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Automated foot strike pattern recognition using a smart sock with
textile piezoelectric sensors

FRIDA WIDELUND

ANNA RAGNERIUS

Department of Signals and Systems

Chalmers University of Technology

Abstract

Information about a runner’s foot strike pattern is interesting as the foot strike is
not only believed to impact the runner’s performance but also the risk of sustaining
running-related injuries. In this thesis a software system for recognition of foot
strike patterns has been developed. The system makes use of signals from a sock
instrumented with textile piezoelectric sensors in heel and toe. The purpose of the
thesis was to develop software for automatic classification of runners as either
heel-, mid- or toe-strike and provide information about foot strike patterns based
on signals from the instrumented socks.

Data was collected on a treadmill while following a protocol. The protocol included
walking and running at different speeds with the three strike types; heel-, mid- and
toe-strike, resulting in a database with sequences tagged accordingly. Five sub-
jects collected in total 186 minutes of walking/running data. A pattern recognition
method composed of preprocessing, segmentation and classification with a super-
vised neural network was developed.

The resulting system succeeds to classify foot strike patterns correctly up to 97 %.
This shows that it is possible to use the piezoelectric textile sensor to classify a
runner’s foot strike pattern, though the system has some limitations. The changing
properties of the instrumented sock during use disables logging sessions throughout
a full protocol. Therefore, it would be necessary to improve the sock, and possibly
the hardware, before conducting software test on a larger test group and continuing
the research in other areas of use than running.

Keywords: piezoelectric fibre, signal processing, segmentation, classification, gait,
running, smart sock.
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Introduction

A person’s gait type can be categorised by the foot strike pattern. A common way to
do this is by assigning one of the three labels heel-, mid- or toe-strike, according to
the runners landing. When it comes to distance runners about 80% are categorised
as heel-strikers while most of the other 20% are mid-strikers, and very few are
categorised as toe-strikers (Novacheck, 1998). When speed is increased, runners
generally tend to go from heel- or mid-strike towards a clearer toe-strike (Mann and
Hagy, 1980). The foot-strike type is not only believed to impact the runners speed
but also the risk of sustaining running-related injuries (Kulmala et al., 2013).

1.1 Background

A system for logging and monitoring foot strike has been developed by Smart Textiles
at The University of Boras in collaboration with Voss ingenjorsfirma AB and Swerea
IVF. The work was initiated as a study to investigate the possibility to develop a
portable sensor platform for foot strike patterns (Rundqvist et al., 2014b).

The developed system consists of a sock instrumented with two textile piezoelectric
sensors, a blue-tooth unit and an Android application (Sandsj6 et al., 2014). One of
the sensors is placed under the heel and the other is placed under the toe. The blue-
tooth unit is placed on the ankle, as can be seen in Figure 1.1. It performs signal
conditioning and converts the signals from analog to digital. The digital signals are
sent to the smartphone with a sampling frequency of 100 Hz (Sandsjo et al., 2014).

The piezoelectric sensor has a lower limit frequency of a few Hertz and therefore it
is not possible to monitor the pressure while standing still. Thus, the amplitude of
the signal will rise only when there is a change in pressure (Nilsson et al., 2013).
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Figure 1.1: The current solution; the white box contains the blue-tooth unit and
the phone shows the Android application with the time graph of the raw signals.

The blue-tooth unit is built up by a microcontroller that sends the signals via blue-
tooth, an 8-bits AD-converter giving amplitude values between 0 and 255 (unitless)
and a 3V battery. The microcontroller is turned on by a switch button. Figure 1.2a
and 1.2b shows the placement of the battery and the microcontroller inside the unit.

(a) Battery (b) Microcontroller and
AD-converter

Figure 1.2: Images of the blue-tooth unit.

The Android application enables monitoring and logging of the signals. In the
application, the raw signals are displayed in a time graph. The amplitude of the
signals can be interpreted as the change in pressure. A screenshot can be seen in
Figure 1.3 where blue is the heel sensor and yellow is the toe sensor. The application
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has three buttons; 'SRV On’ is used to start the logging, "Toggle’ to change visible
graphs and "Unit’ to specify bluetooth unit name.

Bluetooth Sock

M Toes ’
Heel
167 223 278 334 390 445 501

Figure 1.3: A screenshot of the existing Android application. In this logging
moment the heel sensor (blue) worked well but the sensitivity in the toe sensor
(yellow) was very low.

Though the now existing hardware is enough to log signals from the heel and toe,
the solution needs further work to be able to give gait information based on the
signals.

1.2 Purpose and Objectives

The purpose of this study is to investigate the feasibility of extracting gait informa-
tion from signals recorded by a smartphone from a newly developed piezoelectric
textile sensor integrated in the heel and toe of a smart textile sock. The aim is to
develop a software for automated extraction of gait information and classification of
foot strike pattern.

The objectives are:

Compute the number of steps taken and cadence.

o Compute stance and swing time.

Classify foot strike patterns as either heel-, mid-, or toe-strike.

Look at the possibility to implement the software in real-time.
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1.3 Delimitations

No development of the hardware will be performed. The focus will lie within software
development.

Different algorithms will not be evaluated based on run-time or power efficiency.

1.4 Previous Work

The melt spun piezoelectric polyvinylidene fluoride (PVDF) fibres used in this
project was developed and manufactured by Swerea IVF in 2011, as described in
(Lund et al., 2012). The piezoelectric fibre has similar properties as conventional
textile fibres, which enables integration in fabrics as a sensor without compromising
the comfort. How to make use of the piezoelectric fibre as a textile based sensor was
examined by Rundqvist beginning in 2013. The study concerned the possibility to
weave with the PVDF fibre to achieve a textile based sensor for use in smart textiles
(Rundqvist, 2013, Rundqvist et al., 2014a). Smart textile refers to a textile that
has the ability to sense and respond to changes in its environment and in a textile
based sensor, the textile itself is the sensor (Rundqvist et al., 2014a).

In her study Rundqvist tested three different weaving processes; the PVDF fiber in
warp direction combined with different types of conductive yarn as outer electrode
in weft direction. The study concluded that it is fully possible to weave with PVDF
fibre and conductive yarn to create a fully piezoelectric textile sensor, as the sam-
ples from all three weaving processes showed a piezoelectric effect when strain was
applied.

K. Rundqvist et al. continued the research by integrating the PVDF fibre into a
regular sock with the aim to develop a system for logging foot strike data. The study
showed that the areas where output is desired can be defined by the placement of
the outer electrode. By placing the outer electrode under heel and toe the time
difference between initial ground contact for the heel and toe could be measured
(Rundqvist et al., 2014b).
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Theory

In this chapter the underlying theories to the concepts used in this project are
presented. First gait related theory and piezoelectric effect is explained to give an
understanding of what is measured and how. In the end of the chapter a pattern
recognition system is explained together with methods to evaluate such a system.

2.1 Gait Biomechanics

The human gait cycle can be divided into two main phases; the stance phase when
the foot is in contact with the ground and the swing phase when the foot is in the
air (Novacheck, 1998). In the work by Novacheck the gait cycle is defined to begin
when one foot hits the ground (the stance phase begins) and end when the swing
phase is over, which is when the same foot touches ground again.

The timing of the two phases is what differentiates walking from running. When
walking, the stance phase of left and right foot are overlapping, such that both feet
have contact with ground simultaneously and the stance time is above 50 % of the
gait cycle. When running, left and right swing phase are overlapping such that there
is a part of the cycle where no feet is in contact with the ground which means that
the stance time is below 50 % of the gait cycle. (Novacheck, 1998, Mann and Hagy,
1980)

Multiple studies on gait associated parameters has been performed (Cavanagh and
Lafortune, 1980, Novacheck, 1998, Mann et al., 2015). It has been shown that the
step length, cadence and pace all increase as the speed of gait increases. Cadence is
the number of full cycles taken within a minute, by the pair of feet, and pace is a
ratio of the number of minutes it takes to cover a kilometer.

The cycle time when walking very slowly can be up to 1.5 s while the cycle time
when sprinting can be as short as 0.55 s (Mann and Hagy, 1980). The stance time
of the total cycle is also decreasing with speed, from around 60 % when walking to
30 % when running, and for elite sprinters it can be as short as about 20 % of the

5
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gait cycle (Novacheck, 1998, Mann and Hagy, 1980).

The cadence can vary from 80 steps per minute when walking slowly up to 220 steps
per minute when sprinting (Sundquist, 1997). The cadence can be related to pace
by also analyzing step length. By increasing either step length or cadence the pace
is increased.

