
Higher Order Beam Equations

Master’s Thesis in Solid and Fluid Mechanics

HOSSEIN ABADIKHAH

Department of Applied Mechanics
Division of Dynamics
CHALMERS UNIVERSITY OF TECHNOLOGY
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Abstract

This thesis considers the analysis of a homogenous isotropic linearly elastic solid
cylinder by assuming a displacement field that is a power series expansion in the radial
coordinate. The solid cylinder is also referred to as a beam. Governing equations
for the beam are obtained by inserting the power series ansatz into the equations
of motion for linear elasticity, thereby obtaining recursion formulas which relates
the coefficients of the power series with each other. Lateral boundary conditions
on the beam’s outer surface are expressed with the power series ansatz and the
recursion formulas. The lateral boundary conditions form the basis of the governing
equations. Dispersion relations and eigenfrequencies for the simply supported case
are computed and compared to the exact theory, given by Pochhammer and Chree,
and also with classical theories such as the Euler-Bernoulli and the Timoshenko
theories. Displacement and stress fields are compared with the classical theories to
show the deviancies of the proposed method.

Keywords: Wave propagation, Beam, Power series, Dispersion, Eigenfrequencies, Stress
distribution
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Preface

This thesis studies whether it is possible to obtain governing equations for beams that
approximate dispersion relations and eigenfrequencies better than classical theories such
as the Euler-Bernoulli and Timoshenko theories with the assumption that the displace-
ment fields can be written as power series ansatz. The work has been carried out from
January 2011 to June 2011 at the Department of Applied Mechanics, Division of Dynamics
Chalmers University of Technology, Sweden and with Dr. Peter Folkow as supervisor and
examiner.
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1 Introduction

In the 19th century Pochhammer and later Chree independently laid the foundation of the
exact theory regarding the elastodynamic behavior of homogenous isotropic linearly elastic
cylinders. Specifically the modes of propagation for time harmonic waves were investigated.
The investigated modes were categorized into three categories, longitudinal, circumferential
and flexural modes. It was also found that there are infinite amounts of these types of
modes and each mode had an infinite amount of eigenfrequencies associated with them.
Before the exact theory was formulated another theory was used to analyze the behavior of
flexural modes. This theory is named the Euler-Bernoulli beam theory and was conceived
by Leonhard Euler and Daniel Bernoulli in the 18th century. The Euler-Bernoulli theory
is based on an assumption for the displacement fields. If a cartesian coordinate system is
chosen and the deflection of the beam is in the z-direction the assumption reads

ux(x, z, t) = −z∂w
∂x

,

uz(x, z, t) = w(x, t),

where w is the transverse deflection of the midsurface. This assumption entails that plane
cross sections of the beam remain plane after deformation and are perpendicular to the
midsurface. This amounts to that the deformation is only caused by bending in the plane.
During the beginning of the 20th century another theory regarding the behavior of beams
was presented by Timoshenko. Timoshenko’s theory introduced shear deformation and
rotary inertia. Consequently plane cross sections remain plane after deformation but need
not be perpendicular to the midsurface. The following assumptions were made for the
Timoshenko theory in cartesian coordinates

ux(x, z, t) = −zψ(x, t),

uz(x, z, t) = w(x, t).

As for the Euler-Bernoulli theory w is the transverse deflection while ψ is the rotation
in plane around the y-axis in cartesian coordinates. In order to account for the variation
of shear stress across the cross section Timoshenko introduced a shear coefficient that is
dependent on material and geometry.

Another method for analyzing the behavior of elastic bodies and in particular rods
was developed by Boström [2]. The method consists of choosing a proper power series
ansatz for the displacement fields from which the governing equations can be obtained and
consequently other relations such as stresses and dispersion equations. This method was
used to investigate the governing equation and dispersion relations for rods [2]. The method
was also used to investigate stresses and eigenfrequencies for finite rods [3]. Furthermore
it was used also for cylindrical shells [4] and plates [5],[6].

The purpose of this thesis is to investigate whether the method described by [2] can
be used to analyze beams. In order to examine if the attained governing equations yield
acceptable results, the work presents dispersion relations, displacement and stress distri-
butions and eigenfrequencies.
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2 Governing Equations

Regard a solid cylinder with radius a and density ρ described by cylindrical coordinates
where the radial, circumferential and longitudinal coordinates are denoted by r, θ and z.
The corresponding radial, circumferential and longitudinal displacement fields are denoted
by u, v and w. It is assumed that the material is homogenous, isotropic and linearly elastic
with Lamé parameters λ and µ. The angle θ is measured from a vertical axis in a plane
through the cross section of the cylinder as defined in [1]. Hereon the solid cylinder will
be referred to as a beam.

2.1 Equations of Motion

The equations of motion, neglecting volume forces, in terms of stresses for a homogenous,
isotropic and linearly elastic material expressed in cylindrical coordinates are written as
[1]:

∂σrr
∂r

+
1

r

∂σrθ
∂θ

+
∂σrz
∂z

+
σrr − σθθ

r
= ρ

∂2u

∂t2
,

∂σrθ
∂r

+
1

r

∂σθθ
∂θ

+
∂σθz
∂z

+ 2
σrθ
r

= ρ
∂2v

∂t2
, (2.1)

∂σrz
∂r

+
1

r

∂σθz
∂θ

+
∂σzz
∂z

+
σrz
r

= ρ
∂2w

∂t2
.

2.2 Stresses

Stresses for a homogenous isotropic material can be written in terms of the displacement
fields [4]. The relations are given as:

σrr = λ

[
1

r

∂

∂r
(ru) +

1

r

∂v

∂θ
+
∂w

∂z

]
+ 2µ

∂u

∂r
,

σθθ = λ

[
1

r

∂

∂r
(ru) +

1

r

∂v

∂θ
+
∂w

∂z

]
+ 2µ

[
u

r
+

1

r

∂v

θ

]
,

σzz = λ

[
1

r

∂

∂r
(ru) +

1

r

∂v

∂θ
+
∂w

∂z

]
+ 2µ

∂w

∂z
,

σrθ = µ

[
1

r

∂u

∂θ
+
∂v

∂r
− v

r

]
,

σrz = µ

[
∂u

∂z
+
∂w

∂r

]
,

σθz = µ

[
∂v

∂z
+

1

r

∂w

∂θ

]
. (2.2)
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2.3 Boundary Conditions

There are two types of boundary conditions, lateral conditions and end conditions. The
lateral boundary conditions are applied along the beam’s outer surface at r = a and the
end boundary conditions are applied on the end surfaces at z = 0, L.

