated time steps of the order of a few seconds.
The OpenGL is then used in order to be able to observe these simulations in real time.

3.4.1 Introduction of a Mutation

The first simulation to be run is that of the introduction of a more diverse strategy, and
to observe if this mutation is able to spread throughout the landscape. Initially within
this simulation a strategy of three units of complexity are allocated to the opportunistic
resource, and five units of complexity to the scavenging, with this strategy being assigned
to every group. After 100 time steps a more diverse strategy is introduced at a random
point on the graph. This strategy increases the number of complexity units allocated to
the large game resource to 10 and the number of units allocated to the small game to
18. The fraction of effort between scavenging and small game is 0.25, with the remaining
half allocated to the large game. Four snapshots of the evolution of this simulation are
shown in Figure 3.10.

Figure 3.10 is an example of four screen shots of the dynamics at four different time
steps throughout the evolution. Each time step shows four pieces of information. The
top left (white) is the location of each of the groups on the landscape. The top right
(green) is the population density (the lighter the colour, the denser the population), and
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Figure 3.10: Introduction of a more diverse strategy after 100 time steps.

the bottom right is the total resource density (
∑4

j=1 r̄d
j) at each point (the lighter the

shade the more resources that are present).
The final panel (red, bottom left) is the strategy. As there are four resources the

strategy for each group will be represented by a binary number (depending on which
resources are being accessed by the group). As there are four resources this number
will therefore range between 0 and 15. The higher the number, the more resources that
are begin accessed, and the lighter the colour in this panel. A table with the occupied
strategies and the strategy number that this relates to is shown in Appendix A. The
chronological order of each of the snapshots will move from left to right, and then from
top to bottom.

In Figure 3.10 the initial position of the groups is shown in the top left. Here it
can be seen that the resources are homogeneously spread across the whole landscape (as
they will remain) and the strategy is the same for each group. It can also be noted that
the area of each group is approximately equal. This is due to the homogenous strategy,
and so therefore there is an equal optimal area for all groups. The population density
between each group is also approximately the same, as with the same area and strategy
they will also support approximately the same tribal population.

The top right snapshot then shows the introduction of the more diverse strategy at
a random point. The next two panels then show this strategy splitting and spreading
throughout the landscape, before it comes to completely dominate. One characteristic
that can be seen with the more diverse diet is that the area is much smaller than that
of the less diverse strategy (and therefore the population density is higher).
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The question is, is it just the introduction of a new strategy that is able to spread,
or is it only certain kinds of strategies? The next simulation (shown in Figure 3.11) has
taken a landscape populated with the same diverse strategy as in the previous simulation.
It has then introduced a less diverse strategy at 100 time steps, in order to see if this
less diverse strategy is able to spread in the same way.

Figure 3.11: Introduction of an less diverse strategy after 100 time steps.

As can be seen from Figure 3.11 the newly introduced less diverse strategy disappears
almost immediately, and does not split or spread.

Why does this spread of the more diverse strategy occur? The more diverse strategy
will push the population of the group above the critical value, which will then dramati-
cally increase the probability of the group splitting. Once this occurs, due to the diverse
strategy the group will be able to survive in a smaller area, and may push against those
groups with a less diverse strategy. These groups will not have the ability to survive
with their current populations too high to be sustained by a smaller area, and so their
populations will shrink. Eventually, the pressure of the other groups will cause the pop-
ulation to become too small, and so the less diverse group will disappear. This process
will then repeat until the entire landscape is populated by the more diverse groups.

Having now observed what happens when a single group is deterministically mutated,
the next simulations will allow each group to mutate at each time step.
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3.4.2 Evolutionary Dynamics

The dynamics will now be run from a simple strategy, with mutations allowed for all
groups at each time step. The initial strategy for each of the groups will be that described
in Section 3.3.3. In this simulation the landscape has the same resource density for each
of the resources at every point. The results of allowing the dynamics to run over 2000
time steps are now shown in Figure 3.12.

Figure 3.12: Evolution of the groups on a full homogenous landscape.

