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Abstract
When distributing work among employees in Airline crew planning a problem
called the crew rostering problem is formed. It is a combinatorial optimization
problem and solving large problem instances commonly utilize column generation.
This thesis investigates utilizing machine learning predictions instead of reduced
costs in the pricing problem. The machine learning model predicts how likely it is
that a task is assigned a crew in a supervised learning fashion, by being trained on
historical planning problems. The aim is to then utilize the model to improve
computational speed in solving future problems.

This thesis presents results suggesting that it is conceptually possible to improve
computational time of state of the art crew rostering algorithms with accurate
predictions. Training a deep learning model able to make such accurate predictions
is found to be very difficult given the techniques and data experimented with.
Thus the thesis concludes that further research for improving this concept is
needed in two main directions, feature extraction and model techniques.

Keywords: airline crew rostering, machine learning, deep learning, combinatorial
optimization, column generation, pricing problem, resource-constrained shortest
path problem.
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1
Introduction

In recent decades the air transportation industry has grown immensely and
naturally along with it so has airlines. The size of the major airlines has developed
a larger demand than ever for efficient planning solutions where a small fractal of
percentage improvements can lead to millions of dollars in savings. The discipline
that studies methods for logistics and planning is known as Operations Research
(OR) and was first developed in order to optimize resource allocation in the second
world war. Since then many algorithms producing optimal or near-optimal
solutions have been developed but because of the complexity of these problems,
they are heavily reliant on heuristics. In a more recent time span, the field of
machine learning (ML) has been taking large steps forward, especially as a practice
since computers have become more powerful. Because of its principled and
optimized way of approaching decision making it looks like a promising candidate
in uniting with OR to improve state of the art solution methods for planning
problems. Thus this thesis aims to investigate techniques for merging ML into
state of the art optimization algorithms for what today is one of the most complex
planning industries, the airline industry.

Disregarding the last two years (2020-2021), during which a pandemic has put the
market of transportation in a state of exception, one can observe a continuous
growth of revenue in the airline industry. Airlines are the key actors when it comes
to all forms of quick long-distance transportation of both humans and inanimate
cargo. When deciding and formulating in detail how these transportations are to
be executed multiple planning problems arise. What routes should be flown?
Which airplane should fly which route? Which employees should operate the
flights? Because of the many different quality aspects of a desirable solution and
the scale of these problems they are all very complex to solve.

The company Boeing has a subsidiary called Jeppesen which specialize in the
development of software tools for airline planning. Their products are used by
major airlines all over the world. In their Swedish office in Gothenburg, the main
focus is on software for Crew and Operations management. An important part of
Crew planning is that of assigning work to individual employees, i.e. creating
personalized work schedules which in the industry is referred to as a roster. The
problem of creating a roster for each crew member is called the Crew Rostering
Problem (CRP). In this master’s thesis, the focus will be on the CRP and the
project is a collaboration with Jeppesen.
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1. Introduction

1.1 Crew Rostering

In this section, an introduction to the CRP will be presented in order to
understand its context, purpose and importance. The CRP is a subproblem of
Crew Scheduling which is the problem of distributing work among employees. The
problems of Crew Scheduling is generally solved in two phases out of which the
first phase is the problem of grouping together flight legs forming an anonymous
schedule where all flight legs require the same competence and number of crew
members. A group of flight legs is called a pairing (even though they may contain
more flight legs than a pair) and hence it has the name: The Crew Pairing
Problem. The second phase is the CRP which has the objective to create
personalized schedules that consist of pairings but also other tasks like: ground
duties, reserve duties and off-duty blocks. A personalized schedule is called a
roster and is usually planned on a monthly basis.

Finding good solutions to the CRP is of great importance for both the individual
crew members and the airline’s economy. For crew, good solutions mean that their
preferences are satisfied. For airline’s quality solutions can allow for huge economic
savings, in fact, next to fuel costs, crew costs represent the largest single cost
factor for airlines [7]. It also seems reasonable to assume that if crew members are
satisfied with their work they are unlikely to call in sick or even quit their job,
perform assigned tasks better etc. which could also result in large savings. Thus it
is of great importance for airlines to keep their employees satisfied.

There are typically four kinds of objectives used when formulating a CRP and in
practice, they are commonly combined into one objective function. The first
potential objective is real costs which consider transportation costs, hotel costs
and more. The second is the robustness of the solution which is basically planning
with margins i.e. avoiding solutions where real-world disruptions in the form of for
example a crew becoming sick could cause a need for large changes in the plan.
The third is related to particular roster attributes and can be for instance how
equally distributed the workload is. The fourth and last is related to individual
crew preferences such as when a given member wants time-off. These objectives
and the CRP is described in greater detail by Kohl and Karisch [14]

Since there are so many rules and regulations to follow in the CRP the number of
mathematical constraints is expected to be large. Kohl and Karisch divide these
into three categories which we will adopt in this report. The first category is called
Horizontal rules and regards only a single roster. These handle the attributes of
the crew member which the roster concerns as well as properties of the assigned
tasks. The second category is called Vertical rules and, opposite of the previously
mentioned category, these rules deal only with restrictions for more than one
roster. A commonly used type of rule in this category is called crew complement
and handles requirements on additional (more than one) crew members being
required for a given task. Another vertical rule is qualification-type constraints
that deals with linked competencies like for example a given flight requiring at
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1. Introduction

least one member speaking a certain language. The last category of rules is called
Artificial rules and aims to impose constraints that restrict solution space in a way
that only unattractive solutions are pruned. An example of this is the previously
mentioned solution robustness.

1.2 Background and aim
The CRP is a Combinatorial Optimization problem which means that an
exhaustive search is not a tractable option. This is because the number of rosters is
too large for even being stored on a computer. If a problem has for example have
300 pairings the number of possible ways to combine them for each crew into 2300

different (legal and illegal) rosters which is a number larger than the number of
atoms in the observable universe(∼ 1080). Hence this problem is solved using the
method of column generation which is a technique that allows you to iteratively
improve the solution without explicitly considering all information in the problem.
In this section, a conceptual overview of this method is presented and in Section 3
further details and mathematical notation is given. A brief introduction to the
proposed idea for how this method could be improved is also described.

