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Sample-Efficient Search for Reactive Grasping using Fingertip Force/Torque Sensors
ZEID AL IDANI
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Success of a grasping and manipulation system depends on various factors, starting
from the perception and planning stage, to the end of a task completion. Robustness
during grasp execution is crucial for successful systems, which can be highly effected
by many sources of uncertainty inherent in real-world settings, such as imperfect pose
estimation, unknown friction or deformability properties of objects. Most grasping
approaches mainly only apply predefined fixed forces during grasp execution based
on simplifying assumptions on the objects, i.e., that the forces would not cause
damage or failure. However, this cannot be guaranteed in the case of unknown
objects. This thesis addresses the issue of grasping objects with unknown features
and is focused on increasing robustness in grasp execution using real sensory data,
i.e., force/torque readings.
The proposed sample-efficient approach to robust grasp execution includes a self-
learning controller with an updating reference for increasing grasp success rates.
Bayesian optimization is used for sample-efficient search, which allows for finding
good grasp control parameters in a small number of trials using a real robot. The
experiments were performed on a real robot with four different objects with different
weights an the results showed that the proposed approach can be successfully applied
to grasp execution, where unknown objects can be grasped without any damage or
slippage while passing stability tests.

Keywords: pick and place, grasping, force/torque sensors, bayesian optimization.
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1
Introduction

The task of grasping and manipulating objects requires meticulous orchestration of
planning, gripping, lifting, moving and placing the object all while keeping the grasp
sturdy and safe. This is even more true for grasping novel objects where weight,
texture, rigidness and other object properties are not known beforehand. Humans
master this ability at a young age and can with great dexterity manipulate an object
without prior information while being little aware of underlying mechanisms. It is
still a long way before robots can match grasping capabilities of humans. However,
robot grasping and object manipulation has improved significantly since the early
works in 1980s [1]. With the surge in machine learning, algorithms for grasp planning
and grasp execution have become increasingly more successful. This is true not
only for grasping familiar objects but also for novel objects [2]. Even so, robot
grasping of novel objects still lack robustness. An initially good grasp can still fail
due to e.g. imperfect calibration, unknown object friction, weight distribution or
deformation properties, interaction dynamics etc. Grasp planning and execution
should be performed taking various sources of uncertainties in real systems into
account to avoid failures. But in most robotic grasp systems, grasp planners rely
heavily on visual input to plan for a grasp. After a suitable grasp is generated, it
is executed without feedback. By using other sensory modalities, such as tactile
sensors, the stability of a grasp can be assessed during a grasp and adaptations can
be applied thereafter to increase system robustness.

The development and incorporation of tactile sensors in robot grasping systems has
accelerated the past two decades [3]. There are various approaches that focus on
estimating the stability of a grasp with tactile sensory feedback [4], [5], [6]. When a
grasp is generated and executed, readings from the sensors in the gripper are used to
predict if a grasp is stable or not. This information can in turn be used to generate
and execute a new grasp if the current grasp is deemed likely to fail. There are
also approaches that applied similar machine learning methods for correcting the
grasp once it is predicted as unstable [7], [8], [9]. But choosing a high-quality grasp
initially does not guarantee a stable grasp throughout grasp execution. Adapting
the grasp continuously with a controller ensures stability during full execution.

However, this approach of including feedback in the system throughout the grasp
execution raises the question of how to design the controller for processes that are
not known beforehand, have nonlinear dynamics that cannot be ignored or processes
that have extensive noise. The challenge is therefore to deal with these issues and
design a controller that ultimately increases the robustness of a robot grasp system
by making it reactive.

1



1. Introduction

1.1 Aim
The purpose of this thesis is to design and evaluate an approach for dealing with
uncertainty in robotic grasping of never-before seen objects. The approach is, more
specifically, concerned with the inclusion of an automatically tuned force controller.
It is implemented and tested in a real-life robotic grasping system which includes
force/torque sensors for tactile measurements.

1.2 Problem description
The starting point of this work is a scenario where a planned grasp configuration
is executed for a novel object. In order to have a robust system where the grasp
execution leads to a successful manipulation such as lifting up an object without
the object slipping, there needs to be 1) detection of any change in grasp stability
during grasp execution of the grasp stability and 2) corrective actions when needed.
Detecting disturbances of a stable grasp of an object with only sensory data comes
with challenges. Noise in the sensors would make it difficult to differentiate between
actual change in the stability of a grasp and non-important signal variations. Con-
sidering that we are also dealing with objects with unknown features, the physical
characteristics of those objects may cause different levels of noise. For instance,
some object may be more reflective than others and using optical sensors to detect
contact would give a noisier signal for some objects than others.
Reacting to an unstable grasp of an object with feedback controllers also comes with
difficulties. The optimal control-law for achieving grasp stability differs from object
to object. The control-law should also be chosen such that it allows for smooth
movements to not disturb the object and cause instability. But how is the optimal
control input adapted to different object with different characteristics that are un-
known a priori? This question brings us to the main questions in the thesis:

• How could a feedback controller best be designed for processes that
are not known a priori, that have important nonlinear dynamics
that cannot be ignored and for processes that have extensive noise?

• How could information about a current unstable grasp be used to
take reactive corrective actions with an adaptive controller to in-
crease grasp stability without deforming the object?

• How could the feedback controller be tuned automatically in an
efficient way?

