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Abstract
Delivering new software features in a continuous fashion has become a competitive
advantage for organisations operating in the web domain. Being able to deliver new
features to customers on a regular basis allows organisations to rapidly respond to
change in customer requirements and to verify customer value. Software develop-
ment in the domain of web applications differ greatly in comparison to embedded,
cyber-physical systems which are tightly coupled to hardware, electronics and me-
chanics. A cyber-physical system (CPS) can benefit from a platform that enables the
continuous deliver of new features. Virtual machines is a popular method for soft-
ware deployment where applications are sand-boxed and pre-installed in a highly
portable environment. This study contributes to the research community by un-
derstanding the performance overhead of using virtual containers as a deployment
platform for CPSs which are highly sensitive to timing delays. Methods of experi-
mentation are used to understand the timing behaviour of two sample applications
realised with the development architecture for CPSs, OpenDaVINCI. Sample appli-
cations are run in various deployment and execution environments where a real-time
enabled Linux kernel is used. Hypotheses testing and statistical analysis is performed
on timestamps extracted from the sample applications, where results show that the
virtual container manager Docker achieves near native performance when executing
applications in a virtual environment in comparison to native execution. The ex-
periment is executed in a controlled environment where the results are validated by
adapting the experiment on a self-driving vehicle that participated in the Grand Co-
operative Driving Challenge 2016 held in the Netherlands. This research concludes
that Docker together with a real-time enabled kernel is a deployment platform good
candidate for vehicular CPSs.

Keywords: Deployment, self-driving vehicles, cyber-physical systems, virtual con-
tainers, Docker, real-time systems, experiment.
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1
Introduction

In order for organisations to remain competitive, there is a need to continuously
improve time to market for new products, features and services. The societal trans-
formation of moving from a product economy to a service economy has affected
the way organisations deliver products and services [1]. Products are required to
move from business requirements to delivery as fast as possible. This societal trans-
formation from a product to service economy has given rise to a number of tools
and methodologies that bring more value to customers in a shorter amount of time.
Continuous integration (CI) and continuous deployment (CD) are software engi-
neering concepts that have become strongly adopted by organisations in order to
deal with the need for more agility. More agility is required in order to rapidly
respond to change in customer requirements in a market that is constantly evolving.
With a well designed CI and CD process, organisations can deploy new features to
customers in a short amount of time and on a regular basis. Being able to deploy
multiple times a month or even multiple times per day has become a competitive
advantage for companies operating in the web domain [2]. Companies can deploy
new features quickly in order to verify customer value by carrying out practices
such as A/B testing [3]. A/B testing is the procedure of comparing two software
versions in order to identify which performs better. The popularity and success of
CI and CD is strongly based on web applications. However, software development
in the domain of web applications differ greatly when compared to embedded sys-
tems. Such systems, as described by Lwakatare et al. [4], are tightly coupled to
hardware, electronics and mechanics that introduce complexities typically not seen
for development in the web domain. Continuous deployment of features is becoming
an important factor for applications in the domain of Internet of Things (IoT) and
cyber-physical systems. The use of virtualization has also become a popular trend
in real-time embedded systems within the automotive industry [5]. This is apparent
in current literature [6, 7, 8], that experiment with virtual containers for deployment
in IoT applications and cyber-physical systems.

A cyber-physical system (CPS) consists of computer systems collaborating and co-
ordinating to control physical resources that interact with their surroundings [9].
CPSs are becoming an integral part of society and are already available to con-
sumers in modern automotive vehicles. Collision avoidance, autonomous parking
and autonomous highway driving are some examples of CPSs within the automotive
domain. By nature, such systems are very complex in their design and development,
involving multiple software and hardware components of different types and archi-
tectures. The academic discipline of CPS aims to help designers and developers with
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1. Introduction

the complexity of such systems, requiring expertise from three major disciplines: (1)
communication in heterogeneous networks, (2) embedded and real-time systems and
(3) control systems [6].

The continuous deployment of features for a vehicular CPS is challenging due to the
fact that they are real-time systems with safety and timing requirements. Further-
more, vehicular CPSs are typically resource constrained [10], so scaling up hardware
is limited to a physical capacity (such as the size of the vehicle). Since a CPS re-
quires real-time operations, any additional overhead affecting performance should
be handled with care. Overhead can introduce latency which may consequently im-
pact timing requirements that can result in software malfunction. CPSs typically
interact with their surroundings so safety is of a high concern.

Deploying any complex system to a production environment is a challenging pro-
cedure. Using virtual machines simplifies the deployment process by packaging the
application in a isolated sand-boxed environment. Shipping an application pre-
installed in a virtual machine (VM) has many benefits: it decouples the system into
sand-boxed subsystems improving scalability, independent versioning can take place
per VM, safe roll back can be applied in the event of buggy code, A/B testing can be
performed and resources can be limited and controlled during runtime. As real-time
requirements are crucial to autonomous vehicles, the cost to performance must be
identified if considering virtualization as a deployment platform.

Virtualization can be done with a fully fledged virtual machine (e.g Oracle Virtu-
alBox) or by using lightweight virtual containers. Virtual machines require more
runtime resources and bring higher performance overhead since they require a full
copy of a operating system as well as virtualizing the available hardware [11], so they
are not suitable for a vehicular CPS. A more lightweight approach is to use virtual
containers that share the host operating system (OS) rather than encapsulating an
entire OS stack. Docker containerization is an open source technology that wraps
applications into sand-boxed environments that are highly portable [11]. Docker
containers are much faster to start up (typically less than a second) in comparison
to a VM, since VMs carry extensive resource usage and so typically cannot be used
on small computers or resource-constrained devices. Containers do not virtualize
the available hardware, but rather act as a sand-box for applications that package
and isolate in application improving scalability, security and reliability [6].

1.1 Problem Domain & Motivation
This study aims to uncover the performance impact of using virtual containers for
software deployment in the context of self-driving vehicles. Self driving vehicles re-
quire minimal delays during runtime to allow real-time computations that enable
safe autonomous driving. Minimal time-delay is a fundamental concern for allowing
lane-following, decision making, and other computations utilised by the autonomous
vehicle to interact with its surroundings. The software composed for self-driving ve-
hicles can benefit by the use of virtualization, during development (such as safe
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1. Introduction

roll back and independent versioning) as well as post-development to ship updates
and patches. In order to consider the use of virtual containers for vehicular CPSs,
decision makers need to first understand the overhead that is introduced to ensure
that the system meets the real-time requirements for safe driving.

There is a lack of evidence that present how state-of-art deployment strategies im-
pact CPS systems in the domain of self-driving vehicles with their time sensitive
performance requirements. There exists studies that explore the performance over-
head of using virtual containers for general purpose software in the web domain.
However, the requirements of such systems differ greatly to that of a self-driving
vehicle. This creates a compelling gap in literature to explore virtual containers as
a deployment platform in the domain of self-driving vehicles to build argumentation
which decision makers can rely upon when determining for which deployment set-up
is most suitable for the real-time application in question. The popularity of deploy-
ment strategies utilising containers is steadily increasing, thus making it important
to understand the performance overhead introduced by containers such as Docker.
While the implementation of virtualization technologies for deployment strategies
brings many advantages, there still exists uncertainty to the disadvantage of how
much, if any, performance overhead they carry.

It is of particular importance to understand the impact of using virtual containers for
decision makers responsible for determining deployment strategies for time-critical
systems utilised by self-driving vehicles. The rationale being that real-time systems
are time sensitive and must guarantee responses within a specified time. If the sys-
tem is to violate the required response-time it may lead to software failure, which
can potentially be catastrophic as self-driving vehicles interact with their surround-
ings. As a consequence it is crucial to ensure that the execution environment and
approach to software deployment in use will allow the real-time application to stay
within its specified timing parameters. This is the gap in which the result of this
research will seek to fulfil by recording specific measurement data from containerised
sample-applications to identify the performance overhead.

In this study, an experiment is designed and executed to uncover the timing be-
haviour of two sample applications realised with the CPS open source development
architecture, OpenDaVINCI [12]. Measurement points, in the form of nanoseconds,
are extracted from the sample applications during runtime in order to measure the
applications timing behaviour when executed in a native environment versus being
executed within a virtual container to uncover the impact. Runtime latency of con-
tainerising two sample applications is mitigated by using a real-time enabled Linux
kernel and comparing the performance to a stock Linux kernel. Docker [13] is the
chosen technology for containerising the applications since Docker is an open source
project that offers fast deployment of applications inside portable containers with a
highly consistent environment [14]. Furthermore, the findings from the conducted
experiment is replicated on a self-driving truck that participated in the 2016 Grand
Cooperative Driving Challenge in The Netherlands [15]. The findings are replicated
to further validate whether or not executing a CPS application in a Docker con-
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1. Introduction

tainer has an impact on the timing behaviour of the CPS application in a realistic
environment.

1.2 Research Goal & Research Questions

This research seeks to systematically study the impact various execution environ-
ments have on two sample applications realised with OpenDaVINCI. The sample
applications are tasked to measure scheduling precision and input/output perfor-
mance respectively. A controlled experiment is performed to measure the timing
behaviour (scheduling precision and I/O performance) of two sample applications
running in the different execution environments in order to answer the following
research questions:

RQ1 Does the respective execution environment influence the scheduling precision
of the respective application?

RQ2 Does the respective execution environment influence the input/output perfor-
mance of the respective application?

The execution environments is an alternation of the deployment context and an
alternation of Linux kernels, in order to uncover the precise performance cost of
using Docker as a deployment platform. For containerising the sample applications,
Docker is the chosen technology due to its popularity in both academia and indus-
try. The execution environments consist of a vanilla and a real-time enabled OS.
The execution of the applications take place within a container where a comparison
can be made relative to non-virtualized Linux. Similarly, a comparison can be made
when using a vanilla OS relative to a real-time enabled OS. The following execu-
tion environments stem from the need to carry out a fair comparison by using a
vanilla OS and native execution versus a containerised real-time enabled execution,
as real-time enabled OS is required for time sensitive applications, to uncover the
performance cost:

1. Executing the sample applications natively on Ubuntu Server LTS Linux.
2. Executing the sample applications inside a Docker container on Ubuntu Server

LTS Linux.
3. Executing the sample applications natively on a real-time enabled Ubuntu

Server LTS Linux.
4. Executing the sample applications inside a Docker container on a real-time

enabled Ubuntu Server LTS Linux.

Answering the research questions will build argumentation on whether using Docker
as a deployment platform in respect to the execution environment is viable for self-
driving vehicles. The scheduling precision and input/output performance of the two
sample applications is measured to uncover if using Docker will violate the timing
requirements of the applications which are crucial for CPSs.
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1. Introduction

1.3 Contributions
The results of this research can be used for a broad audience within the research
community as well as for organisations interested in adopting new technology to im-
prove software deployment for cyber-physical systems. As more segments of today’s
society are becoming automated and reliant on software decision making, real-time
systems play an integral part of this development. Financial, aviation, and vehicle
systems are just a few examples of domains with systems that are highly sensitive
to time delays. A self-driving vehicle has to interpret its surroundings in real-time
where any delay can have a catastrophic effect. Similarly, applications in the fi-
nancial domain have to react to market fluctuations within nanoseconds to avoid
loss on investment. There exists research on the performance overhead of container-
ising applications in the context of cloud computing, however this study presents
results on the performance overhead in the context of vehicular CPS. This study
contributes with precise timing behaviour of two sample applications executed in
various execution environments in the context of self-driving vehicles. The findings
of the experiment build argumentation on which execution environment is desirable
for implementation on the use-case of the self-driving truck. The use case validates
the need for state-of-art deployment strategies for self-driving vehicles.

1.4 Scope
The scope of the study is in the domain of self-driving vehicles. The evaluation of
two sample applications have been prioritised to evaluating the timing behaviour
(scheduling precision and input/output performance) respectively. Schedulability
analysis and input/output performance are crucial factors for self-driving vehicles
and so have been prioritised over evaluating other factors such as networking and
memory performance. Schedulability analysis is conducted as timing delays impact
safe driving, and secondly, I/O performance such that storing information (such as
recording a video stream and logging sensor data) is important for debugging and
further development of algorithms. Furthermore, the study aims to implement the
findings from the conducted experiment on the self-driving truck and measure the
outcome to understand how the CPS application behaves in a realistic environment.

1.5 Structure of the thesis
The remainder of the thesis is structured as follows: Section 2 introduces the back-
ground of the paper, detailing the technology and concepts related to this study.
Furthermore, related work and the process of gathering related work is specified in
section 3. The research methodology is specified in section 4, detailing information
on the experiment carried out to answer the research questions. Section 5 introduces
the results from the experiment, where a discussion and conclusion is found in sec-
tion 7 and section 9. Section 6 presents the conducted experiment on the use-case
scenario of the self-driving truck.
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2
Background

This section introduces further background information on cyber-physical systems,
real-time scheduling concepts, software deployment and container-based virtualiza-
tion.