As can be seen from Figure 3.12 the groups all start out with low population density,
large areas and the same strategy. However, as time moves on the population density
has increased and some of the groups move into the large game resource as well as
opportunism and scavenging. As time increases the more dominant strategy of the large
game hunting spreads, and causes the population density to increase, with a few groups
beginning to supplement their diets with small game. Finally, in the last two panels
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is can be seen that the population density increases, along with the number of groups,
and the most diverse strategy comes to dominate the entire landscape. In order to
observe how the groups mean population density and strategy change over time these
were averaged over all of the groups, with the results plotted in Figure 3.13.
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Figure 3.13: Evolution of the population density and strategy of the full, homogenous
landscape (first 400 time steps).

From Figure 3.13 it can be seen that the change from one strategy to the next is
very rapid, and it does not take long for a more diverse strategy to spread throughout
the landscape. Once the most diverse strategy has been found, a period of equilibrium
follows from which the groups cannot improve. It can also be seen from the mean strategy
that there are three distinct phases within the simulations. The first is the scavenging
phase, the second is the large game, and the third is the small game phase.

The question is, under what conditions is this diverse strategy a good one? Is it
always a good idea for the groups to diversify, or is it only if there is enough of each
resource to justify this. In order to test this the density of small game was now reduced
to rsmall game

d = 0.0100 across the whole landscape. The dynamics were then run once
again from the same initial conditions as in the previous simulations. This gave the
evolutionary dynamics shown in Figure 3.14.

From Figure 3.14 it can be seen that the groups start off scavenging before the large
game dominated strategy begins to evolve and spread. However, at no point do any of
the groups evolve into a more diverse strategy where they are able to supplement their
diet with small game. This is also shown in Figure 3.15, where the mean population
density and strategy remain at much smaller levels than in Figure 3.13. From these
simulations it can be seen that diversification of strategy is of benefit to the groups, but
will only occur if there is enough of a resource in existence to justify the switch.

These simulations have all been performed on homogenous landscapes, which whilst
useful are not particularly realistic. A more realistic landscape would be one where
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Figure 3.14: Evolution of groups on a reduced small game resource density homogenous
landscape.
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Figure 3.15: Evolution of the population density and strategy of the reduced small game,
homogenous landscape.

there is more of one resource in a particular location than at another. These ideas will
be explored in the next two sections.
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3.4.3 Split Landscape

The first heterogenous landscape to be investigated will be that of the split landscape.
Here there will be a plentiful southern hemisphere compared to a more barren north.
More specifically, the southern half of the landscape will contain rsmall game

d = 0.0175,

whilst the northern half will have a smaller amount of small game, or rsmall game
d =

0.0100. Once again the initial conditions will be those of one unit of complexity in the
opportunistic and scavenging resources. The dynamics were now run with snapshots of
the landscape shown in Figure 3.16.

From Figure 3.16 it can be seen that some very interesting behaviour emerges. During
the first moments the landscape takes on the standard homogenous scavenging to large
game diversification as has been previously observed. However, after this the evolution
of the strategies begins to separate between the two hemispheres of the map. In the
northern hemisphere the landscape continues to look homogenous in the large game, but
the south begins to fill with a more diverse small game supplemented strategy. So far in
these dynamics the behaviour is exactly that from Figures 3.12 and 3.14, where it is as
if the two landscapes have been stuck together, as would be expected.

However, as can be seen from panels 5-7 in Figure 3.16 after this the groups with the
more diverse strategy then begin to move up into the northern hemisphere, and eventu-
ally push the groups with the less diverse strategy towards extinction. This behaviour
shows that even though there is not enough small game in the northern hemisphere to
cause a diversification of the strategy of the groups already present there is enough to
support a group that has been able to develop this strategy elsewhere. The evolution of
the strategy shown in Figure 3.17 is able to show how the more diverse strategy slowly
spreads into the north and steadily increases the mean strategy across the landscape.

It should be noted here that the only differences between the groups within this
simulation is location. The groups in the northern half of the map are perfectly capable
of developing a more diverse strategy. However, due to the lack of certain resources it
does not pay for them to do so. The reason for their extinction is that the strategy that
they have developed is not able to compete with a more diverse strategy, not because
these groups are less capable.

3.4.4 Graded Landscape

To find if the results found in Section 3.4.3 are an artefact of the binomial form of the
landscape or if this is a more general result a continuous change in the resource density
will be implemented. In this section the resource density will be varied in a gradual way,
from a maximum value in the bottom left hand corner of the landscape to a minimum
value in the top right. In this case the resources were varied using the following formula,

rd =
rmind − rmaxd

L
√

2
D + rmaxd (3.12)

where rmaxd and rmind are the largest and smallest values that the resource density
will take and D is the Euclidean distance from the point of resource density maximum.
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Figure 3.16: Evolution of the groups on a split landscape.

