
DF

Anti-Spoofing for Facial Recognition-
based Identification System
Using Convolutional Neural Networks to Detect Fake Faces

Master’s thesis in Complex Adaptive Systems

Simon Liljestrand

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2020

Master’s thesis 2020:NN

Anti-Spoofing for Facial Recognition-
based Identification System

Using Convolutional Neural Networks to Detect Fake Faces

Simon Liljestrand

DF

Department of Electrical Engineering
Chalmers University of Technology

Gothenburg, Sweden 2020

Anti-Spoofing for Facial Recognition-based Identification System
Using Convolutional Neural Networks to Detect Fake Faces
Simon Liljestrand

© Simon Liljestrand, 2020.

Supervisor: Kenneth Jonsson, Smart Eye AB
Supervisor: John Finér, Smart Eye AB
Supervisor: Ahmet Oguz Kislal, Department of Electrical Engineering
Examiner: Marija Furdek Prekratic, Department of Electrical Engineering

Master’s Thesis 2020:NN
Department of Electrical Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX, template by David Frisk
Printed by Chalmers Reproservice
Gothenburg, Sweden 2020

iv

Anti-Spoofing for Facial Recognition-based Identification System
Using Convolutional Neural Networks to Detect Fake Faces
Simon Liljestrand
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Biometrics are becoming increasingly popular for use as authentication factors, ow-
ing to their high accuracy, and uniqueness to the individual, as well the convenience
gained when not needing any imposed burdens such as carried tokens, or remem-
bered passwords. However, such authentication factors need to be secured against
new attack vectors. When facial recognition is used for authentication purposes, one
potential attack vector is spoofing, that is, presenting some form of false imitation of
the face of an authorized user. This thesis presents a means of detecting fake faces,
intended to be integrated in an authentication system on a lightweight platform
deployed as a component of a driver monitoring system. The solution presented
uses image frames under two different active light conditions from a NIR-camera
(Near Infrared) to classify the face as real or fake. Spoof attacks consist of faces
printed on paper and held up in front of the camera, as well as subjects wearing
latex masks. Classification of a face as live (real) or spoof (fake) is done using a
lightweight neural network, to allow deployment on the sort of lightweight system
suited for the setting of driver monitoring. On a small-scale test set, preliminary
results indicate a classification accuracy of 100 % for live faces, 99.7 % for printed
faces and 94.1 % for latex masks. The overall accuracy is 98.9 %. These results
indicate that the solution presented could be successfully used to detect spoofing
attempts in the context of authentication based on facial recognition, but further
investigations with larger and more diverse data sets are encouraged.

Keywords: convolutional neural network, machine learning, image processing, com-
puter vision, lightweight software, spoofing, security, mask, face, facial recognition,
detection, authentication, attacks

v

Acknowledgements
I am very grateful to Smart Eye AB, for giving me the opportunity of working on
this exciting project. I would like to thank Kenneth Jonsson for valuable guid-
ance, discussions, reflections and input with regards to all kinds of technical details
throughout the project. I would also like to thank John Finér for supervision of the
project. I want to thank Oguz Kislal for guidance with regards to administrative
and academic details during the project, as well as good feedback and guidance with
regards to the final report and presentation of the project. Finally, I would like to
thank my examiner Marija Furdek Prekratic for taking on this project, and for the
feedback received to improve the thesis.

Simon Liljestrand, Gothenburg, May 2020

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Problem description . 1
1.2 Previous work . 1
1.3 Aim of the project . 3

2 Theory 5
2.1 Artificial Neural Networks . 5

2.1.1 Neurons and activation functions 5
2.1.2 Network Architecture . 6

2.1.2.1 Convolution . 7
2.1.2.2 Depthwise Separable Convolution 8
2.1.2.3 Convolutional Neural Networks 9
2.1.2.4 Bottlenecks and expansions 9
2.1.2.5 Residuals . 10
2.1.2.6 MobileNetV2 . 10

3 Method 13
3.1 Hardware setup . 13
3.2 Data collection . 14

3.2.1 Live test subjects . 14
3.2.2 Spoof media . 15

3.2.2.1 Prints . 15
3.2.2.2 Masks . 16

3.3 Main Algorithm . 17
3.3.1 Pairing of Consecutive Frames 17
3.3.2 Frame preparation . 18
3.3.3 Classification . 21

3.4 Neural Network Training . 21

4 Results 23
4.1 Training history . 24

4.1.1 Full Face . 24
4.1.1.1 Using Frame Pairs 24

ix

Contents

4.1.1.2 Using Single Frames 25
4.1.2 Eye Region . 26

5 Conclusion 29

Bibliography 31

A appendix 1 I
A.1 Neural Network for Face Region . I
A.2 Neural Network for Eye Region . VII

x

List of Figures

2.1 A 3 × 3 kernel applied without padding to a 5 × 5 image with depth
3, producing a 3 × 3 output image of depth 1. 7

2.2 Illustration of depthwise separable counterpart to figure 2.1: First,
depthwise separable convolution is done, where 3×3 kernels of depth
1 are applied to each channel to produce an intermediary output of
depth 3. Second, a 1 × 1 kernel of depth 3 is applied to the interme-
diary output, yielding a final, single channel output. 8

2.3 Graphical depiction of a bottleneck. 9
2.4 Graphical depiction of an expansion. 10
2.5 Graphical depiction of the bottleneck residual block. 10

3.1 Flash configuration for 4 consecutive frames. The viewing direction
of the camera is towards the reader. 13

3.2 Photograph of the camera setup that was used. 14
3.3 An example of a frame from a live recording. 15
3.4 An example frame from a spoof recording in which a NIR-frame from

a live recording was printed on paper and held up in front of the camera. 16
3.5 An example frame from a spoof recording in which the subject wore

a mask. 17
3.6 A brief description of the frame preparation procedure that consti-

tutes the first step of the algorithm. 19
3.7 To the left is shown a raw frame. To the right is the same frame after

being scaled, rotated, translated and cropped to include only the face. 20
3.8 To the left is shown a raw frame. To the right is the same frame after

being scaled, rotated, translated and cropped to include only an eye. . 20
3.9 Classification is done using a neural network of MobileNetV2 archi-

tecture [15], taking concatenated frames as input 21

4.1 Accuracy of correct classification on validation data during training
history, on the pair of frames using dark frame and right flash (P1). . 25

4.2 Accuracy of correct classification on validation data during training
history, on the pair of frames using front flash and right flash (P2). . . 25

4.3 Accuracy of correct classification on validation data during training
history, on the pair of frames using right flash and left flash (P3).
(Note that the neural network classification is binary - real face or
fake; the three categories are for the aid of the reader) 25

xi

List of Figures

4.4 Accuracy of correct classification on validation data during training
history, on the pair of frames using only front flash. 26

4.5 Accuracy of correct classification on validation data during training
history, on the pair of frames using only right flash. 26

4.6 Accuracy of correct classification on validation data during training
history, on the pair of frames using only left flash. (Note that the
neural network classification is binary - real face or fake; the three
categories are for the aid of the reader) 26

4.7 Accuracy of correct classification on validation data during training
history, on the pair of frames using dark frame and right flash (P1). . 27

4.8 Accuracy of correct classification on validation data during training
history, on the pair of frames using front flash and right flash (P2). . . 27

4.9 Accuracy of correct classification on validation data during training
history, on the pair of frames using right flash and left flash (P3).
(Note that the neural network classification is binary - real face or
fake; the three categories are for the aid of the reader) 27

xii

List of Tables

3.1 Pairing of frames with different active lighting. 18

4.1 The final accuracies of the neural classifier on previously unseen faces,
depending on which type of input it was trained on. 23

xiii

List of Tables

xiv

1
Introduction

1.1 Problem description
As technology has increased our ability to accurately determine personal identity
based on various biometrics, they have become increasingly popular as authentica-
tion factors. The accuracy of identification using biometrics means that it can ensure
authentification and non-repudiation, while the fact that biometrics are intrinsically
tied to the person ensures availability without imposed burdens such as remembering
passwords, or carrying physical tokens, such as keys. However, new authentication
factors come with new potential attack vectors that need consideration for security
to be guaranteed. One attack vector could be spoofing, which is presenting falsified
biometric data that mimics that of an authorized user. For example, if visual facial
features are used as an authentication factor, then one could spoof facial features
by presenting a picture of the authorized person, or by wearing a mask that looks
like them. Thus, for biometric authentication factors to be secure, robust methods
for dealing with these attacks need to be developed.
It is hard to overestimate how important and efficient Convolutional Neural Net-
works (CNNs) have become for classification tasks in image analysis over the last
decade, so given their performance on similar tasks, using a CNN-based approach
for spoof-detection is a natural choice.

1.2 Previous work
Different approaches for detecting spoof attacks on biometric authentication sys-
tems, including facial recognition, have been presented in a number of previous
studies [8–14,17–21]. Some of these have investigated spoof detection based in part
on imagery in the NIR (Near Infrared) spectrum. In [10], multi-spectral solutions
to anti-spoofing are investigated, using both NIR-imagery and visible-light imagery.
They tried different approaches, using Convolutional Neural Networks (CNNs) as
well as more classical, Local Binary Pattern-based (LBP) methods, on visual and
NIR-data either separately or in conjunction. The best overall results were found
when using a CNN on visual and NIR-data in conjunction, while the worst results
were found using LBP-methods on visual and NIR-data in conjunction. In [17],
an NIR-based solution was investigated. Spoof detection was based on differential
images between active and non-active lighting (a differential image is one where
pixel values from the non-actively lit image were subtracted from the actively lit
one). Classical statistical methods were used, rather than machine learning. More