2



1. Introduction

1.3 Related work
A comprehensive review of the research in the field of using tactile sensory informa-
tion to perform a successful grasping can be found in [10]. In the rest of this section,
a presentation of related work in this field is given.
Previous work [11] studied how to design a framework for controlling the position,
velocity, torque, and force of a gripper. They simplify the problem by linearizing the
model of a Barrett-hand and designing P- and PD-controller to follow a predefined
reference trajectory with feedback from tactile sensors and joint angles of the robotic
hand. They extend this work in [12] by proposing a method for learning successful
grasps from human demonstration. The key idea is to choose the right approach not
only using perceptual data but also through experience. The demonstration data is
used to construct a map from the recognized object shapes to the matching grasp
strategy. Then, a P-controller with feedback from tactile sensors is used to lead the
gripper to a stable grasp. [12] mainly focuses on a method for generating a suitable
approach vector towards the object based on demonstrations.
Romano et al. [9] draw inspiration from human somatosensory system and proposed
an approach to control the grasp during its entire cycle. They filter tactile sensory
signals so that they mimic the signals from different touch receptors in human, and
then use them to detect disturbances in the grasp. The filtered signals are used to
regulate the forces applied on the object. A strategy is devised for controlling the
applied forces by empirically tuning the controller parameters for a set of real-world
objects. The drawback of their approach is that finding the optimal set of parameters
for controlling the grasp of a wide range of real world objects empirically is expensive
and time-consuming. Furthermore, in case of novel objects, the applied force can
be too weak or too strong, which could lead to either slippage or deformation of the
object.
Li et al. [7] apply a probabilistic method to deal with inherent uncertainties of
grasping novel objects. They devise a strategy to predict the grasp stability with
tactile sensory data and then choose the configuration of a superior grasp. A low
impedance controller is used to guide the gripper to a more stable grasp. However,
the authors report that the parameters of the controller are hard to tune in practice
which could make the movements of the gripper fraught. This could lead to, as they
argue, an unstable grasp.
In [13], Hyttinen et al. use a trained model to predict the quality of a grasp attempt
based on tactile/proprioceptive data and partially reconstruct 3D model of the ob-
ject. These features are used to calculate the probability of success for candidates of
grasping attempt, then the algorithm chooses the plan with the highest probability
of resulting in a stable grasp and executes it. Furthermore, they exploit the tac-
tile/proprioceptive data to fine-tune the action even at the last stage of preparing to
grasp the object in order to improve the chance of success. The algorithm is shown
to be effective in planning successful grasp of known as well as novel objects. How-
ever, the success of the attempts solely depend on the initial decision and planning,
and any unforeseen dynamics, such as slippage, and external disturbance during the
execution may ultimately result in the failure of the grasp.

3



1. Introduction

Krug et al. [6] propose using data from tactile sensors, joint configuration, and object
information to estimate the stability of a grasp before lifting the object. They take
inherent uncertainties of the object into consideration by employing probabilistic
techniques for classifying the grasp stability. Notably, even after grasping the object
if the data from tactile sensors indicate that the grasp may be unstable the planner
generates a new candidate and the object is re-grasped. Their study shows that
tactile signatures from a grasp carry valuable information which is valuable to decide
about grasp stability. The strength and limitations of such a probabilistic method
is examined further in [14] where a framework based on long-term memory and
reasoning modules is presented. They explore how a robot can take learn from its
experiences in a long run and utilize its experience to enhance its performance within
a Bayesian Optimization framework.
She et al. [15] use a controller with feedback from tactile sensors for a reactive gripper
that successfully follows a cable. They design a PD controller combined with a leaky
integrator to adjust the applied force on the cable, and a Linear Quadratic Regulator
(LQR) to keep the cable centred in the gripper. They estimate the dynamics of the
cable empirically and devise a linear model on which the controllers are based. This
is a special-purpose methodology; using it to design controllers for robotic grasping
of wide-range of novel objects is impractical. Even a linear model, which is based on
a small set of objects, will most likely result in designing a controller that performs
poorly in dealing with different novel objects [16].
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2
Background

This chapter gives an introduction to robotic grasping systems (section 2.1) with a
brief overview of different types of grippers (subsection 2.1.1) and sensors (subsection
2.1.2). A background on Linear Quadratic Regulators is given (section 2.2) with the
machine learning techniques that are relevant in this thesis (section 2.3).

2.1 Robotic grasping system
A grasping system designed for a pick and place task will in its simplest form contain
a robotic arm and some kind of gripper. In this type of setup, the objects will need to
be known before hand and placed in the workspace with the same initial pose every
time. Sensory input is required for more sophisticated system designed for more
cumbersome tasks. In, for example, bin picking the objects are perhaps unordered
and placed in different orientations which may require a new grasp pose in each
grasping occasion. Visual input combined with a grasp planning algorithm is often
the preferred solution for this type of task. Figure 2.1 shows an example of a grasping
system with vision that can be combined with a grasp planner for bin picking.

Figure 2.1: The figure shows an example of a robotic grasping system setup for
bin picking. The system includes vision in addition to an arm and manipulator.

Grasp planners are a highly active area of research with state of the art grasp plan-
ners being impressively effective at generating high quality grasps for novel objects
[17], [18], [19]. However, even if we ignore the presence of noise and uncertainty in
the system and assume a perfect initial grasp, the dynamics of the object could still
very well cause grasp failure through, for example, slippage or object perturbation.

5



2. Background

The performance of a grasping system can be greatly enhanced by adding sensory
feedback during grasp execution. Different types of sensors could be combined with
different types of grippers leading the grasping system to react to unexpected events,
especially when grasping novel objects.