2.1 Cyber Physical Systems

A cyber physical system (CPS) interacts with the world, sensing their surround-
ings by using embedded sensors, actuators and processors. These sensors, atuators
and processors communicate and collaborate with each other to support real-time,
guaranteed performance in safety critical applications [16]. Applications for CPSs
span multiple domains including healthcare (robotic surgery), transportation (au-
tonomous vehicles), agriculture, energy, and home automation to name a few. In
the transportation domain for CPSs, autonomous vehicles, also called self-driving
vehicles, are vehicles that operate without requiring human input. The intelligent
behaviour of a self-driving vehicle include trajectory generation, lane following, lane
keeping and intersection handling [16]. These are some of the computational re-
sponsibilities of a CPS for driver-less vehicles.

The academic discipline of CPSs was formed in the 2000s [17] to help designers and
developers deal with the complexity of realising CPSs [6]. Even though forms of
CPSs have been in industrial use for a long time, it is only recently that technol-
ogy (such as wireless communication and processors) with impressive capabilities is
available at low costs. This has led to the need for a more systematic approach to
the development of reliable CPSs. Three main functional components of a CPS is
control, computing and communications [17].

One key factor for the functional component of computing is the need for real-time
computations. Cyber-physical systems require real-time computations to ensure a
high degree of safety when interacting with the world. Comparing a real-time sys-
tem with an ordinary application, the difference is seen in how the execution of code
is made. For an ordinary application an algorithm is executed once to provide a
resulting output from an input without any specified timing constraints. However,
a real-time system is recognised by its time constrained characteristic as the system
is configured to execute an algorithm within a specified time-slice, i.e. executing
an algorithm continuously which for each iteration takes 10 milliseconds. This is
a time-triggered component, that after the passing a specific amount of time, the
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2. Background

component is once again executed.

Systems used for autonomous self-driving vehicles utilises a number of different algo-
rithms to enable the self-driving functionality. Such algorithms may be responsible
for processing a camera feed, detecting lanes within captured images or decision
making such as steering, braking, or accelerating the vehicle depending on the con-
tent of input data. All these algorithms are embedded in a middle-ware application
which sets the time constraints of the algorithms and handles the communication
between them. This study utilises the open source middle-ware, OpenDaVINCI.
OpenDaVINCI is compact middle-ware written in standard C++ that offers a high
performing hardware and OS abstraction layers for concurrency, data storage and
communication [12]. OpenDaVINCI has been used to realise a number of self-driving
vehicles.

2.2 Real Time Scheduling

CPSs inherit the discipline of real-time systems requiring real-time computations so
that the application exhibits the intended timing behaviour. A CPS is composed
of multiple computer processes, each with their own demands for processing time.
Orchestrating the demands of each process for processing time is the responsibility
of the operating system scheduler. In this section we first introduce the concept of
scheduling, describe scheduling precision and an introduce preemptive scheduling.

2.2.1 Scheduling Concepts
A unit of computation that requires the allocation of processing time is referred to
as a job. Jobs can be event-driven (a specific event triggers activities in the sys-
tem) or time-triggered (activities are initiated at predefined points in time). Time
triggered events require strict timing behaviour and are necessary for hard real-time
systems, thus being important for a CPS. When a time-triggered job is initiated, it
communicates with the operating system scheduler to acquire processing time. The
job enters a ready state assigned by the scheduler and starts processing. The job
can then terminate (has reached the end of its processing) or become blocked which
is what typically happens for time triggered jobs. A time-triggered job becomes
blocked after processing the inner body of an algorithm, subsequently entering a
sleep state to the scheduler. The job sleeps for a predefined amount of time: typi-
cally for how much time is left in the specified timing parameters. After the required
time has elapsed, the job enters the state of being unblocked (waking the job after
sleeping), hence ready to run for another execution cycle. A state machine of a
scheduler, depicting all states is found in figure 2.1. In summary, a scheduler acts as
a traffic police in a busy intersection, handling a queue of all the processes running
on the system by prioritising some processes ahead of other processes. The scheduler
may act and prioritise differently depending on what rules have been set for it to
follow.

8



2. Background

Figure 2.1: Operating System Scheduler [18].
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2.2.2 Scheduling Precision
The experiment conducted in this study analyses the scheduling precision and in-
put/output performance of the automotive real-time application. The application
executes time-triggered computations within elements referred to as time-slices. The
time-slice is a specification of time allocated for the algorithm to execute and de-
liver a result. A real-time application running at 100 hertz executes 100 time-slices
per second, which results in one time-slice being 10 milliseconds or 0.01 second.
The 10 milliseconds time-slice is the time deadline set for the specific application,
which is the maximum time allowed for the assigned algorithm to finish its compu-
tations. In scenarios where the algorithm utilises less than the assigned time-slice
the application will sleep for the remaining time until it fires a new execution. The
operating system scheduler is responsible for assuring that the application sleeps for
the time specified by the real-time application. The scheduler is also responsible for
waking the real-time process after the specified sleeping time has elapsed. Other
than the assigned algorithm, the real-time application consists of code which is re-
sponsible for communicating with the OS scheduler that controls the sleep of the
time-slices. Therefore a part of the time-slice has to be consumed to execute the
required code.
Scheduling precision refers to how accurately the application executes the speci-
fied algorithm from the point of firing the time-slice until the algorithm begins its
computation. Further accuracy can be measured between the point of where the
algorithm finishes its computations until the real-time application sleeps. Lastly,
measurements can done to see whether the sleep function of the system actually
sleeps for the remainder of the time-slice or if it overstays the specified timing dead-
line. It is important to understand how much time each part of the required code
occupies the time-slice. The less time required for executing the code outside of
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2. Background

the assigned algorithm the more deterministic a system is said to be. In a scenario
where the assigned algorithm requires 80% of the time-slice to execute the code, it
is assumed that the application will sleep for the remaining 20%. However, as there
exists additional operations surrounding the algorithm the application might sleep
18% whereas 2% is required for the surrounding code to execute. If the application
still sleeps 20%, executes the algorithm for 80%, and uses 2% for the required code
it will overstay its time-slice by 2% thus rendering the application less deterministic
(by a small amount). It is the time available for the algorithm the experiments
of this study will seek to identify to inform software engineers of how much of the
time-slice can be used for effective computations, i.e. time available for generating
a result.

2.2.3 Preemptive Scheduling
A general purpose operating system scheduler implements a FIFO (first-in-first-out)
approach with two process scheduler algorithms. Namely, a time-sharing algorithm
and a real-time algorithm where the former is a scheduler that maintains fairness,
distributing the system’s resources equally over all processes in the queue ensuring
that no process is completely starved. The later is an algorithm which prioritises
the processes based on their set importance, where a higher prioritised process is
provided more resources in comparison with a lower process. However, the generic
Linux kernel version does not allow the scheduler to cancel all resources for processes
already utilising the CPU. A higher prioritised process will therefore not be able to
utilise 100% of the CPU’s resources if there are other processes already using the
CPU. For a general purpose operating system this approach is standard practise
and is logical for non time critical processes. However for a real-time system it is
crucial to ensure that the highest level process can interrupt any running processes
at any point in time and occupy all resources available to ensure the process meets
the time deadline. A real time enabled kernel using the RT_preempt kernel patch
implements the preemptive approach thus allowing for such a behaviour of cancelling
resources from lower prioritised processes to occupy all resources for a time-sensitive
high priority process. Furthermore, the RT_preempt patch applies resource locking
for RT prioritised processes so that lower prioritised processes cannot utilise the
same resource simultaneously.

2.3 Software Deployment
Software deployment is a crucial part of the software development, it refers to the
activities which makes the software system available for use [19]. The process con-
tains a number of activities which all play into the life cycle of a software system
with the goal to implement into the runtime environment where the system is set
to operate live. Carzaniga et al. describe the following main activities of software
deployment:

Release – is the activity of packaging the software for delivering it to the end user.
This includes processes such as including the software’s requirements and depen-
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dencies to external components, such as libraries and applications. It also includes
the process of advertising – the process of informing interested parties about the
software being released.
Install – refers to the activities of assembling all required resources for the runtime
environment. It consists of two specific process, namely transfer and configuration.
Where the former is the process of transferring the software from the developer to
the runtime environment and the later is the process of making the software ready
for activation.
Activate – is the process of executing the software and all dependent applications
in the runtime environment.
Deactivate – is the opposite of the activate activity.
Update – is the activity of updating the version of the running software which
consists of similar activities of the install activity.
Adapt – refers to the process of ensuring that the updated version is running cor-
rectly in the runtime environment.
Deinstall – is the activity of decommissioning the running software and includes
sub-activities such as removing the external libraries and components.
Derelease – is the final activity which includes the process of advertising the with-
drawal of the software system.

All these activities differ in how they are executed depending on the software engi-
neering paradigm utilised for the software project. Traditional software engineering
practices, e.g. the waterfall model, seeks to execute the software deployment pro-
cess at the end of the software’s development cycle. Whereas more novel software
engineering practices aim to execute the software deployment process continuously
throughout the software’s development cycle. In state-of-art software engineering
practices such as continuous integration and continuous deployment, software is re-
quired to be deployed daily [20] for full adaptation. Such requirements can easily
make the process of software deployment exhausting and complex, where software
tools such as Docker would simplify these processes greatly. Docker simplifies pro-
cesses found within each of the software deployment activities, as it provides the
runtime environment before the software deployment process has begun. The devel-
opment environment is a clone of the production environment thus transferring the
deployment processes from the live production server to a confined secure location
where the deployment process does not affect the usability of the current running
software.

Figure 2.2 exemplifies a deployment strategy design utilising Docker in the context
of self-driving vehicles. The responsibilities are broken down into three compu-
tational nodes in which Docker containers are running instances of the code base
independently. Each Docker container can run different versions of the separate
nodes, where the interpretation node has three versions running separately. Version
one (denoted V1) in each node represents the latest working configuration while
other versions are run to test code which is still under development. Having mul-
tiple versions of a running environment allows for safe and simple roll-backs in the
event of buggy code or degraded performance. Furthermore, multiple versioning of
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Figure 2.2: Run-time environment using Docker.
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the same Docker container allows for split testing between different containers to
take place. With an always functioning configuration, the development team can
demonstrate a functioning version of the product to stakeholders at any point in
the development cycle. The ability to demonstrate the product at any point in the
development phase adds to the business value of the project, as possible investors
or stakeholders can be presented a functioning product although the product is cur-
rently under development. This is possible with current deployment approaches,
however the implementation of cloning systems or running virtual machines is more
resource demanding [21] and not as flexible in comparison with utilising Docker for
the deployment strategy.

2.4 Container-Based Virtualization
Docker is an open source light-weight container manager that launched in 2013 and
has gained ground rapidly with its simplicity. The environment offered by Docker
simplifies the process of software deployment by packaging all dependencies into
a light-weight virtual container which ensures that all instances of the software is
utilising the same dependent libraries. The functionality provided by Docker is
comparable with virtual machines as both are virtualised environments where soft-
ware applications can be executed with all dependent libraries and applications
pre-installed. However, Docker, in contrast to virtual machines, is a light-weight
alternative as it communicates directly to the host machine’s kernel. A virtual ma-
chine applies the additional levels of a virtualising an operating system which adds
complexity since the virtual OS does not speak directly with the host machine’s
kernel, as depicted in figure 2.3. With the benefit of packaging the dependent li-
braries and applications into a container, software developers can avoid uncertain
deployments where library versions may differ between the developers’ development
environments and the live production environment. Docker presents further benefits
such as safe roll-back between different software versions which provides projects the
ability to always be able to fall back on application versions which are known to
function correctly. By providing these benefits project managers can feel secure in
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that there always exists a working runtime environment in the scenario of a new
failing deployment.

Figure 2.3: Virtual Machines versus Docker [13]
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The container in which Docker packages all dependent libraries and applications are
referred to as a Docker image. This image contains everything which is required for
an application to be executed. In the case of self-driving vehicles such dependen-
cies may be image processing libraries such as OpenCV and the middle ware which
enables the real-time application. When executing an application within Docker, a
container is generated and executed based on the Docker image which consists of
the installed libraries and applications. This software design allows for split testing
of software as the same application can be executed multiple times without clashing
with the other contained application. Thus being optimal for testing different ver-
sions of the same application simultaneously while knowing there is no interference
between the executed applications.
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3
Related Work

In this section we introduce (i) the process of identifying related work and (ii) discuss
state-of-art on the scope of this study.

