
DF

Predicting Customer Behavior Using
Adversarial Imitation Learning
Master’s Thesis in Complex Adaptive Systems

Anton Matsson
Victor Olsson

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2020





Master’s Thesis 2020

Predicting Customer Behavior Using
Adversarial Imitation Learning

Anton Matsson
Victor Olsson

DF

Department of Electrical Engineering
Chalmers University of Technology

Gothenburg, Sweden, 2020



Predicting Customer Behavior Using Adversarial Imitation Learning
Anton Matsson and Victor Olsson

© Anton Matsson and Victor Olsson, 2020

Supervisor: Adam Andersson, Smartr
Examiner: Lennart Svensson, E2

Master’s Thesis 2020
Department of Electrical Engineering
Chalmers University of Technology
SE-412 96 Gothenburg

Cover: Distribution of the last week’s actions given that no purchase is made today.
The blue and orange bars correspond to the average purchasing behavior of an agent
trained with GAIL and 100 customers in the given data set, respectively.

Typeset in LATEX, template by David Frisk
Gothenburg, Sweden, 2020

iv



Everything that glitters is not gold.

v





Predicting Customer Behavior Using Adversarial Imitation Learning
Anton Matsson and Victor Olsson
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Over the past years, there has been a rapid increase in the amount of created data.
Many companies utilize customer data to improve customer experience and increase
revenue. A concrete example is recommender systems that provide customers with
personalized product recommendations given the customers’ previous purchasing
behavior. Reinforcement learning (RL) can be used to optimize such a system. To
prevent a suboptimal RL algorithm from interacting with real customers, the algo-
rithm can advantageously be trained in a realistic simulator of the real environment.

While current work put little emphasis on the explicit behavior of simulated cus-
tomers, we study the possibility to simulate realistic customer purchasing behaviors
in more detail. To be precise, we compare the performance of two different imitation
learning algorithms: generative adversarial imitation learning (GAIL) and adversar-
ial inverse reinforcement learning (AIRL). We train the algorithms on synthetic data
in the form of time-series of daily purchases of consumer goods. In order to assess
whether the simulated purchasing behaviors are realistic, we develop a method for
converting time-series into distributions. The distributions are then compared using
the Wasserstein metric.

We find that the performance of the algorithms is highly dependent on the choice of
state representation. When using a state that simply consists of purchase history,
both algorithms fail to learn individual behaviors. By extending the state with a
one-hot vector that encodes individual customers, we see a great improvement in
performance. The distribution of customer purchasing behaviors is in fact formed by
mixture components that represent individual behaviors. To take this into account,
we propose matched mixture component trained GAIL (MMCT-GAIL). Using this
method, we manage to predict individual customer behaviors with faster conver-
gence. Additionally, MMCT-GAIL enables the one-hot vector to be replaced with
additional customer-specific purchase history, without compromising performance.

Keywords: imitation learning, reinforcement learning, inverse reinforcement learn-
ing, PPO, GAIL, AIRL, machine learning, artificial intelligence.

vii





Acknowledgements
First of all, we would like to thank our supervisor at Smartr, Adam Andersson,
for his guidance, support and never ending enthusiasm throughout the project. We
would also want to thank our supervisor at Chalmers, Lennart Svensson, for his
advice and continuous assistance.

Furthermore, we want to give a large thank you to Ebba Josefson Lindqvist at AI
Innovation of Sweden for giving us access to their computing resources. Also, thanks
to Anders Logg and Mathematical Sciences at Chalmers for giving us access to their
computational resources (Ozzy). We also appreciate the help received from Carl
Lundholm to get started with Ozzy.

Finally, we want to thank both of our families for their everlasting support during
our studies.

Anton Matsson and Victor Olsson, Gothenburg, June 2020

ix





Contents

List of Figures xiii

List of Tables xvii

Summary of Notation xix

1 Introduction 1
1.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminaries 5
2.1 Artifical Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Multilayer Perceptron . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Generative Adversarial Networks . . . . . . . . . . . . . . . . 7
2.1.3 Wasserstein GAN . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 Wasserstein GAN with Gradient Penalty . . . . . . . . . . . . 9

2.2 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Policy Gradient Methods . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Trust Region Policy Optimization . . . . . . . . . . . . . . . . 12
2.2.4 Proximal Policy Optimization . . . . . . . . . . . . . . . . . . 14

2.3 Imitation Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Behavioral Cloning . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Problem Statement of IRL . . . . . . . . . . . . . . . . . . . . 16
2.3.3 Feature Expectation Matching . . . . . . . . . . . . . . . . . . 17
2.3.4 Maximum Entropy IRL . . . . . . . . . . . . . . . . . . . . . 18
2.3.5 Maximum Causal Entropy IRL . . . . . . . . . . . . . . . . . 19
2.3.6 Generative Adversarial Imitation Learning . . . . . . . . . . . 20
2.3.7 Adversarial Inverse Reinforcement Learning . . . . . . . . . . 21

3 Method 23
3.1 Customer Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Comparing Customer Behaviors . . . . . . . . . . . . . . . . . . . . . 26
3.3 MDP Representations . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 Basic Representation . . . . . . . . . . . . . . . . . . . . . . . 28

xi



Contents

3.3.2 One-Hot Vector Extension . . . . . . . . . . . . . . . . . . . . 31
3.3.3 Customer-Specific Days Extension . . . . . . . . . . . . . . . . 31

3.4 Standard Training of GAIL and AIRL . . . . . . . . . . . . . . . . . 32
3.5 MMCT-GAIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.6 Related Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Experimental Evaluation 37
4.1 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Standard Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 Basic State Representation . . . . . . . . . . . . . . . . . . . . 38
4.2.2 One-Hot Vector Extension . . . . . . . . . . . . . . . . . . . . 43
4.2.3 Influence of One-Hot Encoding . . . . . . . . . . . . . . . . . 44
4.2.4 Customer-Specific Days Extension . . . . . . . . . . . . . . . . 46

4.3 MMCT-GAIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.1 Influence of CS days . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4.1 Evaluation Metric . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4.3 State Representations . . . . . . . . . . . . . . . . . . . . . . . 51
4.4.4 Final Comments . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Conclusion 55
5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Bibliography 57

A Appendix A I

B Appendix B III
B.1 Expert Behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III
B.2 Supplementary Figures . . . . . . . . . . . . . . . . . . . . . . . . . . VII

xii



List of Figures

3.1 A sample from the original data set. The sample is a multivariate
time-series that represents a particular customer’s purchasing behav-
ior over a time period of 50 days. The customer can buy items from
six different product categories. The height of the bars shows how
much money the customer has spent on a particular product on a
particular day. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 (a): The purchase probability over a time period of 50 days for a
particular customer in the underlying simulation model. Green and
red markers indicate purchase and no purchase, respectively. (b):
The aggregated form of the original data in Figure 3.1. (c) and (d):
An indication of how gender and age impact a customer’s purchasing
power in the synthetic data set. . . . . . . . . . . . . . . . . . . . . . 25

3.3 Samples from two different customers in the aggregated data set. . . . 26
3.4 The auto-correlation of two time-series corresponding to two different

customers in the data set. . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Conditional categorical distributions of customer behaviors for two

different customers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.6 The unconditional distribution corresponding to the conditional dis-

tributions in Figure 3.5. . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.7 The Wasserstein distance between the distributions for the different

customers in Figure 3.6 as a function of the length of the time-series
used for generating the distributions. . . . . . . . . . . . . . . . . . . 29

4.1 A comparison of the ten first experts in the data set. The heatmap
is created by sampling time-series for each of these experts and then
converting the time-series into distributions, which are compared us-
ing the Wasserstein metric. In particular, we use the unconditional
distributions, see Figure 3.6. . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 The average purchasing behavior of the agent compared to the average
purchasing behavior of 100 experts, using the basic state representa-
tion. Both GAIL and AIRL learn a policy that enables the agent to
behave very similarly to the true average behavior. . . . . . . . . . . 40

xiii



List of Figures

4.3 A comparison between the agent (blue bars) and the second expert
(orange bars) using a basic state representation. Neither GAIL nor
AIRL learns a policy that enables the agent to behave as the second
expert. Instead, the agent imitates the behavior of the average expert
(green bars). Figure B.11 in Appendix B shows a similar comparison
with the ninth expert. . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Using the basic state representation, both GAIL and AIRL fail in
learning a policy that predicts individual purchasing behaviors. The
agent is initialized into a state from each of the experts (”Agent 1”,
”Agent 2”, etc.) but always behaves as the average expert. . . . . . . 42

4.5 The training process for GAIL and AIRL using the basic state repre-
sentation. The policy network is regularly saved during the training.
At each evaluation, the agent is initialized into states from each expert
as well as 50 new customers. Executing the policy, the corresponding
distributions are compared using the Wasserstein distance. . . . . . . 42

4.6 A comparison between the agent and the second expert, when ex-
tending the state with a one-hot vector. Figure B.12 in Appendix B
shows a similar comparison with the ninth expert. . . . . . . . . . . . 43

4.7 A comparison between the agent and all experts. Note that the diag-
onal elements are prominent, meaning that the learned policy enabled
prediction of individual behaviors. These heatmaps should be com-
pared to the heatmap in Figure 4.1, where experts are compared to
each other. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.8 The training process of GAIL and AIRL when extending the state
with a one-hot vector. In comparison with the results obtained with
the basic state, wee see a clear improvement in the predictions of
individual behaviors. Interestingly, the curves for experts and new
customers follow each other, meaning that the algorithms perform
just as well on new customers as on experts in the training data set. . 45

4.9 Predicted customer behaviors of two new customers when replacing
the one-hot vector with the zero vector. The actual behaviors of the
customers are included as a reference. . . . . . . . . . . . . . . . . . . 45

4.10 Training progress for GAIL and AIRL when extending the basic state
with CS days. The results obtained using one-hot encoding are in-
cluded as a reference. We see that neither GAIL nor AIRL learn
individual behaviors. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.11 A summary of the results obtained with MMCT-GAIL using different
state representations. The results obtained with GAIL are used as
references. (a): Using a basic state representation, MMCT-GAIL
fails in learning any individual behaviors, but the distance to the
average expert steadily decreases during the training process. (b):
Using dummy variables, MMCT-GAIL successfully learns individual
behaviors. Note in particular that the performance is better than
the reference. (c): MMCT-GAIL also learns individual behaviors
when the dummy variables are replaced with CS days. This result is
especially interesting since GAIL fails in doing so. . . . . . . . . . . . 48

xiv



List of Figures

4.12 A summary of the results obtained with different state representa-
tions: the basic one (blue lines), the one-hot encoding extension (or-
ange lines) and the CS days extension (green lines). Only the perfor-
mance on new customers is considered. . . . . . . . . . . . . . . . . . 49

4.13 The influence of the length of the purchase history as well as the
number of CS days when predicting the behavior of new customers. . 50

4.14 The average Wasserstein distance between 50 new customers and the
closest expert in the expert data set as a function of the number of
experts included in the expert data set. . . . . . . . . . . . . . . . . . 52

B.1 The behavior of the first expert in the training data set. . . . . . . . III
B.2 The behavior of the second expert in the training data set. . . . . . . III
B.3 The behavior of the third expert in the training data set. . . . . . . . IV
B.4 The behavior of the fourth expert in the training data set. . . . . . . IV
B.5 The behavior of the fifth expert in the training data set. . . . . . . . IV
B.6 The behavior of the sixth expert in the training data set. . . . . . . . V
B.7 The behavior of the seventh expert in the training data set. . . . . . . V
B.8 The behavior of the eight expert in the training data set. . . . . . . . V
B.9 The behavior of the ninth expert in the training data set. . . . . . . . VI
B.10 The behavior of the tenth expert in the training data set. . . . . . . . VI
B.11 A comparison between the agent (blue bars) and the ninth expert

(orange bars) using a basic state representation. . . . . . . . . . . . . VII
B.12 A comparison between the agent (blue bars) and the ninth expert

(orange bars) using one-hot encoding. . . . . . . . . . . . . . . . . . . VIII
B.13 An overview of the training process for GAIL using one-hot encoding.

The performance is evaluated on new customers. . . . . . . . . . . . . IX
B.14 An overview of the training process for MMCT-GAIL using one-hot

encoding. The performance is evaluated on new customers.. . . . . . X

xv



List of Figures

xvi



List of Tables

4.1 The ground truth behaviors of the first five experts and the corre-
sponding predictions when the initial purchase history consists of only
zeros. The purchase ratios are calculated for sequences of length 5000. 46

A.1 Hyper-parameters used in the implementations of the AIL algorithms. I

xvii



List of Tables

xviii



Summary of Notation

A function to be optimized is denoted objective function. However, when the ob-
jective function is to be minimized we also use the term loss function. We use these
terms interchangeably in this work. Moreover, we write real valued vectors using
bold lower case symbols.

:= equal by definition
P(X = x) probability that a random variable X takes the value x
p(x) probability distribution over x
x ∼ p random variable x sampled from p
Ex∼p[x] expected value of random variable x
s state
a action
s′ next state
τ trajectory of states and actions
π policy
R(s, a) reward function
V π(s, a) value function for policy π
Aπ(s, a) advantage function for policy π
Qπ(s, a) state-action value function for policy π
λ discount factor
Gt discounted return at time step t
φ reward features
µ feature expectations
L objective function
ρ occupancy measure
H entropy
σ activation function
α learning rate
D training data set

xix



Summary of Notation

xx



1
Introduction

The amount of created data has rapidly increased over the past years as a result
of digitalization. Consequently, many companies have realized that customer data
is a valuable asset. Using customer data wisely can provide added value for both
the customers and the company. As an example, consider recommender systems
that provide customers with personalized recommendations. Most likely, you have
noticed that, e.g., YouTube, Netflix and Spotify provide you with recommendations
on videos, movies and songs based on your preferences, i.e., the data you create,
when using these media services. An intelligent recommender system can improve
your experience as a customer by for example letting you explore new songs that
you would not have discovered on your own.

Recommender systems are also used in the retail industry. E-commerce platforms
like Amazon and Alibaba use customer data to optimize their search engines in or-
der to improve the customer experience and increase the revenue of the company.
Naturally, such a recommender system is based on an interaction between the cus-
tomer and the system. The customer sends a search request to the system which in
turn displays a number of commodities that are intended to match the customer’s
request. The customer then gives feedback to the system by making a decision with
respect to these recommendations.

From a business perspective, the goal is the maximize the revenue by optimizing
the strategy of displaying commodities. The optimization problem is complicated
by the fact that the desired feedback – the customer making a purchase – may
be delayed. That is, there may be a period of time between recommendation and
transaction. Perhaps the customer wants to explore different options before making
a purchase. Reinforcement learning (RL) is a machine learning technique that can
be used to solve problems where delayed feedback is present. Therefore, optimizing
a recommender system can be done using RL.

Reinforcement learning has received a lot of attention because its ability to master
the classic Atari games [1]. Among other things, RL can also be used to manage
an investment portfolio [2] and design drugs [3]. The RL framework consists of a
software agent who aims to develop an optimal behavior for a particular task by
interacting with an environment. More specifically, the agent learns a policy which
is a mapping from states to actions. Taking the Atari game Pong as an example,
the state could be a sequence of frames from the game whilst possible actions are
to move the paddle up or down.

1



1. Introduction

The learning process in RL is based on a trial-and-error search. That is, the agent
learns by experiencing both failures and successes when exploring the environment.
The policy is iteratively updated based on the agent’s experience. In the case of
optimizing a recommender system, the customers constitute the environment. The
agent may therefore provide the customers with suboptimal recommendations during
its learning process. Obviously, experimenting with suboptimal recommendations
can mean a poor user experience for the customers.

To avoid such a scenario, an alternative way to optimize a recommender system is
to apply RL to a simulated customer environment. By simulating the customers,
the recommender system can be optimized without risking exposing customers to
poor user experience. Such a simulator can be built using imitation learning (IL).
IL has similarities to RL, but instead of learning a behavior from scratch, the IL
agent is provided with demonstrations of an expert’s behavior. The idea is that the
agent should learn to behave as the expert by studying these demonstrations. In
the case of simulating customers, real customer data would be a natural choice of
expert demonstrations.

As an example, Alibaba has created a simulator of their E-commerce platform
Taobao [4]. The simulator, called Virtual Taobao, is built using a multi-agent IL
technique which means that the behavior of both the platform, i.e., the recommender
system, and the customers is learned simultaneously. The recommender system can
then be optimized by applying RL to the simulated customers. Naturally, the end
result depends on how well the customers can be simulated, i.e., how well the IL
agent learns to imitate the expert demonstrations. Even though Alibaba claims that
the properties of Virtual Taobao are similar to the properties of Taobao, they do
not explicitly analyze the behavior of the simulated customers.

1.1 Objective
In this thesis, we study the possibility to simulate realistic customer behaviors in
more detail. Unlike Alibaba, we focus only on the behavior of the customers, i.e., we
have no intention to build, or for that matter optimize, a recommender system. In
particular, we focus on the statistical purchasing behavior of the customers. We are
given synthetic customer data from Smartr1 in the form of time-series that represent
daily purchases of consumer goods. Using this data as expert demonstrations, we
evaluate the performance of two adversarial imitation learning (AIL) techniques,
namely generative adversarial imitation learning (GAIL) and adversarial inverse
reinforcement learning (AIRL).

AIL algorithms are related to so-called generative adversarial networks (GANs),
where two components – the generator and the discriminator – compete against

1Smartr is the company that has initiated this work.

2



1. Introduction

each other in order to produce data that ideally should follow the distribution of
a given data set. In our case, we use AIL to generate realistic customer behaviors
that follow the distribution of the synthetic customer data. The main difference
between GAIL and AIRL is that AIRL recovers the underlying reward function of
the experts. Given a state, the reward function indicates how good a certain action
is. The better the IL agent learns to behave as the experts, the higher is the reward.

1.2 Contributions
As mentioned above, a critical point in simulating customers is that the simulated
customers should behave similarly to the real customers. In order to fairly judge the
quality of the simulated customer behaviors, we develop a method for comparing
time-series. This method is intended to capture a customer’s statistical purchasing
behavior. More specifically, the time-series are converted into distributions of weekly
purchases. We measure the difference between behaviors by measuring the distance
between the corresponding distributions.