The columns when using column generation to solve the CRP are each related to a
roster, the rosters are in turn related to decision variables which given the problem
formulation we aim to optimize their relationship measured by an objective
function. Firstly, in order to obtain desirable mathematical properties, the integer
constraint is relaxed such that partially using rosters becomes mathematically
feasible. However in the reality, since a crew member either works or does not, this
is of course inconceivable. With this relaxation, a problem called the master
problem (MP) is obtained. Considering all possible rosters is not possible as the
number grows combinatorially with the number of tasks. Thus restrictions are
imposed on which rosters to use, i.e. only a subset of rosters is considered, in a
problem called the restricted master problem (RMP). This is a solvable problem
but since it does not contain all information it is unlikely that it has a desirable
solution. In order to find out how this solution could be improved the so-called
pricing problem (PP) is solved. This problem utilizes the dual variables generated
by solving the RMP to compute reduced cost which contains information of how
the inclusion of a column will impact the solution of the RMP. The column which
improves our solution of the RMP the most is included and the process of solving
it and the PP is repeated until no further possible improvement can be made.
When an unimprovable solution is found it is still possible that the solution is
undesirable since the scheme started off with a continuous relaxation. In order to
address this, a Branch and Bound methodology is implemented which when
combined with column generation in this way is called Branch and Price. The idea
behind this algorithm is to fixate parts of the solution that are non-integer which
is known as branching and create a search tree. In each node of the search tree,
column generation is applied.

In the CRP algorithm used in this thesis, the PP is modelled as a
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1. Introduction

resource-constrained shortest path problem (RCSPP). The objective of the problem
is to for a given crew member find which set of tasks that person should be
assigned to improve the current solution the most. If the number of tasks is large
this problem can become very slow to solve, hence the algorithm considers only a
subset of tasks. The process of choosing this subset is, as often in OR, controlled
by heuristics. In this thesis, the idea of using ML to try and find patterns in what
tasks are interesting for a given crew member is investigated. In other words, we
aim to use a ML model to predict the likelihood of tasks being assigned to a given
crew member and then utilize these when picking the subset of tasks to include in
the RCSPP. This idea was first explored by Quesnel et al. [18] and our relation to
their paper is explained in Section 1.4.2.

The complexity of deciding which crew is likely to be assigned which tasks stem
not only from that person’s preferences and limitations but also from the
interaction between those factors for all crew members. For example how to
prioritize a pairing when it looks good in terms of vertical constraints but has
other components which are disliked by the crew member? Furthermore, it may be
the case that some pairing is disliked by all crew members but it must still be
considered in some PPs.

The ML model is trained in a supervised fashion where features are extracted from
the costs and constraints in the CRP. The intended use case for the model is that
if it is able to learn the behaviour of our problem we could use its predictions in
future problems to increase solution speed. As airline planning is often done
month by month the model should be trained on previous months problems and
output predictions that can be utilized to improve the solving of the upcoming
month’s problems. As planning problems are solved to or near to optimality the
main metric that is aspired to improve is computation time.

In airline planning computation time is of great importance as it allows for more
solutions to be computed and more time to be spent elsewhere. The reason finding
more and not necessarily objectively better solutions is important stems from the
problem complexity which can make solutions with similar objective value
completely different in some of the desired metrics. The person responsible for the
planning can thus use the extra time to start new problem runs with tweaked
input parameters given observations made from earlier runs. Crew can also use the
extra time to express their preferences in the bid line approach if that is used.
Another benefit from solving the problem quicker is energy savings as the
hardware has less work.
When discussing this thesis project it is important to keep in mind that the
algorithms at Jeppesen have been developed and tuned for many years which given
the heuristic relying nature of the solution process to the very complex problems in
question one might implement something that in essence is an improvement but in
the context, it does not increase any desired metrics. However, this was taken into
consideration when choosing to proceed with this thesis idea as the concept does
not directly interfere or change any core features of the algorithm but instead
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1. Introduction

provides options in a selection problem that already is part of the solution method.
Acknowledging this opens up for a discussion that will be continued in the chapter
for which this is a critical insight, Chapter 6.

1.3 Limitations
This thesis will be limited to only investigating the usage of ML to accelerate the
solving of the PP in the existing framework of Jeppesen’s crew rostering algorithm
which utilizes column generation. This is to be done by recognizing patterns in
which tasks are likely to be operated by a given crew member in a desirable
solution. These patterns are to be identified with the use of ML algorithms, more
specifically by the training of a neural network.

1.4 Related work
There any many different ways of solving the CRP but as specified in the previous
section, the work of this thesis is limited to only investigating Jeppesen’s column
generation approach. In this section, the aim is to give a background on relevant
papers which investigates or discusses similar topics. In the first subsection, a
presentation of work related to ML in OR is given and the second subsection
contains a more thorough discussion regarding the paper that sparked the idea for
this thesis project.

As this thesis involves column generation and the branch-and-price scheme, which is
presented with the aim to expand on the concepts and to contextualize in Chapter
3, work that has laid the foundation for these algorithms and also provides a more
comprehensive introduction to them is that of Desrosiers and Lübbecke [6] and
Barnhart et al. [3] respectively.

1.4.1 Machine learning in operations research algorithms
Figuring out the role of how and where to best utilize ML in OR is still very much
a work in progress. Recently papers surveying the current state of research in this
middle ground have received a lot of attention. For this thesis which focuses on
ML in combinatorial optimization, the most notable is probably that of Bengio
et al. [4]. The authors conclude their paper by remarking that they strongly
believe in the usage of ML in CO algorithms and that this is the beginning of a
new era for CO. Another interesting paper discussing the state of the art for using
ML in meta-heuristics (MH) is that of Karimi-Mamaghan et al. [10]. The authors
present a categorisation of how ML is used in MH today and use examples of
recently published papers to expand on these categories. Categorizing this thesis
into any of these does however feel quite forced, the closest related categories are
probably initialization, as we are precomputing probabilities that aim to find
subproblem solutions, or some kind of fitness evaluation, as one can view this
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1. Introduction

thesis as estimating a function which in a similar fashion to reduced costs strive to
prune search space.