Furthermore there are two types of lateral boundary conditions, prescribed stresses or
prescribed displacements and it is possible to have different fields prescribed on different
parts of the outer surface. The following conditions can be assigned to a region of the
surface

σrr(r = a) = tr or u(r = a) = ur, (2.3)

σrθ(r = a) = tθ or v(r = a) = vθ, (2.4)

σrz(r = a) = tz or w(r = a) = wz. (2.5)

The prescribed functions ti, ui, vi and wi where i ∈ {r, θ, z} are all known functions
depending on θ, z and t. The end conditions are given by prescribing stresses or displace-
ments that act at the end surfaces of the beam. Unlike the lateral conditions the entire end
surface must be prescribed with one condition for each direction (r, θ, z). If different parts
of the end surface have different conditions it is not possible to directly use the method
presented here, instead one should use the theory discussed in [3]. However the method as
presented here can be generalized to cases where conditions are dependent on r, θ and t.
The combinations of end conditions are

σrz(z ∈ {0, L}) = tr or u(z ∈ {0, L}) = ur, (2.6)

σθz(z ∈ {0, L}) = tθ or v(z ∈ {0, L}) = vθ, (2.7)

σzz(z ∈ {0, L}) = tz or w(z ∈ {0, L}) = wz. (2.8)

The prescribed functions ti, ui, vi and wi where i ∈ {r, θ, z} are all known functions
depending on r, θ and t. These functions are independent of the functions used for the
lateral condition.
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3 Power Series Ansatz

It is assumed that the displacement fields can be expressed as a power series expansion in
the radial coordinate. A Taylor series expansion of the exact theory is investigated in order
to make the proper ansatz. It should also be noted that the circumferential dependence is
assumed to be of trigonometric type in accordance with the exact theory [1].

For m ∈ N:

u = rmû(m) cos(mθ), û(m) = r−1u
(m)
m−1 + ru

(m)
m+1 + r3u

(m)
m+3 + . . . ,

v = rmv̂(m) sin(mθ), ˆv(m) = r−1v
(m)
m−1 + rv

(m)
m+1 + r3v

(m)
m+3 + . . . ,

w = rmŵ(m) cos(mθ), ŵ(m) = w(m)
m + r2w

(m)
m+2 + r4w

(m)
m+4 + . . . . (3.1)

For m = 0:

u = û(m),

v = v̂(m),

w = ŵ(m). (3.2)

It is possible to deduce that the coefficients with indices that are smaller than m − 1
for u and v, and smaller than m for w, vanish by expanding the exact theory (4.6) around
r = 0 or by assuming a complete ansatz where all indices larger than or equal to zero are
included.

The solution type is determined by the parameter m. For instance if m = 1 is chosen
the solution will yield flexural waves. Similarly for m = 0 the displacement fields u and
w will generate longitudinal waves and the displacement field v generates torsional waves.
It should be noted that these two wave types are uncoupled. Furthermore the functions
u
(m)
i = u

(m)
i (z, t), v

(m)
i = v

(m)
i (z, t) and w

(m)
i = w

(m)
i (z, t) for i ∈ N0 are smooth and

differentiable. As noted before the displacement fields have the following properties by
definition: u

(m)
i = v

(m)
i = w

(m)
i ≡ 0 for i < 0, u

(m)
i = v

(m)
i ≡ 0 for i < m− 1 and w

(m)
i ≡ 0

for i < m. The functions u
(m)
i , v

(m)
i and w

(m)
i are different functions for different values of

m. From now on the superscript (m) will be dropped.

, Applied Mechanics, Master’s Thesis 2011:31 4



3.1 Recursion Formulas

By substituting the power series ansatz (3.1) into the expressions for stresses (2.2) and
further substituting these into the the equations of motion (2.1) it is possible to obtain
recursion formulas by identifying terms with equal powers of r [2]. In the case of m ≥ 1
two constraint equations are also obtained from the equations of motion. The recursion
formulas are written as:[

(λ+ 2µ)(m+ 2k + 4)(m+ 2k + 2)− µm2
]
um+2k+3

+ [(λ+ µ)(m+ 2k + 2)m− 2µm] vm+2k+3

+ (λ+ µ)(m+ 2k + 2)
∂wm+2k+2

∂z
+ µ

∂2um+2k+1

∂z2
= ρ

∂2um+2k+1

∂t2
, for k ∈ N0, (3.3)

− [(λ+ µ)(m+ 2k + 4)m+ 2µm]um+2k+3

+
[
µ(m+ 2k + 4)(m+ 2k + 2)− (λ+ 2µ)m2

]
vm+2k+3

− (λ+ µ)m
∂wm+2k+2

∂z
+ µ

∂2vm+2k+1

∂z2
= ρ

∂2vm+2k+1

∂t2
, for k ∈ N0, (3.4)

µ
[
(m+ 2k + 2)2 −m2

]
wm+2k+2

+ (λ+ µ)(m+ 2k + 2)
∂um+2k+1

∂z
+ (λ+ µ)m

∂vm+2k+1

∂z

+ (λ+ 2µ)
∂2wm+2k

∂z2
= ρ

∂2wm+2k

∂t2
, for k ∈ N0. (3.5)

The constraint equations can be expressed as:

um−1 + vm−1 = 0 (3.6)

[
(λ+ 2µ)(m+ 2)m− µm2

]
um+1 +

[
(λ+ µ)m2 − 2µm

]
vm+1

+ (λ+ µ)m
∂wm
∂z

+ µ
∂2um−1
∂z2

= ρ
∂2um−1
∂t2

(3.7)