3.1 Methodology
The snowballing search approach for systematic literature studies is used to find
relevant literature on the topic of this paper. The snowballing search approach is
used in order to perform a systematic approach to finding related work. The snow-
balling approach is complementary to a traditional database search. Specifically,
the reference list and citations of a paper are studied in order to identify additional
papers that are relevant to this particular review. The snowballing search approach
is used to ensure good coverage of current literature in a systematic way.

The guidelines for conducting a snowballing search approach, presented by Wohlin
[28] are followed for the search procedure. The steps to conduct a snowballing pro-
cedure, depicted in figure 3.1, involve (i) selecting a set of papers referred to as
the start set, (ii) apply forward snowballing and (iii) apply backward snowballing
on each paper identified in the set respectively. This process iterates until no new
papers are found. To identify a start set of papers, keywords are extracted from the
research questions, taking synonyms into account. Formulating a search-string from
keywords that are broad and cover multiple areas of research may result in collecting
large amounts of literature that span different subject domains. For that reason,
broad keywords should be broken down into more specific and detailed keywords
specific to the study. The search string is then applied to a database that preferably
searches multiple publishers in order to avoid publisher bias. The papers resulting
from the database search are then screened and included based on an inclusion and
exclusion criteria. An exclusion criteria could state that all online material be ex-
cluded.

Backward and forward snowballing is then conducted on the start set. Backward
snowballing is the process of studying the reference list to identify new papers.
Looking at the place of reference and reading the title and abstract of the paper is a
good starting point for inclusion, however, final inclusion states that the entire paper
must be read [28]. Subsequently, forward snowballing is the process of identifying
papers that cite the paper under inspection. The same process of reading the title,
abstract and place of reference is applied in order to include new literature that is
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found during the procedure.

Figure 3.1: Snowballing procedure [28].
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3.2 Results
To gather a start set of papers, a database search on Scopus [29] is performed to
identify papers from multiple publishers: the precise search string, in the required
syntax for Scopus is:

TITLE-ABS-KEY(Performance OR Comparison OR Latency OR Evaluation OR Container-
Based OR Linux Containers OR Lightweight Virtualization OR Container Cloud OR
Docker) AND (LIMIT-TO(SUBJAREA,"COMP")

The search string is targeted at papers identifying the performance cost of using
Docker. Applying the search string to the Scopus search function resulted in finding
215 papers from different publishers where no limitation to the search in respect to
publication year is made. A screening process is then applied to the 215 papers,
reading the title and abstract to see if the paper is related to this study. Papers
from the set of 215 is then added to the start set upon meeting the inclusion and
exclusion criteria. Papers were included if the data collected in the study is quanti-
tative performance benchmarking. Papers were excluded if being reference to online
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material or in a foreign language.

In total, eight candidates for inclusion were identified. The entire paper for each of
the eight candidates is read as a requirement for final inclusion. The eight papers
are listed in table 3.1, in order of reference. Backward snowballing is then applied to
all papers in the start set. P1 includes 26 references where one reference is already
included in the start set (paper [21]). Based on passing the inclusion and exclusion
criteria, one paper is read and passes for final inclusion. The paper identified and
thus included is:

• [30] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange and C.
A. F. De Rose, “Performance Evaluation of Container-Based Virtualization
for High Performance Computing Environments,“ 2013 21st Euromicro Inter-
national Conference on Parallel, Distributed, and Network-Based Processing,
Belfast, 2013, pp. 233-240.

Table 3.2: Results from Backward Snowballing in Iteration 1

Start Set
Paper

No.
References

Reference
to Start Set

New Papers
Identified

[22] 26 [21] [30]
[8] 21 [21], [24] 0
[23] 47 [21], [30] 0
[24] 42 [21], [8], [30] 0
[25] 46 [30] 0
[21] 50 [30] 0
[26] 19 [21], [30] 0
[27] 18 0

Table 3.2 lists the result of backward snowballing on the remaining seven papers.
The results are presented in a table to avoid redundant text as the process and
results of backward snowballing for each paper is very similar. In all papers, ex-
cept [22], no new papers matched the inclusion criteria after reading the title and
abstract respectively. Furthermore, most of the papers in the start set reference to
each other, as seen in column three of table 3.2. All papers in the start set contain
reference to [30], except papers [8] and [27]. Similarly, all papers in the start set
reference to [21] except papers [25], [21] and [27].

Forward Snowballing is then applied to the papers in the start set. This step involves
examining the citations towards all papers that are in the start set. All papers were
searched for citations using Google Scholar. The Scopus database was chosen not
to be used for the forward snowballing procedure since it was shown that Google
Scholar was able to find more papers. Many of the papers in the start have been
published recently, which may indicate the lack of citations for some of the papers.
During the forward snowballing search, a relevant paper was found in regards to this
study. It was then decided to include the paper as part of the related work upon
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passing the inclusion and exclusion criteria. The specific paper included is:

• [31] Welch, James Matthew. Performance Optimization of Linux Networking
for Latency-Sensitive Virtual Systems. Diss. ARIZONA STATE UNIVER-
SITY, 2015.

Table 3.3: Results from Forward Snowballing in Iteration 1

Start Set
Paper

No.
Citations

New Papers
Identified

[22] 0 0
[8] 0 0
[23] 0 0
[24] 8 [31]
[25] 2 0
[21] 81 0
[26] 4 0
[27] 1 0

A second round of backwards and forwards snowballing is applied, as two additional
papers to the start set were found in the first iteration.[30] has 32 references. From
the 32 references, 16 references is excluded based on being references to online ma-
terial. A large number of the resulting references have already been analysed in
the previous iteration and no new papers were identified for inclusion. [31] has 69
references with reference to [30], [24], [21]. No additional candidates for inclusion
were found when studying the reference list of the paper. A second round of forward
snowballing is done. [30] has been cited by 104 papers. When reviewing the list
of cited papers, many of them have already been reviewed during the snowballing
procedure. Analysing the list of papers resulted in no additional candidates for in-
clusion. [31] has no citations. This is expected since [31] is not a published paper.

In total, ten papers is included for final inclusion for related work. Two additional
papers are included but were not found during the snowballing procedure. The pa-
pers were found during the initial phase of the research project. One of the papers
not have been found during the database search is a paper authored by C. Berger,
which has been accepted for publication but has yet to be formally published. The
second additional paper was found during the early stages of the research project
and is relevant to this study. The search string includes the keywords present in the
respective paper, however it was not found in the search. Since it is relevant to the
study, it is included.

C. Berger [7] presents the exploration of a deployment strategy in the context of
self-driving vehicles that utilises lightweight Docker containers. The deployment
strategy makes use of a number of Docker containers that build and ship signed
packages in a container ready for use. However, the paper does not look to iden-
tify the precise performance overhead when using Docker as part of the deployment
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strategy but addresses the need for it in future work. The deployment of software in
[7] exemplifies a possible deployment pipeline for resource constrained CPSs, that
can be used as inspiration when investigating software deployment by using Docker.

The authors of [8] identify the challenge of deploying, maintaining and configuring
software for IoT gateways and investigate using virtual containers to solve these
challenges. The authors identify the performance overhead of using Docker as a
deployment platform on two different versions of the Raspberry Pi System on Chip
(SoC) computer [32]. They identify that there are clear benefits containerizing appli-
cations for deployment on resource constrained devices and further identify the need
for such research is the field for IoT applications. This shows there exists a need for
continuous deployment for embedded, resource contained and high performing ap-
plications. The authors of [8] recommend a case-by-case analysis when considering
using Docker as a deployment platform for IoT devices. The case-by-case analysis
is important as in [6] the study also experiment with Docker on a Raspberry Pi SoC
computer but do not report any substantial degradation in performance. Further
use of Docker as a deployment platform is exemplified in [6]. The authors of [6]
explore using Docker as a deployment platform for a generic modular architecture
for industrial automated cyber physical systems. A use case of the modular archi-
tecture is applied to the development of an automated guided vehicular CPS. The
authors state that having a modular architecture, in the form of Docker contain-
ers, decouples the complexity of CPSs into simpler subsystems, that different teams
can individually develop on. Development teams can work individually on separate
subsystems and utilise Dockerhub, the team collaboration feature built into Docker.
The authors of [6] conclude that using a real-time enabled Linux kernel is needed
for further development of the architecture. There were only two papers found us-
ing the real-time enabled kernel when benchmarking Docker performance overhead.
This study, through the controlled experiment, aims to provide measurement data
when using a real-time enabled OS, fulfilling this gap.

In [21] the paper investigates the performance overhead of using virtual machines,
Docker and compares the performance to native execution in the context of cloud
computing. To analyse the processing overhead of using Docker, a lossless data com-
pressions utility is used in various execution environments. The authors conclude
containers have almost no overhead and recommend a case-by-case analysis as using
network address translation and the AUFS storage driver are the only two factors
that introduce considerable overhead. However, these factors are likely to become
improved in the future.

In a study presented by Mao et. al [22], the authors investigate the next generation
of Radio Access Networks (RANs) used by Telecom providers. Traditional RANs
are moving towards software as a service in the cloud [22] due to being hardware
dependent equipment which are expensive and lack scalability. Moving traditional
RANs to the cloud as software RANs is a challenging task due to the latency re-
quirements of cellular networks: a similar challenge for software with high hardware
dependability and time-sensitivity face the domain of autonomous vehicles. To over-
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come the time-sensitive requirements of software RANs, the authors use a real-time
enabled Linux kernel, specifically the RT_preempt patch, and measure computa-
tional and networking latency when using Docker for real-time applications. The
cyclic test [33] is used to measure computational latency and is a common tool to
measure real-time capabilities of an operating system. However, the cyclic test is not
comparable to a CPS as it lacks a supportive middleware. The worst case execution
time in [22] is measured and reported in the study. The results of the study show
that running real-time applications inside a Docker container achieves near-native
performance, while the performance of virtual machines incur much higher latencies
[22]. However, running multiple Docker containers on different hosts incur higher
overhead [22]. Since CPSs may involve multiple computing nodes, measuring the
performance of Docker on multiple hosts for real-time computations requires investi-
gation if considering Docker as a deployment platform for multiple computing nodes.

In a study presented by Welch [31], the author identifies the performance overhead
of using Docker for latency sensitive applications in the context of cloud computing.
In [31], the RT_preempt kernel patch for Linux Kernel 3.18.20 is used to identify
the networking performance of Docker containers in comparison to virtual machines.
The results show that the Docker containers have generally higher bandwidth and
lower latency than virtual machines. However, in both [31] and [21] the Network Ad-
dress Translation (NAT) protocol introduces considerable overhead. NAT is needed
when mapping a network to a single internet protocol (IP) address. Further research
on this topic is required if the requirements for a CPS require independent IP ad-
dress for multiple containers.

In papers [21, 31, 23, 24, 26, 30], chosen not to be further detailed due to their respec-
tive execution environments, state that the overhead by using Docker is negligible
and CPU, memory, disk and network performance is near native. This confirms that
Docker can be used for CPSs but further evidence is needed. However, [25] presents
results on the performance overhead of Docker and recommend not combining disk
and memory intensive workloads into different containers due in an apparent degra-
dation of performance they observers. They suggest consolidating I/O and CPU
intensive workloads to alleviate this problem.

In [27], the authors experiment with using multiple Docker containers for parallel
processing to achieve real-time image processing. This is another benefit of using
Docker as a deployment platform. If the resources of computing nodes allow for
scaling up important processes in a CPS, one can run multiple Docker containers
tasked with the same responsibility to produce an output faster (i.e parallel process-
ing). The authors of [27] develop a drone tasked with tracking three mobile robots
from a video stream. The video stream is sent to the cloud, in which multiple
docker containers process the data in parallel. The authors were able to improve in-
put frame rate by 158%, using two containers, to achieve real-time image processing.

From the papers searched and analysed our experience shows that there are not many
papers that study the impact of lightweight containers in the domain of CPSs. Fur-
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thermore, there are not many studies that use a real-time enabled Linux kernel when
investigating the performance impact of container based virtualization. These areas
are the focus point this study will contribute to the greater research community.
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Table 3.1: Start Set

Paper
No. Citation

[22]

C. N. Mao, M. H. Huang, S. Padhy, S. T. Wang, W. C. Chung, Y. C.
Chung, and C. H. Hsu, “Minimizing latency of real-time container cloud
for software radio access networks,” in 2015 IEEE 7th International
Conference on Cloud Computing Technology and Science (CloudCom),
Nov 2015, pp. 611–616.