1

1. Introduction

specifically, images were analyzed using consistency measures, which easily pick up
on anomalies in the background if a 2D-printed image is held up in front of the
camera.
However, approaches that do not use NIR-based facial recognition, but rather visible-
based, are the most common. [13] proposes a spoof-detection approach based on an-
alyzing blinking behavior of the subject. In [21], focus is not only on the model used
to detect spoofing, but also on the means of data collection. To produce a model
that is robust to variations found in real-world applications, they downloaded a large
number of videos with live faces from the web. They then extracted relevant por-
tions with face-detection software. Spoof videos were produced in two ways. Some
conventional recordings were made by replaying live videos on smartphone, tablet,
laptop and desktop screens held in front of the recording device. Other recordings
were made by applying distortions to live footage in order to mimic the distortions
typically produced in spoof attacks. The latter of the two was done to more easily
scale the spoof data-base, since making actual spoof recordings is slow and costly
by comparison. Finally, they proposed a three-module model with a module for
detecting temporal anomalies, another for finding which regions are relevant and
a third for detecting spatial anomalies in the regions detected as relevant. In [9],
focus is on zero-shot face anti-spoofing, meaning that the model proposed is meant
to handle attacks with previously unseen types of spoof media. 13 different spoof
media were used, and the model was trained to partition spoof-footage into subcat-
egories without explicit supervision, and then make the binary classification based
on which subcategory it corresponded to the most. In [8], the aim was to improve
the performance of a recurrent CNN-based classifier by supervising the learning of
two auxiliary signals in addition to classification as spoof or live: the scene depth
map and the remote photoplethysmography-signal of the subject. This is meant
to make learned information more generalizable, and the classification mechanism
more transparent.
A special family of spoofing is where fake face imagery is generated using deep
learning, so called deep fakes, and in particular, spoofs produced by Generative
Adversarial Networks (GANs) [18]. Several approaches to detect this category of
spoof attacks have been developed. In [20], a method was proposed where deep
fakes superimposed over real footage could be exposed by finding errors in head
pose reconstruction of the spoofed face. In [11], GAN-generated faces were detected
by training a neural classifier on co-occurence matrices extracted from the imagery.
However, the need for better detection of faces synthesized using GANs was high-
lighted in [12]. They showed that many of the state-of-the art classifiers for detecting
faces that were generated with GANs, are susceptible to relatively simple removal
of the sort of fingerprints that would normally aid their classification.
Anti spoofing in a multi-factor authentication system, where one of the factors was
visible spectrum-based facial recognition, is investigated in [14]. This paper doesn’t
just look at spoof-detection primitives in isolation, but the overall authentication
system they fit into, proposing a two-tier authentication system with three factors,
where active spoof detection is only done for factors where the identification stage
has already passed. The spoof detection primitive used for the face specifically, is a
CNN-based analysis of a feature vector-representation of the face. In [19], another

2

1. Introduction

multi-factor authentication system is investigated. It proposes an authentication
system that fuses the factors using parallel support vector machines (SVMs). Dif-
ferent SVMs were trained to cover different combinations of available factors, to
make the system more robust to situations where not all biometric factors are avail-
able.

1.3 Aim of the project
The aim of this project is to implement a spoof detection solution for distinguishing
real faces from fake ones (such as photographs printed on paper, or latex masks).
The solution is to be suited for deployment in an automotive setting, as an additional
component of what is primarily a driver monitoring system using an NIR-camera.
One of the constraints on the project is that any software used needs to be lightweight
enough to be feasible to run on a small-scale platform. The main software component
of the solution is a neural classifier, which to this end will be restricted to model
sizes using fewer than 100 000 trainable parameters. In addition to the software
component of the project, there is also a hardware component, in that active NIR-
light sources can be used to aid spoof detection, under the constraint that the camera
and NIR source setup may not be wider than 20 cm.
The setup used is an NIR-camera with three active NIR sources. The NIR-sources
are alternated between using a programmed exponator, giving an image stream with
a period of four frames with each light condition (including one lacking active NIR-
light). Pairs of consecutive frames are concatenated depthwise, scaled, rotated and
cropped to only include relevant information, and finally fed to a neural network for
binary classification as either spoof or live.

3

1. Introduction

4

2
Theory

2.1 Artificial Neural Networks
Artificial Neural Networks are highly adaptable computing systems, inspired by bi-
ological neural networks such as animal brains, which are becoming increasingly
important for a multitude of tasks. Their adaptability lets them find solutions to
highly non-linear multivariable problems that are hard to solve using explicitly de-
signed rules. Most notably, they are used very successfully for classification problems
in image analysis.

2.1.1 Neurons and activation functions
The computational element of a neural network is the neuron. The neuron receives
a number of signals, xi, typically of numerical value, and evaluates a function of
these inputs to produce an output signal. Generally, this is done by first calculating
a weighted and biased sum,

z = −b+
∑

i

wixi, (2.1)

where b is the bias of the neuron, and wi are the signal weights. After z is computed,
the output signal of the neuron is found by evaluating a single-parameter function,
σ at z,

xout = σ(z), (2.2)

where σ is called the activation function of the neuron. The most basic activation
function is the linear activation function, which is simply

σ(z) = z = −b+
∑

i

wixi. (2.3)

It is called the linear activation function, since it is a linear function of the incoming
signals xi. Another basic activation function, which is generally only used as a
conceptual example, is the step function,

σstep(z) =

0, for z < 0
1, for z ≥ 0

, (2.4)

or equivalently,

σstep(z) =

0, for ∑
i wixi. < b

1, for ∑
i wixi. ≥ b

, (2.5)

5

2. Theory

which gives a neuron that sends an output signal if the weighted signals sum to a
value greater than the bias, and not otherwise. Intuitively, such neurons could be
viewed as performing a logical evaluation of a complex statement which is either
true or false, conditioned on which input signals are active. However, conventional
methods of training neural networks, such as stochastic gradient descent, only work
with functions that have a defined gradient. Thus, since the gradient of σstep is
always either 0 or undefined, it is generally not suited for most applications. A
continuous correspondent to the step function function that is commonly used in
practice is the sigmoid function, given as

σsigmoid(z) = 1
1 + e−z

. (2.6)

σsigmoid is continuous, with continuous gradient. It rapidly approaches 1 as the
weighted sum of signals gets larger than the bias, and rapidly approaches 0 as the
weighted sum gets smaller than the bias, making it similar to the binary on-off-
characteristics of σstep. Since its gradient is always defined, it can be tuned using
conventional methods. However, as z gets far away from 0, the gradient will rapidly
vanish, making the network susceptible to getting stuck during training. To cope
with this problem, one of the most common activation functions used is the rectifier
function, which is given as

σrectifier(z) = max(0, z) =

0, for z < 0
z, for ≥ 0

. (2.7)

Units using σrectifier are called ReLU-units, and often the activation is simply refered
to as the ReLU-function. σrectifier is less likely to have a vanishing gradient, and more
computationally efficient, than σsigmoid. These advantages have also been observed
empirically [6].

2.1.2 Network Architecture
A neural network is a system of neurons that receive and transmit signals between
each other, resulting in complex computations in aggregate. Network architecture
concerns the macro-scale design of such systems; how signals flow through the net-
work, which weights are dependent on each other, etc. Networks that have neural
connections forming cycles are referred to as recurrent networks, whereas networks
whose connections have a strict chronology are referred to as feed forward networks.
Typically, neural networks order neurons into consecutive layers, where signals are
passed between layers but not within them. In the final layer, the network output
(for example a vector of class probabilities for a classification network) is found.
The following sections will introduce some important concepts for neural network
architecture that have been used in this project. These include the convolution,
which is an operation that can be used to identify particular features in a tensor.
Depthwise separable convolution, which is a more computationally efficient version
of the convolution, will also be introduced as an alternative. Two other concepts that
will be introduced are bottlenecks and expansions, which can be used to increase or
decrease tensor depth. We will also talk about skip connections, which allow signals

6

2. Theory

in a neural network to skip several layers. Finally, the role of these modules will be
explained in the context of MobileNetV2, which is the neural network architecture
used in this thesis.

2.1.2.1 Convolution

The discrete 2D-convolution g(x, y) between a kernel ω and a function f(x, y) is
defined by the following operation:

g(x, y) = ω ∗ f(x, y) =
a∑

dx=−a

b∑
dy=−b

ω(dx, dy)f(x+ dx, y + dy), (2.8)

where a and b are constants that define the width and height of the kernel as (2a+1)
and (2b + 1), respectively. Such operations are used in image processing for many
purposes. The intuition is that the kernel is a matrix that corresponds to some fea-
ture. By sliding the kernel over regions of the input function, taking the dot product
of the kernel with these regions, we produce an output matrix which highlights how
present this feature is in different parts of the picture. This has several uses. For
example, by choosing kernel values that resemble a Gaussian in 2D-space, one could
perform a blurring operation. Other kernel choices may cause edges, corners, inter-
sections, etc, to be highlighted.
So far, we have treated 2D-images as tensors with two spatial dimensions represent-
ing the width and height. However, in image processing, it is common to define
a third dimension of the tensor, which represents channels rather than spatial di-
mensions. For example, an RGB-image will have three channels, representing the
intensity of the colors red, green and blue in each pixel. Since the channel dimen-
sion does not represent a spatial dimension, such images are still referred to as a
2D-images, and the kernel will generally be implemented with the same depth as
the image, so that it only slides in the two spatial dimensions. The output from
applying a single such kernel will only have a depth of one. The height and width
of the output image will depend, among other things, on the size of the kernel, how
big steps it uses to slide over the image, and whether padding is used at the image
boundary.

Standard convolution

Figure 2.1: A 3 × 3 kernel applied without padding to a 5 × 5 image with depth
3, producing a 3 × 3 output image of depth 1.

A graphical representation of a simple standard convolution is illustrated in figure
2.1, where the input image is 5 × 5, with a depth of three, while the output is 3 × 3

7

2. Theory

with a depth of one after applying a 3 × 3 kernel. By applying several kernels of the
same size and stacking their outputs, one can produce an output with an arbitrary
number of channels.

2.1.2.2 Depthwise Separable Convolution

When increasing the number of output channels, which is done by increasing the
number of kernels convolved with an input image, the number of required multi-
plications increases rapidly. If an input image with M channels is convolved with
N kernels of size K ×K, producing N output channels of size L× L, this requires
K2 ×M ×N ×L2 multiplications. Depthwise separable convolution is an operation
inspired by the standard convolution described above, that reduces the scalability
factor between the desired number of output channels and the number of multiplica-
tions [2,5,15,22]. Depthwise separable convolution is done in two steps. In the first
step, a depthwise convolution is applied, wherein a kernel of depth 1 is applied to
each channel of the input, producing an intermediary output with the same depth
as the input. In the second step, N different 1 × 1 kernels (with the same depth
as the input) are applied to combine the intermediary outputs from the different
channels, producing an L× L image with N channels.