In these simulations rmind = 0.0100 and rmaxd = 0.0175 Running these dynamics gives
the snapshots shown in Figure 3.18.

In Figure 3.18 it can be seen that the dynamics start off as in the previous examples,
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Figure 3.17: Evolution of the population density and strategy of the split landscape.

with the initial strategy being supplemented with large game across the whole landscape.
As the dynamics move on it is found that in a region of high density small game the
strategy of two groups become more diverse. This strategy then spreads quickly into the
areas of higher density, and much more slowly into the areas of low density, before once
again spreading across the whole landscape. The speed at which this spread occurs is
shown in Figure 3.19.

3.4.5 Variable Resource Parameters

In the previous simulations it has been shown that the density of the resources is a large
factor in the evolution of the diets and strategies used by these groups. This section will
now begin to investigate how sensitive the system is to the form of the resources. And
specifically, does it matter how high the minimum complexity is to access the resource.
If this is changed how will this change the dynamics?

To find out how the resource parameters affect the dietary evolution of the groups
the dynamics will be run on a homogenous landscape with the full resource density.
For each run a different value of the parameter Zc in the large game resource will be
used, with the final mean strategy measured to see what the final state of the system is.
Running this gave the results shown in Figure 3.20.

What the results in Figure 3.20 show is that at low values of Zc the final dominant
strategy is a diverse one spread between all of the resources. However, at a critical
value of Zc the final strategy drops to one that is much less diverse. Interestingly, this
final strategy does not involve the large game, but is instead wholly opportunistic and
scavenging.

What is the reason for this? When the strategies are mutating, in order to access a
resource there needs to be enough excess within the complexity units allocated to other
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Figure 3.18: Evolution of the groups on a graded landscape. The maximum resource
density is found in the bottom left corner.

resources in order to diversify. When Zc is low for the large game, there is more than
enough excess in the opportunistic and scavenging resources with which they are able to
make this leap. Once the strategy is diversified to the large game, then the dynamics can
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Figure 3.19: Evolution of population density and strategy for a graded landscape.
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Figure 3.20: Final mean strategy with increasing large game minimum complexity.

continue to the final strategy spread across all resources. However, if there is not enough
excess present in the first two resources to diversify into large game, as happens when
Zc > 9, then the jump cannot be made and the system is locked in to the opportunistic
and scavenging strategy.

What these results are therefore telling us is that the large game resource is acting
as a bridge across to the small game resource. Although there is a lot of small game
present within the landscape, the groups are unable to become complex enough (even
though in theory they could) due to a lack of access to the large game, and therefore
support enough complexity to move through the intermediate technologies.

54



3.4. RESULTS CHAPTER 3. MODELLING THE BSR

3.4.6 Complexity Ceiling

It has been shown that the form of the resources are a central factor in establishing the
optimal strategy and how diverse that final strategy is. What has not been established
here is the driving force behind the change in strategy. Is the driving force an increase
in population, or is it that a chance improvement in technology can lead to a whole new,
improved strategy? Also, what are the effects of the results found in Chapter 2? If a
glass ceiling is imposed onto the maximum number of complexity units in this model,
how does this effect the evolution of the dynamics?

In order to test this an artificial complexity ceiling will be placed within the simu-
lations. This ceiling will limit the total number of complexity units available to each
group, and will be raised every 50 time steps. This ceiling will initially start at CT = 2,
and then be raised by 2 units each time. Running these dynamics on a full homogenous
landscape gave the results shown in Figure 3.21.
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Figure 3.21: Mean complexity, population density and strategy for the artificial increase
in the complexity ceiling.

If Figure 3.21 is compared to Figure 3.12 then this shows that including an artificial
complexity ceiling does indeed slow the evolution to a fully diversified strategy across all
resources. This suggests that it is the total complexity that is the driving force behind
the diversification of strategy. In order to test this idea further each simulation was now
run for 1000 time steps with an artificial complexity ceiling included. The final strategy
was then measured in order to demonstrate the final state of the groups. The results for
this are shown in Figure 3.22.
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Figure 3.22: Final mean strategy on a landscape for various complexity ceilings.