[8]
A. Krylovskiy, “Internet of things gateways meet linux containers: Per-
formance evaluation and discussion,” in Internet of Things (WF-IoT),
2015 IEEE 2nd World Forum on, Dec 2015, pp. 222–227.

[23]

M. Raho, A. Spyridakis, M. Paolino, and D. Raho, “Kvm, xen and
docker: A performance analysis for arm based nfv and cloud comput-
ing,” in Information,Electronic and Electrical Engineering (AIEEE),
2015 IEEE 3rd Workshop onAdvances in, Nov 2015, pp. 1–8.

[24]

R. Morabito, J. Kjällman, and M. Komu, “Hypervisors vs. lightweight
virtualization: A performance comparison,” in Proceedings of the 2015
IEEE Interational Conference on Cloud Engineering, ser. IP10E ’15.
Washington, DC, USA: IEEE Computer Society, 2015, pp. 386–393.

[25]

M. G. Xavier, I. C. D. Oliveira, F. D. Rossi, R. D. D. Passos, K. J. Mat-
teussi, and C. A. F. D. Rose, “A performance isolation analysis of disk-
intensive workoads on container-based clouds,” in 2015 23rd Euromicro
International Conference on Parallel, Distributed, and Network-Based
Processing, March 2015, pp. 253–260.

[21]

W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated per-
formance comparison of virtual machines and linux containers,” in Per-
formance Analysis of Systems and Software (ISPASS), 2015 IEEE In-
ternational Symposium on, March 2015, pp. 171–172.

[26]

C. Ruiz, E. Jeanvoine, and L. Nussbaum, “Performance evaluation of
containers for hpc,” in Euro-Par 2015: Parallel Processing Workshops:
Euro-Par 2015 International Workshops, Vienna, Austria, August 24-
25, 2015, Revised Selected Papers. Cham: Springer International Pub-
lishing, 2015, pp. 813–824.

[27]

R. Wu, Y. Chen, E. Blasch, B. Liu, G. Chen, and D. Shen, “A container-
based elastic cloud architecture for real-time full-motion video (fmv)
target tracking,” in 2014 IEEE Applied Imagery Pattern Recognition
Workshop (AIPR), Oct 2014, pp. 1–8.
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In order to answer the research questions, an experiment is carried out following the
guidelines for reporting experiments in software engineering [34]. The experiment is
executed in a controlled environment, where parts of the outcome are applied to a
self-driving truck. All material for the experiment is available online1.

4.1 Goals
The aim of the experiment is to, through a sequence of controlled steps, systemat-
ically answer the two research questions. This is achieved through evaluating the
scheduling precision and input-output performance of the experimental units while
running in different execution environments with respect to the deployment con-
text. Understanding how the respective execution environment (e.g running the
experimental units in a Docker container with a real-time Linux kernel) influences
scheduling precision and input-output performance will ultimately decide how de-
terministic - with respect to time - the system is. Uncovering how deterministic the
system is will answer the research questions.

The goals of the experiment is described in table 4.1, where the experimental units,
execution environment and system load is described further in this section.

Table 4.1: Experiment Goals

Goal Description

1 Analyse the scheduling precision of the Pi Component (section
4.2.1) for the purpose of understanding how deterministic the sys-
tem is with respect to the execution environment and system load.

2 Analyse the input and output performance of the Pi/IO Component
(section 4.2.2) for the purpose of understanding how deterministic
the system is with respect to the execution environment and system
load.

The goals are set to identify the most deterministic execution environment, as it is
crucial for CBSs to meets the specified time deadline requirements, i.e. to ensure
that the CBS does not violate the designated time of its executed time-slices.

1https://github.com/docker-rt-research/experimental-material
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4.1.1 Execution Environment
The execution environment describes the setting in which the execution of the ex-
perimental units take place. Specifically, the execution environment refers to all
components that make up a complete system: the processors, operating system and
so on. There are four execution environments used in this experiment. The exe-
cution environments are configured the same but with two main differences. The
difference being (1) an alternation of two Linux kernels and (2) an alternation of the
deployment context. In this case, the deployment context is running the experiment
units natively on the target system or running the experimental units in a Docker
container. The execution environments are precisely specified in table 4.2, where
the configuration of the execution environment is later described in section 4.3.

Table 4.2: Execution Environments

Environment Description

1 Running the experimental units natively on the target system
running a vanilla Linux kernel.

2 Running the experimental units natively on the target system
running a Linux kernel patched with RT_preempt.

3 Running the experimental units in a Docker container on the
target system running a mainline vanilla Linux kernel.

4 Running the experimental units in a Docker container on the
target system running a mainline Linux kernel patched with
RT_preempt.

4.1.2 System Load
Submitting the target system to heavy load is required in order to (1) traverse as
many code paths of the kernel as possible and (2) mimic the run-time load of a
real-time system. Stress-ng [35] is a user-space application that interacts with many
components of the kernel. It can spawn a number of worker threads that perform
useless tasks in order to apply load to the target system. The type of worker thread
can vary from processor load to disk intensive load. Applying heavy load to the
target system enables the experiment to be executed in an environment that mimics
a real-life scenario. One would expect a real-time system to consume 80% of the
system’s resources, leaving a 20% buffer for extreme circumstances to circumvent
system overload.

The experiment is performed in two scenarios: applying no-load and apply high-load
to the system. Having these two scenarios allows for a fair comparison when the
experimental units are executed in a more realistic operational environment. Having
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no load allows for the experimental units to be executed in isolated, controlled
environment where a fair comparison can be made.

4.2 Experimental Units
The experimental units, codenamed Pi and Pi/IO, are realised by the open source
middle-ware OpenDaVINCI. Using OpenDaVINCI as a development framework for
the experimental units allows the experiment to mimic the middle-ware one can
expect in a autonomous vehicle. The implementation of OpenDaVINCI has been
altered to enable full measurement of the system during runtime. The measure-
ment points are simply timestamps of when the application reaches specific points
in the code base during run-time. The specific changes that were made to the Open-
DaVINCI library are:

1. Included specific measurement points that captures the current time within
OpenDaVINCI’s source code.

2. The measurement of time is modified to nanosecond precision.
3. A function is included to write measurement data to a serial port.

4.2.1 Pi Component
The Pi Component is utilised for measuring scheduling precision in order to answer
RQ1. The Pi Component is tasked with calculating the next digit of Pi until it
reaches 80% of its’ designated time-slice. The remaining 20% of the time-slice is
spent sleeping. The rationale for why it is specifically 80% is for the ability to have
a buffer that is reserved for sleeping. An alternative approach to the Pi Component
was investigated. Namely, limiting the pi algorithm to only calculate x digits of
pi instead of calculating pi for x amount of time. This approach made it difficult
to predict whether the amount of pi digits calculated would occupy more than the
specified timing requirement. The approach to limit the amount of pi calculations
to 80% was chosen as it provides a more controlled environment. The algorithm
that calculates pi, specifically the Leibniz formula [36], is implemented to simulate
load on the system resources. In the actual development of a autonomous vehicle,
the pi algorithm would be replaced with components which enable the self-driving
capabilities of the vehicle. The source code for the Pi Component can be found in
Appendix A.1, on page I.

4.2.2 Pi/IO Component
The Pi/IO Component is utilised for measuring input and output performance in
order to answer RQ2. The component is an extension of the Pi Component with two
additional factors. These factors are reading an image from a web camera (input)
and storing the image to disk (output). Capturing the image and storing it will
here on be referred to as input performance and output performance respectively.
The code implementation of capturing an image from a camera is a direct copy from
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the open-source project OpenDLV [37]. OpenDLV is open source software currently
under development for the operation of an autonomous self-driving vehicle and is
built upon OpenDaVINCI. Furthermore, the code implementation for storing an
image to disk is also a direct copy from the OpenDLV project that is used for
logging the system during runtime. In order to capture the specific performance
measure of input and output, two measurement points are added to measure the
overhead by capturing an image and storing it to disk. The source code for the
Pi/IO Component can be found in Appendix A.2.

4.3 Experimental Material

In order for the experiment to begin, the target system needs to be prepared and con-
figured with software. This section identifies the preparation of the target systems
execution environment to ensure transparency and reproducibility of the experi-
ment. This section introduces the hardware used in the experiment, the software
environment and the runtime properties of the experimental units in respect to the
deployment context.

4.3.1 Hardware Environment

The experiment presented in this report is executed on a AEC 69502 embedded per-
sonal computer manufactured by Aaeon. The AEC 6950 is an industrial computer
marketed for data processing, machine control and fleet management applications
[38]. The hardware specification for the target system can be found in table 4.3.
The hardware used to capture measurement data from the Aaeon AEC 6950 is a
Raspberry Pi SoC [32] computer Model 1 B+. The data is collected from the target
system via RS-232 serial communication by using a serial to USB converter. The
web camera used for the Pi/IO Component is a Logitech c930e.

Table 4.3: Target System Hardware Specification

Component Specification
Processor Intel Core i7 3517UE 1.7 GHz
Memory 4GB DDR3 1333/1600 SODIMM
Storage Device 2.5" SATA HDD x 1

Serial Interfaces

USB type A x 2 for USB 2.0
USB type A x 2 for USB 3.0
DB-9 x 2 for RS-232/422/485 x 2
DB-9 x 4 for RS-232 x 4
Isolated DB-9 x 2 for RS-232/422/485 x 2

2http://www.aaeon.com/en/p/fanless-embedded-computers-aec-6950/
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4.3.2 Software Environment
The operating system used in the experiment is Ubuntu Server 14.04 Long Term
Support. A long term supported version of Ubuntu Server is chosen due to its
stability, performance and available features. The Linux 3.18.25 kernel is selected
for the operating system due a number of factors involving performance and soft-
ware dependencies. Namely, Docker requires a kernel version greater than 3.10,
limiting a large number of potential kernels. Secondly, Docker currently ships with
aufs as the default back-end storage driver. However, the aufs storage driver has
become depreciated in the Linux kernel and is therefore no longer available in cur-
rent versions. Other options for the Docker storage-driver include devicemapper,
zfs, btrfs and overlayfs. The devicemapper driver is known to have significant
performance issues and the storage drivers zfs and btrfs currently have stability
issues, so they are all disqualified. The remaining choice for the storage driver boils
down to overlayfs, which requires a kernel version greater than 3.18. At the time
of writing, the latest RT_preempt patch for kernel 3.18 which is actively maintained
and supported is 3.18.25-rt23. Therefore, the RT_preempt patch 3.18.25-rt23 and
kernel 3.18.25-generic is selected for this experiment.

All software packages that are required for the experiment are installed via the
Linux package tool. The precise versions for each software package installed is
documented and replicated when perparing the Docker images.The installation of
software packages and subsequent configuration is executed via a script to document
the changes that are made to the target system and to ensure precise reproducibility.

4.3.2.1 Kernel Configuration

The vanilla Linux kernel 3.18.25-generic is downloaded from the official Ubuntu
Kernel package archive [39]. In order prepare the real-time enabled kernel, a specific
set of kernel configurations are applied during the kernel build process. The default
configuration file (.config) for the vanilla kernel is extracted and used as a basis
for configuring the real-time enabled kernel. The modifications made to the default
configuration file for the real-time enabled kernel follows the guidelines from [40]
and are specified in table 4.4.

Table 4.4: Kernel Configuration Modifications

Parameter Setting Description
PREEMPT_RT_FULL y Enable preempt-rt patch.

LOCK_DEBUGGING n Disable schedule debugging
information.

HIGH_RES_TIMERS y Enable high resolution
timers.

ACPI_DOCK n Disable ACPI management

ACPI_PROCESSOR n Disable processor power
management
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4.3.2.2 Docker Parameters

The back-end manager for controlling Docker containers is performed by the docker
daemon. The docker daemon is in charge of setting up the software environment
for the containers as well as managing and controlling the container’s resources. As
mentioned in section 4.3.2, the docker daemon configuration file is changed to per-
sistently use the overlayfs storage driver.

In order to build Docker images, a recipe in the form of a DockerFile is used when
executing the docker build command line tool. The recipe contains instructions
that construct the image, where each instruction that is executed is stored in a new
subsequent storage layer. The relationship between a Docker image and container is
similar to the relationship between a program and process. The runtime execution
of a Docker image is a container, where any changes made in the container do not
affect the parent image. Rather, changes that are made are stored within the con-
tainer itself. The Docker images built for the experiment are all based on the official
Ubuntu 14.04 LTS Docker image. The Ubuntu 14.04 LTS image is chosen to ensure
a consistent environment between the native execution of the experimental units
and that of the Docker containers. The software packages installed in the Docker
images are all of equal versions to the packages that exist on the host.