Walking Running Sprinting
Stance/Swing 60/40 % 30/70 % 20/80 %
Standstill } } > Maximum
speed
Cadence 80 spm - 150 spm - 190 spm - 220 spm
Cycle time 1553 - 0.80s - 0.63s - 0.55s

Figure 2.1: Overview of running associated parameters from walking to running.

Multiplying the cycle times in Figure 2.1 with the percentage belonging to the stance
period results in a maximum stance time of 0.9 s when walking and a minimum
stance time of 0.11 s when sprinting.

When discussing different types of running it is not only speed related measurements
that are interesting. Ground reaction forces and the center of pressure at landing
are also often used.

The foot strike pattern can be classified based on the location of the center of
pressure relative to the length of the foot at initial ground contact (Cavanagh and
Lafortune, 1980, Giandolini et al., 2014). An illustration of this model, called strike
index, is shown in Figure 2.2. The three different types of runners are heel-, mid-
and toe-strikers. In a heel-strike (HS) the heel lands first followed by a roll over the
fore-foot. Mid strikers (MS) generally lands on the outside of the foot and after the
initial contact both rear- and fore-foot is in contact with the ground. In a toe-strike
(TS) the fore-foot lands first while the heel might land later or not at all (Daoud
et al., 2012). Even though it is not necessarily so, many runners tend to shift from
HS to MS or TS when the speed is increased (Keller et al., 1996).
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0%

Figure 2.2: Strike index zones for classification of foot strike patterns as heel-,
mid- and toe-strike (HS, MS and TS).

2.2 Gait Analysis

The possibilities to quantify the biometrics mentioned in the previous section have
been studied by many researchers. Various measurement systems based on differ-
ent types of data such as acceleration, knee-and wrist angles, angular velocity and
ground reaction forces has been presented. The systems span from identifying gait
phases to classifying foot strike patterns.

M. Saito et al. (Saito et al., 2011) developed a system with seven pressure sensors
monitored in an insole. The system could monitor the plantar pressure during up
to 20 hours. The resulting pressure measurements showed a clear stance- and swing
phase. Though, the gait events could only be obtained by visual inspection and no
automatic solution was presented.

Preece et al. (Preece et al., 2011) uses a knitted resistive strain sensor placed on the
ankle to extract the salient features of ankle joint motion and thereby automatically
identify gait events. Even though the signal varied between individuals, gait events
could accurately be predicted. The study was only performed on walking subjects
and the possibilities to use it in running is not discussed at all. Also the algorithm
is not suited for usage in real time and there are according to the authors a number
of individual-specific thresholds to be set.

The encouraging results in measuring gait events with textile based sensors inspired
Tirosh et al. (Tirosh et al., 2013) to also develop a textile sensor sock but with the
capability of long-term data capture. Although this device addresses the long-term
recording, the analysis is not automated and can not be used in real-time.

Non-automatic classification of foot strike pattern has been successfully performed
based on center of pressure measured by a force platform (Cavanagh and Lafortune,

1980, Dickinson et al., 1985), accelerometer (Giandolini et al., 2014) and camera

7
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(Larson et al., 2011). Though these are mainly developed in studies performed to
evaluate possible technologies but few of those are on the market today.

One solution that exists on the market is the Sensoria smart sock (Duffy, 2015,
Sensoria, n.d.) Sensoria smart sock is infused with textile pressure sensors and tracks
foot landing technique in real-time. The Sensoria sock is similar to the prototype
used in this work but with the difference that it uses textile pressure sensors instead
of piezoelectric fibres.

2.3 Piezoelectric Effect

A material with piezoelectric effect will give rise to a redistribution of the electri-
cal charge when the material is exposed to mechanical press or pull. The word
piezo derives from a Greek word that means press tight or squeeze (Kutz, 2015).
The piezoelectric effect can arise in materials that have an electrical response to a
mechanical force.

2.3.1 Piezeoelectric Fibre

The piezoelectric properties of Polyvinylidene fluoride (PVDF) were discovered al-
ready in 1969 (Kawai, 1969). The thread developed by Swerea-IVF consists of 24
piezoelectric meltspun PVDF fibres. Each fibre consists of a conducting core of
carbon black and high density polyethylene, and a shell of PVDF (Rundqvist et al.,
2014b).

PVDF is a polymorphic material which means that the crystallines in the polymer
chain can be arranged in different forms. Depending on the crystalline form, the
material is said to be in either a-,3-, - or §-phase (Nilsson et al., 2013, Lund et al.,
2012). The natural phase (i.e the most energetically beneficial) after melting is the
a-phase, while the phase that has the highest net polarity is the -phase (Nilsson
et al., 2013). It is possible to transform the a-phase to S-phase by stretching (Lund
et al., 2012).

When stretched into S-phase the backbone of the PVDF chains gets oriented along
the stretching direction, though, the material is still not piezoelectric as the dipoles
are randomly oriented in the plane perpendicular to the chains (Nilsson et al., 2013).

In order to get piezoelectric output voltage the fibre must have electrodes on op-
posing surfaces, which means in the core and on the outside of the fibre. The
outer electrode should cover as much of the PVDF as possible (Nilsson et al., 2013).
When both the electrodes are applied, the fibre can be poled. The process of poling
means to align the dipoles in the plane perpendicular to the fibre, so that the nega-

8
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tive charge of the dipoles point towards the inner electrode and the positive charge
points towards the outer electrode (Lund et al., 2012).
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Figure 2.3: The dipole alignments in the plane perpendicular to the stretching
direction before, during and after the poling process.

2.4 Pattern Recognition

There are many possible ways to setup a pattern recognition system, all depending
on application. Though generally the process includes some or all of the following
steps; data acquisition, preprocessing, segmentation, feature extraction, classifica-
tion and post-processing (Jain et al., 2000).

2.4.1 Data Acquisition

Data acquisition is the process of measuring a physical phenomena, sampling the
signal and converting the samples into numeric values ready for processing by a com-
puter. Depending on the phenomena the signal can need more or less processing but

the general stages are; sensing, signal conditioning and analog to digital conversion
(Emilio Di Paolo, 2013).

2.4.2 Preprocessing

Data preprocessing comprises any type of processing performed on raw data in
preparation for another processing procedure. The preprocessing concept includes a
wide range of methods and tools and common elements are noise removal, baseline
correction and data normalization.
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2.4.3 Segmentation

There are generally three types of segmentation techniques, sliding windows,
activity-based segmentation and event-based segmentation (Banos et al., 2014).

When using the first method the signal is divided into fixed-size windows. The
windows can either be overlapping, non-overlapping or with a gap. This is the most
common segmentation technique used in activity recognition and a wide range of
window sizes has been used in previous studies. In the second method the data is
partitioned based on changes in activity, which could be for example from standing
still to running. The last method is based on the occurrence of specific events,
which are then used to define successive segments. This method allows for non-
evenly spaced segments of varying size. The method is potentially useful in gait
recognition where heel-strike or toe-off might be used as the trigger event (Fida
et al., 2015).

Each window, or segment, is evaluated separately and therefore the window size also
determines the classification rate. A shorter window size allows for faster recognition
but is more computationally demanding.

2.4.4 Classification

Classification can be described as determining to which category, in a set of cat-
egories, a new observation belongs to. An artificial neural network (ANN) is a
classifier designed to mimic the human brain and its ability to solve complex per-
ceptual problems (Jain et al., 1996). The cells in the brain processing information
are the neurons. A neuron receives signals through its dendrites, processes the in-
formation in the cell body and then forwards the signal to other cells thorough an
axon branching out to multiple synapses (Haykin, 2009).

In ANN the input to a neuron is multiplied with a weight simulating that some
dendrites are of higher importance than others. Each neuron also contains an acti-
vation function representing the activation of biological neurons. The output of the
activation function is forwarded as input to the neuron. In Figure 2.4 which shows
an example network the weights are marked with w and the activation functions
with f(x,w).

The neurons in ANNs are generally organized in layers which are of three different
types, a single input layer, one or more hidden layers and a single output layer.
Even though multiple hidden layers can be beneficial in some applications a single
layer is sufficient for most input-output relationships (Bishop, 1995). The layers
have different number of neurons dependent on how the data is formatted and how
many output classes there are. The network in Figure 2.4 has an input layer with
N neurons, one hidden layer with K neurons and an output layer with M neurons.

10
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Input layer Hidden layer Output layer

Figure 2.4: An illustration of a neural network with N input neurons, K neurons
in the hidden layer and M output neurons.

Deciding the number of neurons in the hidden layer is an important design-issue
with no clear answer. Too few neurons will result in underfitting while too many
neurons can result in overfitting. Underfitting is when the the model cannot capture
differences in the data and overfitting is when the model captures and adapts to noise
in the data. Though, there are a lot of rule-of-thumb methods and many of them
suggests that the number of neurons in the hidden layer should be between the
number of inputs and the number of outputs (Heaton, 2008).