2.1.1 Grippers
A robotic gripper, or end-effector as it is also called, is the device in a grasping
system that is equivalent to a human hand and can come in many different sizes
and forms for different applications. Some grippers are vacuum based with a suction-
cup end that holds an object by using the difference between atmospheric pressure
and vacuum. This type of gripper is often used in an industrial setting with rigid
and flat surfaced objects, such as boxes, and is generally not suitable for objects
with curved or uneven shapes. For applications that require handling of a wide
variety of objects, a multi-fingered gripper is generally more suitable. This class
of grippers include devices that vary in complexity ranging from the simpler ones,
the two fingered grippers, all the way to the more advanced human-like ones with
multiple fingers and joints. The more complex ones are suitable for applications
that require dexterity and precision and are generally preferred in current research.
However, they have the drawback of being more complex to control and highly
costly relative to other types of grippers, making them unfavorable for industrial
applications. Figure 2.2 shows a complex five-fingered gripper and a simple vacuum
gripper.

(a) (b)

Figure 2.2: Two examples of robotic grippers. (a) shows the Epick vacuum grip-
per by Robotiq™ that moves and holds objects by utilizing the difference between
atmospheric pressure and vacuum. The more complex SVH gripper by SCHUNK™

is shown in (b). This type of human-like gripper consists of several motors and
actuators that gives it 27 DOF which also makes it costly in comparison with other
types of grippers.

For applications that require handling of a wide variety of objects, two or three
fingered grippers with one or two degrees of freedom will often be sufficient. Popular
grippers in this category is the parallel grippers which, as the name suggests, have
two fingers in parallel, as shown in Figure 2.3. There is a low trade-off between
being able to handle many different objects and being easy to control for this type
of grippers which is what makes them popular. They consists of either pneumatic

6



2. Background

or electric actuators that open and close the fingers and can easily be equipped with
sensors at the fingertips for regulating the movement of the fingers.

Figure 2.3: An example of the Robotiq™ 2F-140 parallel gripper. This type of
gripper is popular due to its versatility while in the same time being low-cost and
easy to control.

2.1.2 Sensors

The most common sensor classes for robotic grasping are identification-, tactile-
and haptic-sensors. Identification sensors such as cameras are usually used in the
planning phase of a grasp to detect an object and determine how and where it
should be grasped. Tactile and haptic sensors, on the other hand, are used when
in contact or near contact with an object and are used to gather information about
the object and the state of the grasp. The two terms tactile- and haptic-sensors
are in the literature often used interchangeably and refer to classes of sensors such
as contact-arrays and force/torque sensors but sometimes also proximity sensors,
although they do not rely on physical interaction. [20]

Proximity sensors are most commonly optical based sensors that measure distance
by emitting light and tracking the time it takes for it to reflect back. These types
of sensors have been utilized in robotic grasping to gain more accurate knowledge
about an objects position and pose which has subsequently been used to adjust the
grasp-pose, gripper position etc. prior to contact to ensure grasp stability [21], [22].
But they have also been used in research for other purposes such as slip detection
during grasp execution [23]. This is why proximity sensors are sometimes classified
as tactile sensors in grasping systems [3]. However, proximity sensors for tactile
sensing requires high resolution signals with low noise, which in practice is often not
the case. Contact-based sensors for are generally preferred for tactile sensing.

F/T sensors are tactile sensors that measure the linear and rotational forces that are
exerted on them. The sensors utilize the principle of a strain gauge which register
the exerted strain via a change in electrical resistance. Combined with a deformable
and elastic component, the sensors register changes in pressure when in contact with
an object [24]. The pressure is directly proportional to the applied forces and the
output is force and torque measurements.

7



2. Background

2.2 The LQR Problem
An essential controller in optimal control theory is LQR – the Linear Quadratic
Regulator. In contrast to more basic controllers, for instance variations of the PID-
controller, a designed LQR controller guarantees stability in a system without the
need for pole-placement analysis while being arguably more intuitive to tune for
higher-order systems.
To highlight the advantages of this powerful control method, let us review it by first
considering the following noiseless and discrete-time dynamical system

xk+1 = Axk +Buk (2.1)

with state vector xk ∈ Rnx and input vector uk ∈ Rnu . Given an initial state vector
x0, an optimal control input u∗ can be found by minimizing the function

J = 1
N

N∑
k=0

xT
kQxk + uT

kRuk (2.2)

with the matrix Q ∈ Rnx×nx and the matrix R ∈ Rnu×nu . Equation (2.2) is referred
to as the quadratic cost function and is the LQR problem with matrices Q and
R serving as cost matrices. Penalizing certain states or inputs with a higher cost
renders a higher cost function value. Therefore, a natural step is to choose a cheaper
control input that does not increase the states associated with a higher cost. It is
precisely this feature of tuning Q and R that makes this control method powerful
and more intuitive to design compared with other control strategies. A variation of
the standard LQR is the Linear Quadratic Tracking Problem

J = 1
N

N∑
k=0

(xref
k − xk)TQ(xref

k − xk) + (uk)TR(uk) (2.3)

The difference between (2.2) and (2.3) is the incorporation of the reference state xref
k .

Here, the objective is to minimize the error between the reference and the states of
the system, i.e. tracking the reference with a low control effort. It is useful in
applications where following a time-variant trajectory is the objective. Solving (2.2)
and (2.3) requires finding a solution to the Riccati Differential Equation where it is
necessary to have a linear and time-invariant model of the system, as in (2.1) [25].
This is of course not always the case. Often times, linearization means neglecting
non-linearities that are important for describing the behavior of the system [26].
In the case of grasping novel objects, it is safe to say that it is impossible to know
the proprieties of the object beforehand making it infeasible to build a model of such
a system. It is therefore clear that an alternative approach for this type of problem
is needed.