Depthwise separable

Convolution

depthwise
convolution

1x1
standard
convolution

Figure 2.2: Illustration of depthwise separable counterpart to figure 2.1: First,
depthwise separable convolution is done, where 3 × 3 kernels of depth 1 are applied
to each channel to produce an intermediary output of depth 3. Second, a 1 × 1
kernel of depth 3 is applied to the intermediary output, yielding a final, single
channel output.

A graphical representation of this operation is presented in figure 2.2. We see that
the number of multiplications needed is K2 × M × L2 + M × L2 × N = M ×
L2(K2+N). Dividing this with the number of multiplications needed using standard
convolution, we get the ratio 1

N
+ 1

K2 , which decreases with N , telling us that the
depthwise separable convolution scales the number of multiplications slower than the
standard convolution when increasing the number of channels in the output. Since
multiplication is an expensive operation, this means that the depthwise separable
convolution can be an appropriate alternative to standard convolution for use on
systems with limited hardware, such as mobile and embedded systems.

8

2. Theory

2.1.2.3 Convolutional Neural Networks

Two of the most common types of layers in neural networks are fully connected
layers and convolutional layers. In a fully connected layer, each neuron receives
the signal from every neuron in the previous layer. A convolutional layer, on the
other hand, is a bit more selective about how signals are received. Neural signals
from the previous layer are ordered in a tensor. This tensor is typically a 1-or
2-dimensional array, which is often extended with additional channels; an RGB-
picture would, for example, generally be conceptualized as a 2D-array with three
channels - one for each base color. Signals are then passed on to channels of the
convolutional layer using a number of convolutional kernels before adding biases
and applying the neural activation function. In effect, the values of the kernels
used for convolution correspond to neural weights that are shared between neurons
in the convolutional layer. This can give a number of potential advantages; for
example, since each signal is passed to fewer neurons, this decreases computational
costs, and since weights are essentially shared between several neural connections
(since the kernel doesn’t change as it slides over the input), training of weights
can be done more efficiently. It’s also intuitively sound that convolutions, which
are very useful for feature identification in image processing, should be useful for
similar functions in neural networks. And of course, in addition to the theoretical
motivations, convolutional neural networks (CNNs), that is neural networks that
incorparate convolutional layers, have been successfully implemented for a plethora
of applications in practice [1, 3, 6, 7, 16].

2.1.2.4 Bottlenecks and expansions

In convolutional neural networks, some layers will use many kernels, resulting in
very deep signal tensors. These can be expensive to store in memory and to operate
on, and it’s generally assumed that only a manifold in the space spanned by the
channels contains relevant information [15].

Bottleneck- fewer 1x1 kernels
than number of channels in input

Figure 2.3: Graphical depiction of a bottleneck.

As seen in figure 2.3, this lets us reduce the number of channels, with little to no loss
of relevant information, by applying a layer with a number of 1 × 1 convolutional
kernels that is smaller than the number of channels in the layer input [4, 5, 15, 22].

9

2. Theory

Such layers are often called bottleneck layers. After decreasing tensor depth before
applying a convolution, it may be desirable to expand the depth back again.

Expansion- more 1x1 kernels
than number of channels in input

Figure 2.4: Graphical depiction of an expansion.

Expansion layers do just this by applying more 1 × 1 kernels than the number of
channels in the input tensor, as seen in figure 2.4. In short; bottleneck layers and
expansion layers respectively serve to decrease and increase signal tensor depth.

2.1.2.5 Residuals

As neural networks become deeper, they have a tendency to become more difficult
to train, due to exploding or vanishing gradients. A way to mitigate this problem
is to insert skip connections in the neural network, where neural signals from an
earlier layer are added to the signals of a later layer before the activation function
is applied, allowing information to travel unadulterated further down the network.
Blocks that incorporate skip connections are often called residual blocks [4].

2.1.2.6 MobileNetV2

MobileNetV2 is a neural network architecture intended for mobile and embedded
platforms [15]. What mainly distinguishes it from preceding architectures is the
use of a bottleneck residual block. This is a module that incorporates many of the
submodules discussed above.

Bottleneck Residual block

Expansion,
ReLU

Depthwise
Conv,
ReLU

Bottleneck,
Linear

Skip connection

First layer
of next block

Figure 2.5: Graphical depiction of the bottleneck residual block.

10

2. Theory

As seen in figure 2.5, it first uses an expansion layer. The expansion layer is followed
by a depthwise convolution. Finally a linear bottleneck layer is used (that is, a
bottleneck layer using linear activation function). The depthwise convolution and
the linear bottleneck collectively constitute a special case of a depthwise separable
convolution. The module also has skip connections going from before expansion to
after the bottleneck; thus the skip connections in a chain of bottleneck residual blocks
go from bottleneck to bottleneck. The reason for this is that the tensor that is skip
connected must be stored in memory through the rest of the block, and by reducing
the size of the tensor, its load on memory is also significantly reduced [15]. The
overall architecture uses a standard convolution followed by 17 bottleneck residual
blocks, a big expansion and average pooling before a final bottleneck leading to the
output neurons.

11

2. Theory

12

3
Method

3.1 Hardware setup

The hardware used in the project is set up to simulate conditions at a driver’s
seat, with an NIR-camera approximately at a position that would correspond to the
steering wheel, or instrument panel. The subject sits in a chair in front of a desk
where the camera is fixated, viewing the subject about 35° from below.

=
=

Camera
IR-Flash

Dark frame1

Front Flash2

Right Flash3

Left Flash4

Figure 3.1: Flash configuration for 4 consecutive frames. The viewing direction of
the camera is towards the reader.

Footage is collected using a 120 Hz NIR, camera which uses an exponator pro-
grammed to produce a stream of consecutive image frames with flash activation
alternating periodically as in figure 3.1. That is, each period consists of a dark
frame (without active light), a frame taken with a front flash, a frame taken with a
flash 10 cm to the right of the camera, and a frame taken with a flash 10 cm to the
left.

13

3. Method

Figure 3.2: Photograph of the camera setup that was used.

A photograph of the camera setup can be seen in figure 3.2. The camera used is a
Basler acA1920-155um. In addition, a halogen lamp is part of the experimental
setup to simulate an ambient NIR-light source, such as the sun, however, it is
important to note that this is not a part of the anti-spoofing system, but rather
used to produce training data that will allow the system to compensate for external
light conditions. The halogen lamp is placed about 1 meter straight to the left of the
subject, providing asymmetric illumination of the subject when active. The setup
is located in a small room with no other ambient NIR-light sources. The room had
a curtained window facing an indoor corridor, which let through some visible light,
but negligibly in the NIR-spectrum.

3.2 Data collection
Recordings are divided into two main categories; live recordings, depicting real
faces of living subjects, and spoof recordings, depicting fake faces, e.g. photographs
printed on paper, or subjects wearing a mask.

3.2.1 Live test subjects
A total of 37 live recordings were made with 11 different test subjects. All subjects
had signed an agreement to the use of recordings in the project, and storage of the
data in compliance with relevant legislation such as the General Data Protection
Regulation (GDPR). All data is stored with anonymized indexation and metadata.
In each recording, the subject was first instructed to look at a marked point on the
wall in front of them, then another one, about 45 ° to the right, followed by a point
about 45° to the left, and finally straight into the camera. This way, footage of
several head poses would be collected. Such a recording would be about 32 seconds
in total - 8 seconds for each pose. Each recording session consisted of three such
recordings; first, a recording would be made in office lighting, then another one in
near-darkness, and finally one with a halogen lamp illuminating the subject from
the side. The dark recording and the one in office lighting would be similar in terms

14

3. Method

Figure 3.3: An example of a frame from a live recording.

of illumination perceived by the NIR-camera, but due to the expansion of the pupil
in dark conditions, clues such as corneal reflection differ in clarity between the two.
The recording using illumination from a halogen lamp would significantly alter the
ambient NIR-lighting, contributing valuable information about how to account for
such lighting, which is usually present in real-world application. In figure 3.3, a frame
from a live recording can be seen. There were a couple of inconsistencies during data
gathering accounting for the anomaly in the number of recordings compared to the
number of subjects; with two of the subjects, a recording session of three recordings
each were made with glasses on, and another without. With one subject early in
the project, two recordings were unfortunately made incorrectly and not usable.

3.2.2 Spoof media
Two kinds of spoof media were used in the project: faces printed on paper, and
masks.

3.2.2.1 Prints

For faces printed on paper, there were three kinds of prints: photographs that were
taken with a high quality visual spectrum camera, printed in color, photographs
that were taken with the same camera, but printed in black and white, and finally,
NIR-frames from the live recordings which were extracted and printed in black and
white. All prints were made in landscape orientation on A3-papers. Prints were
fixated to a board of rigid, flat shape, so that the prints would not bend, held up
in front of the NIR- camera in a position corresponding to the facial position of
subjects in live recordings, and recorded for 10 seconds each. The orientation of the
print would be slightly manipulated during the recording to give some slight variety

15

3. Method

in angles in the footage. Each print was used in one recording with office lighting.
No recording was made in darkness, since there is no chance of corneal reflection
in a printed pupil regardless. The motivation for shorter recordings than for live
subjects is that only one pose is depicted in each print, meaning that additional
recording time would contribute less information.

Figure 3.4: An example frame from a spoof recording in which a NIR-frame from
a live recording was printed on paper and held up in front of the camera.

In figure 3.4, a frame from a print attack can be seen. In total, 30 NIR-frames were
printed, 25 visual spectrum-photographs were printed in black and white, and 8
visual spectrum-photographs were printed in color. The reason for the slim amount
of color-prints was that such photographs looked very obviously different from real
faces in the the attack footage they produced, and thus would contribute less impor-
tant information. All in all, 63 prints were used in one attack recording each. Note
that the higher number of recordings compared to live faces does not correspond to
a larger amount of data, as these recordings were shorter.

3.2.2.2 Masks

Three masks were used for spoof attacks in the project. A total of 12 mask attacks
were recorded. In the attacks, they were worn by a subject who would be recorded
according to the same protocol as in the live recordings; each recording was made
with the same four poses, and each mask was recorded under three different lighting
conditions. Unlike with printed faces, the eyes visible under this attack are real
eyes, which means pupil dilation and corneal reflection could be observed, so all
three lighting conditions were relevant for these attacks.

