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Abstract
By use of semi-active wheel suspension, ride comfort can be significantly improved
compared to conventional passive suspension. Semi-active wheel suspension systems
are able to change the stiffness of the dampers, and hence adapt to the road profile.
If preview data of the road profile is utilized of the suspension controller, the ride
comfort can be further improved. Lately, machine learning and neural networks
have got a lot of attention, and not the least neural network controllers trained by
reinforcement learning. In the last couple of years, learning techniques for continu-
ous environments have shown promising results, e.g. the deep deterministic policy
gradient. Making it interesting for many realistic control tasks. This thesis presents
a neural network control approach, trained by the deep deterministic policy gradi-
ent. A control approach for a simple quarter-car model is proposed, as well as a
control approach for a more detailed full-car model. Both control approaches are
evaluated on the same models that they are trained on, and the full-car controller
is also evaluated on an even more detailed model in IPG CarMaker. The simulation
results show that a neural network controller with road preview can reach signif-
icantly improved ride comfort for certain roads, compared to a passive suspended
system and a conventional reactive controller for semi-active suspension.

Keywords: Semi-active suspension, neural network, reinforcement learning, deep de-
terministic policy gradient, road preview, machine learning, full-car model, quarter-
car model, model predictive control, ride comfort, actor-critic.
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1
Introduction

Wheel suspension systems have for a long time been an important feature for improv-
ing ride comfort and handling performance in vehicles. Improvements in handling
performance is achieved by keeping the vehicle body and wheels as close to the road
surface as possible. Ride comfort improvements are usually achieved by decreasing
the vehicle’s body accelerations. For a passive suspension system, this is typically
achieved by using soft suspension. A reduction of body accelerations also increases
safety aspects, e.g. reduces driver fatigue [1]. Better handling is typically achieved
by using stiff suspension. Thus, increasing the grip between the wheels and the
road. Thereof, for passive suspension, handling performance and ride comfort are
to some extent in conflict with each other [2].

In step with the technical evolution, wheel suspension systems have gone from basic
spring systems and passive damping systems, to nowadays active and semi-active
damping systems. By using these controllable suspension systems, the conflict be-
tween handling performance and ride comfort can be reduced. For these systems,
many different control approaches have been used. Recently, machine learning has
got a lot of attention due to its rising performance, especially reinforcement learning
control algorithms. In this thesis a control approach for semi-active wheel suspen-
sion using reinforcement learning will be presented. Furthermore, the presented
approach is making use of road profile measurements, given from a camera mounted
on the vehicle. Most of today’s active and semi-active suspension systems are re-
active in the sense that the controller output is based on the acceleration of the
chassis that is measured by a sensor. By using estimations of the road profile, the
suspension system controllers can be designed to adapt to the road profile. Hence,
better comfort and grip between the wheels and the road may be achieved.

1.1 Background

Recently, Volvo Cars Corporation (VCC) and Chalmers University of Technology
investigated the possibility to use model predictive control (MPC) and road preview
from camera, in order to control a semi-active wheel suspension system. The thesis
showed that MPC can offer good performance but to a high computational cost [3].
The high computational cost comes from solving a nonlinear optimization problem.
A promising method for reducing computational complexity in nonlinear control
problems is to use artificial neural networks. It has previously been shown that
using neural networks in nonlinear control applications can be beneficial in terms of
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1. Introduction

computational cost. Artificial neural networks have been used as nonlinear black-
box models of dynamic behaviours [4], [5], [6], but also as controller, outputting the
control signal [7].

An artificial neural network needs to be trained in some way. One interesting ap-
proach is to use reinforcement learning (RL), because of the advantage of not needing
a model. Furthermore, a model free RL approach can possibly learn aspects of the
environment that a conventional model-based controller can not, because it is not
limited by the accuracy of a model. Additionally, RL controllers have recently shown
good results when applied to various control tasks, both in simulation [8], [9], [10]
and in physical environments [11]. One of the proposed learning algorithms is called
deep deterministic policy gradient (DDPG) [12]. The DDPG brings the benefits of
the successful deep Q-learning algorithm [13] to continuous action spaces.

1.2 Purpose

The purpose of this thesis is to investigate whether neural network controller, trained
by the DDPG algorithm, is a viable option for controlling a semi-active wheel sus-
pension system, with access to road preview. This includes an investigation of the
performance and the computational complexity of the controller. The purpose is
also to investigate the effect of using road preview in combination with the neural
network controller. These investigations are interesting in a scientific point of view,
since there are very few similar studies.

1.3 Objective

The objective of the thesis is to to train a neural network, using the RL algorithm
DDPG, to control a semi-active wheel suspension system with access to road pre-
view. More specifically, this includes designing a model/environment of a semi-active
suspension system and the associated vehicle, implement the RL algorithm DDPG,
customize the algorithm to fit the current environment, train a neural network on
the designed environment, and finally, evaluate the trained controller, in terms of
performance and computational complexity, on the designed environment as well as
in the model-based testing and design software IPG CarMaker. Furthermore the
effect of using road preview data will be evaluated by comparing the performance
of a controller with access to the data, to a controller without access to the data.

1.4 Delimitations

All inputs to the controller, i.e. road preview data and a linear combination of the
states, will be given as noise free. The controller will be designed for one specific
semi-active wheel suspension system and vehicle. The neural network will be trained
on a designed environment with a few different road profiles. The controller will be
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1. Introduction

implemented and evaluated in simulation environments, i.e. the designed environ-
ment used for training and IPG CarMaker. All training sessions and evaluations will
be made with a constant vehicle velocity. Various velocities between the sessions
will be considered though. The reward function for the learning algorithm will not
be optimized in terms of ride comfort and handling performance. Generally, the
reward function will just consist of the body accelerations. The road preview data
will consist of the height of the road profile along a fixed longitudinal axis. Thus,
the road preview data will not take the angle of the car into consideration, which
would be needed if the data was given from a camera on top of the car.

1.5 Related work
Techniques that make use of road preview for controlling wheel suspension systems
has been proposed for many years. Early proposals of feedforward controllers were
made by [14], [15] and [16]. An early proposal of an MPC was made in 1997 by [17].
In the paper, an MPC for an active suspension system with access to road preview
shows significantly improved ride comfort, compared to a passive system. The study
is carried out on a half-car model in simulation. The proposed controller is tolerant
to significant amount of noise in the preview information. Furthermore, a real-time
implementation of the MPC is shown to be feasible. In [18] and [19], two differ-
ent control approaches for active suspension systems, using sensor data of the road
profile, have been proposed; an MPC with road preview and a feedforward control
approach with preview. Both controllers showed satisfactory results in simulation.
The second controller was also evaluated on a real car. The achieved results, using
road preview cameras and the feedforward controller, looks promising for usage in
vehicles. In [20], another MPC for semi-active suspension on a full-car was pro-
posed. No road preview was used, instead an observer was designed for estimating
the road disturbances. The simulation results showed that the proposed MPC with
observer performed close to as good as an MPC with road preview. Recently, VCC
and Chalmers University of Technology proposed a nonlinear MPC with access to
road preview, for a semi-active suspension system [3]. The thesis showed that good
performance in terms of ride comfort could be achieved by the nonlinear MPC, in
simulation on a full-car model. However, when implemented on a physical vehicle,
it was shown that the computational complexity of the proposed controller was too
large to run on a real-time system. Hence, the semi-active system with MPC did
not perform better than a passive system.

In terms of reinforcement learning approaches for wheel suspension control, some
different methods have been investigated. Already in 1996, a reinforcement learning
algorithm was proposed to control a semi-active suspension system for a four wheeled
passenger vehicle. In [21], the control objective is to minimize the vehicle’s body
accelerations by the use of online reinforcement learning. No preview of the road
is available, hence the input to the controllers mainly is the road input disturbance
for each wheel. A continuous action reinforcement learning automata algorithm is
designed and an improvement in terms of body accelerations, compared to a passive
reference, can be observed after just a couple of hours training. Further, despite
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the large sensor noises affecting the controllers, a promising result was achieved. In
[22], batch reinforcement learning, a technique to approximate solutions of optimal
control problems, was proposed for training a semi-active suspension controller. The
proposed controller is reactive, i.e. it does not use any preview data of the road, to
determine its control signal. Also, the controller is model-free. Hence it can learn the
aspects of the environment and does not need a model to determine the control sig-
nal. The report shows that a well tuned batch reinforcement learned controller can
guarantee the overall best performance, compared to some of today’s most common
control strategies, such as Skyhook control and the quite similar Acceleration driven
damping control. In [23], an online reinforcement learning method for controlling a
quarter-car active suspension model is proposed. The controller is learning online,
i.e. it adapts to the present road. The simulation results showed improvement of
the body acceleration and displacement, as well as that the controller could adapt
to the road rather quick. In summary, reinforcement learning controllers for wheel
suspension systems have shown promising results both in simulation and using real
hardware. However, reinforcement learning controllers that make use of road pre-
view have not been particularly explored.

Further, reinforcement learning has recently shown impressing results in other appli-
cations. In [10] and [11], reinforcement learning, with neural networks, has been used
to control quadrotors. Quadrotors are often hard to control, since they are sensitive
and unstable systems. Despite this, classic and model-based control techniques are
still often used to stabilize the flight. In the papers, they prove that model-free
reinforcement learning algorithms successfully can be used for controlling quadro-
copters. In [11], the machine learned controller is combined with some basic regular
controller, and together an outstanding performance and, at the same time, com-
putationally cheap controller is designed. Further, many of today’s reinforcement
learning algorithms are accelerating the training process to a fast convergence, which
also increases the usability.

In [8], reinforcement learning is used to control urban traffic lights. The issues
with traffic light optimization is that a large number of input information is avail-
able for controlling the system. Hence, traffic light systems often are controlled on
localized parts of the traffic light network, and then the localized parts of the net-
work is coordinated by a multi-agent setup. In this paper, reinforcement learning, in
form of the deep deterministic policy gradient algorithm, is used in order to control
the whole network as one part. This method is used to overcome the large scale of
available state information. DDPG also enables multiple rewards, so each individual
traffic light can be given an individual reward based on its chosen action. The re-
sults achieved, using this method, was that the algorithm worked good on a smaller
system, but the higher complexity of the network, the more training was needed
to achieve a good result. However, the results indicates that with a larger scale
hardware infrastructure, the algorithm should work for larger traffic light networks.
The same algorithm is used in [9], where it is used to control a planar bipedal walk-
ing robot in simulation. The goal is to make the robot walk by itself without any
prior knowledge of itself or the world dynamics. The robot learns via trial and error
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by giving it rewards based on how well it is performing a walking behaviour. The
results showed yet again that the DDPG algorithm, for relatively complex systems,
performs great within reasonable training times on standard hardware.

