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Software Architecture for Reducing Testing Effort while Ensuring Safety in
Autonomous Road Vehicles
MARTIN CALLEBERG
LINUS HAGVALL
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
This study proposes a software architecture which separates safety constraints from
functionality within the context of decision making in autonomous road vehicles.
The intention of the separation is to avoid having to recertify safety requirements
when updating functionality. The scope is limited to only solving problems which
exist as a result of separating safety constraints and functionality. A literature
review was done in order to identify common software architectural patterns used
in connection with safety in autonomous road vehicles. The patterns were used
to design a general architecture which was evaluated through application in an
industrial case.

The resulting system is divided into a decision component and a safety component.
The decision component is responsible for passenger comfort and for reaching the
desired destination. The safety component is responsible for ensuring safety and has
the power to override any action proposed by the decision component. A prototype
was implemented and showed promising results. While the proposed architecture
does not necessarily make the initial development easier the benefits are realized
later in the life cycle through faster and cheaper verification of new functionality.

Keywords: software architecture, autonomous vehicle, safety, testing effort, decision
making
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1
Introduction

Safety-critical systems are systems which, when failing, can cause consequences
deemed unacceptable, generally referring to accidents involving humans or dam-
age to property or the environment [1]. This puts stricter requirements on different
parts of the development process, such as specification, architecture and verification
of the system.

Systems for autonomous road vehicles can be considered safety-critical as they have
the potential to cause accidents with both material damage and human injury [2].
Autonomous vehicles can be autonomous to different degrees, ranging from adaptive
cruise control to driving completely autonomous without the need for a standby
driver [3]. Vehicles with a higher autonomous degree have more and stricter safety
requirements.

1.1 Problem Statement
Developing a system which is hard to change is typically uneconomical as the require-
ments for a system tend to change during its lifetime [4]. When the functionality
is changed to meet new requirements, the system needs to be tested to verify that
it performs as expected [5]. Furthermore, to ensure old functionality still works,
everything which could have been affected by the change also needs to be tested by
doing regression testing.

Safety-critical systems often need extensive testing to receive a certificate that they
are proven, to some degree of uncertainty, to be safe for production [6]. The tests for
these types of systems thus need to cover as many scenarios as possible and can be
both time consuming and costly to run. One example of safety-critical software is
software within vehicles [7], especially autonomous vehicles are expected to require
extensive testing [8]. The testing and verification required to put new software
in production, or updating old software, creates a sizeable obstacle for providing
customers with the latest technology.

Nord et al. [9] argue that this type of problem can be considered an architectural
problem. If functionality is split into different architectural components with no di-
rect or indirect dependencies, there is no need to test both functionality areas if only

1



1. Introduction

one area is changed. Kelly [10] argues in a similar direction, but instead of arguing
for different components he uses a logical division of safety-critical aspects into dif-
ferent safety cases. Both approaches build upon a principle of dividing functionality
and thus limiting the number of dependencies between features. However, this can
be problematic in certain contexts. In the context of autonomous machines Behere
et al. [11] argue that there is a tendency towards requiring increased communication
between components.

Accordingly, combining the thorough testing required for safety-critical systems with
the ability to provide frequent updates is a challenge. There are some approaches
which could reduce the need for testing by moving safety aspects to separate compo-
nents. Underwood et al. [12] present an approach where they focus on autonomous
trucks. They suggest a safety layer which verifies all actions before they are carried
out by the vehicle. Underwood et al. speculate that their architecture would only
require safety certification of the safety layer and certain vehicle safety modules in
other layers.

Another approach is used by Liu and Özgüner [13] who use a separate communica-
tion path for emergency scenarios. Based on the perceived environment a decision
is made for whether an emergency action by a safety component is required or if
normal operation can continue.

A third approach is presented by Behere and Törngren [14]. They use a reactive
control component which has the ability to override any actions taken by other
components. The reactive control component runs on a higher frequency and triggers
an action when an immediate threat is detected.

A common factor for the mentioned studies is that they discuss the task and respon-
sibilities of their safety components but do not go into detail about how it could be
implemented. Behere and Törngren [14] specifically mention that there is a need for
more research regarding details of the different components.

These studies all propose solutions which could be used to reduce testing of au-
tonomous road vehicles through decoupling safety aspects from decision making.
However, there still remains a need for studies which focus on how such a safety
component could be designed.

1.2 Purpose
The purpose of the study is to propose a software architecture which separates safety
constraints from functionality within the context of autonomous road vehicles. The
intention of the separation is to avoid having to recertify the implementation of
safety constraints in case of functionality updates.

2



1. Introduction

1.3 Research Questions
In order to fulfill the purpose, of proposing a software architecture for autonomous
road vehicles which separates safety constraints from functionality, the following
research questions are investigated:

RQ1 Which software architectural patterns and tactics are used in literature to
increase safety in autonomous road vehicles?

RQ2 How can the patterns and tactics from RQ1 be used to design a general archi-
tecture which separates safety constraints from functionality?

1.4 Scope
The proposed architecture focuses on how to separate safety constraints from func-
tionality in an autonomous road vehicle. More precise, the software components
controlling the autonomous road vehicle are considered. The study only focuses on
safety constraints related to the driving activity. While it could be argued that there
are a number of different safety related activities, such as the unloading and loading
of a vehicle, these are not included in the study.

The study does not present ideas on how to implement functionality needed for
an autonomous road vehicle to operate. The study only attempts to solve problems
which are created as a result of the separation of safety constraints and functionality.
As a result, problems which need to be solved regardless of whether the decision
component is separated or not is not considered. Accordingly, the study does not
validate safety constraints and assumes that all requirements are correctly specified.
However, the division of responsibilities between functionality and safety is clearly
defined.

This study focuses on the part of a system which handles short term decision making
with a time horizon of up to a few seconds. Furthermore, the decision making should
be able to make decisions without external help. This includes that the vehicle is
not allowed to rely on a backup driver or be dependent on communication with other
vehicles or infrastructure systems.

Safety related problems in areas separated from decision making are not considered.
All incoming sensor data, both regarding the vehicle status and the surrounding
environment, is assumed to be correct. The same thing goes for the actuators which
control the vehicle. Although the architecture is from a software perspective, it is
still necessary to design an architecture which allows for hardware replication.

3
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2
Background

In this chapter concepts related to autonomous road vehicles are presented. The
typical major components in an autonomous vehicle are described as well as how
safety requirements for road vehicles can be classified.

2.1 Autonomous Road Vehicles
All autonomous road vehicles typically have three major components [15], which can
be seen in Figure 2.1. The perception component is responsible for gathering in-
formation about the surrounding environment. To do this the component generally
uses a set of sensors mounted on the vehicle, such as different types of cameras and
Global Positioning System (GPS) antennas. Using sensors the perception compo-
nent can detect road surface and where other traffic participants and obstacles are
in relation to the ego vehicle. The ego vehicle refers to the vehicle the system runs
on.

The decision component is responsible for piloting the vehicle [15] and corresponds
to the human driver in traditional vehicles. The component can consist of several
types of guidance systems making plans for different time scales. Some systems
might be handling the overall route, and thus focus on which intersection to turn
at, while other systems decide the trajectory for the next few seconds.

Figure 2.1: Three typical components in an autonomous road vehicle.
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2. Background

The final component, the vehicle control component, is responsible for executing
requests generated by the decision component [15]. The vehicle control component
calculates which actuators to use in order to fulfill the requests from the decision
component.

2.2 Safety Classification
Safety requirements in the automotive industry can be classified with an Automotive
Safety Integrity Level (ASIL), defined by ISO 26262 [16]. These levels are determined
by performing a risk analysis of the system for potential hazards. From the result
of the analysis different requirements for the system are given an ASIL classification
between A and D, where D is the highest level and thus denoting a requirement
which has high criticality in regards to safety. However, if a requirement is not
safety-critical it is classified as ASIL QM.

When performing the risk analysis the severity, exposure and controllability in the
event of a certain fault is considered. Severity refers to the severity of the accidents
which could occur as a result from the fault, exposure refers to how often the vehicle
is in a situation where the fault would be dangerous and controllability refers to the
ability a driver has to mitigate the fault. Each parameter is classified with a value
according to a set of guidelines. The appropriate ASIL classification is given by a
lookup table using the three parameters.

ASIL requirements can be decomposed into two requirements with lower ASIL clas-
sification. The sum of the two resulting ASIL classifications has to be greater or
equal to the old ASIL classification, for example ASIL D can be decomposed into
ASIL B + ASIL B or ASIL A + ASIL C. However, the decomposition can only be
done if the resulting requirements are completely independent.

6



3
Method

This study can be divided into three different phases: literature review, general ar-
chitecture and industrial case. The first phase, literature review, relates to RQ1 and
creates a foundation for the rest of the study to build on. The general architecture
and the industrial case relates to RQ2, where the industrial case functions as an
evaluation of the general architecture.

3.1 Literature Review
The first part of the study was a literature review focusing on architectural pat-
terns and tactics for safety in autonomous road vehicles. The literature review was
conducted using a process adapted from Kitchenham’s [17] methodology. The re-
view extracted data both regarding which patterns and tactics are used as well as
their described characteristics. The result of the literature review answers RQ1, to
find which software architectural patterns and tactics are currently used to increase
safety in autonomous road vehicles.

3.1.1 Identification of Research
To find relevant research papers a suitable search query had to be generated. Ini-
tially, trial searches were performed and the results analyzed for relevance and key-
words. Synonyms for the identified keywords were then added to avoid excluding
potentially relevant research papers.

Using the identified keywords the search query was divided into three parts. The
first part aimed to limit the result to the relevant application area of autonomous
road vehicles:

(autonomous OR automated) AND (automotive OR car OR truck OR bus OR road
OR drive OR driving)

The second part of the query aimed to limit the result to the relevant technology
area:

(software OR system) AND architecture

7



3. Method

The last part of the query aimed to limit the result to the desired focus of improving
safety in autonomous road vehicles:

(safety OR safe)

The complete search query was used on four scientific databases. The selected
databases for this study were ACM Digital Library1, IEEE Xplore Digital Library2,
ScienceDirect3 and Web of Science4. The searches were done on the title, abstract
and keywords of research papers, which resulted in 78, 369, 36 and 226 papers
respectively. Beside the databases, there were 18 additional papers suggested by
field experts.

3.1.2 Inclusion Criteria
RQ1 and the purpose led to a couple of inclusion criteria which had to be fulfilled.
Since the study focuses on autonomous road vehicles, the same had to be true for
research papers in the literature review. Even if a paper did not focus on autonomous
road vehicles, it could be included if it explicitly stated it as an area where the result
could be applicable.

As RQ1 is in the context of software architecture, the literature review had the same
focus. Studies were included if they provided solutions within, or partly within,
the context of software architecture. Thus papers which discussed an architecture
which combines hardware and software architecture were included. In order to be
included the paper also had to provide some sort of solution or approach to solve a
problem. The literature review did not include papers which only brought attention
to problems.

Given the scope of the study, see section 1.4 Scope, included papers had to discuss
safety in the context of decision making. This resulted in two inclusion criteria: in
order to be included a paper had to discuss an architecture which includes at least
one safety aspect and be at least partly within the context of decision making.

The scope also limits the study to autonomous vehicles that are able to operate
without external help. This means that the solution provided by a paper should
not be dependent on a standby driver nor on communication with other vehicles or
traffic infrastructure systems.

This can be summarized in six inclusion criteria:

• The paper must focus on autonomous road vehicles or use autonomous road
vehicles as an example where their result could be applicable.

• The paper must discuss an architecture with software aspects.