8



2. Background

2.3 Machine learning
Machine learning (ML) is a branch of artificial intelligence that has had an explosive
development the past decade. This has led to significant advances in research areas
such as computer vision, autonomous control, imitation learning and self-supervised
learning, to name a few. In the field of robotics and autonomous systems, these
developments have resulted in a whole new class of solutions to problems that were
previously thought as unmanageable. [27]

Machine learning algorithms can largely be divided in supervised, semi-supervised
and unsupervised learning algorithms [28]. The unsupervised and semi-supervised
learning algorithms use no or little example data to build models while the supervised
algorithms learn input-output mapping from a so-called training dataset. There
are many different supervised ML algorithms for various modelling problems such
as classification and regression. A classification problem may include the need to
predict which category an input belongs to, e.g. the need to classify whether an
object is a chair or not. Regression problems, however, concerns the mapping of an
input to a continuous output. An example of the application of a regression model
is predicting the velocity of the wheels of a robot using sensory data for avoiding
obstacles [29].

2.3.1 Gaussian Processes Regression
A machine learning tool that is quickly gaining popularity is Gaussian process (GP).
It is a powerful machine learning tool used for building models that make predic-
tions of data by incorporating prior knowledge. The probabilistic nature of GP can
be used for classification and clustering problems but is widely used for regression
problems [30]. However, contrary to traditional regression approaches such as the
Bayesian approach where inference of a probability distribution over all possible
values for parameters in a function is made, Gaussian process regression instead
infers a probability distribution over all possible functions that fit the data. Indeed,
this means that it is non-parametric and therefore requires no model assumptions.
Furthermore, the stochastic properties of a GP allows it to account for the distri-
bution of noise in the observations, making it useful when dealing with noisy data.
Formally, a Gaussian process is a collection of random variables that span over a
continuous domain such that the joint distribution of all of these random variables
is a multivariate Gaussian distribution:

f(x) ∼ GP(m(x), K(x, x′)) (2.4)

where m(x) is the mean and K(x, x′) is the covariance function [30]. The covariance
function, or the kernel, describes the relationship between two data points. In
effect, this means that (2.4) is a distribution over functions with the shape defined
by K(x, x′) and with the mean determined by m(x). A regression function modelled
as (2.4) will take a set of data points and update the distribution of all possible
functions that fit that dataset, i.e. updating the mean and kernel. First, with the
initial data points, the probability distribution will be spanning over many possible

9



2. Background

functions. This prior distribution is then used together with new data points to
render a posterior distribution - an updated model based on new data combined
with prior knowledge. The procedure is repeated for all datapoints in the training
dataset. A rigorous mathematical description of Gaussian process regression can
be found in [31]. Figure 2.4 show how experimental data can be used to build a
regression model with this approach.

Figure 2.4: A toy example to illustrate how experimental data can be fitted to a
Gaussian Process model. The black stars represent observed data points. The blue
area represents the confidence of the distribution while the red curve represents the
mean value of the distribution.

There are different types of kernels and selecting the right one can be decisive for
constructing a useful model. Although there are advantages with other kernels, the
most widely used one is the radial basis function (RBF):

K(G,G′;σ, l) = σ2exp(−‖G−G
′‖2

2l2 ) (2.5)

with σ2 being the variance and l is the length scale. The RBF kernel is popular due
to its generalization ability and tolerance to input noise [32]. σ2 and l in RBF are
considered as the hyperparameters of the GP and can be tuned iteratively to fit the
training dataset [33].

2.3.2 Bayesian optimization
Bayesian optimization (BO) is an iterative, sample-efficient method for finding the
extrema of objective functions that are typically difficult to evaluate. It is applicable
in cases where an analytical description of a process is not obtainable but where
experimental noisy data is available. The black box objective function, the surrogate
model, is often times modelled as a Gaussian Process (GP) where BO uses the GP’s
probabilistic predictions to efficiently localize the optimum of a function [34]. The
efficiency comes with the aim of finding possible optima of a function rather than
building a complete model of it, as with Gaussian process regression. The algorithm
utilizes a so called acquisition function to suggests candidates for optimization in an
iterative procedure. Figure 2.5 illustrates one iteration in the Bayesian optimization
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algorithm. The algorithm is commenced by providing an initial best guess which
are evaluated with experiments. The output from the experiments is recorded and
used to update the surrogate model. With the updated model, a new point of
interest is suggested by maximizing the acquisition function. The suggested data
point is stored with previous samples and the cycle is repeated. With more and
more samples, the surrogate model is improved whereby the likelihood of locating
the optima is increased. The algorithm is generally terminated when the distance
between the current suggestion and previous suggestion is less than a predefined
value. But other termination conditions could also be employed.

Figure 2.5: The Bayesian Optimization algorithm. The procedure starts with the
observation of data points from a black box process. The observed data points are
then used to construct a surrogate model, often with Gaussian process regression.
This is followed by maximizing an acquisition function to suggest the next input
to the black box process. The new input results in a new output which in turn is
observed and the cycle starts over.

The acquisition function can be considered as the guide in the BO algorithm. It
calculates the probability distribution for the location of the optimal objective func-
tion value. Maximizing the acquisition function means locating the next point with
the highest probability of corresponding to an optimal objective function value. Fig-
ure 2.6 shows an example of a Gaussian process with a corresponding acquisition
function in a BO procedure. Different acquisition functions can be selected depend-
ing on the strategy for optimization. In some cases, quickly exploring different areas
across the objective function is favored. This means that the acquisition function
will suggest evaluation points with high uncertainty of residing at the extrema. In
other cases, it is more desirable to primarily exploit, meaning that points with high
probability of being located at the optima are suggested. In the context of Bayesian
optimization, this is known as the exploring-exploiting trade off . In practice, choos-
ing the right acquisition function for a specific application is a trial and error process.
However, for most scenarios, probability of improvement (PI) is a safe first choice of
acquisition function. [35], [36]
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Figure 2.6: A 1-dimensional toy example to illustrate the procedure of the Bayesian
Optimization algorithm. The dashed line represents the objective function while the
black line represents the mean of the distribution of all possible functions with a
Gaussian Process approximation. At t=2, with a distribution constructed with
two observations, the optimum of the acquisition function (the lower green area)
determines the new input to the function. The output serves as a new observation
at t=3, which is used to update the distribution. The procedure is repeated until
convergence. [37]
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3
Reactive Grasping Solution