To run a image the Docker run command is used which instantiates a container
from the image. The experimental units, run from within a image, are executed
with real-time scheduling priority 49. The runtime properties for containers that
execute the experimental units are specified in table 4.5.

Table 4.5: Docker Image Runtime Properties

Parameter Description
-d Run the container in detached mode.
–net=host The networking configuration is derived from the host.
–cap-add=sys_nice Allow access to devices such as the web camera and the

serial port.
-v Mount shared filesystems from the host into the con-

tainer.
-w The working directory to execute the experimental

units.

4.3.2.3 Native Execution Parameters

The native execution of the experimental units is performed by running executable
binary files in a screen [41] session. The experimental units are executed with
real-time scheduling priority 49. Linux screen is a full-screen window manager that,
when called, creates a single window with a interactive shell session in it that can
be used to execute programs. Multiple windows can be created, destroyed, detached
and activated. Screen is used for the native execution for being able to run processes
in a shell session that can be detached.
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4.3.2.4 Stress Parameters

When applying load to the target system, two processor worker threads are started
that calculate pi with a set load of 80%. Since the experimental units are run with
real-time scheduling priority 49, the stress worker threads a set at priority 48 to
ensure the experimental units are not pre-empted by the operating systems’ sched-
uler. Starting the stress worker threads is always executed using screen shell session
regardless of the deployment context of a particular experiment run-scenario. The
precise execution of the stress-ng application is:

stress-ng –cpu 2 –cpu-load 80 –cpu-method pi
–sched fifo –sched-prio 48

4.4 Tasks
The experimental units are executed in different execution environments with re-
spect to the deployment context. The experimental units are tasked with capturing
specified measurement points and sending the measurement data via serial communi-
cation to the data capturer where they are stored. A description of the experimental
units is found in section 4.2 and the specific measurement points that are captured
within these units are found in section 4.5.1.

4.5 Variables and Hypotheses
Two types of variables are defined for the experiment: dependent and independent
variables. The variables are analysed to evaluate the hypotheses of the experiment
which are defined in this section. The experiment is run with an alternation between
the treatment variables presented in section 4.5.2. Table 4.6 presents the four sepa-
rate execution environments. Each of the execution environment are run with load
and without load where running the application with load is the main source for
analysis as it is of highest interest to understand how the execution environments
behave when load is introduced.

Table 4.6: Execution environment

scenario deployment kernel N with
load

N without
load

1 native generic 5 5
2 native rt 5 5
3 docker generic 5 5
4 docker rt 5 5

4.5.1 Dependent Variables
This research seeks to answer the two research questions which relates to the perfor-
mance impact of the treatments on 1) scheduling precisionRQ1, 2) input performanceRQ2,
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and 3) output performanceRQ2. These three aggregated variables each consists of a
set of dependent variables that construct the three dependent variables. Schedul-
ing precision refers to how accurately, in terms of time, the system performs the
necessary actions within a specified time-slice. The captured data points for mea-
suring scheduling precision is the duration with nanosecond accuracy between four
measurement points for the Pi Component. The location of the four measurement
points within a time-slice is depicted in figure 4.1, which represent the Pi Compo-
nents complete time-slice. The duration between measurement points one and two,
and between measurement points three and four reveal the overhead of the middle-
ware OpenDaVINCI. The duration between measurement points four and one (the
next time slice) reveals the sleep precision of the Pi Component with respect to the
execution environment.

Figure 4.1: Measurement points for Pi scheduling precision.

1 execution (100ms)

Measurement point #4

Measurement point #3Measurement point #2

Measurement point #1

Executed OpenDaVINCI code
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Executed OpenDaVINCI code
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Jitter introduced by not
waking up in time

Pi Algorithm Sleep period

The Pi/IO Component is an extension of the Pi Component with the addition of
two measurement points for measuring camera performance and disk write perfor-
mance. The duration between measurement points two and three reveal the input
performance of the Pi/IO component with respect to the execution environment.
The duration between measurement points three and four reveals the output per-
formance of saving an image to disk. The duration between measurement point two
and four depict the total input-output performance of the executed time-slice. The
remaining measurement points are the same as used in the Pi Component which are
not analysed for answering research question 2.

4.5.2 Independent Variables
The treatments that are used for assessing the impact are factors specific to the ex-
ecution environment, namely: 1) the Linux kernel (a vanilla kernel or RT_preempt
patched kernel), 2) the deployment context (Docker or native) and 3) system load
(no load or high load). Where the alternation of the two former treatments define
the execution environment. It is of particular interest for this research to understand
the impact of the second treatment, which is the deployment context. Deployment
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Figure 4.2: Measurement points for IO performance.
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context refers to how the application is executed, whether natively directly in the tar-
get machine’s operating system, or if it is executed within a Docker container. The
research questions are answered by analysing how each of the dependent variables
are impacting the independent variables during runtime. Each of the treatments
are stored as binary values (1 : true/0 : false) in the data table (table 4.8). The
true and false value is set depending on which scenario the measurement points are
collected from. Table 4.7 presents the binary alternation between the data scenarios
The control group is having each of the treatment variables set to 0.

Table 4.7: Treatment alternation

0 1
Deployment Context Native Docker

Kernel Vanilla RT_preempt
Load No Load CPU Load

4.5.3 Hypotheses

The dependent variables are analysed to evaluate the hypotheses of the experiment.
The alternative hypotheses are stated below, denoted H1ij

. The i corresponds to the
goal identifier of the experiment where j is a counter when more than one hypothesis
is formulated per goal.

The deployment context is executing the experimental units on the target system
natively or within a Docker container. The execution environment is an alternating
of the independent variables. Further details on the execution environments are
specified in 4.1.1.
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The hypotheses to achieve goal one of the experiment are:
H111 The deployment context has an impact on scheduling precision.
H112 The Linux kernel has an impact on scheduling precision.
H113 The execution environment has an impact on scheduling precision.

The hypotheses to achieve goal two of the experiment are:
H121 The deployment context has an impact on input performance.
H122 The Linux kernel has an impact on input performance.
H123 The execution environment has an impact on input performance.
H124 The deployment context has an impact on output performance.
H125 The Linux kernel has an impact on output performance.
H126 The execution environment has an impact on output performance.

4.6 Design

In this controlled experiment a Quasi experiment design is used. A Quasi experi-
ment design is used when a randomized experiment or when random assignment of
study units to experimental groups is not possible [42]. Random assignment is not
possible in this experiment since the experiment is a performance evaluation of the
experiment units, being the Pi and Pi/IO components, with respect to the applied
treatment. This study uncovers the cause and effect relationship between treatment
and outcome.

4.7 Procedure

The overall procedure of the experiment is to execute the experimental units in 8
different scenarios. Each scenario is run for 3 600s with an execution frequency
of 100 executions per second for the Pi Component experimental unit and 10 ex-
ecutions per second for the Pi/IO Component experimental unit. The scenarios
consist of alternating two Linux kernels (vanilla and RT_preempt patched kernel),
alternating two deployment contexts (executing in a Docker container or natively)
and alternating between applying load and applying no-load to the target system.
Executing the experiment run for each scenario is controlled from a script. The
script is started automatically when booting the system and is responsible for se-
lecting a scenario, configuring the system for that particular scenario and executing
the experimental unit. The experimental units are executed five times per scenario,
totalling 80 runs for the entire experiment: 2e × 2d × 2k × 2l × 5 where e represents
the two experiment units, d represents the deployment context, k represents the two
kernels and l represents the two types of load. An overview of the procedure carried
out by the execution script is depicted in figure 4.3.
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Figure 4.3: State Machine Diagram of the Execution Script

bootstart

wait

run

id++

60s

3600s

startScenario(id)

switchKernel()

4.8 Analysis Procedure

The dependent variables are the duration between time measurement points within
all executed time-slices using a measurement unit of nanoseconds. There is a total
of 14 399 960 data-points for the Pi Component experimental unit and 1 439 960
data-points for the Pi/IO Component experimental unit. 14 399 960 is derived
from the experiment unit Pi Component running with 100 executions per second,
3 600 seconds per scenario, 8 scenarios, each scenario run 5 times. For each sce-
nario the first time slice is trimmed of to allow for one execution before measuring
thus resulting in 14 399 960 data points instead of 14 400 000 data points. The
procedure for processing the raw data captured from the target system, is achieved
using a script3. The script calculates the duration between two time-stamps using
the equation shown in 4.1 and stores the specific duration into a comma-separated
values (.csv) file together with the connected execution environment variables for
the specific scenario run. The .csv table structure and data types for each of the
experimental units is presented in table 4.8. All the results, data, and R scripts are
available online4.

duration = tn − tn−1 (4.1)

3https://github.com/docker-rt-research/experimental-material
4https://github.com/docker-rt-research/experimental-material/tree/master/data_analysis
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Table 4.8: CSV table structure for both experimental units

Pi Component Pi/IO Component

Column names Measurement
unit Column names Measurement

unit
deployment_context binary deployment_context binary

kernel binary kernel binary
load binary load binary

overhead_1 nanoseconds overhead_1 nanoseconds
pi_calculation nanoseconds camera_input nanoseconds

overhead_2 nanoseconds disk_output nanoseconds
sleep nanoseconds pi_calculation nanoseconds

overhead_2 nanoseconds
sleep nanoseconds

Each of the subsections of section 5 begins by presenting the gathered descriptive
statistics, that is intended for clarifying the variables used by the statistical analyses
to answer the hypotheses. Bar charts are constructed to present an overview of the
result. This structure is the same between the two experimental units.

To address research question 1 a three-way multivariate analysis (MANOVA) is con-
ducted to understand the cause and effect relationship between the three treatments:
1) deployment context; 2) kernel; 3) load, which construct the execution environ-
ment and the four measurement points collectively referred to as the scheduling
precision. The MANOVA provides P-values which are used to address the hypothe-
ses connected to research question 1. The P-value explains if there exists a cause
and effect relationship between the variables, however it does not disclose what that
relationship is. To further understand what impact the treatments have on the de-
pendent variables an η2 value is calculated to reveal how large the impact is. Finally
the cause and effect relationship is explained by analysing the coefficients between
the treatments and dependent variables.

The second research question addresses two variables separately, namely input per-
formance and output performance. Similar to the analysis procedure for research
question 1, the second question seeks to understand the impact of the independent
variables on the dependent variables. However the second research question have
two separate dependent variables which are analysed separately to answer the first
research question. Thus an three-way analysis of variance (ANOVA) is conducted
for each of the dependent variable to understand the impact between the treatment
and independent variables. The ANOVA will reveal if there exists a cause effect
relationship between the treatments on the dependent variables of input and output
performance separately. Lastly the relationship is analysed through calculated η2

values which will disclose how large the impact is.
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The conducted controlled experiments results in a series of datasets which are used
to answer the research questions separately. This section seek to present the statis-
tical analysis of all data captured. Each of the components are presented separately
for the research question they individually seek to answer. Section 5.1 presents the
processed data intended for answering research question 1 and its corresponding
hypotheses. Section 5.2 aims to answer the second research question and its corre-
sponding hypotheses. Initially the hypotheses will be answered by the conducted
methods where further in depth analysis will be presented to uncover details not
answered by the hypotheses. Throughout this chapter the three treatments will be
presented in the tables and charts. These treatments are: 1) Deployment Context
– running the experimental unit in Docker or natively; 2) Kernel – running the ex-
perimental unit using a generic kernel or an RT enabled kernel; 3) Load – running
the experimental unit with simulated CPU load or without load. To extend the
understanding of the impact between the treatments and dependent variables, an
effect size (η2) is presented. Cohen’s D suggests that a large effect is attained when
the η2 value is above 0.80, medium above 0.50, and small above 0.20 [43].

5.1 Pi Component
The Pi Component aims to answer the first research question with a series of data
points extracted during the experiment. The data presented in this section is ex-
tracted by running the experimental unit in 100hz.

5.1.1 Descriptive Statistics
This section provides an overview of the collected data used for answering the hy-
potheses and research question 1. Table 5.1 presents the variables used for the
statistical analysis conducted with their mean and standard deviation. N presents
the amount of sample data collected. The dependent variables are categorical vari-
ables thus the lack of mean and standard deviation. Table 5.1 displays all standard
deviations between the execution environments with load, while table 5.2 displays
the same data however the execution environments are running on a system without
load. It is worth noting that the x axis for both the charts have scientific notations in
the bottom right corner. E.g. the execution environment of running the application
natively on a vanilla kernel has a Std.dev. of ∼ 7 000 000ns, more specifically where
the sleep Std.dev. is ∼ 3 000 000ns and the pi calculation Std.dev. is ∼ 4 000 000ns.
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While the same environment without load has a Std.dev. of ∼ 16 000ns. A lower
standard deviation imply a more deterministic execution environment. The charts
indicate that the most deterministic environment is running the application on an
RT kernel in Docker or natively. Comparing Docker with Native a similar result is
shown between the two deployment contexts, whereas a large difference between the
two load type groups is seen where No Load presents a very low standard deviation
in comparison with running the application with CPU Load.