1http://dl.acm.org/
2http://ieeexplore.ieee.org
3http://www.sciencedirect.com/
4https://webofknowledge.com/
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3. Method

Figure 3.1: The process of the literature review.

• The paper must provide a solution or approach, as opposed to only bringing
attention to an issue.

• The paper must discuss an architecture which contains a safety aspect.
• The paper must discuss an architecture which contains some information re-

garding decision making.
• The paper must discuss an architecture where the vehicle is not dependent on

the driver, communication with other vehicles or communication with infras-
tructure systems.

3.1.3 Study Selection
An overview of the study selection process can be seen in Figure 3.1. Initially, the
title and abstract of all papers were studied for whether they should be further in-
vestigated. As suggested by Kitchenham [17], the inclusion criteria were interpreted
liberally when reading the title and abstract of a paper. No paper was excluded un-
less it was clear that it did not meet the inclusion criteria. All papers were reviewed
by both researchers and no paper was excluded unless both researchers agreed. After
removing duplicates and excluding non-relevant papers the number of papers was
reduced to 83.

The researchers divided the remaining papers and read through them in full with
the same inclusion criteria as previously in mind. However, the inclusion criteria
were not interpreted as liberally as before. At this point papers were excluded even
if only one researcher had read it through. If it was unclear whether a paper should
be excluded it was discussed together with the other researcher. After excluding
papers based on their full text, 12 papers remained.

The 12 papers with relevant content were used to find additional research. Kitchen-
ham [17] suggests that the reference lists of relevant research papers are searched for
more potentially relevant papers. By examining the references 4 additional papers
were deemed to be of interest, increasing the total number of papers to 16.

9



3. Method

3.1.4 Data Extraction and Synthesis
The goal of the literature review was to identify all proposed safety related solu-
tions as well as the problems the papers were trying to solve. If a paper provided a
discussion of their proposed solution it was examined for thoughts on the solution’s
characteristics. This study considers the following characteristics interesting: draw-
backs, advantages and rationale for choosing the solution. The papers were divided
between the researchers and carefully read through. All parts which the assigned
researcher deemed as potential candidates for extraction were discussed between
both researchers and a common decision was made for what information passed the
extraction criteria.

The proposed solutions were compared for similarities and grouped accordingly.
Within each group the solutions were compared for differences, both regarding the
actual solutions and corresponding characteristics. The result was a list of common
patterns studied in relation to autonomous road vehicles regarding safety. This list
was used to answer RQ1, to find which software architectural patterns and tactics
are currently used to increase safety in autonomous road vehicles.

3.2 General Architecture
The result of the literature review was used to develop a general architecture. The
goal of the architecture was to separate safety constraints from functionality and to
provide a base for answering RQ2. This section presents the method for developing
the architecture.

3.2.1 Requirement Elicitation
In order to develop an architecture it is necessary to have requirements for what it
must support. While the general architecture in this study should avoid case specific
requirements there still are some constraints the architecture needs to adhere to.
As stated in RQ2, the architecture should be general and thus not provide any
implementation specific details. This results in that the requirements should stay
on the same abstraction level.

The requirements were elicited from three sources: the context of the study, the
literature review and the industrial case. The purpose and scope defines a context
from which the majority of the requirements could be identified. These require-
ments were also corroborated by the selected papers in the literature review. As
the selected papers in the literature review studied autonomous road vehicles, the
requirements presented for the studied systems could potentially be applied in this
study as well. However, requirements which were specific to the cases described in
the papers were ignored. The general requirements were later complemented with
context independent requirements which surfaced during the elicitation for the in-
dustrial case. The requirement elicitation resulted in a list of requirements which
was used when designing the general architecture.
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3. Method

3.2.2 Design
The general architecture was developed using Attribute-driven design (ADD)[18].
ADD is a process where requirements which can have an impact on the architecture
are identified as architectural drivers. The architectural drivers are later used to
iteratively develop a system architecture. However, the first step is to identify all
requirements, see section 3.2.1 Requirement Elicitation.

The second step, using ADD, was to select a part of the system to decompose into
smaller components. The initial system considered for decomposition was the typical
architecture described in section 2.1 Autonomous Road Vehicles. Due to the purpose
and scope of the study, only the decision component was further decomposed into an
increasingly more detailed architecture. For every decomposition the requirements
were checked for whether they were architectural drivers for any part of the system.

In accordance with ADD, the next steps were to evaluate and apply different archi-
tectural patterns to the system. In an iterative fashion, an unfulfilled architectural
driver was selected to be considered in the next decomposition of the system. Dif-
ferent patterns were assessed for how well the current architectural driver could be
fulfilled using the pattern, where the most promising pattern was applied to the
architecture. In some cases small alterations were necessary for the pattern to fit.

At the end of an iteration the final step was to verify that the architecture fulfilled
the intended architectural drivers. This included both the architectural drivers for
the current iteration as well as from previous iterations. The process finished when
the architecture provided support for all architectural drivers and all parts were
decomposed into sufficient detail.

3.3 Industrial Case
The preliminary general architecture, or in other words the preliminary answer to
RQ2, was evaluated through application in an industrial case using action research.
Action research involves five steps: diagnosing, action planning, action taking, eval-
uating and specifying learning [19]. The process is iterative and earlier steps are
revisited as problems are discovered or new knowledge is acquired. Action research
includes close collaboration with practitioners, both when it comes to designing a
solution and evaluating the result.

The action research was done in collaboration with Volvo Group Trucks Technol-
ogy. Through this collaboration the researchers gained access to a system under
development for an autonomous long vehicle combination. The company’s goal
was to be able to update the decision making component without affecting safety.
This provided an opportunity to apply and test the general architecture in prac-
tice. The architecture used at the company is similar to the typical architecture for
autonomous road vehicles described in section 2.1 Autonomous Road Vehicles.
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Four senior industry experts at Volvo were used to provide insight in fields which
were necessary for the study. One industrial expert is within active safety, one within
software architecture and two within vehicle dynamics. These fields contain infor-
mation regarding: how to keep a vehicle safe, software architecture within vehicles
and how a vehicle can behave. One expert from each field have leading technical
positions and have had exposure towards vehicle automation. The fourth expert,
within vehicle dynamics, is currently finishing his Ph.D. related to automation of
long vehicle combinations and have written parts of the decision component studied
in the industrial case.

The process of applying the general architecture is divided into three different parts.
The following sections describe the requirement elicitation, the architecture adap-
tation and the evaluation process.

3.3.1 Requirement Elicitation
The first step in action research, diagnosing, is to identify problems. In this case
the general problem of the study was already defined and was also present in the
industrial case. In order to be able to address the details of the industrial case it
was necessary to elicit case specific requirements.

Initially, four unstructured interviews were carried out with the previously men-
tioned industry experts. The purpose of an unstructured interview generally is to
gather as much information as possible within a loosely defined topic [20]. The in-
terviews had open-ended questions to allow the experts to freely discuss the topic,
including both what they considered part of the problem as well as which aspects
they considered most important. The result from the interviews was used to get an
overview of the problem and determine which areas to focus on initially.

The existing system was studied through internal documentation. When studying
the documentation, communication between relevant system components were inves-
tigated for what information they provided and required. Among other things, this
included the communication between the perception, decision and vehicle control
components.

The information from both the unstructured interviews and the studied documen-
tation was used in eight workshops and three additional interviews. The interviews
were semi-structured and conducted with the same field experts as in the initial
interviews. Although the discussions during the workshops and interviews were
open-ended, they started with an existing problem in focus. Since the process was
iterative, a workshop or interview was often used both to confirm and reiterate
requirements as well as to develop and evaluate different potential solutions.
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3.3.2 Architecture Adaptation
Applying the general architecture to the system provided by Volvo meant it was
necessary to identify areas in need of adjustments and to develop a more detailed
architecture. The first step was to identify changes between the architecturally sig-
nificant requirements in the Volvo case and the general case. The Volvo requirements
were often more detailed, or context specific, versions of the requirements for the
general architecture.

The second step was to study the system’s current architecture in order to identify
where the solution could be applied. This meant identifying the responsibilities of
the different components within Volvo’s system. The most important part was to
identify where different safety constraints were currently handled.

The next step was to plan how the general architecture could be applied. The plan-
ning included both decomposing the architecture and looking at whether changes
were required. This was done using ADD [18], similarly to how the general archi-
tecture was initially created (see section 3.2.2 Design).

The final step was to define the communication between the components, with extra
effort on deciding what information the solution requires and provides. This was
done in order to be able to determine the requirements and constraints the solution
would put on the rest of the system.

As mentioned in 3.3.1 Requirement Elicitation, there were continuous workshops
with industry experts which focused both on evaluating different approaches and
on solving problems which had surfaced. Advantages and disadvantages between
different approaches were compared before eventually being chosen or rejected.

3.3.3 Evaluation
As previously mentioned in section 3.3.1 Requirement Elicitation, the industry ex-
perts evaluated the solution continuously throughout the project during workshops.
The focus of the workshops differed depending on the attending industry experts, for
example the active safety expert focuses his expertise on the safety related aspects of
the project. The result was an iterative approach with an evolving architecture. As
new ideas emerged in the industrial case they were also evaluated for applicability
in a general context, in other words being applicable in the general architecture.
The evaluation of the architecture mainly focused on its ability to handle different
kinds of problems. The problems differed between being well defined to only being
an abstract idea of what could become a problem in the future.

An implementation of the architecture was developed as a proof of concept prototype
to show whether the architecture was feasible to implement. The prototype is only
an implementation of the safety component and uses input from already existing
systems. The prototype is limited to handling a set of highway scenarios. Each
scenario was tested to see whether the solution would be to able to meet both
functional and non-functional (quality) requirements. The scenarios were tested in
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an already existing simulator and test that the vehicle never leaves a safe state
and how the vehicle is allowed to operate. The results from the tests were used
in workshops to discuss the design choices and possible improvements as well as to
refine the architecture for RQ2.
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4
Literature Review

The literature review for software architectural patterns and tactics for safety in
autonomous road vehicles resulted in 16 relevant papers. The solutions provided by
the papers were divided into five different categories and can be seen in Table 4.1.

The papers were also categorized according to their focus area and level of detail,
see Table 4.2. While some papers discuss the solutions in great detail, other papers
discuss it at a conceptual level. Furthermore, the papers have different focus were
some discuss safety in more detail than functionality while some discuss functionality
in more detail than safety. There were also papers with a more general focus.
However, regardless of focus, all papers provide information regarding safety aspects
in accordance with the inclusion criteria, see section 3.1.2 Inclusion Criteria. The
16 included papers and their characteristics are described in the following sections
and answers RQ1, of which software architectural patterns and tactics are used in
literature to increase safety in autonomous road vehicles.

Several of the papers use different vocabularies when discussing the same subject.
In order to be able to compare the papers more easily a shared vocabulary is used
when presenting them, for example calling similar components by the same name.
When applicable the same naming as described in section 2.1 Autonomous Road
Vehicles for autonomous road vehicles is used.
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Table 4.1: Solution used by the relevant papers in the literature review.
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A Using Dynamic Adaptive Systems in Safety-
Critical Domains [21]

X

B Human Driver Model and Driver Decision
Making for Intersection Driving [13]

X

C Safe and Efficient Runtime Resource Man-
agement in Heterogeneous Systems for Au-
tomated Driving [22]

X X

D Strategy and architecture of a safety concept
for fully automatic and autonomous driving
assistance systems [23]

X

E Towards trustworthy intelligence on the
road: A flexible architecture for safe, adap-
tive, autonomous applications [24]

X

F Comparison of fail-operational software ar-
chitectures from the viewpoint of an auto-
motive application [25]

X

G Truck Automation: Testing and Trusting the
Virtual Driver [12]

X X

H SAFER: System-level Architecture for Fail-
ure Evasion in Real-time Applications [26]

X X

I A functional reference architecture for au-
tonomous driving [14]

X

J Caroline: An autonomously driving vehicle
for urban environments [27]

X

K The future of driving, Deliverable D21.1 Ar-
chitecture [28]

X

L A hardware and software framework for cog-
nitive automobiles [29]

X

M Design and capabilities of the Munich Cog-
nitive Automobile [30]

X

N Design of the planner of team AnnieWAY’s
autonomous vehicle used in the DARPA Ur-
ban Challenge 2007 [31]

X

O Junior: The Stanford Entry in the Urban
Challenge [32]

X

P Making Bertha Drive—An Autonomous
Journey on a Historic Route [33]

X
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Table 4.2: Categorization of papers according to level of detail and focus area.