We find that the performance of both GAIL and AIRL is highly dependent on the
choice of state representation. When using a state that simply consists of historical
purchases, neither GAIL nor AIRL is able to predict individual customer behaviors,
but only the average behavior of the customers. However, if the state is extended
with a customer representative one-hot vector, we obtain a clear improvement in
learning individual customer behaviors. We also propose to replace the one-hot vec-
tor with an additional sequence of purchase history – customer specific (CS) days –
with the aim to generalize to new customers. However, using GAIL and AIRL, we
do not obtain a desirable result with this state representation.

The standard way of training AIL algorithms assumes that the experts behave ac-
cording to one underlying expert policy that represents the behavior of the experts.
However, since customer behaviors are highly varying we instead assume that each
expert behaves according to its own underlying expert policy – a mixture compo-
nent of the expert policy. We propose matched mixture component trained GAIL
(MMCT-GAIL) as a novel approach to the specific problem of learning diverse cus-
tomer behaviors. Using this method, we manage to predict individual customer
behaviors with faster convergence in comparison with GAIL and AIRL. In addi-
tion, MMCT-GAIL shows promising results when extending a state consisting of
historical purchases with CS days.

1.3 Related Work
GAIL, proposed in 2016 by Ho et al. [5], revolutionized the field of imitation learn-
ing by proposing learning the expert policy in an adversarial framework without
explicitly estimating a reward function. Many imitation learning algorithms are
based on GAIL [6, 7, 8, 9, 10]. AIRL extends the work of GAIL by estimating the
true reward function whereas variational adversarial imitation learning (VAIL) [8]

3



1. Introduction

improves the training by proposing constraining the information flow to the discrim-
inator. Nonetheless, apart from Virtual Taobao built by Alibaba, not much work
has been presented where imitation learning is used to predict customer purchasing
behaviors.

There are however other methods that have been proposed to the problem of predict-
ing customer behaviors. For instance, predicting a customer’s purchasing behavior
can be seen as a time-series forecasting problem where a sequence of previous pur-
chases are used to predict future purchases. In general, recurrent neural networks,
and more specifically long short term memory networks (LSTMs), are seen as state-
of-the-art methods for modeling sequential data.

In particular, LSTMs are commonly used to solve recommendation tasks in E-
commerce sites. An example is the dynamic recurrent basket model (DREAM)
[11], where an LSTM suggests a relevant item for a customer given historical pur-
chases. Another example is the time-LSTM [12], a modified LSTM that is able to
capture both the short term interest and the long term interest of a customer.

Other methods often used to forecast time series are Bayesian models and ARIMA
models [13, 14]. In Bayesian modeling, the posterior probability of an event can
be expressed in terms of a prior and a likelihood. In other words, a customer’s
daily action can be expressed as a probability given the customer’s previous actions.
ARIMA methodology on the other hand tries to describe a time series as a function
of autoregressive and moving average parameters that are to be found by, e.g., a
maximum likelihood approach.

1.4 Thesis Outline
The thesis is structured as follows. In Chapter 2, we present the theory behind GAIL
and AIRL. In order to do so, we start by introducing artificial neural networks and
generative adversarial networks. Thereafter, we give an overview of reinforcement
learning, in particular trust region policy optimization (TRPO) and proximal pol-
icy optimization (PPO). Finally, we present a thorough walk-through of the field of
imitation learning, including behavioral cloning and inverse reinforcement learning,
ending with GAIL and AIRL.

In Chapter 3, we outline our methods. First, we briefly describe the synthetic cus-
tomer data and develop a method for comparing time-series, which is needed to
assess the quality of simulated behaviors. Thereafter, we explain our implementa-
tions of GAIL and AIRL, as well as the ideas behind MMCT-GAIL. We introduce
three different state representations. In Chapter 4, we present and discuss the re-
sults from experimental evaluations of the algorithms, before concluding the thesis
in Chapter 5.

4



2
Preliminaries

This chapter presents central concepts that are used in this thesis. We cover the fun-
damentals of artificial neural networks, reinforcement learning and imitation learn-
ing. For each concept, we gradually introduce more complex methods. The main
purpose of this chapter is to provide the reader with a good understanding of GAIL
and AIRL. Both GAIL and AIRL rely on deep reinforcement learning, which in turn
relies on artificial neural networks.

2.1 Artifical Neural Networks
Artificial neural networks or simply neural networks (NNs) constitute a group of
mathematical methods inspired by the interactions between the neurons in the brain
[15]. A neural network can be used for classification tasks but has also proven to be
a universal function approximator [16]. For instance, most modern reinforcement
learning algorithms use NNs to parameterize, e.g., the policy. In this context, it is
common to use a multilayer perceptron as presented in Section 2.1.1.

Both GAIL and AIRL are based on a generative adversarial framework which is
reminiscent of so-called generative adversarial networks (GANs). The theory behind
GANs is presented in Section 2.1.2. GANs consist of two networks that compete
against each other. This architecture makes GANs hard to train, and they often
suffer from various stability problems. Therefore, we also describe WGAN and
WGAN-GP, which are improved versions of the original GAN.

2.1.1 Multilayer Perceptron
A multilayer perceptron (MLP) is a fully connected feed-forward neural network that
consists of N layers of computational units, i.e., nodes or neurons. An MLP is a
mathematical function which maps an input x0 ∈ Rn to an output xN ∈ Rm. The
network is usually parameterized by a weight vector θ ∈ Rp that consists of the
matrices (θ1, . . . ,θN) and bias vectors (b1, . . . ,bN). An MLP is defined as

xn = σ(θnxn−1 + bn) n = 1, . . . , N − 1 (2.1)

and
xN = θNxN−1 + bN . (2.2)

The xn, n = 0, . . . , N , can have different dimensions and the matrices θn, n =
1, . . . , N , and bias vectors bn, n = 1, . . . , N , have the suitable dimensions. The

5



2. Preliminaries

function σ is an activation function which is a vector valued extension of a scalar
valued nonlinear function R → R. Below we write σ for both the scalar valued
function and its extension. Some of the most commonly used activation functions
are

• logistic sigmoid: σ(x) = 1
1+exp(−x)

• hyperbolic tangent: σ(x) = tanh(x)

• rectified linear unit (ReLu): σ(x) = max{0, x}

• softmax: σ(x) = exp(xi)∑K

j=1 exp(xj)
for i = 1, . . . , K and x = (x1, . . . , xk) ∈ RK .

Define the training set as D = {xi0,yi}Ni=1 where xi0 and yi represent input and
corresponding target, respectively, for data point i. The training objective is to
update the parameters θ so that a loss function θ 7→ L(θ;D) is minimized. Thus,
optimal parameters θ∗ satisfy

θ∗ = argmin
θ
L(θ;D). (2.3)

Common choices for L is cross-entropy loss for classification tasks and mean square
error loss for regression. All loss functions can be written on the form

E(x0,y)∼U(D)[`(x0,y; θ)] (2.4)

for some scalar valued function `. Classically, the loss is gradually minimized through
gradient descent where the update rule is defined as

θt+1 ← θt − α∇θL(θt;D), (2.5)

where α is the learning rate. There are three main algorithms performing (2.5),
namely batch gradient descent, stochastic gradient descent (SGD) and mini-batch
gradient descent. The learning rate for these gradient descent variants is constant
for all the parameters in θ. This might cause problems if the components in θ vary
in magnitude or if the training data is sparse, i.e., contains a lot of zeros [17]. There-
fore, several gradient descent optimization methods have been proposed where the
learning rate varies, e.g., momentum optimizer, Adagrad, AdaMax and Adam. Adam
(Adaptive moment estimation) is most commonly used due to its good performance
[18].

Adam calculates an individual learning rate for each parameter using an adaptive
moment estimation of the gradient [19]. The update rule in Adam is defined as

θt+1 ← θt −
α√
v̂t + ε

m̂t (2.6)

where ε is a smoothing term to avoid division by zero. m̂t and v̂t are estimates of
the first and second moment of the gradient, respectively, i.e., mean and variance of

6



2. Preliminaries

the gradient, defined as
m̂t = mt

1− βt1
,

v̂t = vt
1− βt2

,
(2.7)

where mt and vt are defined as

mt = β1mt−1 + (1− β1)∇θL(θt),
vt = β2vt−1 + (1− β2)∇θL(θt)2,

(2.8)

and β1 and β2 are exponential decay rates for the moment estimates.

2.1.2 Generative Adversarial Networks
In generative modeling there exists an unknown true distribution pr(x) and the ob-
jective is to find an estimate of pr(x) by training a model on a finite number of
samples from the true distribution. Goodfellow et al. [20] propose an approach to
training generative models known as generative adversarial networks (GANs). It is
based on two neural networks that are trained simultaneously: a generator G and a
discriminator D. The discriminator is a classifier trained to separate samples from
the true distribution from samples generated by the generator. The generator is
on the other hand trained to generate samples that the discriminator classifies as
samples from the true distribution.

The generator G takes noise z ∼ pz as input and outputs a sample x = G(z). We
denote the distribution of x by pg. It is the pushforward distribution of pz under
G. The discriminator takes a sample x from either pr or pg as input and outputs
a probability D(x) that the given sample x comes from the true distribution. The
discriminator is trained to classify the samples correctly whereas the generator is
trained to minimize log(1 − D(G(z))). Thus, the discriminator and the generator
are playing a min-max game which can be summarized as

min
G

max
D

Ex∼pr [logD(x)] + Ez∼pz [log(1−D(G(z)))]. (2.9)

Goodfellow et al. show that (2.9) is equal to minimizing the Jensen-Shannon (JS)
divergence1 between pr and pg. Since each player in this min-max game is optimizing
the objective function independently the task becomes a problem of finding a Nash
equilibrium [21]. A Nash equilibrium is defined as a solution to a non-cooperative
game with two or more players involved, for which no player gains anything by
changing its own strategy [22].

In practice it can be very difficult to train a GAN since reaching a Nash equilibrium is
delicate when the objective function for each player is non-convex and the parameter

1Let p(x) and q(x) be probability distributions over the discrete variable x. The Jensen-
Shannon divergence is a measure of the similarity between the distributions, defined as DJS(p||q) =
1
2DKL(p||m) + 1

2DKL(q||m), where m = 1
2 (p+ q) and DKL is the Kullback-Leibler divergence de-

fined in Section 2.2.4. The JS divergence is a symmetrized and smoothed version of the KL
divergence.

7



2. Preliminaries

space is high-dimensional [21]. The most common training problems that GANs
suffer from are vanishing gradients and mode collapse. If the generator experiences
mode collapse it only produces a limited varieties of samples. A common example
is when using GANs to generate images with numbers from one to ten. If mode
collapse occurs, the generator ends up producing one, or only a few, of the numbers.

2.1.3 Wasserstein GAN
To stabilize the training of GANs, Arjovsky et al. [23] propose a different objective
where the Wasserstein distance between the distributions pr and pg is minimized,
hence the name Wasserstein GAN (WGAN). This approach prevents vanishing gra-
dients as a result of the objective being continuously differentiable and having a
smoother gradient than the original GAN objective [23].

The Wasserstein distance between two distributions can be understood as the mini-
mum ”cost” required to move a ”mass” from point x to point y in order to transform
pr(x) to pg(y). It is defined as

W (pr, pg) = inf
γ∈Π(pr, pg)

E(x,y)∼γ[‖x− y‖] = inf
γ∈Π(pr, pg)

∑
x,y
‖x− y‖γ(x,y) (2.10)

where Π (pr, pg) denotes the set of all possible joint probability distributions with
marginals pr and pg. By using the so called Kantorovich-Rubinstein duality [24], an
equivalent formulation of the Wasserstein distance is

W (pr, pg) = sup
‖f‖L≤1

Ex∼pr [f(x)]− Ex∼pg [f(x)], (2.11)

where the supremum is taken over all functions f that are 1-Lipschitz. We refer to
[23] for details about Lipschitz functions. In order to calculate the Wasserstein dis-
tance between pr and pg, the 1-Lipschitz function f which minimizes (2.11) should
be found. An approximation of f can be calculated by training a neural network
with weights w.

In WGAN, the parameterized function fw corresponds to the discriminator Dw in
original GAN. A neural network that approximates a function should not have an
activation function after its output layer. This means that the output of the dis-
criminator in WGAN is no longer a probability but instead a scalar which expresses
how realistic a sample from the generator is.

The objective of the min-max game between discriminator and generator can now
be summarized as

min
G

max
D∈F

Ex∼pr [Dw(x)]− Ex∼pg [Dw(x))] (2.12)

where F is the set of 1-Lipschitz functions. To enforce that Dw is a 1-Lipschitz
function, WGAN introduces weight clipping to ensure that the weights w are within
a certain range [−c, c], controlled by a clipping parameter c. Nonetheless, Arjovsky
et al. clearly state that using weight clipping to enforce the Lipscithz constraint is
not an optimal solution. If the clipping parameter is large it can be difficult to reach
convergence whereas a small clipping parameter can lead to vanishing gradients.

8



2. Preliminaries

2.1.4 Wasserstein GAN with Gradient Penalty
Gulrajani et al. [25] propose Wasserstein GAN with gradient penalty (WGAN-
GP) which uses an alternative method to enforce a Lipschitz constraint on the
discriminator. A differentiable function is a 1-Lipschitz function if and only if it
has gradients with norm that is at most one everywhere. Therefore, Gulrajani et
al. propose to constrain the gradient norm of the discriminator output D(x) with
respect to its input x. The new objective becomes

min
G

max
D∈F

E
x̃∼pg

[D(x̃)]− E
x∼pr

[D(x)] + λ E
x̂∼px̂

[
(‖∇x̂D(x̂)‖2 − 1)2

]
(2.13)

which introduces a soft version of the norm constraint. The parameter λ is called
the gradient penalty coefficient. The distribution px̂ is the pushforward of pr and
pg under x̂ = εx + (1− ε)x̃ for x ∼ pr and x̃ ∼ pg where ε ∈ [0, 1]. In other words,
the sampling from px̂ is done uniformly along straight lines between pair of points
sampled from pr and pg which Gulrajani et al. motivate theoretically.

2.2 Reinforcement Learning
Alongside supervised learning and unsupervised learning, reinforcement learning
(RL) is one of the major paradigms in machine learning. By learning from interac-
tions with its environment, the RL agent aims to develop an optimal behavior for
achieving a certain goal. The purpose of this section is to present the theory behind
proximal policy optimization (PPO), which is a particular type of RL algorithm that
is used in our implementations of GAIL and AIRL. PPO belongs to the family of
policy gradient methods and is inspired by trust region policy optimization (TRPO).

We start by formulating the RL problem as a finite Markov decision process in
Section 2.2.1. In Section 2.2.2, we then explain the general concept of policy gra-
dient methods. TRPO and PPO are finally presented in Section 2.2.3 and 2.2.4,
respectively.

2.2.1 Problem Statement
The reinforcement learning problem is usually formulated using a Markov decision
process (MDP). An MDP is represented by the tupleM := 〈S,A,P , γ, R〉, where S
is a finite set of states, A is a finite set of actions, P is the state-transition probability
function, γ ∈ [0, 1] is a discount factor, and R : S × A 7→ R is the reward function.
For all s′, s ∈ S and a ∈ A, the state-transition probability function

P(s′|s, a) := P(St = s′|St−1 = s,At−1 = a) (2.14)

specifies the probability of reaching a particular state s′ given the preceding state s
and action a. The state-transition function defines the dynamics of the MDP.

The interaction between the agent and the environment is central in an MDP. This
interaction occurs over a sequence of time steps t = 0, 1, 2, . . . , T , where T may

9



2. Preliminaries

be infinitely large2. At each time step, the state st ∈ S provides the agent with
some information about the environment. By executing an action at, the agent is
transferred into a new state st+1 according to the dynamics of the MDP. Simultane-
ously, the agent receives a scalar reward rt+1 that indicates the quality of the action
at. The sequence of states and actions – the state-action pairs – forms a so-called
trajectory, defined as τ = (st, at)Tt=0.

The goal of the agent is to maximize the expected discounted sum of future rewards,
also called discounted return. The discounted return is given by

Gt :=
T∑
k=0

γkrt+k+1, (2.15)

where the discount factor γ specifies how much the agent should care about future
rewards. If T =∞, the discount factor must satisfy γ < 1. Conversely, if γ = 1, T
must be finite. The main concepts of RL can be formulated in either case, but it is
convenient to stick to one notation. From now on, we mostly focus on continuing
tasks, i.e., we allow T to be infinite.

While interacting with the environment, the agent follows a so-called policy π. The
policy is either deterministic, a = π(s), or stochastic, a ∼ π(a|s). A stochastic pol-
icy maps the agent’s current state to probabilities of selecting each possible action,
and the agent takes an action by sampling from the policy. The policy is iteratively
updated based on the agent’s experience. In the long run, the learned policy should
allow the agent to act in a way that maximizes the expected discounted return, as
given in (2.15).

Two important concepts in RL are the state-value function, or simply the value
function, and the action-value function, respectively. The state-value function is
defined as

V π(s) := Eπ [Gt|St = s] = Eπ
[ ∞∑
k=0

γkrt+k+1

∣∣∣∣∣St = s
]

(2.16)

and the action-value function is given by

Qπ(s, a) := Eπ [Gt|St = s,At = a] = Eπ
[ ∞∑
k=0

γkrt+k+1

∣∣∣∣∣St = s,At = a
]
. (2.17)

Here, the expected value is taken with respect to policy π and state-transition prob-
ability function P . To simplify notation, we omit the explicit dependency of P .
The state-value function is the expected discounted return when the agent starts
in state s and thereafter follows policy π. Similarly, the action-value function is
the expected discounted return when the agent starts in state s, takes the action a
and thereafter follows policy π. Additionally, the advantage function is given by the
difference between these functions:

Aπ(s, a) = Qπ(s, a)− V π(s). (2.18)
2We refer to episodic tasks (finite T ) and continuing tasks (infinite T ), respectively.

10



2. Preliminaries

2.2.2 Policy Gradient Methods
There are two major approaches to solving a reinforcement learning problem: value-
based RL and policy-based RL. In value-based RL, the task is to learn an approx-
imation of the state-value function or the action-value function. A policy can then
be selected by, e.g., acting greedy with respect to the values. In this context, acting
greedy simply means choosing states that have the highest values. In policy gradi-
ent methods, the policy is directly parameterized and there is no need for any value
estimates. Such methods are examples of policy-based RL. A great advantage of
policy gradient methods is that the action probabilities change smoothly as a func-
tion of the parameters, which is not always the case in value-based methods. For
this reason, there are stronger convergence guarantees for policy gradient methods
[26].