The constraint equations arise when the power series ansatz is inserted into the equa-
tions of motion (2.1). It is also possible to obtain the constraint (3.6) by substituting
k = −2 in (3.3) or (3.4). The second constraint (3.7) can be obtained by setting k = −1 in
(3.3). For the case of m = 0 the constraint equations vanish in accordance with [2] and [3].
The recursion formulas are used to write all coefficients ui, vj and wk as functions of the
coefficient with lowest index. By studying the recursion formulas it is seen that the coeffi-
cients with the lowest indices are um+1, vm+1 and wm. But since the coefficients involved
in the constraint equations have lower indices the resulting equations must be expressed
in these coefficients. This creates several possibilities since it is possible to use um−1 or
um+1 and vm−1 or vm+1. In this thesis all ui, vj and wk where i > m − 1, j > m + 1 and
k > m are chosen to be written in terms of um−1, vm+1, and wm. For m = 0 the functions
ui, vj and wk are expressed in u1, v1, and w0 since the constraint equations vanish. The
recursion equations (3.3), (3.4) can be rewritten leading to an uncoupling between um+2k+3

and vm+2k+3. In order to be brief these are presented in appendix A.
A more simple way to use the recursion formulas can be obtained by algebraically

manipulating the equations presented in appendix A. It is then possible to write them in
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the following form

um+2k+3 = duu(k,m)um+2k+1 + duv(k,m)vm+2k+1 + duw(k,m)wm+2k (3.8)

vm+2k+3 = dvu(k,m)um+2k+1 + dvv(k,m)vm+2k+1 + dvw(k,m)wm+2k (3.9)

wm+2k+2 = dwu(k,m)um+2k+1 + dwv(k,m)vm+2k+1 + dww(k,m)wm+2k (3.10)

where dij are linear differential operators. The equation system can be written in matrix
form um+2k+3

vm+2k+3

wm+2k+2


︸ ︷︷ ︸

uk+1

=

duu(k,m) duv(k,m) duw(k,m)
dvu(k,m) dvv(k,m) dvw(k,m)
dwu(k,m) dwv(k,m) dww(k,m)


︸ ︷︷ ︸

D(k,m)

um+2k+1

vm+2k+1

wm+2k


︸ ︷︷ ︸

uk

(3.11)

⇔ uk+1 = D(k,m)uk (3.12)

By using the recursion equation on matrix form (3.12) it is possible to express the
displacement terms of uk+1 directly in u0 in the following way

uk+1 = A(k,m)u0, where A(k,m) =
k∏
i=0

D(k − i,m) (3.13)

The explicit expression for the different components of D are presented in appendix B.

3.2 Expressions for Stresses

As discussed in Section 3.1 expressions for stresses are obtained by substituting the power
series ansatz (3.1) into the equations for stresses (2.2), which gives

σrr = rmσ̂rr cos(mθ), (3.14)

σθθ = rmσ̂θθ cos(mθ), (3.15)

σzz = rmσ̂zz cos(mθ), (3.16)

σrθ = µrmσ̂rθ sin(mθ), (3.17)

σrz = µrm+1σ̂rz cos(mθ), (3.18)

σθz = µrm+1σ̂θz sin(mθ), (3.19)

where σ̂ij = r−2σ̂ij,0 + σ̂ij,1 + r2σ̂ij,2 + . . .+ r2k−2σ̂ij,k + . . .

for the indices i and j being {r, θ, z}. The stress terms σ̂ij,k depend on m and are generally
different functions for different m. Subsequently each term can be written as

σ̂rr,k = [(λ+ 2µ)(m+ 2k)− 2µ]um+2k−1 + λmvm+2k−1 + λ
∂wm+2k−2

∂z
, (3.20)

σ̂θθ,k = [λ(m+ 2k) + 2µ]um+2k−1 + (λ+ 2µ)mvm+2k−1 + λ
∂wm+2k−2

∂z
, (3.21)

σ̂zz,k = λ(m+ 2k)um+2k−1 + λmvm+2k−1 + (λ+ 2µ)
∂wm+2k−2

∂z
, (3.22)

σ̂rθ,k = (m+ 2k − 2)vm+2k−1 −mum+2k−1, (3.23)

σ̂rz,k =
∂um+2k−1

∂z
+ (m+ 2k)wm+2k, (3.24)

σ̂θz,k =
∂vm+2k−1

∂z
−mwm+2k, (3.25)

for k ∈ N0.
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3.3 Expressions for Boundary Conditions

By inserting the power series ansatz (3.1) and the stress series (3.14),(3.17) and (3.18) into
the lateral boundary conditions explicit expressions can be obtained

amσ̂rr(r = a) cos(mθ) = tr or amû(r = a) cos(mθ) = ur, (3.26)

µamσ̂rθ(r = a) sin(mθ) = tθ or amv̂(r = a) sin(mθ) = vθ, (3.27)

µam+1σ̂rz(r = a) cos(mθ) = tz or amŵ(r = a) cos(mθ) = wz, (3.28)

for θ ∈ θ∗ and z ∈ z∗,

where θ∗ and z∗ are a subregion of the outer surface. These boundary conditions constitute
the beam equation from which the flexural motion of the beam are obtained. It should
be noted that different regions of the beam are solved with different differential equations.
For this thesis the outer surface is considered to be free resulting in the conditions that
σrr = σrθ = σrz ≡ 0 at r = a. By truncating these equations at different powers of a, beam
equations of different order will be obtained. It is therefore important that the truncations
are carried out so that sufficient amount of displacement terms are kept.

The stresses are truncated in such a way that the highest index for the longitudinal
displacement term, wi, is equal for the equations in the radial (3.26) and longitudinal
(3.28) directions. The highest index for the longitudinal and circumferential displacement
terms are equal for the equations in the radial (3.26) and circumferential (3.27) directions.
This entails that if σ̂rz(r = a) is truncated at k = n involving terms up to wm+2n, then
σ̂rr(r = a) and σ̂rθ(r = a) are truncated both at k = n+ 1 involving terms up to um+2n+1

and vm+2n+1. Another way to describe the truncation scheme is that if the longitudinal
boundary condition is truncated at a2n−2 then the radial and circumferential boundary
conditions will be truncated at a2n.

If the three boundary equations are reduced to a single beam equation, this truncation
scheme produces a complete equation up to order a2n. However, it contains terms up to a6n,
meaning that all a2n terms will be generated but not all terms of higher power, rendering
them incomplete. It should be noted that some algebraic manipulations are needed in
order to write the reduced equation in a form where it is possible to distinguish terms of
different orders. The derivatives in space and time for each order is increased by two. For
instance the terms of order a2n have derivatives of order 2n + 2. The terms with highest
derivative order are 6n + 2 as the largest order terms for a truncation at k = n are a6n.
The system of beam equation obtained by the truncation n = 1 is presented in appendix
C.