Figure 4.1: Pattern for a layered solution.

4.1 Layer
Underwood et al. [12] (G), Goebl et al. [30] (M) and Gindele et al. [31] (N)
describe architectures where trajectories are verified before they are executed. All
three approaches are considered conceptual solutions, see Table 4.2, and build upon
the same principles. Instead of sending the planned trajectory directly to the vehicle
control component the trajectory is sent through a safety layer which verifies it. If
the layer deems the trajectory unsafe it can modify or reject the trajectory before
forwarding it to vehicle control. In Figure 4.1 an abstract software pattern for this
safety layer can be seen. The layer’s goal of increasing safety results in a constraint
that all communication to the vehicle control component must go through the layer.
If another component can communicate directly with the vehicle control component
it will negate the safety layer’s ability to ensure different safety aspects.

Gindele et al. [31] (N) are sparse with additional details regarding the safety layer.
However, Underwood et al. [12] (G) and Goebl et al. [30] (M) provide more insight
and discussions. A safety layer as described by Underwood et al. checks if a tra-
jectory will lead to collisions and modifies it to avoid accidents. If the component
generating trajectories fails the safety layer will take control of the vehicle and park
it in a safe location. The rationale given by Underwood et al. for using a layer is
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Figure 4.2: Left: pattern for a monitor. Right: pattern for a watchdog.

to ease the safety verification of the system. This is achieved by decomposing the
system by functionality and thus separating safety aspects into a separate layer. Un-
derwood et al. speculate that it could be sufficient for safety certification to prove
that the system can detect faults and keep the vehicle in a safe state. However,
Underwood et al. do not provide details on how it can be realized.

As opposed to Underwood et al. [12] (G), Goebl et al. [30] (M) do not discuss
rationale and intent for using a safety layer. Instead, Goebl et al. focus on how the
safety layer can ensure safety of a trajectory. By calculating the set of all possible
positions a traffic participant can reach, a trajectory can be checked for potential
collisions. If a trajectory does not intersect with any set it can be guaranteed as
safe. Contrary to Underwood et al. [12] (G) and Gindele et al. [31] (N), Goebl et
al. do not specify how the layer should respond to unsafe trajectories.

4.2 Monitor and Watchdog
An approach commonly used among the selected articles was to use a monitor or
watchdog to ensure that different parts of the system run as intended. Even though
the level of detail and focus area varies, see Table 4.2, there are still similarities
in that a dedicated part of the system is responsible for performing an emergency
action if there is a critical system failure.

The watchdog approach is used in different forms by Rauskolb et al. [27] (J),
Werling et al. [29] (L), Kim et al. [26] (H) and Montemerlo et al. [32] (O). These
papers present solutions where one or more watchdog components listen to output
of other components, a simple variant of a watchdog architecture is shown in Figure
4.2. Depending on the solution a watchdog can listen to heartbeats directly from
different components or listen to their communication with other components. The
responsibility of a watchdog can also vary depending on both the watchdog’s problem
solving capabilities and on whether the watchdog is distributed or centralized.

Both Rauskolb et al. [27] (J) and Montemerlo et al. [32] (O) describe an approach
where watchdogs listen to heartbeats from different processes throughout the system.

18



4. Literature Review

The watchdogs can restart processes and, if deemed necessary, perform an emergency
stop of the vehicle. The concept is taken a bit further by Rauskolb et al. who use
one master watchdog and several slave watchdogs. Different components have their
own local slave watchdog sending data to a central master watchdog which can
perform an emergency stop if necessary. Rauskolb et al. argue that the distributed
watchdogs with their ability to restart different processes independently maximize
the self-healing capability.

Werling et al. [29] (L) have a different approach and propose a framework with
a central real-time database which different components read from and write to.
This allows them to use a data watchdog which only looks at the data inside the
database. If a process does not input data for a certain amount of time it will
be restarted. In case the process still does not input data an emergency stop of
the vehicle is performed. To detect if the data watchdog or database fails, there
is another watchdog which only checks that the data watchdog and database are
running.

Kim et al. [26] (H) turn around completely and do not have a dedicated watchdog
component. Kim et al. discuss an approach where it is necessary to run several
identical software processes. The proposed solution is to have every process send a
heartbeat to other identical processes. This means that different processes watch
each other and can take over if a process fails.

Borrman et al. [22] (C) and Hörwick and Siedersberger [23] (D) use a monitoring
approach. A monitor component differs from a watchdog component in that it ac-
tively requests information as opposed to passively listening, see Figure 4.2. Hörwick
and Siedersberger present an architecture where they use both a local monitor in
each larger block as well as a global monitor. The approach can be compared with
Rauskolb et al. [27] (J) who use a similar distributed structure but with watchdogs.
Hörwick and Siedersberger mention that some faults can be discovered through a
final plausibility check by the global monitor while some faults only can be discov-
ered locally. For example it is hard to discover faults from perception in a global
monitor.

Borrman et al. [22] (C) describe a solution where the monitor has different responsi-
bilities from previously discussed papers. The monitor determines the state in which
the system runs based on the execution time of certain processes. By deciding a
state the monitor determines which actions can be taken by the vehicle. Examples
of this could be how hard the vehicle is allowed to brake and how sharp it is allowed
to turn. In case of severe system failure the monitor can select a safe error state
which can perform an emergency stop.
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Figure 4.3: Pattern for instant action.

4.3 Instant Action
Liu and Özgüner [13] (B), Behere and Törngren [14] (I), Jakobsson et al. [28]
(K) and Ziegler et al. [33] (P) all describe architectures where components can be
bypassed if an emergency maneuver is deemed necessary. When compiling data from
the vehicle’s sensors it can be discovered that there is an obstacle dangerously close.
Instead of sending the sensor data to a decision component the system could send
a message directly, or through a dedicated emergency component, to the vehicle
control component. An instant emergency action could then be performed without
having to wait for the decision component. Figure 4.3 shows an abstract software
pattern for this type of behavior.

Jakobsson et al. [28] (K) present an architecture with a decision component which
decides a destination for the vehicle and a separate component which generates
the trajectory. If the perception component considers it necessary it can bypass
the decision component and directly communicate with the component generating
trajectories. Ziegler et al. [33] (P) present a system using the same approach as
Jakobsson et al. However, Ziegler et al. suggest that the instant action can be
implemented by the vehicle’s active safety functions. As such safety features can
remain active when vehicles become autonomous, the autonomous system does not
have to include an implementation of the same functionality. Behere and Törngren
[14] (I) and Underwood et al. [12] (G) present similar arguments that some safety
can be given by the collision avoidance already present in some modern cars.

The solution described by Liu and Özgüner [13] (B) use a dedicated component to
handle emergencies. This component is triggered when the perception component
detects an obstacle dangerously close or if other vehicles break traffic rules. When
triggered, it will take control of the vehicle by overriding the requests sent from the
decision component and try to put the vehicle in a safe state. As seen in Table
4.2, Liu and Özgüner do not focus on safety and thus do not provide more relevant
details.
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Figure 4.4: Example of redundancy.

Similarly to Liu and Özgüner [13] (B), Behere and Törngren [14] (I) describe an
architecture which has a dedicated component for handling emergencies. The ded-
icated component is instantly triggered when something unanticipated is detected
by the perception component. However, Behere and Törngren note that if the ve-
hicle’s decision component is sufficiently fast, it could detect the threat and make
an appropriate decision similar to that of the dedicated emergency component. In
that case the dedicated component would only be used as a redundancy measure.

Brancovici [24] (E) presents a similar approach to Liu and Özgüner [13] (B) and
Behere and Törngren [14] (I), but with a component between the perception and
decision components. The proposed component can decide whether to communicate
to the decision or the vehicle control component depending on what the perception
component reports. If there is a risk for a potential accident the component will
communicate directly with the vehicle control component, otherwise it will address
the decision component for more intelligent decisions.

4.4 Faults and Redundancy
A common topic among the selected articles was how to deal with faults and create a
fail-operational system. Faults considered are if a component stops responding or if
it gives the wrong output, both permanently and transiently. In the selected papers,
regardless of whether it relates to software or hardware faults, the solution usually
includes some variation of redundancy [21] [22] [26] [25] [12]. An example of redun-
dancy can be seen in Figure 4.4. Creating a fail-operational system includes both
addressing how the system can continue to run in the presence of internal faults and
how to prevent internal faults from resulting in external faults. As fail-operational
systems are generally connected to safety-critical systems it is not necessarily sur-
prising that four out of the five papers related to faults and redundancy have a
safety focus, see Table 4.2.

Underwood et al. [12] (G) argue that active safety systems, for example automatic
braking before obstacles, should be developed in parallel with autonomous driving
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systems. The reason for this is that the active safety component can provide re-
dundancy and act as a safety-critical backup to higher levels of automation. They
also argue that the active safety component should be able to execute a safe stop if
the autonomous system fails. This can be compared to the approach discussed by
Borrman et al. [22] (C) who present an approach where a vehicle can be in different
states, one of them being a failure state which occurs when one or more systems
does not function properly. When in the failure state the vehicle should be able to
run a dedicated error-handling process which is able to safely stop the vehicle.

Schnellbach et al. [25] (F) discuss different approaches on how to handle faults
from a combined software and hardware perspective. The two approaches which
Schnellbach et al. rate highest in terms of fault tolerance capability both involve
hardware redundancy as well as how to use the hardware from a software perspective.
One approach uses triple redundancy and decides the final output through a voting
mechanism. As long as all three modules agree the system stays in a normal state,
however, if one module disagrees the system enters a fault tolerant state. At this
point Schnellbach et al. recommend that action is taken to restore the functionality
of the failing module, this could range from simply restarting the process to visiting
a repair shop. If all three modules provide different results the system enters a
failure state since the correct decision is unknown.

The second approach proposed by Schnellbach et al. [25] (F) can be used if it is
possible to check the result for correctness. The approach involves double redun-
dancy and is quite similar to the previous approach. Since it is possible to determine
whether a result is correct or not it is also possible to keep running the system when
one of the modules fails and the output differs. This describes a fault tolerant state,
but action should be taken to restore the functionality of the failing module.

Kim et al. [26] (H) propose a solution where hot and cold standbys are used as a
more flexible solution than hardware replication. Instead of replicating the whole
system or subsystem, selected processes can be duplicated onto different CPUs.
For processes which are safety-critical, hot standbys can be used which are ready
to take over at any time. A hot standby runs on the exact same input but on a
different CPU. Only the master process sends its output to other components, but
if the master process fails a hot standby is already running and can start providing
output. A cold standby is recommended for when time is not as important. A cold
standby does not run until it is told, this means that there will be a delay when the
process starts up before it is ready to provide output, but on the other hand it will
not consume any CPU resources while dormant. However, similarly to Schnellbach
et al. [25] (F), this requires a way to decide whether the output is correct.