There exists an extensive amount of different neural networks and the appropriate
design depends on the problem at hand. The different models and types have differ-
ent advantages depending on the application. For pattern recognition, as is the case
in this work, feed-forward networks have shown to be successful (Bishop, 1995). In
a feed-forward network the signals only travels from input to output which means
that the output of a neuron in a layer does not affect any neuron in the same layer.

In order to work the network has to be learned, i.e. the weights has to be tuned.
How this is done divides neural networks into two subclasses; unsupervised learning
models and supervised learning models (Zaknich, 1998). In unsupervised learning
the input-samples are self-organized into groups according to their similarity and can
be labeled in retrospect (Zaknich, 1998). In supervised learning known input-output
pairs are presented to the network which iteratively self-adjusts until a predefined
criterion is met.

The available input-output pairs are divided into three subsets; a training set, a
validation set and a test set (Hagan et al., 1996). The training set is used to

11
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adjust the weights in the network. The training can be done either in batch or
incrementally. In batch means that all training data is used at once, and then the
weights are updated, while incrementally means that the weights are updated after
each presentation of an input-output pair to the network (Hagan et al., 1996).

After each iteration of training the validation set is used verify that the error is
still decreasing. By verifying that the most recent adjustments also improves the
performance on the validation set the risk of overfitting to noise in the training data
is minimized (Bishop, 1995). Each iteration of training and validation is called an
epoch. When the predefined criterion is met, the training is completed and the test
set is used to confirm the actual performance of the network.

A simple algorithm that is widely used to train neural networks is standard back
propagation (BP) (Le Cun et al., 1988). Although, BP has shown to have low
performance on large-scaled problems which often is the case when training a neu-
ral network (Mgller, 1993). For practical applications, the basic BP algorithm is
often too slow (Hagan et al., 1996). For these reasons, variations of back propaga-
tion has been developed, such as numerical optimizations methods (Hagan et al.,
1996). Examples of such methods are the standard conjugate gradient algorithm
with line search (CGL), the one-step Broyden-Fletcher-Goldfarb-Shanno memori-
less quasi-Newton algorithm (BFGS) and the scaled conjugate gradient method.
These optimization methods are well suited to be used as learning algorithms, as
they can handle large scaled problems (Mgller, 1993). BFGS and SCG are methods
developed from CGL (Mgller, 1993).

Matlab provides a set of different neural networks within the neural network tool-

box. Among these networks are pattern recognition network, feed forward network,
cascade forward network, function fitting network and learning vector quantization

(LVQ) network.

2.5 Performance Measures

A classifiers performance can be measured by the classification accuracy, i.e. the
number of correct predictions divided by the total number of predictions.

true positives + true negatives

accuracy = (2.1)

all predictions

However, accuracy does not reveal information about the classifiers performance on
a specific class, and therefore sensitivity and specificity can be used to get a more
detailed view of the performance.

12
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2.5.1 Sensitivity

The sensitivity of an algorithm, also called the hit rate, is the ratio between the
number of true positives and the sum of true positives and the false negatives, as in
2.2 (Upton and Cook, 2014a).

true positives

sensitivity =
Y= true positives + false negative

2.5.2 Specificity

The specificity of an algorithm is the ratio between the number of true negatives
and the sum of true negatives and the false positives, as in 2.3 (Upton and Cook,
2014a). In most cases, high sensitivity means lower specificity and vice versa.

true negatives

(2.3)

specificity =
P Y true negatives + false positives

13
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2.5.3 Confusion Matrix

A confusion matrix is a type of table designed to visualize the performance of clas-
sification algorithms. Table 2.1 shows an example of a confusion matrix where the
rows corresponds to the actual class and the columns shows how the algorithm has
classified the instances. In this example, the algorithm can readily detect instances
of class 3 but has some difficulties separating class 1 and class 2 instances. The

correctly classified samples are centered in the diagonal of the matrix, making it
easy to find the errors.

Table 2.1: An example of a confusion matrix with 3 classes.

Predicted Class
Class 1 Class 2 Class 3

Class 1 10 2 0
Aéjlt ual Class 2 3 12 0
ass Class 3 0 2 15

2.5.4 Receiver Operating Characteristic (ROC) curve

A ROC curve shows the accuracy of the system in terms of false-positive rate against
the true-positive rate (Upton and Cook, 2014a). An algorithm with 100% accuracy
has both high sensitivity and high specificity. Figure 2.5 shows an example of a ROC-
curve. The y-axis shows the sensitivity and the x-axis shows (100 - specificity). This

gives a characteristic with the curve close to the upper left corner if the accuracy is
high.

100

sensitivity [%]

100 - specificity [%]

Figure 2.5: An example of a ROC-curve.

14
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Method

In order to classify steps as either heel, mid or toe strike four questions were identified
as critical to answer. First, does the data contain gait activity? Secondly, if it
contains gait activity, where does a step start and where does it end? What part of
a step differs between the three strike types? And last, how can a step be classified?
A flow chart over a pattern recognition system was developed that considers these
questions, the flowchart is presented in Figure 3.1 each step in the flow chart is
further presented below.

Data collection Filtering
Normalization
Preprocessing I
Combine sensor
activity
Event-based 7
segmentation Remove

irrelevant data

Preprocessing
Classification
v v
Heel-strike Mid-strike Toe-strike

Figure 3.1: Flowchart over the developed pattern recognition system.
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3.1 Data Acquisition

In order to collect data a data acquisition protocol was designed, socks were produced
and a test group was formed. An occasion where one person uses one sock while
following the protocol is a session.

3.1.1 Data Acquisition Protocol

Data was collected on a treadmill while following the protocol shown in Table 3.1.
The protocol includes 13 one minute long intervals with speeds from slow walk to
fast running. Interval 3-6 has natural pace as speed, meaning that the test person
should pick a comfortable running speed that can be kept for several minutes.

Interval 4-12 are controlled intervals, with specified foot strike pattern, while interval
1-3 and 13 should be with the test persons natural step. As can be seen in Table 3.1
the three specified foot-strike patterns are heel-, mid- and toe-strike. The runner
should imitate the strike-types as described in Section 2.1.

The intent of the protocol design was to get data sets with similar characteristics
to be able to compare data from different logging sessions, socks and runners. For
this reason, all intervals were tagged with the corresponding interval number and a
class, 1, 2 or 3 corresponding to heel-, mid- or toe-strike, or 4 if neither one.

Table 3.1: Protocol used for data collection.

Interval nbr

1 2 3 4 5 6 7 8 9 10 11 12 13
Speed 4 6 natural natural natural natural 14 14 4105 105 105 max
(km/h) pace pace pace pace pace
Foot . . .
strike natural natural natural heel toe mid heel toe mid heel toe mid natural

3.1.2 Socks

In order to be able to collect data 11 socks were produced. All socks were not
produced at the same occasion but rather according as already produced socks
stopped working. All socks were instrumented with one sensor in heel and one
sensor in toe (positioned as in Figure 3.2), but the amount of fiber and the position
of the sensing parts differs slightly between socks.
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Figure 3.2: The blue circle marks the position of the heel sensor and the red circle
marks the position of the toe sensor. The colors of the circles are the same ones
used in plots throughout the report.

Figure 3.3 shows the socks used to collect data. Socks 1-7 are made of synthetic
materials, and sock 6 and 7 are so called compression socks. Socks 8-11 are made
of mostly cotton. Socks of different shape and material were used to be able to
evaluate the influence of the sock characteristics on the sensor signals.

Figure 3.3: The eleven smart socks used for data collection.
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3.1.3 Subjects

The characteristics of each person in the test group are presented in Table 3.2.

Table 3.2: An overview of the test group.

Runner Id ~ Sex  Height [cm] weight [kg] Age Shoe size

A female 171 60 23 39
B female 178 61 26 39
C male 189 95 27 45
D female 174 65 24 39
E male 171 66 24 42

3.1.4 Sessions

The resulting footstep database contains 186 minutes of walking/running data, col-
lected by the 5 persons presented in Table 3.2, using the 11 different socks shown
in Figure 3.3. Table 3.3 presents which sock, which runner and what intervals that
were included in all logging sessions used to build the footstep database.
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Table 3.3: A table showing which runner (A-E) performed each logging session
and which intervals (1-13) that were included.