In this chapter, a presentation of the proposed approach is given by tying together
some of the concepts that are presented in chapter 2. The aim is to address the
problem statements highlighted in section 1.3 by first giving an overview of the
proposed approach (Section 3.1) and second giving an in-depth presentation of the
different aspects of the solution (sections 3.2 and 3.3). The chapter ends by detailing
the algorithm for the method in its entirety (section 3.4).

3.1 Outline of the approach
The solution is concerned with a scenario where a grasp pose is determined by a
grasp planning algorithm and where the controller is initiated after the gripper is
in contact with the object. The proposed approach automatically learns a robust
controller using feedback from touch sensors of the gripper. For this, a gripper with
torque and force sensors on the tip of its fingers is used. The width and force of
the grip of its two fingers are controlled. The proposed solution comprises of two
main parts: 1) auto-tuning the controller to deal with novel objects; 2) updating
the set-point when the grasp is deemed stable. The diagram in Fig. 3.1 illustrates
the proposed solution in full.

Figure 3.1: Overview of the proposed method for reactive grasping. x is the sensor
measurement, and xref is the set-point. The objective is to minimize the error
between the measurements and the calculated set-point. u is the control input. The
reference is updated when the grasp is deemed stable. The controller is a linear
feedback regulator with gain matrix G. To find the optimal gain matrix in an
efficient way, an approach based on Bayesian optimization is proposed.
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3. Reactive Grasping Solution

To auto-tune the controller, a Bayesian optimization (BO) algorithm is utilized
together with Gaussian process (GP). The cost function of the tracking problem
serves as an objective function modelled as a GP and the objective is thereby to
minimize this function. When tuning a controller for a novel object, recording of
the measurements in one pick and place iteration is used to evaluate and suggest
new parameters for the next iteration. The set of iterations is where the grasping
system learns to grasp a novel object. The initial grasp width can be determined by
a grasp planner. During grasp execution, measurements from the fingertip tactile
sensors, state x in Fig. 3.1, is fed back and compared to a reference xref . The
reference is in turn determined by the stability of the state x. When x is deemed
stable in a window of n samples, the reference is updated to be the same as the mean
value in the window of x. The error between the reference and the measurements is
controlled with a gain matrix G which is optimized with BO.

3.2 Adapting the approach for a parallel gripper
with F/T sensors

The reactive grasping approach is adapted for a parallel gripper equipped with six-
axis force/torque sensors in each finger, as shown in Figure 3.2, giving a total number
of twelve sensor values.

Figure 3.2: A parallel gripper equipped with six-axis force/torque sensors is used
for the reactive grasping approach.

To reduce the complexity of the optimization problem, the number of dimensions is
decreased by 1) taking the average of the right and left sensor values, 2) combining
the forces in x- and y-directions to one tangential force and 3) disregarding the
torque around the y- and x-axes, which can be motivated by safely assuming that
movement around these axes do not cause grasp failure. This leaves us with a
three-dimensional state vector:

x = [Ft, Fz, τz] (3.1)
where

Ft =
√
F 2

x + F 2
y (3.2)
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is the tangential force comprised of the force reading along the x− and y− axis. Fz

is the normal force and τz is the torque around the z-axes. The control input to the
parallel gripper is

u = width (3.3)

where width is the desired gripper width. The dimension of the control input u is
thus nu = 1. With the dimension for the state vector x being nx = 3, it gives a
dimension for the control parameters G as nG = 3.

3.3 Controller-tuning with Bayesian Optimization
The basis for finding the optimal controller gain for a specific object is the cost
function:

J = 1
N

N∑
k=0

(xk − xref
k )TQ(xk − xref

k ) + δuT
kRδuk + ρk (3.4)

which regulates the error between the reference values and the measured states.
Here, xk ∈ Rn3 is the measurements from the F/T sensors of the gripper, δuk =
uk−uk−1 ∈ R where u is the control input to the gripper, and Q and R are positive-
definite cost matrices. ρk is a penalty term that is added whenever the states xk

drop to a mean value of zero, indicating that the object is dropped. Without this
penalty, the error between xref and x may be sufficiently small when dropping some
objects and hence give a misleadingly low cost function value. This would of course
lead to a poor choice of control action δuk.

This approach for a reactive grasping solution includes a linear feedback controller
of the form

δuk =

εG(xk − xref
k ), if (xk < xref

k )
G(xk − xref

k ), otherwise
. (3.5)

where, G ∈ RnG=nu×nx is the control gain matrix and ε ∈ [0, 1) is a scalar that is
included when the error is negative. In practices, this means that the control action
for opening the gripper is slower than the action that closes the gripper yielding
faster response when perturbation is detected while applying a more conservative
ease of the grasp when the object is stable.