If any boundary conditions on the displacements are given the above truncation scheme
would also be used, i.e. the radial displacement and circumferential displacements would
involve terms up to um+2n+1 and vm+2n+1 while the longitudinal displacements would in-
volve terms up to wm+2n.
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The discussed truncation scheme is only to be used when m ≥ 1, while for m = 0 the
truncation scheme discussed in [3] should be used.

The only end boundary conditions that are investigated is the simply supported con-
dition,

u(z ∈ {0, L}) = 0,

v(z ∈ {0, L}) = 0,

σzz(z ∈ {0, L}) = 0. (3.29)

This particular condition can be solved directly for the fixed frequency case by assuming
a solution of the form

u(z, t) = sin
(sπ
L
z
)
e−iωt,

v(z, t) = sin
(sπ
L
z
)
e−iωt,

w(z, t) = cos
(sπ
L
z
)
e−iωt, (3.30)

for s ∈ N.
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3.4 The Wave Equation

By choosing m = 1, yielding flexural waves, and truncating the stress series (3.26), (3.27)
and (3.28) to the lowest order n = 1 involving u4 and v4 for the radial and circumferential
boundary conditions and involving w3 for the longitudinal boundary condition, a system of
equations are obtained that describe the flexural motion of the beam. The obtained system
of equations can be expressed in u0, v2 and w1 with the use of the recursion formulas and
constraint equations. Furthermore it may be reduced to a single equation with the method
used by [5]. The resulting equation can be expressed in any of the fields u0, v2 and w1.
The single equation contains all terms up to a2 and some higher order terms which are
truncated,

∂2u0
∂t2

+
a2c2T
24

(
α1
∂4u0
∂z4

− α2

c2T

∂4u0
∂z2∂t2

+
α3

c4T

∂4u0
∂t4

)
+O(a4) = 0, (3.31)

cT =

√
µ

ρ
, (3.32)

α1 = 6
3λ2 + 8λµ+ 4µ2

λ2 + 3λµ+ 2µ2
, (3.33)

α2 =
33λ2 + 95λµ+ 58µ2

λ2 + 3λµ+ 2µ2
, (3.34)

α3 =
13λ2 + 43λµ+ 32µ2

λ2 + 3λµ+ 2µ2
. (3.35)

If the truncation were not performed the resulting equation would be of order a6 and
would contain eighth derivatives in space and time. This equation cannot be solved directly
by using the end boundary conditions presented in Section 2.3 since those conditions are
expressed in all the displacement fields u, v and w. Therefore the entire system of equations
is needed to be able to find a solution.

All terms, even those that are truncated, are hyperbolic which is in accordance with
[2]. Similarities between the Timoshenko beam equation (4.8) and the a2 order wave
equation can be found [1], both equations contain the same differential terms. If the term
with mixed time and spatial derivative and the fourth order time derivative are neglected
the Euler-Bernoulli beam equation (4.7) is obtained. This is seen as a verification of the
analysis.
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4 Dispersion Relations

Validation of the analysis is done by comparing the dispersion curves using the current
beam theory, the exact solution and classical beam theories such as the Euler-Bernoulli
and the Timoshenko beam theories. When the expression ”Beam theory” is used it refers
to a choice of m ≥ 1.

4.1 Beam Theory

Dispersion relations of a certain order can be obtained by truncating the boundary con-
ditions stated in Section 3.3 and using the recursion formulas and constraint equations to
write the equation system in terms of um−1, vm+1 and wm. The equations system is then
reduced to a single equation [5]. It is important that the reduced equation is not truncated
as is done in Section 3.4. If a truncation is done the reduced equation and the equation
system obtained from the boundary conditions are not equivalent. Therefore all terms,
even though some are incomplete, should be kept.

From the single differential equation the dispersion relation is obtained by assuming a
solution that is harmonic both in space and time with a unit amplitude

um−1 = ei(kz−ωt).

Substituting this assumptions into the single differential equation results in a polyno-
mial equation expressed in k and ω from which the dispersion curves are obtained. It is also
possible to express the dispersion relation directly from the equations system obtained by
a truncation of the lateral boundary conditions without reduction to a single equation. In
this case the three displacement fields um−1, vm+1 and wm are assumed to be harmonic in
space and time. By substituting this assumption into the equations system the dispersion
relation is found when the coefficient matrix is singular. Both procedures give dispersion
relations that are equivalent.

4.2 Exact Theory

The solution of the three dimensional elastodynamic equation in cylindrical coordinates
can be expressed in four potentials [1]

φ = AJm(pr) cos(mθ)ei(kz−ωt), (4.1)

ψz = BJm(qr) sin(mθ)ei(kz−ωt), (4.2)

ψr = CJm+1(qr) sin(mθ)ei(kz−ωt), (4.3)

ψθ = CJm+1(qr) cos(mθ)ei(kz−ωt), (4.4)

p =

√
ω2

c2L
− k2,

p =

√
ω2

c2T
− k2,

cL =
λ+ 2µ

ρ
,

where Jn is the n:th Bessel function of first kind. A, B and C are constants that are
determined by boundary conditions. The displacement fields can then be expressed in
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these four potentials [1]

u =
∂φ

∂r
+

1

r

∂ψz
∂θ
− ∂ψθ

∂z
,

v =
1

r

∂φ

∂θ
+
∂ψr
∂z
− ∂ψz

∂r
,

w =
∂φ

∂z
+

1

r

∂ (rψθ)

∂r
− 1

r

∂ψr
∂θ

. (4.5)

Inserting the potentials into (4.5) gives u, v and w as a function of r, θ, z and t

u = U(r) cos(θ)ei(kz−ωt),

v = V (r) sin(θ)ei(kz−ωt),

w = W (r) cos(θ)ei(kz−ωt),

where

U(r) = A
∂

∂r
Jm(pr) +

B

r
Jm(qr) + ikCJm+1(qr),

V (r) = −A
r
Jm(pr)−B ∂

∂r
Jm(qr) + ikCJm+1(qr),

W (r) = ikAJm(pr)− C

r

∂

∂r
[rJm+1(qr)]−

C

r
Jm+1(qr), (4.6)

The boundary condition for the beam are defined in Section 3.3, namely that σrr =
σrθ = σrz ≡ 0 at r = a. The displacements (4.5) can then be inserted into the expressions
for σrr, σrθ and σrz (2.2) resulting in three equations from which the dispersion relation is
obtained by eliminating the constants A, B and C.