McGee and McGregor [21] (A) attempt to solve a different problem and provide an
approach on how to recover from faults. They suggest that when a process fails, it
should be replaced by two new processes. One process should provide basic function-
ality, enough to meet the system’s real-time safety requirements. The other process
tries to reconfigure the system, for example through a rollback. The advantage with
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this solution is that it is possible to create a new process quickly and minimize the
risk for breaking safety requirements. However, McGee and McGregor also point
out that there is a risk that the process will fail again if the previous system state
caused the failure in the first place. Because of this risk, McGee and McGregor
advocate for including alternatives to rollback.
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5
General Architecture

This chapter presents a general architecture for separating safety constraints from
functionality. First the requirements are presented followed by a description of the
responsibilities of different system components. Finally the architecture is presented
together with descriptions of different components and what tasks they are supposed
to perform.

This chapter provides the answer to RQ2, to propose a general architecture which
separates safety constraints and functionality in the context of autonomous road
vehicles. However, it should be considered that the results presented in this approach
was developed through an iterative approach using the industrial case, see chapter
6 Industrial Case, for continuous evaluation.

5.1 Requirements
A set of requirements was specified for the general architecture as described in
section 3.2.1 Requirement Elicitation. The requirements were used when designing
the general architecture and are as follows:

GR1 Separate safety constraints from functionality - The safety constraints should
be independent of the decision making of the vehicle. The responsibility for
the safety of the vehicle should not be on the decision making component in
the system. In other words it should be possible to alter the decision making
component without affecting the safety of the vehicle.

GR2 Ensure safety of the vehicle - The system should be able to ensure safe behavior
of the vehicle. The vehicle should not be the cause of any accident and,
whenever possible, avoid other accidents as well.

GR3 Real-time execution - The system will be executed in real-time and should be
able to ensure the safety of vehicle decisions within an acceptable time frame.

GR4 Fail-operational - The system should be able to safely operate in case of system
fault.
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Figure 5.1: Component diagram for the major components in an autonomous
vehicle.

GR5 Support varying vehicle behavior - The system should be able to handle dif-
ferent rules on how the vehicle is allowed to make decisions.

GR6 Vehicle independent - The system should be able run on different vehicle types.

GR7 Handle different traffic situations - The system should be able to handle dif-
ferent road and traffic contexts.

In the study the requirements were limited in accordance with the scope. In effect,
the requirements were limited to the separation of safety constraints and function-
ality of the decision making component within a software context. More details
regarding the scope can be found in section 1.4 Scope.

5.2 Responsibilities
As specified by requirement GR1 safety should be separated from functionality. This
results in one component managing the functionality and one component ensuring
the safety. In the context of decision making in an autonomous road vehicle this
means the decision component in Figure 5.1 is split into two different components.
The safety component will be responsible for all safety aspects but will have no
responsibility that the vehicle reaches the destination or to ensure the comfort of
passengers. In contrast, the other component, which will still be referred to as
the decision component, does not have any formal requirements regarding safety
and is responsible for reaching the destination and passenger comfort. Without
safety requirements on the decision component it should not be necessary to conduct
safety testing before a new version can be used in production. Depending on the
vehicle manufacturer the line between safety and functionality could be drawn at
different places. For example, some manufacturers might consider that the safety
component should enforce traffic rules while other manufacturers might be satisfied
if the component only avoids collisions.
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Figure 5.2: Component diagram with the proposed safety component added.

In order for the safety component to be able to ensure safety on its own it needs to
be able to control the vehicle at all times. If the safety component cannot control
the vehicle as it desires it cannot meet requirement GR2 of ensuring the safety of
the vehicle. This is solved by forcing all control requests for vehicle control to go
through the safety component, see Figure 5.2.

Figure 5.2 shows an approach similar to the layer pattern described in section 4.1
Layer. The difference here is that the safety component, or layer, does not com-
pletely hide vehicle control as the vehicle information interface is still allowed to be
used by the decision component. The decision component still requires information
from vehicle control and there is no reason to have vehicle information go through
the safety component as it will not be altered in any way.

The safety component will provide an interface which can be used to check which
decisions are considered safe at the moment. Although this is not necessary for the
separation, the information provided by the interface could be used to develop a
decision component which does not propose unsafe actions. If a decision component
does not consider safety aspects and have no access to allowed actions, the proposed
actions would frequently be altered by the safety component.

The safety component has to rely on the perception and vehicle control components.
If the output from perception or vehicle control is wrong, or if actions are not
executed properly, the safety component will not be able to ensure safety. This
means that only the decision component is relieved of responsibility from safety
aspects, perception and vehicle control will keep their safety requirements.
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Figure 5.3: Top level architecture of the safety component. The connections to
Monitor is left out as it is connected to all other components.

5.3 Safety Component
The top level architecture of the safety component consists of five different subcom-
ponents, each with its own responsibility. The architecture can be seen in Figure 5.3.
The different responsibilities is shortly described in this section before describing the
design in more detail in the following sections.

SafesetCalculator is responsible for calculating whether different actions can be con-
sidered safe or not. An action in this context is a combination of longitudinal ac-
celeration and steering angle. This is done using environment data available in the
perception component as well as the vehicle’s capabilities available in the vehicle
control component.

SafesetCalculator should run before or in parallel with the decision component.
This means that a safe action already should be known when it is time to test the
action given by the decision component. As a result, the system does not have to
spend additional time finding an action if the decision component’s action is deemed
unsafe. Having quick verification supports requirement GR3 of having real-time
execution. Furthermore, if the safeset already contains the action proposed by the
decision component the verification time would be low. However, this would require
SafesetCalculator to preemptively check a significant number of potential actions.
This would differ to the approaches described in section 4.1 Layer by Underwood
et al. [12], Goebl et al. [30] and Gindele et al. where a trajectory is verified upon
request as opposed to in advance.

If the verification occurs upon request the average time to verify an action would
be longer but significantly less resources would have been used as SafesetCalculator
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Figure 5.4: Diagram of the subcomponents inside SafesetCalculator.

does not have to test every action. Although, finding a safe action could in worst
case mean that every possible action have to be tested. In that case the verification
of the proposed action would be as fast as in the first approach, but the total resource
usage would also be as high.

Running SafesetCalculator in advance also means that the decision component could
make use of the information regarding which actions are currently considered safe,
this is done through the interface SafeActions. DecisionCommunication provides
this interface for the decision component and is also responsible for receiving pro-
posed actions from the decision component. When the decision component sends a
proposed action for the vehicle to perform, the communication component forwards
the action to ActionSelector. ActionSelector verifies that the action will not lead to
an accident by consulting SafesetCalculator. After verifying the action ActionSelec-
tor sends it to VehicleControlCommunication, which is responsible for sending the
message to the vehicle control component.

Monitor tries to detect when a component fault occurs. By watching the different
components the monitor can detect when one fails or malfunctions which allows the
monitor to respond accordingly.

5.3.1 Safeset Calculator
Figure 5.4 shows the subcomponents of SafesetCalculator, which responsibility is to
calculate actions that currently are safe to perform. A set of safe actions will hence-
forth be referred to as safeset. Depending on the implementation the component
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could stop trying to find additional actions any time after it has found at least one
safe action. Having at least one safe action is necessary for the vehicle to have a
safe action to perform in case the decision component sends an unsafe action. In the
event that no safe action can be found ActionCalculator can use a solution based
on the instant action pattern, see section 4.3 Instant Action, and directly call for an
emergency fallback through EmergencyAction.

Calculating which actions are safe is done by first acquiring information about the
environment from the perception component. For each perceived traffic participant
a reachable area is calculated, similar to the approach presented by Goebl et al.
[30]. The area is calculated using the participant’s current state and assumed limits
on how it can accelerate within a certain time frame.

After generating the reachable area for each traffic participant, a number of as-
sumptions are applied. If the reachable area does not take any assumptions into
consideration it must give all positions a participant can reach, even if they are
unlikely. This will quickly limit the number of safe actions as the reachable area for
a fast moving traffic participant, such as a passenger car, would fill most of the road
surface after just a few seconds. An example of an assumption to make could be
that a vehicle will not accelerate in such a way that it will drive into the rear end
of the ego vehicle. By using assumptions on how traffic participants can move the
reachable area can be limited and thus open for more actions to be considered safe.
However, defining acceptable assumptions is not in scope of this study.

To support requirement GR7, of being able to handle different traffic situations, sets
of assumptions could be specified for different driving environments. An example of
such an assumption could be that a vehicle will not be going the wrong way down
a highway. Requirement GR5, of supporting different vehicle behavior, will also be
supported by having assumptions as they can enable the vehicle to perform more,
or less, actions.

The predicted reachable area for all traffic participants are used to decide which
actions to put in the safeset. Given the capabilities, from the vehicle control compo-
nent, potential paths can be tested by ActionCalculator. If a path does not intersect
any of the reachable areas then the action that goes along the path can be added
to the safeset. Having an approach which can calculate safe actions given different
capabilities supports requirement GR6 of being vehicle independent.

5.3.2 Action Selector
ActionSelector is decomposed into two different sub components, see Figure 5.5.
The normal flow is that Verification receives an action from the decision component
through DecisionCommunication. Verification checks that the action is safe using
the safeset provided by SafesetCalculator, if the safeset contains the action then it
is safe by definition and can be forwarded to VehicleControlCommunication.
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Figure 5.5: Diagram of the subcomponents inside ActionSelector.

There can be two reasons for an unsuccessful verification, either the action from
the decision component does not exist in the safeset or no action is being received
by Verification. In both cases Fallback is being responsible for choosing an action
quickly. If the safeset is empty Fallback still needs to decide on an action, for example
maximum brake, as it is the last resort for handling a situation before passing the
problem to vehicle control. However, Fallback should only have to be called if the
decision component fails or something occurs in the traffic which was out of scope
during the design of the system. An example of something out of scope could be a
tree falling onto the road right in front of the vehicle.

In the case where the action from the decision component is not considered safe
there is an alternative approach to calling Fallback. Instead, the closest safe action
could be chosen. For example, it might be necessary to break if the desired action
is to continue forward. If this approach is chosen it is necessary to define how to
select the closest action as well as how far off the decision component is allowed to
be before the vehicle should stop.

ActionSelector is always responsible for each action which is being sent to vehicle
control communication. Either the action is verified by Verification or the action is
being decided by Fallback. This allows the safety component to ensure the safety of
the vehicle independently of the behavior of the decision component, according to
requirement GR2.

5.3.3 Redundancy
To support requirement GR4, of being fail-operational, redundancy of the compo-
nents is used, see Figure 5.6. As described in section 1.4 Scope, even though the
study focuses on the software aspect of the problem it is still necessary to create a
design which allows for hardware redundancy. Different approaches to using redun-
dancy are described in section 4.4 Faults and Redundancy.
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Figure 5.6: Diagram showing how redundancy could be implemented. The connec-
tions to Monitor is left out as it is connected to all other components. Also note that
not all connections between the instances of SafesetCalculator and ActionSelector
are shown.

The relation between the instances of SafesetCalculator can be considered as an
AND-gate and thus it only needs to run in double redundancy. If ActionSelector
verifies an action against both instances of SafesetCalculator then both must con-
sider an action to be safe before it can be executed by the vehicle. In the case
that one of the instances fail in such a way it consider safe actions as unsafe then
ActionSelector will not be able to verify the decision component’s action and thus
use its fallback solution. In the other case when one of the instances fail such that it
consider unsafe actions as safe the safeset will still be limited to the actions given by
the functioning instance. It is important to note that double redundancy of Safeset-
Calculator can only be used if the fallback solution is considered safe enough given
the risk that an SafesetCalculator fails. The alternative is to use triple redundancy
with voting.