In order to explain policy gradient methods in greater detail, let θ ∈ Rd be the
parameters of the parameterized policy π(a|s; θ). Now, the task is to maximize
an objective function L(θ) by performing stochastic gradient ascent. For episodic
tasks, starting in state s0, the objective function L(θ) is defined as

L(θ) := V πθ(s0) = Eπθ
[Gt|St = s0] . (2.19)

Thus, the performance is evaluated based on the expected, possibly discounted,
return starting in the initial state s0. For continuing tasks, the objective function
must be chosen in a somewhat different way, but the policy gradient theorem [26]
states that the policy gradient is the same for both cases, namely

∇θL(θ) = Eπθ

[
T∑
t=0

γt∇θ ln πθ(at|st)Qπθ(st, at)
]
. (2.20)

We refer to [26] for details regarding the proof of this result.

The action-value function in (2.20) can be estimated by the return Gt. Recall
from Section 2.2.1 that Qπθ(st, at) = Eπθ

[Gt|st, at]. Some algorithms are based on
learning a parameterized action-value function Qw(s, a) ≈ Qπθ(s, a). This type of
algorithms is known as actor-critic. In fact, there are actor-critic algorithms that
learn a parameterized value function Vw(s) ≈ V πθ(s) instead of a parameterized
action-value function. It is worth mentioning that the parameters θ can be used to
estimate both the policy and the action-value function or value function.

It can be shown that a baseline B(st), which does not depend on any action at, can
be subtracted from the action-value function in (2.20) without changing the expected
value of the policy gradient [26]. That is, we are allowed to replace Qπθ(st, at) with
Qπθ(st, at)− B(st). Such a baseline tends to reduce the variance of the estimation.
A good choice of baseline is the state-value function V πθ(s) [26]. Recalling the
definition Aπ(s, a) = Qπ(s, a)−V π(s) of the advantage, the policy gradient becomes

∇θL(θ) = Eπθ

[
T∑
t=0

γt∇θ ln πθ(at|st)Aπθ(st, at)
]
. (2.21)

11



2. Preliminaries

2.2.3 Trust Region Policy Optimization
Policy gradient methods are examples of on-policy learning. In on-policy learning,
the policy is iteratively updated by generating samples for gradient computing, for
instance according to (2.21). Unfortunately, it is complicated to reuse the samples
for consecutive calculations of the policy gradient. Empirically, such an approach
tends to lead to very large policy updates that complicates the learning process [27].
Thus, policy gradient methods generally suffer from poor sample efficiency.

In order to improve the sample efficiency, importance sampling can be used. Let
p(x) and q(x) be two different probability distributions with the same support.
Importance sampling enables the expectation Ex∼p[f(x)], where f is a sufficiently
regular function, to be written as Ex∼q[p(x)

q(x)f(x)]. For a good choice of proposal
distribution q, the rewritten expectation is easier to estimate since the samples can
be drawn from q instead of p. By applying this approach to (2.21), it is possible to
update the policy πθ by sampling trajectories τ from a different policy πθ′ :

∇θL(θ) = Eτ∼π
θ′

[ ∞∑
t=0

γt
p(τ t|πθ)
p(τ t|πθ′)∇θ ln πθ(at|st)Aπθ(st, at)

]
. (2.22)

Here, p(τ t|πθ) and p(τ t|πθ′) are the probability distributions for observing the sub-
sequence τ t of the trajectory τ given πθ and πθ′ , respectively. Given a distribution
µ(s0) over initial states s0, the ratio between the distributions p(τ t|πθ) and p(τ t|πθ′)
can be rewritten as

p(τ t|πθ)
p(τ t|πθ′) = µ(s0)∏t

t′=0P(st′+1|st′ , at′)πθ(at′ |st′)
µ(s0)∏t

t′=0P(st′+1|st′ , at′)πθ′(at′|st′)
=

t∏
t′=0

πθ(at′|st′)
πθ′(at′|st′)

. (2.23)

These equations may look useful, but even small differences between the two policies
will force the product in (2.23), and thus also the gradient in (2.22), to either explode
or vanish. We would like to increase the sampling efficiency by reusing data sampled
from a previous version of the policy, but we need to approach the problem in a
different way. In order to do so, we define the relative policy performance identity
as

L(θ)− L(θ′) = Eπθ

[ ∞∑
t=0

γtAπθ′ (st, at)
]
. (2.24)

This expression relates the policies πθ and πθ′ in terms of the expected discounted
sum of advantages when following the policy πθ. We refer to [28] for details regarding
the proof of the identity. Using this identity, the policy optimization problem can
be formulated as

argmax
θ
L(θ) = argmax

θ
L(θ)− L(θ′) = argmax

θ
Eπθ

[ ∞∑
t=0

γtAπθ′ (st, at)
]
, (2.25)

where θ and θ′ correspond to the parameters of the current policy and an old policy,
respectively, in an iterative update sequence.

12



2. Preliminaries

However, in order to optimize (2.25), we need to sample data from the current policy
πθ. With the goal of instead reusing data from an old policy πθ′ , we introduce the
discounted future state distribution dπ(s) [29], defined as

dπ(s) = (1− γ)
∞∑
t=0

γtP(St = s|π). (2.26)

The discounted future state distribution can be interpreted as the probability of
reaching state s at a certain time step, when starting from an initial state s0 and
following the policy π. Using this notation in combination with importance sam-
pling, we can reformulate (2.24) according to

L(θ)− L(θ′) = 1
1− γEs∼dπθ ,a∼πθ

[Aπθ′ (s, a)]

= 1
1− γEs∼dπθ ,a∼πθ′

[
πθ(a|s)
πθ′(a|s)A

πθ′ (s, a)
]
,

(2.27)

which states that the policy πθ can be optimized by sampling actions from a differ-
ent policy πθ′ . There is only one problem – the states need to be sampled from the
discounted future state distribution dπθ(s), which is dependent on the policy πθ.

Fortunately, it turns out that the approximation dπθ ≈ dπθ′ works well in practice.
Using this approximation, we obtain the objective function that is used in trust
region policy optimization (TRPO) [30], namely

LTRPO(θ) := 1
1− γEs∼dπθ′ ,a∼πθ′

[
πθ(a|s)
πθ′(a|s)A

πθ′ (s, a)
]

= Eτ∼πθ′

[ ∞∑
t=0

γtht(θ)Aπθ′ (st, at)
]

≈ L(θ)− L(θ′),

(2.28)

where ht(θ) = πθ(at|st)
πθ′ (at|st) is the probability ratio between the policies πθ and πθ′ . This

objective function can be optimized by reusing samples from an old policy πθ′ , which
increases the sample efficiency. The approximation dπθ ≈ dπθ′ is valid as long as πθ

and πθ′ are relatively close. It can be shown, see [31], that∣∣∣(L(θ)− L(θ′))− LTRPO(θ)
∣∣∣ ≤ C

√
Es∼dπθ′ [DKL(πθ||πθ′)[s]], (2.29)

where DKL denotes the Kullback–Leibler (KL) divergence3 and C is a parameter of
little practical interest. In other words, the difference between the objective func-
tion in (2.25) and the objective function in TRPO is bounded by the KL divergence
between the old policy and the new policy.

3Let p(x) and q(x) be probability distributions over the discrete variable x. The Kullback-
Leibler divergence, defined as DKL(p||q) =

∑
x p(x) log

(
p(x)
q(x)

)
, is a measure of the similarity

between the distributions. Thus, for two policies π and π′, the Kullback-Leibler divergence becomes
DKL(π||π′) =

∑
a π(a|s) log

(
π(a|s)
π′(a|s)

)
.

13



2. Preliminaries

Since the theoretical value for C is quite large when γ ≈ 1, the practical TRPO
algorithm uses a KL constraint rather than a KL penalty. The KL constraint is
called the ”trust region” since the new policy cannot diverge too much from the old
policy. The final optimization problem becomes

argmax
θ
LTRPO(θ) s.t. Es∼dπθ′ [DKL(πθ||πθ′)[s]] ≤ δ, (2.30)

where δ is a small number that defines the trust region.

2.2.4 Proximal Policy Optimization
The optimization problem in (2.30) is elegantly stated, but is not trivial to solve
in practice. Instead, the practical TRPO algorithm solves an approximated version
of (2.30), where the objective and the constraint are linearly and quadratically ap-
proximated, respectively. Even though this approximation can be efficiently solved
using the conjugate gradient algorithm, see [32], there is room for improvements.

Proposed in 2017, the proximal policy optimization (PPO) algorithm does not re-
quire any higher-order approximations [27]. The algorithm approximately enforces
the KL constraint in TRPO by utilizing the so-called clip function, which given an
interval clips arguments outside the interval to the interval edges. More specifically,
PPO replaces the expression ht(θ)Aπθ′ (st, at) in (2.28) with

LCLIP
t (θ) := min (ht(θ)Aπθ′ (st, at), clip(ht(θ), 1− ε, 1 + ε)Aπθ′ (st, at)) , (2.31)

where ε is a parameter. The first term inside the minimum function is simply the
same term that is included in the TRPO objective. The other term, clip(ht(θ), 1−
ε, 1 + ε)Aπθ′

t , includes the clip function, which ensures that ht(θ) stays within the
range [1− ε, 1 + ε]. By taking the minimum of these terms, the PPO objective be-
comes a lower bound on the TRPO objective.

Now, in order to obtain a practical algorithm, we need to estimate the advantage
function Aπθ′

t = Aπθ′ (st, at) in some way. In fact, it is enough to execute the policy
for T ′ time steps, where T ′ can be much less than the actual episode length, and use
these samples to update the policy. Taking an actor-critic approach and estimating
the value function4, the advantage function can be estimated by

Â
πθ′
t = −Vθ′(st) + rt + γrt+1 + . . .+ γT

′−t−1rT ′−1 + γT
′−tVθ′(sT ′), (2.32)

where rt is the reward at time t [33]. This estimation can be generalized. Using the
notation

δt = rt + γVθ′(st+1)− Vθ′(st), (2.33)
we rewrite (2.32) as

Â
πθ′
t =

T ′−t−1∑
k=0

γkδt+k. (2.34)

4For simplicity’s sake, we use the same parameters for both the actor (the policy) and the critic
(the value function).

14



2. Preliminaries

Schulman et al. [34] define the so-called generalized advantage estimation (GAE) as

ÂGAE
t =

∞∑
k=0

(λγ)kδt+k, (2.35)

where λ is a parameter between 0 and 1. The GAE is in fact a weighted average of
the estimatation (2.34) for T ′ − t ∈ {1, 2, 3, . . .}. Using a truncated version of the
GAE we obtain the advantage estimation that is used in PPO, namely

Â
πθ′
t = δt + (γλ)δt+1 + . . .+ . . .+ (γλ)T ′−t−1δT ′−1. (2.36)

Note that if the parameter λ equals 1, the generalized form of the estimation reduces
to (2.32).

Usually, the objective function in PPO contains an additional entropy bonus that
encourages the agent to explore different policies during the training. Moreover, if
a shared network is used for both the policy and the value function, the objective
function should also include a value function error term, e.g., a square error loss

LVF
t (θ) := (Vθ′(st)− V target

t )2, (2.37)

where the target can be estimated by the return Gt. We finally obtain

LPPO(θ) = Eτ∼πθ′

 T ′∑
t=0
LCLIP
t (θ)− c1LVF

t (θ) + c2S[πθ](st)
 , (2.38)

where S is an entropy bonus, and c1, c2 are hyperparameters. As entropy bonus,
we can use the causal entropy defined in (2.53) in Section 2.3.5. The algorithm is
summarized in Algorithm 1.

Algorithm 1 PPO, Actor-Critic Style
for iteration = 1, 2, . . . do

for actor = 1, 2, . . . , N do
Run policy πθ′ for T ′ time steps
Compute advantage estimates Â1, . . . , ÂT ′

end for
Optimize objective function LPPO(θ) w.r.t. θ over K epochs and mini-batch
size M ≤ NT
θ′ ← θ

end for

2.3 Imitation Learning
In our description of RL, the reward function is assumed to be known. In fact,
the reward function must be manually designed for the particular task. This is not
trivial for all problems. Imitation learning is useful when it is harder to manually de-
sign a reward function than to let an expert demonstrate the desired behavior. The

15



2. Preliminaries

imitation learning agent aims to behave optimally by imitating the expert demon-
strations. There are two subfields of imitation learning – behavioral cloning (BC)
and inverse reinforcement learning (IRL).

In this section, we start by presenting BC before defining the problem of IRL as a
Markov decision process. Thereafter, we introduce three IRL methods, namely fea-
ture expectation matching, maximum entropy IRL and maximum causal IRL. After
that we present GAIL and AIRL. Both GAIL and AIRL are based on maximum
causal entropy IRL which is an extension to maximum entropy IRL. Maximum en-
tropy IRL is based on feature expectation matching.

The thorough walk-through of the field of IRL is mostly of theoretical interest and is
intended to give the reader a possibility to fully understand the foundations of GAIL
and AIRL. Although the section can be read from beginning to end, we recommend
readers who are already familiar with IRL concepts to focus on Section 2.3.6 and
2.3.7, which concern GAIL and AIRL.

2.3.1 Behavioral Cloning
Behavioral cloning is the simplest form of imitation learning where the behavior
of the experts is learned through supervised learning [35]. The aim of behavioral
cloning is to learn a deterministic policy π which maps states s to actions a so that

at = π(st) (2.39)

for all state-action pairs in the training set D = (st, at)Nt=0. The state-action pairs
are assumed to be independent and identically distributed (i.i.d.). The policy can
be approximated by a neural network trained on D. More specifically, the state and
action in each state-action pair is used as input and target, respectively, so that
the policy is learned by minimizing a loss function. In some cases, BC shows good
results but the assumption about independent state-action pairs is in general too
naive to learn a complex behavior.

2.3.2 Problem Statement of IRL
Instead of learning a mapping between demonstrated states and actions through su-
pervised learning a more general solution is to learn the underlying reward function
by using IRL [36]. The reward function defines the objective of the experts. Thus,
learning the reward function can be interpreted as learning the experts’ objective
for the desired task. The reward function can thereafter be used to estimate the
expert policy using RL.

An IRL problem is usually formulated using a Markov decision process, defined as
M := 〈S,A,P , γ, R〉, where S is a finite set of states, A is a finite set of actions,
P is the state-transition probability function, γ ∈ [0, 1) is a discount factor and
R : S × A 7→ R is the reward function. This setting is identical to the RL problem
formulation in Section 2.2.1. However, the reward function in an IRL problem is

16



2. Preliminaries

unknown and we denote an MDP without known reward function asM\R.

In IRL the experts are assumed to behave according to an underlying expert policy
πE and the agent follows a stochastic policy πθ parameterized by θ. The agent
observes demonstrations of expert behavior in the form of trajectories. Given a
training set D = (τE

i )Ni=1, where each trajectory τE
i is an expert demonstration,

the objective of IRL is to find an estimate R̂ of the reward function that best
explains the observed behavior of the experts. In addition, the agent policy should
not outperform the expert policy in terms of the expected cumulative discounted
reward, i.e.,

Eτ∼πE

[ ∞∑
t=0

γtR̂ (st, at)
]
≥ Eτ∼πθ

[ ∞∑
t=0

γtR̂ (st, at)
]
. (2.40)

In IRL, the estimated reward R̂ is usually found through an iterative learning pro-
cess which alternates between estimating the reward function and solving an RL
problem. In other words,M\R is first solved to find an estimate R̂ of the true re-
ward function. Then,M is solved using RL for the current reward estimate. This is
done iteratively until the agent policy that best explains the expert demonstrations
is found. However, the problem statement is ”ill-posed” which means that many op-
timal policies can explain the set of expert demonstrations and one optimal policy
can be optimal for various reward estimates [37].

2.3.3 Feature Expectation Matching
In feature expectation matching, the unknown reward function is expressed as a
linearly-weighted combination of reward features φ : S 7→ Rn so that

Rw(s, a) = w1φ1(s, a) + w2φ2(s, a) + . . .+ wnφn(s, a) = w>φ(s, a) (2.41)

where w ∈ Rn is the reward weight vector. Using Rw, the expected cumulative
discounted reward for a given policy π can be rewritten as

Eπ
[ ∞∑
t=0

γtRw (st, at)
]

= Eπ
[ ∞∑
t=0

γtw>φ (st, at)
]

= w>Eπ
[ ∞∑
t=0

γtφ (st, at)
]

= w>µ(π),

(2.42)

where µ(π) is the expected cumulative discounted feature values or feature expec-
tations. The feature expectations are in many IRL methods used as an alternative
representation of the policy and they can be used to calculate the similarity between
the current policy estimate and the expert policy.

Given that the experts solveM\R with R̂ = Rw, Abbeel et al. [38] show that the
feature expectations of the expert policy and the agent policy must match in order
to find the true reward R. The IRL problem is reduced to finding a policy πθ that
satisfies

||µ(πE)− µ(πθ)||2 ≤ ε (2.43)

17



2. Preliminaries

for a given threshold ε. The feature expectations of the experts can be estimated
according to

µ̂(πE) = 1
N

N∑
i=1

∞∑
t=0

γtφ
(
sit, ait

)
(2.44)

where sit and ait is a state and an action, respectively, from the ith demonstration
at time step t.

2.3.4 Maximum Entropy IRL
Due to the ill-posedness of the IRL problem, matching feature expectations is suffi-
cient to guarantee that πθ performs as well as πE but a unique solution cannot be
guaranteed. However, there exists a unique solution that maximizes the entropy. By
introducing an additional constraint to the IRL problem, Ziebart et al. [37] propose
maximum entropy IRL to find the unique solution.

In maximum entropy IRL, the policy πθ is represented by a distribution over tra-
jectories p(τ ) where τ ∼ πθ. The principle of maximum entropy, proposed by E.T.
Jaynes in 1957, states that the distribution which is most appropriate to model a
given data set is the one with the highest entropy [39]. To apply this principal to
IRL, Ziebart et al. state that among the distributions over trajectories that match
the feature expectations of the expert, the distribution that maximizes the entropy
should be chosen. Using this, the objective of maximum entropy can be defined as
learning the policy πθ that satisfies

argmax
θ

H(p) = argmax
θ

∑
τ∼πθ

p(τ ) ln 1
p(τ ) (2.45)

subject to
||µ(πE)− µ(πθ)||2 ≤ ε, (2.46)∑

τ∼πθ

p(τ ) = 1, (2.47)

p(τ ) > 0 ∀τ . (2.48)

The distributions that maximize the entropy H belong to the exponential family
of distributions [40]. Therefore, the conditional probability of the distribution of
maximum entropy can be written as

p(τ |w) = 1
Z(w) exp

(
w>φ(τ )

)
= 1
Z(w) exp(Rw(τ )), (2.49)

where Z(w) = ∑
τ exp

(
w>φ(τ )

)
is the partition function, see [37].