4.3 Classical Theories

It is straightforward to obtain dispersion relations for the classical beam theories, such as
the Euler-Bernoulli and the Timoshenko beam theories. The differential equation for the
Euler-Bernoulli beam theory and the Timoshenko beam theory are

∂2uEB
∂t2

+
EI

Aρ

∂4uEB
∂z4

= 0, (4.7)

∂2uT
∂t2

+
EI

Aρ

∂4uT
∂z4

− 1

A

(
I +

EI

Gκ

)
∂4uT
∂z2∂t2

+
Iρ

Gκ2A

∂4uT
∂t4

= 0, (4.8)

where ρ is the density, A is the cross sectional area, E is the elastic modulus, G is the
shear modulus, I is the area moment of inertia and κ is the shear coefficient. The shear

coefficient is chosen to be κ = 6(1+ν)2

(7+12ν+4ν2)
[7] where ν is Poisson’s ratio. Observe that

these equations are written in a cartesian coordinate system where the z-axis is along the
beam and the deflection is in the y-direction. The dispersion relations are then obtained
by assuming that the displacement field u = u(z, t) is harmonic in time and space with a
unit amplitude, i.e. u = ei(kz−ωt) for both Euler-Bernoulli and Timoshenko theories.
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5 Dispersion curves

Two types of results for the dispersion relations are presented, the first being a convergence
study where the current beam theory is compared to the exact solution for different trun-
cations and two different solution types namely m = 1 and m = 2. Secondly a comparison
between the exact solution, the classical theories and the truncated wave equation (3.31)
is conducted.

5.1 Convergence study

The convergence comparison is made between the three first dispersion curves obtained
from the exact solution and the current beam theory for truncations at n = 1, 2, 3, 4.
Hence the comparison is made between the exact theory and the a6, a12, a18, a24 order
theories. This comparison is done for m = 1 and m = 2. The dispersion relations have
generally complex solutions but for this comparison only the real solutions are considered.
Furthermore not all curves will be generated by the different truncations. Only those
curves that are generated will be compared against the exact solution. This will result in
that certain truncations do not show three curves in the comparison.

The dispersion curves figures 5.1-5.4 are all of the type m = 1, while figures 5.5-5.8 are
all of type m = 2.

Figure 5.1: Solution to the dispersion relation for m = 1: Exact —,
Truncation at n = 1 – – –
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Figure 5.2: Solution to the dispersion relation for m = 1: Exact —,
Truncation at n = 2 – – –

Figure 5.3: Solution to the dispersion relation for m = 1: Exact —,
Truncation at n = 3 – – –

, Applied Mechanics, Master’s Thesis 2011:31 13



Figure 5.4: Solution to the dispersion relation for m = 1: Exact —,
Truncation at n = 4 – – –

Figure 5.5: Solution to the dispersion relation for m = 2: Exact —,
Truncation at n = 1 – – –
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Figure 5.6: Solution to the dispersion relation for m = 2: Exact —,
Truncation at n = 2 – – –

Figure 5.7: Solution to the dispersion relation for m = 2: Exact —,
Truncation at n = 3 – – –
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Figure 5.8: Solution to the dispersion relation for m = 2: Exact —,
Truncation at n = 4 – – –

By studying the dispersion curves it is seen that a higher truncation order gives a
more accurate theory. The third curve for both cases is the least accurate, this could be
accommodated by increasing the truncation order. The behavior for higher modes which
start at a higher cut of frequency are approximated worse for a specific truncation, which
is characteristic of this beam theory. Also the theory for m = 2 is generally less accurate
than for m = 1.
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The comparison between the classical theories, exact solution and the a2 order wave
equation is treated in figure 5.9.

Figure 5.9: Solution to the dispersion relation: Exact —, a2 – – –, Timoshenko – · –,
Euler-Bernoulli · · ·

As expected the Euler-Bernoulli beam theory is only acceptable at small wave numbers
and it progressively deteriorates as the wave number is increased. The a2 order beam
theory approximates the first dispersion curve well for small wave numbers but the ap-
proximation deteriorates as the wave number is increased. The second dispersion curve is
approximated less accurately particulary at small wave numbers. The Timoshenko beam
theory approximates the first dispersion curve very accurately and approximates the sec-
ond curve fairly well at small wave numbers but the approximation deteriorates as the
wave number increases.
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6 Dispersion Relations for Torsion

For the particular case of m = 0 the theory results in longitudinal and torsional modes.
These two mode types are also uncoupled. This uncoupling makes it possible to derive
dispersion relations for the torsional modes analytically. The case of longitudinal waves
is treated in [2],[3]. For the analysis of the torsional dispersion relation the displacement
fields u and w are considered to be nonexistent. It is assumed that the outer surface of the
cylinder is free resulting in the boundary condition

σrθ(r = a) = 0. (6.1)

By using the expression (3.17) it is possible to write the boundary condition in the
following manner

n−1∑
k=0

(k + 1)v2k+3a
2k+2 +O(a2n+2) = 0. (6.2)

The recursion formula (3.4) can be simplified to

v2k+3 =
1

4(k + 1)(k + 2)

(
1

c2T

∂2

∂t2
− ∂2

∂z2

)
v2k+1 for k = 0, 1, 2, . . . . (6.3)

With use of (3.13) the recursion formula can be written in terms of v1(z, t)

v2k+3 =
1

4k+1(k + 1)!(k + 2)!

(
1

c2T

∂2

∂t2
− ∂2

∂z2

)k+1

v1(z, t). (6.4)

Inserting (6.4) into the boundary condition (6.2) and algebraically manipulating the
sum the following expression is obtained up to infinite order

−
∞∑
k=0

(−1)k

k!(k + 2)!

(
a

2

√
∂2

∂z2
− 1

c2T

∂2

∂t2

)2k+2

v1(z, t) = 0, (6.5)

By assuming a harmonic wave in both time and space v1(z, t) = ei(kzz−ωt) which is
inserted into (6.5) the dispersion relation is obtained by some manipulations

−
∞∑
k=0

(−1)k

k!(k + 2)!

(
1

2
qa

)2k+2

= 0, (6.6)

⇔ −J2 (qa) = 0, (6.7)

where q =

√
ω2

c2T
− k2z and J2 is the second Bessel function.