16

3. Method

Figure 3.5: An example frame from a spoof recording in which the subject wore a
mask.

In figure 3.5, a frame from a mask attack can be seen. The reason for the number of
attacks being 12 rather than 9, is that one of the masks was used for an additional
recording session, in which a hood was worn over the head, to further expand the
database and introduce some diversity.

3.3 Main Algorithm

The spoof-detection algorithm can be divided into three main steps. The first step
is pairing of consecutive frames which differ in active light conditions. The second
step is frame preparation, in which consecutive frames are rotated, scaled, translated
and cropped to only include the region of interest in a frame of specified size, and
finally appended together depthwise to create a two-channel image frame. In the
third step, classification of the face is done using a neural network.

3.3.1 Pairing of Consecutive Frames
The algorithm always operates on two consecutive frames which, as described pre-
viously, have differing active light sources, since it is plausible that the response to
differing light conditions could be correlated to reveal more information about ge-
ometry and object texture than a solitary frame would. Following the same naming
convention as in figure 3.1, we see that we can pair up consecutive frames in each
four-frame period as in table 3.1.

17

3. Method

Frame pair Frame A Frame B
P1 Dark frame Front Flash
P2 Front Flash Right Flash
P3 Right Flash Left Flash

Table 3.1: Pairing of frames with different active lighting.

The three frame pair arrangements, Pi, are primarily investigated as separate solu-
tions with differing priorities, rather than intended to be used in conjunction with
each other in the same solution.
P1 represents the most compact setup, where differential lighting is achieved using
a frame with only ambient NIR-light, and a frame lit using a NIR-flash very close
to the camera. This setup will give the least information about scene geometry and
texture, especially when ambient NIR-light level is low, but it was still considered,
due to the advantage of it being so compact, which is important for the intended
deployment of the system. However, it turned out empirically, that the information
contributed by the dark frame, at least under the investigated conditions, is largely
negligible.
P2 represents the second most compact setup, using a frame lit by a flash close to
the camera, and a frame lit by a flash 10 cm away. This would be less sensitive to
ambient NIR-light levels than P1.
P3 represents the least compact setup, using two flashes, 10 cm in each direction
from the camera. This means the setup occupies more space, but it also has the
greatest potential for giving information about scene geometry, due to it having the
largest angle difference between NIR-rays originating from the two flashes.
In addition to information about scene geometry, it is interesting to note that the
front flash, which is used in both P1 and P2, potentially causes a distinct corneal
reflection to be caught in footage, due to the very small angle it has to the view-
ing direction of the camera; a phenomenon known as bright pupil. If bright pupil
is induced in neither or both frames, this could be an indication of the face being
spoofed. It should be noted that the eye visible in a mask attack is a genuine eye,
thus, while lack of corneal reflection could be a useful clue for rejection of print
attacks, it’s not necessarily a useful clue for for acceptance of genuine faces. Since
this information would not be present in P3, this is a factor that might benefit the
approach using P1 or P2 despite the more economic setup. However, it should be
noted that induction of bright pupil is hard to guarantee for a genuine pupil, espe-
cially in bright conditions, which cause the pupil to contract, so the importance of
this factor should not be overestimated.
An additional experiment was run, in which the same frame was appended to it-
self. This would not give the neural network information from more than one light
condition. This was done to control to what extent the classifier actually benefitted
from the additional light condition.

3.3.2 Frame preparation
The frame preparation procedure serves to present relevant information from the
NIR-camera in a way that suits classification by a neural network. As we have seen,

18

3. Method

we take an approach operating on two consecutive frames with differing light condi-
tions. Frame preparation is done as in figure 3.6. In short, we accomplish the task

Frame A Frame B

A B A
B

A. Identify region

B. Rotate, scale, crop

C. Append depthwise

Figure 3.6: A brief description of the frame preparation procedure that constitutes
the first step of the algorithm.

by identifying a region of interest in one frame, extracting this region from both
frames and appending them together.
Since the number of mathematical operations and neural network parameters grows
quickly with the size of neural network input, it is preferable to only pass on relevant
information. This is done by rotating, scaling and cropping the image to include the
most important region of the image. Two different regions of interest were investi-
gated separately in this project: the full face, scaled to 200 × 250 pixels, and an eye
region, scaled to 48 × 48 pixels. The motivation for investigating the face-approach
was that the face should intuitively be the most interesting region of a frame for
determining whether the face is real. The idea for investigating the eye-approach
is that it would be computationally cheaper to use a smaller region. The latter
approach was also investigated due to the speculation that relevant discrepancies
between fake faces and real faces should be relatively big in that region. Masks have
openings at the eyes where a sharp contrast might be seen against the real face right
at the opening, and printed eyes don’t react to active NIR-Light in the same way
as real eyes.
A mapping from two points in an input image to two output points is sufficient to
determine a transformation that rotates, scales and translates a 2D image without
warping it. This is because such a transformation is determined by four parameters:
one rotation angle, one scale factor and one translation distance for each of the two
dimensions. Each of the two point mappings contributes one relationship per each
of its two coordinates, giving four relationships, meaning the problem is determined.
To extract the face region, the image coordinates of the outer corners of the eye-
lids are identified using existing functionality in SmartEye’s proprietary software.
They are then always mapped to the pixels fixed at x1 = 50, y1 = 100 and x2 =
150, y2 = 100, respectively (the positive x-direction being rightwards and the posi-
tive y-direction being downwards).

19

3. Method

Figure 3.7: To the left is shown a raw frame. To the right is the same frame after
being scaled, rotated, translated and cropped to include only the face.

This empirically tends to give the full face, with some margin to the frame boundary,
as seen in figure 3.7. To extract the eye region, the coordinates of the outer corner
and inner corner of the eye region are identified and mapped to x′1 = 7, y′1 = 24 and
x′2 = 41, y′2 = 24, respectively. This can be done for either eye (note that the right
eye then is mirrored), and both were used in the project.

Figure 3.8: To the left is shown a raw frame. To the right is the same frame after
being scaled, rotated, translated and cropped to include only an eye.

Just as for the face, we see in figure 3.8 that this tends to give the full eye region
with some margin. As illustrated in figure 3.1, only one frame is used for the identi-
fication of relevant points, and treated as if they are located in the same location in
the other frame, since little time passes in between. In fact, for each period of four
frames, the frame using front flash is used for identification of the relevant region,
and reused in the remaining frames.
This way, the relevant region has been identified and extracted, corresponding to
steps A and B in figure 3.6. Finally, they are appended depthwise, giving a final
tensor representing the region of interest with two channels, corresponding to light-
ing from different active NIR-sources.

20

3. Method

3.3.3 Classification

Concatenated frames

Live
or
Not?

Convolutional Neural Network

Figure 3.9: Classification is done using a neural network of MobileNetV2 architec-
ture [15], taking concatenated frames as input

As depicted in figure 3.9, once two frames have been prepared and appended to-
gether depthwise into a two-channel image, this image is sent as input to a binary
neural classification network, which has one output with sigmoid activation to give
values from 0 (input classified as spoof) to 1 (input classified as real). The network
architecture used is MobileNetV2, with width multiplier α = 0.1, as defined in [15].
It was implemented using Keras. Detailed descriptions of the resulting architectures
can be found in the Appendix, section A.1 for the face region classifier, and section
A.2 for the eye classifier. The neural network had a total of 87,289 trainable param-
eters, regardless of whether the full face is used for classification, or whether only
the eye region is used. However, when the full face is used, it requires 50,640,990
floating point operations to process the network input, whereas if the eye region is
used, it only requires 2,635,686 floating point operations. Thus, the computational
cost required to process a full face is about 20 times greater than that required to
process an eye region.

3.4 Neural Network Training
To train the neural classifier, frames were extracted from the recordings made in
data collection, and prepared according to the method described above. Frames
extracted from spoof recordings were labeled as 0, while frames extracted from live
recordings were labeled as 1. The frames were then divided so that all recordings of
8 randomly chosen subjects were used as training data, and the rest as validation
data. Frames from mask recordings were divided so that recordings with two of
the masks were used for training, and the other mask was used for validation. Both
training and validation data was normalized samplewise based on the statistics from
the training data set. Due to the relatively small training data set, variation was
introduced by augmentation of the training data. Specifically, during training of the
network, input frames would be rotated within 30°, shifted within 10 % height -and
widthwise, and zoomed between 0 and 15%. Augmentation was not done during

21

3. Method

validation, as augmentation doesn’t serve a diagnostic purpose so much as a way of
getting a more robust model fit from a smaller data set. The optimizer used was
Adam. Binary cross-entropy was used as the cost function. The Keras callback for
reducing the learning rate as accuracy improvement halts was also used.

22

4
Results

Following the same notation for the different frames and frame pairs as introduced
in figure 3.1 and table 3.1, we see in table 4.1 how accurately the neural network
performed on the different recording classes. The results are for recordings of previ-
ously unseen faces. We also see the results for networks trained for all the different
types of input. Note, however, that while we make a distinction in this table between
masks and prints to gain a deeper understanding of how the network performs, the
neural network is just supposed to classify both as not-live.

Frame/frame pair Input region Live acc. Print acc. Mask acc. Overall acc.
P1 Full face 99.9% 98.3% 88.7% 97.6%
P2 Full face 100.0% 99.7% 94.1% 98.9%
P3 Full face 100.0% 98.5% 88.0% 97.6%

Front flash Full face 100.0% 95.6% 94.4% 97.6%
Right flash Full face 100.0% 91.6% 99.8% 97.1%
Left flash Full face 99.9% 99.3% 93.4% 98.7%

P1 Eye region 96.8% 94.4% 56.4% 89.7%
P2 Eye region 99.8% 98.3% 40.9% 90.2%
P3 Eye region 99.1% 94.5% 68.5% 93.5%

Table 4.1: The final accuracies of the neural classifier on previously unseen faces,
depending on which type of input it was trained on.