The problem is formulated as an optimization problem to minimize the cost function
of a quadratic regulator:

G = arg min
G̃
J(G̃). (3.6)

Solving this optimization problem using a classic method requires a model of the
system which determines how the input signal, uk, effects the states of the system,
xk. However, modeling the dynamics of the grasp for fragile and deformable objects
is not trivial, as is outlined in section 2.2. To solve this problem, the cost function
in Equation (3.4) is modelled as a Gaussian Process (GP):

J(G) ∼ GP(m(G), K(G,G′;σ, l)), (3.7)
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where the mean of the process m(G) = 0 and where K(G,G′;σ, l) is the kernel of
the GP . The kernel is chosen as the Radial Basis function described in section 2.3.1.
The hyper-parameters are optimized using the Broyden–Fletcher–Goldfarb–Shanno
algorithm [38].
If the cost function in Equation (2.3) is modeled as a GP, the control input u and the
error between xref and x are the inputs of the model; and, the output is therefore
the value of the cost function J . In the context of Bayesian optimization, the prob-
abilistic model over the cost function J is used for sample-efficient exploration for
gain parameters. For this, a suitable acquisition function is needed. By selecting an
appropriate acquisition function, the trade-off between exploration and exploitation
can be influenced. In this thesis, "Probability of Improvement” (PI) is chosen as the
acquisition function to suggest the next set of parameters to evaluate on the robot.
The algorithm is initiated by a manual suggestion for the controller parameters G
for the first iteration. Then, N samples of x are recorded for a pre-defined pick
and place task and use the chosen parameters to evaluate Equation (2.3). The
trial provides input to the Bayesian optimization algorithm to render a new set of
parameters. The next iteration will be initiated with this set of parameters and
will result in a better set according to the optimization cost function. This iterative
way of finding optimal parameters will be referred to as the training session. The
training session is terminated after M iterations.

3.4 Updating the Reference
During grasp execution, the measurements from the tactile sensors can show different
values depending on the way the object is being grasped; that is if a sudden weight
change has occurred when the object is picked up from rest or if changes in the object
itself have occurred. Having a fixed reference could lead to a feedback error even
if the grasp is stable. For this reason, updating the reference is crucial. However,
the controller should also be able to adapt the grasp to ensure that the object is
not deformed. Therefore, taking into consideration the need for an error in one or
multiple states is also important. When a grasp is stable enough to keep the object
from perturbations, the measurements from the tactile sensors will be relatively
constant over time. This behavior is exploited by devising a solution for updating
the reference for the states that register disturbance. Meanwhile, updating the
reference is avoided for the states that register pressure on the object. This would
lead to a feedback error for the concerned states and subsequently adapting the
grasp applying less forces. The solution for updating the reference is based on
linear regression. A line is fitted to a window with n samples of x and the slope is
registered. If the slope is less than predefined tolerance, κ, the reference is updated
with the average value of the fitted line.
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3.5 Procedure summary
The reactive grasping approach is summarized in its entirety in Algorithm 1.

Algorithm 1 Training algorithm for reactive grasping controller.
Require:

Initial controller gain: Ginit. Weight matrices: Q and R. Number of training
iterations: M . Number of samples taken during one training iteration: N . Num-
ber of samples to confirm change of the reference values: n. Acquisition function:
α. Tolerance for the slope: κ.

1: repeat
2: Close the gripper gradually;
3: if x starts changing then
4: Monitor Sensor Measurements
5: end if ;
6: until Sensor Measurements, x, Stabilize;
7: Initialize:

G← Ginit

eseq, ρseq,Λ,Ω← ∅
8: for iteration = 1 to M do
9: X ← [x1 . . . xn] . Record window of n measurements

10: xref ← average(X)
11: ρ← 0
12: while length(eseq) < N do
13: xref ← UpdateReference(X,xref )
14: if x = 0 then
15: ρ← Penalty value
16: end if
17: u← update according to Equation (3.5)
18: eseq ← eseq ∪ e . Record the error
19: ρseq ← ρseq ∪ ρ
20: end while
21: G← ParameterSearch(eseq, G, ρseq)
22: end for
23: function UpdateReference(X,xref )
24: slope ← Linear Regression of X
25: if slope < κ then
26: xref ← average(X)
27: end if
28: return xref

29: end function
30: function ParameterSearch(eseq, G, ρseq)
31: J ← 1

N

∑N
k=0 e

T
seq,kQeseq,k + (G · eseq,k)TR(G · eseq,k) + ρseq,k

32: Λ,Ω← Λ,Ω ∪ J,G
33: m̄, K̄ ← GP(m(Ω),K(Ω),Λ) . Model posterior
34: G̃← argminG α(m̄, K̄) . Render new controller parameters
35: return G̃
36: end function
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4
Experiments and results

This chapter presents details of the setup for the experiments as well as the imple-
mentation of the approach presented in chapter 3. The results from the experiments
are also presented in this chapter. It includes a discussion where the problem de-
scription outlined in section 1.3 being central.

4.1 Experiment setup
The experimental setup consists of a Universal Robot™ UR10 together with On-
robot™ RG2-FT two-finger gripper, shown in Figure 4.1. Onrobot™ RG2-FT is
equipped with six-axis sensor values in each finger and takes as input the desired
width and force.

Figure 4.1: The setup employed to perform the training and testing experi-
ments: (left) Universal Robot UR10 and OnRobot RG2-FT gripper. The gripper is
equipped with three-axis Force/Torque sensors at its fingertips.

The cost matrices for Equation (2.3) are chosen to be Q = diag[10, 1, 100] and R = 1.
Penalizing the error for the tangential force Ft and the torque τz higher than the
normal force Fz is rooted in preferring not dropping the object over holding it lightly.
The experiments are carried out for four different objects with different sizes, weights,
rigidity and friction coefficients. These objects include a small paper cup (310g), a
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water bottle (600g), a small milk box (660g) and a big milk box (800g), as shown in
Figure 4.2. They are filled with different levels of water or chickpeas, giving them
an uneven weight distribution during grasp execution.