1.6 Ethics
Since the proposed technology is about improving comfort and performance/safety,
the work is not particularly controversial in an ethical point of view. If taken to the
edge, one argument could be that it is more important to focus on safety systems
than to put effort in achieving a better ride comfort. However, since active and
semi-active suspension systems also implies better grip between the wheels and the
road, it also improves the safety of the vehicle.

5
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2
Theory

This chapter contains theory about subjects that are of interest for this thesis. The
chapter includes theory about vehicle suspension systems, and reinforcement learn-
ing. The section about vehicle suspension systems considers passive, semi-active
and active systems, as well as describing damper and bump stop characteristics. It
also contains a model of a quarter-car and full-car, as well as a brief description of
ride comfort in terms of primary and secondary ride. Further, reinforcement learn-
ing learning is described, including the the basics of reinforcement learning and the
elements that are used in the learning algorithm that is used in this thesis.

2.1 Vehicle suspension systems
Today, there are three main types of vehicle suspension systems, passive suspension,
semi-active suspension and active suspension. In this section, a description of the
three systems are presented. Furthermore, a quarter-car and a full-car model with
semi-active suspension system are derived. Finally there is a brief section about ride
comfort in terms of primary and secondary ride.

2.1.1 Different suspension systems
In this section, passive, semi-active and active suspension systems are described and
their characteristics are compared.

2.1.1.1 Passive suspension

Today passive suspension is widely used in common cars. Passive systems simply
reduce vertical, spinning and tilting (heave, roll and pitch) movements by passive
springs and dampers. Passive indicates that no energy can be added to the system
and that the characteristics of the springs and the dampers are fixed. Hence, passive
systems have limited capability of completely controlling the vehicle dynamics. For
a comfortable ride, it is desirable to limit accelerations of the body. While body
accelerations can be reduced by a soft suspension system, tire-road contact and
thereof handling benefits from stiff suspension [24]. Thus, a compromise between
comfort and handling is needed when the characteristics of the springs and dampers
are selected. It should also be noted that vehicles typically operate over different
road profiles at different velocities, with different loads. These factors also need to
be considered when selecting damper and spring characteristics [25].

7



2. Theory

2.1.1.2 Semi-active suspension

Semi-active systems are able to vary the viscous damping coefficient of the damper,
following some control method. Hence, they are able to adapt to different road
surfaces or driving modes, to a low energy cost [24]. Because of the good compromise
between cost in terms of energy consumption, hardware and performance, semi-
active dampers have got a lot of attention lately [22]. A drawback with semi-active
systems is that they become nonlinear when changing the viscous damping coefficient
[25], which is not really the case with passive suspension.

2.1.1.3 Active suspension

Active suspension systems are able to to raise and lower the chassis of the vehicle in
order to suppress vibrations due to road irregularities. The chassis are controlled by
independent actuators at each wheel. The actuators are however limited in the sense
that while increasing ride comfort, the suspension working space must be preserved
[26]. Still, using a proper control method, a good compromise between ride comfort
and handling can be achieved. Many researchers recognize these systems to be
among the best in order to improve the overall performance, due to their ability
to manage contradictory parameters. The main drawback is that the systems are
complex and expensive (in a manufacturing and energy consuming way), which has
resulted in that only a small number of high-end cars and trucks use the system
[27].

2.1.1.4 Comparison of damping characteristics

The characteristics of passive, semi-active and active dampers are illustrated in Fig-
ure 2.1. In particular, the characteristics describes how the damping force varies
given the damper piston speed. In the figure it can be seen that the potential (the
marked area) of semi-active and active damping is much larger than for the passive
damper. As mentioned earlier, active suspension includes independent actuators.
Hence they can deliver a bounded arbitrary force independent of the damper piston
speed. As a consequence, active suspension has controllability potential in all four
quadrants. Semi-active suspension is more limited and only has controllability in the
first and the third quadrant. This makes active suspension more viable to effectively
remove vibrations, but due to some drawbacks with active suspension systems, for
example very large equipment sizes, semi-active suspension is used more often [28].
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(a) Passive damping (b) Semi-active damping (c) Active damping

Figure 2.1: Illustration of damping characteristics for different damping systems
[28].

2.1.2 Passive and semi-active dampers characteristics

A standard passive damper system consists of a piston rod, cylinder, piston valve,
base valve and an accumulator (see Figure 2.2). The piston rod consists of a piston
valve that can be calibrated to achieve the wanted stiffness. The damper is designed
such that a piston rod can move vertically within the cylinder that is filled with oil.
When the piston is moving in and out of the cylinder it causes a change in volume.
This is compensated for by oil that is flowing, through the base valve, in or out of
the accumulator. The change in pressure within the base valve and the piston valve
causes a damping force on the piston.

The design of a semi-active damper is somewhat like the passive damper system,
except that the piston- and base valves are replaced by check valves and a current-
controlled valve is added (see Figure 2.2). The current-controlled valve is connected
to the upper and the lower damper chamber and controls the flow of oil between
them. The current opens and closes the valve to increase or decrease the restriction
of flow. Hence, damping ratios can be changed by alternate the current given to
the valve [29]. The following consequence is that the damping force can be changed
given an arbitrary damper piston speed.
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Figure 2.2: Illustration of a passive (left) and a semi-active (right) damper [29].

2.1.3 Modelling of dampers
Dampers are often very nonlinear, but they are often simplified and described as
linear. Then, the damping force Fd is be described as

Fd = vp · cd (2.1)

where vp is the piston speed and cd is the damping coefficient. Considering a passive
damper, the damping coefficient is constant. Consequently, the force acting on
the damper is defined as a linear function over the piston speed. The difference in
describing the damping force for a semi-active damper is that the damping coefficient
is not necessarily constant. The damping coefficient can vary over the time as cd(t),
which makes the equation nonlinear.

2.1.4 Bump stops/buffers
Bump stops, or sometimes called buffers, are designed to protect suspension com-
ponents and increase ride comfort by limiting the bump travel without generating
noise [30]. If the suspension system does not use bump stops while the vehicle runs
over a bump, the dampers runs the risk of bottoming out. This means that the
damper piston gets fully expanded or compressed, which can damage the suspen-
sion components. Furthermore, bump stops are often made of rubber and their main
function is absorbing impacts and soften the force given to the chassis.

2.1.5 Primary and secondary ride
In vehicles, ride comfort is often referred to as primary and secondary ride. This
means that ride comfort can be divided into different sections depending on the
frequency of the vibrations affecting the vehicle. Primary ride is the section which
involves low frequency vibrations and secondary rides are the section which involves
high frequency vibrations. Primary ride describes events like large bumps, which
generally can be described as a high amplitude with a low frequency that ranges
from 0− 4 Hz [31]. Hence, movements in the rigid body (i.e. the chassis) are often
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associated with primary ride. Furthermore, vibrations exposed to the driver with
a frequency above 4 Hz are often associated with secondary ride. These vibrations
can be associated with low amplitude and high frequency. They are often occur-
ring because of imperfections in the road surface, for example very small bumps or
cracks in the asphalt. Hence, secondary ride is often what passengers defines as ride
comfort. In general, issues with primary ride will occur by a vehicle at high speed,
whilst issues with secondary ride will occur by a vehicle at low speed. Moreover, pri-
mary ride is mostly controlled by anti-roll bars, shock absorbers and springs, whilst
secondary ride mostly depend on tire properties, suspension and bush isolation [32].

2.1.6 Quarter-car model
A quarter-car model is a two degrees of freedom (vertical displacements) model and
is shown in figure 2.3. It consists of a sprung mass ms (a quarter of a car’s mass), an
unsprung mass mu (mass of the wheel), two springs, and a damper [33], [34]. The
sprung mass is illustrating a quarter of the car’s chassis and weight. The sprung
mass position is here called zs. The unsprung mass is the mass of the wheel and it’s
position is called zu. At the bottom of the figure a road surface is drawn and zr is the
height of the road surface’s bumps. Between the wheel mass and the road surface, a
spring ku is placed, which purpose is to illustrate the characteristics and dynamics
of the tire. Between the sprung and unsprung mass a damper c and a spring ks is
placed. These are supposed to reduce the vibrations from the road surface, which
also may improve the comfort for the passengers of the car.

Figure 2.3: Illustration of the dynamics of a quarter-car model.

In order to model the quarter-car model, Newton’s second law is used in order to
derive the following equations.
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ms · z̈s = −ks(zs − zu)− c(żs − żu) (2.2)
mu · z̈u = ks(zs − zu) + c(żs − żu)− ku(zu − zr) (2.3)

2.1.7 Full-car model
The full-car model is shown in Figure 2.4. It is basically four quarter-car models
that are all connected to the same sprung mass [33]. This introduces some additional
degrees and movements to take into consideration. The full-car model uses seven
degrees of freedom (heave, roll, pitch and vertical displacements of the four unsprung
masses) [34]. In the figure, vertical displacements of each unsprung mass are noted
as zui , where i ∈ {1, 2, 3, 4} represents the four wheels of the car according to Table
2.1. Furthermore, zsi corresponds to the vertical displacement of the sprung mass
at each corner of the car. Road profiles affecting each wheel are noted as zri Roll
and pitch corresponds to the car’s rotations around x- and y-axis respectively. The
vertical displacement of the car’s center of gravity (COG) is called heave. Distances
a1, a2, b1, b2 are describing the lever between each wheel and the car’s COG. In a
linear representation of the full-car model, ci corresponds to the damping coefficient
used for each wheel’s damper. Furthermore, the constants ksi and kui represent the
wheel suspension’s spring constants, which are more detailed described in section
2.1.6.

Figure 2.4: Illustration of the dynamics of a full-car model, i ∈ {1, 2, 3, 4}.

The parameters used for modelling the dynamics of the full-car model are shown in
Table 2.2.
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Table 2.1: Description of how to relate i ∈ {1, 2, 3, 4} to the correct wheel.

i Wheel
1 Front, Left
2 Front, Right
3 Rear, Right
4 Rear, Left

Table 2.2: Parameters for full-car model, i ∈ {1, 2, 3, 4}.