Overall, the neural classifier shows clear signs of learning how to distinguish record-
ings of fake faces from those of live faces, provided that it is given the full face region
as input. When only given the eye region, it could still classify better than random
chance, but considerably worse than when given the full face region, especially for
masks.
There is not an extreme difference in overall performance between networks trained
on frame-pairs, compared to single frames, but there is one interesting difference:
the networks trained on frame-pairs can classify print attacks nearly perfectly, while
having slightly more difficulty with masks, whereas those trained on single frames
perform slightly worse on print-attacks and better on mask attacks. In order to
draw any certain conclusions, one would need a bigger data set, but this might have
something to do with the fact that geometric anomalies, as opposed to textural
ones, could be more easily identified when working with frame-pairs. Clearly, the
geometric anomalies are greater with a printed face (which is entirely flat).
The neural network that unequivocally performed the best, and (as is seen in fig-
ure 4.2) had the most stable training history, was the one trained on P2, that is

23

4. Results

front flash+right flash. While intuition would have P3 give the most information
about scene depth and geometry (due to the larger angle between the flashes), it
performed worse than P2. Perhaps the qualitative difference in textural response
between a flash to the front and one a bit to the side, is more useful for classification
than just geometric information from shades. Also, corneal reflections could give
some part of the explanation, since they are only induced in frames using front flash.
One should however be careful when drawing conclusions, seeing as the dataset is
relatively small. These hypotheses should be investigated in a larger dataset, with
more live subjects, more print attacks and more masks used.
The attentive reader will notice that the dark frame is not present in the table.
This is because it turned out that the classifier would learn absolutely nothing from
training on the dark frame alone, indicating that the information contained in it is
negligible. Thus, one can conclude that active NIR-lighting is essential, since ambi-
ent lighting cannot be relied on to get enough information to classify faces as real
or fake.

4.1 Training history

In this section, we will see how training progressed depending on what information
was provided to the neural classifier.

4.1.1 Full Face

When trained on full face, the neural network achieved much higher accuracy than
when trained on just the eye region. Peak accuracy was also reached much faster,
and more stable. This was the single most important factor in training; much more
important than which, or how many, light conditions were provided.

4.1.1.1 Using Frame Pairs

The network trained on frame pairs tend to perform better on print attacks compared
to mask attacks. Among all networks in the study, the one which gave the best
performance, is the one trained on front flash and right flash (P2), as seen in figure
4.2. It landed on an accuracy of 98.9 % overall. It also shows the most stable
training history, as it had converged after about 40 epochs, . In figures 4.1 and 4.3,
we see that the other frame pairs, P1 and P3, gave slightly worse performance; both
reached an accuracy of about 97.6 %, and they had converged after about 65 and
60 epochs respectively.

24

4. Results

0 20 40 60 80 100
epoch

0.0

0.2

0.4

0.6

0.8

1.0
ac

cu
ra

cy
dark frame + front flash, face

mask
prints
live
overall

Figure 4.1: Accuracy of correct clas-
sification on validation data during
training history, on the pair of frames
using dark frame and right flash (P1).

0 20 40 60 80 100
epoch

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

front flash + right flash, face

mask
prints
live
overall

Figure 4.2: Accuracy of correct clas-
sification on validation data during
training history, on the pair of frames
using front flash and right flash (P2).

0 20 40 60 80 100
epoch

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

right flash + left flash, face

mask
prints
live
overall

Figure 4.3: Accuracy of correct classification on validation data during training
history, on the pair of frames using right flash and left flash (P3). (Note that the
neural network classification is binary - real face or fake; the three categories are for
the aid of the reader)

4.1.1.2 Using Single Frames

Overall, the networks trained on single flashes perform on a similar level of accuracy
to those trained on two flashes, although, as seen in figures 4.4, 4.5 and 4.6, none
of them perform as well or with the same stability as the network trained on front
flash and right flash (P2). An interesting fact is that these networks don’t show the
same tendency to categorize print attacks more accurately than mask attacks. In
particular, as seen in figure 4.5, the network trained on just right flash, ended up
much more accurately detecting mask attacks than print attacks. It is hard to say
why this was the case, and to draw any certain conclusions, one would need to use
a bigger data set.

25

4. Results

0 20 40 60 80 100
epoch

0.0

0.2

0.4

0.6

0.8

1.0
ac

cu
ra

cy
front flash, face

mask
prints
live
overall

Figure 4.4: Accuracy of correct clas-
sification on validation data during
training history, on the pair of frames
using only front flash.

0 20 40 60 80 100
epoch

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

right flash, face

mask
prints
live
overall

Figure 4.5: Accuracy of correct clas-
sification on validation data during
training history, on the pair of frames
using only right flash.

0 20 40 60 80 100
epoch

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

left flash, face

mask
prints
live
overall

Figure 4.6: Accuracy of correct classification on validation data during training
history, on the pair of frames using only left flash. (Note that the neural network
classification is binary - real face or fake; the three categories are for the aid of the
reader)

4.1.2 Eye Region

While the networks did get some accuracy classifying prints from just the eye region
(94.4-98.3 % depending on the frame pair), this was not nearly as accurate as for the
full face region, as can be seen in figures 4.7, 4.8 and 4.9. Its accuracy on masks was
very low. Accuracy fluctuates with greater amplitude throughout training history,
although the networks seem to converge after 40-65 epochs, which is comparable to
the networks trained on the face region. The hypothesis that this region would give
important clues about masks, due to having an opening with a border against real
face in the eye region, thus seems to be incorrect as far as these results indicate.
This means that while this approach would be much more computationally cheap,
it doesn’t seem to be a viable option for spoof detection.

26

4. Results

0 20 40 60 80 100
epoch

0.0

0.2

0.4

0.6

0.8

1.0
ac

cu
ra

cy
right flash + left flash, eye

mask
prints
live
overall

Figure 4.7: Accuracy of correct clas-
sification on validation data during
training history, on the pair of frames
using dark frame and right flash (P1).

0 20 40 60 80 100
epoch

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

front flash + right flash, eye

mask
prints
live
overall

Figure 4.8: Accuracy of correct clas-
sification on validation data during
training history, on the pair of frames
using front flash and right flash (P2).

0 20 40 60 80 100
epoch

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

right flash + left flash, eye

mask
prints
live
overall

Figure 4.9: Accuracy of correct classification on validation data during training
history, on the pair of frames using right flash and left flash (P3). (Note that the
neural network classification is binary - real face or fake; the three categories are for
the aid of the reader)

27

4. Results

28

5
Conclusion

This thesis investigated a spoof detection solution that used a lightweight convo-
lutional neural network to classify faces as live or spoof based on footage from a
NIR-camera with multiple active NIR-sources. We can conclude that classification
of faces as spoof or live can be done with high accuracy, using footage from a NIR-
camera and the lightweight neural network architecture MobileNetV2 (originally
presented in [15]). To achieve these results, one needs to feed the full face region to
the classifer, as just feeding the eye region results in classification with considerably
lower accuracy, especially for masks. The best approach found was to use one flash
very close to the camera, and a second flash further to the side of the camera. This
resulted in a classifier that could correctly classify live frames of previously unseen
faces as live 100 % of the time, print frames as spoof 99.7 % of the time and mask
frames 94.1 % of the time. However, while the best accuracy was achieved when
using two flash configurations, results using only a single flash were not dramatically
worse.
To make a more robst classifier, and to enable more accurate evaluation of perfor-
mance, future work should aim to scale up the database used, preferably including
at least 100 subjects of different age, sex and appearance. Data should be gathered
in conditions that more closely resemble the intended automotive application, and
should include more variation in terms of subject pose as well as light conditions.
This could be done by making recordings of subjects in an actual vehicle, which
naturally provides a variety of light conditions and head poses in the relevant en-
vironment. More masks need to be used for attack recordings as well, and it could
be good idea to include more attack categories, such as replay attacks on screens
of smartphones and tablets. Another area that could be investigated further is the
architecture and training of the classifier. For example, if a recurrent neural network
were used, it might be able to take dynamical information into account.

29

5. Conclusion

30

Bibliography

[1] Quantum error correction for the toric code using deep reinforcement learning.
Quantum, 3:183, September 2019.

[2] F. Chollet. Xception: Deep learning with depthwise separable convolutions.
IEEE Conference on Computer Vision and Pattern Recognition, 2017.

[3] R. Collobert and J. Weston. A unified architecture for natural language pro-
cessing: Deep neural networks with multitask learning. In Proceedings of the
25th International Conference on Machine Learning, ICML ’08, page 160–167,
New York, NY, USA, 2008. Association for Computing Machinery.

[4] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recogni-
tion. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, 2016.

[5] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam. Mobilenets: Efficient convolutional neural net-
works for mobile vision applications. CoRR, abs/1704.04861, 2017, 1704.04861.

[6] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bot-
tou, and K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems 25, pages 1097–1105. Curran Associates, Inc., 2012.

[7] S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back. Face recognition: a con-
volutional neural-network approach. IEEE Transactions on Neural Networks,
8(1):98–113, 1997.

[8] Y. Liu, A. Jourabloo, and X. Liu. Learning deep models for face anti-spoofing:
Binary or auxiliary supervision. The IEEE Conference on Computer Vision
and Pattern Recognition, pages 389–398, 2018.

[9] Y. Liu, J. Stehouwer, A. Jourabloo, and X. Liu. Deep tree learning for zero-
shot face anti-spoofing. The IEEE Conference on Computer Vision and Pattern
Recognition, pages 4680–4689, 2019.

[10] S. Mohamed, A. Ghoneim, and A. Youssif. Visible/infrared face spoofing detec-
tion using texture descriptors. International Conference on Circuits, Systems,
Communications and Computers, 23, September 2019.

[11] L. Nataraj, T. M. Mohammed, B. S. Manjunath, S. C., A. F., J. H. Bappy,
and A. K. Roy-Chowdhury. Detecting GAN generated fake images using co-
occurrence matrices. CoRR, abs/1903.06836, 2019, 1903.06836.

[12] J. C. Neves, R. Tolosana, R. Vera-Rodriguez, V. Lopes, and H. Proenca. Real or
fake? Spoofing state-of-the-art face synthesis detection systems. arXiv preprint
arXiv:1911.05351v1, 2019.

31

Bibliography

[13] G. Pan, L. Sun, and Z. Wu. Eyeblink-based anti-spoofing in face recognition
from a generic webcamera. IEEE International Conference on Computer Vi-
sion, 11, October 2007.

[14] M. Sajjad, S. Khan, T. Hussain, K. Muhammad, K. A. Sangaiah, A. Castiglione,
C. Esposito, , and S. W. Baik. Cnn-based anti-spoofing two-tier multi-factor au-
thentication system. Pattern Recognition Letters, 126:123–131, February 2019.