As can be seen in Figure 3.22 for low complexity ceilings the mean final strategy
suggests diversification only up to large game. However, once the complexity ceiling
rises above a certain value (in this case CT ≈ 20) the final strategy is then found to have
diversified to small game. This suggests that it is the total complexity for a group that
will determine the final strategy, and that this increase in total complexity is the driving
force behind the diversification.

3.5 Discussion

A number of interesting results can be gleaned from the simulations that have been
performed in Section 3.4. The first of these is that on a landscape that is populated by
many different resources the most dominant strategy is one that is spread among many
of them. Whilst it is possible for groups that have a less diverse strategy to survive, as
soon as a more diverse strategy arrives it is able to flourish within this landscape, and
push less diverse strategies towards extinction. It was also seen that the spread of these
new, more diverse strategies happens very quickly.

From the simulations performed in Section 3.4.6 it can be seen that the increase in
population density is a product of the shift to diversification, and not the cause. Instead,
the driving force behind the change to a more diverse strategy appears to be the increase
in complexity units. It is this steady increase that seems to push the optimal strategy
towards large and small game. However, as can be seen in Figure 3.20 this will only
occur if the technology needed to access a particular resource is low enough that the
strategy is able to shift across. If this value is too high, this also precludes strategies
diversifying further, showing that some resources can be seen as a bridge to those that
are more complex.

This last point has implications for the final shift at the end of the Upper Palaeolithic
to agriculture. This shift is generally considered to have happened within the fertile
crescent, where there were many resources available. One possibility is that it would be
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too difficult to go from a low complexity technology straight to a high complexity one,
and that what is needed in between are other bridging resources. This could explain
why agriculture was first found in a region with many varied dietary niches.

Following from this, it was found that the density of the resources was a major
determining factor in the evolution of the groups strategies. If some of a resource is
present, then it will not necessarily be of use to a group unless it is there in a large
enough amount. Therefore, the strategy may only diversify if there is enough of the
resource present to justify this. This does not mean that this resource is not useful,
and if another strategy moves into existence which does use this resource, then it will
then have an advantage over the groups with the simpler strategy, and may push them
towards extinction.

This could point towards a reason for the extinction of the Neanderthals. It has
been suggested that one reason for the disappearance of this species is that modern
humans moved towards their territory, and there was a competition for resources. It was
the inability of the Neanderthals to supplement their diet with more varied (but harder
to extract) resources that meant that they were therefore unable to compete with the
modern humans.

In conclusion this work has demonstrated that in the evolution of human diet the
form of the resources present at any point on the landscape were key. These resources
were able to act as a bridge to a more varied and complex diet, and this in turn led to
more successful dietary strategies.

57



3.5. DISCUSSION CHAPTER 3. MODELLING THE BSR

58



Chapter 4

Conclusions

From the results in Chapters 2 and 3 it can be seen that many aspects of Palaeolithic
culture and diet have been successfully modelled within this thesis. Beginning with novel
models of cumulative culture and moving on to investigating the particular situations
in which the evolution to a broader diet is possible, these abstract models have given
valuable insights into the possible mechanisms for change in pre-agriculture societies.

4.1 Summary of results

This work began by investigating the mystery of cumulative culture within Palaeolithic
humans. In Section 2.3.1 a cumulative culture model was built that could reach equi-
librium, and therefore generate results that were independent of the rate at which the
base units of culture were combined. These models were able to show that within the
dynamics of maximum time and fidelity of transfer cumulative culture does exist, and
that the complexity of the culture increases with time up to a maximum level. This
evidence of cumulative culture continues with the simulations in Section 2.3.3. These
simulations agreed with the findings of Lewis and Laland [1] that the rate at which tech-
nologies survive is the most important factor, followed by the rate at which technologies
combine.

The results of cumulative culture were also present within the simulations run on
the geographical model. Within the results in Section 3.4.5 it can be seen that as
the maximum complexity increases, the culture of the humans became more complex,
and passed on more complex cultures between generations. Within all of the examples
of cumulative culture it can be seen that you cannot make large leaps between very
simple and very complex technologies, and so this work suggests that any very complex
technology or diet must be built on simpler ones of similar complexity.