Table 5.1: Descriptive Statistics

Type of
variable

Variable N Mean Std.dev.
(ns) Scale

Independent
variables

Deployment Context 14 399 960 N/A N/A Nominal
Kernel 14 399 960 N/A N/A Nominal
Load 14 399 960 N/A N/A Nominal

Dependent
variables

Overhead #1 14 399 960 23 562 19 362 Ratio
Pi Algorithm 14 399 960 8 157 746 2 419 989 Ratio
Overhead #2 14 399 960 29 664 48 484 Ratio
Sleep 14 399 960 2 004 799 1 960 327 Ratio

Figure 5.1: Std.dev. of execution environments with load (lower is better)
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In figure 5.3 the scheduling precision for each respective execution environment is
presented. The calculations are made by summing each of the dependent variables
and dividing by the sum of all expected time-slice durations. The process is the appli-
cation running at 100hz for 1 hour results in 3 600s×hz×5iterations = 1 800 000time-
slices where each time-slice is 0.01s. This calculation results in a summed expected
time-slice duration of 18 000s. The black dotted line seen in figure 5.3 displays the
time deadline of a time-slice. Figure 5.3 shows that data extracted from running the
application on a Vanilla kernel in both Docker and Natively violates the time-slice
with an overall average violation of ∼ 10%. Where as figure 5.4 presents the same
data for the environment contexts running on a system without load.
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Figure 5.2: Std. dev. of execution environments without load (lower is better)
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Figure 5.3: Execution environment mean consumed of time-slice with load
(closer to 100% is better)
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5.1.2 Hypothesis Testing
Table 5.2 presents the resulting P-values Pr(> F ) of the conducted MANOVA.
Scheduling precision is referenced as all the collected dependent variables. The
P-value gathered for each of the hypotheses is far below our significance level of
α = 0.001 and thus showing a significant impact on the scheduling precision from
all of the treatments and rejecting the null hypothesis. To better understand what
that impact is, an effect size value has been extracted. Table 5.3 is the result of
running the MANOVA and a η2 measurement on the data. While the P-value for all
of the treatments indicate a significant impact on the dependent variables, the η2,
Pillai’s trace, and Wilks λ indicate that there is a difference between the treatments
impact on the dependent variables. As deployment context has a smaller value
compared to the other treatments which suggests that the deployment context does
not impact the scheduling precision to the same extent as the other two treatments.
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Figure 5.4: Execution environment mean consumed of time-slice without load
(closer to 100% is better)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 110%

Native [Van]

Native [RT]

Docker [Van]

Docker [RT]

% of time-slice
Overhead 1 Pi calculation Overhead 2
Sleep

Table 5.2: Hypothesis results

Hypothesis Pr(>F)

H111 Scheduling Precision ← Deployment Context < 2.2e-16
H112 Scheduling Precision ← Kernel < 2.2e-16
H113 Scheduling Precision ← Execution environment < 2.2e-16
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Table 5.3: MANOVA and Effect Size

Df Pillai Wilks approx F num Df den Df Pr(>F) η2

deployment context 1 0.000 1.000 528 4 14 399 952 < 2.2e-16 0.0001
kernel 1 0.068 0.938 261 770 4 14 399 952 < 2.2e-16 0.0678

load 1 0.072 0.936 277 812 4 14 399 952 < 2.2e-16 0.0716
deployment context:kernel 1 0.000 1.000 370 4 14 399 952 < 2.2e-16 0.0001

Residuals 14 399 955

Table 5.4: Coefficient between treatment and dependent variable (ns)

Overhead #1 Pi Algorithm Overhead #2 Sleep
(Intercept) 24 675 8 034 093 38 997 2 155 372

deployment context 119 (0,005) 2 121 (0,000) 987 (0,025) -77 961 (-0,036)
kernel 7 358 (0,298) -48 434 (-0,006) -13 056 (-0,335) -414 775 (-0,192)
load -9 644 (-0,391) 291 274 (0,036) -6 159 (-0,158) 156 070 (0,072)

deployment context:kernel -118 (-0,005) 4 689 (0,001) -877 (-0,022) 71 039 (0,033)
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The MANOVA tests suggests that deployment context and the full execution en-
vironment has a smaller impact on scheduling precision compared to the other
separate independent variables. This is further evident when analysing the coef-
ficients captured. Table 5.4 displays the coefficients of each treatment onto each of
the dependent variables. Intercept refers to the control variable where each of the
treatments are set to default, e.g. having the application running natively with the
generic kernel and without load. The values provided below the intercept values
display the difference introduced in each of the dependent variable when switching
the treatment variable. The figure in parentheses depicts how many percentage from
intercept the treatment affects the particular independent variable. In table 5.4 it
can be noted that the values displayed for the coefficients related to deployment
context show a far smaller impact on the dependent variables which is inline with
the η2 value displayed in 5.3.

5.2 Pi/IO Component
This section provides an overview of the collected data and hypothesis test results
for answering research question 2. The data presented in this section is extracted
by running the experimental unit in 10hz.

5.2.1 Descriptive Statistics
Table 5.5 provides an overview of the data gathered and implemented for under-
standing the impact of the execution environment and its treatments on the camera
performance and disk performance. N presents the amount of sample data collected.
The independent variables are the same as Pi Component however the dependent
variables are focused on the camera and disk durations.

Table 5.5: Descriptive Statistics

Type of
variable

Variable N Mean Std.dev.
(ns) Scale

Independent
variables

Deployment context 1 439 960 N/A N/A Nominal
Kernel 1 439 960 N/A N/A Nominal
Load Type 1 439 960 N/A N/A Nominal

Dependent
variables

Camera Performance 1 439 960 6 023 777 3 178 647 Ratio
Disk Performance 1 439 960 3 553 669 13 404 796 Ratio

Figure 5.5 presents the Std.dev. for each of the two dependent variables, namely
input performance and output performance. Note that the x axis for both the
charts have scientific notations in the bottom right corner indicating a multiplier to
the value on the x axis. The figure show that the application running on a vanilla
kernel results in more deterministic camera performance where the time it takes
to capture an image fluctuate less. The graph further shows that the execution
environment running the application in Docker utilising the RT kernel has a more
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deterministic camera performance in comparison with the native equivalent. Lastly,
the graph shows that the disk performance is not impacted by switching execution
environment as the dark blue bar is consistent in size over each of the environments.

Figure 5.5: Std. dev. of execution environments with load (lower is better)
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Figure 5.6 depicts the standard deviation of the input and output performance of
each of the execution environments running on a system without load. The figure
shows that the most deterministic execution environment is running the applica-
tion natively utilising the RT kernel. The figure further displays that the worst
deterministic execution environment for a no-load system is the Docker equivalent
running with the RT kernel. This result show that docker has an impact on disk
performance as seen by the dark blue bars being larger for both of the environments
utilising Docker as its deployment context.

Figure 5.6: Std. dev. of execution environments without load (lower is better)
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The input output performance results depicted in figure 5.7 show that the execution
environments utilising the RT kernel impacts the camera and disk performance
negatively, increasing the occupation time for performing the input and output
tasks. This is seen by the larger size of both dependent variables spanning over a
larger space of the time-slice.
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Figure 5.7: Execution environment mean consumed of time-slice with load (lower
is better)

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12%

Native [Van]

Native [RT]

Docker [Van]

Docker [RT]

% of time-slice
Camera Performance Disk Performance

Figure 5.8: Execution environment mean consumed of time-slice without load
(lower is better)
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5.2.2 Hypothesis Testing

An three-way analysis of variance (ANOVA) is performed for each of the dependent
variables to understand if there exists a cause and effect relationship between the
independent variables and the dependent variables. Table 5.6 presents the results of
the ANOVA test performed, displaying that each of the treatments has a significant
impact on the dependent variables. The resulted P-value is far below the chosen
α = 0.001 which rejects the null hypothesis and report that there is significant im-
pact on the camera performance and disk performance.

The η2 and F values of the treatment groups in table 5.7 show that camera perfor-
mance is mostly impacted on the chosen kernel. While load has a far lower effect
on camera performance in comparison with the kernel.
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5. Results and Data Analysis

Table 5.6: Hypothesis results

Hypothesis Pr(>F)

H121 Camera Performance ← Deployment Context < 2.2e-16
H122 Camera Performance ← Kernel < 2.2e-16
H123 Camera Performance ← Execution environment < 2.2e-16
H124 Disk Performance ← Deployment Context < 2.2e-16
H125 Disk Performance ← Kernel < 2.2e-16
H126 Disk Performance ← Execution environment 0.00074

Table 5.7: ANOVA results Camera performance

Df Sum Sq Mean Sq F value Pr(>F) Partial η2

deployment context 1 4,329E+15 4,329E+15 435,65 <2E-16 0.0003
kernel 1 2,172E+17 2,172E+17 21 858,63 <2E-16 0.0150
load 1 2,487E+15 2,487E+15 250,24 <2E-16 0.0002

deployment:kernel 1 2,946E+15 2,946E+15 296,46 <2E-16 0.0002
Residuals 1 439 952 1,431E+19 9,938E+12

Table 5.8: ANOVA results Disk performance

Df Sum Sq Mean Sq F value Pr(>F) Partial η2

deployment 1 2,692E+16 2,692E+16 150,95 <2E-16 0.0001
kernel 1 7,063E+17 7,063E+17 3 960,47 <2E-16 0.0027
load 1 1,199E+18 1,199E+18 6 721,91 <2E-16 0.0046

deployment:kernel 1 1,090E+15 1,090E+15 6,11 0,0134 0.0000
Residuals 1 439 952 2,568E+20 1,783E+14

The results from the conducted ANOVA depicted in table 5.8 suggests that the ef-
fect deployment context has on disk performance is below the effect of kernel and
load type. This is seen on the η2 and F values of the treatment groups.

Table 5.9 displays the coefficients of each treatment onto camera performance and
disk performance. Intercept refers to the control variable where each of the treat-
ments are set to default, e.g. having the application running natively with the
generic kernel and without load. The values provided below the intercept values
display the difference introduced in each of the dependent variable when switching
the treatment variable. The figure in the column to the right of the nanosecond co-
efficients presents the percentage the dependent variable deviates from the intercept
when the treatment is alternated from the intercept treatment.
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5. Results and Data Analysis

Table 5.9: Coefficient between treatment and dependent variable (ns)

Camera Disk

(Intercept) 5644123 1738978,8

deployment context 61 896 (0,011) 193 572 (0,111)

kernel 787 322 (0,139) 1 540 975 (0,886)

load 1 710 (0,000) 2 010 246 (1,156)

deployment:kernel -13 590 (-0,002) 140 025 (0,081)

44



6
Self-Driving Truck

This section introduces the result of executing parts of the experiment on a self-
driving Volvo truck, depicted in figure 6.1, that participated in the Grand Co-
operative Driving Challenge (GCDC) 2016 in the Netherlands. The experiment
conducted on the use-case is carried out with the intention to further understand
how the scheduling precision of the CPS application is impacted by the deployment
context in a system with an operational full-scale vehicular CPS running simulta-
neously. The use-case experiment will be run on a system with a real-time enabled
kernel, as the outcome from the controlled experiment has shown that an execution
environment utilising a Vanilla kernel carries undesirable overhead.

Figure 6.1: Chalmers Revere GCDC Truck

6.1 Method
This section is aimed at providing the method of the experiment conducted on the
uncontrolled environment of the use-case scenario.

6.1.1 Experimental Units
A decision to exclusively run the Pi Component is made as the self-driving truck
implements a networked camera setup and hence does not have the same camera
implementation as the controlled target system (section 4.3.1). The Pi Component
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6. Self-Driving Truck

presented in section 4.2 is executed on the target system identical to the one used
during the controlled experiments. The computer is connected to hardware compo-
nents mounted to a Volvo FH16 truck. As the use-case data is extracted using the Pi
Component no measurements are done to understand the camera input and disk out-
put performance for the use-case due to the priority of building an understanding of
how the scheduling precision behaves with the runtime load of the self-driving truck.

To understand how Docker impacts the scheduling precision in the context of the
use-case, the experimental unit is executed first natively and secondly within a
Dockerized container. The runtime properties of Docker are presented in table 6.1.
Docker version 1.11.1 is used and the Docker daemon is set to use the overlayfs
storage driver.