Session Sock Runner Included intervals

1 2 B 1 2 3 4 5 6 7

2 8 B 1 2 3 4 5

3 2 B 1 2 3 45 6 7 8 9

4 6 B 1 2 3 4 5 6

5 5 B 1 2 3 4 5 6 7 8 9 10 11 12
6 6 B 10 11 12
7 5 B 7 8 9 10 11 12
8 9 A 1 2 3 4 5 6

9 2 A 1 2 3 4 5 6 7 8 9 10 11 12
10 10 A 1 2 3 4 5

11 8 A 1 2 3 4 5 6

12 2 A 1 2 3 4 5 6 7 8 9 10 11 12 13
13 6 A 1 2 3 4 5 6

14 3 A 1 2 3 4 5 6 7 8 9 10

15 7 A 1 2 3 4 5 6 7 8 9 10 11 12
16 7 A 7 8 9 10 11

17 5 A 10 11 12
18 9 D 1 2 3 45 6 7 8 9

19 3 E 1 2

20 7 E 1 2 3 4 5 6 7 8 9 10 11 12
21 1 B 4 5 6 7 8 10 11 12
22 1 A 4 5 6 7 &8 9 10 11 12
23 1 A 4 5 6 10 11 12
24 11 C 1 2 3

25 11 C 1 2 3

26 8 C 4 5 6

27 10 C 4 5 6 7

28 10 C 1 2 3

3.2 Segmentation Preprocessing

The raw data from the heel- and toe-sensors were preprocessed in order to prepare
the data for segmentation. The steps identified as necessary before segmenting the
data into separate steps were filtering, amplitude normalization, combining sensor
activity, and removal of irrelevant data sequences.

Filtering was necessary in order to remove signal content outside the frequency range

of human gait, and for this a Butterworth band-pass filter was used to eliminate
the high- and low-frequency noise. The resulting filter was designed with corner
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frequencies 0.6 and 18 Hz. The lower limit was chosen based on an estimation of
the lowest possible step frequency which is around 0.7 Hz. The higher limit was
based on previous studies suggesting the highest frequency in foot motion data to
be somewhere in the interval 15-18 Hz (Hamill et al., 1994). The filter was applied
in forward and backward directions to prevent phase drifting.

Amplitude normalization is a well known method to make sensor signals of different
amplitude comparable. Both the signal amplitudes were normalized according to
Equation 3.1, where y is the raw signal, 3/ is the normalized signal and & is a scaling
factor. ymae is the maximum value in the signal sequence that is analyzed.

Y

yma:c

v =k (3.1)

The scale factor, k, was set to 10 to increase the absolute differences between the
highest and the lowest peaks.

Detection of the start of a step should be independent on foot-strike pattern and

which sensor that is active first. Therefore a method for detecting if any of the two
sensors are active was developed, by combining the sensors.
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Not all data collected during a logging session will contain footstep activity. Non-
activity data is collected when the test person is wearing the sock but not running
or walking, for instance when standing still, moving the foot in the air or jumping.
It is desirable to remove such non-activity data to decrease the amount of data that
is processed even though it is not actually walking or running.

3.3 Segmentation

In the segmentation only the stance phase was isolated as the ratio between stance
and swing phase varies with speed and therefore the profiles of the entire step would
not be comparable.

To isolate each stance phase event-based segmentation was used. The method was
suitable as all stance-phases have a distinct start- and end-event. Also, the duration
of the stance phase differs, disabling the use of a fixed window size.

The stance phase starts when the swing phase ends, which means that each stance is
preceded by a time period where the signal amplitude theoretically should be zero.
Independent on foot strike pattern, the stance phase always ends when the toes
leaves ground. As toe-off results in a negative pressure difference this information
can be used to identify the end of a stance phase.

3.4 Classification Preprocessing

The isolated stance-phases were preprocessed in order to prepare the segments for
classification. As the duration of a stance phase is varying with cadence and speed,
the segmentation will result in segments with varying length. This means that a
heel-strike segment at low speed will not be similar to a heel-strike segment in high
speed, and that heel-strike in low speed may be more similar to a toe-strike at low
speed. The segments are therefor not suitable to use as feature space. To make the
segments of a certain strike-type as similar as possible, and to differentiate segments
of different strike-types, the segments were scaled in time.

To scale the segments in time, linear interpolation was used. Linear interpolation is
a curve fitting method used to add new data points within an existing set of known
data points. Equation 3.2 shows the formula used for linear interpolation.

y=uyo(1- ) (3.2)

n
1 — Zo T — Zo
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By choosing a point x, the corresponding value, y, is calculated as a weighted average.
This means that if the point is closer to zy than x1, then yy has more influence than
y1 and vice versa.

The longest possible stance time is 0.9 s which equals 90 samples with the sampling
frequency 100 Hz. For linear interpolation, the desired number of samples was
chosen not to be fewer than the longest possible stance phase.

3.5 Classification

A supervised feed-forward network was used to classify each segment as either heel-,
mid-, or toe-strike. In order to prepare the data for classification the data from each
isolated step was stored in a matrix, resulting in a feature space with heel, toe and
summed data for all steps in the database. A matching target matrix containing
either 1, 2 or 3 for each step depending on foot strike pattern (heel-, mid- or toe-
strike) was also constructed. The input data (feature space and target matrix)
was divided into training, validation and test sets with the distribution 70 % for
training, 15 % for validation and 15% for tests. Further, the network was trained
with a function that is based on the scaled conjugate gradient method. This method
was used as training function as it has shown to be faster than other optimizations
methods, such as BP, CGL and BFGS (Mgller, 1993). Matlabs neural network
toolbox was used to realize the supervised feed-forward network for classification of
the different strike-types.

3.6 Network Design

For the classification both two and three classes were used respectively. In order
to find what set of features to use and how many neurons to have in the hidden
layer a series of test with different network setups was performed. The setup for
each test is shown in Table 3.4 and the number of neurons was based on the rule of
thumb mentioned in section 2.4.4. The result of each network was measured using
both cross-entropy, mean-squared error and mean error performance measures. The
sensitivity and the specificity was calculated, as well as the time it took to train
each network and classify a random segment.
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Table 3.4: Setup in tests of different networks. 'Heel and toe’ means heel and toe
data separate while 'Summed’ refers to the summed heel and toe data described in
Section 4.2.1

Feature space Data points Number of neurons

Heel 100 10 20 30 40 50 60 70 8 90 100
Toe 100 10 20 30 40 50 60 70 8 90 100
Heel and toe 200 20 40 60 80 100 120 140 160 180 200
Summed 100 10 20 30 40 50 60 70 8 90 100
Heel, toe and summed 300 30 60 90 120 150 180 210 240 270 300

The networks in the neural network toolbox offers performance functions based on
both cross-entropy and mean squared error (MSE). The cross-entropy performance
function calculates the sum of the cross-entropy for each output-target pair according
to Equation 3.3 based on the formula for cross-entropy (Hinton et al., 2012)

n

i > (=T xlog(Y)) (3.3)

=1 1i=1

CE(T,

3\*—‘

1
m

where T is the target matrix, Y is the output matrix, m is the number of output
classes and n is the number of output-target pairs.

The second performance function calculates the mean squared error (MSE) accord-
ing to Equation 3.4 based on the general formula for MSE (Upton and Cook, 2014b)

MSE(T,Y) = i > ((T-Y)) (3.4)

11
mmn ‘
with same T, Y, m and n as in Equation 3.3.

3.6.1 Visualisation of the Performance

To visualize the performance of the resulting pattern recognition system a confusion
matrix and a ROC curve were used.
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Results

In this chapter the developed methodology for recognition of strike type patterns
will be presented, including data acquisition, preprocessing, segmentation of stance
phases, feature extraction and classification. Apart from the methodology, the re-
sults from the extraction of gait information and the classification performance will
also be reported.

4.1 Data Acquisition

Only 1 of the 11 prototype socks were robust enough to collect data through the
whole protocol. The endurance of the remaining 10 socks were varying, but com-
monly, the amplitude started to decrease at some point in the protocol, and de-
creased slowly until no response at all could be noticed. Most of the socks recovered
within a couple of hours and could be used again but eventually all the socks stopped
working. Figure 4.1 shows an example where both sensors shows this type of be-
haviour. From this session, only the steps from interval 1-3 was tagged and saved
in the total footstep database.

Data collected by runner A during one logging session following the protocol is
presented in Figure 4.2. As this data set is the only one containing data for all 13
interval this particular data set will from now on be used to illustrate the different
stages of the recognition system.
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Figure 4.1: An example where the responses from both sensors decreases. The
amplitude of the toe sensor (red in plot) starts to decrease after about 200 s and
the amplitude of the heel sensor (blue in plot) starts to decrease after about 300 s.
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Figure 4.2: Raw data from a full protocol collected by runner A using sock number
2 . The numbers (1-13) shows which interval the data corresponds to. Heel data is
blue and toe data is red.
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The varying endurance made the amount of data collected with the different socks
unequal. The final distribution of collected intervals (Interval nbr) over socks (Sock
nbr) is presented in Table 4.1. The table shows that sock number 2 is the only sock
that has given data corresponding to all 13 interval and that sock number 7 has been
used most (41 intervals). In total 186 intervals were collected giving approximately
186 minutes of walking/running data.