When utilizing a search-tree creating algorithm like branch-and-price it is
interesting to investigate branching strategies, i.e. which subproblem to solve to
find the best solution. A strategy known to be reliable is strong branching which
solves all subproblems and chooses to proceed with the one producing the largest
improvement. The reliability of the strategy is counterbalanced by its computation
time, in an effort to get the best of both worlds Alvarez et al. [1] investigates
approximating strong branching with supervised ML. Another paper that also
aims to guide the decision making in the branch-and-price scheme is that of
Kruber et al. [15], where ML is utilized to try and predict if it is beneficial to
apply a Dantzig-Wolfe decomposition to solve a mixed-integer program and also
which decomposition to choose if several options are possible.

An approach that deals with non-integer solutions in the pairing problem is that of
Tahir et al. [19] where a method jumping from integer to integer solutions is
presented. They improve on previous integer column generation algorithms by
utilizing supervised ML to predict pairings that are to be performed consecutively
by the same crew member. These predictions are made using a neural network and
they are used in a set of reduced subproblems.

A paper that, similar to this thesis, aims to accelerate the branch-and-price
algorithm by pruning search space in the pricing problem is that of Václavík et al.
[20]. This is done in an online fashion by predicting an upper bound for the
subproblem. This upper bound aims to be as tight as possible without making the
subproblem infeasible, i.e. pruning as much search space as possible. This is
interesting when the subproblem can utilize an upper bound, which is not the case
in the algorithm of this thesis as our subproblem is modelled as a
resource-constrained shortest path problem.

In the paper by Morabit et al. [16] the authors present a methodology utilizing a
graph neural network to predict whether or not generated column in the standard
column generation scheme is to be included in the RMP or not. A common
strategy in practice when it comes to selecting columns to include in the RMP is
to pick a larger number than needed as extra computation time required in the
RMP tends not to outweigh the overall improvement in solution speed due to the
following iterations of the pricing problem finding increasingly better columns.
The column selection strategy presented by the authors is therefore suitable when
solving the RMP required more computational time than the PP. Similarly to this
thesis, the authors use ML to alter the selection process for inclusion of
information in a particular stage of a column generation problem.
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1. Introduction

1.4.2 Deep-learning-based partial pricing in a branch-and-
price algorithm for personalized crew rostering

The current, as of autumn 2021, published paper which is the closest related to the
work of this thesis is that of Quesnel et al. [18] which in fact sparked the idea for
the direction of the thesis. In this paper, a deep learning neural network is trained
for predicting the likelihood that a crew is assigned a pairing which sounds exactly
like the core idea of this thesis but there are some key differences. Most
importantly the data used in the report is not directly taken from the real world
but instead, they derive instances of datasets from Kasirzadeh et al. [12] too which
they artificially add language constraints. The crew data is generated using a
random procedure similar to the one in Quesnel et al. [17]. Their different
instances have the same set of flights and language constraints but each had its
own set of crew members. The authors claim that since each instance has a unique
set of crew their instances are more dissimilar and thus also more difficult than
real-world problems. This claim is very interesting and will be further discussed in
Chapter 7. In this thesis, through the collaboration of Jeppesen, access to
real-world data have been granted. This data is, because of its complexity (mostly
in regards to constraints), substantially different from the data generated by
Quesnel et al. and further details about it is presented in Chapter 4.

Another important aspect when discussing the difference between this thesis and
the paper by Quesnel et al. is the algorithm in which the predictions are utilized.
This is further detailed in Chapter 6 in which methods for prediction utilization
that Quesnel et al. did not explore is presented. The algorithm used by Jeppesen
for solving CRPs is state of the art and thus naturally explicit details on how it
works are not given in this thesis because it is intellectual property. It is interesting
to investigate if the more complex algorithm of Jeppesen can benefit as much as
the simpler branch-and-price algorithm experimented with by Quesnel et al. It is
important to realize that if Jeppesen can utilize ML in this fashion to enhance their
algorithm then it seems likely that this strategy has potential to improve other
similar solution methods. Worth noting when considering where else this algorithm
has potential is that more businesses than airlines solve complex planning problems
using similar methodology, for example in the railway industry [9, 8] and scheduling
in hospitals [2].

1.5 Thesis outline
In this section, I give a brief overview of what is explained in the different
chapters. Firstly a more detailed explanation of the CRP is presented in Chapter
2. Then the method used to solve this combinatorial optimization problem is
presented with details on the subproblem in which the ML predictions are to
operate in Chapter 3. In Chapter 4 the data used for the ML is presented and in
Chapter 5 the ML itself is presented. Chapter 6 details how the predictions made
my the ML model are intended to be used. Then a selection of experiments,
including the ML model performance, are presented and discussed in Chapter 7.
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1. Introduction

Lastly, everything is concluded in Chapter 8.
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2
The crew rostering problem

The objective of the CRP is to assign work to employees where the work, known as
tasks, consists of: pairings, training activities, reserves and ground duties. These
tasks are to be formed into rosters that are not only legally workable by individual
crew members but also desirable for them. The desirability aspect takes into
consideration of individual crew members preferences regarding: off-time,
colleagues, layovers and more.

In this chapter, the crew rostering problem will be expanded upon utilizing
mathematical notation aiming to contextualize and concretize the outline
presented in Chapter 1.1.

2.1 Problem formulation
This problem consists of assigning a set of tasks T to crew members k ∈ C, where
C is the set of all crew members, such that no tasks are left unassigned, i.e.

