
TME-180 Final report

Variables extraction and trajectory reconstruction

for modelling driver behaviour

Ahmed Hamdy Shams El Din
Mohamed Takkoush
Nicklas Pettersson

Sriranga Hulkunte Gopinath

Chalmers University of Technology, Gothenburg, Sweden

January 6, 2020

Abstract

Active safety and autonomous driving are two booming words in the automotive industry of
today. Most, if not all, companies are in a race to provide a safe environment for driving and are
thriving to reach their goals in producing autonomous vehicles.

The general goal of this project is to develop a human driver model for critical lane-changing
manoeuvres. Annotation of such data was done manually on videos acquired from dash-cam footage
from a naturalistic driving study (NDS) by identifying different events in time, such as time of lane
crossing and relative distance between vehicles. A semi-automatic tool to aid the annotation of the
NDS footage was developed and several methods for range calculation are discussed such as the pixel
width method and the triangulation method, which are also used for calculating the heading angle
and the lateral offset of the lead vehicle. The results were found to be relatively accurate considering
the simplicity of the tool. As for the tracking of the lead vehicles and the lanes, the most accurate
method was found to be through interpolating between user inputs.

i

Acknowledgement

This work has been performed under the VTTI Data License Agreement. The findings and conclusions of
this report are those of the authors and do not necessarily represent the views of VTTI, the Transportation
Research Board, or the National Academies.

Special thanks to the project supervisors Jonas Bärgman and Giulio Bianchi Piccinini for their
support during the course of this project. Their guidance and understanding helped us during tough
weeks, and their encouraging recommendations were paramount for writing the report. We would also
like to thank our families and friends who stood by our side with mental support since the day we started
on the project up until this moment.

ii

Contents

Abbreviations 1

1 Introduction 2
1.1 Background . 2
1.2 Aim and Scope . 2
1.3 Literature Review . 3

1.3.1 Camera model and rectification . 3
1.3.2 Lane detection . 4
1.3.3 Heading angle and lateral offset estimation . 4
1.3.4 Range and range rate estimation . 5
1.3.5 Manual Annotation . 5
1.3.6 Python Modules . 5

1.4 Ethics Assessment . 6

2 Methodology 7
2.1 Image Rectification . 7

2.1.1 Frames of reference . 7
2.1.2 Intrinsic Parameters . 8
2.1.3 Extrinsic Parameters . 8

2.2 Lane Tracking . 10
2.2.1 Manual Tracking . 10
2.2.2 Automatic Tracking . 10
2.2.3 Semi Automatic Tracking . 16
2.2.4 Test of Lane detection algorithm . 16

2.3 Heading Angle . 16
2.3.1 Method 1 for Heading Angle: Triangulation . 16
2.3.2 Method 2 for Heading Angle: Number plate . 18
2.3.3 Method 3 for Heading Angle: Side plane homography 18

2.4 Lateral Offset . 19
2.4.1 Method 1 for Lateral Offset: Pixel width . 19
2.4.2 Method 2 for Lateral Offset: Triangulation . 20
2.4.3 Error Estimation . 20

2.5 Range Estimation . 20
2.5.1 Method 1 for Range Estimation: Pixel width . 20
2.5.2 Method 2 for Range Estimation: Triangulation . 20
2.5.3 Error Estimation . 21

2.6 Vehicle Tracking . 21
2.6.1 Manual Tracking . 21
2.6.2 Automatic Tracking . 21
2.6.3 Semi-Automatic Tracking . 21

2.7 Design of Tool and Graphical User Interface . 21
2.7.1 Video Player . 21
2.7.2 Controls . 21
2.7.3 Displaying Information . 22
2.7.4 Loading and Saving Data . 22
2.7.5 Writing a User Manual . 22
2.7.6 Testing User Sensitivity . 22

3 Results 23
3.1 Image Rectification . 23

3.1.1 Rectification Using Intrinsic Parameters . 23
3.1.2 Rectification Using Extrinsic Parameters . 23

3.2 Lane Tracking . 24
3.2.1 Manual Tracking . 24
3.2.2 Automatic Tracking . 25

3.3 Heading Angle . 28

iii

3.4 Lateral Offset . 29
3.4.1 Filtering . 29
3.4.2 Comparing Estimated Lateral Offset to Radar Data 30
3.4.3 Comparing Triangulation method to Pixel Width method and Radar Data 32
3.4.4 Estimation Error . 32

3.5 Range estimation . 33
3.5.1 Filtering . 33
3.5.2 Comparing Estimated Range to Radar Data . 34
3.5.3 Comparing Triangulation method to Pixel Width method and Radar Data 36
3.5.4 Estimation Error . 36

3.6 Vehicle tracking . 37
3.6.1 Manual Tracking . 37
3.6.2 Automatic and Semi-automatic Vehicle Tracking 38

3.7 Tool and Graphical User Interface design . 39
3.7.1 Video player and Controls . 39
3.7.2 Displaying Information . 40
3.7.3 Loading and Saving User Inputs . 43
3.7.4 Testing User Sensitivity . 43

4 Discussion 45
4.1 Image Rectification . 45
4.2 Lane Tracking . 46
4.3 Heading Angle . 46
4.4 Lateral Offset . 46

4.4.1 Filtering . 46
4.4.2 Lateral Offset versus Radar Data . 46

4.5 Range Estimation . 47
4.5.1 Filtering . 47
4.5.2 Range versus Radar Data . 47

4.6 Vehicle Tracking . 47
4.7 Graphical User Interface . 47

5 Conclusion 48

6 Appendix 52

iv

Abbreviations

• NDS - Naturalistic driving study

• NDD - Naturalistic driving data

• VTTI - Virginia Tech Transportation Institute

• SV - Subject vehicle

• POV - Principle object vehicle

• GUI - Graphical user interface

• VP - Vanishing point

• ROI - Region Of Interest

1

1 Introduction

Understanding human behaviour is an important step for the development of computational driver
models. These models are currently used in the evaluation of modern active systems [1]. Through
the analysis of videos collected during naturalistic driving studies, information about driving behaviour
can be obtained and used for the development of driver models. However, the retrieval of information
from Naturalistic Driving Studies (NDS) often requires manual annotations of the data, which is a time
consuming task [2].