In general, transitions between states in an MDP are non-deterministic and follow
the state-transition distribution function P . The transition probabilities are not
considered in (2.49) and the equation thus only holds for deterministic environments.
When adapting the solution to stochastic environments the transition probabilities

18



2. Preliminaries

need to be taken into account. Therefore, we redefine the conditional probability in
(2.49) as

p(τ |w) =
exp

(
w>φ(τ )

)
Z(w)

∏
st+1,at, st∈τ

P (st+1|at, st) (2.50)

where P , defined in (2.14), denotes the dynamics of the underlying MDP. Using
this, Ziebart et al. show that the reward becomes

R̃w(τ ) = w>φ(τ ) +
∑

st+1,at, st∈τ

logP (st+1|at, st) , (2.51)

where the additional term is accounting for the non-deterministic nature of the en-
vironment.

The problem of finding the reward weights w can now be formulated as a maximum
likelihood problem, i.e.,

w∗ = argmax
w

∑
τ∈D

ln p (τ |w) . (2.52)

The sum in (2.52) is convex and can thus be maximized by gradient-based methods.
The maximum entropy IRL method performs well in many MDP problems but
assuming that the state transition probabilities are known is not realistic.

2.3.5 Maximum Causal Entropy IRL
In [41], Ziebart et al. extend their previous work on maximum entropy IRL to
avoid dependency on the state transition probabilities. They propose the method of
maximum causal entropy IRL. The concept of maximal causal entropy is important
in maximum causal entropy IRL but we refrain from presenting details about this
concept. We refer the interested reader to [41].

Maximum causal entropy IRL assumes causal action choices which means that each
action taken has to be independent of any future states in trajectory τ . By using this,
Ziebart et al. show that the stochasticity of the environment can be incorporated
into the reward estimation. The objective of maximum causal entropy IRL is to find
the policy πθ that maximizes the causal entropy H (a1:T‖s1:T ) defined as

H (a1:T‖s1:T ) =
T∑
t=1

H (at|a1:t−1, s1:t)

= −
T∑
t=1

∑
a1:t, s1:t

p (a1:t, s1:t) ln (πθ (at|a1:t−1, s1:t)) .
(2.53)

Here, p (a1:t, s1:t) is the joint distribution over all states and actions up to time t for
the trajectory τ ∼ πθ and H (at|a1:t−1, s1:t) is the conditional entropy until time step
t. Assuming that the process is Markovian, i.e., assuming that the probability of the
current action at only depends on the last state st, we can reduce πθ(at|s1:t, a1:t−1)
to πθ(at|st).

19



2. Preliminaries

The objective of maximum causal entropy IRL can be formulated as

argmax
s,a∼πθ

H (a1:T ||s1:T ) = argmax
θ

H(πθ) (2.54)

subject to
||µ(πE)− µ(πθ)||2 ≤ ε, (2.55)∑

s,a∼πθ

πθ(a|s) = 1, (2.56)

πθ(a|s) ≥ 0. (2.57)

The objective in maximum causal entropy IRL can be optimized without knowledge
of the transition probabilites between states through dynamical programming, see
[41].

To simplify the notation of the objective of maximum causal entropy IRL it is
commonly reformulated as

argmax
R∈R

(
argmin
πθ∈Π

(−H (πθ)− Eπθ
[R(s, a)])− EπE [R(s, a)]

)
(2.58)

where R is a family of reward functions and Π is a family of policies. The objective
in (2.58) states that the problem of maximum causal IRL reduces to finding the
reward function which assigns high reward to the expert policy and low rewards to
all other policies. At the same time, this reward function should maximize the causal
entropy and the expected reward of the corresponding policy. Many IRL methods
are based on (2.58) so that the problem of finding the reward weights narrows down
to a maximum likelihood problem [5, 6, 42].

2.3.6 Generative Adversarial Imitation Learning
In 2016, Ho et al. [5] proposed generative adversarial imitation learning (GAIL)
where a generative adversarial model structure is used to solve the IRL problem.
Recall from Section 2.1.2 that the idea behind GANs is to have a generator net-
work, G, that generates samples that should follow the true data distribution and a
discriminator network, D, that is trained to separate samples from true data from
samples generated from G.

In GAIL, the generator network represents a stochastic policy πθ(a|s) and the dis-
criminator is trained to separate expert state-action pairs from state-action pairs
generated by the policy. The output from the discriminator Dw(s, a) ∈ [0, 1] is the
probability that a given state-action pair comes from the generator. GAIL uses the
output signal from the discriminator as a reward to update the generator using a
policy gradient method. However, the discriminator signal in GAIL does not repre-
sent an estimate of the true reward.

Abbeel et al. [43] show that in the same way that an IRL problem can be written as
a problem of matching feature expectations, the IRL problem can also be rewritten

20



2. Preliminaries

as a problem of matching occupancy measures. The occupancy measure ρ of πθ(a|s)
is defined as

ρπ(s, a) = πθ(a|s)
∞∑
t=0

γtP(st = s|πθ). (2.59)

Ho et al. use occupancy measure matching together with Ziebart’s maximum causal
entropy IRL formulation to propose a new formulation for the problem of IRL.
The new objective is to learn the policy which minimizes the distance between the
occupancy measures of the agent and the expert with a regularizing term for the
causal entropy. The optimization problem reads:

min
πθ∈Π

d (ρπθ
(s, a), ρπE(s, a))− λH(πθ). (2.60)

Here d(.) is a distance function between the occupancy measure of the agent and
the expert, λ is a weighting factor and H is the causal entropy of policy πθ. Ho
et al. propose d to be the Jensen-Shannon divergence between the two occupancy
measures in an adversarial context. That is, they propose a GAN structure that
minimizes the JS divergence to find the Nash equilibrium of the objective function.
The objective in GAIL is defined as

min
G

max
D

Eπθ
[log(Dw(s, a))] + EπE [log(1−Dw(s, a))]− λH(πθ). (2.61)

The discriminator is trained by maximizing (2.61) with respect to w using an Adam
gradient step whereas the generator is trained by minimizing (2.61) with respect
to θ using a policy gradient update step which simultaneously maximizes the en-
tropy. The iterative training process of GAIL makes the discriminator better at
distinguishing agent state-action pairs from expert state-action pairs while the pol-
icy becomes better at generating state-action pairs that are more expert-like. GAIL
is summarized in Algorithm 2.

Algorithm 2 Generative Adversarial Imitation Learning
Input Expert trajectories τE ∼ πE, initial G and D parameters θ0 and w0
for i = 0, 1, 2 . . . do

Sample trajectories τ i ∼ πθi

Calculate wi+1 ← wi using the gradient
Eτi [∇w log (Dw(s, a))] + EτE [∇w log (1−Dw(s, a))]

Calculate θi+1 ← θi using TRPO/PPO with loss function log
(
Dwi+1(s, a)

)
end for
Return π̂E

2.3.7 Adversarial Inverse Reinforcement Learning
Finn et al. [44] show that it is possible to learn the true reward function in an
adversarial context by modeling the discriminator as the reward function. Fu et al.
[6] present an implementation of this theoretical concept, called adversarial inverse
reinforce learning (AIRL). The algorithm is summarized in Algorithm 3.

21



2. Preliminaries

Algorithm 3 Adversarial Inverse Reinforcement Learning
Input Expert trajectories τE ∼ πE, initial G and D parameters θ0, w0 and φ0
for i = 0, 1, 2 . . . do

Sample trajectories τ i ∼ πθi

Train Dw,φ via binary logistic regression to classify τE
i from τ i

Update reward Rwi+1,φi+1 ← logDw, φ(s, a, s′)− log(1−Dw, φ(s, a, s′))
Calculate πθi+1 w.r.t. Rwi+1,φi+1 using any policy optimization method

end for
Return π̂θ and R̂E

w,φ

The discriminator Dw,φ (s, a, s′) is trained as a binary classifier to separate demon-
strated samples from generated samples. The policy πθ is on the other hand trained
to optimize

argmax
w

log (Dw,φ (s, a, s′)− log (1−Dw,φ (s, a, s′))) (2.62)

by using any policy optimization method which simultaneously maximizes the en-
tropy.

In order to recover the true reward function, the discriminator in AIRL consists
of two MLPs parameterized by w and φ, respectively. A large difference between
GAIL and AIRL, apart from AIRL learning the true reward function, is that the
discriminator Dw,φ in AIRL is explicitly defined, i.e., it is not just the output from
the discriminator network as it is in GAIL. The discriminator in AIRL is defined as

Dw,φ (s, a, s′) = exp (fw,φ (s, a, s′))
exp (fw,φ (s, a, s′)) + πθ(a|s) (2.63)

where fw,φ(s, a, s′) is an estimation of the true reward function defined as

fw,φ(s, a, s′) = gw(s) + γhφ(s′)− hφ(s). (2.64)

Here, γhφ(s′) − hφ(s) is a reward shaping term and gw(s) is a disentangled reward
term. A disentangled reward is a reward function which is robust to changes in the
dynamics, i.e., it does not depend on changes in the state-transition probabilities. In
other words, the true reward function can be learned by AIRL even if the algorithm
is trained on non-stationary expert data. Non-stationary data changes over time
due to, e.g., seasonal variation or a pandemic.

22



3
Method

The purpose of this thesis is to investigate how adversarial imitation learning algo-
rithms, in particular GAIL and AIRL, can be used to learn the purchasing behavior
of a customer population from a given data set – the expert data. In order to
evaluate the performance of the algorithms, a method for comparing the similarity
between generated data and expert data is needed. Essentially, this method could
be any method for comparing time-series, but it is desirable to choose a method that
not only measures the similarity, but also enables visualization of it. The given data
set is introduced in Section 3.1 and a method for comparing time-series is developed
in Section 3.2.

In Section 3.3, we formulate the problem of learning customer behaviors using a
Markov decision process. In particular, we present three different state representa-
tions. Given a well-defined state, the agent should be able to learn to behave like a
real customer. We start by proposing a basic state representation in Section 3.3.1.
Then, in Section 3.3.2 and 3.3.3, we suggest two different extensions to the basic
state: a one-hot vector that encodes individual customers and so-called customer-
specific days.

In Section 3.4, we outline the standard way of training GAIL and AIRL. However,
due to the diverse customer population, this procedure is not likely to be optimal
in our case. Therefore, we propose matched mixture component trained GAIL
(MMCT-GAIL) in Section 3.5.

3.1 Customer Data
In order to train GAIL and AIRL, we have access to synthetic customer data in the
form of multivariate time-series. The data is generated from a simulation model that
has been provided to us from Smartr in the form of a ”black box”. The simulation
model generates customers of different sex and age. Sex and age affect a customer’s
behavior, but all generated customers have a nonzero probability of behaving in the
same way.

The customer data represents a customer’s purchasing behavior over time. Six prod-
ucts are available and the products could for instance be groceries or some other
kind of items that are consumed on a daily basis. Figure 3.1 shows the purchasing
behavior of a particular customer in the data set. Each day, the customer decides

23



3. Method

Day

0 10 20 30 40 50
Cat

ego
ry

6
5

4
3

2
1

Pr
ice

0
20
40
60
80
100
120

Original data

Figure 3.1: A sample from the original data set. The sample is a multivariate time-
series that represents a particular customer’s purchasing behavior over a time period
of 50 days. The customer can buy items from six different product categories. The
height of the bars shows how much money the customer has spent on a particular
product on a particular day.

whether he or she needs to buy any of the products. As we can see in the figure, the
customer does not necessarily have to buy all products at the same time but can
instead choose to only buy one or a few products.

The idea of the underlying simulation model is that each customer has its own pantry
where the levels of the products decrease as the customer randomly consumes the
products according to some costumer specific distribution. The probability that the
customer decides to go to the store naturally increases as the levels of the products
in the pantry decrease. In Figure 3.2a, this probability for a specific customer is
shown over a time period of 50 days. The red and green markers indicate whether
the customer makes a purchase on a particular day.

In order to reduce the complexity of the problem, we mainly work with aggregated
data, where all products have been merged together. That is, considering the origi-
nal data as a matrix with six rows and n columns, where n is the number of days, we
obtain the aggregated data by summing the matrix columns. We further reduce the
complexity of the data by only considering binary actions, i.e., ignoring the actual
purchase amounts. Figure 3.2b shows the aggregated form of the data in Figure 3.1.
Note that the purchase events correspond to the green markers in Figure 3.2a.

Figure 3.2c and 3.2d indicate how sex and age impact a customer’s purchasing
behavior. The figures show mean purchase amount against mean purchase ratio
given sex and age, respectively, for a population of 500 customers. Each customer is
represented by a sequence of 1000 days and the purchase ratio is simply the number
of purchases divided by the length of the sequence. As we can see, men buy more
frequently, and consume more money, than women. There is a similar trend for

24



3. Method

0 10 20 30 40 50
Day

0.0

0.2

0.4

0.6

0.8

1.0

Pu
rc
ha

se
 p
ro
ba

bi
lit
y

No purchase
Purchase

(a) Purchase probability vs time.

0 10 20 30 40 50
Day

No purchase

Purchase

Aggregated data

(b) Aggregated data.

0.125 0.150 0.175 0.200 0.225 0.250 0.275 0.300
Mean purchase ratio

100

200

300

400

500

600

700

M
ea

n 
pu

rc
ha

se
 a
m
ou

nt

Sex
Female
Male

(c) Influence of gender.

0.125 0.150 0.175 0.200 0.225 0.250 0.275 0.300
Mean purchase ratio

100

200

300

400

500

600

700

M
ea

n 
pu

rc
ha

se
 a
m
ou

nt

Age
<40
40–60
>60

(d) Influence of age.

Figure 3.2: (a): The purchase probability over a time period of 50 days for a
particular customer in the underlying simulation model. Green and red markers
indicate purchase and no purchase, respectively. (b): The aggregated form of the
original data in Figure 3.1. (c) and (d): An indication of how gender and age
impact a customer’s purchasing power in the synthetic data set.

25



3. Method

0 10 20 30 40 50
Day

No purchase

Purchase

Female, age 52

(a) A female customer of age 52.

0 10 20 30 40 50
Day

No purchase

Purchase

Female, age 77

(b) A female customer of age 77.

Figure 3.3: Samples from two different customers in the aggregated data set.

older people.

3.2 Comparing Customer Behaviors
With the goal of learning realistic customer actions, a metric for measuring the
similarity between sequences of actions is needed. Figure 3.3 shows the purchasing
behavior of two different customers – a female of age 52 and a female of age 77 –
over a period of 50 days. Apparently, these customers seem to behave somewhat dif-
ferently – but how can this intuition be verified? A common method for comparing
time-series is to extract features that characterize the time-series and then measure
the distance between the feature vectors with a suitable distance function. How-
ever, it is not obvious which features that characterize a sequence of realistic actions.

In order to understand how the customers take future actions conditional on their
previous actions, we look at the auto-correlation of the time-series. By defining a
time-series as a sequence of observations y1, y2, . . . , yN , the lag k auto-correlation is
given by

rk =
∑N−k
i=1 (yi − y)(yi+k − y)∑N

i=1(yi − y)2 , (3.1)

where y denotes the average value of the observations. In other words, the auto-
correlation of a time-series is the correlation between the time-series and a shifted
copy of itself. The lag specifies how many time steps the copy is shifted.

Figure 3.4 shows the auto-correlation for the behavior of the customers in Figure
3.3. By definition, the auto-correlation equals 1 when k = 0, i.e., the correlation is
1 for a time-series compared with itself. It is clear from the figure that the auto-
correlation, for both customers, is negative for a lag between 1 and 6 days. In our
case, a negative auto-correlation means that if a customer makes a purchase on a
particular day, he or she is more likely not to make a purchase the following day,
and vice versa. In Figure 3.4, we see that if the lag is greater than approximately
one week, the auto-correlation approaches zero, i.e., the decision (to buy or not to

26



3. Method

0 2 4 6 8 10 12 14 16 18 20
Lag (days)

0.0

0.2

0.4

0.6

0.8

1.0

Au
to
-c
or
re
la
tio

n
Female, age 52

(a) A female customer of age 52.

0 2 4 6 8 10 12 14 16 18 20
Lag (days)

0.0

0.2

0.4

0.6

0.8

1.0

Au
to
-c
or
re
la
tio

n

Female, age 77

(b) A female customer of age 77.

Figure 3.4: The auto-correlation of two time-series corresponding to two different
customers in the data set.

buy anything) that the customer made more than a week ago has no influence on
the decision that the customer makes today. In other words, the customer’s daily
decision only depends on the customer’s decisions of the last week.

Given this information, we create the categorical distributions shown in Figure 3.5.
In panel (a), we see the distribution of the last week’s actions given that the cus-
tomer makes a purchase today. In panel (b), we see the distribution of the last
week’s actions given that the customer does not make a purchase today. The distri-
butions are created by first sampling long sequences of data. For each day in such a
sample, depending on that day’s action, the actions of the previous seven days are
sorted into one of the bins that are shown in Figure 3.5. For example, the leftmost
bar in each panel corresponds to the case when the customer has made no purchases
during the last week. In order to reduce the complexity of the distributions, all cases
when the customer has made more than two purchases during the last week are put
into the rightmost bins.

As we can see in Figure 3.5, the behavior of the customers corresponds to distribu-
tions that clearly can be visually distinguished. Besides enabling a visual assessment
of the similarity between the behaviors, it is now possible to explicitly measure the
distance between the distributions, and thereby also the behaviors, by a metric for
comparing distributions. We have found that the Wasserstein distance works well
in our case. For details we refer to Section 2.1.3. The Wasserstein distance between
the conditional distributions in Figure 3.5 is 0.017 and 0.014, respectively.