The output of ActionSelector is an action for the vehicle control component to
execute. The component will run in triple redundancy with voting. As a result of
this the output of ActionSelector must be deterministic in some sense as the voting
mechanism needs to get at least two identical actions for it to be able decide the
majority vote. As the voting mechanism only needs two identical actions one of the
instances of ActionSelector can fail without impacting the operation of the vehicle.
The constraint of enforcing deterministic output for ActionSelector is not a problem
for Verification as it only checks whether a certain action is safe. However, it puts
some limitations on how Fallback can be implemented.
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Due to the fact that one instance of SafesetCalculator and one instance of Action-
Selector can fail without making the whole safety component fail means that the
safety component as a whole can be considered fail-operational, thus supporting
requirement GR4. However, if additional instances fail the safety component can no
longer operate safely. This means that when a failure is detected some mechanism,
in this case the monitor, should ensure the system either recovers or safely stops.

As SafesetCalculator and ActionSelector run in redundancy the communication to
components outside the safety component must be handled differently. Decision-
Communication compiles the safesets from both instances of SafesetCalculator be-
fore providing it to the decision component. It also sends an action proposed by the
decision component to all instances of ActionSelector so that the decision compo-
nent does not need to concern itself regarding the redundancy. The vehicle control
component is assumed to only take one action as input and thus a component is
needed to combine the output from the instances of ActionSelector. This compo-
nent, VehicleControlCommunication, should also perform the voting of which action
to send.

5.3.4 Monitor
In order to meet requirement GR4, to be fail-operational, the system needs to be
able to detect faults and when necessary take precautions. Monitor requests status
updates from different components and checks for faulty behavior, similarly to how it
is described in section 4.2 Monitor and Watchdog. One way to discover faults could
be to check if VehicleControlCommunication continuously receives results from one
ActionSelector which differ from the other’s results. This would be an indication
that one ActionSelector is failing.

The monitor also has a responsibility to take action if there is a critical fault. This
could include restarting a faulty process or initiating an emergency stop. If a critical
fault occurs it could for example be necessary to stop the vehicle and do a full system
restart.
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6
Industrial Case

This chapter presents the result of applying the general architecture from chapter 5
General Architecture in an industrial case at Volvo Group Trucks Technology. The
requirements for the safety component will be presented as well as the resulting
architecture. A prototype of the safety component has also been implemented and
will be presented together with simulation results.

This results presented in this chapter was used to improve the general architecture
in chapter 5 General Architecture. Thus, it was also used to improve the answer
to RQ2, to propose a general architecture which separates safety constraints and
functionality in the context of autonomous road vehicles.

6.1 Requirements
The requirements for the safety component have been divided into four categories:
context, safety, performance and architecture. The requirements have been elicited
and specified according to what is described in section 3.3.1 Requirement Elicitation.
This section only summarizes the requirements while the actual requirements are
specified in Appendix B Industrial Case Requirements.

Context requirements relates to the context in which the system should be applica-
ble. The requirements handle the fact that the system should not be dependent on
a specific vehicle configuration or traffic situation. It is also necessary for the vehicle
to be able to behave differently depending on the current context and to be able to
switch between different contexts while running.

The safety component needs to be able to handle all kinds of safety concerns which
could arise as a result of driving decisions. Even if the decision component is offline
or starts proposing dangerous actions the safety component should be able to ensure
safe behavior of the vehicle. The safety component must ensure that an action is
safe and thus take full responsibility for the action before allowing it to be carried
out.
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Performance requirements are important in the sense that the safety component
needs to be able to run with real-time execution and with low delay. However,
performance is dependent on both the implementation and available hardware re-
sources. While the hardware resources should be minimized in order to save costs
there is no hard limit, which leads to fuzzy requirements.

The safety component also has some requirements focusing on the architecture as a
whole. This includes requirements regarding how the safety component is allowed
to, and in some cases should, impact surrounding systems. As the safety component
should be able to ensure safety on its own it should be able to take responsibility of
all safety constraints related to decision making. As a result the decision component
should not have any formal safety constraints.

Requirements can have an effect upon each other. Satisfying many negatively impact
another. These requirements need to be identified and analyzed. In this study,
primarily one case demanding special attention was identified.

The requirements to have high performance and to allow safe actions can be prob-
lematic to implement at the same time without making some sort of trade-off. For
example, in an extreme case where performance is highly prioritized SafesetCalcu-
lator must quickly decide whether an action is safe or not. However, since it is
crucial no actions are falsely considered safe SafesetCalculator cannot simply guess
and must find evidence that the action is safe to perform. As finding such evidence
in a performance efficient way could be difficult in many scenarios, the resulting
safeset would often contain few or no safe actions. In contrast, if only precision is
prioritized, the approach could be to test every potential path or recognize every
potential situation the vehicle might be in. As a result, if a safe action complying
with safety constraint exists in reality, it would be unlikely that SafesetCalculator
would fail to find it.

Allowing as many safe actions as possible could be translated to the precision which
is used when deciding whether an action is safe or not. This is because less precision
means that larger error margins are required as safety needs to be ensured whether
the algorithm is precise or not. These requirements correspond to P1-P6, perfor-
mance, and S2, allow safe actions, in Appendix B Industrial Case Requirements.

6.2 Safety Component
This section describes how the general architecture for the safety component was
applied in order to meet the requirements for the industrial case. It also presents
an overview of the used solution. The solution does not aspire to be the only viable
solution, but instead aims to show the feasibility of using the architecture.

In the proposed solution, SafesetCalculator must always find at least one safe action
which can be used if the proposed action, from the decision component, is unsafe.
Calculating a safe action is not something which necessarily can be done in a short
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Figure 6.1: The process, within the safety component, of defining safe actions and
verifying a proposed action from the decision component.

time frame. In order to minimize the delay from receiving an action to sending an
action to vehicle control, safe actions are calculated before, or in parallel with, the
decision component.

SafesetCalculator provides information regarding which actions are considered safe
to other components. The approach of calculating all safe actions, as opposed to
only verifying a specific action, does not necessarily increase the amount of hardware
resources needed. Since calculating a single safe action in a worst case scenario
could require as much resources as calculating a complete safeset. The result is an
approach where SafesetCalculator calculates all safe actions, share the information
and verifies suggested actions against an already calculated safeset.

The proposed process of the safety component can be seen in Figure 6.1. The
process can be divided into three steps: prediction, path testing and verification.
These steps are presented in the following sections. Furthermore, an abstract class
diagram, see Figure 6.2, with the most central classes in the safety component is
used when describing the different steps. Finally, there is a section discussing which
requirements the proposed solution supports.
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Figure 6.2: Abstract class diagram with the most central classes in the safety
component. Three classes are written in italics and represent the connection to
surrounding components.
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Figure 6.3: The reachable area of a traffic participant has been marked in red. In
this case, the reachable area has been simplified to a rectangle and is only used to
illustrate the principle.

6.2.1 Prediction
The class TrafficPrediction, see Figure 6.2, is responsible for calculating where an-
other traffic participant could be a specified amount of time in the future. A pre-
diction consists of a set of reachable positions, or in other words reachable area,
for a traffic participant detected by the ego vehicle. A simple representation of the
reachable area can be seen in Figure 6.3 However, the system needs to consider that
there potentially could be a traffic participant just outside the detection area. This
means that if the vehicle is able to detect other vehicles within x meters, it should
be considered that there could be a vehicle x + 1 meters away.

The predictions are only calculated for as long time as necessary for the ego vehicle
to reach a safe state. The class generating and checking paths, PathGenerator,
requests predictions from the class PredictionHandler of different time steps. As
the paths are only tested until the vehicle reaches a safe state no predictions needs
to be done for later time steps. The predictions are cached to avoid calculating the
same prediction twice when testing different paths. When PathGenerator requests
a prediction either the cached version is returned or, if no cached prediction exists,
a new one is calculated.

Figure 6.4: The reachable area of the traffic participant from Figure 6.3 has been
limited to the lane of the traffic participant.

As described in section 5.3.1 Safeset Calculator assumptions are used to limit the
size of the reachable area for a traffic participant, see Figure 6.4. Assumptions are
calculated independently of both collision checking and reachable areas of traffic
participants, meaning assumptions can easily be changed both online and offline.
This is useful as the assumptions can be changed depending on context, such as
type of traffic participant, type of road and geographic location with different traffic
rules. However, this does not mean that the assumptions can be switched without
proper safety verification. They are part of the safety component and have a large
impact on how the vehicle behaves. In order to be able to switch between different
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assumptions each assumption needs to be properly verified for in which contexts it
can be used.

Since assumptions limit the reachable areas of traffic participants more assumptions
generally mean that more safe actions can be found. Thus using assumptions result
in that there are situations which are theoretically possible, but are not taken into
consideration when planning a path. Inevitably assumptions will decrease the safety
of the vehicle, but without assumptions it will be more difficult for the vehicle to
reach its destination without delay. For example, without assumptions the vehicle
would have to take into account that there could be a vehicle going against the
direction of the road right outside the detection area. If the detection area is small
the vehicle would not be able to drive with a significant speed. This study is cautious
when making this trade-off and only uses a few assumptions during the industrial
case. The reason for this is that defining safe assumptions of the behavior of other
traffic participants is outside the study’s scope.

There are some base assumptions limiting the maximum velocity and acceleration of
vehicles, however, these assumptions are more connected with physical limitations
than driver behavior. It is also assumed that no vehicle will go against the direction
of the road, drive into the ego vehicle from behind and switch lane into the side of
the ego vehicle given that the ego vehicle is staying in its lane. After assumptions
have been applied to all traffic participants’ reachable areas, they are made available
for when different paths are tested.

6.2.2 Path Testing
The reachable areas of other traffic participants are used when calculating which
actions are considered safe. An action is defined as safe if and only if it is possible
for the vehicle to reach a safe state without an accident occurring after performing
the action. Similarly, a safe state is defined as a state which can lead to another safe
state without an accident occurring. In this study the only state which is considered
safe by default is when the vehicle is standing still. As a result, in this study a vehicle
is in a safe state if it can safely stop.

Initially the class SafesetCoordinator uses the current vehicle state and potential
actions to calculate possible states the vehicle can be in at the beginning of next
cycle. The possible states are passed to the class PathGenerator which decides
whether or not it is possible to reach a safe state from each potential vehicle state.
If it is possible to reach a safe state the action which lead to the state is considered
safe.
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Figure 6.5: Here a number of tested paths can be seen. Paths which are not
considered safe are marked in red and paths which are considered safe are marked
in green.

The class PathGenerator generates and tests a number of paths for each state, see
Figure 6.5. Ideally, different paths should be generated depending on the context,
such as type of road and road curvature. Paths which are adjusted to the context
could increase the chance to find safe paths and thus allowing the decision component
to choose between more actions. While testing more paths will increase the chance
to find more safe actions it is also important to consider that more paths will require
more processing power as well.

Each path is evaluated in small time steps. For each time step the distance traveled
is calculated using the velocity and maximum available deceleration. The distance
together with different margins is used to calculate an area which is checked for
collision in the time step currently evaluated. This means that the class PathGener-
ator asks the class PredictionHandler if there is a risk for collision in the area. Four
margins are considered: the size of the vehicle, the offset between the vehicle and
the planned path, the distance traveled between brake request and brake application
and a general error margin. The general error is a margin which is added partly
to avoid stopping too close to another vehicle and partly to reduce the risk from
unpredicted faults. Some of the margins could have been removed or significantly
smaller if accurate vehicle models were used to calculate the exact vehicle position in
each time step. However, using precise models in these cases would also significantly
increase the calculation time, which in turn could force PathGenerator to test less
paths to be able to run in real-time.