As well as cumulative culture the models within this thesis were consistently able
to replicate the glass ceiling phenomenon. The central results demonstrating the glass
ceiling were found in the fidelity model in Section 2.3.2. Here it can be seen that exactly
the same results as found by Andersson [8, 10] were produced, but with an algorithm
that was closer to that of the model by Lewis and Laland [1]. Even though the link
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between utility and complexity was severed the glass ceiling effects were found for the
complexity of the technology, although none were found for the utility of the resources
accessed.

In Section 2.3.4 it was also seen that an analytical solution for the glass ceiling can
be reproduced, with the same proportionality as that found by Andersson. However,
this result has also been extended by including the rates of combination and break down
of technologies, showing that the glass ceiling can be applied in a much wider way than
was previously thought. The effect of applying a glass ceiling can also be seen in the
geographical model in Section 3.4.6. Here it was shown that even though the glass ceiling
is artificially placed onto the dynamics the simulations still lead to the results that you
would then expect in the archaeological record.

One large failing of the fidelity model shown here is that it did not show a broadening
of the tools across each of the resources over time, but instead shows an allocation to the
lowest complexity resource that would be expected by chance. It is only when the more
advanced model of Chapter 3 is built, and specifically when this model is allowed to evolve
from simple beginnings in Section 3.4.2, that the desired evidence of the broadening of
the diet is then found.

When the model is able to reproduce the broadening of the diet it is also able to
produce many of the facets found in the BSR. These include the observation that the
broadening of the diet tends to occur in regions of plenty, rather than those regions where
there is a scarcity of resources. This result was also demonstrated in Sections 3.4.3 and
3.4.4 where the leap to a broader diet occurred within the regions on the landscape
with higher resource density. Finally, it was found that the broadening of the diet could
be restricted by imposing a ceiling on the amount of complexity allowed per group, as
shown in Section 3.4.6.

Along with the broadening of the diet this model was also able to show the ‘budding
off’ of the more successful groups as suggested by Flannery [15]. The first time this
phenomenon is found is in Section 3.4.1 when, with the introduction of a more diverse
strategy, the population of this group increases. After this point the group splits, and
then continues to do so until the more diverse strategy has enveloped the whole land-
scape. This can also be seen in the results of Section 3.4.2 where on the initial evolution
of a more diverse strategy daughter groups are created that move away from the initial
point of inception. This budding off of daughter groups into the regions of less dense
resources can be seen more explicitly in the results of Sections 3.4.3 and 3.4.4, where on
the evolution of a more broad strategy these groups then bud off and push into regions
of less dense resources, as predicted by the BSR.

From these results a possible mechanism for the elimination of the Neanderthals
and other early humans can now be posited. If the Neanderthals were mainly based in
Eurasia with a diet that was almost exclusively large game, a group with a diet that
was broader than this may be able to out compete these large game dependent societies.
This is what can be seen to be happening in Section 3.4.3. The groups in the northern
hemisphere are unable to create a more diverse diet, and so when the groups in the
southern hemisphere do so they are able to squeeze the less diverse groups into smaller
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areas, until eventually they are eliminated.
This could point towards the reasons behind the extinction of the Neanderthals. As

suggested by Fa et al [23] it was the inability of the Neanderthals to catch small game
that could have led to their demise through extra competition for other resources, as
shown in Section 3.4.3 and 3.4.4. An important point to note here is that the groups in
the regions of lower density resources have a less broad diet not because they are less
able, but because it is not in their best interests to move to a more broad diet. It is
only because of a broader diet group arriving in this region that this strategy does not
prove optimal. This work is therefore able to show that the Neanderthals may not have
needed to have lower intelligence in order for their terminal fate to befall them.

Finally, these simulations were designed to investigate the phenomenon of punctuated
equilibrium found within the archaeological record. Both of the models developed within
this thesis were able to show this phenomenon in a number of different scenarios. The
first representation of punctuated equilibrium was seen in Section 2.3.1. Here in Figure
2.5 it can be seen that although the mean tool complexity is stable the maximum value
oscillates between a wide set of values. This aspect of the model produced in Chapter 2
can explain the isolated cases of increased complexity in the archaeological record.

Another example of the punctuated equilibrium is found with the rising mean com-
plexity with rising fidelity, as shown in Section 2.3.2. It can be seen in the results here
that as time moves on there are periods of stasis where the mean complexity changes by
a small amount, followed by very large leaps in the mean complexity as the fidelity is
increased.