Figure 4.2: The proposed controller is trained to handle four object with different
sizes, weights and tactile characteristics: (a) Small milk box half-filled with water
(total weight of 660g). (b) Plastic bottle filled with water (total weight of 600g).
(c) Paper cup filled with grain (total weight of 310g). (d) Large milk box half-filled
with water (total weight of 800g)

A pick-and-place route is devised for the training session, which includes lifting,
lightly shaking, rotating and placing the objects during a time period of approx-
imately 30 seconds. When one pick-and-place cycle is completed, the algorithm
finds a new set of parameters and the pick-and-place procedure is repeated. One
cycle is thus one iteration in the Bayesian optimization algorithm. With a sampling
frequency of 70 Hz, one iteration for the training session gives a horizon of around
2100 samples for Equation (2.3). A pick and place cycle starts with an initial prede-
fined grasp plan, including the pose for the grasping attempt and an estimate of the
width of the object to be grasped. Once the two fingers of the gripper are positioned
around the object at the grasping pose, the robot attempts to pick up the object.
The initial width is chosen such that, without reactive grasping, the grasp execution
will fail most of the time.

When the training session for an object is finished, the optimal controller parameters
are evaluated in a pick-and-place scenario and a shaking scenario. The pick-and-
place route for testing differs from training, both in terms of duration and the order of
the movements. However, the testing incorporates the same challenging movements
as during the training. The shaking experiment involves fast and rough movement
of the objects in a vertical path to impose a grasping scenario that differs from the
training route but that is still challenging. Each testing scenario is performed 10
times for each object.

The size of the search space for the controller parameters is restricted by taking
into account the resolution of the Onrobot™ RG2-FT sensors and the speed of
its actuators. The minimum value that can be registered by the sensors when
grasping an object multiplied with a gain outside of the search space would result
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in overshooting for any object. This means that the gripper would open and close
much to fast with a high gain.

Furthermore, the BO algorithm is initiated with parameters in the center of the
search space, Ginit, to allow for equal distance in all directions in the beginning
of the exploration. The optimized parameters, Gopt are then compared to Ginit to
demonstrate if any improvements are made and how much that can be gained by
employing the BO algorithm. Finally, a manual search for optimal parameters is
made for one object. This is to evaluate the effectiveness of the BO algorithm and
demonstrate if it is worth wile automatically tuning the controller.

4.2 Results
Table 4.1 shows the success rates for the optimal controller parameters Gopt vs. the
initial controller parameters Ginit. Gopt outperforms the initial parameters for all
objects in both testing scenarios. The biggest improvements were for the water bottle
and the big milk box in the pick-and-place scenario, which went from 0% success
rate to 100% success rate. For both objects, the failures occurred early in the pick-
and-place attempt, due to the weight and the stiffness of the object. For stiffer
and heavier objects, having parameters that lead to overshooting when following
the reference means as soon as the gripper width becomes too large, slippage occurs
which could lead to grasp failure.

Pick and Place Shake
Object Ginit Gopt Ginit Gopt

Paper Cup (wgt.
310g)

40% 90% 60% 80%

Water Bottle
(wgt. 600g)

0% 100% 40% 100%

Small MilkBox
(wgt. 660g)

30% 100% 60% 100%

Big MilkBox
(wgt. 800g)

0% 100% 30% 100%

Table 4.1: Success rates for the controllers tuned with an expert. Initial controller
parameters Ginit, and for the controllers with optimal gains Gopt obtained with
Bayesian optimization. These rates are calculated based on 10 trials for each case.

Figure 4.3 shows an unsuccessful pick-and-place attempt with Ginit in the scenario
with the water bottle. The controller manages to compensate for an unfirm grasp
in the beginning of the pick-and-place attempt, and the water bottle is picked up
successfully. However, when the object is stabilized, the controller eases the grasp
too quickly, which results in the object being dropped. This can be clearly seen
from the measurements in Figure 4.4 with the big milk box. The controller de-
creases the width during the first 2 seconds of the lift resulting in a stable grasp.
After around 2.5 seconds, the controller starts increasing the width due to an error
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Figure 4.3: Unsuccessful attempt to grasp and move a water bottle with sub-
optimal parameters. At time instance (t) equal to 1, the water bottle is successfully
picked up with a stable grasp. At t=2, the controller is easing the grasp to ensure
stability without excessive force. At t=3, t=4 and t=5, the quick action of the
controller is instead leading to a more unstable grasp which ultimately results in
dropping the water bottle (t=6).

between the reference and the measurements of the normal force. This leads to
opening the gripper too quickly and subsequently not reacting fast enough when
the object is slipping. In contrast, when the reactive grasping controller runs with
optimal parameters, it can be seen in Figure 4.5 that the milk box is firmly grasped
throughout the pick-and-place motion. The algorithm recognized during the train-
ing session that easing the grasp for the big and heavy milk box would only result
in grasp failure, thereby favoring parameters that have a low gain for regulating the
error in the normal force.