6.2.3 Verification
The set of actions which are deemed safe during path testing create a safeset. The
class Verification compares proposed action from the decision component to the
safeset. If the action is safe, it is passed to the class VehicleControlCommunication
and if the action is not safe, Verification will choose the closest safe action. The
closest action is determined by looking at the safe action with the closest steering
angle. However, if the closest action is chosen the safety component will also request
that the vehicle brakes. This is because it is considered better to slow down as the
steering of the vehicle is no longer deliberate from a non-safety point of view, in
other words there is no guarantee that the vehicle steers towards its destination.

If the decision component proposes actions which are not allowed several times in a
row the safety component will stop listening on proposed decisions and completely
stop the vehicle. It is considered better to stop the vehicle than it is to attempt
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to follow a faulty decision component. The class Fallback will only be called when
there is no safe action and, in the current implementation, always requests maximum
brake from the vehicle control component.

6.2.4 Supported Requirements
All requirements referenced in this section can be found in Appendix B Industrial
Case Requirements. Requirements S1-S6 together means that the safety compo-
nent should be able to choose, and allow, safe actions at all times and to take
responsibility that only safe actions are sent to the vehicle control component. The
responsibility is fulfilled through the architecture as the safety component is the only
one allowed to use the vehicle control component’s control interface. Choosing, and
allowing, safe actions is ensured through the process in Figure 6.1. This process also
enables the safety component to provide information about which actions currently
are considered safe, see requirement S7.

By taking full responsibility for safety the requirements A3 and A4 are also fulfilled,
the decision component has no safety responsibility and thus no ASIL requirements.
The safety component uses the same interfaces for the same reason as a decision com-
ponent with safety responsibility would do, thus the ASIL requirements on external
components does not increase, see requirement A1. The internal ASIL requirements,
see requirement A2, are minimized through redundancy as described in section 5.3.3
Redundancy.

Requirement C1 specifies that the vehicle should be able to handle different traffic
environments. This can partly be supported by letting SafesetCalculator test dif-
ferent paths for different environments. For example, an intersection and a highway
require different paths. The other part of C1 is solved by allowing different sets of
assumptions to be used in different contexts, something which also fulfills require-
ments C3 and C4 which specify that the system should be able handle and change
the assumed behavior of other traffic participants. Requirement C2 is handled by
using vehicle capability limits, the VehicleInformation interface, from the vehicle
control component when determining which actions are possible to make at a cer-
tain point in time. For example, if the vehicle can brake with a certain force the
safety component does not test if it is safe to brake with a higher force.

Requirements P1 and P3-P6 specify that the system should be able to run in real-
time using as little hardware resources as possible. It is hard to determine whether
these requirements are fulfilled as there is no hard limit. However, the required hard-
ware resources can be varied depending on how much precision is wanted, see section
6.1 Requirements. Requirement P2 is related to the performance requirements and
specifies that there should be a low delay between receiving a decision and making a
decision. This requirement is addressed through calculating safe actions in advance,
see section 5.3 Safety Component for more information.
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6.3 Prototype
While the architecture aims to be applicable in different situations the implementa-
tion has a more narrow scope. The implementation is a prototype acting as a proof
of concept. The prototype is limited to a number of highway scenarios and one type
of vehicle. The vehicle is a 32 meter long vehicle combination consisting of a tractor,
semi-trailer, dolly and another semi-trailer.

6.3.1 Implementation Scope
All requirements discussed in section 6.2.4 Supported Requirements are implemented
in the prototype with a few exceptions. The redundancy of SafesetCalculator and
ActionSelector was not implemented in such a way that it runs on different hardware.
Instead, the redundancy was implemented to run as a single process meaning timing
issues and other synchronization problems were not considered. However, with the
current implementation it is possible to test how the system behaves when instances
of SafesetCalculator and ActionSelector are simulated to fail.

The monitor is supposed to detect failing processes, but was not implemented. The
main reason to have a monitor is to be able to detect when something goes wrong
and then perform an appropriate action given that information. Due to the limited
scope, and the fact that the redundancy could be tested without a monitor, it was
left out of the prototype. However, in a more mature system the monitor would
have been added as it could give valuable information when testing the system.

Due to the scope of only supporting a number of highway cases in the prototype
PathGenerator only generates paths suited for highway driving. This means that all
paths end in the same direction as the road. The paths are generated using the ISO
14791 [34] definition of a lane change with various longitudinal and lateral distance.
In other traffic contexts different algorithms for generating paths could be used to
ensure the safeset does not become too restrictive. Furthermore, even in highway
cases the paths could be improved to generate more diverse paths.

6.3.2 Scenarios
The prototype was tested in nine simulated scenarios specified in Appendix A High-
way Scenarios. A summary of the result can be seen in Table 6.1. All scenarios are
in the context of highway driving, meaning there is no oncoming traffic. It is also
assumed that no vehicle will drive into the rear end of the ego vehicle if they are
in the same lane. Some scenarios are simulated both with and without an assump-
tion where vehicles never change lane. While this assumption might not be safe to
include in a real scenario it is used here to showcase how other safety constraints
limit allowed actions.

Scenarios on a road with only one lane gives simple tests as traffic in other lanes do
not have to be considered. The most basic test is having one lane without any other
traffic than the ego vehicle itself, see scenario 1. Simulation results show that the
prototype does not alter the decision components actions as long as the vehicle stays
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Table 6.1: Summary over results of scenarios.

Scenario Without assumptions With assumptions that other ve-
hicles stay in their lane

1 Safe at current speed Safe at current speed
2 Safe at current speed Safe at current speed
3 Safe at other vehicle’s speed Safe at other vehicle’s speed, or lane

change at current speed
4 Safe at current speed Safe at current speed
5 (Depends on position of other vehicles) (Depends on position of other vehicles)
6 Unsafe Safe at current speed
7 Unsafe Safe at current speed
8 Unsafe Safe at current speed
9 Emergency brake Emergency brake

on the road. When the ego vehicle tries to leave the road the prototype interferes
to keep the vehicle in a safe state. If another vehicle is placed in front of the ego
vehicle, see scenario 2, the prototype ensures that a safe distance is kept even when
the ego vehicle tries to decrease the distance. If an empty parallel lane is added,
see scenario 3, the prototype also allows the ego vehicle to perform a lane change to
overtake the vehicle. However, the prototype only allows the ego vehicle to overtake
if it can assume that the other vehicle stays in its lane.

If there are no surrounding vehicles and the ego vehicle tries to make a lane change,
see scenario 4, the prototype does not alter the actions as long as they do not result
in leaving the road. In case there are vehicles in the lane targeted to change lane
into, see scenario 5, the prototype will in not allow the ego vehicle to go too close to
the target lane unless there is large abundance of available space in the lane. Even
if there is enough available space at the moment the worst case prediction is that
the vehicle in front brakes and the vehicle behind accelerates, which results in the
prototype requiring large margins in order to consider a lane change safe. To be
able to make lane changes in the same way normal drivers do, it would be necessary
to have assumptions on how vehicles in other lanes behave.

Without assumptions regarding how another traffic participant is allowed to change
lane, the ego vehicle is not able to overtake another traffic participant, see scenario
6. Since the vehicle being overtaken could change lane right in front of or into
the side of the ego vehicle it will, in most cases, be considered unsafe to overtake
another vehicle. Exceptions can occur if the velocity is low enough, for example if
overtaking a queue as in scenario 7. However, in simulations where other vehicles are
assumed to remain in their lane the ego vehicle can overtake other vehicles without
the prototype intervening.

There are similar problems when another vehicle overtakes the ego vehicle, see sce-
nario 8. Since other vehicles could potentially change into the ego vehicle’s lane it is
not considered safe to have another vehicle next to the ego vehicle. However, if the
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vehicle is assumed to not change lane, the prototype will not intervene. A problem
which could occur using such an assumption is that the other vehicle could change
lane in front of the ego vehicle closer than what is considered safe, see scenario 9.
This would trigger Fallback which is something that should not happen during nor-
mal circumstances. Since it is reasonable to expect that other vehicles will sometime
change into the ego vehicle’s lane close to the ego vehicle, it is not always safe to
assume that other vehicles will stay in their lane.

6.4 Evaluation of Results
The simulation results of the prototype show that it can be used to avoid accidents
in highway scenarios. However, without assumptions the ego vehicle will in many
scenarios not be able to drive at any significant speed. As a result, it is necessary to
investigate what assumptions are safe if the system is ever to be used in an environ-
ment with other traffic participants. It should be noted that defining assumptions
are out of scope for this study as it would be necessary to determine the behavior of
other traffic participants whether the decision component is separated or not. This
is further discussed in section 7.2 Assumptions.

In the architecture the fallback action is specified to be handled by a component
called Fallback. The implementation of Fallback used in the prototype is simple and
the functionality could have been handled by Verification instead. However, the
complexity of Fallback could significantly grow in the future. An example would be
if Fallback was supposed to select the action leading to the least severe accident.
Fallback would then have to be able to assess the outcome of accidents involving
different types of traffic participants in different road contexts.

The architecture and highway scenarios were presented to four industry experts, as
described in section 3.3.3 Evaluation. The expert in software architecture focused on
the architecture more than the prototype while the experts in active safety and ve-
hicle dynamics primarily focused on the overall solution together with the prototype
and scenarios.

All the experts considered the solution with division of responsibility between func-
tionality and safety constraints as a promising approach. The software architect
expert pointed out that the architecture would solve problem with ASIL require-
ments locally on the decision component. However, he also pointed out that it
might not be needed if the ASIL problems on the overall architecture could be
solved. Having no ASIL requirements on the decision component might not be the
most probable solution as opposed to aiming for ASIL B, or lower, using redundant
decision components.

The active safety expert emphasized that the division of responsibility between func-
tionality and safety constraints would be beneficial during the system’s life cycle.
He pointed out that the cautious approach of never allowing an action unless an
assumption has been specified to allow it, makes it possible to see exactly why a
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certain action was allowed. Another appreciated feature was that the decision com-
ponent could request all currently safe actions as this potentially could make it easier
to implement well-functioning independent decision components. Furthermore, he
mentioned that there is a potential risk that the safety component will go directly
from being too difficult and expensive to being unnecessary due to technical ad-
vances. However, he considers the separation of functionality and safety constraints
to be a highly relevant topic in vehicle automation and that the proposed approach
could be one way of doing it.

The vehicle dynamics experts considered the problems which prevent the solution
from being deployed on a real vehicle. Most problems they brought up are problems
which must be solved regardless of whether the proposed safety component is added
or not. The rest of the problems they considered were related to the fact that
the prototype did not contain or simplified features which should be included in
a complete implementation. Accordingly, they would have preferred a prototype
which used a more advanced model of the vehicle and thus reach a higher precision
in calculations. Another mentioned issue was that the proposed solution, depending
on implementation, can result in some calculations having to be done twice, once by
the decision component and once by the safety component. However, they agreed
with the benefit of having no ASIL requirements on the decision component.

The experts in vehicle dynamics and active safety agreed that the proposed safety
component could function as a tool to see what needs to be improved or changed
in order for the ego vehicle to behave satisfactory in different situations. Primarily,
this could be used to see where the current assumptions do not allow the vehicle to
behave as desired. If it is possible to identify where assumptions are needed it could
be used to specify which driving environments the vehicle can operate in. It could
also be used to determine what is required in order for the vehicle to drive in other
environments.
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Discussion

This chapter discusses the result and its limitations. Initially there is a discussion
regarding the outcome of the study and the proposed approach. It is followed by
potential applications of the proposed approach and a discussion regarding impor-
tant trade-offs. The last sections bring up issues regarding single point of failure
and the limitations of the study.