The distributions in Figure 3.5 are informative, but in order to automate the process
of comparing different behaviors, it is practical to look at the unconditional distri-
bution in Figure 3.6. This distribution contains all information in the distributions
in Figure 3.5. In what follows, we mainly use the unconditional distribution when
comparing behaviors. Figure 3.7 shows how the Wasserstein distance between the
distributions of the customers in Figure 3.3 depends on the length of the sampled
time-series. As we can see, in order to accurately measure the distance between the

27



3. Method

[0
, 0

, 0
, 0

, 0
, 0

, 0
]

[1
, 0

, 0
, 0

, 0
, 0

, 0
]

[0
, 1

, 0
, 0

, 0
, 0

, 0
]

[0
, 0

, 1
, 0

, 0
, 0

, 0
]

[0
, 0

, 0
, 1

, 0
, 0

, 0
]

[0
, 0

, 0
, 0

, 1
, 0

, 0
]

[0
, 0

, 0
, 0

, 0
, 1

, 0
]

[0
, 0

, 0
, 0

, 0
, 0

, 1
]

[1
, 1

, 0
, 0

, 0
, 0

, 0
]

[1
, 0

, 1
, 0

, 0
, 0

, 0
]

[1
, 0

, 0
, 1

, 0
, 0

, 0
]

[1
, 0

, 0
, 0

, 1
, 0

, 0
]

[1
, 0

, 0
, 0

, 0
, 1

, 0
]

[1
, 0

, 0
, 0

, 0
, 0

, 1
]

[0
, 1

, 1
, 0

, 0
, 0

, 0
]

[0
, 1

, 0
, 1

, 0
, 0

, 0
]

[0
, 1

, 0
, 0

, 1
, 0

, 0
]

[0
, 1

, 0
, 0

, 0
, 1

, 0
]

[0
, 1

, 0
, 0

, 0
, 0

, 1
]

[0
, 0

, 1
, 1

, 0
, 0

, 0
]

[0
, 0

, 1
, 0

, 1
, 0

, 0
]

[0
, 0

, 1
, 0

, 0
, 1

, 0
]

[0
, 0

, 1
, 0

, 0
, 0

, 1
]

[0
, 0

, 0
, 1

, 1
, 0

, 0
]

[0
, 0

, 0
, 1

, 0
, 1

, 0
]

[0
, 0

, 0
, 1

, 0
, 0

, 1
]

[0
, 0

, 0
, 0

, 1
, 1

, 0
]

[0
, 0

, 0
, 0

, 1
, 0

, 1
]

[0
, 0

, 0
, 0

, 0
, 1

, 1
]

> 
2 
pu

rc
ha

se
s0.00

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ilit

y
Last week | Purchase today

Female, age 52
Female, age 77

(a) Last week given purchase today.

[0
, 0
, 0
, 0
, 0
, 0
, 0
]

[1
, 0
, 0
, 0
, 0
, 0
, 0
]

[0
, 1
, 0
, 0
, 0
, 0
, 0
]

[0
, 0
, 1
, 0
, 0
, 0
, 0
]

[0
, 0
, 0
, 1
, 0
, 0
, 0
]

[0
, 0
, 0
, 0
, 1
, 0
, 0
]

[0
, 0
, 0
, 0
, 0
, 1
, 0
]

[0
, 0
, 0
, 0
, 0
, 0
, 1
]

[1
, 1
, 0
, 0
, 0
, 0
, 0
]

[1
, 0
, 1
, 0
, 0
, 0
, 0
]

[1
, 0
, 0
, 1
, 0
, 0
, 0
]

[1
, 0
, 0
, 0
, 1
, 0
, 0
]

[1
, 0
, 0
, 0
, 0
, 1
, 0
]

[1
, 0
, 0
, 0
, 0
, 0
, 1
]

[0
, 1
, 1
, 0
, 0
, 0
, 0
]

[0
, 1
, 0
, 1
, 0
, 0
, 0
]

[0
, 1
, 0
, 0
, 1
, 0
, 0
]

[0
, 1
, 0
, 0
, 0
, 1
, 0
]

[0
, 1
, 0
, 0
, 0
, 0
, 1
]

[0
, 0
, 1
, 1
, 0
, 0
, 0
]

[0
, 0
, 1
, 0
, 1
, 0
, 0
]

[0
, 0
, 1
, 0
, 0
, 1
, 0
]

[0
, 0
, 1
, 0
, 0
, 0
, 1
]

[0
, 0
, 0
, 1
, 1
, 0
, 0
]

[0
, 0
, 0
, 1
, 0
, 1
, 0
]

[0
, 0
, 0
, 1
, 0
, 0
, 1
]

[0
, 0
, 0
, 0
, 1
, 1
, 0
]

[0
, 0
, 0
, 0
, 1
, 0
, 1
]

[0
, 0
, 0
, 0
, 0
, 1
, 1
]

> 
2 
pu
rc
ha
se
s0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Pr
ob
ab
ilit
y

Last week | No purchase today
Female, age 52
Female, age 77

(b) Last week given no purchase today.

Figure 3.5: Conditional categorical distributions of customer behaviors for two
different customers.

distributions, the sampled sequences need to be as long as 100000 days. For prac-
tical reasons, we sample only 10000 days when comparing behaviors which seems
reasonable according to Figure 3.7.

3.3 MDP Representations
We formulate the problem of learning individual customer behaviors using a Markov
decision process (MDP). The MDP is described by the tuple 〈S,A,P , γ, R〉, where S
is a finite set of states, A is a finite set of actions, P is the state-transition probability
function, γ ∈ [0, 1) is a discount factor, and R : S ×A 7→ R is the reward function.
In our case, the reward is unknown. In order to solve the MDP, we need to choose
a state representation that captures a customer’s purchase history. Optimally, the
state should have the Markov property, meaning that the transition from state st to
state st+1 only depends on st. In the following sections, we introduce three different
state representations.

3.3.1 Basic Representation
A customer’s daily decision to either make a purchase or not make a purchase de-
pends on his or her purchase history. A customer that made a purchase yesterday is
less likely to make a purchase today. We propose a basic state representation that
includes the customer’s purchase history from the last N days. The idea is that
such a state should provide the agent with enough information for taking realistic
actions. The larger N is, the more of the customer’s statistical behavior is included
in the state.

In order to train the algorithms, we must convert the time-series in the expert data
set into state-action pairs. In practice, since we use synthetic data, the time-series
can be infinitely long. However, we are interested in reducing the number of state-

28



3. Method

[0
, 0

, 0
, 0

, 0
, 0

, 0
, 0

]
[1
, 0

, 0
, 0

, 0
, 0

, 0
, 0

]
[0
, 1

, 0
, 0

, 0
, 0

, 0
, 0

]
[0
, 0

, 1
, 0

, 0
, 0

, 0
, 0

]
[0
, 0

, 0
, 1

, 0
, 0

, 0
, 0

]
[0
, 0

, 0
, 0

, 1
, 0

, 0
, 0

]
[0
, 0

, 0
, 0

, 0
, 1

, 0
, 0

]
[0
, 0

, 0
, 0

, 0
, 0

, 1
, 0

]
[0
, 0

, 0
, 0

, 0
, 0

, 0
, 1

]
[1
, 1

, 0
, 0

, 0
, 0

, 0
, 0

]
[1
, 0

, 1
, 0

, 0
, 0

, 0
, 0

]
[1
, 0

, 0
, 1

, 0
, 0

, 0
, 0

]
[1
, 0

, 0
, 0

, 1
, 0

, 0
, 0

]
[1
, 0

, 0
, 0

, 0
, 1

, 0
, 0

]
[1
, 0

, 0
, 0

, 0
, 0

, 1
, 0

]
[1
, 0

, 0
, 0

, 0
, 0

, 0
, 1

]
[0
, 1

, 1
, 0

, 0
, 0

, 0
, 0

]
[0
, 1

, 0
, 1

, 0
, 0

, 0
, 0

]
[0
, 1

, 0
, 0

, 1
, 0

, 0
, 0

]
[0
, 1

, 0
, 0

, 0
, 1

, 0
, 0

]
[0
, 1

, 0
, 0

, 0
, 0

, 1
, 0

]
[0
, 1

, 0
, 0

, 0
, 0

, 0
, 1

]
[0
, 0

, 1
, 1

, 0
, 0

, 0
, 0

]
[0
, 0

, 1
, 0

, 1
, 0

, 0
, 0

]
[0
, 0

, 1
, 0

, 0
, 1

, 0
, 0

]
[0
, 0

, 1
, 0

, 0
, 0

, 1
, 0

]
[0
, 0

, 1
, 0

, 0
, 0

, 0
, 1

]
[0
, 0

, 0
, 1

, 1
, 0

, 0
, 0

]
[0
, 0

, 0
, 1

, 0
, 1

, 0
, 0

]
[0
, 0

, 0
, 1

, 0
, 0

, 1
, 0

]
[0
, 0

, 0
, 1

, 0
, 0

, 0
, 1

]
[0
, 0

, 0
, 0

, 1
, 1

, 0
, 0

]
[0
, 0

, 0
, 0

, 1
, 0

, 1
, 0

]
[0
, 0

, 0
, 0

, 1
, 0

, 0
, 1

]
[0
, 0

, 0
, 0

, 0
, 1

, 1
, 0

]
[0
, 0

, 0
, 0

, 0
, 1

, 0
, 1

]
[0
, 0

, 0
, 0

, 0
, 0

, 1
, 1

]
[1
, 1

, 0
, 0

, 0
, 0

, 0
, 1

]
[1
, 0

, 1
, 0

, 0
, 0

, 0
, 1

]
[1
, 0

, 0
, 1

, 0
, 0

, 0
, 1

]
[1
, 0

, 0
, 0

, 1
, 0

, 0
, 1

]
[1
, 0

, 0
, 0

, 0
, 1

, 0
, 1

]
[1
, 0

, 0
, 0

, 0
, 0

, 1
, 1

]
[0
, 1

, 1
, 0

, 0
, 0

, 0
, 1

]
[0
, 1

, 0
, 1

, 0
, 0

, 0
, 1

]
[0
, 1

, 0
, 0

, 1
, 0

, 0
, 1

]
[0
, 1

, 0
, 0

, 0
, 1

, 0
, 1

]
[0
, 1

, 0
, 0

, 0
, 0

, 1
, 1

]
[0
, 0

, 1
, 1

, 0
, 0

, 0
, 1

]
[0
, 0

, 1
, 0

, 1
, 0

, 0
, 1

]
[0
, 0

, 1
, 0

, 0
, 1

, 0
, 1

]
[0
, 0

, 1
, 0

, 0
, 0

, 1
, 1

]
[0
, 0

, 0
, 1

, 1
, 0

, 0
, 1

]
[0
, 0

, 0
, 1

, 0
, 1

, 0
, 1

]
[0
, 0

, 0
, 1

, 0
, 0

, 1
, 1

]
[0
, 0

, 0
, 0

, 1
, 1

, 0
, 1

]
[0
, 0

, 0
, 0

, 1
, 0

, 1
, 1

]
[0
, 0

, 0
, 0

, 0
, 1

, 1
, 1

]
> 

2 
pu

rc
ha

se
s0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Pr
ob

ab
ilit

y

Female, age 52
Female, age 77

Figure 3.6: The unconditional distribution corresponding to the conditional dis-
tributions in Figure 3.5.

0 20000 40000 60000 80000 100000
Number of sample days

0.0075

0.0080

0.0085

0.0090

0.0095

0.0100

0.0105

W
as
se
rs
te
in
 d
ist

an
ce

Figure 3.7: The Wasserstein distance between the distributions for the different
customers in Figure 3.6 as a function of the length of the time-series used for gen-
erating the distributions.

29



3. Method

action pairs that are used for training the algorithms. Assuming that we limit each
expert time-series to a length of M days, we form M −N state-action pairs for each
expert. Using M = 50 and N = 40 as an example, the time-series in Figure 3.3a
would be converted into the following state-action pairs:

s0 =
[
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, . . . , 1, 0, 0, 1, 0, 0, 0, 0, 1, 0

]
, a0 = 0

s1 =
[
0, 1, 0, 0, 0, 0, 0, 0, 0, 1, . . . , 0, 0, 1, 0, 0, 0, 0, 1, 0, 0

]
, a1 = 0

s2 =
[
1, 0, 0, 0, 0, 0, 0, 0, 1, 0, . . . , 0, 1, 0, 0, 0, 0, 1, 0, 0, 0

]
, a2 = 0

...
s7 =

[
0, 0, 0, 1, 0, 0, 1, 0, 0, 1, . . . , 0, 1, 0, 0, 0, 0, 1, 0, 0, 0

]
, a7 = 1

s8 =
[
0, 0, 1, 0, 0, 1, 0, 0, 1, 0, . . . , 1, 0, 0, 0, 0, 1, 0, 0, 0, 1

]
, a8 = 0

s9 =
[
0, 1, 0, 0, 1, 0, 0, 1, 0, 0, . . . , 0, 0, 0, 0, 1, 0, 0, 0, 1, 0

]
, a9 = 0.

(3.2)

Here, every state consists of N = 40 elements.

When training the algorithms, the agent is initialized into a state from a particular
expert’s trajectory. By executing the agent’s policy, i.e., sampling from the agent’s
policy given an initial state, a trajectory of state-action pairs is collected, which
optimally should be similar to the expert’s trajectory. As an example, let us initialize
the agent with a state from the customer represented by the time-series in Figure
3.3a. Assuming we randomly select state s2 in (3.2) as the agent’s initial state, the
first part of the agent’s trajectory could be created according to

s0 =
[
1, 0, 0, 0, 0, 0, 0, 0, 1, 0, . . . , 0, 1, 0, 0, 0, 0, 1, 0, 0, 0

]
π(a0 = 0|s0) = 0.94 π(a0 = 1|s0) = 0.06
a0 = 0
s1 =

[
0, 0, 0, 0, 0, 0, 0, 1, 0, 0 . . . , 1, 0, 0, 0, 0, 1, 0, 0, 0, 0

]
π(a1 = 0|s1) = 0.83 π(a1 = 1|s1) = 0.17
a1 = 0
s2 =

[
0, 0, 0, 0, 0, 0, 1, 0, 0, 1 . . . , 0, 0, 0, 0, 1, 0, 0, 0, 0, 0

]
π(a2 = 0|s2) = 0.67 π(a2 = 1|s2) = 0.33
a2 = 1
s3 =

[
0, 0, 0, 0, 0, 1, 0, 0, 1, 0 . . . , 0, 0, 0, 1, 0, 0, 0, 0, 0, 1

]
π(a3 = 0|s3) = 0.97 π(a3 = 1|s3) = 0.03
a3 = 0.

(3.3)

Note that the probability of making a purchase drastically decreases when the agent
makes a purchase (a2). When the algorithms are fully trained, it should be possible
to predict the behavior of a new customer by initializing the agent into a state
consisting of the new customer’s purchase history and then execute the policy. The
larger N is, the more data is required from a new customer before its future behavior
can be predicted.

30



3. Method

3.3.2 One-Hot Vector Extension
The basic state representation only contains a customer’s historical purchases. Since
the behavior of individual customers is varying, it is likely that the basic state rep-
resentation must be extended in some way to include additional information about
the specific customer. As a first suggestion, to evaluate the concept, we use one-hot
encoding to represent each individual customer in the expert data set. More specif-
ically, each state is extended with a one-hot vector that explicitly indicates which
customer the purchase history belongs to.

As an example, assume that the algorithms are trained with expert data from K
different customers. Furthermore, assume that the customer represented by the
time-series in Figure 3.3a is the ith expert in the expert data set. Using N = 40 days
of purchase history, the state s0 in (3.2) would for instance be extended according
to [

0, . . . , 0, 1, 0, . . . 0︸ ︷︷ ︸
One-hot vector of sizeK

, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, . . . , 1, 0, 0, 1, 0, 0, 0, 0, 1, 0︸ ︷︷ ︸
N historical days

]
, (3.4)

where the ith element in the one-hot vector is set to one, whereas the others are
set to zero. The idea is that this additional piece of information should improve the
agent’s ability to learn individual customer behaviors.

3.3.3 Customer-Specific Days Extension
Obviously, including each customer in the expert data in the one-hot vector is not a
scalable extension of the basic state representation. In a real-world scenario, the ex-
pert data set could consist of data from thousands of customers. A possible solution
to this problem is to group similar customers together using some clustering method
and represent each group as an element in the one-hot vector. In this way, the length
of the one-hot vector could be significantly less than the number of experts. How-
ever, it is not obvious how to perform the clustering, and any segmentation would
contain less information compared to using an individual based representation.

Another drawback of using one-hot encoding is that predicting the behavior of a
new customer can be difficult. In order to predict the behavior of a new customer,
the agent must be initialized into a state that includes a particular one-hot vector.
A possible approach is to identify an expert that behaves similarly to the new cus-
tomer and use that expert’s one-hot encoding. However, if there is only a limited
amount of data available for the new customer, it can be troublesome to accurately
compare the new customer with the experts.

Instead, we replace the one-hot vector with a statistical representation of the cus-
tomer’s behavior, which we call customer-specific (CS) days. Essentially, the CS
days are nothing else but a sequence of L historical purchases. However, in contrast
to the sequence of N historical purchases, the CS days are not updated according
to (3.2). Instead, the CS days are slightly modified in each update step to prevent

31



3. Method

the agent from memorizing a fixed sequence, which would be more or less the same
as using one-hot encoding. In practice, a sequence of, e.g., 2L historical purchases
could be used to generate L+1 different sets of CS days by simply moving a window
of length L across the sequence. In each update step, the statistical representation
is modified by choosing a random sample from the L+ 1 different sets of CS days.

As a concrete example, assume L = 5 (in practice, L would be much larger) and
that the sequence of 2L historical purchases looks like[

1, 0, 0, 0, 0, 1, 0, 0, 1, 0
]
. (3.5)

From this sequence we obtain six different sets of CS days, namely[
1, 0, 0, 0, 0

]
,[

0, 0, 0, 0, 1
]
,[

0, 0, 0, 1, 0
]
,[

0, 0, 1, 0, 0
]
,[

0, 1, 0, 0, 1
]
,[

1, 0, 0, 1, 0
]
.

(3.6)

Replacing the one-hot vector in the state in (3.4) with CS days, we could for instance
obtain the state[

0, 0, 1, 0 . . . , 0, 0, 0, 0, . . . 0, 0, 0, 1︸ ︷︷ ︸
LCS days

, 0, 0, 1, 0, 0, . . . , 0, 0, 0, 1, 0︸ ︷︷ ︸
N historical days

]
. (3.7)

Using CS days, the agent’s decision to make a purchase or not depends on the last
N days of purchase history as well as the customer’s statistical behavior. Hopefully,
the use of CS days should increase the algorithms’ ability to interpolate between
experts and generalize better to new customers. CS days have a different statistical
meaning than one-hot encoding. The behavior of a new customer can be predicted
by initializing the agent only with data from that particular customer, i.e., there is
no need for comparing the new customer with the experts in the training data set.