Table 6.1: Docker Image Runtime Properties

Parameter Description
-d Run the container in detached mode.
–net=host The networking configuration is derived from the host.
–cap-add=sys_nice Allow access to devices such as the web camera and the

serial port.
-v Mount shared filesystems from the host into the con-

tainer.
-w The working directory to execute the experimental

units.

6.1.2 System Load
The major difference in comparison to the controlled experiment is that all soft-
ware components required for the Volvo truck to operate in a driver-less manner is
started and run in the background: this bring a more realistic operational load and
consequently a less controlled environment in respect to the controlled experiment.
Fifteen components are executed natively and within a Dockerized environment on
the target system. These components are tasked with various responsibilities span-
ning from capturing satellite positioning data, reading data from the vehicle (e.g
steering position), vehicle to vehicle communication and a number of camera oper-
ating components. Measurement points are captured via serial communication to
measure the impact in a real use case.

6.1.3 Target System
Table 6.2 presents the hardware setup for the target machine upon which the ex-
perimental unit (section 6.1.1) is executed. The target system is running ArchLinux
operating system with a real-time enabled kernel (RT_preempt), version 4.5.0-1.
The decision to operate the system using ArchLinux is made by the REVERE de-
velopment team due to their preferences and is not a variable which this research
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6. Self-Driving Truck

can control. However, to ensure that the execution environment is in line with the
outcome from the controlled experiment, an RT_preempt kernel is implemented.

Table 6.2: Target System Hardware Specification

Component Specification
Processor Intel Core i7 3517UE 1.7 GHz
Memory 4GB DDR3 1333/1600 SODIMM
Storage Device 2.5" SATA HDD x 1

Serial Interfaces

USB type A x 2 for USB 2.0
USB type A x 2 for USB 3.0
DB-9 x 2 for RS-232/422/485 x 2
DB-9 x 4 for RS-232 x 4
Isolated DB-9 x 2 for RS-232/422/485 x 2

6.1.4 Variables
The uncontrolled experiment is intended to understand the deployment context’s
impact on the scheduling precision. In comparison to the controlled environment
the kernel is statically set to an RT_preempt kernel and thus not used as a treat-
ment to the use-case experiment. The deployment context is a categorical variable
which holds two values, namely 1) Native and 2) Docker. Where the former is the
execution of the experimental unit on the host OS and the second is the execution
of the experimental unit in a Dockerized container. As the use-case scenario is a
replication of the controlled environment, the same dependent variables are used for
measuring the scheduling precision of the experimental unit, namely measurement
points: Overhead #1, Pi Algorithm, Overhead #2, and Sleep. Figure 4.1 presents
the measurement points from where within the time-slice each of the dependent
variables are extracted.

6.1.5 Procedure
The procedure is to execute the experimental unit in 2 different scenarios. The two
scenarios is an alternation between two deployment contexts: executing natively on
the host OS, and executing within a Docker environment. Each scenario is manu-
ally executed for 1h on the target machine with the Raspberry Pi SoC [32] hardware
connected through a serial to USB device used for capturing measurement data via
RS-232 serial communication.

6.1.6 Analysis Procedure
Analysing the data is made with a partly replicated analysis procedure used for
understanding the scheduling precision of the controlled experiment. The purpose
of running the uncontrolled experiment is to provide an insight to how the exper-
imental unit’s scheduling precision behave in an environment with realistic load.
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Each of the measurement points presented in figure 4.1 is extracted and processed
by calculating the duration between the points using a script. The durations is then
analysed by building bar charts to illustrate the scheduling precision which is in-
tended to provide an overview of all data points extracted. Furthermore, a table of
sample size, means, and standard deviations is constructed to provide the descrip-
tive statistics of the generated bar charts. Lastly, a one-way multivariate analysis
(MANOVA) is conducted to understand how the deployment context impact the
scheduling precision and an effect size (η2) between the deployment context and
scheduling precision is calculated to bring a more detailed understanding of what
impact the deployment context has on the scheduling precision.

6.2 Results

This section presents the results extracted from the experiment conducted on the
use-case of the self-driving truck in the Chalmers Revere Lab. The goal is to un-
derstand and provide an insight in how the deployment context impacts the exper-
imental units within an environment which have realistic system load.

6.2.1 Descriptive Statistics

Table 6.3: Descriptive Statistics

Type of
variable

Variable N Mean Std.dev.
(ns) Scale

Independent
variables

Deployment Context 719 996 N/A N/A Nominal

Dependent
variables

Overhead #1 719 996 29 268 8 506 Ratio
Pi Algorithm 719 996 8 018 460 5 452 Ratio
Overhead #2 719 996 54 993 26 340 Ratio
Sleep 719 996 1 897 278 31 649 Ratio

The results shown in figure 6.2 show that there exists a difference between the two
deployment contexts in the load environment introduced by the other components
running on the same system. The difference indicates that the deployment context
has an impact on how deterministic a system is as native fluctuates roughly 40% less
than the Docker deployment context. Running a statistical test to understand the
cause and effect relationship between the deployment context and the dependent
variables resulted in a η2 = 0.504 which relates to a medium effect size between
deployment context and the dependent variables according to Cohen’s D (η2 > 0.5).
Figure 6.3 show that there exists no violations for the average time deadline for
either of the two execution environments.
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6. Self-Driving Truck

Figure 6.2: Standard deviation of execution environments with real-life load
(lower is better)
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Figure 6.3: Mean consumed of time-slice with use-case load (closer to 100% is
better)
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6.2.2 Hypothesis Testing
Table 6.5 presents the resulted MANOVA and effect size calculated from the data
derived from the uncontrolled experiment. As the P-value (Pr(>F)) is smaller than
the chosen α = 0.001 it indicate that the deployment context has a strong significant
impact on the scheduling precision in the uncontrolled experiment. The η2, Wilks
λ, and Pillai’s trace values all indicate that the effect of the deployment strategy
is of medium size as the η2 value is larger than the medium threshold provided by
Cohen’s D (η2 > 0.5).

The coefficients between treatment and dependent variables are presented in table
6.6 to understand what the impact presented in table 6.5 of deployment context
is. The right column for each dependent variable depicts the percentage of impact
the deployment context has on each of the dependent variables. When executing
the application inside a Docker container an increase of 102% in the duration of
Overhead #2 is found.
As the uncontrolled experiment only has one of the three treatments used in the
controlled experiment, only one of the three hypotheses is applicable. The P-value
presented in table 6.5 indicates that H111 is significant and thus rejecting the null
hypothesis.

49



6.
Self-D

riving
Truck

Table 6.4: Hypothesis results

Hypothesis Pr(>F)

H111 Scheduling Precision ← Deployment Context < 2.2e-16

Table 6.5: MANOVA and Effect Size

Df Pillai Wilks approx F num Df den Df Pr(>F) η2

deployment context 1 0.504 0.496 182 958 4 719 993 < 2.2e-16 0.5041
Residuals 719 996

Table 6.6: Coefficient between treatment and dependent variable (ns)

Overhead #1 Pi Algorithm Overhead #2 Sleep
(Intercept) 27 944 8 017 426 36 462 1 918 167
deployment 2 648 (0,095) 2 067 (0,000) 37 062 (1,016) -41 777 (-0,022)
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7
Discussion

To fully comprehend the impact of utilising Docker for the deployment strategy of a
self-driving vehicle the data analysis have provided data looking at many aspects of
the environment in which the real-time system may be run. Simply understanding
how an application performs while running inside a Docker container in comparison
with running the same application natively on a system is not enough to provide a
comprehensive understanding of whether or not Docker is suitable for a real-time
system environment. Such an environment is comprised by more factors than the
deployment context exclusively, factors such as choosing the correct kernel or miti-
gating unnecessary system load. The result has provided in depth understanding of
how a real-time system behaves depending on whether there is load on the system or
if the system is utilising a real-time enabled kernel. All null hypotheses for both re-
search questions are rejected suggesting that there exists an cause effect relationship
on applications performance with switching deployment contexts or kernels. How-
ever the data analysis show that although having significant impact, the effect sizes
of each of the treatment groups were minimal in regards to Cohen’s D. The results
presented in all (M)ANOVA tables presents an η2 value far below the threshold for a
small effect size which brings further interesting information about the relationships.

Research question 1 asks whether the execution environment has an impact on the
scheduling precision of a real-time application or not. The results suggests that
the scheduling precision is impacted by the execution environment, however this
impact is related to the chosen kernel for the execution environment and not the
deployment context chosen. This is strengthened when analysing the differences in
F-value, Pillai’s trace value and η2 provided in table 5.3. As seen, the values dif-
fer between deployment context and kernel which indicates that there is a smaller
impact made by switching between running the application in Docker and natively
in comparison with choosing the correct kernel for the execution environment. The
charts presented in section 5.1.1 further discusses the importance choosing the cor-
rect kernel for the real-time application. This is seen in figure 5.3 where the two
execution environments utilising a vanilla kernel has an average deadline violation
of approximately 10% while comparing the Docker environments with the native
environments show nearly no difference in scheduling precision.

Research question 2 aims to answer if there is an impact on input/output perfor-
mance switching between execution environments. The results reveal that there is
an impact however that impact is insignificant in relation to Cohen’s D. Each of the
η2 values are far below than the threshold of having a small effect on the dependent
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variables. An observation can be made on the η2 for the impact kernel has on camera
performance, which indicates that there exists a larger effect on camera performance
switching between kernels in comparison with the other treatment variables. One
interesting point can be made on the camera performance during load, which seems
to perform better when there is load on the target system. Lastly, it is worth noting
that the input and output performance is indicated to be negatively impacted by
utilising the RT kernel, this could be the case where the preemptive scheduler works
against the components used as the scheduler may preempt the system processes
used for capturing the image and saving the data.

In relation to related work, the results of this study confirm that Docker carries
near-native performance. However, it is important to use a real-time enabled kernel
to meet the timing requirements and for Docker to achieve neglible overhead. This
too confirms current literature, and enriches the current state of knowledge which
requires further insight utilising a RT kernel for Docker.

Comparing the experiments conducted in a controlled environment with those ex-
tracted from the use case of the self-driving truck, it is evident that the load in the
controlled environment is far more exhaustive than that of the realistic load. This is
seen in the size of the Std.dev. between the different execution environments. The
total Std.dev. presented by the simulated system load in the controlled environment
had a maximum value of ∼ 7000000ns whereas the realistic load had a maximum
total Std.dev. value of ∼ 65000ns which is approximately 0.9% of the controlled
environment’s value. While the figure and η2 indicated that deployment context
has an impact on the dependent variables for the use case of the self driving truck,
this does not necessarily imply that Docker is not suitable as a deployment strategy
for the use-case. It could simply indicate that Docker scales less efficiently when
introducing load to the system where both execution environments may reach an
equilibrium eventually when increasing the load. This equilibrium may be observed
in figure 5.1 where both deployment contexts share roughly the same total standard
deviation.

Lastly, during the project there was a process of porting the existing truck sys-
tem from a native execution environment into a Dockerized execution environment.
This experience was found to be far more simple than expected. The total time
for transferring all software components into Dockerized containers was roughly 40
work hours, which argues for the minimal transferability cost of Docker. Therefore
it is worth mentioning the porting experience for decision makers that are reluc-
tant of porting their existing systems into a Dockerized environment due to possible
transferability costs. The software quality benefits presented by Docker seems to
surpass the performance and transfer costs involved in implementing Docker in an
existing system. The benefits of a Docker implementation seem to span over all ISO
software quality aspects. This is the experience of this research and the statements
does not base in empirical findings but rather in the use case of the project. Further
research is required to give a definite answer for how Docker impacts the quality
factors of an existing system.
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8
Threats to Validity

In this section, the four perspective of validity threats presented by Runeson and
Höst [44] are discussed.

8.1 Construct Validity
Construct validity refers to the degree of which the findings and observations made
in the study reflect what is actually investigated in respect to the research ques-
tions. Data is collected in order to understand if the execution environments and
deployment context impact the timing behaviour of the sample applications (experi-
mental units). The sample applications are realised with the OpenDaVINCI library
by using a skeleton code for time-triggered components from the tutorial section
of OpenDaVINCI’s online documentation. Minor modifications were made to the
overall structure of the sample applications code base. This ensure that the sample
applications used in the experiment is correct and in-line with the design require-
ments for real-time systems. OpenDaVINCI is open source and has been used to
realise a number of autonomous vehicles. This adds validity to the use of the library.
Furthermore, the sample application Pi/IO Component, used for capturing images
from a web camera and storing them to disk is composed of code inherited from
the OpenDLV open source project. The adds further validity to the correctness of
the applications used in the experiment. The data captured from the sample appli-
cations are simply timestamps which fire in specified parts of the code base. The
durations between all measurement points are extracted and then compared over
multiple runs in different execution and deployment contexts to uncover the impact.