Equation (6.7) may be extended to

−(qa)J2(qa) = 0 (6.8)
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From [8] a recursion formula for cylindrical Bessel functions can be found

Jp−1(x) + Jp+1(x) =
2p

x
Jp(x),

and by setting p = 1 a relation involving J2 is obtained

J0(x) + J2(x) =
2

x
J1(x),

⇒ −xJ2(x) = xJ0(x)− 2J1(x).

Denoting x = qa gives

− (qa)J2(qa) = (qa)J0(qa)− 2J1(qa) = 0. (6.9)

The dispersion relation (6.9) is the exact dispersion relation for torsional modes given
by [1].
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7 Eigenfrequencies

A comparison study of the eigenfrequencies for the simply supported case is conducted for
m = 1 with the current beam theory, the exact theory and the classical theories. Two
different beam configurations are considered with the ratios L/a = 10 and L/a = 2.

7.1 Beam Theory

As with the dispersion relations the frequency equation is obtained by truncating the
boundary conditions in Section 3.3 and using the recursion formulas and constraint equa-
tions to express the equation system in the displacement fields um−1, vm+1 and wm. Fur-
thermore the displacement fields, um−1, vm+1 and wm, are assumed to be of trigonometric
type as stated in (3.30). The eigenfrequencies can then be obtained by letting the obtained
coefficient matrix be singular.

7.2 Exact Theory

The exact eigenfrequencies for the simply supported boundary conditions are acquired by
rewriting the potentials (4.1) to (4.4) in the following manner

φ = AJm(pr) cos(mθ) sin(
sπ

L
z)e−iωt,

ψz = BJm(qr) sin(mθ) sin(
sπ

L
z)e−iωt,

ψr = CJm+1(qr) sin(mθ) cos(
sπ

L
z)e−iωt,

ψθ = CJm+1(qr) cos(mθ) cos(
sπ

L
z)e−iωt, for s = 1, 2, . . . .

Using (4.5) the displacement fields are acquired, which are then inserted into the equa-
tions for stresses (2.2). The stresses are then inserted into the lateral boundary conditions
at the resulting coefficient matrix is set to be singular. An equation is obtained from which
the eigenfrequencies are calculated.

7.3 Classical Theories

The frequency equations for the classical beam theories, Euler-Bernoulli and Timoshenko
beam theory, are obtained by assuming a displacement field of trigonometric type. From
this ansatz a equation in the frequency ω is obtained from which the eigenfrequencies are
calculated. The ansatz for the Euler-Bernoulli theory is

uEB = A sin(
sπ

L
z)e−iωt,

and for the Timoshenko theory the ansatz is

uT = A sin(
sπ

L
z)e−iωt,

ψ = B cos(
sπ

L
z)e−iωt. (7.1)
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7.4 Eigenfrequencies

The eigenfrequencies are computed for the following material parameters E = 210 GPa,
ν = 0.3, ρ = 7800 kg/m3 and L = 1 meter. For each s in (3.30) there are infinitely
many eigenfrequencies. In this comparison study only the first two of these frequencies
are considered. This means that for each truncation ten eigenfrequencies are computed for
s = 1, 2, . . . , 5. The Euler-Bernoulli theory can only generate one eigenfrequency for each
s while the Timoshenko theory generates two eigenfrequencies. The current beam theory
generates 3n+ 1 eigenfrequencies for each s where n is the truncation order.

Theory Ω1 Ω2 Ω3 Ω4 Ω5

Exact 0.0472148 0.169554 0.334223 0.519392 0.713910
n = 1 0.0469096 0.166193 0.323078 0.495735 0.673345
n = 2 0.0472135 0.169502 0.333877 0.518233 0.711147
n = 3 0.0472148 0.169553 0.334218 0.519362 0.713805
n = 4 0.0472148 0.169554 0.334223 0.519392 0.713908
Timoshenko 0.0472138 0.169520 0.334044 0.518933 0.713098
Euler-Bernoulli 0.0493480 0.197392 0.444132 0.789568 1.23370

Table 7.1: The first eigenfrequencies Ω = ωa/cE for each s and L/a = 10

Theory Ω1 Ω2 Ω3 Ω4 Ω5

Exact 0.713910 1.70790 2.67650 3.61407 4.52813
n = 1 0.673345 1.50529 2.11342 2.52077 2.85535
n = 2 0.711147 1.67482 2.52268 3.09726 3.40839
n = 3 0.713805 1.70396 2.64651 3.47912 4.06835
n = 4 0.713908 1.70758 2.67165 3.58324 4.40517
Timoshenko 0.713098 1.70743 2.68640 3.65006 4.60482
Euler-Bernoulli 1.23370 4.93480 11.1033 19.7392 30.8425

Table 7.2: The first eigenfrequencies Ω = ωa/cE for each s and and L/a = 2

Theory Ω1 Ω2 Ω3 Ω4 Ω5

Exact 1.19007 1.31342 1.47264 1.63547 1.78408
n = 1 1.06057 1.18027 1.33004 1.47976 1.61995
n = 2 1.21612 1.34605 1.51705 1.69516 1.85505
n = 3 1.18875 1.31163 1.47005 1.63198 1.78005
n = 4 1.19012 1.31350 1.47277 1.63566 1.78431
Timoshenko 1.24697 1.38920 1.58623 1.81525 2.06404

Table 7.3: The second eigenfrequencies Ω = ωa/cE for each s and L/a = 10
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Theory Ω1 Ω2 Ω3 Ω4 Ω5

Exact 1.78408 2.45840 3.22656 4.07576 4.97841
n = 1 1.61995 2.34328 3.16277 4.04780 4.97633
n = 2 1.85505 2.50659 3.25513 4.09022 4.98908
n = 3 1.78005 2.45594 3.22596 4.07526 4.97888
n = 4 1.78431 2.45854 3.22668 4.07550 4.97794
Timoshenko 2.06404 3.44814 4.93105 6.45188 7.99087

Table 7.4: The second eigenfrequencies Ω = ωa/cE for each s and L/a = 2

Firstly, the second eigenfrequency for a particular s cannot be computed with the Euler-
Bernoulli beam theory. Furthermore it is seen that the current beam theory is a good
approximation of the eigenfrequencies as more terms are considered i.e. it is truncated at a
larger number. Two observations should be noted, firstly the approximate eigenfrequency
deteriorates as s increases and secondly the approximation deteriorates as the ratio L/a
decreases. That the approximation deteriorates as L/a decreases is natural since the beam
like structure is lost. In order to overcome both these problems the truncation order
must be increased. The Timoshenko beam theory approximates the exact eigenfrequencies
well at large ratios of L/a and for the first eigenfrequencies for a particular s. But the
approximation deteriorates as the ratio L/a is decreased, when s is increased and for the
second eigenfrequency for a particular s. The Euler-Bernoulli is only a good approximation
for large L/a. By studying the tables it is seen that the current beam theory is a good
method for approximating eigenfrequencies.
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8 Mode Shapes and Stress Distributions