T = R1 ∪R2 ∪R3 ∪ ... ∪R|C| (2.1)

Here Rk represents a roster or scheme of which tasks are assigned to crew member
k. Assigning a crew member to a roster is associated with a cost ck and the objective
is to minimise the sum of these costs. The CRP is in compact form thus expressed
in the following way:

min c>x
s.t. Ax = 1

x ∈ {0, 1}n
(2.2)

The columns ai ∈ Rm×1 of the matrix A ∈ Rm×n represents a roster for some crew
member. The binary variable x is a decision variable that decides if this roster is to
be used or not. To deal with both choosing a crew member and selecting tasks, the
columns consists of two parts:

aj =
[
ek
pj

]
, j ∈ Jk (2.3)

where ek ∈ {0, 1}|C| is a unit vector with 1 at position k and pj is a binary vector.
Hence the first |C| rows of the constraint matrix A are called assignment constraints
since they ensure that each crew member is assigned tasks. The following |T | number
of rows are called activity constraints since they express which activities the selected

9



2. The crew rostering problem

crew member are to perform. Thus the 1 on the right-hand side of the constraints in
Problem 2.2 demands that both all crews are to be assigned tasks and all tasks are
to be assigned exactly once. The set Jk contains the indices corresponding to the
potential schedules of crew member k, which means that the set has the following
mathematical properties:

J =
⋃
k∈C
Jk = {1, 2, ..., n} (2.4)

and
Jk ∩ Jk′ = ∅, ∀k 6= k′, k, k′ ∈ C (2.5)

where n = |J | is the total number of variables in the Master problem which
corresponds to all possible rosters for all crew in the CRP. The simple Model 2.2
only considers constraints related to one roster. It could be of interest to add
constraints on more than one roster, those kinds of constraints are called vertical
constraints. An example of this is crew complement where the goal is to allow for
tasks that need more than one crew to be operated, the model is then extended to:

min c>x
s.t. Ax = b

x ∈ {0, 1}n
(2.6)

where b is a vector of positive integers. Of course for elements i = 1, 2, ..., |C|
elements bi = 1 since these still should correspond to how many rosters any given
crew is allowed to operate. The assignment constraints remain but the activity
constraints are now allowed to ask for more crew to operate the activities. For
example if task t ∈ T requires two crew members then b|C|+t = 2. Further extensions
such as: qualification constraints, pilot experience, certain crew must fly together
and more are presented by Kohl and Karisch in [14]. The problem in Equation 2.6
forms an IMP which we solve using the branch-and-price algorithm presented in
Section 3.2. The pricing problem which is the interest of this thesis thus consists of
generating columns or possible rosters for each individual crew member.
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3
Column generation for large scale

problems

In this chapter, we expand on the theory behind the solution method commonly
utilized when solving the CRP such that the context of where our ML is
implemented is clarified. In order to do this, we start by explaining the scheme of
column generation. Then that theory is related to the branch-and-price algorithm
which is a union of column generation and a typical branch-and-bound algorithm.
Lastly, we focus on the specific subproblem in which our ML-models predictions
will operate.

3.1 Column Generation scheme
Consider a general linear problem with m constraints and n decision variables:

min c>x
s.t. Ax = b

x ≥ 0
(3.1)

where c ∈ Rn, x ∈ Rn, A ∈ Rm×n and b ∈ Rm. In the context of column generation
this problem is called the master problem(MP) and due too n being large enough to
make considering all columns an inconceivable option we restrict this number by only
considering a subset. This is the idea behind the restricted master problem(RMP)
which we can formulate as:

min
∑
j∈J ′

cjxj

s.t.
∑
j∈J ′

ajxj = b

xj ≥ 0 ∀j ∈ J ′

(3.2)

where aj ∈ Rm are the columns of the A ∈ Rm×n and xj, cj are elements of x ∈ Rn

and c ∈ Rn respectively. Most importantly J ′ ⊆ J which allows us to find solutions
to this problem with for example the simplex method [11, pg.23]. The concept of the
simplex algorithm is to move in steps between what is called basic feasible solutions
until no step improves the current solution and thus the optimal solution is found.
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3. Column generation for large scale problems

It relies on a starting point, a basic feasible solution xB that satisfies all constraints
i.e. Ax = b and x ≥ 0. Using this solution we can compute the dual variables:
π> = c>BB−1 where the basis matrix B and the cost vector cB is formed by the
columns related to xB. These can then be used to compute the reduced costs for a
given variable i as follows:

c̄i = ci − π>ai (3.3)

The reduced cost gives information about how the objective value would change if
column i is included in the basis B. The index i could thus be any i ∈ J where
J = {1, 2, .., n}. The same concept is used when deciding what columns to include
in our RMP. The problem of finding which columns are related to the greatest
improvement in our objective function is then formulated as follows:

c̄∗j = min{cj − π̄>aj | j ∈ J } (3.4)

which is known as the pricing problem (PP). Because the RMP was formulated as
a minimization problem the only columns of interest are those with negative
reduced costs, i.e columns that reduce our objective value. This enables
mathematical identification of no possible further improvement as c̄∗j > 0. These
formulations can be made without loss of generality as with a maximization
problem the signs can simple be flipped.

The solution procedure is thus iterating between solving the RMP to get the dual
variables which then can be used in the pricing problem to find new columns to
include in the RMP. You repeat these steps until no column inclusion can improve
the objective value and hence the optimal solution is found. In Figure 3.1 one can
observe the same relationship between the MP, RMP and PP as described in this
section but with the extension of the algorithm explained in the related section,
Section 3.2.

12



3. Column generation for large scale problems

3.2 Branch and Price algorithm
When looking for integer solutions to very large scale optimization problems one
commonly combines the method of column generation with the branch-and-bound
algorithm. This idea was first proposed by Barnhart et al. [3] and is called the
branch-and-price method. Consider the integer minimization problem:

min c>x
s.t. Ax = b

x ∈ {0, 1}n
(3.5)

In the scheme of branch-and-price this problem is called the integer master problem
(IMP) and with relaxation of the binary constraints on the variables the master
problem, presented in Equation 3.1 in obtained. This is then solved as discussed in
the related Section 3.1. If the solution is integer the solution satisfies the IMP and
hence the algorithm stops, but if it is non-integer some branching rule is applied
which in our context commonly mean fixation of a subset of variables as follows:

∑
i∈α

xi = d, d ∈ {0, 1} (3.6)

where α ⊆ J ′ i.e a subset of the variables considered in the current iteration of the
RMP. d represents the decision of fixating the variables which means forcing the
rosters of α to either be used or not. When searching the created search tree related
to these constraints column generation is used at every node. The complete scheme
of the algorithm is illustrated in Figure 3.1.
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3. Column generation for large scale problems

IMP

MP

RMP

Solve RMP
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Problem

Found column with
negative reduced cost?