[15] M. Sandler, A.G. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. Inverted
residuals and linear bottlenecks: Mobile networks for classification, detection
and segmentation. CoRR, abs/1801.04381, 2018, 1801.04381.

[16] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre,
G. van den Driessche, T. Graepel, and D. Hassabis. Mastering the game of go
without human knowledge. Nature, 550, October 2017.

[17] X. Sun, L. Huang, and C. Liu. Context based face spoofing detection using
active near-infrared images. International Conference on Pattern Recognition,
23:4262–4267, December 2016.

[18] Ruben Tolosana, Ruben Vera-Rodriguez, Julian Fierrez, Aythami Morales, and
Javier Ortega-Garcia. Deepfakes and beyond: A survey of face manipulation
and fake detection. arXiv preprint arXiv:2001.00179, 2020.

[19] F. Wang and J. Han. Robust multimodal biometric authentication integrating
iris, face and palmprint. Information Technology And Control, 37:326–332,
April 2008.

[20] X. Yang, Y. Li, and S. Lyu. Exposing deep fakes using inconsistent head poses.
CoRR, abs/1811.00661, 2018, 1811.00661.

[21] X. Yang, W. Luo, L. Bao, Y. Gao, D. Gong, S. Zheng, Z. Li, , and W. Liu. Face
anti-spoofing: Model matters, so does data. Conference on Computer Vision
and Pattern Recognition, pages 3507–3516, June 2019.

[22] X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. CoRR, abs/1707.01083, 2017,
1707.01083.

32

A

appendix 1

A.1 Neural Network for Face Region

This section contains a tabular representation of the detailed neural network archi-
tecture used for evaluating a face region. Each entry represents a network layer.
Layer types are are denoted by their name in the neural network library Keras, for
python. Note that some of the layers are divided by name into numbered blocks.
These are the residual bottleneck modules, which are central to this neural network
architecture as seen in section 2.1.2.6. Tensor shapes are given as (height, width,
depth).

I

A. appendix 1

Layer (type) Out Shape Connected to
input_1 (InputLayer) (250, 200, 2)

Conv1_pad (ZeroPadding2D) (251, 201, 2) input_1
Conv1 (Conv2D) (125, 100, 8) Conv1_pad

bn_Conv1 (BatchNormalization) (125, 100, 8) Conv1
Conv1_relu (ReLU) (125, 100, 8) bn_Conv1

expanded_conv_depthwise
(DepthwiseConv2D) (125, 100, 8) Conv1_relu

expanded_conv_depthwise_BN
(BatchNormalization) (125, 100, 8) expanded_conv_depthwise

expanded_conv_depthwise_relu
(ReLU) (125, 100, 8) expanded_conv_depthwise_BN

expanded_conv_project (Conv2D) (125, 100, 8) expanded_conv_depthwise_relu
expanded_conv_project_BN

(BatchNormalization) (125, 100, 8) expanded_conv_project

expanded_conv_add (Add) (125, 100, 8) Conv1_relu
expanded_conv_project_BN

block_1_expand (Conv2D) (125, 100, 48) expanded_conv_add
block_1_expand_BN
(BatchNormalization) (125, 100, 48) block_1_expand

block_1_expand_relu (ReLU) (125, 100, 48) block_1_expand_BN
block_1_pad (ZeroPadding2D) (127, 101, 48) block_1_expand_relu

block_1_depthwise
(DepthwiseConv2D) (63, 50, 48) block_1_pad

block_1_depthwise_BN
(BatchNormalization) (63, 50, 48) block_1_depthwise

block_1_depthwise_relu (ReLU) (63, 50, 48) block_1_depthwise_BN
block_1_project (Conv2D) (63, 50, 8) block_1_depthwise_relu

block_1_project_BN
(BatchNormalization) (63, 50, 8) block_1_project

block_2_expand (Conv2D) (63, 50, 48) block_1_project_BN
block_2_expand_BN
(BatchNormalization) (63, 50, 48) block_2_expand

block_2_expand_relu (ReLU) (63, 50, 48) block_2_expand_BN
block_2_depthwise
(DepthwiseConv2D) (63, 50, 48) block_2_expand_relu

block_2_depthwise_BN
(BatchNormalization) (63, 50, 48) block_2_depthwise

block_2_depthwise_relu (ReLU) (63, 50, 48) block_2_depthwise_BN
block_2_project (Conv2D) (63, 50, 8) block_2_depthwise_relu

block_2_project_BN
(BatchNormalization) (63, 50, 8) block_2_project

block_2_add (Add) (63, 50, 8) block_1_project_BN
block_2_project_BN

II

A. appendix 1

block_3_expand (Conv2D) (63, 50, 48) block_2_add
block_3_expand_BN
(BatchNormalization) (63, 50, 48) block_3_expand

block_3_expand_relu (ReLU) (63, 50, 48) block_3_expand_BN
block_3_pad (ZeroPadding2D) (65, 51, 48) block_3_expand_relu

block_3_depthwise
(DepthwiseConv2D) (32, 25, 48) block_3_pad

block_3_depthwise_BN
(BatchNormalization) (32, 25, 48) block_3_depthwise

block_3_depthwise_relu (ReLU) (32, 25, 48) block_3_depthwise_BN
block_3_project (Conv2D) (32, 25, 8) block_3_depthwise_relu

block_3_project_BN
(BatchNormalization) (32, 25, 8) block_3_project

block_4_expand (Conv2D) (32, 25, 48) block_3_project_BN
block_4_expand_BN
(BatchNormalization) (32, 25, 48) block_4_expand

block_4_expand_relu (ReLU) (32, 25, 48) block_4_expand_BN
block_4_depthwise
(DepthwiseConv2D) (32, 25, 48) block_4_expand_relu

block_4_depthwise_BN
(BatchNormalization) (32, 25, 48) block_4_depthwise

block_4_depthwise_relu (ReLU) (32, 25, 48) block_4_depthwise_BN
block_4_project (Conv2D) (32, 25, 8) block_4_depthwise_relu

block_4_project_BN
(BatchNormalization) (32, 25, 8) block_4_project

block_4_add (Add) (32, 25, 8) block_3_project_BN
block_4_project_BN

block_5_expand (Conv2D) (32, 25, 48) block_4_add
block_5_expand_BN
(BatchNormalization) (32, 25, 48) block_5_expand

block_5_expand_relu (ReLU) (32, 25, 48) block_5_expand_BN
block_5_depthwise
(DepthwiseConv2D) (32, 25, 48) block_5_expand_relu

block_5_depthwise_BN
(BatchNormalization) (32, 25, 48) block_5_depthwise

block_5_depthwise_relu (ReLU) (32, 25, 48) block_5_depthwise_BN
block_5_project (Conv2D) (32, 25, 8) block_5_depthwise_relu

block_5_project_BN
(BatchNormalization) (32, 25, 8) block_5_project

block_5_add (Add) (32, 25, 8) block_4_add
block_5_project_BN

III

A. appendix 1

block_6_expand (Conv2D) (32, 25, 48) block_5_add
block_6_expand_BN
(BatchNormalization) (32, 25, 48) block_6_expand

block_6_expand_relu (ReLU) (32, 25, 48) block_6_expand_BN
block_6_pad (ZeroPadding2D) (33, 27, 48) block_6_expand_relu

block_6_depthwise
(DepthwiseConv2D) (16, 13, 48) block_6_pad

block_6_depthwise_BN
(BatchNormalization) (16, 13, 48) block_6_depthwise

block_6_depthwise_relu (ReLU) (16, 13, 48) block_6_depthwise_BN
block_6_project (Conv2D) (16, 13, 8) block_6_depthwise_relu

block_6_project_BN
(BatchNormalization) (16, 13, 8) block_6_project

block_7_expand (Conv2D) (16, 13, 48) block_6_project_BN
block_7_expand_BN
(BatchNormalization) (16, 13, 48) block_7_expand

block_7_expand_relu (ReLU) (16, 13, 48) block_7_expand_BN
block_7_depthwise
(DepthwiseConv2D) (16, 13, 48) block_7_expand_relu

block_7_depthwise_BN
(BatchNormalization) (16, 13, 48) block_7_depthwise

block_7_depthwise_relu (ReLU) (16, 13, 48) block_7_depthwise_BN
block_7_project (Conv2D) (16, 13, 8) block_7_depthwise_relu

block_7_project_BN
(BatchNormalization) (16, 13, 8) block_7_project

block_7_add (Add) (16, 13, 8) block_6_project_BN
block_7_project_BN

block_8_expand (Conv2D) (16, 13, 48) block_7_add
block_8_expand_BN
(BatchNormalization) (16, 13, 48) block_8_expand

block_8_expand_relu (ReLU) (16, 13, 48) block_8_expand_BN
block_8_depthwise
(DepthwiseConv2D) (16, 13, 48) block_8_expand_relu

block_8_depthwise_BN
(BatchNormalization) (16, 13, 48) block_8_depthwise

block_8_depthwise_relu (ReLU) (16, 13, 48) block_8_depthwise_BN
block_8_project (Conv2D) (16, 13, 8) block_8_depthwise_relu

block_8_project_BN
(BatchNormalization) (16, 13, 8) block_8_project

block_8_add (Add) (16, 13, 8) block_7_add
block_8_project_BN

IV

A. appendix 1

block_9_expand (Conv2D) (16, 13, 48) block_8_add
block_9_expand_BN
(BatchNormalization) (16, 13, 48) block_9_expand

block_9_expand_relu (ReLU) (16, 13, 48) block_9_expand_BN
block_9_depthwise
(DepthwiseConv2D) (16, 13, 48) block_9_expand_relu

block_9_depthwise_BN
(BatchNormalization) (16, 13, 48) block_9_depthwise

block_9_depthwise_relu (ReLU) (16, 13, 48) block_9_depthwise_BN
block_9_project (Conv2D) (16, 13, 8) block_9_depthwise_relu

block_9_project_BN
(BatchNormalization) (16, 13, 8) block_9_project

block_9_add (Add) (16, 13, 8) block_8_add
block_9_project_BN

block_10_expand (Conv2D) (16, 13, 48) block_9_add
block_10_expand_BN
(BatchNormalization) (16, 13, 48) block_10_expand