3.4 Standard Training of GAIL and AIRL
Proposed in 2016, GAIL revolutionized the field of imitation learning by directly
extracting a policy from a given data set without explicitly learning a reward func-
tion. AIRL recovers the true reward function in an adversarial context and can
be seen as an extension to GAIL. However, while the discriminator in GAIL can be
represented by a single network, two networks are used to estimate the discriminator
signal (2.63) in AIRL. Therefore, AIRL is more computationally expensive to train.

32



3. Method

Both GAIL and AIRL belong to the class of adversarial imitation learning (AIL)
algorithms. The standard way of training AIL algorithms follows a similar scheme.
Trajectories are collected by executing the policy and the discriminator is trained
to separate sampled trajectories from expert trajectories. The policy is then up-
dated by any policy optimization method, for instance TRPO or PPO, using the
feedback signal from the discriminator as reward. Traditionally, each update of the
discriminator is accomplished by randomly selecting a subset of expert trajectories.
Furthermore, the agent trajectories are collected after initializing the agent into ran-
domly chosen expert states.

As discussed in Section 2.1.2, GANs are difficult to train. For instance, GANs often
suffer from mode collapse – a problem that prevents the generator from learning
the full complexity of the real data. Several methods have been proposed to reduce
mode collapse in GANs, e.g., Wasserstein GANs (WGANs) which tend to work well
in practice. In order to reduce the risk of mode collapse, we train the discriminator in
GAIL by using a WGAN based objective together with gradient penalty to enforce a
1-Lipschitz constraint, see Algorithm 4. In AIRL, the discriminator, explicitly given
by (2.63), is trained by minimizing the cross-entropy loss according to Algorithm 3.
In both cases, we update the policy using the PPO rule, see Algorithm 1.

Algorithm 4 GAIL using WGAN-GP objective
Input Expert trajectories τE ∼ πE, initial G and D parameters θ0 and w0
for t = 0, 1, 2 . . . do

Sample trajectories τ ∼ πθ starting from a random expert state
τ̂ ← ετE + (1− ε)τ
Calculate w′t+1 ← w′t using the gradient

Eτ [∇wDw(s, a)]− EτE [∇wDw(s, a)] + Eτ̂
[
∇wλ[(‖∇τ̂Dw(s, a)‖2 − 1)2

]
Calculate θt+1 ← θt using TRPO/PPO with loss function log

(
Dwt+1(s, a)

)
end for
Return π̂θ

E

3.5 MMCT-GAIL
The standard training procedure of AIL algorithms assumes that there is a single
expert policy πE that describes the behavior of the experts. This assumption is
perfectly fine when imitation learning is applied to the problem of training, e.g.,
a self-driving car. In such a case, the algorithm should learn to drive at least as
good as a human driver, and learning the behavior of the average human driver is
thus a good objective. In our case, we instead want to train the algorithms to learn
behaviors of multiple experts. This could be compared to training a self-driven car
to learn the individual behaviors of multiple drivers.

As seen in Section 3.1, the behavior of the customers in the population is varying.
In fact, the customer behavior distribution is formed by several mixture components
that represent individual behaviors. If the mixture components are to be learned,

33



3. Method

the standard way of training the algorithms is most likely suboptimal. In particular,
feeding the discriminator with randomly chosen data may slow down the learning
process. To improve the algorithms ability to learn diverse individual behaviors we
redefine the objective of the imitation learning problem.

We assume that each expert i, where i = 0, . . . , Nexperts, behaves according to an
individual policy πEi – a mixture component of the expert policy πE. We want to
train a model so that the learned policy πθ generates realistic behavior for every ex-
pert. We suggest to learn individual customer behaviors by modifying Algorithm 4
to match expert demonstrations with the corresponding agent samples. The new al-
gorithm, which we call matched mixture component trained GAIL (MMCT-GAIL),
is outlined in Algorithm 5.

In each iteration t, the expert data set is divided into j random subsets of equal
size. Consider a particular subset of experts Hj. For each expert i in the subset, the
agent is initialized into a randomly chosen state from that particular expert, and a
sample is collected by executing the current policy πθ. When samples for all experts
in Hj are collected, the discriminator is trained to distinguish expert trajectories
from the corresponding policy samples by batch-wise optimization of the WGAN-
GP objective. Once the discriminator is updated, a policy optimization method,
e.g., TRPO or PPO, is used for updating the policy with the discriminator signal
as reward.

3.6 Related Methods
Halfway into our work we learned about sequence generative adversarial nets with
policy gradient (SeqGAN) [45]. SeqGAN is not categorized as an imitation learning
algorithm but is a model with an adversarial structure, adapted for sequential data,
which uses a policy gradient to update the generator. More specifically, the gener-
ator is represented by a recurrent neural network, in particular an LSTM, updated
by a gradient policy method. The discriminator is preferably a convolutional net-
work that takes a full sequence as input and outputs a RL reward signal that the
LSTM uses as loss. Choosing an LSTM as a policy representation is instinctively
a convenient choice since LSTMs have shown good performance on sequential data,
e.g., text translation. SeqGAN could be an alternative to the methods used in this
thesis but has not been further investigated.

34



3. Method

Algorithm 5 MMCT-GAIL
Input Set of expert trajectories D = {τE

i }
Nexperts
i=1 where τE

i ∼ πEi ,
initial G and D parameters θ0 and w0, k

for t = 0, 1, 2, . . . do
w′0 ← wt

θ′0 ← θt
Split D into M random disjoint subsets Hj of equal size k
for j = 0, 1, 2, . . . ,M − 1 do

for every expert i in subset Hj do
Sample an initial state s0

i from τE
i

Sample a trajectory τ i ∼ πθ′
j
starting from s0

i

τ̂ i ← ετE
i + (1− ε)τ i

end for
Compute w′j+1 ← w′j using the gradient∑

i∈Hj

(
Eτi [∇wDw(s, a)]− EτEi [∇wDw(s, a)] +

Eτ̂i
[
∇wλ[(‖∇τ̂ iDw(s, a)‖2 − 1)2

] )
Compute θ′j+1 ← θ′j using policy optimization with loss functionDw′

j+1
(s, a).

end for
wt+1 ← w′M
θt+1 ← θ′M

end for
Return π̂Eθ

35



3. Method

36



4
Experimental Evaluation

The purpose of this thesis is to evaluate the performance of the imitation learning
algorithms presented in Chapter 3 on the synthetic purchase data described in Sec-
tion 3.1. In this chapter, we present our major findings. We specify the general
implementation details in Section 4.1. Then, in Section 4.2, we evaluate the perfor-
mance of GAIL and AIRL, trained in a standard way. In Section 4.3, we evaluate
the performance of MMCT-GAIL. Each algorithm is evaluated using each of the
MDP representations described in Section 3.3.

When evaluating the performance of the algorithms, we utilize the method for com-
paring time-series into distributions which we developed in Section 3.2. The algo-
rithms learn a policy that can be used to predict the behavior of individual cus-
tomers. In doing so, the agent is initialized into a state from the customer and the
policy is executed over 10000 time steps. The sequence of actions is then converted
into a distribution which we compare to the true distribution of the customer. We
use the Wasserstein metric to measure the difference between distributions. If noth-
ing else is stated, we compare unconditional distributions. To simplify language, we
write in terms of comparing the behavior of the agent and the customer, or simply,
comparing the agent and the customer (when we in fact compare the corresponding
distributions).

We denote customers that are included in the training data set as experts. The
average behavior of the experts is obtained by averaging the corresponding distri-
butions. We obtain the average behavior of the agent by initializing the agent into
a state from each of the experts, executing the policy and averaging the correspond-
ing distributions. If the agent is initialized into a state from the ith expert, we
sometimes denote its behavior as ”Agent i”.

4.1 Experimental Details
Our implementations of the algorithms are based on an open source code [46], which
in turn is heavily dependent on the deep learning framework Chainer. In all algo-
rithms, the policy is updated using PPO implemented in an actor-critic way. We
represent the policy (the actor) and the value function (the critic) as separate net-
works. More precisely, we use multilayer perceptrons with two hidden layers with
64 neurons each. The ReLu function is used as activation function after each hid-
den layer. Naturally, the softmax function is applied to the outputs of the policy

37



4. Experimental Evaluation

network, while there is no activation function after the output layer of the value
network. We update the network parameters using the Adam optimizer with learn-
ing rate 0.0003. There are a lot of hyperparameters that need to be set in PPO. In
general, we use the default values summarized in Table A.1.

The discriminators in all algorithms are represented as multilayer perceptrons with
two hidden layers. Each hidden layer consists of 64 neurons. In fact, the discrimi-
nator in AIRL utilizes two networks: a reward network as well as a value network.
Again, the Adam optimizer is used to update the network parameters, but for the
discriminator networks, the learning rate is set to 0.00001. In MMCT-GAIL, the
size k of each subset Hj is set to 10. For further implementation details we refer to
Table A.1.

When training the algorithms using the basic state representation or the CS days
extension, we use expert data from 100 experts. When using one-hot encoding, we
limit ourselves to 10 experts. Each expert trajectory has a length of three years, i.e.,
it consists of 1095 days of purchase history. Similarly, we collect agent trajectories
by executing the policy over 1095 time steps (each time step corresponds to one
day), which defines the length of one episode. In total, we train the algorithms over
20000 episodes.

Figures B.1–B.10 in Appendix B.1 show the behaviors, represented as the conditional
distributions, of the first ten experts in the expert data set. In addition, the heatmap
in Figure 4.1 shows the pairwise Wasserstein distance between the unconditional
distributions of the first ten experts. As an example, we clearly see that the second
and third expert behave in a similar way whereas the first and sixth expert behave
very differently. In the following sections, we compare the behavior of the agent
with the behaviors of the experts in a similar way. If the policy is optimally learned,
the agent should be able to behave as each of the experts and the corresponding
heatmap would be identical to the heatmap in Figure 4.1.

4.2 Standard Training
In this section, we evaluate the performance of the standard algorithms using three
different state representations. In Section 4.2.1, we use a state that consists of three
months (90 days) of historical purchases. Then, in Section 4.2.2, we extend this
state with a one-hot vector that represents each individual customer in the expert
data set. Finally, we evaluate the customer-specific (CS) days extension in Section
4.2.4.

4.2.1 Basic State Representation
In Figure 4.2, we compare the average behavior of the agent with the average behav-
ior of the experts after 20000 training episodes. The upper and lower panels show
the result obtained with GAIL and AIRL, respectively. As we see, GAIL and AIRL
show similar performance. The Wasserstein distance between the unconditional dis-

38



4. Experimental Evaluation

Ex
pe

rt 
1

Ex
pe

rt 
2

Ex
pe

rt 
3

Ex
pe

rt 
4

Ex
pe

rt 
5

Ex
pe

rt 
6

Ex
pe

rt 
7

Ex
pe

rt 
8

Ex
pe

rt 
9

Ex
pe

rt 
10

Expert 1

Expert 2

Expert 3

Expert 4

Expert 5

Expert 6

Expert 7

Expert 8

Expert 9

Expert 10
0.000

0.002

0.004

0.006

0.008

0.010

0.012

W
as
se
rs
te
in
 d
ist

an
ce

Figure 4.1: A comparison of the ten first experts in the data set. The heatmap
is created by sampling time-series for each of these experts and then converting the
time-series into distributions, which are compared using the Wasserstein metric. In
particular, we use the unconditional distributions, see Figure 3.6.

tributions is 0.0013 (GAIL) and 0.0015 (AIRL), respectively. Clearly, the agent has
learned to behave as the average customer in the expert data set.

Although the result in Figure 4.2 is promising, we are interested in learning indi-
vidual customer behaviors. Figure 4.3 indicates that this is not the case. Here, the
agent is initialized into a state from the second expert, see Figure B.2. The second
expert behaves quite differently from the average expert, whose behavior is repre-
sented by the green bars in the figure. As we see in Figure 4.3, neither GAIL nor
AIRL learns a policy that enables the agent to behave as the second expert. Instead,
the agent imitates the average expert. Comparing the unconditional distributions,
the Wasserstein distance between the agent and the average expert is 0.0010 (GAIL)
and 0.0014 (AIRL), respectively, while the distance between the agent and the sec-
ond expert is 0.0059 (GAIL) and 0.0052 (AIRL), respectively. In Figure 4.4, the
agent is compared to a larger number of experts. Regardless of initialization, we see
that the agent behaves as the average expert. This is reminiscent of mode collapse,
which is a common problem when training GANs, see Section 2.1.2.

In Figure 4.5, we show the training process of GAIL and AIRL, respectively. The
green line shows the change in distance between the average expert and the average
agent. The blue and orange lines show the distance change between the agent
and individual customers. More specifically, the blue line compares the agent to
the experts, whilst the orange line compares the agent to 50 new customers. The
error bands show the 95 % empirical confidence interval around the mean (solid
line). Again, we see that neither GAIL nor AIRL learns a policy that can predict
individual behaviors.

39



4. Experimental Evaluation

0.00

0.05

0.10

0.15

0.20

Pr
ob

ab
ilit

y

Last week | Purchase today
Average agent
Average expert

GAIL

(a) GAIL: purchase today.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Pr
ob
ab
ilit
y

Last week | No purchase today
Average expert
Average agent

GAIL

(b) GAIL: no purchase today.

0.00

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ilit

y

Last week | Purchase today
Average agent
Average expert

AIRL

(c) AIRL: purchase today.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Pr
ob
ab
ilit
y

Last week | No purchase today
Average agent
Average expert

AIRL

(d) AIRL: no purchase today.

Figure 4.2: The average purchasing behavior of the agent compared to the average
purchasing behavior of 100 experts, using the basic state representation. Both GAIL
and AIRL learn a policy that enables the agent to behave very similarly to the true
average behavior.

40



4. Experimental Evaluation

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob
ab
ilit
y

Last week | Purchase today
Agent 2
Expert 2
Average expert

GAIL

(a) GAIL.

0.00

0.05

0.10

0.15

0.20

Pr
ob

ab
ilit

y

Last week | No purchase today
Agent 2
Expert 2
Average expert

GAIL

(b) GAIL.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob
ab
ilit
y

Last week | Purchase today
Agent 2
Expert 2
Average expert

AIRL

(c) AIRL.

0.00

0.05

0.10

0.15

0.20

Pr
ob

ab
ilit

y

Last week | No purchase today
Agent 2
Expert 2
Average expert

AIRL

(d) AIRL.

Figure 4.3: A comparison between the agent (blue bars) and the second expert
(orange bars) using a basic state representation. Neither GAIL nor AIRL learns a
policy that enables the agent to behave as the second expert. Instead, the agent
imitates the behavior of the average expert (green bars). Figure B.11 in Appendix
B shows a similar comparison with the ninth expert.

41



4. Experimental Evaluation

Ex
pe

rt 
1

Ex
pe

rt 
2

Ex
pe

rt 
3

Ex
pe

rt 
4

Ex
pe

rt 
5

Ex
pe

rt 
6

Ex
pe

rt 
7

Ex
pe

rt 
8

Ex
pe

rt 
9

Ex
pe

rt 
10

Av
er
ag

e 
ex

pe
rt

Agent 1

Agent 2

Agent 3

Agent 4

Agent 5

Agent 6

Agent 7

Agent 8

Agent 9

Agent 10

GAIL

0.001

0.002

0.003

0.004

0.005

0.006

0.007

W
as
se
rs
te
in
 d
ist

an
ce

(a) GAIL.

Ex
pe

rt 
1

Ex
pe

rt 
2

Ex
pe

rt 
3

Ex
pe

rt 
4

Ex
pe

rt 
5

Ex
pe

rt 
6

Ex
pe

rt 
7

Ex
pe

rt 
8

Ex
pe

rt 
9

Ex
pe

rt 
10

Av
er
ag

e 
ex

pe
rt

Agent 1

Agent 2

Agent 3

Agent 4

Agent 5

Agent 6

Agent 7

Agent 8

Agent 9

Agent 10

AIRL

0.002

0.003

0.004

0.005

0.006

W
as
se
rs
te
in
 d
ist

an
ce

(b) AIRL.

Figure 4.4: Using the basic state representation, both GAIL and AIRL fail in
learning a policy that predicts individual purchasing behaviors. The agent is initial-
ized into a state from each of the experts (”Agent 1”, ”Agent 2”, etc.) but always
behaves as the average expert.

5000 10000 15000 20000
Number of training episodes

0.000

0.002

0.004

0.006

0.008

0.010

W
as

se
rs

te
in

 d
is

ta
nc

e

GAIL

Comparison with
Experts
New customers
Average expert

(a) GAIL.

5000 10000 15000 20000
Number of training episodes

0.000

0.002

0.004

0.006

0.008

0.010

W
as

se
rs

te
in

 d
is

ta
nc

e

AIRL

Comparison with
Experts
New customers
Average expert

(b) AIRL.

Figure 4.5: The training process for GAIL and AIRL using the basic state rep-
resentation. The policy network is regularly saved during the training. At each
evaluation, the agent is initialized into states from each expert as well as 50 new
customers. Executing the policy, the corresponding distributions are compared using
the Wasserstein distance.

42



4. Experimental Evaluation

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob
ab
ilit
y

Last week | Purchase today
Agent 2
Expert 2
Average expert

GAIL

(a) GAIL.

0.00

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ilit

y

Last week | No purchase today
Agent 2
Expert 2
Average expert

GAIL

(b) GAIL.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob
ab
ilit
y

Last week | Purchase today
Agent 2
Expert 2
Average expert

AIRL

(c) AIRL.

0.00

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ilit

y

Last week | No purchase today
Agent 2
Expert 2
Average expert

AIRL

(d) AIRL.

Figure 4.6: A comparison between the agent and the second expert, when extend-
ing the state with a one-hot vector. Figure B.12 in Appendix B shows a similar
comparison with the ninth expert.

4.2.2 One-Hot Vector Extension
In order to improve prediction of individual behaviors, we extend the basic state
with a one-hot vector that encodes each expert. In Figure 4.6, the agent is initial-
ized into a state from the second expert and its behavior is then compared to the
second expert as well as the average expert. In contrast to Figure 4.3, we now see
that the agent behaves quite differently from the average customer and more like
the second expert. The results obtained with GAIL and AIRL are similar.

Figure 4.7 indicates that the agent is able to behave as almost all of the experts.
Like Figure 4.1, the diagonal elements are clearly prominent. There are some details
worth commenting on. For instance, we see that the behavior of the first expert is
hard to predict. Furthermore, essentially the same predictions are made for both
expert 7 and expert 8, even though these experts are quite different according to
Figure 4.1. In Figure B.13 in Appendix B, the heatmap for GAIL is shown for every
thousand episode during the training process.