7.1 Outcome
Underwood et al. [12], Goebl et al. [30] and Gindele et al. [31] all suggest approaches
where a safety layer should verify all actions before they are carried out. Underwood
et al. and Gindele et al. also specify that the safety layer is responsible for generating
a new action if the verification process deems an action unsafe. However, none of
these specify how the separation could be done. Only Underwood et al. discuss in
terms of giving the safety component complete responsibility over safety and possibly
removing all safety requirements from decision components. This study suggests an
approach with a similar intent as what is described by Underwood et al.

A key aspect of the approach suggested by this study is the division of responsibilities
described in section 5.2 Responsibilities. The safety component has no responsibility
to ensure that the vehicle reaches its destination and no responsibility that the trip
is comfortable for passengers. The decision component on the other hand has no
formal responsibility to ensure safety. However, the decision component still needs
to consider safety aspects in order for the vehicle to function properly. If the decision
component makes decisions which are not considered safe the safety component will
alter the decisions. This means that there is no guarantee that the vehicle will
drive comfortably or even in the correct direction. In a perfect world the safety
component should never have to alter a decision and only exist in order to satisfy
safety certifications or ASIL requirements. Even in a world which is not perfect
the safety component should not have to alter decisions frequently. If the decision
component in a vehicle repeatedly makes decisions which are not allowed, the issue
should be investigated and fixed. This concept is similar to what is discussed by
Behere and Törngren [14], that a sufficiently fast decision component should be able
to avoid threats on its own.
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Developing two components which both take similar safety aspects into account,
albeit to different degrees, could be considered unnecessary. However, it is important
to remember the goal of the design. The proposed approach is not necessarily easier
or faster to develop initially. The benefit comes later in the life cycle as updating
functionality, which is not strictly safety related, requires significantly less testing.
However, as mentioned in section 6.4 Evaluation of Results, the problem with double
implementation could be reduced if the decision component make use of the safe
actions provided by the safety component.

As described in section 6.1 Requirements there is a trade-off between performance
and precision. One aspect to consider is how much the calculations can be sim-
plified. Instead of performing resource heavy calculations on how the vehicle will
move it might be possible to simplify and add larger margins to compensate for
the loss of precision. However, larger margins would result in more actions being
considered unsafe. A careful decision must be made of how much can be simplified
while maintaining a large safeset. The decision must also take into account how
much resources the calculations are allowed to use. In some cases it might be more
appropriate to use more advanced calculations at the cost of extra resources.

It is necessary to decide where to draw the line between safety and functionality.
In some cases it is obvious, for example it is the safety component’s responsibility
that the vehicle stops before a stationary vehicle but it is the decision component’s
responsibility that the vehicle stops smoothly to avoid passengers being uncomfort-
able. Other cases could be harder to decide, for example is it safety related to follow
traffic rules? Deciding exactly what is safety related could be a hard problem and
is not necessarily something which vehicle manufacturers will be allowed to decide
on their own.

If the system is expected to only release safety-critical updates, the proposed solu-
tion might not be advantageous. In the event of such updates, the system has to
be recertified and the separation of safety and functionality does not provide any
benefits. However, it should be noted that updates which could seem safety-critical
at first glance might not actually be safety-critical. For example, increasing fuel ef-
ficiency for the ego vehicle through smarter distance keeping to the vehicle in front
is not safety-critical if the distance remains longer than the minimum safe distance.

7.2 Assumptions
As mentioned in section 6.2.1 Prediction, assumptions increase the amount of actions
which are considered safe. An alternative approach would be to consider all actions
safe and add assumptions which specify when an action is not considered safe. In
this study the first approach was chosen as it is a more cautious approach which
reduces the risk from missing an assumption.

Even though a human driver makes assumptions on how other drivers will behave, it
could be hard to prove that the same assumptions are safe for autonomous vehicles
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to make. If the safety component is only allowed to make weak assumptions, the
vehicle will not be able to efficiently travel to its destination. The vehicle will be
safe, but at the cost of longer transport times. However, regardless of whether safety
constraints and functionality are split or combined, the system will only legally be
allowed to make use of the same assumptions.

While assumptions could be considered hard to define, it can be argued that all
systems use assumptions either implicitly or explicitly. It does not matter whether
a system uses assumptions as a concept or not, if it uses any rule there is an implicit
assumption behind it. For example, if the vehicle is allowed to drive forward in a
certain context it is assumed that there is nothing which can appear in front of the
vehicle.

7.3 Single Point of Failure
Section 5.3.3 Redundancy suggests an approach for making the proposed architecture
fail-operational through hardware redundancy. The suggested approach includes
redundancy for SafesetCalculator and ActionSelector, see Figure 5.6, and uses two
different approaches similar to what is suggested by Schnellbach et al [25]. One of
the approaches is to use to triple redundancy with voting, as used by ActionSelector
with voting in VehicleControlCommunication. The other approach suggested by
Schnellbach et al. has the benefit of only requiring double redundancy, but can
only be used when it is possible to check an answer for correctness, see section
4.4 Faults and Redundancy. This approach is used when calculating a safeset by
SafesetCalculator. While it is not possible to check a single safeset for correctness,
the used approach is to consider the intersection of the safesets as correct. This
approach works well if parts of a safeset contain faults, but not if a whole safeset is
erroneous. If the process fails completely it would result in an empty intersection
triggering an emergency action, which most likely would be emergency brake. The
question which needs to be answered is whether an emergency action is safe enough
in the event of a SafesetCalculator failing completely. While this study assumes
that it is safe enough, the real answer will have to be investigated in another study.
If it is not considered safe enough it would be necessary to use triple redundancy
for SafesetCalculator as well.

This study proposes an approach for how redundancy can be implemented for Safe-
setCalculator and ActionSelector, but it does not specify how to avoid single point
of failure when it comes to the communication between high-level components. In
the proposed architecture, see Figure 5.3, this refers to DecisionCommunication
and VehicleControlCommunication. However, since DecisionCommunication is not
safety-critical it could be acceptable without redundancy in that case. Vehicle-
ControlCommunication has two tasks which are both safety-critical: to handle the
vote between selected actions and to handle all communication between the safety
component and the vehicle control component. From a safety component perspec-
tive this problem could be solved by having multiple VehicleControlCommunication
components. This would require the vehicle control component to be able to receive
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multiple signals and vote between them. However, as written in section 1.4 Scope
this study only addresses problems which are created as a result of the division
of safety constraints and functionality. Without the safety component the prob-
lem would exist between the decision component and the vehicle control component
instead, thus this problem is left without a specified solution.

The proposed approach uses a monitor component, which can be seen in Figure 5.3
and is described in section 5.3.4 Monitor. Monitor, similarly to the communications
components, creates problems from being a single point of failure. As the monitor
has the power to restart other components it can be problematic if the monitor fails
and continuously restarts all other components. While one solution could be to use
triple redundancy, similarly to one of the approaches discussed by Schnellbach et al.
[25], it would just move the single point of failure to a voter. For small failures it
could work if each component listened to three monitors and voted themselves, but
it would be problematic if a component crashes completely. If a component fails
and shuts down it cannot restart itself which means that another component needs
to be able to restart it. However, the problem of which component should be able
to restart other components is considered independent from the issue of separating
safety constraints from functionality and has not been included in the study.

7.4 Alternative Applications
An added benefit of developing a safety component which is independent of the
decision component is that it potentially could be used for manual drivers as well. In
that case the driver would replace the decision component and the safety component
would limit the driver if the driving is considered unsafe. However, developing a
safety component which a manual driver does not consider too restricting could
prove difficult and will have to be investigated in another study. A more likely
approach might be that parts of the safety component could double as active safety
measures or driver assistance for manual drivers.

As evident from section 6.4 Evaluation of Results a potential application of the
proposed approach is to use it for identification of safety constraints which limits
the vehicle from driving as desired. For example, why a lane change is not considered
safe in a certain circumstance. This information could be used to focus development
on relevant areas. The areas could vary significantly, examples include: precision
of sensors, speed of algorithms or which assumptions regarding other vehicles that
safely can be made.

Potentially, the proposed approach could be applied in other types of autonomous
vehicles as well. While the approach is designed with road vehicles in mind the ap-
proach is not inherently bound to that context. Obviously, the implementation and
assumptions in other contexts would be vastly different, but the architecture could
potentially be similar. Furthermore, it is possible that the approach could be used
in other types of safety-critical systems as well. It should be noted that the evalua-
tion of the architecture and studied literature is within the context of autonomous
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road vehicles, thus the uncertainty regarding applicability quickly increases when
diverging from autonomous road vehicles.

7.5 Alternative Solutions
This study does not claim to have found the only solution to the studied problem,
but rather it proposes one solution suitable for autonomous road vehicles. One
alternative approach for decision making is to use deep learning, which can excel at
finding structure in complex problems with large sets of data [35]. However, there
exist a number of problems regarding the verification of such a solution [36]. Seshia
et al. [36] propose some techniques which potentially could ease the verification
process, but they do not make any claim to have solved the problem. A problem is
to decide at which point the vehicle is trained for all possible situations. There can
also be problems if the context changes and new situations arise. As the behavior
is learned from data, rather than being written by human engineers [35], it can be
problematic to manually adapt to a changed traffic rule.

If all those problems could be solved, and deep learning algorithms provided good
decision making while being certifiable, there would be no need for a safety com-
ponent similar to what is proposed in this study. However, the safety component
could be used to allow deep learning in an uncertified decision component. This sce-
nario would make use of deep learning’s problem solving capabilities while avoiding
certification issues.

Removing the need to certify the decision component is done by having something
else guarantee the safety aspect. In the proposed solution this is done through
run-time verification by the safety component. An alternative could be to verify
the safety of the system at compile-time, with the benefit of requiring less hardware
resources when deployed in production. However, formal verification at compile-time
of this type of system would result in a near infinite state problem [37].

There exist similar solutions on how to handle safety in related domains. In the
domain of autonomous air force flight systems, Hinchman et al. [37] identified
issues with compile-time certification as the aircraft could encounter unanticipated
elements or actions when in use. Due to the importance of having aircrafts which can
handle real time changes in the environment and mission detail, run-time verification
was deemed a better choice. The run-time verification presented by Hinchman et
al. generates a set of collision avoidance paths which are deemed safe. As long as
the proposed action can lead to one of the paths, it can be safely executed by the
aircraft. One major difference to the proposed solution in this study is that the
solution described by Hinchman et al. generates potential paths according to the
vehicle’s limitations at compile-time, while this study’s solution calculates them at
run-time using data from the vehicle control component. The advantage of having
them generated at compile-time is that less resources are used at run-time, which
means that more paths can be tested. However, a major disadvantage is that the
paths might be wrong if the capabilities change during operation, for example due
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to the vehicle carrying heavy cargo. This would be a problem in a road context as
the friction between the road and the tires can vary, and thus the vehicle might not
be able to follow the same paths. It should also be mentioned that Hinchman et al.
do not present how a path is actually checked for whether it is safe.

To ensure safety in small airplanes, Hook et al. [38] describe a method where a
simpler system monitors the more complex autopilot system. The simpler system
takes the burden of safety certification and ensures the autopilot does not execute
unsafe action. As the airplane is not fully autonomous, control is given back to the
pilot in the event that the autopilot tries to execute an unsafe action. However,
for a completely autonomous road vehicle, such a solution would not be possible as
there is no driver to take control.