Integral solution?Branch
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Subset of variables
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Figure 3.1: Diagram of the branch-and-price scheme.
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3. Column generation for large scale problems

3.3 Pricing problem
When solving the pricing problem, which in our CRP context means finding a
roster for a given crew member that improves our objective value, there are three
methods that are frequently used. Which one out of the three is chosen for a given
iteration is commonly iteration-depth dependent. The first method, which we will
call simple assign, is used in early iterations when assigning any legal tasks to a
crew member improves the objective value. This method simply picks a selected
number of tasks that has the lowest reduced cost and tries to assign them to a
crew member. The second method creates a graph network with which a
resource-constrained shortest path problem is formulated. This method is better
suited for finding adjustments to a roster and how it works is detailed in the
following section. The final method is a local search that deals with fine-tuning
and is used when the other methods struggle to find legal rosters. Since this
method only cares about finding similar rosters to what has already been found it
does not seem appropriate to guide it away from this purpose with probabilities.
Hence the two methods of interest are simple assign and the shortest path method.
In these two methods which utilize a reduced costs based selection when choosing
which tasks to consider this thesis project aims to change the selection such that
they utilize ML predictions instead. This may seem naive at first as the reduced
cost directly correlate with improving objective value and should hence be a good
indicator of what column to include but because of the way rule modelling is
handled the reduced cost disregard important constraints that may make the
roster illegal. On top of that, the reduced cost does only take information in the
current iteration of the RMP into account. Thus there might be potential in ML
predictions which could learn from information not considered in the reduced cost.

3.3.1 Resource-constrained shortest path problem
When solving the pricing problem, which in the CRP means finding a roster that
when included improves the cost of our current solution, we can formulate a
RCSPP of which the goal is to construct such a roster. The core idea is to
formulate a RCSPP on a directed acyclic graph/network in which nodes represent
actions and edge represents related costs. Finding a solution, i.e. which actions are
to be done and in what order, to such a network is a potential roster.
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3. Column generation for large scale problems

Figure 3.2: First part of a RCSSP network diagram.

The nodes in Figure 3.2 represent either the passing of time without work or the
assignment of work in the form of a pairing. The time passing nodes are blue and
there are two different assigned work-nodes: there are nodes that and compulsory
(orange) and work-nodes that are optional to assign (yellow). All networks are
crew member specific and hence the edge costs represent an aggregation of the
crew’s individual preferences as well as the actual cost of assigning the pairing. If
the solution path contains a sequence of time passing nodes that means the crew
in question will have time off during the period which those nodes represent. In
the figure, a lot of time-nodes have been pruned by network optimization.

When deciding which pairings to consider in the RCSPP different heuristics are
used. Usually, this selection process is dominated by one cost, the reduced cost.
An important parameter when building the network is how many pairings to
include. This is a fine balance act as including too many nodes will slow down the
computation and including too few could make us not find a roster that improves
our RMP solution. The size of how many pairings to include is commonly
controlled by heuristics. In Chaper 6 we discuss further details on how the
predictions are to be utilized.
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4
Data

In this chapter, we will discuss what data is used and how it was collected. The
keyword for this section is that the data is collected from the real world which is
possible since this thesis is done in collaboration with Jeppesen. However, with
respect to GDPR, we will keep details that risk disclosing private information
anonymous or rounded.

In order to replicate how this method would be used in the real world, it is
important that the data is collected from two consecutive planning periods, in
airline planning a period is commonly equivalent to a month. The reason this is
important is because the intended use case of the ML model is to predict future
planning in a supervised ML fashion by learning from previous plans. Naturally,
the plans do not have to be perfectly consecutive for this but since change usually
happens slowly in big airlines which should make consecutive months similar it
seems reasonable to utilize at least the most recent month to plan ahead. However,
it may be that for example for a holiday month like December when airline travel
pattern changes it may not be optimal to learn from the neighbouring month but
instead perhaps from the same month last year. In practice airlines have access to
more training data than just the single previous month therefore our data set is
likely to be more difficult to predict as our data set only contain two months.

The data sets have several variables which are all extracted with consideration of
how to capture the behaviour of our problem, this is further discussed in Chapter
5. Each sample represents the relation between a task and a crew member thus the
data set could have up to |T |∗ |C| number of samples where the terms are number of
tasks and number of crew. However, all tasks are not feasible for all crew members
thus the total number of data points is much lower. All samples have two labels
out of which of course only one is used at a time. The first label type is a binary
label which represents if the task is assigned the specified crew member in any of
the solutions or not. The second label type is a ratio between zero and one which
represents how frequent among a selection of solutions a task is assigned a specific
crew member. These two can be mathematically defined as follows:

ykt1 = min(0, skti ) ∀i ∈ S (4.1)

ykt2 =

∑
i∈S

skti

|S|
(4.2)
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4. Data

where ykt1 and ykt2 are the two labels respectively, S is the index set of selected
solutions and si ∈ {0, 1} is a binary variable representing if the task is assigned to
the crew member in solution i or not. The set S is built up by solving the problem
using Jeppesen’s untouched CRP algorithm where all solutions are the best
solution found given different randomization seeds.

The data set is from a major airline’s planning period of two consecutive months,
namely December and January which as mentioned may be one of the more
difficult periods to plan. For the two months, out of which the ML model will be
trained on the first, 15 solutions have been computed and processed into the labels
formulated in Equation 4.1, i.e. |S| = 15.

4.1 Month 1
If we look at Figure 4.1 we see the distribution of the binary labels in our training
data. It is clearly unbalanced (about 10% of samples have y1 = 1) which is
something that has to be dealt with when training ML models on the data, this is
expanded upon in Section 5.3. This unbalance is expected as many tasks are likely
comparatively inefficient to assign a crew member and they may also not match
the crew members preferences.

Figure 4.1: Plot of binary label distribution in training data.

Looking at Figure 4.2 we see that the majority of non-zero labels are
corresponding to tasks that are assigned to a certain crew member only once in all
of the solutions. This is good as it indicates that the solution set contains
dissimilar solutions, something especially important when it comes to gaining
general knowledge about the compatibility between crew members and tasks which
is the exact purpose of our ML model.

18



4. Data

Figure 4.2: Plot of inverted ratio-label distribution, i.e. how frequently a task was
assigned to a crew member in all 15 solutions.