However, it is not just the fidelity model that is able to demonstrate punctuated
equilibrium. In Section 3.4.2 it can be seen that there are periods when there are
plateaus followed by increases in both the population density and the strategy of all of
the groups involved within the simulation. This is particularly noticeable within the
strategy plots, results which would certainly show up in the fossil record as punctuated
equilibrium. It was also found within this model that the punctuated equilibrium could
be introduced artificially in Section 3.4.6, as only when the total complexity has risen
above a certain level would the next stage in the broadening of the diet be found. In
each of these examples it can also be seen that the change between each period of stasis
is rapid.

The results from Section 3.4.4 tell a slightly different story. Here the punctuated
equilibrium is not evident, and so the increase is gradual. Therefore, in order for this
phenomenon to be observed within these models the resources need to be distinct in
their densities across the landscape.

4.2 General findings

In Section 4.1 a number of interesting phenomena were noted from the two models
built within this thesis. The question is, what are the general mechanisms behind these
results?

The first important mechanism that can be seen from these results is the spread of a
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superior strategy within the geographic model. More specifically, the kinds of strategies
that have been found to be superior vary with both the density and the parameter values
selected for the resource, but in each case when a broader strategy exists it is able to
spread throughout the landscape. From the results it is seen that a broader strategy is
able to survive in a smaller area, as the prey lost in a reduced area is supplemented by the
extra prey that can be consumed. Consequently, as the groups ‘bud off’ from the parent
group they can push the less broadly dieted groups to the edge of the landscape, and
reduce their area. This causes a reduction in the amount of prey that can be harvested,
until the group is eliminated. In other words, the replacement by superior strategies of
less superior ones is caused by encroachment into their tribal area. It can also be seen
that the resources are used as a bridge to the higher complexity resources, and taking
this bridge away will lead to groups being stuck in a particular niche.

The second mechanism that is found across this whole thesis is the relationship
between the increase in fidelity and increased complexity, leading to more complex tools
and broader strategies. In raising the fidelity of transfer between generations many
more complex, and useful, tools are able to transfer to the next generation, and once the
complexity ceiling has been raised above a certain level this can lead to a broadening of
the diet.

From all of the results that have been found it can be seen from these simulations that
it is the fidelity of transfer, and by extension the number of complexity units available
to the groups that is the real driving mechanism. The broadening of diet and increase
in population density come after this increase in complexity, and not before. After the
fidelity the second most important factor is then the form of the resources, or the rate
of technology creation, but if a culture is stuck underneath the glass ceiling then these
factors will not move the cultures above it for long.

The central theme running through this thesis has been, why did human culture
change at all? If the hunter-gatherer societies were able to support themselves through
their hunting strategies for hundreds of thousands of years, why did they then change
to supplementing their diet with small game? And why ultimately did they then move
to agriculture?

From this work it appears that the answer to this is raised fidelity of transfer, and
from this improved technology. As technology improves this pushes the Palaeolithic
societies away from a position of equilibrium, and causes them to over harvest certain
species, and increase their population. The only way to get away from this was to then
supplement their diets with extra resources, before the process started all over again.

4.3 Future work

This author feels that the geographical model developed in the second half of this thesis
shows great promise in its use as an abstract model for the evolution of pre-agriculture
humans. Future work could certainly include parts of the studies on fidelity, and transfer
of knowledge between generations. However, external factors could also be introduced.
Barriers within the landscape could give a more realistic topology of the geography that

62



4.3. FUTURE WORK CHAPTER 4. CONCLUSIONS

these groups existed in, and variable resources could model climate change to observe
how this may have affected the broadening of the diet.
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Appendix A

Strategy Values

This table shows the resources allocated to a strategy and the strategy value that this
corresponds to.

Table A.1: The strategies and their values.

Opportunistic Scavenging Large game Small game Strategy Value

Yes No No No 1

No No No No 2

Yes Yes No No 3

No Yes Yes No 4

Yes No Yes No 5

No No Yes No 6

Yes Yes Yes No 7

No Yes No Yes 8

Yes No No Yes 9

No No No Yes 10

Yes Yes No Yes 11

No Yes Yes Yes 12

Yes No Yes Yes 13

No Yes Yes Yes 14

Yes Yes Yes Yes 15
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