43



4. Experimental Evaluation

Ex
pe

rt 
1

Ex
pe

rt 
2

Ex
pe

rt 
3

Ex
pe

rt 
4

Ex
pe

rt 
5

Ex
pe

rt 
6

Ex
pe

rt 
7

Ex
pe

rt 
8

Ex
pe

rt 
9

Ex
pe

rt 
10

Agent 1

Agent 2

Agent 3

Agent 4

Agent 5

Agent 6

Agent 7

Agent 8

Agent 9

Agent 10

GAIL

0.002

0.003

0.004

0.005

0.006

0.007

0.008

W
as
se
rs
te
in
 d
ist

an
ce

(a) GAIL.

Ex
pe

rt 
1

Ex
pe

rt 
2

Ex
pe

rt 
3

Ex
pe

rt 
4

Ex
pe

rt 
5

Ex
pe

rt 
6

Ex
pe

rt 
7

Ex
pe

rt 
8

Ex
pe

rt 
9

Ex
pe

rt 
10

Agent 1

Agent 2

Agent 3

Agent 4

Agent 5

Agent 6

Agent 7

Agent 8

Agent 9

Agent 10

AIRL

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

W
as
se
rs
te
in
 d
ist

an
ce

(b) AIRL.

Figure 4.7: A comparison between the agent and all experts. Note that the
diagonal elements are prominent, meaning that the learned policy enabled prediction
of individual behaviors. These heatmaps should be compared to the heatmap in
Figure 4.1, where experts are compared to each other.

Figure 4.8 summarizes our findings when using one-hot encoding. The dashed or-
ange lines show the learning process of GAIL and AIRL, respectively, using only the
basic state representation. In order to predict the behavior of a new customer, the
distribution of the new customer is compared to the distribution of each of the ten
experts. The element in the one-hot vector that corresponds to the expert who is
most similar (in terms of smallest Wasserstein distance between the distributions)
to the new customer is set to one. The initial purchase history is taken from the
new customer. The red line indicates how the distance to the most similar expert
varies during the training. We see that the Wasserstein distance for comparison
with experts and new customers decreases faster for GAIL than for AIRL. However,
the result after 20000 episodes is essentially the same.

4.2.3 Influence of One-Hot Encoding
It is interesting to investigate how the policy responds to a modification of the initial
state. In doing so, we analyze an agent trained with GAIL. For sake of simplicity,
we represent purchasing behaviors by purchase ratios, see Section 3.1. In Figure
4.9, the dashed green and orange lines show the purchasing behavior of the agent
initialized with purchase history from two different new customers, while the one-
hot vector consists of only zeros. The solid green and orange lines show the actual
behaviors of the two customers. The blue line shows the average behavior of the
first ten experts. We see that the agent behaves similarly to the average expert. In
other words, when predicting the behavior of a new customer without employing
one-hot encoding, we obtain the behavior of the average expert.

Let us also investigate what happens when the initial purchase history contains
only zeros, but the one-hot vector represents a specific expert. We consider the

44



4. Experimental Evaluation

5000 10000 15000 20000
Number of training episodes

0.000

0.002

0.004

0.006

0.008

0.010

W
as

se
rs

te
in

 d
is

ta
nc

e

GAIL

Comparison with
Experts
New customers
Average expert
Closest expert
Algorithm
GAIL + OHE
GAIL

(a) GAIL.

5000 10000 15000 20000
Number of training episodes

0.000

0.002

0.004

0.006

0.008

0.010

W
as

se
rs

te
in

 d
is

ta
nc

e

AIRL

Comparison with
Experts
New customers
Average expert
Closest expert
Algorithm
AIRL + OHE
AIRL

(b) AIRL.

Figure 4.8: The training process of GAIL and AIRL when extending the state with
a one-hot vector. In comparison with the results obtained with the basic state, wee
see a clear improvement in the predictions of individual behaviors. Interestingly, the
curves for experts and new customers follow each other, meaning that the algorithms
perform just as well on new customers as on experts in the training data set.

1000 2000 3000 4000 5000
Day

0.12

0.14

0.16

0.18

0.20

0.22

P
ur

ch
as

e 
ra

tio Customer
Average expert
New customer 1
New customer 2
Data
Ground truth
Agent

Figure 4.9: Predicted customer behaviors of two new customers when replacing
the one-hot vector with the zero vector. The actual behaviors of the customers are
included as a reference.

45



4. Experimental Evaluation

Table 4.1: The ground truth behaviors of the first five experts and the correspond-
ing predictions when the initial purchase history consists of only zeros. The purchase
ratios are calculated for sequences of length 5000.

Purchase ratio
Expert Ground truth Predictions
1 0.173± 0.003 0.173± 0.003
2 0.142± 0.003 0.149± 0.002
3 0.139± 0.002 0.136± 0.002
4 0.219± 0.003 0.213± 0.003
5 0.167± 0.003 0.174± 0.002

five first experts. The actual behaviors of these experts are summarized in the
column ”Ground truth” in Table 4.1. The column ”Predictions” shows the predicted
behaviors. We conclude that although the initial purchase history consists of only
zeros, the agent behaves similarly to the respective expert. Clearly, the policy has
learned to map the information in the one-hot vector to a particular expert behavior.

4.2.4 Customer-Specific Days Extension
Using one-hot encoding to better learn individual behaviors is not an optimal solu-
tion. First of all, this solution is not scalable to hundreds or thousands of experts.
In addition, it is not optimal to compare a new customer to existing experts in order
to find the most similar one, which is necessary to predict the behavior of a new cus-
tomer. Instead, we replace the one-hot vector with 90 customer-specific (CS) days
with the intent that the CS days should explain the customer’s statistical behavior.
For this reason, we reduce the purchase history to 30 days. When training the al-
gorithms using the CS days extension we generate 100 different sequences of CS days.

Figure 4.10 shows the results for GAIL and AIRL, respectively. The results obtained
using one-hot encoding are included as a reference. As we see, both GAIL and AIRL
predict the average behavior very well, but fail to predict any individual behaviors.
The results are comparable to those we obtained using the basic state representation.

4.3 MMCT-GAIL
In the standard way of training the algorithms, the experts are assumed to behave
according to an underlying policy πE. In Section 3.5, we used self-driving cars as a
concrete example when this assumption is met. If the self-driving car is trained on
driving data from multiple drivers, it would be a good outcome if the car learned
to drive as the average driver. However, learning individual customer behaviors is
a different problem that potentially needs to be solved with a different approach.
Therefore, we proposed matched mixture component trained GAIL (MMCT-GAIL)
in Section 3.5.

46



4. Experimental Evaluation

5000 10000 15000 20000
Number of training episodes

0.000

0.002

0.004

0.006

0.008

0.010

W
as

se
rs

te
in

 d
is

ta
nc

e

GAIL

Comparison with
Experts
New customers
Average expert
Algorithm
GAIL + CS days
GAIL + OHE

(a) GAIL.

5000 10000 15000 20000
Number of training episodes

0.000

0.002

0.004

0.006

0.008

0.010

W
as

se
rs

te
in

 d
is

ta
nc

e

AIRL

Comparison with
Experts
New customers
Average expert
Algorithm
AIRL + CS days
AIRL + OHE

(b) AIRL.

Figure 4.10: Training progress for GAIL and AIRL when extending the basic
state with CS days. The results obtained using one-hot encoding are included as a
reference. We see that neither GAIL nor AIRL learn individual behaviors.

Figure 4.11a shows the performance of MMCT-GAIL using each of the three state
representations as discussed in Section 3.3. The results obtained with GAIL in Sec-
tion 4.2 are included as references. Using the basic state representation, we see that
MMCT-GAIL predicts the average expert behavior but fails in predicting individ-
ual behaviors. The performance when evaluating MMCT-GAIL on new customers
is similar to the performance of GAIL.

Extending the state with a one-hot vector, we see that MMCT-GAIL accurately pre-
dicts individual behaviors. Interestingly, the results for experts and new customers
are almost identical. Note that MMCT-GAIL is preferable to GAIL when predict-
ing new customers during the initial stage of the training process. In the long run,
it seems like GAIL performs similarly to MMCT-GAIL, but MMCT-GAIL learns
individual behaviors faster than GAIL. Thus, we argue that MMCT-GAIL improves
the overall learning process.

Perhaps most interesting is that MMCT-GAIL, when using CS days instead of one-
hot encoding, still learns individual behaviors. After 20000 episodes, the average
Wasserstein distance between the agent and new customers is clearly below 0.004.
This should be compared to the reference, i.e., the traditional way of training GAIL,
which exceeds 0.006. This result is important since it allows CS days to be used
instead of one-hot encoding. Using CS days is preferable in a real-world scenario,
because the behavior of a new customer can be simulated directly, without having
to compare the new customer to experts in the training data set.

As a final comparison, the performance of the three algorithms when evaluating on
new customers is summarized in Figure 4.12. The different state representations are
marked as blue (basic), orange (one-hot encoding) and green (CS days). We see that
MMCT-GAIL is superior to both GAIL and AIRL in terms of learning individual
customer behaviors when using CS days. Using one-hot encoding, MMCT-GAIL

47



4. Experimental Evaluation

5000 10000 15000 20000
Number of training episodes

0.000

0.002

0.004

0.006

0.008

0.010

W
as

se
rs

te
in

 d
is

ta
nc

e

MMCT-GAIL

Comparison with
Experts
New customers
Average expert
Algorithm
MMCT-GAIL
GAIL

(a) MMCT-GAIL using basic state.

5000 10000 15000 20000
Number of training episodes

0.000

0.002

0.004

0.006

0.008

0.010

W
as

se
rs

te
in

 d
is

ta
nc

e

MMCT-GAIL

Comparison with
Experts
New customers
Average expert
Algorithm
MMCT-GAIL + OHE
GAIL + OHE

(b) MMCT-GAIL using OHE.

5000 10000 15000 20000
Number of training episodes

0.000

0.002

0.004

0.006

0.008

0.010

W
as

se
rs

te
in

 d
is

ta
nc

e

MMCT-GAIL

Comparison with
Experts
New customers
Average expert
Algorithm
MMCT-GAIL + CS days
GAIL + CS days

(c) MMCT-GAIL using CS days.

Figure 4.11: A summary of the results obtained with MMCT-GAIL using different
state representations. The results obtained with GAIL are used as references. (a):
Using a basic state representation, MMCT-GAIL fails in learning any individual
behaviors, but the distance to the average expert steadily decreases during the
training process. (b): Using dummy variables, MMCT-GAIL successfully learns
individual behaviors. Note in particular that the performance is better than the
reference. (c): MMCT-GAIL also learns individual behaviors when the dummy
variables are replaced with CS days. This result is especially interesting since GAIL
fails in doing so.

48



4. Experimental Evaluation

5000 10000 15000 20000
Number of training episodes

0.000

0.002

0.004

0.006

0.008

0.010
W

as
se

rs
te

in
 d

is
ta

nc
e

GAIL

State representation
Basic
OHE
CS days

(a) GAIL.

5000 10000 15000 20000
Number of training episodes

0.000

0.002

0.004

0.006

0.008

0.010

W
as

se
rs

te
in

 d
is

ta
nc

e

AIRL

State representation
Basic
OHE
CS days

(b) AIRL.

5000 10000 15000 20000
Number of training episodes

0.000

0.002

0.004

0.006

0.008

0.010

W
as

se
rs

te
in

 d
is

ta
nc

e

MMCT-GAIL

State representation
Basic
OHE
CS days

(c) MMCT-GAIL.

Figure 4.12: A summary of the results obtained with different state representa-
tions: the basic one (blue lines), the one-hot encoding extension (orange lines) and
the CS days extension (green lines). Only the performance on new customers is
considered.

learns individual behaviors faster than the other algorithms. However, it should be
pointed out that the algorithm itself is not a quick fix to the problem of learning
individual behaviors. Using the basic state, the algorithm only learns an average
behavior. The choice of state representation is therefore crucial.

4.3.1 Influence of CS days
The intuition behind a state that consists of both CS days and purchase history
is that the CS days should capture the customer’s statistical purchasing behavior
whilst the purchase history keeps track of recent actions. The policy network should
learn to utilize both these parts to make accurate predictions of individual customer
behaviors. In Figure 4.13, we evaluate the training process for MMCT-GAIL on
new customer data when varying the length of each part.

In the left panel, the length of the purchase history is set to 30, 60 and 90 days,
respectively, while keeping the number of CS days fixed (90 days). Even though
the differences are quite small, we see that the length of the purchase history can
advantageously be reduced to 30 days. It is not impossible that this number can
be even smaller. Recall from Section 3.2 that the auto-correlation of the time-series
indicates that only the decisions from the last week affect today’s purchase decision.

In the right panel, the number of CS days is varied while keeping the purchase
history fixed (30 days). It seems like six months is the best choice, followed by two
and three months, respectively. Clearly, 30 CS days is too little. One can imagine
that a sequence of 30 days does not capture the statistical behavior of a customer.
Interestingly, is seems like 365 CS days is too much. However, it should be pointed
out that the network architectures were the same during all evaluations. When using
365 CS days, the state consists of almost 400 elements, which potentially requires
larger networks.

49



4. Experimental Evaluation

2000 4000 6000 8000 10000
Number of training episodes

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

0.0050

0.0055
W

as
se

rs
te

in
 d

is
ta

nc
e

Comparison with new customers

Lengt of purchase history
1 month
2 months
3 months

(a) Length of purchase history.

2000 4000 6000 8000 10000
Number of training episodes

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

0.0050

0.0055

W
as

se
rs

te
in

 d
is

ta
nc

e

Comparison with new customers

CS days
1 month
2 months
3 months
6 months
12 months

(b) Number of CS days.

Figure 4.13: The influence of the length of the purchase history as well as the
number of CS days when predicting the behavior of new customers.

4.4 Discussion
In the above sections, we have presented the major findings of this work. First,
we showed the results obtained with standard implementations of GAIL and AIRL.
Then, we evaluated the performance of MMCT-GAIL, which we proposed as a
novel method for learning individual customer behaviors. In this section, we discuss
some interesting aspects of our results. We start with a discussion of our choice of
evaluation metric.

4.4.1 Evaluation Metric
We have evaluated the results using the proposed method for converting binary time-
series into distributions. Ideally, this method should transfer different time-series
into equally different distributions. If information is lost during the conversion, it
is more difficult to draw certain conclusions about the results. We strongly believe
that we have developed a robust evaluation method, but no method is of course per-
fect. In a future work, it would be interesting to study different evaluation methods
in more detail.

A comment should also be made on using the Wasserstein metric to measure the
distance between distributions. The Wasserstein distance is dependent on how the
bars are arranged. For example, by changing the order of the bars in Figure 3.7, we
would obtain a different Wasserstein distance between the distributions. We have
chosen to order the bars according to increasing number of weekly purchases, and we
argue that this choice is the natural way of arranging the bars. However, different
approaches, e.g., summing the absolute difference between each pair of bars, would

50



4. Experimental Evaluation

be possible.

4.4.2 Algorithms
In Section 4.2, we compared the standard implementations of GAIL and AIRL. In
general, the algorithms show similar performance for all state representations. In
comparison with GAIL, AIRL has two major advantages: It is robust to changes in
the dynamics and it recovers the true reward function. However, in our case, the
true reward function is difficult to interpret and therefore of minor interest. Fur-
thermore, the customers in our synthetic data set have a constant behavior over
time, i.e., the dynamics is constant. By also taking into account that AIRL requires
approximately twice the run time of GAIL, we argue that GAIL, in our case, is the
better choice.

As we have already pointed out, MMCT-GAIL is preferable to GAIL and AIRL in
terms of learning individual customer behaviors. Both GAIL and MMCT-GAIL aim
to minimize the Wasserstein distance between the generating distribution and the
true distribution. However, while the discriminator in GAIL is fed with randomly
selected samples, the discriminator in MMCT-GAIL receives matched samples. That
is, the discriminator in MMCT-GAIL minimizes the Wasserstein distance between
matched mixture components of the expert policy.

4.4.3 State Representations
Although MMCT-GAIL outperforms GAIL and AIRL in our experiments, it is im-
portant to note that the algorithm itself is not a quick fix to the problem of learning
individual behaviors. The choice of state representation is critical. For instance,
using the basic state, which only consists of historical purchases, all algorithms fail
in learning individual behaviors.

The results obtained with the basic state could be interpreted as the algorithms
suffering from mode collapse – a well-known problem in GANs as discussed in Sec-
tion 2.1.2. However, there are differences between AIL algorithms and GANs. For
instance, in order to predict the behavior of a particular customer, we initialize the
agent into a state that is formed by purchase history from that specific customer.
In GANs, there is no such thing as an initial state. Instead, data is sampled by
feeding noise through the generator network. In addition, we use the WGAN-GP
objective when training GAIL and MMCT-GAIL. As mentioned before, WGANs
have a lower tendency to suffer from mode collapse. Therefore, we cannot say with
certainty that we observe mode collapse.

One-hot encoding was introduced to prove that the algorithms could learn individ-
ual behaviors. We expected the algorithms to overfit to the experts and thus not
generalize to new customers. However, we found that the predictions were just as
good for new customers as for experts. For instance, review Figure 4.8, where the
blue and orange lines follow each other. We also see that the red line, which relates

51



4. Experimental Evaluation

0 20 40 60 80 100
Number of customers

0.001

0.002

0.003

0.004

0.005

0.006

0.007

A
ve

ra
ge

 d
is

ta
nc

e 
to

 c
lo

se
st

 c
us

to
m

er

Figure 4.14: The average Wasserstein distance between 50 new customers and the
closest expert in the expert data set as a function of the number of experts included
in the expert data set.

the agent – when initialized into a state from a new customer – to the expert who is
most similar to the new customer, follows the blue and orange ditto. If overfitting
would have been the case, the red line should lie below the orange one.

Figure 4.14 puts this result into a different perspective. The figure shows the average
Wasserstein distance between a new customer and the closest expert as a function
of the number of experts. Clearly, a new customer is more and more similar to the
closest expert as the number of experts increases. It seems like ten experts span
the space of customer behaviors quite well. Using ten experts, it is likely that a
new customer behaves similarly to one of the experts. It is therefore difficult to
determine whether the agent follows the behavior of the new customer or simply
imitates the closest expert. That is, it is hard to assess whether or not overfitting
occurs.