Parameter Description Unit
ϕ Roll rad
θ Pitch rad
zs Heave m
zsi Vertical displacement of sprung mass at each corner m
zui Vertical displacement of unsprung mass at each corner m
Ix Roll inertia kgm2

Iy Pitch inertia kgm2

ms Sprung mass kg
mui Unsprung mass kg
zri Vertical displacement of road m
ksi Spring constant, sprung mass N/m
kui Spring constant, sprung tire N/m
b1 COG-distance right m
b2 COG-distance left m
a1 COG-distance front m
a2 COG-distance rear m
ci Damping coefficient Ns/m

By using Newton’s second law, the linearized dynamics of the seven degree of free-
dom (DOF) full-car model can be described as in the following equations of motion
[35]. Worth mentioning is that the model is using small angle approximation, i.e.
sin(θ) ≈ θ and cos(θ) ≈ 1, which is a good approximation, since the angles of the
car is relatively small in normal conditions of the road.

msz̈s = − c1

(
żs − żu1 + b1ϕ̇− a1θ̇

)
− c2

(
żs − żu2 − b2ϕ̇− a1θ̇

)
− c3

(
żs − żu3 − b1ϕ̇+ a2θ̇

)
− c4

(
żs − żu4 + b2ϕ̇+ a2θ̇

)
− ks1

(
zs − zu1 + b1ϕ− a1θ

)
− ks2

(
zs − zu2 − b2ϕ− a1θ

)
− ks3

(
zs − zu3 − b1ϕ+ a2θ

)
− ks4

(
zs − zu4 + b2ϕ+ a2θ

)
(2.4)
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Ixϕ̈ = − b1c1

(
żs − żu1 + b1ϕ̇− a1θ̇

)
+ b2c2

(
żs − żu2 − b2ϕ̇− a1θ̇

)
+ b1c3

(
żs − żu3 − b1ϕ̇+ a2θ̇

)
− b2c4

(
żs − żu4 + b2ϕ̇+ a2θ̇

)
− b1ks1

(
zs − zu1 + b1ϕ− a1θ

)
+ b2ks2

(
zs − zu2 − b2ϕ− a1θ

)
+ b1ks3

(
zs − zu3 − b1ϕ+ a2θ

)
− b2ks4

(
zs − zu4 + b2ϕ+ a2θ

)
(2.5)

Iyθ̈ = a1c1

(
żs − żu1 + b1ϕ̇− a1θ̇

)
+ a1c2

(
żs − żu2 − b2ϕ̇− a1θ̇

)
− a2c3

(
żs − żu3 − b1ϕ̇+ a2θ̇

)
− a2c4

(
żs − żu4 + b2ϕ̇+ a2θ̇

)
+ a1ks1

(
zs − zu1 + b1ϕ− a1θ

)
+ a1ks2

(
zs − zu2 − b2ϕ− a1θ

)
− a2ks3

(
zs − zu3 − b1ϕ+ a2θ

)
− a2ks4

(
zs − zu4 + b2ϕ+ a2θ

)
(2.6)

mu1 z̈u1 = c1

(
żs − żu1 + b1ϕ̇− a1θ̇

)
+ ks1

(
zs − zu1 + b1ϕ− a1θ

)
− ku1

(
zu1 − zr1

) (2.7)

mu2 z̈u2 = c2

(
żs − żu2 − b2ϕ̇− a1θ̇

)
+ ks2

(
zs − zu2 − b2ϕ− a1θ

)
− ku2

(
zu2 − zr2

) (2.8)

mu3 z̈u3 = c3

(
żs − żu3 − b1ϕ̇+ a2θ̇

)
+ ks3

(
zs − zu3 − b1ϕ+ a2θ

)
− ku3

(
zu3 − zr3

) (2.9)

mu4 z̈u4 = c4

(
żs − żu4 + b2ϕ̇+ a2θ̇

)
+ ks4

(
zs − zu4 + b2ϕ+ a2θ

)
− ku4

(
zu4 − zr4

) (2.10)

2.2 Reinforcement learning
Reinforcement learning is an area with machine learning. Reinforcement learning is
a technique that uses the fundamental ideas of “learning by doing”, and “trial and
error”. A common way of describing the learning process is the events of an agent
acting in an influenceable environment. In the beginning, the agent has no informa-
tion about which is the best action to take in each environment state. However, by
taking an action in the environment, the agent will get a reward in return, telling
the agent whether the action was good or not. When taking an action, the state of
the environment will also be updated, and the new state is given to the agent. The
loop is now closed and the agent is ready to take a new action. By repeating the
process over and over again, the agent will learn how to act from its experience.
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An example that often is referred to when describing the idea of reinforcement
learning (e.g. in [36] and [37]), is how a baby learns to walk. A simple illustration is
shown in Figure 2.5. Every time the baby improves by getting closer to walk, it will
get a lot of positive rewards from its parents in terms of appreciation. If the baby
on the other hand makes a bad move and falls down, it might get hurt and in turn
it will get negative rewards. With time, the baby will use its experience in order to
develop a walking technique (a good policy).

Figure 2.5: Illustration of the reinforcement learning concept.

I some cases, including the walking baby example, it might be hard to separate the
environment and the agent. The agent is not necessary the entire robot or organism,
and the environment is not necessary only what is outside of the robot or organism
[38]. In the walking baby example, the position of the baby’s body is definitely a
part of the environment, since the state of the body has a very large impact on how
the next action (body movement) will be made.

One aspect with reinforcement learning that in some cases is a bit problematic,
is the trade-off between exploration and exploitation. Because in order for the agent
to obtain rewards, it needs to exploit its experience and choose an action based on
what it has done before [38]. Then the agent will never learn something new, it
will never explore. An example could be how people act when deciding what they
want to eat when visiting a restaurant. People that always choose their favourite
dish, will most probably always be quite satisfied. However, they might miss out on
something that is very good. People that often try new dishes, have the chance of
experience new fantastic dishes, but they might also get something that they do not
like. As mentioned, it is a trade-off, and it is often very hard to decide on how much
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one wants to explore and exploit in order to achieve the best result in the end.

2.2.1 Elements of reinforcement learning
In reinforcement learning, one usually identify the agent and the environment as the
two main elements. These have been introduced sufficiently in the previous section.
Furthermore, there are three or four sub-elements that are necessary in reinforce-
ment learning; a reward, a policy, a value function and in some cases a model [38].

Policy - A policy is what decides on which action to take in each state. The
policy is what one wants learn or improve during learning. A policy can be very
simple, such as a very simple function or as a look-up- table that matches states
with actions. It can also be complex, e.g. using deep neural networks. The policy
can be stochastic or deterministic. Deterministic policies are used in deterministic
environments, i.e. environments where you are given state, a particular action af-
fects the environment in a specific way. Deterministic policies maps a specific state
to a specific action. Stochastic policies on the other hand, includes an uncertainty.
In a specific state the chosen action may vary. Similarly, stochastic policies are used
in stochastic environments. In stochastic environments, taking a particular action
in a specific state may have several different outcomes.

Reward - A reward is a feedback signal directed to the agent, which tells how
good or bad the current action was. The reward is necessary for learning and the
design of it can be very important in order to achieve a desired result.

Value function - A value function is a function that expresses how good it is
to be in a particular state. The value function is basically a computation or esti-
mation of the cumulative rewards that an agent can expect to achieve in the future,
given the current state. While the reward is telling what is good to do right now,
the value tells what is good in the long run.

Model - In some cases, a model of the environment can be used in order for the
agent to predict consequences, i.e. the new state and reward, of taking a certain
action. Methods using models are called model-based whereas other methods are
called model-free. Model-based methods are able to make use of planning, i.e. they
can decide on which action is the best, based on predictions of the future. Hence,
model-based methods can often learn a good policy requiring fewer samples of train-
ing than a model-free approach [39]. However it can be very hard to come up with
a model that represents the environment good enough to make useful predictions,
and there is always a risk of limiting the learning when using a model.

2.2.2 Markov decision process
AMarkov decision process (MDP) is a discrete stochastic model, describing a control
process. It includes a set of states S, a set of actions A, a real valued reward function
r(s, a) and a state-transition probability function p(s′|s, a). The state-transition
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probability function describes the probability of ending up in state s′ given state
s and action a. Hence, the state-transition function describes the dynamics of the
model, given the current action and state. It is necessary that the state s includes
all information about the past that affects the future. If it does, the state is said to
have the Markov property. Mathematically, the Markov property can be described
as

Pr[St+1 = s′ | St] = Pr[St+1 = s′ | S0, S1, ..., St] (2.11)

where St is the state at time instance t = 1, 2, 3, ....

The relationship between reinforcement learning and the MDP can be described
as if the MDP is the framework of classic reinforcement learning [40], or to recon-
nect to previous sections; the MDP is used to describe the environment and the
interaction properties with the agent. Given an agent that decides on which actions
to take, the MDP will cause a trajectory with the look of

S0, A0, R1, S1, A1, R2, S2, A2, R3, ... (2.12)

where At and Rt are the state, action and reward at time instance t = 1, 2, 3, ....

2.2.3 Rewards and returns

The reward signal is the feedback to the agent that tells whether the performed
action was good or bad. The choice of reward signal can be hard to decide and
may have a large impact on the result of the learning. It is very important that the
reward signal represents the actual goal of the task, and not any subgoals. A used
example considers the game of chess, the correct reward is to give +1 for winning and
−1 for losing, not giving rewards for subgoals as taking out the opponent’s pieces
and similar [38]. The goal in reinforcement learning is to maximize the cumulative
reward over time. In most cases, this can also be expressed as maximizing the
expected return, where the return, Gt, is a function of the future rewards. In the
most basic case with a finite episode length t ∈ [0, T ] (e.g. when playing a game),
it is just the cumulative sum of the future rewards

Gt = Rt+1 +Rt+2 + ..+RT (2.13)

However, in many cases and especially control tasks, the tasks are continuous rather
than having a finite episode length. Thus, the final time step would be T = ∞,
which likely leads to an infinite return. To solve this problem, a discount factor,
γ ∈ [0, 1], is often used. The discount factor decides the importance of future
rewards. The discounted return is written as

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞∑
i=0

γiRt+i+1 (2.14)

and by choosing γ < 1, the return becomes finite.
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2.2.4 Value functions and policies
Almost every reinforcement learning method makes use of value functions. Value
functions express the value of being in a particular state. The value of being in a
particular state is a computation or estimation of the expected rewards in the future,
the expected return. The value function can be seen as complement to the reward,
since the value function can not be calculated or estimated without rewards, and
its only purpose is to achieve more rewards [38]. Furthermore, the value function is
highly dependent on the policy. The policy represents the behaviour of the agent,
i.e. it decides on which actions to take. Future rewards depend on what actions
that are performed, i.e. which policy that is used, thereby the dependency of the
value function. For an MDP, given a policy π which is mapping states s ∈ S to
certain actions a ∈ A through the probability function π(a|s), the dependent value
function is defined as

vπ(s) = Eπ[Gt | St = s] = Eπ

 ∞∑
i=0

γiRt+i+1 | St = s


=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)
[
r + γvπ(s′)

] (2.15)

In many reinforcement learning methods a similar function called the action-value
function is used. The action-value function returns the expected returns just as the
value function, but it also takes a chosen action into consideration. The action-value
function is defined as

qπ(s, a) = Eπ[Gt | St = s, At = a] = Eπ

 ∞∑
i=0

γiRt+i+1 | St = s, At = a

 (2.16)

Value functions can be computed or estimated from experience. If an agent follows a
policy π and stores an estimate of the actual return for each state, the stored estimate
will converge to the actual return as the number of visitations of the current state
approaches infinity. The same goes for the action-value function, with the difference
of that an estimate of each state-action pair need to be stored. However in many
cases, the number of states (or state-action pairs) is too large to allow storage of
separate values for each state. If so, a value function approximation can be used as

v̂π(s,w) ≈ vπ(s) (2.17)

where w is vector of parameters. There are several different methods for function
approximation, for instance linear combinations of features and neural networks.