Table 4.1: Number of intervals collected of each kind of interval number and sock.
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4.1.1 Data Analysis

A time plot of the raw data reveals that both the heel and the toe signal contains
information that can be related to the events of a foot strike. The most significant
events are marked with a black dot in Figure 4.3; initial heel and toe contact when
heel or toe hits ground, maximum heel and toe contact as well as heel- and toe
off when heel and toe leaves ground. The order of heel contact and toe contact is
dependent on what foot strike pattern the runner has.

The step in 4.3 is a clear heel-strike, as both initial heel contact and maximum heel
load occurs before toe contact and maximum toe load.

A typical step profilg in raw data
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——Heel data
250 | : Toe data
Max heel load -
[ E
' | | Max toe ldad
200 | | by :
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Figure 4.3: A single heel-strike profile with key events in the heel and toe data
marked with a black dot.

The analysis also showed differences in the data depending on which sock is used,
which person is wearing a certain sock and which logging session a certain sock is
used by one person. Figure 4.4-4.6 indicate three situations with notable differences.
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Figure 4.4 shows data collected by runner A with two different socks. The running
speed is 10.5 km/h and from top to bottom is heel-, toe- and mid-strike steps. To
the left is data from sock number 2 and to the right data from sock number 7. Sock
number 7 is a compression sock while sock 2 is less tight on the foot. The figure
shows that both heel and toe amplitude is slightly lower for sock 7. Sock 2 contains
more noise in the toe signal than sock 7 toe signal, while sock 7 contains more noise
in the heel signal than sock 2 heel signal.

Comparison between 2 socks, used by runner A
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Figure 4.4: Comparison of data from two socks (2,7) used by the same runner (A).
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Figure 4.5 shows data collected by runners A and B using the same sock. The
running speed is 10.5 km/h and from top to bottom is heel, toe and mid-strike.
Runner A and runner B has the same length, weight and shoe size. Even so the
difference in amplitude is notable in both heel and toe sensors.

Comparison between 2 runners, using same sock
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Figure 4.5: Comparison of data from the same sock (1) used by runner A and B.
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Figure 4.6 shows data collected by runner B, with the same sock but from different
logging sessions. The pace is 14 km/h and from top to bottom is heel-, toe- and
mid-strike. The data in the right plots are collected one week later than the plots to
the left. The differences are quite large even though the test setup is the same for
both sessions. The signals from session 7 is less noisy, indicating that the sensitivity
has decreased.

Comparison between two sessions (5, 7), with sock 5 and runner B
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Figure 4.6: Comparison of data from the same sock (5) and runner (B), from two
different logging sessions.
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4.2 Preprocessing

The signal preprocessing included filtering, amplitude normalization, a summation
and squaring of the signals and removal of irrelevant data. The two first parts were
solved using well-known methods described in Section 3.2 while the last two parts
are methods developed in this project and will be described more in detail in this
Section.

Figure 4.7 shows the data after filtering and amplitude normalization. The baseline
is straight and the data is centered around zero.

Filtered and normalized data
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Figure 4.7: Same data sequence as in Figure 4.2 but after filtering and normaliza-

tion. The baseline is straight and data is in the interval [-10, 10]. Blue line is heel
data and red line is toe data.

4.2.1 Sum and Square Signal from Heel and Toe

To find when any of the two sensors were active the absolute values of the filtered and
normalised heel and toe data were summed into one signal which was then squared.
The square was used to enhance peaks and suppress the noise at zero-level which
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made stance and swing phases even more distinct. Figure 4.8 shows the signal after
this step, and Figure 4.9 shows different steps when zooming in, this is to show that
the differences between steps are distinct also after the summation of the signals.
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Figure 4.8: Summation and squaring of the absolute value of the data showed in
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Figure 4.9: Zoom in on the summed and squared data in Figure 4.8. From left to
right are parts of the data with heel-, toe- and mid-strikes respectively.
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4.2.2 Removal of Non-Activity Data

The identification of non-activity data was achieved by analyzing the periodicity in
consecutive data windows. The window size was set to 3 seconds with an overlap of
1 second. The periodicity is depending on the step frequency and it was found by
autocorrelating the signal with the Matlab function xcorr. The autocorrelation of
a signal shows how many cycles the signal is built up by and how long the duration
of each cycle is. A pure sine-wave only has one cycle, but in the case of running
or walking data, the signals contains multiple cycles with different duration. The
sequences containing gait activity will have periodicity within the duration interval
presented in Table 2.1. The period times during walking or running varies between
0.55 s and 1.5 s. After removing all data that does not contain periodicity within
the interval, only the data containing foot step activity remained.

The left plot in Figure 4.10 shows the data before removal and the right plot shows
the data after the removal. Most parts of the data where the runner is having a
pause is removed. One of the pauses was not removed due to that the periodicity
of the noise was within the interval of foot step activity. In this data set about 160
seconds of data was removed.
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Figure 4.10: Left plot shows data all logged data and right plot shows data after
the removal of non-activity parts. Blue lines are heel data and red lines are toe data.

34



4. Results

4.3 Segmentation of Stance Phases

The segmentation of stance phases showed to be an extensive task and rendered
a solution with four parts; peak detection, detecting start of the stance phase,
detecting the end of the stance phase and extracting segments. In this section
each part of the solution will be presented in detail.

4.3.1 Peak Detection

Peak detection is used to identify each separate step since all steps have at least one
peak. The Matlab function findpeaks is used to locate all peaks. This function
detect all positive local maximas which gives multiple peaks per stance phase. By
using a minimum allowed distance between peaks, peaks belonging to the same step
is sorted out and only the most prominent peak per step is saved. To be sensitive
to variations in speed, the shortest allowed distance is based on the periodicity
calculated in the activity-based segmentation. The periodicity was calculated with
a resolution of 1 second, meaning that the minimum allowed distance is updated
every second to be adjusted after the current speed.

Peak detection
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Figure 4.11: Figure showing the detected peaks and the sorted step-peaks, with
each step-peak marked green. The blue line is the summed and squared signal
(described in Section 4.2.1).
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4.3.2 Detecting the Start of the Stance Phase

The shift from swing to stance could be identified as when the derivative of the
signal changes. As the sensors ideally should give no response during the swing
phase, both the amplitude and the derivative of the signal should be zero. The
derivative should then start to increase as the stance phase begins.

By moving backwards from each detected step-peak until the amplitude and deriva-
tive was under a certain limit for at least two consecutive samples the start of a
stance could be identified. To make the function robust and adaptive towards dif-
ferences in the data sets, the limit was based on the signals standard deviation which
showed best practice.

Since either heel or toe can hit the ground first, the slope detection function was

applied to the summed and squared signals. The detected start points in a small
part of the protocol can be seen in Figure 4.12.
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Figure 4.12: Figure showing the step-peaks (marked as black) and the detected
start points for the stance phases (marked as green). The blue line is the summed
and squared signal (described in Section 4.2.1).
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4.3.3 Detecting the End of the Stance Phase

The toe is the part of the foot that leaves ground last when running or walking,
independent of the foot strike pattern. Toe-off results in a negative pressure differ-
ence and can therefore be identified as a negative peak in the toe data. After the
summation of the signals, this point is not always distinct, which is why the toe
data is used to identify the end points. As the filtered data is centered around zero,
the toe data was inverted by multiplying with (-1) and fed into the Matlab function
findpeaks to locate negative peaks.

To ensure that the identified peak matches the start of stance a requirement that
the ends should be within 0.11 to 0.9 s after the start of stance was added. Figure
4.13 shows a part of the protocol with located end points together with matching
start points.
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Figure 4.13: Figure showing the detected end of each stance phase, marked as red.
The green marks are the start of the stance phases. The blue line is the summed
and squared signal (described in Section 4.2.1).
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4.3.4 Isolate All Segments

When the start and end of all stance phases are detected, the indices are used to
extract the corresponding segments from the heel and toe-data. For each start of
stance index, all higher end of stance indices are sorted and the smallest is picked
as a match. If the difference between the start and the matching end index is larger
than 11 and smaller than 90 a segment with the data between the two indices is saved
as a segment. In the full protocol (presented in Figure 4.2) 1093 steps were isolated,
which can be seen in Figure 4.14. No clear profile can be seen as all segments have

different length.
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Figure 4.14: The extracted segments with varying length. From top to bottom is
heel data, toe data and summed data for all 13 intervals.
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4.4 Gait Analysis

The information about the extracted segments does also give other interesting
running-related parameters. The amount of segments extracted indicates the num-
ber of steps taken during the logging session. The length of each segment indicates
the duration of the stance phase. Combining the amount of segments and the length
of the segments gives the mean cadence while running or walking during the logging
session. These values were calculated for each interval in the full protocol (presented
in Figure 4.2) and are shown in Table 4.2. In accordance with the theory (Section
2.1) the cadence increases while the stance time decreases with speed.