4.2 Month 2
Looking at Figure 4.1 we observe that this month is also very unbalanced, which
again is expected. However this month contain a lot more data points, 650 000
compared to 470 000. This indicates that the two months are dissimilar planning
periods which will be more difficult for the ML model but also makes the problem
relevant as if the model manages to learn it seems likely that this approach could
be used successfully on simpler planning periods.

Figure 4.3: Plot of binary label distribution in testing data.
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In Figure 4.4 the distribution of also this month shows that there seem to be many
ways to construct rosters in a near-optimal way. Thus a ML model could potentially
identify patterns in what these tasks have in common.

Figure 4.4: Plot of inverted ratio-label distribution, i.e. how frequently a task was
assigned to a crew member in all 15 solutions for testing data.
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5
Machine learning

In this chapter, the ML model and its features will be discussed. In the first section,
a description of intentions is given to further clarify the context in which the model
will operate. In the following section, the selected features are presented along with
the motivation of why they should capture the behaviour of our problem. Lastly, we
express details and parameters investigated when training the deep neural network
which is the main ML model of this thesis project.

5.1 Overview
The ML model will operate offline in a supervised fashion by utilizing selected
features from a planning problem and a given crew members competencies and
preferences to predict the probability that a specific task is assigned to the given
crew member. Therefore this predicted probability can also be interpreted as a
degree of compatibility between the crew member and the task. These probabilities
are then used to choose which tasks should be included in the PP. The selection
process for task inclusion in the PP is thus simple: sort the tasks in descending
probability order and pick the first ones. Further details on the different strategies
for exactly when the probabilities are used is explained in Chapter 6.

The data set contains two consecutive months and the aim is to train the model on
the first month and test it on the following month. By having a data set consisting
of two parts like this the process of splitting the data into test and training
becomes simple as it aims to reflect the real-world scenario where this method is
intended to operate.

5.2 Features
In this section, the features will be presented but only to the extent that the
intellectual property limits of Jeppesen allow. The approach for how to extract
features is however freely discussed and this is arguably the most interesting
aspect.

The features are extracted by outputting data from the CRP algorithms
formulation. If we look back at problem Formulation 2.6 there are two main
categories of information that could be of interest: the costs and the constraints.

21



5. Machine learning

The cost is an aggregation of the true costs; for example, layover costs like hotel
nights and transportation, but also fictional costs like crew preferences and
solution robustness. These are common factors in the cost but naturally different
airlines have different prioritization. Since the aggregated cost is handled by the
rule modelling language Rave extracting the separate components is difficult and
since it may also be airline-specific it is most general to use the complete
aggregated cost. Thus the first feature is a cost that takes both fictional and true
costs into account.

Secondly, we should include information about how the tasks relate to the
limitations and expectations on the roster. This is mathematically expressed by
the constraints. Since the aim is to predict for each crew and task combination the
constraints of interest are the activity constraints, as these relate the assigning of a
task to constraints for each crew. An example of a constraint is the seniority
rostering constraint which imposes that an inexperienced crew member must
always be assigned tasks together with a senior crew member. In total there are 18
constraints in common between the first and second month in the data set, thus 18
constraint features are extracted.

Lastly, we need a feature that can relate tasks to how big of a commitment assigning
of them are. For this purpose, the task duration is extracted. This feature could help
prevent assigning one long task instead of assigning two shorter tasks that together
are better but worse separately. This leads to a total of 20 features.

5.3 Model training and architecture
In this section, we present the hyperparameters of the network and model training
procedure. All training was implemented in Python using the PyTorch library. All
training is done in a supervised fashion where month 1 is used as training data and
month 2 is used as test data, see Chapter 4 for details. In order to deal with the
heavily unbalanced data oversampling is used such that non-zero labels represent
40% of the total data. The network is a feedforward fully connected deep neural
network and conforms with standard practice by having: the size of neurons in the
hidden layers decrease from input to output, the activation functions between the
layers are all the rectified linear unit functions (ReLU). The output layer uses a
sigmoid function such that the prediction is on the interval [0,1]. Besides the mean
squared error (MSE) loss function, Binary cross-entropy (BCE) is tested which is
usually used for binary classification but does also work for our prediction interval.
The optimizers experimented with are the classic stochastic gradient descent
(SGD)[5] and Adam[13]. The regularization method used to deal with overfitting is
called drop out and works by giving all neurons a probability to be ignored in the
training with the current batch. All these hyperparameters are tested in an
experimental fashion where a bunch of models are trained and parameters of
models that perform well are further investigated. In training network size was
gradually increased, starting off as linear regression. The reason behind
investigating using a deep neural work is because it was proved to successfully

22



5. Machine learning

capture the behaviour of a similar problem by Quesnel et al. [18]. The range of the
hyperparameters is stated in Table 5.1.

Hyperparameter Range

Number of hidden layers {2, 3}

Size of hidden layer 1 [50, 1000]

Size of hidden layer 2 [50, 500]

Size of hidden layer 3 [20, 200]

Optimizer {SGD, Adam}

Loss function {BCE, MSE}

Drop out probability [0, 0.3]

Learning rate [10−6, 10−3]

Batch size [50, 200]

Batch normalization [yes, no]

Table 5.1: Hyperparameters of deep neural network.

To measure the performance of a model we use, besides loss, top-k-score which we
define as follows:

top-k-scorek =
∑
i∈At

yki∑
i∈Bt

yki
(5.1)

where At is the index set of the first t elements in a list of the binary label yki sorted
by the predicted probabilities and Bt is the set of the first t elements in a list of the
binary label yki sorted by the true labels. Both lists are sorted in descending order.
This metric thus describes how many of the first t tasks that we predict to be in a
solution are actually in a solution and operate on the range [0,1]. If top-k-score = 1
then the model has made perfect predictions.
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6
Prediction utilization

In this chapter, we discuss how to utilize the predictions generated by our ML
model in the designated pricing problem subproblems, simple assign and the
RCSPP.

Let’s first consider when it is most appropriate to utilize ML predictions instead of
reduced costs. The strength of reduced costs is that they are similar to that of a
gradient in the way that they point us in a direction, a direction of improvement.
The weakness is that the point from which they declare this direction may be a
poor starting point as the reduced costs are computed with information from the
RMP which especially in the early iterations is very limited. Therefore an
interesting hypothesis to test is if utilizing the ML predictions instead of reduced
costs is most beneficial in the early iterations.