In the case of a less rigid and more fragile object like the paper cup, the algorithm
manages to find controller parameters that lets the gripper grasp the paper cup
firmly yet without damaging it. It can be seen in Table. 4.1 that the optimal
controller parameters Gopt outperforms Ginit for both the pick-and-place and shake
experiments. However, although the controller performs better with Gopt, there were
three attempts in total which we deemed as failures due to unstable grasps. In these
three cases, the paper cup was moving around the z-axes of the gripper without
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Figure 4.4: Sensor values and references for the two forces and torque with the
desired width during a Pick and Place attempt for the big milk box. The milk box
is successfully picked up with the width decreasing steadily during first 2 seconds.
When the grasp is stable enough, the error for the tangential force and the torque
is brought to zero. However, the error in the normal force remains and width is
therefore increased again. With sub-optimal controller parameters, the width was
increased too quickly for the controller to react to the slippage that occurred around
10 seconds in the attempt and the milk box is subsequently dropped.
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Figure 4.5: Sensor values and references for the two forces and torque with the
desired width during a Pick and Place attempt for the big milk box with optimal
parameters Gopt. The Pick and Place attempt is performed successfully with a firm
grasp throughout the motion. The gain for the error in the normal force is so small
compared to the gain for the error in tangential force and the torque, leaving the
gripper grasping the object firmly throughout the motion without increasing the
width.
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being detected by the sensors. This is most likely due to the shape of the paper
cup which makes it difficult to engage the sensors in some cases. But in the cases
where the sensors were excited by movements of the paper cup during an entire
grasp execution, the controller performed as intended. Figure 4.6 shows the results
of a shaking experiment with the paper cup, with optimal parameters. As it can
be seen, the controller handles the challenging motion by updating the reference
values and regulating the states. At the beginning, once the system detects the
cup is slipping away, it tightens the grasp. However, once the grasp is stabilized
the controller starts increasing the width. At the end, the values are converging
to stability. It is evident from Figure 4.6 that the width is efficiently controlled,
showing that the reactive grasping controller regulates the grasp by decreasing the
width of the gripper when instability is detected while easing the grasp when the
object is stable.

(a) (b)

Figure 4.6: Sensor measurements and reference input width in the experiment
to hold and shake a paper cup filled with grain (weight equal to 310g). In this
experiment the cup is shaken up and down along the z-axis of the gripper. In
the beginning the cup starts slipping. The controller reacts by tightening the grip.
However, after the grip is stabilized, the width is relaxed so that the gripper does
not squeeze the cup, thereby avoiding to deform it.

Figure 4.7 shows the exploration for optimal controller parameters for the water bot-
tle over 30 iterations. Here, a comparison is made against manually tuned controller
parameters as a baseline depicted as a black star in the search space. The baseline
was found with extensive manual search and was included to test the effectiveness of
the algorithm. In the first iteration which starts of with parameters in the center of
the search space, the object is picked up successfully but dropped soon after. After
5 iterations, the suggested parameters get even worse by dropping the water bottle
even sooner. After 9 iterations, the algorithm locates parameters close to the base-
line that outperforms all previous parameters and successfully carries out the entire
Pick and Place motion with minimal slippage. When the algorithm is terminated
after 30 iterations, an entire area of well performing parameters is located near
the baseline, showing that the algorithm successfully tunes the reactive grasping
controller for optimal performance much more efficiently than manual-tuning.
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Figure 4.7: Evolution of control parameters for the water bottle as the number
of iterations increase in the Bayesian optimization loop. A single point shows the
suggested parameters after one iteration while the size of the point shows more than
one suggestion in the same place. Red color indicates poor controller performance,
i.e. a high value of Equation (2.3), while the blue color indicates better controller
performance. The black star is a baseline which is found manually through experi-
ments. The algorithm is initiated with parameters in the center of the search space
and after 5 iterations, the suggested parameters result in poor grasp execution with
the water bottle being dropped. After 10 iterations, parameters closer to the base-
line are suggested which yield better controller performance. When the algorithm
has run for 30 iterations it locates a neighborhood near the baseline with multiple
parameters with good performance.
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5
Conclusion

The aim of this thesis was to design and evaluate an approach for reactive grasping
of novel objects. The core of the presented method is a feedback controller based on
LQR which is auto-tuned with Bayesian optimization. Connecting this back to the
problem description outlined in section 1.3, the first and second central questions
were:

• How could a feedback controller best be designed for processes that
are not known a priori, that have important nonlinear dynamics
that cannot be ignored and for processes that have extensive noise?

• How could information about a current unstable grasp be used to
take reactive corrective actions with an adaptive controller to in-
crease grasp stability without deforming the object?

Bayesian optimization was used together with Gaussian process to find optimal
parameters for the feedback controller. The experiments included a real robotic
setup with a parallel gripper equipped with F/T sensors. The results showed that
the designed controller was highly effective at responding to changes in stability
during grasp execution. A comparison between optimal and sub-optimal controller
parameters showed that the performance was greatly improved by optimizing the
feedback controller. At the same time, the approach proved to be suitable for
handling fragile objects, such as a paper cup. The controller was able to react to
instability when grasping a cup but without applying excessive force.
The third central question in this thesis was:

• How could the feedback controller be tuned automatically in an
efficient way?

When the parameters of the BO tuned controller for one object were compared
to manually found and well-performing parameters, it was shown that the BO al-
gorithm indeed could locate an entire area of high quality parameters. This was
done in just a fraction of the time in comparison to manually tuning the controller,
making it truly efficient when auto-tuning.
The main questions in this thesis were all shown to be appropriately addressed
with the proposed reactive grasping approach. However, despite the success of
the method shown with the experiments designed in this thesis, more thorough
evaluation is needed. Future work should include expanded experiments to further
test the robustness of the proposed approach by, for instance, designing pick and
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place tasks with different grasp poses and object orientations. This should be done
to establish the generalizability of the method, i.e. to ensure the robustness of the
controller in multiple different grasping scenarios. Furthermore, additional objects
with various characteristics could be added for extensive evaluation of the proposed
approach.
Future work could also investigate how the controller performs together with a grasp
planner in a pipeline for grasping novel objects. It may also include the expansion
of the method by incorporating a memory bank over several learned controllers. In
practice, this could mean storing the posterior distributions of all objects learned
during training and using them for similar objects to learn even faster.
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