Possibly the most interesting part of our work is that MMCT-GAIL learns individual
purchasing behaviors when the one-hot vector is replaced with CS days. As we found
out in Section 4.2, the CS days extension does not allow GAIL and AIRL to learn
individual behaviors. It should be pointed out that we have limited ourselves to
only evaluating the algorithms with states that consist of 90 CS days and 30 days
of purchase history. This choice works for MMCT-GAIL, but it not impossible that
other settings would improve the performance of GAIL and AIRL. However, it is
desirable to reduce the amount of data needed to form a state. Therefore, we argue
that MMCT-GAIL is superior to GAIL and AIRL regardless of the performance of
GAIL and AIRL using larger states.

52



4. Experimental Evaluation

4.4.4 Final Comments
During our work, we have experimented with different state representations that
have not been presented in this thesis. For example, we tried to represent the pur-
chase history as the number of days between consecutive purchases, but we found
that this representation impaired learning. However, there could be other state rep-
resentations that work even better than the ones presented in this thesis.

As an experiment when using one-hot encoding, we only let the generator net-
work, i.e., the parameterized policy, see the one-hot vector. The one-hot vector was
omitted from the state when feeding state-action pairs to the discriminator. The
intuition behind this was that the one-hot vector would prevent the discriminator
from effectively minimizing the distance between the distributions of state-action
pairs. However, this intuition proved to be incorrect, and we found that the one-hot
vector must be provided to both the generator and the discriminator in order to
obtain a good result.

53



4. Experimental Evaluation

54



5
Conclusion

In this thesis we have evaluated the possibility to learn and predict realistic cus-
tomer behaviors using two different imitation learning algorithms, namely GAIL
and AIRL. In particular, the algorithms were evaluated on synthetic data in the
form of time-series of daily purchases of consumer goods. In order to analyze the
performance of the algorithms we developed a method for converting time-series into
distributions, which can be compared more easily. Moreover, we proposed matched
mixture component trained GAIL (MMCT-GAIL) as an approach to the specific
problem of predicting individual customer behaviors.

We conclude that the performance is highly dependent on the choice of state rep-
resentation. When using a basic state that consists of only purchase history, all
algorithms fail in learning individual customer behaviors. When extending the state
with a one-hot vector, the performance of all algorithms significantly increases. Most
interestingly, MMCT-GAIL is the only algorithm that accurately predicts individual
customer behaviors when replacing the one-hot vector with CS days. CS days are
intended to generalize better to new customers. In addition, our results show that
MMCT-GAIL speeds up learning compared to GAIL and AIRL.

We argue that MMCT-GAIL is a promising algorithm to the specific problem of
predicting individual customer behaviors. However, we found that a rather small
number of experts spans the space of customer behaviors. A new customer is there-
fore likely to be similar to one of the experts, which makes it difficult to assess
whether or not the algorithms overfit to the expert data.

5.1 Future Work
According to our results, GAIL and AIRL show similar performance. In contrast to
GAIL, AIRL estimates the true reward function and is intended to be more robust
to changes in the dynamics. However, in our work, the reward function is difficult
to interpret and the behavior of the customers is constant over time. As a future
work, it would be interesting to construct the synthetic data in a way that enables
interpretation of the learned reward function. It would also be interesting to analyze
the robustness of AIRL, when trained in a dynamic environment.

In this work, we have focused mainly on analyzing customer behavior in terms of
purchase events. That is, we have not focused on analyzing the customers’ purchase

55



5. Conclusion

amounts. We briefly investigated this extended problem using MMCT-GAIL, but
no satisfying results were obtained. It would be of great interest to further analyze
purchase amounts.

Finally, it would be interesting to theoretically define the problem that MMCT-
GAIL solves. It is perhaps possible to extend the problem formulation of GAIL.
Moreover, it would also be interesting to apply the MMCT framework to other AIL
algorithms.

56



Bibliography

[1] Volodymyr Mnih et al. “Playing atari with deep reinforcement learning”. In:
NIPS deep learning workshop. 2013.

[2] John Moody and Matthew Saffell. “Learning to trade via direct reinforce-
ment”. In: IEEE transactions on neural networks 12.4 (2001), pp. 875–889.

[3] Mariya Popova, Olexandr Isayev, and Alexander Tropsha. “Deep reinforce-
ment learning for de novo drug design”. In: Science advances 4.7 (2018),
eaap7885.

[4] Jing-Cheng Shi et al. “Virtual-Taobao: Virtualizing real-world online retail
environment for reinforcement learning”. In: AAAI conference on artificial
intelligence. 2019.

[5] Jonathan Ho and Stefano Ermon. “Generative adversarial imitation learning”.
In: Advances in neural information processing systems. 2016.

[6] Justin Fu, Katie Luo, and Sergey Levine. “Learning robust rewards with adver-
sarial inverse reinforcement learning”. In: International conference on learning
representations. 2018.

[7] Huang Xiao et al. “Wasserstein adversarial imitation learning”. In: arXiv
preprint arXiv:1906.08113 (2019).

[8] Xue Bin Peng et al. “Variational discriminator bottleneck: Improving imita-
tion learning, inverse RL, and GANs by constraining information flow”. In:
International conference on learning representations. 2019.

[9] Lantao Yu, Jiaming Song, and Stefano Ermon. “Multi-agent adversarial in-
verse reinforcement learning”. In: International conference on machine learn-
ing. 2019.

[10] Karol Hausman et al. “Multi-modal imitation learning from unstructured
demonstrations using generative adversarial nets”. In: Advances in neural in-
formation processing systems. 2017.

[11] Feng Yu et al. “A dynamic recurrent model for next basket recommendation”.
In: International ACM SIGIR conference on research and development in in-
formation retrieval. 2016.

[12] Yu Zhu et al. “What to do next: Modeling user behaviors by time-LSTM.” In:
International joint conferences on artificial intelligence. 2017.

[13] Lichung Jen, Chien-Heng Chou, and Greg M Allenby. “A Bayesian approach
to modeling purchase frequency”. In: Marketing letters 14.1 (2003), pp. 5–20.

[14] George EP Box et al. Time series analysis: Forecasting and control. John
Wiley & Sons, 2015.

57



Bibliography

[15] Warren S McCulloch and Walter Pitts. “A logical calculus of the ideas im-
manent in nervous activity”. In: The bulletin of mathematical biophysics 5.4
(1943), pp. 115–133.

[16] George Cybenko. “Approximation by superpositions of a sigmoidal function”.
In: Mathematics of control, signals and systems 2.4 (1989), pp. 303–314.

[17] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016.

[18] Sebastian Ruder. “An overview of gradient descent optimization algorithms”.
In: arXiv:1609.04747 (2016).

[19] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimiza-
tion”. In: International conference on learning representations. 2015.

[20] Ian Goodfellow et al. “Generative adversarial nets”. In: Advances in neural
information processing systems. 2014.

[21] Tim Salimans et al. “Improved techniques for training GANs”. In: Advances
in neural information processing systems. 2016.

[22] John F Nash et al. “Equilibrium points in n-person games”. In: Proceedings of
the national academy of sciences 36.1 (1950), pp. 48–49.

[23] Martin Arjovsky, Soumith Chintala, and Léon Bottou. “Wasserstein GAN”.
In: International conference on machine learning. 2017.

[24] Cédric Villani. Optimal transport: Old and new. Vol. 338. Springer Science &
Business Media, 2008.

[25] Ishaan Gulrajani et al. “Improved training of Wasserstein GANs”. In: Advances
in neural information processing systems. 2017.

[26] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduc-
tion. MIT press, 2018.

[27] John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv
preprint arXiv:1707.06347 (2017).

[28] Sham Kakade and John Langford. “Approximately optimal approximate rein-
forcement learning”. In: International conference on machine learning. 2002.

[29] Sham Machandranath Kakade et al. “On the sample complexity of reinforce-
ment learning”. PhD thesis. University of London London, England, 2003.

[30] John Schulman et al. “Trust region policy optimization”. In: International
conference on machine learning. 2015.

[31] Joshua Achiam et al. “Constrained policy optimization”. In: International con-
ference on machine learning. 2017.

[32] Stephen Wright and Jorge Nocedal. “Numerical optimization”. In: Springer
Science 35.67-68 (1999), p. 7.

[33] Volodymyr Mnih et al. “Asynchronous methods for deep reinforcement learn-
ing”. In: International conference on machine learning. 2016.

[34] John Schulman et al. “High-dimensional continuous control using generalized
advantage estimation”. In: arXiv preprint arXiv:1506.02438 (2015).

[35] Dean A Pomerleau. “Alvinn: An autonomous land vehicle in a neural network”.
In: Advances in neural information processing systems. 1989.

[36] Takayuki Osa et al. “An algorithmic perspective on imitation learning”. In:
Foundations and trends in robotics. 2018.

58



Bibliography

[37] Brian D. Ziebart et al. “Maximum entropy inverse reinforcement learning”. In:
AAAI conference on artificial intelligence. 2008.

[38] Pieter Abbeel and Andrew Y Ng. “Apprenticeship learning via inverse rein-
forcement learning”. In: International conference on machine learning. 2004.

[39] Edwin T Jaynes. “Information theory and statistical mechanics”. In: Physical
review 106.4 (1957), p. 620.

[40] Peter Harremoës and Flemming Topsøe. “Maximum entropy fundamentals”.
In: Entropy 3.3 (2001), pp. 191–226.

[41] Brian D Ziebart, J Andrew Bagnell, and Anind K Dey. “Modeling interaction
via the principle of maximum causal entropy”. In: International conference on
machine learning. 2010.

[42] Chelsea Finn, Sergey Levine, and Pieter Abbeel. “Guided cost learning: Deep
inverse optimal control via policy optimization”. In: International conference
on machine learning. 2016.

[43] Umar Syed, Michael Bowling, and Robert E Schapire. “Apprenticeship learn-
ing using linear programming”. In: International conference on machine learn-
ing. 2008.

[44] Chelsea Finn et al. “A connection between generative adversarial networks, in-
verse reinforcement learning, and energy-based models”. In: NIPS 2016 work-
shop on adversarial training. 2016.

[45] Lantao Yu et al. “SeqGAN: Sequence generative adversarial nets with policy
gradient”. In: AAAI conference on artificial intelligence. 2017.

[46] Yusuke Nakate. ”deepirl-chainer”, GitHub repository. 2019. URL: https://
github.com/uidilr/deepirl_chainer.

59

https://github.com/uidilr/deepirl_chainer
https://github.com/uidilr/deepirl_chainer


Bibliography

60



A
Appendix A

Table A.1: Hyper-parameters used in the implementations of the AIL algorithms.

Model Parameter Value

Generator

Size hidden layers (64, 64)
Adam learning rate 3e-4
Adam epsilon 0.1
Discount factor 0.99
Lambda return factor 0.95
Weight coefficient for loss of value function 1.0
Weight coefficient for entropy bonus 0.01
Epochs 10
Epsilon for clipping of likelihood ratio to update policy 0.2
Entropy coefficient 0.01
Weight decay 0.0
Minibatch size 73

Discriminator

Size hidden layers (64, 64)
Adam learning rate 1e-5
Adam epsilon 1e-5
Minibatch size 73
Epochs 10

I



A. Appendix A

II



B
Appendix B

B.1 Expert Behaviors

0.00

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ilit

y

Last week | Purchase today
Expert 1

(a) Last week given purchase today.

0.00

0.02

0.04

0.06

0.08

0.10

0.12
Pr
ob

ab
ilit

y

Last week | No purchase today
Expert 1

(b) Last week given no purchase today.

Figure B.1: The behavior of the first expert in the training data set.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ilit

y

Last week | Purchase today
Expert 2

(a) Last week given purchase today.

0.00

0.05

0.10

0.15

0.20

Pr
ob

ab
ilit

y

Last week | No purchase today
Expert 2

(b) Last week given no purchase today.

Figure B.2: The behavior of the second expert in the training data set.

III



B. Appendix B

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ilit

y
Last week | Purchase today

Expert 3

(a) Last week given purchase today.

0.00

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ilit

y

Last week | No purchase today
Expert 3

(b) Last week given no purchase today.

Figure B.3: The behavior of the third expert in the training data set.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Pr
ob

ab
ilit

y

Last week | Purchase today
Expert 4

(a) Last week given purchase today.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Pr
ob

ab
ilit

y

Last week | No purchase today
Expert 4

(b) Last week given no purchase today.

Figure B.4: The behavior of the fourth expert in the training data set.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pr
ob

ab
ilit

y

Last week | Purchase today
Expert 5

(a) Last week given purchase today.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Pr
ob

ab
ilit

y

Last week | No purchase today
Expert 5

(b) Last week given no purchase today.

Figure B.5: The behavior of the fifth expert in the training data set.

IV



B. Appendix B

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Pr
ob

ab
ilit

y
Last week | Purchase today

Expert 6

(a) Last week given purchase today.

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Pr
ob

ab
ilit

y

Last week | No purchase today
Expert 6

(b) Last week given no purchase today.

Figure B.6: The behavior of the sixth expert in the training data set.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Pr
ob

ab
ilit

y

Last week | Purchase today
Expert 7

(a) Last week given purchase today.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Pr
ob

ab
ilit

y

Last week | No purchase today
Expert 7

(b) Last week given no purchase today.

Figure B.7: The behavior of the seventh expert in the training data set.

0.00

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ilit

y

Last week | Purchase today
Expert 8

(a) Last week given purchase today.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Pr
ob

ab
ilit

y

Last week | No purchase today
Expert 8

(b) Last week given no purchase today.

Figure B.8: The behavior of the eight expert in the training data set.

V



B. Appendix B

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Pr
ob

ab
ilit

y
Last week | Purchase today

Expert 9

(a) Last week given purchase today.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Pr
ob

ab
ilit

y

Last week | No purchase today
Expert 9

(b) Last week given no purchase today.

Figure B.9: The behavior of the ninth expert in the training data set.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Pr
ob

ab
ilit

y

Last week | Purchase today
Expert 10

(a) Last week given purchase today.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Pr
ob

ab
ilit

y

Last week | No purchase today
Expert 10

(b) Last week given no purchase today.

Figure B.10: The behavior of the tenth expert in the training data set.

VI



B. Appendix B

B.2 Supplementary Figures

0.00

0.05

0.10

0.15

0.20

Pr
ob

ab
ilit

y

Last week | Purchase today
Agent 9
Expert 9
Average expert

GAIL

(a) GAIL.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Pr
ob
ab
ilit
y

Last week | No purchase today
Agent 9
Expert 9
Average expert

GAIL

(b) GAIL.

0.00

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ilit

y

Last week | Purchase today
Agent 9
Expert 9
Average expert

AIRL

(c) AIRL.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Pr
ob
ab
ilit
y

Last week | No purchase today
Agent 9
Expert 9
Average expert

AIRL

(d) AIRL.

Figure B.11: A comparison between the agent (blue bars) and the ninth expert
(orange bars) using a basic state representation.

VII



B. Appendix B

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Pr
ob
ab
ilit
y

Last week | Purchase today
Agent 9
Expert 9
Average expert

GAIL

(a) GAIL.

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Pr
ob

ab
ilit

y

Last week | No purchase today
Agent 9
Expert 9
Average expert

GAIL

(b) GAIL.

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Pr
ob
ab
ilit
y

Last week | Purchase today
Agent 9
Expert 9
Average expert

AIRL

(c) AIRL.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
Pr
ob
ab
ilit
y

Last week | No purchase today
Agent 9
Expert 9
Average expert

AIRL

(d) AIRL.

Figure B.12: A comparison between the agent (blue bars) and the ninth expert
(orange bars) using one-hot encoding.

VIII



B. Appendix B

1000 training episodes
GAIL

(a) 1000 episodes.

2000 training episodes
GAIL

(b) 2000 episodes.

3000 training episodes
GAIL

(c) 3000 episodes.

4000 training episodes
GAIL

(d) 4000 episodes.

5000 training episodes
GAIL

(e) 5000 episodes.

6000 training episodes
GAIL

(f) 6000 episodes.

7000 training episodes
GAIL

(g) 7000 episodes.

8000 training episodes
GAIL

(h) 6000 episodes.

9000 training episodes
GAIL

(i) 9000 episodes.

Figure B.13: An overview of the training process for GAIL using one-hot encoding.
The performance is evaluated on new customers.

IX



B. Appendix B

1000 training episodes
AIL-MSD

(a) 1000 episodes.

2000 training episodes
AIL-MSD

(b) 2000 episodes.

3000 training episodes
AIL-MSD

(c) 3000 episodes.

4000 training episodes
AIL-MSD

(d) 4000 episodes.

5000 training episodes
AIL-MSD

(e) 5000 episodes.

6000 training episodes
AIL-MSD

(f) 6000 episodes.

7000 training episodes
AIL-MSD

(g) 7000 episodes.

8000 training episodes
AIL-MSD

(h) 6000 episodes.

9000 training episodes
AIL-MSD

(i) 9000 episodes.

Figure B.14: An overview of the training process for MMCT-GAIL using one-hot
encoding. The performance is evaluated on new customers..

X


	List of Figures
	List of Tables
	Summary of Notation
	Introduction
	Objective
	Contributions
	Related Work
	Thesis Outline

	Preliminaries
	Artifical Neural Networks
	Multilayer Perceptron
	Generative Adversarial Networks
	Wasserstein GAN
	Wasserstein GAN with Gradient Penalty

	Reinforcement Learning
	Problem Statement
	Policy Gradient Methods
	Trust Region Policy Optimization
	Proximal Policy Optimization

	Imitation Learning
	Behavioral Cloning
	Problem Statement of IRL
	Feature Expectation Matching
	Maximum Entropy IRL
	Maximum Causal Entropy IRL
	Generative Adversarial Imitation Learning
	Adversarial Inverse Reinforcement Learning


	Method
	Customer Data
	Comparing Customer Behaviors
	MDP Representations
	Basic Representation
	One-Hot Vector Extension
	Customer-Specific Days Extension

	Standard Training of GAIL and AIRL
	MMCT-GAIL
	Related Methods

	Experimental Evaluation
	Experimental Details
	Standard Training
	Basic State Representation
	One-Hot Vector Extension
	Influence of One-Hot Encoding
	Customer-Specific Days Extension

	MMCT-GAIL
	Influence of CS days

	Discussion
	Evaluation Metric
	Algorithms
	State Representations
	Final Comments


	Conclusion
	Future Work

	Bibliography
	Appendix A
	Appendix B
	Expert Behaviors
	Supplementary Figures