8.2 Internal Validity
Internal validity refers to the extent to which an unknown factor has an effect on the
factor under investigation or may refer to the issues that may affect the relationship
between treatment and outcome. In order to mitigate the risk of an unknown factor
interfering with the data being captured a number of strategies is used, namely:

1. During the experimental run, all execution environments are initiated through
a set of scenario scripts. Every initiated scenario is automated to ensure that
no external factors may impact the outcome of the data during run time. Hav-
ing each scenario automated further strengthens the assurance that when each
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scenario is re-initiated, the environment is a reproduction of the previous iter-
ation of the same scenario. This mitigates any external factor interfering with
the data being collected, however the scripts may include bugs not accounted
for. To mitigate the risk of bugs manual validation runs were made with the
intent to confirm that the execution environment is configured correctly as ex-
pected. Post validation was also carried out on inspecting the data collected
which states the operating system configuration.

2. To mitigate any impact made on the performance on the system, the machine’s
network is disabled, as any traffic on the networking line may directly impact
the operating system scheduler.

3. Data is captured through a serial port to bypass any performance impact
made locally on the disk or through the USB kernel stack. The serial port is
connected to an external device that handles the data capturing and processing
it to a file. By writing all data through a serial port onto an external device
any impact on the scheduler made by USB, memory, or disk is mitigated.

8.3 External Validity
External validity refers to how generalisable are the findings beyond the actual
study, and to what extent are the findings of interest and relevance outside of the
scope. Scheduling precisions and I/O performance are two important factors for
a CPS and to systems that are highly sensitive to timing delays. The results of
this study can be applied for any system sensitive to timing delays in respect to
the execution environment, the hardware and the specific versions of software used.
The hardware used in the experiment is consumer level hardware, so reproduction
of the experiment is viable and a relation to the results can easily be made.

8.4 Conclusion Validity
Conclusion validity refers to validity of the measured effect of the treatments used
in the experiment. There exists two apparent threats to conclusion validity, namely
Type I and Type II statistical errors. Due to the samples size of this research
the threat of Type I error is considerable. For the statistical phenomena where an
increasing sample size will result in a decreasing P-value. This research have thus
put less weight on the P-value results as there exists a large number of data samples
for the hypothesis testing [45] which will result in highly significant results. This
requires a more extensive analysis of the results, taking larger consideration on the
effect size while evaluating the data.
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Conclusion & Future Work

This research sought to understand the impact Docker brings when utilised in the de-
ployment strategy for systems which enable self-driving capabilities in vehicles. The
research was conducted in collaboration with research project held in collaboration
between Chalmers and SAFER who are exploring the development of a self-driving
truck. The results from this research acts as support in the decision making process
of using Docker containers for software deployment for further software development
on the self-driving truck project. Previous literature [21, 31, 23, 24, 26, 30] show
promising results for containers as a deployment platform as their presented results
show negligible overhead introduced by utilising Docker in the execution environ-
ment of the applications explored. However, previous research has not been able to
build a case for the decision making specific for the domain of self-driving vehicles
where the domain stresses the real-time requirements of vehicular cyber-physical
systems. While the research conducted in [22] have explored how Docker behaves
using cyclic test in a cloud computing environment with real-time requirements, it
has not explored how Docker behaves in the context of a complete cyber-physical
system. This is the gap this research has explored.

The findings from this research are in-line with previous literature and show that
Docker introduces negligible overhead to the scheduling precision, input and output
performance to the cyber-physical system in both the controlled environment as
well as the environment of the self-driving truck at Chalmers Revere lab. Further-
more, the results convey that choosing a correct kernel for the system carry heavier
importance in comparison to choosing Docker or native execution for the deploy-
ment strategy. As the results show that the kernel type has a larger impact on the
scheduling precision. The results show a considerably more deterministic environ-
ment when utilising an RT_preempt kernel in comparison to a vanilla kernel. This
argues that Docker is not the predominant factor impacting the scheduling or IO
performance for when designing the correct execution environment for a self-driving
vehicle.

This research has focused on the specific context of implementing Docker as a de-
ployment strategy for self-driving vehicles. The design of this research has aimed to
find an understanding of how Docker impacts scheduling precision and camera and
disk performance for the contexts used. Analysis has been carried out to understand
how these performance factors behave while switching between different treatments,
such as system load and kernel version. The performance factors scheduling precision
and camera input and disk output performance build a foundation of understand-
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ing the impact a Docker implementation has on real-time systems, however, there
exists other factors that are of interest to investigate. There exists a need for under-
standing the impact of using Docker on multiple hosts, as CPSs typically contain
multiple computing nodes. The computational overhead of using multiple hosts is
identified in [22] in the context of cloud computing. However, a similar approach
is needed within the context of CPSs, using experimental units that utilise a full
implementation of a CPS such as the one implemented in this research.

The software requirements for the specific use case play the primary role for deciding
whether Docker is safe or unsafe to implement into the software deployment archi-
tecture. This research has found that for vehicular CPSs which have scheduling pre-
cision, camera input and disk output performance as critical software requirements,
Docker is a favourable choice for the deployment strategy. Docker is favourable due
to the added value it brings to a software development project in the form of saved
time, added safety and functionality, and portability among other things. However,
for vehicular CPS projects which introduce additional critical requirements such as
network performance, further research is required to understand how Docker be-
haves when network performance between separate computer nodes is part of the
critical requirements. This is particularly interesting to explore as there may exist
additional scheduling precision overhead of the CPS when introducing significant
networking interrupts onto a system executing the CPS. Therefore, it is required
to understand the behaviour during such a scenario before drawing conclusions to
whether Docker performs appropriately as a deployment strategy in a networked
environment.

To conclude, Docker together with a real-time enabled kernel is a viable platform
for deployment in the context of vehicular CPSs in respect to meeting the timing
requirements of a CPS application. It is therefore recommended to use Docker in an
environment with a: 1) real-time enabled kernel (RT_prempt), 2) modern storage
driver (OverlayFS).
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A
Source Code

A.1 Pi Component

1 whi l e ( getModuleStateAndWaitForRemainingTimeInTimeslice ( ) == odcore : : data : : dmcp : :←↩
ModuleStateMessage : : RUNNING ) {

2 // Second measurement po int
3 odcore : : data : : TimeStamp : : writeNanoToSerial ( " 2 " ) ;
4 odcore : : data : : TimeStamp start , end ;
5
6 // Pi a lgor i thm v a r i a b l e are
7 // r e s e t a f t e r each t i m e s l i c e .
8 long double tempPi ;
9 long double pi = 4 . 0 ;

10 i n t i = 1 ;
11 i n t j = 3 ;
12 f l o a t oDuration = 0 ;
13
14 whi le ( t rue ) {
15
16 // Ca lcu la te p i
17 tempPi = s t a t i c _ c a s t <double >(4)/j ;
18 i f ( i%2 != 0) {
19 pi −= tempPi ;
20 } e l s e i f ( i%2 == 0) {
21 pi += tempPi ;
22 }
23 i++;
24 j+=2;
25
26
27 // Occupy f o r a c e r t a i n durat ion
28 end = odcore : : data : : TimeStamp ( ) ;
29 oDuration = end . toNanoseconds ( )−start . toNanoseconds ( ) ;
30 i f ( oDuration >= occupy )
31 break ;
32 }
33 // Third measurement po int
34 odcore : : data : : TimeStamp : : writeNanoToSerial ( " 3 " ) ;
35 i f ( piTimes==duration )
36 re turn odcore : : data : : dmcp : : ModuleExitCodeMessage : : OKAY ;
37 }
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A. Source Code

A.2 Pi/IO Component

1 whi l e ( getModuleStateAndWaitForRemainingTimeInTimeslice ( ) == odcore : : data : : dmcp : :←↩
ModuleStateMessage : : RUNNING ) {

2 // Second measurement po int
3 odcore : : data : : TimeStamp : : writeNanoToSerial ( " 2 " ) ;
4 odcore : : data : : TimeStamp start , end ;
5
6 i f ( m_camera . get ( ) != NULL ) {
7 odcore : : data : : image : : SharedImage si = m_camera−>capture ( ) ;
8 // Third measurement po int
9 odcore : : data : : TimeStamp : : writeNanoToSerial ( " 3 " ) ;

10 odcore : : data : : Container c ( si ) ;
11 distribute ( c ) ;
12 // Fourth measurement po int
13 odcore : : data : : TimeStamp : : writeNanoToSerial ( " 4 " ) ;
14 }
15
16
17
18 // Pi a lgor i thm v a r i a b l e are
19 // r e s e t a f t e r each t i m e s l i c e .
20 long double tempPi ;
21 long double pi = 4 . 0 ;
22 i n t i = 1 ;
23 i n t j = 3 ;
24 f l o a t oDuration = 0 ;
25
26 whi le ( t rue ) {
27
28 // Ca lcu la te p i
29 tempPi = s t a t i c _ c a s t <double >(4)/j ;
30 i f ( i%2 != 0) {
31 pi −= tempPi ;
32 } e l s e i f ( i%2 == 0) {
33 pi += tempPi ;
34 }
35 i++;
36 j+=2;
37
38
39 // Occupy f o r a c e r t a i n durat ion
40 end = odcore : : data : : TimeStamp ( ) ;
41 oDuration = end . toNanoseconds ( )−start . toNanoseconds ( ) ;
42 i f ( oDuration >= occupy )
43 break ;
44 }
45
46 // F i f t h measurement po int
47 odcore : : data : : TimeStamp : : writeNanoToSerial ( " 5 " ) ;
48 i f ( piTimes==duration )
49 re turn odcore : : data : : dmcp : : ModuleExitCodeMessage : : OKAY ;
50 }

1 std : : shared_ptr<odcore : : wrapper : : SerialPort> TimeStamp : : m_serialPort = NULL ;
2 void TimeStamp : : setupSerial ( const string port , uint32_t baud_rate ) {
3 std : : shared_ptr<odcore : : wrapper : : SerialPort> serial ( odcore : : wrapper : :←↩

SerialPortFactory : : createSerialPort ( port , baud_rate ) ) ;
4 TimeStamp : : m_serialPort = serial ;
5 }
6
7 const string TimeStamp : : writeNanoToSerial ( const char ∗ measurementID ) {
8 TimeStamp ts = TimeStamp ( ) ;
9 t ry {

10 stringstream s ;

II



A. Source Code

11 s << measurementID << " ; " << ts . toNanoseconds ( ) << " \ r \n " ;
12 i f ( m_serialPort ) {
13 m_serialPort−>send ( s . str ( ) ) ;
14 } e l s e {
15 re turn " S e r i a l port not d e f i n e d " ;
16 }
17 re turn " S u c c e s s f u l l y wrote toNanosecond ( ) to s e r i a l " ;
18 }
19 catch ( string &exception ) {
20 re turn exception ;
21 }
22 }
23
24 const string TimeStamp : : writeMicroToSerial ( const char ∗ measurementID ) {
25 TimeStamp ts = TimeStamp ( ) ;
26 t ry {
27 stringstream s ;
28 s << measurementID << " ; " << ts . toMicroseconds ( ) << " \ r \n " ;
29 i f ( m_serialPort ) {
30 m_serialPort−>send ( s . str ( ) ) ;
31 } e l s e {
32 re turn " S e r i a l port not d e f i n e d " ;
33 }
34 re turn " S u c c e s s f u l l y wrote toMicrosecond ( ) to s e r i a l " ;
35 }
36 catch ( string &exception ) {
37 re turn exception ;
38 }
39 }
40
41 const string TimeStamp : : writeStringToSerial ( const char ∗ measurementID ) {
42 TimeStamp ts = TimeStamp ( ) ;
43 t ry {
44 stringstream s ;
45 s << measurementID << " ; " << ts . toString ( ) << " \ r \n " ;
46 i f ( m_serialPort ) {
47 m_serialPort−>send ( s . str ( ) ) ;
48 } e l s e {
49 re turn " S e r i a l port not d e f i n e d " ;
50 }
51 re turn " S u c c e s s f u l l y wrote t o S t r i n g ( ) to s e r i a l " ;
52 }
53 catch ( string &exception ) {
54 re turn exception ;
55 }
56 }
57
58 const string TimeStamp : : writeMessageToSerial ( const string message ) {
59 try {
60 i f ( m_serialPort ) {
61 m_serialPort−>send ( message ) ;
62 } e l s e {
63 re turn " S e r i a l port not d e f i n e d " ;
64 }
65 re turn " S u c c e s s f u l l y wrote message to s e r i a l " ;
66 }
67 catch ( string &exception ) {
68 re turn exception ;
69 }
70 }
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