6.1 Simple assign
In the early iterations of column generation, the pricing problem is solved using
the Simple assign method which attempts to greedily assign tasks to the given crew
member based purely on reduced costs. When utilizing the ML predictions we adopt
the same framework. The tasks are picked in order one-by-one from Θ which is a
task list sorted by predicted probabilities in descending order. How many tasks are
considered in the subproblem is controlled by a heuristic but if the predictions are
reliable then perhaps it could be interesting to lower the size of many tasks to pick.
But as sorting and picking the tasks are not very computationally heavy operations
this may not be as interesting as in the other, more complex, subproblem.

6.2 RCSPP
In the PP the RCSPP is utilized after the early simple assign iterations unless it
struggles to produce legal rosters, in that case, a local search approach is applied
instead. Setting up and solving the RCSPP is a relatively large part of the
computation time in the pricing problem, which in turn is a large part of column
generation.

If our ML model is capable of finding tasks that are more deeply compatible with
crew than reduced costs indicates then the RCSPP network size could potentially
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be scaled down. This is interesting to investigate as the size of the network is
naturally closely related to the computational time of setting up and solving the
RCSPP. There are different ways to implement network size reduction. Currently,
the size is controlled by heuristics. It could be interesting to only include tasks
that have predictions better than some threshold as this would ensure only good
predictions are considered in the subproblem. But if the model struggles to output
high probability predictions this could lead to some crew having very small
networks. Another strategy is to lower the limit of the maximum allowed tasks to
be considered in the subproblem. This approach doesn’t have the problem that the
network would be empty if no probabilities are high. If the model is accurate then
this seems like a reasonable approach as it could be expected to be able to have a
smaller number of probable tasks than tasks with low reduced costs (as, especially
in early iteration, many assignments of work are likely to improve the current
objective value).

Even if the ML predictions are used to decide which tasks to include in the RCSPP
the reduced cost is still an important factor of the problem as they are part of the
aggregated arc costs. Thus the ML predictions can include tasks that are to be in
the optimal roster for a crew member but these tasks may not be included in the
solution roster because their respective arc costs are not good enough. A potential
strategy for dealing with this is to manipulate the arc costs so that they take the
prediction into account. This problem is important to remember as it may help
describe odd results when experimenting with using accurate predictions.
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7
Results and Discussion

In this section, a selection of experiments is presented and discussed. In the first
section, experiments are conducted without ML to provide a proof of concept in
a base case scenario. In the second section, the ML training and performance is
analyzed.

7.1 Best case scenario
In this section, no experiments use any machine learning instead we extract perfect
predictions which are computed directly from the column generation solution to the
problem. This is done as a proof of concept, i.e. to test if the ML predictions are
perfect is this able to improve the algorithm. Perfect predictions are identified as
follows:

pki =

1, ∀i ∈ Sk
0, ∀i /∈ Sk

(7.1)

where Sk is the index set of tasks assigned to crew member k in a solution to the
selected problem.

In the experiments of this section, multiple converge graphs of column generation
are presented. In these graphs, there are symbols relating to what kind of solution
the algorithm finds. For our purpose, the symbol of interest is the circle which
represents the finding of an integer solution. In these plots, there are also always
two graphs where the green one is the standard run without any altering done.
The red graph is always the one related to the experiment as it shows how the
behaviour of the algorithm changed with the changes described in the related
subsection.

7.1.1 Always using perfect predictions
In this section, we present the results from the first month in data set 1 when perfect
predictions are fed into the algorithm. These perfect predictions are computed as
detailed in Equation 7.1 and utilized as described in Chapter 6.2. The size of the
subproblems along with when which type of pricing method is used when remains
unchanged for this experiment.
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Figure 7.1: Convergence plot of an algorithm utilizing perfect predictions at all
times in red and original algorithm in green. X-axis is execution time and Y-axis is
cost.

As Figure 7.1 shows the utilization of predictions can make things better and not
necessarily quicker. The reason for it not being quicker is likely because the
subproblem size is kept the same thus the RCSPPs are of equal size and thus take
similar computing time. Another potential reason, discussed in Chapter 6, is that
the arc costs of the network are still reduced cost based which when combined with
larger networks allows the RCSPP to not generate rosters including the probable
tasks.

7.1.2 Always using perfect predictions and limiting network
size

In this experiment, the limit of how many trips are allowed in the network is reduced
to about half of the standard value. Perfect predictions are utilized at every iteration.
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Figure 7.2: Column generation convergence plot of using perfect predictions and
lowered limit on maximum allowed tasks in RCSPP. X-axis is execution time and
Y-axis is cost.

In Figure 7.2 we observe a decrease of about 20% in computational time. On average
over 15 runs there was an increase in speed of 12.5% and 0.356% better solution
was found. This is interesting if we compare with the results in Section 7.1.1 we can
confirm that limiting network size is in fact useful for speeding up the problem run.

7.1.3 Always using perfect predictions and minimally sized
subproblems

This subsection presents the result from an experiment where we push the
minimization of network size to the maximum. This is done in order to investigate
the importance of that parameter. The parameter is changed as follows:

SPmin
k =

∣∣∣∣∣
{
{pki }

∣∣∣pki > 0, i ∈ {1, 2, ..|T |}
}∣∣∣∣∣ (7.2)

which means that in any crew members subproblem only tasks that have a prediction
> 0. Since perfect predictions are being used i.e. pmi ∈ {0, 1} this means that the
size of the subproblem is minimal while considering all tasks in the solution.
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Figure 7.3: Perfect predictions and only tasks with pmi = 1 are included in the
network. X-axis is execution time and Y-axis is cost.

In this graph we observe the solution is slightly worse but it is found much quicker.
A likely reason for not finding the solution used to make the predictions is that the
heuristics that control when to stop the search thinks that too little improvement
is made or can be made. Thus we recognize that finding a balanced network size is
important.