2.2.5 Basic algorithms for solving MDPs
In this section, the two basic RL algorithms value iteration and policy iteration are
presented. In the following section, the algorithm Q-learning is introduced. Given
a finite MDP, the three algorithms converge to an optimal policy π∗.
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2.2.5.1 Policy iteration

Policy iteration is an algorithm for solving MDPs. The policy iteration algorithm
(Algorithm 1) combines the use of policy evaluation and policy improvement. In
the evaluation, the value V (s) of each state is updated following the policy π, until
it converges. The value function has converged once the difference between the up-
dated value function and the previous one, ∆, is less than a chosen tolerance ε. In
the improvement, the policy is updated to act greedy with regards to V (s) in each
state, i.e. choose the action that maximizes the expected value in the next state [38].

Algorithm 1: Policy iteration
Initialize V (s) ∈ R, π(s) ∈ A ∀ s ∈ S
while πold 6= π do

while ∆ > ε do // Policy evaluation
∆← 0
for s ∈ S do

Vold ← V (s)
V (s)← ∑

s′,r p(s′, r|s, π(s))
[
r + γV (s′)

]
∆← max(∆, |Vold − V (s)|)

for s ∈ S do // Policy improvement
πold(s)← π(s)
π(s)← argmaxa

∑
s′,r p(s′, r|s, a)

[
r + γV (s′)

]
return V, π

2.2.5.2 Value iteration

The value iteration algorithm (Algorithm 2) can be seen as working backwards in
relation to policy iteration. Instead of evaluate a policy and update it step by step,
value iteration starts with computing the optimal value function for each state.
Hence, the computation of the value function becomes slightly different. In value
iteration, the value for each state is computed as the maximum possible value over
all actions, instead of as the value with regards to a current policy. Once the value
function has converged, a deterministic policy can be computed.

Algorithm 2: Value iteration
Initialize V (s) ∈ R, π(s) ∈ A ∀ s ∈ S
while ∆ > ε do

∆← 0
for s ∈ S do

Vold ← V (s)
V (s)← maxa

∑
s′,r p(s′, r|s, a)

[
r + γV (s′)

]
∆← max(∆, |Vold − V (s)|)

π(s) = argmaxa
∑
s′,r p(s′, r|s, a)

[
r + γV (s′)

]
return V, π
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2.2.6 Value-based, policy-based and actor-critic methods
Reinforcement algorithms can often be categorized as either value-based or policy-
based. In value-based methods, the policy is computed based on learned value- or
action-value functions. Policy-based methods does not learn a value function for
each state. Instead, a policy is learned directly, and it is updated continuously
during training. Value functions can still be used in order to update the policy, but
they are not used to select any actions. The difference can also be demonstrated
by comparing value iteration (value-based) and policy iteration (policy-based) which
are presented in section 2.2.5. While policy iteration starts with a policy and updates
it continuously until convergence, value iteration does not compute any policy until
the value functions have converged. Generally, value-based methods are able to
perform very good, given a discrete action space that is small enough. Policy-based
methods can be beneficial in cases with continuous or stochastic action spaces, but
they often end up in local optimums due to their difficulty of evaluate the current
policy. Aside from pure value-based and policy-based methods, there are hybrid
methods called actor-critic methods. Actor-critic methods include a policy-based
actor that controls the behaviour of the agent, and a value-based critic that evaluates
the behaviour of the agent.

2.2.7 Q-learning
Q-learning is an value-based algorithm that was introduced in 1989 and makes use of
action-value functions, Q(s, a) [41]. The algorithm basically returns a lookup table,
Q-table, of the action-value for each state-action pair. It is an iterative process,
where the Q-table is updated by exploring the environment. The environment is
explored for multiple episodes (e.g. game sessions or trials), and for each episode,
the approximation of the action-values is updated. The algorithm makes use of the
Bellman equation, which expresses the action value function recursively

Q(si, a) = E[ri + γmax
a′

Q(si+1, a
′)] (2.18)

The Bellman equation basically states that the value of the current state is equal
to the reward of moving to the next state, added with the value of the next state
taking the best action.

The algorithm (Algorithm 3) starts with initializing the Q-table. Thereafter, for
each new episode, an initial state is defined. Further, for each step in episode, an
action is chosen based on current state and a policy derived from Q. The policy can
be any arbitrary policy, often a strategy called ε-greedy is used. An ε-greedy policy
chooses a random action to a probability ε ∈ [0, 1), and acts greedy (chooses the
action with the largest action-value) with a probability of 1 − ε. Once the action
has been chosen, it is executed in the environment. In response, a reward and a new
state is given back. The last step is to update the action-value with a learning rate
α. The update is made with regards to minimizing the temporal difference error
(TD-error)

δi = Q(si, a)−
(
ri + γmax

a′
Q(si+1, a

′)
)

(2.19)
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The TD-error is identical to the difference of the two sides in the Bellman equation,
without the expected value. The sum of r+ γmaxaQ(s′, a) form what is called the
target. The target is possibly more accurate than the current estimate of the action-
value, since it includes information of the latest reward r. Given a finite MDP, the
targets and the action-values will eventually become equal.

Algorithm 3: Q-learning
Initialize Q(s, a) ∈ R, ∀ s ∈ S, a ∈ A
for each episode do

Initialize s
for each step do

Choose a from s, using a policy derived from Q
Execute action a and observe the next state s′ and reward r
Q(s, a)← Q(s, a) + α

[
r + γmaxa′ Q(s′, a′)−Q(s, a)

]
s← s′

until s = st

2.2.8 Deep Q-learning
The theory about reinforcement learning that has been presented in this thesis has
been assuming finite and discrete state and action spaces. Value-based reinforce-
ment learning typically works very good in these environments, since as long as the
state and action spaces are small enough, an optimal policy can be found. However,
if the combination of state and action spaces is very large, the presented algorithms
will require too much memory in order to work. In 2013, DeepMind Technologies
presented an algorithm called deep Q-learning (DQL) [13]. The algorithm com-
bines Q-learning with a deep neural network (called deep Q-network or DQN) for
Q-function approximation. Hence, the algorithm is capable of generalizing over very
large state spaces, as in e.g. chess, certain video games etc. A drawback is though,
that by including non-linear function approximators, as neural networks, conver-
gence is not longer guaranteed. The algorithm has shown great results especially
for certain Atari video games, achieving superhuman performance with only the raw
pixels and the score as input.

Aside from Q-learning and the deep neural network, DQL includes two fundamental
techniques in order to work, experience replay and a target network. Experience re-
play stores the recent transitions (can be a very large amount) into a buffer. Then,
for every step, a minibatch of transitions is randomly sampled from the buffer to
update the network. Since the minibatch consists of independently sampled tran-
sitions, rather than correlated samples, the algorithm becomes more stable. The
target network is a second network, a duplicate of the original one. The difference
is that only the original network is updated during every training step. The target
network is then synchronized with the original network, by every so often copy the
weights from the original network. Just as its name indicates, the target network
is used for generating targets. The benefit of using a network that does not update
that often, is that with a temporarily fixed target, the learning becomes more stable.
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If the original network would be used for generating targets, the targets would be
constantly shifting and the training easily becomes unstable [42].

DQL is an off-policy algorithm. Off-policy means that the algorithm trains the agent
using experience retrieved from policies other than the current one. In contrast to
off-policy, on-policy algorithms trains the agent just using experience retrieved with
the current policy. The DQL algorithm is off-policy since it uses experience replay.
Hence it uses experience (stored transitions) generated from policies other than the
current one. Generally, on-policy algorithms are faster, but they also risk ending up
with a policy that is just locally optimal. Off-policy algorithms may be slower, but
are more flexible for finding the optimal policy.

2.2.9 Policy gradients
Policy gradients are policy-based and improve the parameterized policy πθ(a|s) =
Pr[a|s] by repeating two steps. First, a score function J(θ) is used to evaluate how
good the current policy is. (A loss function L(θ) can also be used if the goal is to
minimize something rather than maximize a score.) Depending on the task and the
environment, the score function can be different. For episodic environments, the
score function can be computed as the expected return for the entire episode.

J(θ) = Eπθ [Gt] = Eπθ [Rt+1 + γRt+2 + γ2Rt+3 + ...] (2.20)

The second step is to perform gradient ascent on the policy parameters θ, in order
to maximize the score function. The update of the parameters is then made as

θ ← θ + α∇θJ(θ) (2.21)

where α is the learning rate. Once the score function is maximized, the optimal
policy is found.

Compared to the value-based deep Q-learning, policy gradient methods generally
converges smoother. In Q-learning, a relatively small change of the value functions
may result in a considerable change of the policy. This is not really the case using
policy gradients because of that the policy is updated stepwise. However, quite of-
ten policy gradients end up in local optimum instead of global. Furthermore, policy
gradients have the ability to handle continuous or high dimensional action spaces,
and the ability to learn stochastic policies[43].

2.2.10 Deep deterministic policy gradient
While DQL is a solution to problems with large state spaces, it can only handle
relatively small and discrete action spaces. DQL can not be applied to continuous
action spaces since it computes the optimal action in the sense of maximizing the
action-value function. With a continuous action space, the number of actions are
infinite, and hence, some kind of iterative optimization needs to be done. In 2016,
Google DeepMind presented algorithm called DDPG [12]. The algorithm uses a
couple of elements that are also used in DQL (e.g. deep neural networks, target
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networks and experience replay), together with policy gradients to work with con-
tinuous action spaces.

The algorithm is based on the actor-critic off-policy deterministic policy gradient
(DPG) algorithm that was introduced in 2014 [44]. The algorithm aims to learn
a deterministic policy that maximizes the score function, i.e. the expected return
in equation (2.20). The algorithm makes use of a parameterized critic Q(s, a|θQ)
defining the action value of state-action pairs, and a parameterized deterministic
actor function µ(s|θµ) which maps states to specific actions. Thus, the actor func-
tion specifies the current policy. The critic is updated as in Q-learning, using the
Bellman equation. The actor is updated by following the gradient of the policy’s
performance, i.e. the gradient of the expected return

∇θµJ ≈ E[∇θµQ(s, a|θQ)|s=st,a=µ(st|θµ)]
= E[∇aQ(s, a|θQ)|s=st,a=µ(st)∇θµµ(s|θµ)|s=st ]

(2.22)

The target network approach in the DDPG is similar to what is used in DQL. The
method has been adapted to the actor-critic architecture with two networks. Fur-
ther, the main difference is the “soft” update of the target networks. The weights
of the target networks are updated with a particular update rate for every step, τ ,
rather than just copy the weights from the original network every so often. Hence,
the target networks will slowly track the original networks, improving stability of
the learning.