block_10_expand_relu (ReLU) (16, 13, 48) block_10_expand_BN
block_10_depthwise
(DepthwiseConv2D) (16, 13, 48) block_10_expand_relu

block_10_depthwise_BN
(BatchNormalization) (16, 13, 48) block_10_depthwise

block_10_depthwise_relu (ReLU) (16, 13, 48) block_10_depthwise_BN
block_10_project (Conv2D) (16, 13, 16) block_10_depthwise_relu

block_10_project_BN
(BatchNormalization) (16, 13, 16) block_10_project

block_11_expand (Conv2D) (16, 13, 96) block_10_project_BN
block_11_expand_BN
(BatchNormalization) (16, 13, 96) block_11_expand

block_11_expand_relu (ReLU) (16, 13, 96) block_11_expand_BN
block_11_depthwise
(DepthwiseConv2D) (16, 13, 96) block_11_expand_relu

block_11_depthwise_BN
(BatchNormalization) (16, 13, 96) block_11_depthwise

block_11_depthwise_relu (ReLU) (16, 13, 96) block_11_depthwise_BN
block_11_project (Conv2D) (16, 13, 16) block_11_depthwise_relu

block_11_project_BN
(BatchNormalization) (16, 13, 16) block_11_project

block_11_add (Add) (16, 13, 16) block_10_project_BN
block_11_project_BN

V

A. appendix 1

block_12_expand (Conv2D) (16, 13, 96) block_11_add
block_12_expand_BN
(BatchNormalization) (16, 13, 96) block_12_expand

block_12_expand_relu (ReLU) (16, 13, 96) block_12_expand_BN
block_12_depthwise
(DepthwiseConv2D) (16, 13, 96) block_12_expand_relu

block_12_depthwise_BN
(BatchNormalization) (16, 13, 96) block_12_depthwise

block_12_depthwise_relu (ReLU) (16, 13, 96) block_12_depthwise_BN
block_12_project (Conv2D) (16, 13, 16) block_12_depthwise_relu

block_12_project_BN
(BatchNormalization) (16, 13, 16) block_12_project

block_12_add (Add) (16, 13, 16) block_11_add
block_12_project_BN

block_13_expand (Conv2D) (16, 13, 96) block_12_add
block_13_expand_BN
(BatchNormalization) (16, 13, 96) block_13_expand

block_13_expand_relu (ReLU) (16, 13, 96) block_13_expand_BN
block_13_pad (ZeroPadding2D) (17, 15, 96) block_13_expand_relu

block_13_depthwise
(DepthwiseConv2D) (8, 7, 96) block_13_pad

block_13_depthwise_BN
(BatchNormalization) (8, 7, 96) block_13_depthwise

block_13_depthwise_relu (ReLU) (8, 7, 96) block_13_depthwise_BN
block_13_project (Conv2D) (8, 7, 16) block_13_depthwise_relu

block_13_project_BN
(BatchNormalization) (8, 7, 16) block_13_project

block_14_expand (Conv2D) (8, 7, 96) block_13_project_BN
block_14_expand_BN
(BatchNormalization) (8, 7, 96) block_14_expand

block_14_expand_relu (ReLU) (8, 7, 96) block_14_expand_BN
block_14_depthwise
(DepthwiseConv2D) (8, 7, 96) block_14_expand_relu

block_14_depthwise_BN
(BatchNormalization) (8, 7, 96) block_14_depthwise

block_14_depthwise_relu (ReLU) (8, 7, 96) block_14_depthwise_BN
block_14_project (Conv2D) (8, 7, 16) block_14_depthwise_relu

block_14_project_BN
(BatchNormalization) (8, 7, 16) block_14_project

block_14_add (Add) (8, 7, 16) block_13_project_BN
block_14_project_BN

VI

A. appendix 1

block_15_expand (Conv2D) (8, 7, 96) block_14_add
block_15_expand_BN
(BatchNormalization) (8, 7, 96) block_15_expand

block_15_expand_relu (ReLU) (8, 7, 96) block_15_expand_BN
block_15_depthwise
(DepthwiseConv2D) (8, 7, 96) block_15_expand_relu

block_15_depthwise_BN
(BatchNormalization) (8, 7, 96) block_15_depthwise

block_15_depthwise_relu (ReLU) (8, 7, 96) block_15_depthwise_BN
block_15_project (Conv2D) (8, 7, 16) block_15_depthwise_relu

block_15_project_BN
(BatchNormalization) (8, 7, 16) block_15_project

block_15_add (Add) (8, 7, 16) block_14_add
block_15_project_BN

block_16_expand (Conv2D) (8, 7, 96) block_15_add
block_16_expand_BN
(BatchNormalization) (8, 7, 96) block_16_expand

block_16_expand_relu (ReLU) (8, 7, 96) block_16_expand_BN
block_16_depthwise
(DepthwiseConv2D) (8, 7, 96) block_16_expand_relu

block_16_depthwise_BN
(BatchNormalization) (8, 7, 96) block_16_depthwise

block_16_depthwise_relu (ReLU) (8, 7, 96) block_16_depthwise_BN
block_16_project (Conv2D) (8, 7, 32) block_16_depthwise_relu

block_16_project_BN
(BatchNormalization) (8, 7, 32) block_16_project

Conv_1 (Conv2D) (8, 7, 1280) block_16_project_BN
Conv_1_bn (BatchNormalization) (8, 7, 1280) Conv_1

out_relu (ReLU) (8, 7, 1280) Conv_1_bn
global_average_pooling2d
(GlobalAveragePooling2D) (1280) out_relu

Logits (Dense) (1) global_average_pooling2d

A.2 Neural Network for Eye Region

This section contains a tabular representation of the detailed neural network archi-
tecture used for evaluating a face region. Each entry represents a network layer.
Layer types are are denoted by their name in the neural network library Keras, for
python. Note that some of the layers are divided by name into numbered blocks.
These are the residual bottleneck modules, which are central to this neural network
architecture as seen in section 2.1.2.6. Tensor shapes are given as (height, width,
depth).

VII

A. appendix 1

layer (type) out shape connected to
input_1 (inputlayer) (48, 48, 2)

conv1_pad (zeropadding2d) (49, 49, 2) input_1
conv1 (conv2d) (24, 24, 8) conv1_pad

bn_conv1 (batchnormalization) (24, 24, 8) conv1
conv1_relu (relu) (24, 24, 8) bn_conv1

expanded_conv_depthwise
(DepthwiseConv2D) (24, 24, 8) conv1_relu

expanded_conv_depthwise_bn
(BatchNormalization) (24, 24, 8) expanded_conv_depthwise

expanded_conv_depthwise_relu
(ReLU) (24, 24, 8) expanded_conv_depthwise_bn

expanded_conv_project (conv2d) (24, 24, 8) expanded_conv_depthwise_relu
expanded_conv_project_bn

(BatchNormalization) (24, 24, 8) expanded_conv_project

expanded_conv_add (add) (24, 24, 8) conv1_relu
expanded_conv_project_bn

block_1_expand (conv2d) (24, 24, 48) expanded_conv_add
block_1_expand_bn
(BatchNormalization) (24, 24, 48) block_1_expand

block_1_expand_relu (relu) (24, 24, 48) block_1_expand_bn
block_1_pad (zeropadding2d) (25, 25, 48) block_1_expand_relu

block_1_depthwise
(DepthwiseConv2D) (12, 12, 48) block_1_pad

block_1_depthwise_bn
(BatchNormalization) (12, 12, 48) block_1_depthwise

block_1_depthwise_relu (relu) (12, 12, 48) block_1_depthwise_bn
block_1_project (conv2d) (12, 12, 8) block_1_depthwise_relu

block_1_project_bn
(BatchNormalization) (12, 12, 8) block_1_project

block_2_expand (conv2d) (12, 12, 48) block_1_project_bn
block_2_expand_bn
(BatchNormalization) (12, 12, 48) block_2_expand

block_2_expand_relu (relu) (12, 12, 48) block_2_expand_bn
block_2_depthwise
(DepthwiseConv2D) (12, 12, 48) block_2_expand_relu

block_2_depthwise_bn
(BatchNormalization) (12, 12, 48) block_2_depthwise

block_2_depthwise_relu (ReLU) (12, 12, 48) block_2_depthwise_BN
block_2_project (Conv2D) (12, 12, 8) block_2_depthwise_relu

block_2_project_BN
(BatchNormalization) (12, 12, 8) block_2_project

block_2_add (Add) (12, 12, 8) block_1_project_BN
block_2_project_BN

VIII

A. appendix 1

block_3_expand (Conv2D) (12, 12, 48) block_2_add
block_3_expand_BN
(BatchNormalization) (12, 12, 48) block_3_expand

block_3_expand_relu (ReLU) (12, 12, 48) block_3_expand_BN
block_3_pad (ZeroPadding2D) (13, 13, 48) block_3_expand_relu

block_3_depthwise
(DepthwiseConv2D) (6, 6, 48) block_3_pad

block_3_depthwise_BN
(BatchNormalization) (6, 6, 48) block_3_depthwise

block_3_depthwise_relu (ReLU) (6, 6, 48) block_3_depthwise_BN
block_3_project (Conv2D) (6, 6, 8) block_3_depthwise_relu

block_3_project_BN
(BatchNormalization) (6, 6, 8) block_3_project

block_4_expand (Conv2D) (6, 6, 48) block_3_project_BN
block_4_expand_BN
(BatchNormalization) (6, 6, 48) block_4_expand

block_4_expand_relu (ReLU) (6, 6, 48) block_4_expand_BN
block_4_depthwise
(DepthwiseConv2D) (6, 6, 48) block_4_expand_relu

block_4_depthwise_BN
(BatchNormalization) (6, 6, 48) block_4_depthwise

block_4_depthwise_relu (ReLU) (6, 6, 48) block_4_depthwise_BN
block_4_project (Conv2D) (6, 6, 8) block_4_depthwise_relu

block_4_project_BN
(BatchNormalization) (6, 6, 8) block_4_project

block_4_add (Add) (6, 6, 8) block_3_project_BN
block_4_project_BN

block_5_expand (Conv2D) (6, 6, 48) block_4_add
block_5_expand_BN
(BatchNormalization) (6, 6, 48) block_5_expand