In order to illustrate the differences of the current beam theory and the classical theories,
modes shapes and stress distributions for several cases are compared for m = 1. Although
not all possible mode shapes or stress distributions are presented several interesting cases
that show the general tendencies are studied. All the displacement fields and stresses are
transformed to a cylindrical coordinate system. In all the studied cases θ is chosen so
that the trigonometric dependencies is unity. The cases studied are simply supported with
L/a = 10 for the lowest eigenfrequency in the case of each theory. The current beam theory
uses n = 4 truncation since the difference between this theory and exact is small only the
n = 4 is plotted. Although n = 1 may also be considered the difference between n = 4 and
n = 1 theories is so small that only the n = 4 theory is chosen. The radial displacement u
computed as a function of the radius for z = 3L/4 is presented in figure 8.1.

Figure 8.1: u(r, z = 3L/4): Truncation at n = 4 – – –, Timoshenko – · –,
Euler-Bernoulli · · ·

The current beam theory describes a radial displacement that varies while both the
Euler-Bernoulli and the Timoshenko theories describe a constant displacement field lying
on top of each other. The circumferential displacement field behaves in a similar fashion.

In figure 8.2 the stress σzz is plotted as a function of the lateral coordinate z for r = a
i.e. the outer surface of the beam.
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Figure 8.2: σzz(r = a, z): Truncation at n = 4 – – –, Timoshenko – · –, Euler-Bernoulli · · ·

The behavior of σzz is also characteristic for σrr and σθθ when they are computed for a
particular radius. In all cases the classical theories produces larger values than the current
beam theory. It should also be noted that that this stress is at the outer surface of the
beam.

The shear stress σθz is also computed for r = a, presented in figure 8.3

Figure 8.3: σθz(r = a, z): Truncation at n = 4 – – –, Timoshenko – · –,
Euler-Bernoulli · · ·

The Timoshenko theory generates a stress that is small compared to the other two
as the stress coincides with the z-axis. The Euler-Bernoulli theory generates the largest
stresses. Also in the case this stress is at the outer surface.
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The lateral boundary conditions that σrr = σrθ = σrz ≡ 0 at r = a are not shown here.
It could be mentioned that for the current beam theory all these three stresses are zero at
r = a but for the classical theories this is not generally true. Hence the classical stresses
do not fulfill the lateral boundary conditions.

In figure 8.4 and 8.5 σzz and σθz are also plotted for a z = 3L/4

Figure 8.4: σzz(r, z = 3L/4): Truncation at n = 4 – – –, Timoshenko – · –,
Euler-Bernoulli · · ·

Figure 8.5: σθz(r, z = 3L/4): Truncation at n = 4 – – –, Timoshenko – · –,
Euler-Bernoulli · · ·

As in figure 8.2 the stress σzz is smaller for the current beam theory than the classical
theories. σθz is smaller for the classical theories compared to current beam theory although
even for the current beam theory this shear stress is smaller than for instance σzz. In figure
8.5 the stresses produced by the classical theories coincide with the r-axis.
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Lastly the stress σrz is plotted as a function r for z = 3L/4, in figure 8.6.

Figure 8.6: σrz(r, z = 3L/4): Truncation at n = 4 – – –, Timoshenko – · –,
Euler-Bernoulli · · ·

For this case the Timoshenko theory generates small stresses, that coincide with the
r-axis, compared to the current beam theory and the Euler-Bernoulli theory. The Euler-
Bernoulli theory develops a constant stress that is larger than the current beam theory.
The current beam theory generates a stress that varies along the radial coordinate and it
can also be seen that the stress is zero at r = a as stated in the lateral boundary conditions.
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9 Concluding Remarks

This thesis investigates whether the method proposed by Boström [2] is applicable for
obtaining governing beam equations. The obtained equations are assumed to approximate
the exact theory asymptotically. This characteristic is examined by comparing dispersion
curves and eigenfrequencies for a particular case of boundary conditions. It is seen that
the governing equations approximate the exact theory better as more terms are accounted
for and thus it is not unreasonable to assume that the method proposed by [2] generates
asymptotically correct equations. Comparisons of displacement fields and stress fields are
also conducted from which shows that there is a substantial difference between the theory
developed in this thesis and the classical beam theories. Finally it is concluded that the
presented method gives satisfying results for studying beams.
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Appendices

A Uncoupled Recursion Formulas

The recursion formulas where um+2k+3 and vm+2k+3 are uncoupled.

16µ(λ+ 2µ)(k + 1)(k + 2)
[
(k + 1)(k + 2) + (3 + 2k)m+m2

]
um+2k+3 =[

µ(m+ 2k + 4)(m+ 2k + 2)− (λ+ 2µ)m2
]
ρ
∂2um+2k+1

∂t2

−
[
µ(m+ 2k + 4)(m+ 2k + 2)− (λ+ 2µ)m2

]
µ
∂2um+2k+1

∂z2

− [(λ+ µ)(m+ 2k + 2)m− 2µm] ρ
∂2vm+2k+1

∂t2

+ [(λ+ µ)(m+ 2k + 2)m− 2µm]µ
∂2vm+2k+1

∂z2

− 4µ(λ+ µ)(k + 1)(m+ k + 1)(m+ 2k + 4)
∂wm+2k+2

∂z

16µ(λ+ 2µ)(k + 1)(k + 2)
[
(k + 1)(k + 2) + (3 + 2k)m+m2

]
vm+2k+3 =[

(λ+ 2µ)(m+ 2k + 4)(m+ 2k + 2)− µm2
]
ρ
∂2vm+2k+1

∂t2

−
[
(λ+ 2µ)(m+ 2k + 4)(m+ 2k + 2)− µm2

]
µ
∂2vm+2k+1

∂z2

+ [(λ+ µ)(m+ 2k + 4)m+ 2µm] ρ
∂2um+2k+1

∂t2

− [(λ+ µ)(m+ 2k + 4)m+ 2µm]µ
∂2um+2k+1

∂z2

+ 4µ(λ+ µ)(k + 1)(m+ k + 1)m
∂wm+2k+2

∂z

µ
[
(m+ 2k + 2)2 −m2

]
wm+2k+2 = ρ

∂2wm+2k

∂t2
− (λ+ 2µ)