As previously mentioned, reinforcement learning often needs to deal with the trade-
off between exploration and exploitation. However, since the DDPG is off-policy,
it can deal with the problem of exploration independently from learning. While
learning with the DDPG, the exploration is made by adding noise to the actions
generated from the actor policy.

µ′(st) = µ(st|θµt ) +N (2.23)

Here, µ(st|θµt ) is the actor policy, N is the noise and µ′(st) is the exploration policy.
In the original paper, Ornstein-Uhlenbeck noise is used. The correlated noise process
satisfies the stochastic differential equation

dxt = θ(µ− xt)dt+ σdWt (2.24)

where µ is a drift constant, θ and σ are positive parameters and Wt is the Wiener
process [45]. However, the action noise can be chosen arbitrary to fit the environ-
ment [12].

The DDPG is presented in its completeness as Algorithm 4. It is noticeable that all
operations are made within the inner loop. Thus, the algorithm is able to operate
in both episodic and fully continuous environments.
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Algorithm 4: Deep deterministic policy gradient
Initialize critic network Q(s, a|θQ) and actor network µ(s|θµ) with weights θQ
and θµ
Initialize target networks Q′ and µ′ with target weights θQ′ ← θQ and
θµ
′ ← θµ

Initialize replay buffer R
for each episode do

Receive initial observation state s1
Initialize exploration noise process N
for each step t ∈ [1, T ] do

Choose at = µ(st|θµt ) +Nt, using the current policy and exploration
noise
Execute action at and observe the new state st+1 and reward rt
Store the transition (st, at, rt, st+1) in R
Sample random minibatch of N transitions (si, ai, ri, si+1) from R
Set the targets yi = ri + γQ′

(
si+1, µ

′(si+1|θµ
′)|θQ′

)
Update the critic by minimizing the loss L = 1

N

∑
i

(
yi −Q(si, ai|θQ)

)2

Update the policy of the actor using the sampled policy gradient

∇θµJ ≈ ∇aQ(s, a|θQ)|s=si,a=µ(si)∇θµµ(s|θµ)|s=si

Update the target networks

θQ
′ ← τθQ + (1− τ)θQ′

θµ
′ ← τθµ + (1− τ)θµ′

2.3 Artificial neural networks

In many reinforcement learning methods, especially those made for larger state
spaces, artificial neural networks (ANNs) are used. They are computing systems
inspired by the biological neural networks that exists in, for instance, human brains.
ANNs can be described as massive parallel computing systems that consists of ex-
tremely many simple processors with a large number of interconnections [46]. Thus,
ANNs are a good tool for finding patterns in very complex systems. These patterns
can often be way too complex for humans to find, and even harder to explicitly teach
machines to recognize [47].

ANNs often consists of multiple layers, which are divided into input layers, hid-
den layers and output layers. These layers can be seen in Figure 2.6, where each
layer consists of artificial neurons (the white circles), which often also are called
nodes or units. Each neuron receives inputs (visualized as the arrows in the figure)
from a specified number of neurons from other layers, or from an external source, and
output a single signal. When a neuron receives a signal, it can process it and send
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the processed signal further to other layer’s neurons connected to it. The processing
each neuron does to calculate a single output from multiple inputs, is a weighted
sum as is shown in equation (2.25). In the equation the output y is calculated as
the sum over all inputs where xn is the input and wn is its corresponding weight
which expresses the importance for each input. In some cases a bias might also be
added to the output.

Figure 2.6: Visualization of the design of a simple artificial neural network [47].

y =
∑
n

wnxn (2.25)

Activation functions then determines how to process the output. There are multiple
different activation functions that process the output in different ways. The most
basic one is using a step function as activation function, which basically means that
the activation function determines if the output is above a certain value or not [48].
If it is above the chosen value, the neuron can be considered activated. Neurons that
are considered activated will output a value otherwise the neuron will output 0. This
method is not commonly used, since it does not handle multiple activated inputs
very well. Hence, more commonly used activation functions are tanh, sigmoid and
ReLu, since they can use partly activated neurons. In the case of multiple activated
neurons, they can then find the most activated neuron.

In many cases the distribution of the input values to a learning algorithm can change
drastically between different datasets. This makes the machine learning algorithms
sensitive to changes in distribution of the input values. Batch normalization is often
used between layers to get rid of this problem. It normalizes the activations of each
layer, which reduces the effect of different input distributions. Furthermore, using
batch normalization might also speed up the learning for the network.

There are multiple different types of ANNs. Each type are made for specific use
cases and different levels of complexity. Two of the most common neural networks
are feedforward and recurrent neural networks. Feedforward neural network is one
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of the most basic types of networks. It uses a technique that only can send infor-
mation in one direction between input and output. A recurrent neural network can
send information in multiple directions, which makes the technique suitable for more
complex tasks as it possesses greater learning abilities.
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Methods

In this chapter, the process and the used methods are presented. In the first two
sections, the modelling of a quarter-car and a full-car are described. In the section
that follows, the control approach using reinforcement learning is presented.

3.1 Quarter-car modelling
This section describes the modelling of a quarter-car. The reason for modelling
a quarter-car model, was to try the reinforcement learning control approach. A
quarter-car model is a simple model and includes less states than a full-car model,
but it is still similar. Because of the smaller state space, the controller does not
need as much training to find a good control policy. Hence, the result of applying
the control approach on a quarter-car model could indicate useful aspects within a
reasonable time.

In order to model the quarter-car dynamics, equations (2.2) and (2.3) are used.
By using a state vector x and a control signal u the system can be described by a
state space representation as

ẋ = Ax + Bu, y = Cx + Du (3.1)

with
x =

[
zs zu żs żu

]T
, u = zr (3.2)

Here, the states are the positions and velocities for the sprung and unsprung mass.
The input to the plant is just the height of the road. Since the damping coefficient
c is the controllable parameter, the A and C matrices are not constant. Hence, the
system is a linear parameter varying (LPV) control system.

A(c(t)) =


0 0 1 0
0 0 0 1
−ks
ms

ks
ms

−c(t)
ms

c(t)
ms

ks
mu

−ks−ku
mu

c(t)
mu

−c(t)
mu

 , B =


0
0
0
ku
mu

 (3.3)

The output of the plant is defined as

y =
[
∆zs ∆zu żs żu z̈s z̈u

]T
(3.4)

where ∆zs and ∆zu is the distance between the sprung and unsprung mass, respec-
tively unsprung mass and road surface (see figure 3.1). Further, the choice to use
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∆zs and ∆zu, instead of the total height, was mainly based on the reality aspects,
where ∆zs actually can be measured while zs can not. Consequently, the matrices
C and D are then defined as

Figure 3.1: Illustration of the dynamics of a quarter-car model.

C =



1 −1 0 0
0 1 0 0
0 0 1 0
0 0 0 1
−ks
ms

ks
ms

−c
ms

c
ms

ks
mu

−ks−ku
mu

c
mu

−c
mu


, D =



0
−1
0
0
0
ku
mu


(3.5)

The system is continuous and in order to design a controller, the system needs to
be discretized. The discretized system is then defined as

xk+1 = Âxk + B̂uk, yk = Cxk + Duk (3.6)

where
Â = I −∆tA, B̂ = ∆tB (3.7)

∆t is here defined as the period time, and I is the identity matrix.

To be able to understand the performance of the trained controller, controlling
a semi-active damper, it was compared to a passive damper running over the exact
same road profile. The passive damper was easily designed such that, instead of
using a controller to choose different damping coefficients, the damper coefficient
was set to a constant. Hence, the performance for the trained controller, relative to
the passive damper, could be achieved.
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3.2 Full-car modelling

This section describes the full-car model that was created and used for training and
evaluation. The model is based on the linearized dynamics from section 2.1.7 with
some added nonlinearities.

3.2.1 Dynamics
To model the full-car dynamics, equations (2.4)-(2.10) were used with some modifi-
cations. To get a more precise model, nonlinear dampers were used instead of linear
representations. Also, nonlinear bump stops / buffers were added to the model (im-
plying forces when the dampers reach their compression or expansion limit). With
the modifications, the nonlinear dynamics are described as

msz̈s =
4∑
i=1

(
Fdi(cdi , vdi) + Fbi(pdi)

)
− ks1

(
zs − zu1 + b1ϕ− a1θ

)
− ks2

(
zs − zu2 − b2ϕ− a1θ

)
− ks3

(
zs − zu3 − b1ϕ+ a2θ

)
− ks4

(
zs − zu4 + b2ϕ+ a2θ

) (3.8)

Ixϕ̈ = b1

(
Fd1(cd1 , vd1) + Fb1(pd1)

)
− b2

(
Fd2(cd2 , vd2) + Fb2(pd2)

)
− b1

(
Fd3(cd3 , vd3) + Fb3(pd3)

)
+ b2

(
Fd4(cd4 , vd4) + Fb4(pd4)

)
− b1ks1

(
zs − zu1 + b1ϕ− a1θ

)
+ b2ks2

(
zs − zu2 − b2ϕ− a1θ

)
+ b1ks3

(
zs − zu3 − b1ϕ+ a2θ

)
− b2ks4

(
zs − zu4 + b2ϕ+ a2θ

)
(3.9)

Iyθ̈ = − a1

(
Fd1(cd1 , vd1) + Fb1(pd1)

)
− a1

(
Fd2(cd2 , vd2) + Fb2(pd2)

)
+ a2

(
Fd3(cd3 , vd3) + Fb3(pd3)

)
+ a2

(
Fd4(cd4 , vd4) + Fb4(pd4)

)
+ a1ks1

(
zs − zu1 + b1ϕ− a1θ

)
+ a1ks2

(
zs − zu2 − b2ϕ− a1θ

)
− a2ks3

(
zs − zu3 − b1ϕ+ a2θ

)
− a2ks4

(
zs − zu4 + b2ϕ+ a2θ

)
(3.10)

mu1ẍ1 =− c1

(
Fd1(cd1 , vd1) + Fb1(pd1)

)
+ ks1

(
zs − zu1 + b1ϕ− a1θ

)
− ku1

(
zu1 − zr1

) (3.11)

mu2ẍ2 =− c2

(
Fd2(cd2 , vd2) + Fb2(pd2)

)
+ ks2

(
zs − zu2 − b2ϕ− a1θ

)
− ku2

(
zu2 − zr2

) (3.12)
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mu3ẍ3 =− c3

(
Fd3(cd3 , vd3) + Fb3(pd3)

)
+ ks3

(
zs − zu3 − b1ϕ+ a2θ

)
− ku3

(
zu3 − zr3

) (3.13)

mu4ẍ4 =− c4

(
Fd4(cd4 , vd4) + Fb4(pd4)

)
+ ks4

(
zs − zu4 + b2ϕ+ a2θ

)
− ku4

(
zu4 − zr4

) (3.14)

Most notations are defined just as in Table 2.2, with a few exceptions. Fdi(cdi , vdi)
is the damping force at wheel i, depending on the control current to the damper cdi
and the damper velocity vdi . A positive damper velocity corresponds to an extension
and a negative damper velocity corresponds to a compression of the damper. The
buffer forces are denoted Fbi(pdi), and depends on the position of the damper pdi .
The positions and velocities of the dampers are defined as

pd1 = zs − zu1 + b1ϕ− a1θ, vd1 = żs − żu1 + b1ϕ̇− a1θ̇

pd2 = zs − zu2 − b2ϕ− a1θ, vd2 = żs − żu2 − b2ϕ̇− a1θ̇

pd3 = zs − zu3 − b1ϕ+ a2θ, vd3 = żs − żu3 − b1ϕ̇+ a2θ̇

pd4 = zs − zu4 + b2ϕ+ a2θ, vd4 = żs − żu4 + b2ϕ̇+ a2θ̇

(3.15)

The characteristics of the buffer forces are shown in Figure 3.2. The magnitude of
the buffer forces quickly get much larger than the maximum controllable damping
force. Hence, to achieve a smooth behaviour of the car body, the controller should
act such that buffer forces are avoided if possible.