Table 4.2: Calculated running parameters for each interval in the data set presented
in Figure 4.2

. Mean Mean Stal.ldérd Min Max Mean
Interval Duration Nbr Deviation
Cadence Stance Stance  Stance Step Cycle
Nbr ] Steps [steps/min] Time 3] of Stance Time [s] Time [s]  Time [s]
Times [s]
1 61.40 29 56.68 0.75 0.02 0.71 0.79 1.14
2 63.51 27 51.02 0.61 0.02 0.58 0.67 0.95
3 60.31 79 157.21 0.34 0.02 0.29 0.38 0.75
4 86.64 115 159.35 0.36 0.03 0.28 0.42 0.74
5 60.11 72 143.76 0.33 0.06 0.28 0.50 0.77
6 61.96 78 151.21 0.29 0.02 0.25 0.35 0.76
7 67.11 96 171.68 0.29 0.02 0.24 0.33 0.69
8 59.31 86 174.03 0.26 0.03 0.22 0.40 0.68
9 69.11 99 171.92 0.27 0.03 0.23 0.33 0.68
10 65.21 85 156.44 0.32 0.02 0.28 0.36 0.75
11 59.81 80 160.54 0.27 0.01 0.24 0.31 0.73
12 64.01 85 159.38 0.28 0.02 0.24 0.34 0.73
13 61.01 91 179.02 0.26 0.02 0.21 0.32 0.65

4.5 Evaluation of Segmentation Method

The principal approach for evaluation of the segmentation has been by visual inspec-
tion of the identified stance start and end indices in the data. The main findings is
that the method works well for most intervals and most often also in the transition
between subsequent intervals. The only real drawback has been when walking in 4
km/h where the segmentation does not work as well for all socks. Examples of the
different situations can be seen in Appendix B.

To further evaluate how well the segmentation performs the number of detected
steps and missed steps in each logging session was estimated. The time distance
between each segment was calculated by finding the time difference between the
starting points of two subsequent segments. A step was considered as missed if
the time difference was bigger than the longest possible step time, which is 1.5 s.
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All segments were considered as subsequent, independent of the signal content in
between the starts of two segments. This assumption means that if two segments
are separated by a pause or transition steps, the time difference will result in an
additional missed step. This also means that if there are more than one missed step
in between the segments, these missed step will only be counted as one.

For the reasons stated above, this method of estimating the hit rate does not give the
absolute number of missed steps but rather an indication of the performance. Table
4.3 shows the outcome of the evaluation method for each logging session. Session
28 has the lowest hit rate with only 87 % while session 6 has the highest hit rate
with 100 % detected steps. All sessions with hit rate below 95 % includes interval
number one (see Table 3.3) and all sessions where interval one is excluded has a hit
rate above 98.4 % which aligns with the poor results observed for the segmentation
of 4 km/h intervals.
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Table 4.3: A table showing the hit rate of the segmentation algorithm for each
logging session.

Number of Number of Number of

Session - Sock detected steps missed steps  intervals Hit rate [%]
1 2 510 7 7 98.7
2 8 313 8 5 97.5
3 2 638 12 9 98.2
4 6 400 10 6 97.6
5 5 810 20 12 97.6
6 6 223 0 3 100
7 5 447 7 6 98.5
8 9 429 6 6 98.6
9 2 971 11 12 98.9
10 10 363 4 5 98.9
11 8 397 6 6 98.5
12 2 1093 13 13 98.6
13 6 341 20 6 94.5
14 3 632 27 10 95.5
15 7 880 33 12 96.4
16 7 406 6 5 98.5
17 5 242 1 3 99.6
18 9 612 30 9 95.3
19 3 120 3 2 97.6
20 7 864 50 12 94.5
21 1 734 10 9 98.7
22 1 816 7 10 99.2
23 1 900 13 7 98.6
24 11 149 2 3 98.7
25 11 188 2 3 94.0
26 8 225 1 3 99.6
27 10 290 3 4 99.0
28 10 128 19 3 87.1
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4.6 Classification Preprocessing

The segmented sequences of unequal length were scaled in time by linear interpo-
lation and the result of time scaling the full protocoll (Figure4.2) can be seen in
Figure 4.15. The profiles are now comparable and the segments can be used as
feature space for classification.
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Figure 4.15: The segmented steps after the time scaling. From top to bottom is
heel data, toe data and summed data for all 13 intervals.
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4.7 Classification of Foot-Strike Pattern

In this subsection the results from training two different networks are presented.
The first network has three classes while the second network has two classes. After
removing all intervals not tagged as either heel-, mid- or toe-strike (see Table 3.1)
from the step database described in Section 4.1 a total of 11856 steps remained
after segmentation. Among these were 5158 heel-strikes, 3084 mid-strikes and 3369
toe-strikes. In the second network only heel- and toe-strikes were used and therefore
all intervals tagged as mid-strike was also removed resulting in a total of 8464 steps.

With the aim to classify heel- toe- and mid-strike patterns, the neural network
resulting in best performance takes 300 data points as features in the input layer,
has one hidden layer with 140 neurons and gives 3 types of outputs in the output
layer. The 300 input points is built up by one time scaled segment, with 100 points
from heel data, 100 points from toe data and 100 points from the summed data.

The resulting confusion matrix for this neural network is showed in Figure 4.16.The
plot shows that the network classifies the three classes with a hit rate of 97 % on the
test data set. It also shows that when testing, the mid-strikes are falsely classified in
5.3 % of the testing mid-strikes, while toe-strike only fails with 2.8 % and heel-strike
fails with 1.9 %.
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Figure 4.16: The confusion matrix for the resulting network. One confusion matrix
per data set divided by the network. The "all confusion matrix" is a combination of

the other three confusion matrices.
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The sensitivity and specificity are presented in Table 4.4. The corresponding ROC-
curve is showed in Figure 4.17, where high sensitivity and high specificity are seen
as the curves are close to the upper left corner.

Class Foot-strike Sensitivity Specificity

1 Heel-strike 0.98R6 0.9921
2 Mid-strike 0.9815 0.9903
3 Toe-strike 0.9877 0.9970

Table 4.4: Sensitivity and specificity for the resulting network.
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Figure 4.17: The ROC curve for the resulting network using three outputs.

The results of the evaluation of other network settings can be found in Appendix A.

45



4. Results

When only using data tagged as heel- or toe-strike, the best performing network has
other characteristics. It also takes 300 data points as features in the input layer,
but it has 60 neurons in the hidden layer and gives 2 outputs per input.

The corresponding confusion matrix is shown in Figure 4.18. The plot shows that
the network classifies the two classes with a hit rate of 98.7 % on the testing data.
It can also be seen that the toe-strike classification fails with 0.8 % of the testing
toe-strikes and the heel-strike classification fails with 1.6 %.
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n
Output Class
n

Output Class
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Figure 4.18: The confusion matrix for the network using only heel and toe as
target classes.
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The sensitivity and specificity are presented in Table 4.5. The corresponding ROC-
curve is showed in Figure 4.19, where high sensitivity and high specificity is seen as
the curves are close to the upper left corner.

Table 4.5: Sensitivity and specificity for the network where 2 classes (heel and toe)
were used.
Class Foot-strike Sensitivity Specificity

1 Heel-strike 0.9952 0.9857
2 Toe-strike 0.9857 0.9952
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Figure 4.19: The ROC curve for the network using only heel and toe as target
classes.
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Discussion

In this study we have shown that with the use of a smart sock instrumented with
textile piezoelectric sensors, foot-strike patterns can be correctly classified with a
hit rate of up to 98 % and that other gait information such as cadence, stance time
and cycle time can be provided. This consolidates the conclusions by Sandsjo et al
(2014) that the sock can be used to provide information about foot-strike timing.

Though the results are very promising, as of today the signals from the textile
piezoelectric sensors can only be used in a very generalized way. Small variations
in the signals can not be connected to the person using the sock but rather to
the sock itself. If a sock was to be used for rehabilitation in connection with a
surgery for example, one would not be able to know if differences were dependent
on the patients progress or a variation in the fitting of the sock. Also limiting the
possible areas of use is the problem with socks being different from each other and
the somewhat unpredictable function. If a sock stops working one can not simply
replace it by another one without the risk of getting slightly different signals. If
wanting to further develop the software to extract other gait information this might
have an impact.