∂2wm+2k

∂z2

− (λ+ µ)(m+ 2k + 2)
∂um+2k+1

∂z
− (λ+ µ)m

∂vm+2k+1

∂z
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B Linear Differential Operators

duu =
[µ(m+ 2k + 4)(m+ 2k + 2)− (λ+ 2µ)m2] ρ ∂

2

∂t2

16µ(λ+ 2µ)(k + 1)(k + 2) [(k + 1)(k + 2) + (3 + 2k)m+m2]
−

−
[µ(m+ 2k + 4)(m+ 2k + 2)− (λ+ 2µ)m2]µ ∂2

∂z2

16µ(λ+ 2µ)(k + 1)(k + 2) [(k + 1)(k + 2) + (3 + 2k)m+m2]
+

+
4µ(λ+ µ)(k + 1)(m+ k + 1)(m+ 2k + 4)

16µ(λ+ 2µ)(k + 1)(k + 2) [(k + 1)(k + 2) + (3 + 2k)m+m2]

(λ+ µ)(m+ 2k + 2) ∂2

∂z2

µ [(m+ 2k + 2)2 +m2]

duv = −
[(λ+ µ)(m+ 2k + 2)m− 2µm] ρ ∂

2

∂t2

16µ(λ+ 2µ)(k + 1)(k + 2) [(k + 1)(k + 2) + (3 + 2k)m+m2]
+

+
[(λ+ µ)(m+ 2k + 2)m− 2µm]µ ∂2

∂z2

16µ(λ+ 2µ)(k + 1)(k + 2) [(k + 1)(k + 2) + (3 + 2k)m+m2]
+

+
4µ(λ+ µ)(k + 1)(m+ k + 1)(m+ 2k + 4)

16µ(λ+ 2µ)(k + 1)(k + 2) [(k + 1)(k + 2) + (3 + 2k)m+m2]

(λ+ µ)m ∂2

∂z2

µ [(m+ 2k + 2)2 +m2]

duw = − 4µ(λ+ µ)(k + 1)(m+ k + 1)(m+ 2k + 4)

16µ(λ+ 2µ)(k + 1)(k + 2) [(k + 1)(k + 2) + (3 + 2k)m+m2]

ρ ∂3

∂z∂t2

µ [(m+ 2k + 2)2 +m2]
+

+
4µ(λ+ µ)(k + 1)(m+ k + 1)(m+ 2k + 4)

16µ(λ+ 2µ)(k + 1)(k + 2) [(k + 1)(k + 2) + (3 + 2k)m+m2]

(λ+ 2µ) ∂3

∂z3

µ [(m+ 2k + 2)2 +m2]

dvu =
[(λ+ µ)(m+ 2k + 4)m+ 2µm] ρ ∂

2

∂t2

16µ(λ+ 2µ)(k + 1)(k + 2) [(k + 1)(k + 2) + (3 + 2k)m+m2]
−

−
[(λ+ µ)(m+ 2k + 4)m+ 2µm]µ ∂2

∂z2

16µ(λ+ 2µ)(k + 1)(k + 2) [(k + 1)(k + 2) + (3 + 2k)m+m2]
−

− 4µ(λ+ µ)(k + 1)(m+ k + 1)m

16µ(λ+ 2µ)(k + 1)(k + 2) [(k + 1)(k + 2) + (3 + 2k)m+m2]

(λ+ µ)(m+ 2k + 2) ∂2

∂z2

µ [(m+ 2k + 2)2 +m2]
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dvv =
[(λ+ 2µ)(m+ 2k + 4)(m+ 2k + 2)− µm2] ρ ∂

2

∂t2

16µ(λ+ 2µ)(k + 1)(k + 2) [(k + 1)(k + 2) + (3 + 2k)m+m2]
−

−
[(λ+ 2µ)(m+ 2k + 4)(m+ 2k + 2)− µm2]µ ∂2

∂z2

16µ(λ+ 2µ)(k + 1)(k + 2) [(k + 1)(k + 2) + (3 + 2k)m+m2]
−

− 4µ(λ+ µ)(k + 1)(m+ k + 1)m

16µ(λ+ 2µ)(k + 1)(k + 2) [(k + 1)(k + 2) + (3 + 2k)m+m2]

(λ+ µ)m) ∂2

∂z2

µ [(m+ 2k + 2)2 +m2]

dvw =
4µ(λ+ µ)(k + 1)(m+ k + 1)m

16µ(λ+ 2µ)(k + 1)(k + 2) [(k + 1)(k + 2) + (3 + 2k)m+m2]

ρ ∂3

∂z∂t2

µ [(m+ 2k + 2)2 +m2]
−

− 4µ(λ+ µ)(k + 1)(m+ k + 1)m

16µ(λ+ 2µ)(k + 1)(k + 2) [(k + 1)(k + 2) + (3 + 2k)m+m2]

(λ+ 2µ) ∂3

∂z3

µ [(m+ 2k + 2)2 +m2]

dwu = − (λ+ µ)(m+ 2k + 2)

µ [(m+ 2k + 2)2 −m2]

∂

∂z

dwv = − (λ+ µ)m

µ [(m+ 2k + 2)2 −m2]

∂

∂z

dww =
ρ

µ [(m+ 2k + 2)2 +m2]

∂2

∂t2
− (λ+ 2µ)

µ [(m+ 2k + 2)2 +m2]

∂2

∂z2
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C System of Beam Equations for n = 1

((λ+ 2µ)m− 2µ)um−1 + λmvm−1 +

[
((λ+ 2µ)(m+ 2)− 2µ)um+1 + λmvm+1 + λ

∂wm
∂z

]
a2+

+

[
((λ+ 2µ)(m+ 4)− 2µ)um+3 + λmvm+3 + λ

∂wm+2

∂z

]
a4 = 0

(m− 2)vm−1 −mum−1 + [mvm+1 −mum+1] a
2 + [(m+ 2)vm+3 −mum+3] a

4 = 0

∂um−1
∂z

+mwm +

[
∂um+1

∂z
+ (m+ 2)wm+2

]
a2 = 0
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