block_5_expand_relu (ReLU) (6, 6, 48) block_5_expand_BN
block_5_depthwise
(DepthwiseConv2D) (6, 6, 48) block_5_expand_relu

block_5_depthwise_BN
(BatchNormalization) (6, 6, 48) block_5_depthwise

block_5_depthwise_relu (ReLU) (6, 6, 48) block_5_depthwise_BN
block_5_project (Conv2D) (6, 6, 8) block_5_depthwise_relu

block_5_project_BN
(BatchNormalization) (6, 6, 8) block_5_project

block_5_add (Add) (6, 6, 8) block_4_add
block_5_project_BN

IX

A. appendix 1

block_6_expand (Conv2D) (6, 6, 48) block_5_add
block_6_expand_BN
(BatchNormalization) (6, 6, 48) block_6_expand

block_6_expand_relu (ReLU) (6, 6, 48) block_6_expand_BN
block_6_pad (ZeroPadding2D) (7, 7, 48) block_6_expand_relu

block_6_depthwise
(DepthwiseConv2D) (3, 3, 48) block_6_pad

block_6_depthwise_BN
(BatchNormalization) (3, 3, 48) block_6_depthwise

block_6_depthwise_relu (ReLU) (3, 3, 48) block_6_depthwise_BN
block_6_project (Conv2D) (3, 3, 8) block_6_depthwise_relu

block_6_project_BN
(BatchNormalization) (3, 3, 8) block_6_project

block_7_expand (Conv2D) (3, 3, 48) block_6_project_BN
block_7_expand_BN
(BatchNormalization) (3, 3, 48) block_7_expand

block_7_expand_relu (ReLU) (3, 3, 48) block_7_expand_BN
block_7_depthwise
(DepthwiseConv2D) (3, 3, 48) block_7_expand_relu

block_7_depthwise_BN
(BatchNormalization) (3, 3, 48) block_7_depthwise

block_7_depthwise_relu (ReLU) (3, 3, 48) block_7_depthwise_BN
block_7_project (Conv2D) (3, 3, 8) block_7_depthwise_relu

block_7_project_BN
(BatchNormalization) (3, 3, 8) block_7_project

block_7_add (Add) (3, 3, 8) block_6_project_BN
block_7_project_BN

block_8_expand (Conv2D) (3, 3, 48) block_7_add
block_8_expand_BN
(BatchNormalization) (3, 3, 48) block_8_expand

block_8_expand_relu (ReLU) (3, 3, 48) block_8_expand_BN
block_8_depthwise
(DepthwiseConv2D) (3, 3, 48) block_8_expand_relu

block_8_depthwise_BN
(BatchNormalization) (3, 3, 48) block_8_depthwise

block_8_depthwise_relu (ReLU) (3, 3, 48) block_8_depthwise_BN
block_8_project (Conv2D) (3, 3, 8) block_8_depthwise_relu

block_8_project_BN
(BatchNormalization) (3, 3, 8) block_8_project

block_8_add (Add) (3, 3, 8) block_7_add
block_8_project_BN

X

A. appendix 1

block_9_expand (Conv2D) (3, 3, 48) block_8_add
block_9_expand_BN
(BatchNormalization) (3, 3, 48) block_9_expand

block_9_expand_relu (ReLU) (3, 3, 48) block_9_expand_BN
block_9_depthwise
(DepthwiseConv2D) (3, 3, 48) block_9_expand_relu

block_9_depthwise_BN
(BatchNormalization) (3, 3, 48) block_9_depthwise

block_9_depthwise_relu (ReLU) (3, 3, 48) block_9_depthwise_BN
block_9_project (Conv2D) (3, 3, 8) block_9_depthwise_relu

block_9_project_BN
(BatchNormalization) (3, 3, 8) block_9_project

block_9_add (Add) (3, 3, 8) block_8_add
block_9_project_BN

block_10_expand (Conv2D) (3, 3, 48) block_9_add
block_10_expand_BN
(BatchNormalization) (3, 3, 48) block_10_expand

block_10_expand_relu (ReLU) (3, 3, 48) block_10_expand_BN
block_10_depthwise
(DepthwiseConv2D) (3, 3, 48) block_10_expand_relu

block_10_depthwise_BN
(BatchNormalization) (3, 3, 48) block_10_depthwise

block_10_depthwise_relu (ReLU) (3, 3, 48) block_10_depthwise_BN
block_10_project (Conv2D) (3, 3, 16) block_10_depthwise_relu

block_10_project_BN
(BatchNormalization) (3, 3, 16) block_10_project

block_11_expand (Conv2D) (3, 3, 96) block_10_project_BN
block_11_expand_BN
(BatchNormalization) (3, 3, 96) block_11_expand

block_11_expand_relu (ReLU) (3, 3, 96) block_11_expand_BN
block_11_depthwise
(DepthwiseConv2D) (3, 3, 96) block_11_expand_relu

block_11_depthwise_BN
(BatchNormalization) (3, 3, 96) block_11_depthwise

block_11_depthwise_relu (ReLU) (3, 3, 96) block_11_depthwise_BN
block_11_project (Conv2D) (3, 3, 16) block_11_depthwise_relu

block_11_project_BN
(BatchNormalization) (3, 3, 16) block_11_project

block_11_add (Add) (3, 3, 16) block_10_project_BN
block_11_project_BN

XI

A. appendix 1

block_12_expand (Conv2D) (3, 3, 96) block_11_add
block_12_expand_BN
(BatchNormalization) (3, 3, 96) block_12_expand

block_12_expand_relu (ReLU) (3, 3, 96) block_12_expand_BN
block_12_depthwise
(DepthwiseConv2D) (3, 3, 96) block_12_expand_relu

block_12_depthwise_BN
(BatchNormalization) (3, 3, 96) block_12_depthwise

block_12_depthwise_relu (ReLU) (3, 3, 96) block_12_depthwise_BN
block_12_project (Conv2D) (3, 3, 16) block_12_depthwise_relu

block_12_project_BN
(BatchNormalization) (3, 3, 16) block_12_project

block_12_add (Add) (3, 3, 16) block_11_add
block_12_project_BN

block_13_expand (Conv2D) (3, 3, 96) block_12_add
block_13_expand_BN
(BatchNormalization) (3, 3, 96) block_13_expand

block_13_expand_relu (ReLU) (3, 3, 96) block_13_expand_BN
block_13_pad (ZeroPadding2D) (5, 5, 96) block_13_expand_relu

block_13_depthwise
(DepthwiseConv2D) (2, 2, 96) block_13_pad

block_13_depthwise_BN
(BatchNormalization) (2, 2, 96) block_13_depthwise

block_13_depthwise_relu (ReLU) (2, 2, 96) block_13_depthwise_BN
block_13_project (Conv2D) (2, 2, 16) block_13_depthwise_relu

block_13_project_BN
(BatchNormalization) (2, 2, 16) block_13_project

block_14_expand (Conv2D) (2, 2, 96) block_13_project_BN
block_14_expand_BN
(BatchNormalization) (2, 2, 96) block_14_expand

block_14_expand_relu (ReLU) (2, 2, 96) block_14_expand_BN
block_14_depthwise
(DepthwiseConv2D) (2, 2, 96) block_14_expand_relu

block_14_depthwise_BN
(BatchNormalization) (2, 2, 96) block_14_depthwise

block_14_depthwise_relu (ReLU) (2, 2, 96) block_14_depthwise_BN
block_14_project (Conv2D) (2, 2, 16) block_14_depthwise_relu

block_14_project_BN
(BatchNormalization) (2, 2, 16) block_14_project

block_14_add (Add) (2, 2, 16) block_13_project_BN
block_14_project_BN

XII

A. appendix 1

block_15_expand (Conv2D) (2, 2, 96) block_14_add
block_15_expand_BN
(BatchNormalization) (2, 2, 96) block_15_expand

block_15_expand_relu (ReLU) (2, 2, 96) block_15_expand_BN
block_15_depthwise
(DepthwiseConv2D) (2, 2, 96) block_15_expand_relu

block_15_depthwise_BN
(BatchNormalization) (2, 2, 96) block_15_depthwise

block_15_depthwise_relu (ReLU) (2, 2, 96) block_15_depthwise_BN
block_15_project (Conv2D) (2, 2, 16) block_15_depthwise_relu

block_15_project_BN
(BatchNormalization) (2, 2, 16) block_15_project

block_15_add (Add) (2, 2, 16) block_14_add
block_15_project_BN

block_16_expand (Conv2D) (2, 2, 96) block_15_add
block_16_expand_BN
(BatchNormalization) (2, 2, 96) block_16_expand

block_16_expand_relu (ReLU) (2, 2, 96) block_16_expand_BN
block_16_depthwise
(DepthwiseConv2D) (2, 2, 96) block_16_expand_relu

block_16_depthwise_BN
(BatchNormalization) (2, 2, 96) block_16_depthwise

block_16_depthwise_relu (ReLU) (2, 2, 96) block_16_depthwise_BN
block_16_project (Conv2D) (2, 2, 32) block_16_depthwise_relu

block_16_project_BN
(BatchNormalization) (2, 2, 32) block_16_project

Conv_1 (Conv2D) (2, 2, 1280) block_16_project_BN
Conv_1_bn (BatchNormalization) (2, 2, 1280) Conv_1

out_relu (ReLU) (2, 2, 1280) Conv_1_bn
global_average_pooling2d
(GlobalAveragePooling2D) (1280) out_relu

Logits (Dense) (1) global_average_pooling2d

XIII

	List of Figures
	List of Tables
	Introduction
	Problem description
	Previous work
	Aim of the project

	Theory
	Artificial Neural Networks
	Neurons and activation functions
	Network Architecture
	Convolution
	Depthwise Separable Convolution
	Convolutional Neural Networks
	Bottlenecks and expansions
	Residuals
	MobileNetV2

	Method
	Hardware setup
	Data collection
	Live test subjects
	Spoof media
	Prints
	Masks

	Main Algorithm
	Pairing of Consecutive Frames
	Frame preparation
	Classification

	Neural Network Training

	Results
	Training history
	Full Face
	Using Frame Pairs
	Using Single Frames

	Eye Region

	Conclusion
	Bibliography
	appendix 1
	Neural Network for Face Region
	Neural Network for Eye Region