5.1 Data Acquisition

As presented in Section 4.1.1 the data analysis showed that all socks are individual
giving data with different characteristics depending on the amount of piezoelectric
fibre and the outcome of the poling process. In addition to this, each specific sock
also gives different type of data depending on how well the sock is fitted under the
foot and on the duration of the logging session. The collected database used for
development and tests is not wide enough to conclude that the system can handle
differences that may appear if the system is tested on a larger and less homogeneous

group.

In all data sets where the sensor amplitude decreases before the logging session
ends shows the same pattern; the toe sensor has lower endurance than the heel
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sensor. A theory for this behaviour is that the toe sensor is further away from the
connecting buttons. This increases the uncertainty since the fibre and conductive
thread needs to be longer, which in turn means that charges has to travel a longer
distance. The 24 filaments in the fibre thread are delicate and the longer thread is
being used, the higher is the risk of breakage. Another theory for the decreasing
amplitude behaviour is the occurrence of sweat. As the logging session proceeds the
sock gets sweatier and sweatier and the sweat works as an electrolyte which enables
the charges to travel in other ways than through the conductive thread.

5.2 Segmentation

The overall aim of the work was to classify foot-strike patterns, and to do so, finding
step profiles of high quality has been a focal point. Though much work has been
put into optimizing the segmentation, the evaluation of this method is somewhat
imperfect. Some sessions have pauses between each interval while some sessions
have no pauses at all. Since pauses result in an additional missed step, this way of
counting missed steps will be unfair. To have a more fair evaluation method, which
intervals as well as number of pauses should be considered as additional parameters.
As described in Section 4.3.4 Sock 6 gave a 100 % hit rate in one of the logging
sessions. This was possible as the protocol does not contain any pauses between the
intervals. Also, this protocol only contains intervals with a speed of 10.5 km/h.

As stated in Section 4.3.4 the segmentation hit rate of 4 km/h intervals is often lower
than for intervals with higher speed. This might be due to the higher sensitivity in
the piezoelectric fibres in the beginning of a logging session, which also increases the
noise. This may have been resolved by using a randomized protocol each logging
session but that was not tested. The poor hit rate could also be due to the fact
that the stance time is a bigger portion of the total step when walking, and due to
overshoots in the signals the transition between stance and swing might be harder
to recognize. Another aspect is that the impact between the foot and ground is
lower in slower paces making the step profile less characteristic.

However, the varying result in the segmentation of 4 km /h intervals does not impact

the classification result. Intervals tagged as natural foot strike are not included in
the training database.

5.3 Classification

Since the interpretation of the different strike-types, and the ability to realize them
when walking or running, can vary from person to person it is hard to know if
foot-strikes tagged as heel-, mid- or toe strike actually is of the intended strike-type.
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The strike-type commented as the hardest to forge was the mid-strike and that was
also the strike-type for which all tested networks had the lowest sensitivity. This
indicates that all mid-strikes being misclassified by the network might not actually
be misclassified, some are likely wrongly tagged (or realized) and are in fact heel-
strikes.

The result of the classifier was much dependent on which data was used to train
the network. Even though using a protocol for data collection was hoped to give
an equal amount of intervals of each strike type, issues with the sensors durability
resulted in this uneven database, presented in Section 4.7. Classification has not
been tested on a subset of the database containing an equal distribution of strike
types and it is possible that this issue may have had an impact on the classification
result.

Hypothetically, if the system would become a commercial product, should the net-
work already be trained or should each customer collect data to train with? Best
performance was achieved with the largest feature set, with data from all test per-
sons and from all socks. Though, that was when the network was tested on data
from multiple persons. A network only used by a single person might benefit from
only training on data from this person. In Matlab, the training time was relatively
low (less than a minute) while the possibility to perform such a network training
on a phone has not been investigated. Possibly, if the processing time and compu-
tational requirements are too large, the application might require the network to
be trained beforehand, and then remains the question of what training data to use.
Potentially a pressure plate could be used as a reference method to collect data and
build a database of controlled and appropriate steps.

5.4 Future Work

The difficulties with collecting data during any longer period of time has shown
that in order to be able to conduct any further research within signal processing
the robustness of the hard ware would need to be improved. To handle the problem
with decreasing amplitude, changing to an adaptive AD-converter could be a starting
point as there seems to still be information in the sensor signals, though with much
lower amplitude.

Another field open for exploration is incorporating other sensors. Since accelerome-
ter data is often used for activity classification (Banos et al., 2014), such information
could be used in the preprocessing stage to classify when the person is actually run-
ning or walking.

Moreover, the data windows classified as non-activity data is cut out and the win-

dows with activity data are added together. When adding the remaining data, if
unfortunate, joining two windows may result in an unreal step profile. In this sit-
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uation the segmentation algorithm will generate a segment of this assembled step.
This aspect has not been dealt with and there might be a better way to handle
this step in the system. The solution of incorporating accelerometer data might
decrease the risk of creating these false step profiles, if the method is more accurate
than using the periodicity-based solution.

Another possible improvement when combining accelerometer data with the sock
data could be when detecting the start and end of each step or stance phase. The
result might be more precise if the data from the three sensors are fused.

Last but not least, only one type of feed forward network has been tested in this

study, and even though the results are promising, it could be interesting to test
other types of classification methods.
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Conclusion

The textile piezoelectric sensors can be used in a smart sock to classify heel-, toe-
and mid-strike patterns. The developed pattern recognition system is composed
of preprocessing, a comprehensive segmentation, and feature extraction prior to
classification with a supervised neural network.

The system has a hit rate of up to 97 % when all three strike-types are used as
targets. Even though the system had the lowest classification rate for mid-strikes,
the hit rate was just slightly higher (98.7 %) when classifying only heel- and toe-
strikes.

The pattern recognition system can estimate the number of steps taken as well as
the cadence and the stance time. The system should be possible to implement as a
real-time application as no data sequences longer than three seconds are needed in
any part of the system.

The results are very promising, as of today the signals from the textile piezoelectric
sensors can be used for classification, but larger tests would be needed to validate
the results. It would be necessary to improve the sock, and possibly the hardware,
before conducting software tests on a larger test group and continuing the research
on other areas of use than running.
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A. Results from testing different number of neurons with different feature spaces

A.1 Heel data as training data

Nbr neurons MSE ~ H  Error Train. time [s] Class. time [s]

10 0.070 0.119 0.150 8.47 0.0014
20 0.055 0.098 0.115 4.31 0.0012
30 0.050 0.087 0.100 7.18 0.0013
40 0.035 0.064 0.070 10.98 0.0012
50 0.051 0.089 0.103 8.36 0.0010
60 0.046 0.082 0.093 9.62 0.0010
70 0.038 0.069 0.077 13.10 0.0011
80 0.035 0.063 0.068 14.48 0.0009
90 0.039 0.070 0.080 14.83 0.0009
100 0.059 0.101 0.125 10.91 0.0009

Table A.1: Part A: Performance measures for different number of neurons in the
hidden layer, using only heel data as training data

Sensitivity Specificity
Nbr neurons Heel Mid Toe Heel Mid  Toe
10 0.864 0.744 0.929 0.879 0.909 0.978
20 0.891 0.817 0.937 0.913 0.925 0.985
30 0.910 0.835 0.945 0.920 0.937 0.988
40 0.934 0.888 0.964 0.950 0.955 0.988
50 0.907 0.832 0.942 0.921 0.935 0.984
60 0.907 0.859 0.949 0.933 0.936 0.988
70 0.933 0.876 0.952 0.943 0.950 0.988
80 0.937 0.887 0.968 0.947 0.957 0.990
90 0.925 0.878 0.951 0.944 0.946 0.987
100 0.880 0.801 0.931 0.901 0.918 0.987

Table A.1: Part B: Sensitivity and specificity for different number of neurons in
the hidden layer, using only heel data as training data
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A. Results from testing different number of neurons with different feature spaces

A.2 Toe data as training data

Nbr neurons MSE ~ H  Error Train. time [s] Class. time [s]
10 0.070 0.125 0.145 9.00 0.0016
20 0.061 0.111 0.123 3.77 0.0013
30 0.047 0.085 0.094 7.27 0.0010
40 0.042 0.076 0.084 9.27 0.0010
50 0.042 0.078 0.082 9.47 0.0010
60 0.040 0.075 0.079 10.84 0.0011
70 0.049 0.091 0.095 9.90 0.0010
80 0.050 0.091 0.100 9.40 0.0010
90 0.046 0.084 0.091 12.68 0.0009
100 0.045 0.083 0.090 14.73 0.0011