Figure 3.2: Illustration of the buffer forces for the front and rear wheels, depending
on the damper piston position.
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In Figure 3.3, the characteristic of a semi-active damper is shown. The area be-
tween the upper and lower limits, marked with bright grey, illustrates the possible
force outputs from the damper. The stiffness of the damper, and thereby also the
force, can be changed for an arbitrary piston speed by varying the current to the
damper. The more current, the stiffer the damper becomes. The characteristics of
the damper is linear between the lines ’Max’ and ’Mid’ stiffness and between ’Min’
and ’Mid’ stiffness. The stiffness of the damper, and the following force, is controlled
by the current to the damper. Given a specific damper velocity, the current decides
where, between the upper and the lower limit, the force output can be found.

Figure 3.3: Characteristic of semi-active damper, depending on the damper piston
velocity and the damper control signal.

To increase the precision of the model, a response delay representing the behaviour
of the dampers when the input current is changed, was included. The response de-
lay was modelled as a pure time delay and a change of rate limitation for changing
the current to the damper. The pure delay is the time between sending a signal to
the damper, to when the damper characteristics actually starts changing, based on
the new signal. The change of rate limitation limits how fast the damper stiffness
can change. This property is quite complex and nonlinear, but in this thesis it is
approximated with a linear function.

The coefficient limiting the maximum change of rate of the damper, was deter-
mined using a step response of the real damper. The coefficient kcd was calculated
as

kcd = ∆F
∆T (3.16)

where ∆F is the change in force, from minimum to 90% of maximum, and ∆T is
the corresponding time.
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The equations achieved for updating the force according to the delay are then for-
mulated as

Fnew =


Fset, if |Fnew − Fset| ≤ kcd dt

Fset + kcd dt, if Fnew − Fset > kcd dt

Fset − kcd dt, if Fnew − Fset < −kcd dt

where Fset is the setting value (the chosen force from the controller), dt is the sam-
pling time between each new setting value and Fnew is the force affected by the delay
and hence, the force used to update the plant.

To be able to understand the performance of the trained controller, controlling four
semi-active dampers, it was compared to a passive damped reference. The charac-
teristics of the passive dampers are shown in Figure 3.4. It can be observed that
the passive dampers are nonlinear and also more realistic than the passive damper
used for comparison in the quarter-car simulations.

Figure 3.4: Illustration of the passive damper characteristics.

3.2.2 State space model
The full-car was modelled as a state space model with the state vector x and input
vector u. To maintain a linear state space model, the damper and buffer forces are
calculated outside of the state space, and then included in the input vector.

x =
[
zs żs θ θ̇ ϕ ϕ̇ zu1 ˙zu1 zu2 ˙zu2 zu3 ˙zu3 zu4 ˙zu4

]T
(3.17)

u =
[
F1 F2 F3 F4 zr1 zr2 zr3 zr4

]T
(3.18)
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Here, Fi is the sum of the damping force and potential buffer force for each wheel,
i.e. Fi = Fdi +Fbi for i = 1, 2, 3, 4. zri is the height of the road affecting each wheel.
The output vector of the system is defined as

y =
[
żs z̈s θ θ̇ θ̈ ϕ ϕ̇ ϕ̈ ∆z1 · · · ∆z4 ∆ż1 · · · ∆ż4

]T
(3.19)

where ∆zi is the expansion or the compression distance of the damper at wheel i,
and ∆żi is the corresponding velocity.

The dynamics can be described with the approximate discrete state space model

xk+1 = (I + A∆t)xk + B∆tuk
yk = Cxk + Duk

(3.20)

where xk, uk and yk is the state vector, the input vector and the output vector at
step k, respectively. I is the identity matrix and ∆t is the step size. The matrices
A and B are derived from the set of dynamic equations f (equation (3.8) - (3.14)),
as ∂f

∂x and ∂f
∂u respectively. The matrices C and D are appropriate matrices for

achieving the output specified in (3.19).

3.3 Reinforcement learning control
In this section, the control problem is defined and a reinforcement learning approach
for controlling semi-active suspension is presented. The approach is applied to both
a quarter-car environment and a full-car environment, which previously have been
presented in section 3.1 and 3.2.

3.3.1 Control problem identification
Recalling from section 2.2, reinforcement learning algorithms learn the agent how
to act from experience. The agent basically gets to try different actions in the
environment of interest, and with time it learns how it should act. In this thesis,
reinforcement learning is used to train a controller for semi-active dampers. Thus,
the agent is identified as the controller. The environment is a vertical vehicle model
(quarter-car or full-car) that is running over a specified road. In order to control
semi-active suspension systems, as in the quarter-car and full-car environments, a
learning algorithm for continuous action spaces is needed. Furthermore, aside from
the observed outputs from the two models, the road profile is said to be known
for a specific distance in front of the car. This data is referred to as road preview
data. When adding road preview data to the observation space (i.e. the data that
is observed by the agent), the state space quickly becomes very large. Hence, the
algorithm need to be able to handle large state spaces as well.

3.3.2 Deep deterministic policy gradient approach
Based on the specified requirements in section 3.3.1, the DDPG (Algorithm 4) is
a suitable learning algorithm. It is designed for continuous action spaces and can
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handle large state spaces. Also, it is an off-policy algorithm that strives to reach
the global optimum, and does not get stuck in a local optimum. Another advantage
is that the algorithm is versatile in the sense of that it is compatible with both
episodic and fully continuous environments. This property allows for learning both
by running over one specific road for several times, and by running over a never
ending road for a specific time.

The DDPG algorithm was implemented in Python using the deep learning library
TFLearn. The implementation of the algorithm was made based on [49], and strictly
follows the structure of Algorithm 4. Just as in the original paper [12], Ornstein-
Uhlenbeck noise was used for exploration.

The training of the agent was made by simulating the vehicle model running over a
road profile, with the agent controlling the semi-active dampers. By trying out dif-
ferent actions given different observation states (i.e. trying out different stiffnesses
of the semi-active dampers in different situations), and get a corresponding reward,
the agent is able to learn how to act given different observation states. The obser-
vation state vector that is observed by the agent consists of the output vector of the
vehicle model y, and the road preview vector zr, as

yobs =
[

y
zr

]
(3.21)

The road preview vector describes how the road is changing in front of the wheels.
Every state in the vector describes the road height difference between the current
longitudinal position and a future longitudinal position. The number of preview
states for each wheel is specified as N and the longitudinal distance between the
states are defined as ∆prev (the density of the preview states). These parameters
are selected and heavily impact the size of the road preview vector. Furthermore,
the training were made with a constant velocity of the car. Different velocities were
tested for different roads, but within each training session the velocity was constant.

The reward is the feedback to the agent, and hence fundamental for learning a
desired behaviour. The desired behaviour of the controller is to maximize ride com-
fort and handling of the car. Two factors that in many ways are subjective. Since
this thesis does not investigate which variables that contributes to a optimal ride
comfort and handling, the shaping of the reward signal has been very simple.

When training a neural network, a the hyper-parameters need to be specified.
Hyper-parameters are parameters that affect the learning and are set before the
learning process begins. The choice of hyper-parameters were inspired by [12] and
are shown in Table 3.1. A couple of different setups were investigated, but did not
show satisfactory results.
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Table 3.1: Hyper-parameters for the DDPG.

Description Value
Actor network learning rate 0.0001
Critic network learning rate 0.001

Discount factor 0.99
Update rate of target networks 0.001

Buffer size 1000000
Minibatch size 64

3.3.3 Quarter-car control
The purpose of training a neural network controller for a quarter-car environment
was to get an indication for how the DDPG algorithm would work in a wheel suspen-
sion environment. Furthermore, since a quarter-car model implies a much simpler
environment, customization of the learning algorithm and the controller is easier
and more time efficient. Customization settings and results from the quarter-car
model could then be used in the full-car model.

A quarter-car controller was trained with the DDPG algorithm on the state space
model presented in section 3.1. Thus, the control signal decided by the controller
was the bounded damping coefficient of the semi-active damper. The observation
state vector for the controller consisted of the output from the plant (3.4), and the
road preview data

yobs =
[
∆zs ∆zu żs żu z̈s z̈u ∆zr1 . . . ∆zrN

]T
(3.22)

Here, every preview state, ∆zrj ∀ j ∈ [1, N ], represents the height difference be-
tween the current height of the road and a future height of the road.

The architecture of the actor and the critic network that was used for the quarter-car
is similar to what was used in [12], both including two hidden layers with rectified
linear unit (ReLU) functions, and batch normalization. Also, the output layer of
the actor network is a tanh() layer. The critic network takes both observation states
and actions as input. However, the actions are not included until the second hidden
layer. This is a design that experimentally has shown to work well [49].

The controller was trained on a short road, running over it for several times. Dif-
ferent road preview setups were used, as well as different velocities of the car and
different setups of neural networks. The reward function, used for learning, was set
to depend on the acceleration and jerk of the body, z̈s and

...
z s respectively, as

R = −|z̈s| − 0.003 · |...z s| (3.23)

The small jerk term was included in the reward function to compensate for the fact
that the simple model allows to change the damping coefficient to any value within
the bounds instantly. Hence, small oscillations of the body acceleration could be
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prevented. The reward is mainly focusing on reducing the body acceleration, which
is a common measurement for wheel suspension.