Phan et al. [39] present a solution for mobile robots. In their solution, a complex
decision component controls the robot during normal operation. However, it can be
difficult to verify that a complex decision component fulfills all safety requirements.
By having a more basic decision component take over as soon as a hazard is iden-
tified, it is not necessary to assure the required safety levels for the more complex
component. The difference between the solution by Phan et al. and the solution
proposed in this study is that they do not verify actions and instead override as soon
as the robot enters a context with potential hazards. This would not be feasible for
a road vehicle as it would be in contexts with potential hazards in a lot of scenarios
and thus the complex decision component would be constantly overruled. To ensure
contexts with potential danger are correctly identified for a road vehicle, a much
more advanced monitor than they propose would have to be implemented.

Guiochet et al. [40] present a survey on how safety-critical robots manage safety.
From the result of the survey, Guiochet et al. note that a popular approach is
to use a monitor which forces the robot into a recovery state when a hazard is
detected, similarly to the approach presented by Phan et al. [39]. Guiochet et al.
briefly present a study by Woodman et al. [41] which filter actuator requests, or
stop the robot, if safety is uncertain or undefined for a specific action. Similarly
to the solution proposed in this study, a component is added between the decision
component and their version of the vehicle control component [41]. If a decision
could lead to a fault or other danger, then it is prevented from being executed on
the robot. However, Woodman et al. do not say what would be the result of not
executing a decision, or if the decision component is notified.
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7.6 Limitations
This section discusses validity threats and limitations to the study. While the lim-
itations are described by the scope of the study, the researchers want to highlight
two limitations which could easily be forgotten while considering the result. The
validity threats are categorized according to the methodology proposed by Feldt
and Magazinius [42]. While there is no apparent conclusion or construct validity
threat, there is an uncertainty whether the proposed separation is acceptable from a
legal point of view, meaning the certification will still have to be done on the whole
system configuration.

The study was performed as action research, meaning the researchers were the ones
designing and implementing the architecture as well as compiling the results of the
evaluation. This leads to a confirmability threat as the researchers could already
have an established perception of the result. However, this risk was minimized by
including industry practitioners in both the design and evaluation phases. Although,
this involvement creates a credibility risk as continuous involvement from industry
practitioners to a certain degree means that they evaluated the result of some of their
own ideas. This risk is not considered large as some of the practitioners initially did
not believe the separation would create feasible solution, thus potential bias would
most likely be towards a more negative evaluation.

During the literature review four different databases were searched for papers about
autonomous road vehicles. Had additional databases been used more papers would
most likely have been found. Furthermore, the search query and the inclusion criteria
meant that papers which could have been relevant, but not specific to autonomous
road vehicles, were not found. If more resources had been available for the literature
review, papers on a more general topic could have been included as well. This leads
to a dependability threat as a more thorough literature review could have yielded
more patterns to consider when designing the architecture.

The architecture, and the proposed approach, are meant to be applicable in au-
tonomous road vehicles in general. But there is an external validity threat as the
architecture was only evaluated through application at one company and for one
type of vehicle. As a result, the architecture might not work as well when being
applied in other systems. Furthermore, the prototype was only tested in highway
cases, meaning the solution might not be suitable for other traffic environments,
such as intersections. However, while this is the case for the prototype implemen-
tation, the architecture was designed without a specific company or vehicle in mind
and should be applicable in any other autonomous road vehicle as well.

It is important to be aware of what kind of problems the proposed architecture
is trying to solve. There are several problems not considered in this study which
needs to be addressed when designing an autonomous road vehicle. This study only
considers problems related to how decision making could be separated into safety
constraints and other functionality. This means that problems related to how to
make good driving decisions is not considered in this report even though it needs to
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be solved when designing an autonomous road vehicle.

Another aspect to consider is that the actual safety requirements for an autonomous
road vehicle are assumed to be known and correct. The problem of deciding how to
define a safe and unsafe action is not a problem this study tries to solve. The same
goes for how to translate a definition of safe and unsafe actions into concrete require-
ments. The study uses a simple and high-level definition, however, this definition
should not to mistaken for a final answer.
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The study has gathered information from existing literature regarding which soft-
ware architectural patterns and tactics are currently used for safety in autonomous
road vehicles. The literature review did not find any papers in this domain which
present how a separation of safety constraints and functionality could be performed
in practice. However, it revealed software architectural patterns for solving a num-
ber of safety related problems. Using these patterns, the study proposes a software
architecture which separates the responsibility for safety constraints and function-
ality. Without responsibility for safety requirements, the testing procedure for the
decision component could be significantly faster and cheaper.

Through application in an industrial case it became clear that the proposed solution
is a feasible approach for the studied problem. It could also be seen that making
correct assumptions regarding the behavior of other traffic participants is critical,
and one of the most difficult problems to solve.

It is important to remember that the division of responsibilities does not mean that
the decision component should ignore safety aspects. If the decision component
proposes unsafe actions then the safety component will override the actions, which
results in the vehicle not attempting to drive comfortably or reach its destination.
Thus it is important that the decision component either asks the safety component
which actions are safe, and act accordingly, or calculates actions based on safety
constraints itself.

The primary goal of the proposed architecture is to avoid recertification of safety
requirements in case of functionality updates. However, there also exists an al-
ternative application where the safety component could be used as a tool to show
which limitations currently are stopping the vehicle from operating as desired. Thus
the safety component could also facilitate the development process of autonomous
vehicles.

8.1 Contribution
The findings of the study could help with developing autonomous road vehicles
systems which allow frequent updates. Meaning each update should not require a
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restart of the testing and certification procedure. This could potentially result in
both faster and cheaper releases of updated software while keeping the same level
of strictness for safety.

The proposed approach could also be used to show which safety aspect that currently
is limiting vehicles from driving as desired. It could show both whether new func-
tionality is allowed by the current safety constraints and how much an improvement
in a safety related area would increase the amount of allowed actions.

Aside from the study’s purpose, the study contributes to the software engineering
body of knowledge when it comes to the applicability of different software architec-
ture patterns and tactics in certain contexts. Furthermore, the study contributes
with knowledge regarding the design of systems where safety requirements should
be independent from the rest of the requirements.

For potential future studies, this study has provided a literature review of software
architectural patterns and tactics used in relation to safety in autonomous road
vehicles. While it cannot be claimed the review is exhaustive, it could be used as a
base for studies in a similar area.

8.2 Future Work
The general approach suggested in this study has only been tested in one context.
Before the approach can be claimed to be completely generalizable it should be tested
for other vehicles, preferably with different software infrastructure. The approach
should also be tested on a physical vehicle and not only in simulations. Furthermore,
it could be investigated whether the same or a similar approach could be used in
other types of safety-critical systems.

It should not be forgotten that this study only addresses the separation of safety and
functionality. More research is still needed regarding actual features necessary in an
autonomous road vehicle. This applies both to features for the safety component and
the decision component. There could also be other ways to perform the separation
which would require less hardware resources or result in more precise, and thus less
limiting, safesets.
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A
Highway Scenarios

Figure A.1: Scenario 1: One lane without roadsides and with no surrounding
vehicles.

Figure A.2: Scenario 2: One lane without roadsides and with a vehicle in front of
the ego vehicle

Figure A.3: Scenario 3: Multiple lanes with a vehicle braking in front of the ego
vehicle.

Figure A.4: Scenario 4: Multiple lanes and no other vehicles. The ego vehicle
performs a lane change.

Figure A.5: Scenario 5: Multiple lanes, the ego vehicle attempts to change into a
lane where there are vehicles behind and in front of the ego vehicle.
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A. Highway Scenarios

Figure A.6: Scenario 6: Multiple lanes, the ego vehicle attempts to overtake a
vehicle in another lane.

Figure A.7: Scenario 7: Multiple lanes where the traffic in a lane next to the ego
vehicle’s lane is dense and moves slowly.

Figure A.8: Scenario 8: Multiple lanes where the ego vehicle is being overtaken
by a vehicle in another lane.

Figure A.9: Scenario 9: Multiple lanes where a vehicle changes into the ego vehi-
cle’s lane shortly after overtaking the ego vehicle.

II



B
Industrial Case Requirements

B.1 Context Requirements
ID: C1
Title: Support different traffic situations
Description: The safety component should be able to function in all different traffic
situations where the vehicle is supposed to be used.
Dependency: -

ID: C2
Title: Independent of specific vehicle configurations.
Description: The safety component should function properly independently of the
vehicle it is used in. This includes that the component should be able to handle
vehicles of different size, weight, maneuver capabilities.
Dependency: -

ID: C3
Title: Assumptions on environment
Description: The safety component should be able to make assumptions regarding
the behavior of different traffic participants.
Dependency: -

ID: C4
Title: Flexible assumptions
Description: The safety component should be able to change between different sets
of assumptions while running. This can be used to change assumptions on different
kinds of roads or when driving in countries with different traffic rules.
Dependency: C3
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B. Industrial Case Requirements

B.2 Safety Requirements
ID: S1
Title: Responsibility for actions
Description: The safety component should be responsible for each action. All actions
should be approved or changed by the safety component before reaching vehicle
control.
Dependency: -

ID: S2
Title: Allow safe actions
Description: The safety component should allow actions which it considers safe. The
safety component is not allowed to change an action it considers safe. The safety
component should minimize the number of false negatives, i.e. avoid disallowing
actions which in reality are safe.
Dependency: S1

ID: S3
Title: Modify unsafe actions
Description: The safety component should modify all incoming actions which it con-
siders unsafe. The modified action should be the closest action which is considered
safe. When determining the closest action the closest steering angle will be chosen.
Dependency: S1

ID: S4
Title: Handle absence of action
Description: The safety component should be able to safely maneuver the vehicle
in the absence of actions from other components. Absence of actions should lead to
a safe stop.
Dependency: S1

ID: S5
Title: Not be the cause of an accident
Description: The safety component should ensure that the vehicle is not the cause
of an accident. The safety component should not allow the vehicle self-inflict a state
where it cannot safely stop.
Dependency: S1, S2, S3, S4

ID: S6
Title: Try to safely avoid accidents
Description: The safety component should avoid all accidents, including when the
vehicle itself is not at fault. If external factors force the vehicle into an unsafe state
the safety component should only allow actions which minimizes the risk.
Dependency: S1, S2, S3, S4, S5
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B. Industrial Case Requirements

ID: S7
Title: Provide safe actions
Description: The safety component should be able to provide information for other
components about which actions are considered safe.
Dependency: -

B.3 Performance Requirements
ID: P1
Title: Real-time execution
Description: The safety component should be able to run in real-time.
Dependency: -

ID: P2
Title: Low delay
Description: The safety component should minimize the time it takes to make a
decision after it has received an action from the decision component.
Dependency: -

ID: P3
Title: Memory usage
Description: The safety component should minimize the memory usage.
Dependency: -

ID: P4
Title: CPU usage
Description: The safety component should minimize the processing power used.
Dependency: -

ID: P5
Title: Number of CPUs
Description: The safety component should minimize the number of CPUs that have
to be used.
Dependency: -

ID: P6
Title: Limited communication
Description: The safety component should minimize the amount and size of messages
it sends between components.
Dependency: -
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B. Industrial Case Requirements

B.4 Architecture Requirements
ID: A1
Title: Low external ASIL
Description: The safety component should not increase the ASIL requirements for
surrounding components.
Dependency: -

ID: A2
Title: Low internal ASIL
Description: The safety component should minimize the ASIL requirements for its
subcomponents.
Dependency: -

ID: A3
Title: No ASIL on decision component
Description: The decision component should have ASIL QM, i.e. no ASIL require-
ments.
Dependency: -

ID: A4
Title: Avoid cascading tests
Description: A change in the decision component should not require testing of the
safety component.
Dependency: A3
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