Table A.2: Part A: Performance measures for different number of neurons in the

hidden layer, using only toe data as training data

Sensitivity Specificity
Nbr neurons Heel Mid Toe Heel Mid  Toe
10 0.885 0.779 0.877 0.927 0.908 0.948
20 0.900 0.817 0.895 0.942 0.919 0.956
30 0.933 0.853 0.914 0.955 0.937 0.969
40 0.943 0.863 0.926 0.961 0.946 0.969
50 0.943 0.873 0.920 0.959 0.946 0.973
60 0.941 0.874 0.933 0.960 0.948 0.974
70 0.927 0.848 0.923 0.952 0.937 0.968
80 0.927 0.839 0.915 0.950 0.937 0.964
90 0.932 0.857 0.920 0.953 0.941 0.969
100 0.935 0.859 0.918 0.950 0.942 0.971

Table A.2: Part B: Sensitivity and specificity for different number of neurons in
the hidden layer, using only toe data as training data
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A. Results from testing different number of neurons with different feature spaces

A.3 Heel and toe data as training data

Nbr neurons MSE ~ H  Error Train. time [s] Class. time [s]

20 0.033 0.065 0.062 6.65 0.0019
40 0.018 0.038 0.035 7.86 0.0019
60 0.017 0.037 0.034 10.31 0.0013
80 0.017 0.036 0.033 10.25 0.0011
100 0.017 0.035 0.031 11.05 0.0011
120 0.017 0.034 0.031 14.23 0.0011
140 0.014 0.028 0.026 15.50 0.0011
160 0.018 0.036 0.035 16.93 0.0012
180 0.013 0.027 0.024 23.24 0.0012
200 0.020 0.041 0.040 21.61 0.0015

Table A.3: Part A: Performance measures for different number of neurons in the
hidden layer, using heel and toe data as training data

Sensitivity Specificity
Nbr neurons Heel Mid Toe Heel Mid  Toe
20 0.940 0.907 0.963 0.957 0.960 0.988
40 0.968 0.948 0976 0.976 0.977 0.993
60 0.965 0.951 0.982 0.980 0.976 0.993
80 0.970 0.949 0.981 0.977 0.980 0.993
100 0.975 0.947 0981 0.977 0.982 0.993
120 0.971 0.948 0.985 0.978 0.981 0.994
140 0.978 0.959 0.983 0.982 0.984 0.994
160 0.967 0.947 0979 0.976 0.976 0.994
180 0.982 0.964 0979 0.984 0.984 0.995
200 0.966 0.936 0974 0.974 0.974 0.991

Table A.3: Part B: Sensitivity and specificity for different number of neurons in
the hidden layer, using heel and toe data as training data
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A. Results from testing different number of neurons with different feature spaces

A.4 Heel, toe and summed data as training data

Nbr neurons MSE ~ H  Error Train. time [s] Class. time [s]

30 0.021 0.042 0.038 13.34 0.0017
60 0.014 0.028 0.026 16.96 0.0013
90 0.012 0.025 0.023 23.55 0.0013
120 0.011 0.024 0.020 33.96 0.0012
150 0.011 0.022 0.019 36.52 0.0012
180 0.041 0.082 0.071 23.26 0.0012
210 0.010 0.022 0.019 54.88 0.0012
240 0.014 0.027 0.026 60.64 0.0012
270 0.014 0.029 0.026 65.37 0.0015
300 0.031 0.062 0.052 38.50 0.0013

Table A.4: Part A: Performance measures for different number of neurons in the
hidden layer, using heel, toe and summed data as training data

Sensitivity Specificity
Nbr neurons Heel Mid  Toe Heel Mid  Toe
30 0.968 0.949 0.965 0974 0.975 0.992
60 0.977 0.962 0.982 0.982 0.984 0.995
90 0.982 0.965 0.982 0.984 0.985 0.995
120 0.982 0.971 0.985 0.987 0.986 0.996
150 0.983 0.976 0.982 0.989 0.986 0.996
180 0.941 0.889 0.948 0.950 0.958 0.982
210 0.985 0.971 0.985 0.988 0.988 0.996
240 0.977 0.964 0.978 0.983 0.981 0.996
270 0.978 0.961 0.979 0.9823 0.982 0.995
300 0.956 0.929 0.954 0.960 0.967 0.993

Table A.4: Part B: Sensitivity and specificity for different number of neurons in
the hidden layer, using heel, toe and summed data as training data



A. Results from testing different number of neurons with different feature spaces

Nbr neurons MSE ~ H  Error Train. time [s] Class. time [s]

50 0.017 0.035 0.031 22.27 0.0013
60 0.012 0.026 0.022 49.50 0.0010
70 0.016 0.033 0.030 48.52 0.0012
80 0.016 0.032 0.030 50.94 0.0010
90 0.019 0.039 0.034 43.76 0.0010
100 0.018 0.038 0.035 44.62 0.0011
110 0.012 0.023 0.022 71.95 0.0010
120 0.014 0.029 0.026 66.81 0.0010
130 0.012 0.026 0.023 65.16 0.0010
140 0.008 0.016 0.014 90.23 0.0014
150 0.010 0.021 0.017 99.33 0.0017

Table A.5: Part A: Performance measures for different number of neurons in the
hidden layer, using heel, toe and summed data as training data. Smaller spacing
between the number of neurons were used to increase the resolution of the test.

Sensitivity Specificity
Nbr neurons Heel Mid Toe Heel Mid  Toe
50 0.970 0.961 0.975 0.981 0.977 0.995
60 0.982 0.964 0.985 0.984 0.987 0.996
70 0.975 0.958 0.975 0.980 0.981 0.994
80 0.974 0.953 0.980 0.979 0.981 0.994
90 0.970 0.948 0977 0.976 0.978 0.994
100 0.972 0.951 0.968 0.977 0.975 0.995
110 0.980 0.971 0.982 0.986 0.985 0.996
120 0.976 0.965 0.980 0.983 0.983 0.995
130 0.981 0.967 0.980 0.985 0.985 0.995
140 0.989 0.982 0.988 0.992 0.990 0.997
150 0.985 0.974 0.988 0.989 0.988 0.996

Table A.5: Part B: Sensitivity and specificity for different number of neurons in
the hidden layer, using heel, toe and summed data as training data. Smaller spacing
between the number of neurons were used to increase the resolution of the test.
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A. Results from testing different number of neurons with different feature spaces

A.5 Summed data as training data

Nbr neurons MSE ~ H  Error Train. time [s] Class. time [s]
10 0.112 0.193 0.234 8.15 0.0015
20 0.075 0.133 0.157 9.18 0.0015
30 0.076 0.137 0.163 12.64 0.0013
40 0.087 0.155 0.182 9.22 0.0010
50 0.082 0.146 0.175 10.24 0.0010
60 0.064 0.115 0.134 23.57 0.0011
70 0.069 0.126 0.140 16.91 0.0011
80 0.086 0.151 0.181 12.34 0.0010
90 0.100 0.174 0.209 10.88 0.0011
100 0.096 0.168 0.205 9.64 0.0010

Table A.6: Part A: Performance measures for different number of neurons in the

hidden layer, using summed data as training data

Sensitivity Specificity
Nbr neurons Heel Mid Toe Heel Mid  Toe
10 0.827 0.755 0.703 0.843 0.853 0.958
20 0.891 0.764 0.849 0.879 0.914 0.966
30 0.887 0.800 0.799 0.898 0.891 0.968
40 0.877 0.798 0.756 0.886 0.879 0.964
50 0.886 0.800 0.768 0.889 0.883 0.968
60 0.909 0.826 0.838 0.920 0.911 0.969
70 0.908 0.846 0.805 0.923 0.900 0.970
80 0.883 0.810 0.750 0.879 0.884 0.968
90 0.843 0.776 0.737 0.863 0.864 0.963
100 0.854 0.779 0.733 0.864 0.871 0.959

Table A.6: Part B: Sensitivity and specificity for different number of neurons in
the hidden layer, summed data as training data
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A. Results from testing different number of neurons with different feature spaces
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Figure B.1: All black boxes shows missed steps. The segmentation fails in every
other step in 4 kph using sock 9.
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B. Descriptive examples of the segmentation

B.2 4 kph (interval 1) with sock 2
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Figure B.2: The segmentation succeeds to find all steps even in 4 kph, using sock
2.



B. Descriptive examples of the segmentation

B.3 14 kph (interval 7) with sock 2

Starts and ends of resulting segments - 14 kph with sock 2
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Figure B.3: The segmentation succeeds to find all steps in 14 kph, using sock 2.
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