3.3.4 Full-car control
The DDPG algorithm was also applied to the full-car model presented in section 3.2.
Since the model includes four semi-active dampers, the controller had four actions,
the damper control signals cdi , i = 1, 2, 3, 4. These signals have been described
previously in section 3.2.1. The states observed by the controller consist of the
output vector from the full-car plant (3.19) and the road preview data as in (3.21).
The preview vector is defined as

zr =
[
∆zr1,1 ∆zr1,2 · · · ∆zri,j · · · ∆zr4,N−1 ∆zr4,N

]T
(3.24)

where i ∈ [1, 4] defines the wheel number and j ∈ [1, N ] defines the preview step
number. Similarly as to the quarter-car, zri,j represents the height difference be-
tween the current height of the road for the current wheel and a future height of
the road for the current wheel. The preview length and density was experimentally
decided. During experiments, a preview of 15 steps for each wheel, that together
covered just over 0.2 s of the road in front of the wheels showed good results. A
reasonable time considering the response time of the dampers. However, for imple-
mentation simplicity, the preview was defined in distance rather than time ahead of
the vehicle. Due to this, the preview setup in terms of preview distance and density
was needed to be changed for different vehicle velocities.

Just as for the quarter-car, both the actor and the critic network was set to include
two fully connected layers with ReLU activation functions, batch normalization and
tanh() layers as output layers. The only difference was the size of the networks.
Because of the much larger state and action space, deeper networks were used.

Full-car controllers were trained both episodically and continuously, i.e. running
over a short road for several times and running over a very long road for just one
time. Different road preview setups were used, as well as different hyper-parameters,
different velocities of the car and different neural network settings. The reward was
defined as the negative sum of the accelerations (roll, pitch and heave).

R = −|ϕ̈| − |θ̈| − |z̈s| (3.25)

The evaluations of the trained controllers were made both using the training en-
vironment and IPG CarMaker. When evaluated in the training environment, the
controller is compared to a passive reference. IPG CarMaker includes a more com-
plex model of the full-car, as well as the opportunity to compare the trained con-
trollers to a couple of other controllers. The controllers used for comparison is a
Continuously Controlled Damping controller (CCD) and an improved version of the
nonlinear MPC proposed by [3]. CCD is a control method for semi-active suspension
without preview that is used in some of today’s cars.
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This chapter presents training results using the DDPG. Furthermore, simulated
performance results for controllers trained with the DDPG, are presented. First,
results using the quarter-car model are presented, and then the results using the
full-car model are presented. The quarter-car controller is just evaluated on the
same model that it is trained on, and is compared with a quarter-car with passive
suspension. The full-car controller is evaluated both on the model used for training,
but also in IPG CarMaker, with a more complex vehicle model. The performance
in IPG CarMaker is also compared with an MPC and a CCD controller.

4.1 Quarter-car control

The quarter-car model used for training and evaluation is described in section 3.1.
The control approach for the quarter car is described in 3.3.4. Furthermore, the
actor network and critic network used for training the controller are shown in Table
4.1 and 4.2, respectively.

Table 4.1: Specification of the actor network used for the quarter-car model.

Description Number of neurons Activation function
Fully connected hidden layer 300 ReLU

Batch normalization - -
Fully connected hidden layer 200 ReLU

Batch normalization - -
Output layer 1 tanh

The neural network controller was trained by letting the quarter-car model run over
a road profile for several times (several episodes). In 4.1, the learning curve is shown
for one training session. The figure shows how the return, i.e. the sum of the rewards
for one episode, is increasing during training. For this session, the quarter-car ran
over a 27 m long road profile with bumps (later shown in Figure 4.2) for 1000 times.
The velocity of the quarter-car was 60 kph and the control frequency was 500 Hz.
Furthermore, controller had access to 1 m of road preview, with a data density of
0.1 m, giving a total of 10 preview steps. The training time of the session was a few
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Table 4.2: Specification of the critic network used for the quarter-car contrller.

Description Number of neurons Activation function
Fully connected hidden layer 400 ReLU

Batch normalization - -
Fully connected hidden layer 300 ReLU

Batch normalization - -
Output layer 1 linear

hours on a regular laptop.

Figure 4.1: Return during training of quarter-car controller.

Evaluation results of the trained controller, compared with a passive damped refer-
ence, are shown in Figure 4.2. Here, the road profile is presented together with the
body acceleration and the chosen action from the controller. The road profile is the
same as the one the controller was trained on. By comparing the body accelerations
of the two systems, it is clear that the semi-active system with the trained controller
performs significantly better than the passive system. In Table 4.3, the root mean
square (RMS) values of the reward and the body acceleration are presented for the
semi-active system with the trained controller and the passive system. Generally,
the RMS is around 40% better for the trained controller. It can also be observed
that the controller has a clear policy, where it chooses low damping coefficients when
approaching bumps, and high coefficients to damp rebounds. The passive damper
uses a constant damping coefficient of 1500 Ns/m.
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Figure 4.2: Evaluation results of the semi active system with the trained controller
and the passive system, on the road used for training.

Table 4.3: RMS performance of the semi active system with the trained controller
and the passive system, on the road used for training.

Description Passive Semi-active Improvement in %
RMS reward 1.747 1.078 38.3

RMS body acceleration 1.657 0.958 42.2

The trained controller was also evaluated on two other road profiles which it had not
been trained on. In Figure 4.3, the evaluation results of running over an inverted
version of the training road with bumps is presented. Hence, the road is similar to
the one used for training in terms of frequency and amplitude of the bumps and
holes. As shown in the figure, and in Table 4.4, the controller performs very well on
the inverted road as well. In fact, it even performs a little better than on the road
used for training, compared to the passive system.
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Figure 4.3: Evaluation results of the semi active system with the trained controller
and the passive system, on the inverted road used for training.

Table 4.4: RMS performance of the semi active system with the trained controller
and the passive system, on the inverted road used for training.

Description Passive Semi-active Improvement in %
RMS reward 1.749 1.059 39.4

RMS body acceleration 1.657 0.939 43.3

The evaluation results of the third road profile are presented in Figure 4.4. The third
road is completely different from the two previous road profiles, since it includes high
frequency disturbances. By observing the body acceleration comparison, it is clear
that the semi-active system with the trained controller performs much worse. This
is also supported by Table 4.5. The bad performance is expected since the controller
has not been trained on this type of road profile. The results are presented to clarify
the effect of episodic training on a specific road.
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Figure 4.4: Evaluation results of the semi active system with the trained controller
and the passive system, on a road with high frequency disturbances.

Table 4.5: RMS performance of the semi active system with the trained controller
and the passive system, on a road with high frequency disturbances.

Description Passive Semi-active Worsening in %
RMS reward 0.313 0.660 111.1

RMS body acceleration 0.295 0.311 6.4

The results of training a neural network controller, with the DDPG in the quarter-
car environment, shows that the learning algorithm is capable of successful learning
in the environment of interest.

4.2 Full-car control
The full-car model used for training and evaluation is described in section 3.2 and
the control approach is described in section 3.3.4. Several different neural network
controllers were trained for different road profiles and settings in terms of velocity,
preview and control frequency. Results are presented for some of these different
scenarios.

Due to the significantly larger state space of a full-car model, a deeper actor network
was used than for the quarter-car model. The new actor network architecture is pre-
sented in table 4.6. As for the critic network, the design used for the quarter-car
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model was maintained. Due too the larger actor network and the more complex
environment, the training times increased up to many hours and even several days,
for some scenarios.

Table 4.6: Specification of the actor network used for the full-car controller.

Description Number of neurons Activation function
Fully connected hidden layer 1000 ReLU

Batch normalization - -
Fully connected hidden layer 800 ReLU

Batch normalization - -
Output layer 1 tanh

4.2.1 Scenario 1

In this scenario the neural network specifications shown in Table 4.6 was used. This
scenario’s road profile was around 100 m long and consisted of a few bumps that
hits the left and right wheels of the vehicle simultaneously. The training was done
for 16000 episodes and the controller was trained by running over the road in 50
kph, with a control frequency of 100 Hz. Furthermore, to investigate the effect of
using road preview, two controllers were trained on this road. One of the controllers
had access to 3 m (15 steps per wheel with a density of 0.2 m) of road preview and
the other did not have any access to road preview.

4.2.1.1 Effect of using road preview

In Figure 4.5 the achieved return over each episode, for both controllers, are visu-
alized. The return using road preview is significantly better. The controller with
preview learns faster and it also reaches a better return at the end of the training
session.
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(a) Controller with preview (b) Controller without preview

Figure 4.5: Comparison of the return achieved during training between a controller
with road preview and a controller without road preview.

4.2.1.2 Evaluation on training model

The trained controllers were then evaluated on the same model and road which
they were trained on. The performance, compared to a full-car system with passive
dampers, are presented in Figure 4.6 and in Table 4.7. It can be observed that
both controllers perform better than the passive reference in terms of RMS reward,
and the controller using preview performs the best. The controller with preview
performs very good in terms of heave and pitch acceleration. More specifically, the
improvement compared to the passive reference is 16% and 28%, for heave and pitch
respectively. Regarding the roll performance, the trained controller performs much
worse than the passive reference. The reason for this behavior is because the current
road is identical for the left and right side of the car at all time, as can be seen in
the top of Figure 4.6. Furthermore, the model of the car is symmetric around the
roll-axis. For these reasons, the passive reference does not induce any roll. The
trained controller does induce a roll though. This is because the controller has been
trained by trying random actions for each wheel, and the learned policy is not en-
tirely optimal. However, it should be noted that the roll acceleration is rather small
compared to the heave and pitch accelerations.

Table 4.7: RMS performance comparison between a passive reference, a trained
controller without road preview and a trained controller with road preview.

Description Passive No preview 3m preview
RMS heave acceleration 1.11 1.17 0.94
RMS pitch acceleration 1.39 1.04 1.00
RMS roll acceleration 0.00 0.22 0.19

RMS reward 2.30 2.18 1.90
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Figure 4.6: Performance comparison between a passive full-car suspension system,
a trained controller without road preview data and a trained controller using 3m
road preview data.

4.2.1.3 Evaluation in IPG CarMaker

The trained controller with preview was also evaluated in IPG CarMaker, which uses
a more detailed model than the one used for training. The results of the evaluation
is shown in Figure 4.7 and in Table 4.8. As can be seen in the figure, the road used
for evaluation is the same as the NN-controller was trained on. The behaviour of the
NN-controller is overall very similar to when it was evaluated on the model used for
training (Figure 4.6). Generally, the NN-controller outperforms the CCD but it is
not really as good as the MPC. In particular, the heave and pitch accelerations for
the NN-controller are 28% and 21% lower than for the CCD. The roll performance
for the NN-controller is not very good, and even a bit worse due to the different
model in IPG CarMaker. Despite this, the NN-controller performs 11% better, in
terms of RMS reward, than the CCD.
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Figure 4.7: Comparison between CCD, MPC and NN-control using IPG CarMaker.

Table 4.8: RMS performance comparison between CCD, MPC and NN-control
using IPG CarMaker.

Description CCD MPC NN-control
RMS heave acceleration 0.805 0.543 0.582
RMS pitch acceleration 0.609 0.521 0.484
RMS roll acceleration 0.050 0.044 0.302

RMS reward 1.333 1.009 1.188

The frequency content of the vehicle’s body accelerations, using CCD, NN-control
and MPC, is shown in Figure 4.8. Except for the roll case, the amplitude is lower
for the NN-controller, compared to the CCD, for low frequencies.
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Figure 4.8: Comparison of frequency spectrum for body accelerations between
CCD, MPC and NN-control using IPG CarMaker.