7.1.4 Perfect predictions and limited network size for 50
iterations

In this experiment, the perfect predictions are use utilized in a way that was
hypothesized before implementation to be the most probable way one could utilize
predictions. That is, as further detailed in Chapter 6, by using the predictions only
on the early iterations and limiting the network size while the predictions are
utilized. Predictions are thus utilized in both simple assign and RCSPP.
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Figure 7.4: Column generation convergence plot of using perfect predictions and
lowered limit on maximum allowed tasks for 50 iterations in the pricing problem.
X-axis is execution time and Y-axis is cost.

This experiment resulted in an average increase of 6% solution speed over 15 problem
runs with different randomization seeds. However notable about the performance in
those 15 runs are that either there was no change or a 20% increase in computation
speed. As Figure 7.4 shows utilizing the predictions in the early iterations can allow
for a more stable solution process that converges earlier and notably also does not
converge to worse solutions.

7.2 ML model training
In order to first verify that the model is able to learn from the data, we conduct
experiments where the aim is to overfit a model. This can usually be done by making
larger networks and not utilizing any regularization methods. Table 7.1 shows the
hyperparameters of one of the models which performed the best in terms of training
loss and training top-k-score. Note that as this top-k-score was computed on the
batches it no longer is reasonable to compute it per crew as our data set contains
around 700 crew members and the batch size is always smaller than that. This should
make it easier to get a god top-k-score as when sorting only the most probable tasks
will affect the top k-score and obviously, there are more tasks with higher probability
with a larger number of crews.
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Hyperparameter Model 1

Number of hidden layers 3

Size of hidden layer 1 800

Size of hidden layer 2 400

Size of hidden layer 3 200

Optimizer Adam

Loss function BCE

Drop out probability 0

Learning rate 10−5

Batch size 100

Batch normalization yes

Table 7.1: Hyperparameters of model 1.

As can be seen in Figure 7.5 the model rapidly converges to a noisy level of training
loss. In other models where instead the SGD was used to optimize the conversion
was slower but to similar values, i.e. 0.33 with lots of noise. In Figure 7.6 we see
that even though this top-k-score should be higher than the crew specific top-k-score
it is very low. As the model struggles to learn the training data it seems unlikely
that it would perform well on the testing data. This hypothesis is verified in Figure
7.7 where the test loss barely changes as the model learns. The test and training
loss are very similar but the test loss is much less noisy. The test top-k-score can
be seen in Figure 7.8 and shows consistent improvement over the training period
but very little in total. To test the actual purpose of the model predictions on the
second month is made and compared with randomly ordering the tasks instead of
ordering them by probability. This comparison confirms that there is no significant
improvement in using probability sorting in terms of top-k-score.
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Figure 7.5: Training loss for model 1. Dark blue graph is the smoothed curve and
light blue is unsmoothed.

Figure 7.6: Top-k-score of batch for model 1 with k = 20%. Dark blue graph is
the smoothed curve and light blue is unsmoothed.

Figure 7.7: Testing loss for model 1.
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Figure 7.8: Batch top-k-score for model 1 on test data with k = 20%.

There are two possible explanations for none of the ML models being able to
properly learn the behaviour of the data. The first explanation is that the complex
relationship that exists between the features are not capturable by the choice of
model. It could be that the deep learning approach to this problem is not able to
identify the patterns in the data and thus for further research on the topic we
recommend investigating other methods as well. The second explanation is that
perhaps there exists no, however complex, the relationship between our features
and labels. If this is the case perhaps more features could be extracted. It is also
possible that there is some combination of the two. Comparing these results with
the paper of Quesnel et al. [18] one might conclude that perhaps the key difference
is that their data has a lower degree of complexity compared to that of data from
the real world.
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8
Conclusion

The problem in which the thesis operates is the crew rostering problem and the
solution algorithm of that problem is provided by Jeppesen, with which this thesis
was made in collaboration. Crew rostering concerns constructing rosters or
personal work schedules for individual crew members and is modelled as a
combinatorial optimization problem that commonly is solved using column
generation. In this thesis, an approach based on deep learning predictions to alter
the selection process in the pricing problem of column generation is presented. The
concept of the machine learning model is to predict how likely it is that a task is
assigned to a specific crew member. These predictions are intended to replace how
the reduced costs are used in the different stages of column generation. In early
iterations, the predictions are used in a greedy and direct fashion where the most
probable tasks are attempted to be assigned to the given crew member. In later
iterations, where the pricing problem is commonly modelled as a
resource-constrained shortest path problem the predictions are used in the
selection process of which tasks to include in the network.

The data used in the thesis is from an anonymous real world airline, consisting of
two consecutive planning periods. Airline planning is usually done month by
month and our planning periods and from December and January which is
considered extra difficult as travel patterns are disrupted when there are big
holidays, as in December.

The two planning periods are split into training and testing data to replicate how
the machine learning model would be used. Thus it is trained on historical data, in
a supervised fashion, and outputs predictions for what could be future planning
problems. The features for the model is extracted from costs and constraints used
in the optimization problem formulation. The cost is an aggregation of real-world
cost and crew preferences. Crew competence and trip properties are explained by
the constraint features. There is also a trip duration feature that aims to assess
the degree of commitment related to assigning the trip. The ML model is a deep
learning network and a wide range of hyperparameters are experimented with in
the training stage. To measure the performance of predictions a metric explaining
the ratio of how many accurately sorted tasks the predictions yielded.
Unfortunately, none of the models was able to significantly outperform randomized
order. Two possible explanations for this are concluded. Either the features used
are not able to capture the behaviour of the problem or the models experimented
with are not capable of learning the complex relationship between the features and
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the labels. It may also be a combination of the reasons thus we suggest that
further research on the topic should both investigate what further information can
be extracted from the problem formulation and also experiment with other ML
techniques.

To investigate the potential of accurate predictions experiments were conducted
with predictions computed directly from a given solution. These experiments show
a proof of concept as utilizing predictions only in a relatively few early column
generation iterations increase computational speed significantly.

To conclude, the deep learning models experimented with in this thesis were not able
to consistently find patterns in the given real-world data but results show that the
concept of utilizing accurate predictions to increase computational speed in state of
the art crew rostering algorithms is possible. For further research on the topic we
suggest two directions: investigation of what further information can be extracted
from the problem formulation to create more features and experimentation with
other ML techniques.
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