4.2.2 Scenario 2

This scenario’s road profile was around 300 m long and the training was done for
5000 episodes. The controller was trained by running over the road in 90 kph, with
a control frequency of 100 Hz. The NN-controller had access to 5.625 m (15 steps
per wheel with a density of 0.375 m) of road preview.

4.2.2.1 Evaluation on training model

The trained controller was then evaluated on the same road and model as it was
trained on. The performance, compared to a full-car system with passive dampers,
is presented in Figure 4.9 and Table 4.9. It can be seen that the trained controller
performs better than the passive for roll and pitch, but slightly worse for heave
acceleration. However, the RMS reward for the trained controller show an improve-
ment of more than 10%, compared to the passive system.
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Table 4.9: RMS performance comparison between a passive reference and a trained
controller using road preview data.

Description Pasive NN-control
RMS heave acceleration 0.690 0.709
RMS pitch acceleration 0.410 0.343
RMS roll acceleration 0.832 0.707

RMS reward 1.700 1.5274
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Figure 4.9: Comparison between a passive full-car suspension system and an NN-
controller.

4.2.2.2 Evaluation in IPG CarMaker

The trained controller was also evaluated in IPG CarMaker, using the same road
as it was trained on. The results from the evaluation are shown in Figure 4.10 and
Table 4.10. Here, the controller is, yet again, compared with a CCD and the refer-
ence MPC. It can be observed that the amplitudes of the accelerations are similar
to the ones in Figure 4.9. However, the acceleration graphs includes much more
high frequency content than what achieved when evaluating on the training model.
Consequently, the control signal from the NN-controller is varying much more in the
CarMaker case. Furthermore, the differences in the environment used for training
and evaluation causes difficulties for the NN-controller. Resulting in a 8% worse
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performance, in terms of RMS reward, for the NN-controller compared to the CCD.

Table 4.10: RMS performance comparison between CCD, MPC and NN-control
using IPG CarMaker.

Description CCD MPC NN-control
RMS heave acceleration 0.864 0.783 0.848
RMS pitch acceleration 0.413 0.379 0.467
RMS roll acceleration 1.050 1.048 1.140

RMS reward 1.981 1.917 2.132
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Figure 4.10: Comparison between CCD, MPC and NN-control using IPG Car-
Maker.

The frequency content of the vehicle’s body accelerations, using CCD, NN-control
and MPC, is shown in Figure 4.11. The amplitude of most frequencies are quite
similar between the different control methods. Generally, the MPC performs best
for low frequencies. For high frequencies, it is hard to tell a winner.
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Figure 4.11: Comparison of frequency spectrum for body accelerations between
CCD, MPC and NN-control using IPG CarMaker.

4.2.3 Scenario 3
In this scenario the neural network specifications shown in Table 4.6 was used. This
scenario’s road profile was around 150 m long and the training was done for 2300
episodes. The controller was trained by running over the road in 30 kph, with a
control frequency of 100 Hz. The NN-controller had access to 1.87 m (15 steps per
wheel with a density of 0.1245 m) of road preview.

4.2.3.1 Evaluation on training model

The trained controller was then evaluated on the same road and model as it was
trained on. The performance, compared to a full-car system with passive dampers,
is presented in Figure 4.12 and Table 4.11. The trained controller shows good results
for all three accelerations. In total, the RMS reward for the trained controller show
an improvement of more than 30%, compared to the passive system.

Table 4.11: RMS performance comparison between a passive reference and a
trained controller using road preview data.

Description Passive NN-control
RMS heave acceleration 0.70 0.45
RMS pitch acceleration 0.39 0.32
RMS roll acceleration 0.13 0.09

RMS reward 1.07 0.75
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Figure 4.12: Comparison between a passive full-car suspension system and an
NN-controller.

4.2.4 Scenario 4
In this scenario, continuous training was investigated and evaluated. A controller
was trained on a 90 km long road, including mainly high frequency content. The
training time was approximately 60 h. The controller had a control frequency of 500
Hz, in order to be able to handle the high frequency content. The controller was
trained by running over the road in 50 kph and had access to 5.625 m (15 steps per
wheel with a density of 0.375 m) of road preview.

4.2.4.1 Evaluation on training model

The trained controller was then evaluated on a short road with a similar shape as
the training road. The performance, compared to a full-car system with passive
dampers, is presented in Figure 4.13 and Table 4.12. Because of the relatively small
high frequency noise, the heave and pitch accelerations are quite low for both con-
trollers. The large accelerations occur in the roll spectrum and here the trained
controller significantly outperforms the passive reference. For the particular road
segment, the improvement is 30% in terms of RMS roll acceleration. Speaking of
RMS reward, the trained controller show an improvement of a little more than 19%,
compared to the passive system.
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Table 4.12: RMS performance comparison between a passive reference and a
trained controller using road preview data.

Description Passive NN-control
RMS heave acceleration 0.93 0.91
RMS pitch acceleration 0.95 0.92
RMS roll acceleration 2.27 1.59

RMS reward 3.70 3.01
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Figure 4.13: Comparison between a passive full-car suspension system and an
NN-controller.

4.2.5 Execution time
Calculating the execution time for the controller is important to be able to see if it is
fast enough to run in real-time. The execution time is the time it takes from sending
all the states as input to the controller/neural network, until achieving a control
signal. In Figure 4.14, a histogram presents the distribution of the execution times
for the NN-controller, collected from four different evaluations on two different road
profiles. The simulations were run on a regular laptop and the controller consisted
neural network with the architecture presented in Table 4.6. In the figure, it can
be observed that most of the execution times are less than 0.5 ms and almost all
execution times are less than 1 ms. This is just a fraction of the time that the
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reference MPC needs to compute the control signal. Furthermore, most controllers
have been run in 100 Hz in simulation. Given the presented execution times, the
proposed controllers would be able to run in real time without problems.
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Figure 4.14: Execution time for NN-control.
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5
Discussion

The purpose of the thesis was to investigate if a neural network, trained by the
DDPG algorithm, could be successful in controlling a full-car semi-active wheel
suspension system with access to road preview. To get a first indication of how
the DDPG algorithm would perform in a suspension system environment, a simple
quarter-car model was designed and used for training. The results from training
a neural network, with the DDPG in the quarter-car environment, show that the
DDPG successfully can train a controller to perform better than passive suspension
in the environment it has been trained on. Thereof, a more complex full-car model
was designed to be used for further training. The results from training in the full-
car environment shows that a neural network can control a semi-active suspension
system, and reach a performance that is significantly better than the performance of
a passive system. Furthermore, the neural network controller has also shown better
performance than the reactive CCD controller that is used in today’s cars. Aside
from investigating the performance of a neural network controller for semi-active
wheel suspension, the computational complexity was said to be investigated. The
proposed controller has a relatively low computational complexity, just a fraction
of the complexity of the reference MPC. Finally, the purpose of the thesis was to
investigate the effect of using road preview in combination with a neural network
controller. The results showed that road preview speeds up training of the neural
network, and that a higher performance can be reached.

The results show that episodic training on a road profile implies successful per-
formance on the current road. By running over the same road for several times, the
learning converges to a satisfying control policy. Good performance for this task
can be reached with rather small neural networks. Hence, a small computational
cost can be maintained. Evaluation of the trained neural networks controllers on
other roads than the training road, has not been very successful. It was shown that
the trained controllers could perform good on roads that had a similar shape, in
terms of frequency and magnitude, as the training road. Given very different roads
compared to the training road, the neural network controllers could not achieve
satisfying results. This behaviour is however somewhat expected, since a trained
neural network controller will just perform good given similar states to what it has
visited during training. Thus, to attain a single neural network controller that is
able to perform well on all kinds of road profiles that can occur in practice, a neural
network needs to be trained on a road profile that makes the full-car model visit
a much larger part on the entire state space. Further, for a neural network to be
able to deliver suitable control signals for such a large state space, a deeper neural
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network that is trained for a longer time is probably needed. Because of the low
computational cost of the neural network used in this thesis, it is possible to make
the neural network much deeper without sacrificing the possibility to run in real time.

The performance of the neural network controllers was evaluated in terms of RMS
roll, pitch and heave accelerations. By comparing the results for the different road
profiles, it is clear that the learning algorithm develops different policies for dif-
ferent road profiles. The learning algorithm finds what is the most optimal way
of maximizing its reward for the current road profile, which can be very different
depending on the road. Since the reward is the negative sum of the roll, pitch and
heave accelerations, the algorithm will often focus on reducing one or two of the
accelerations if it results in a better reward. This behaviour is probably not desired
for a controller in a real car, but it can easily be changed by changing the reward
function. The performance in terms of different frequencies shows that the neural
network controller generally performs good for low frequencies (primary ride) and
worse for high frequencies (secondary ride). Whether this behaviour can be changed
by changing the reward, or if it is due to something else is unclear.

As mentioned previously, the calculated execution times for the neural network
to compute the control signal is just a fraction of the time the reference MPC needs.
Further, the execution times for neural networks does not vary with different input
sets of data. This is not the case for the MPC, which is very dependent on the
computational complexity from the given inputs. Hence, neural networks might be
more suitable than MPC to be used in a real-time system, where the inputs varies
substantially.

The road preview data that is sent to the controller has not been optimized in terms
of preview length and density. A couple of different setups were tried during the
process, but it is definitely an area that can be improved further. By increasing the
size of the preview data (either by increasing the preview length or the density), the
observation state space that the controller needs to map increases rapidly. Hence,
even though an increased preview size could improve the performance slightly, but
it may not be the optimal way of spending the computational resources that are
available.

Regarding the DDPG learning algorithm, it has shown to be successful for learning
in the environment of interest. It can learn a successful policy in a continuous state
and action space, given an arbitrary reward to represent ride comfort.

5.1 Conclusion
In this thesis, a control approach for semi-active wheel suspension with road preview
has been proposed. The control approach is based on an artificial neural network
trained with reinforcement learning, more specifically the DDPG algorithm. The
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learning method has shown to be successful in both continuous and episodic envi-
ronments. The approach shows promising results, often able to outperform today’s
CCD controller for semi-active suspension in simulation. The trained controller does
not really match the performance of the reference MPC, but the computational cost
of the trained controller is just a fraction. This indicates that the proposed control
approach can be further improved by utilizing a deeper neural network.

5.2 Future work
To achieve a controller that is suitable for all kind of road profiles, a neural network
needs to be trained on a road that covers a much larger space of the entire state
space. In order for the network to collect all information during the training, a
deeper network should be considered. Alternatively one could train several different
networks and change between the networks depending on the road. Furthermore,
the road preview should be optimized in terms of preview length and density. Also,
to be able to run on a real car, rotational pre-processing of the road preview data
is needed to suit a camera on top of the car.
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