This project aims to develop a tool that can support the manual annotations of NDS, with the
final objective to increase the accuracy of the annotations and reduce the time required to extract the
variables. The safety-critical target scenario under evaluation for the development of the tool is the lane
change manoeuvre: in this safety-critical target scenario, the lead vehicle attempts or succeeds to change
lane in front of the following vehicle, causing the driver of the following vehicle to perform an evasive
manoeuvre (brake or steer away) to avoid a crash. In this report, the lead vehicle will be referred to as
the Principal Object Vehicle (POV) and the following vehicle referred to as the Subject Vehicle (SV).

The developed tool utilizes a video of the forward roadway recorded by the camera installed in the SV.
The expected outputs from the tools are variables, such as the speed of the POV, the distance between
the SV and the POV, the distance between the POV and the lane marks. The extracted variables can
be used to develop driver models describing the SV drivers’ response to the lane change of the POV.

The stakeholders of this project are AB Volvo and Zenuity, who occasionally took part in meetings
and attended the presentations. The suggestions and needs of the stakeholders were considered while
developing a dynamic tool for different uses.

1.1 Background

The field of traffic safety has seen huge developments since the introduction of the automobile.
Initially, passive safety systems were introduced to prevent or reduce injuries in case of a crash [3].
These systems - such as crumble zones, seat belts and airbags - are built in the vehicle structure and are
designed to restrain the occupant and absorb energy in case of a crash. As technology and the increased
use of electronics in vehicles progressed, engineers have been able to develop active safety systems that
are designed to prevent a crash from happening, for example, Electronic Stability Program (ESP), Lane
Departure Warning (LDW) and Automatic Emergency Braking (AEB). Active safety systems could
either issue warnings to the driver, such as LDW, or make corrections to help the driver avoid a crash,
such as ESP [3].

Driver models serve as an important input in developing active safety systems: driver models can
for example be used for the assessment of predictive safety benefits and for the definition of warning
strategies. Driver models are used to predict human behaviour in different critical scenarios, and act
upon these predictions to mitigate or reduce the severity of crashes [1]. There are different driver models
with different complexities.

One well known model is the car-following model presented by Gazis, Herman, and Rothery (1961). In
this model, the diver aims to keep the same speed as the lead vehicle and adapts to speed changes faster
at higher speed, low headway distances . Parameters for this model were tuned through conducting
follow-the-leader experiments [4]. This model was later extended to account for a number of error-
inducing driver behaviours and stochasticity and have been used for evaluating active safety systems,
such as FCW [5]. Another way to gather data about driver behaviour for these models is through NDS.

NDS is a methodology in which the participants are asked to drive as they would do in their daily
life [6] and data are collected from vehicles equipped with sensors and cameras. The sensors provide
variables, such as speed and GPS location, while the two cameras, one pointed at the driver and the
other one at the road ahead, provide videos showing the behaviour of the driver and the other road users.

The data used in this project was collected through the second Strategic Highway Research Program
(SHRP2) though a naturalistic driving study involving more than 3000 male and female volunteers, with
the aim to learn how individual driver behaviour interacts with vehicle and roadway characteristics [7].

1.2 Aim and Scope

As previously mentioned, the annotation of NDS videos is mostly done manually. Through developing
tools to aid this process, a larger set of videos could be annotated in a shorter time, providing more
variables to be used for the analysis and modelling of driver behaviour.

2

Throughout the course of the project, the team aims to develop a semi-automatic tool that aids
the annotation of NDS, in lane-change manoeuvres involving two vehicles. The tool will be used to
determine variables, such as the distance between the SV and the POV, the POV speed, the distance
between the POV and the lane markings, and the positioning of the SV in the lane. The tool should
be semi-automatic, meaning that the user will manually annotate features such as the lane markings
and the POV width. For this reason, the tool includes a Graphical User Interface (GUI), which could
support the performance of manual annotations.

By using this tool, the accuracy of the estimated variables (e.g. speed of POV and distance between
SV and POV) will increase and the time required for the annotations will decrease. As a consequence,
the accuracy of the analyses to design driver models developed using NDS will improve.

1.3 Literature Review

In order to carry out the study and develop the tool needed for studying drivers’ behaviour, a non-
exhaustive literature and resource study was carried out regarding state of the art and current resources
available to the team.

1.3.1 Camera model and rectification

To be able to carry out image processing techniques on images, one would first have to determine a
camera model and rectify the images in hand for distortions and camera pose. As seen over the years,
the pinhole camera model is the most generic camera model used. The theory behind the pinhole camera
model is described in details in [8]. This popular camera model has proven to be a reliable model in
several applications such as in close-range [9] or wide-angle lenses [10]. Figure 1 shows a basic simplified
pinhole camera model.

C
p

pi

P

focal axis

Image plane Virtual image plane

Figure 1: Pinhole Camera Model

Camera calibration and image rectification are well studied subjects and are becoming more impor-
tant with the increasing need for higher accuracy measurement in computer vision. For geometrical
measurements, the main concern is camera distortion [11].

Radial distortion causes an inward or outward displacement of a given image point from its ideal
location while tangential distortion causes a rotational displacement about the center of the image. These
effects are better explained with figures in [11]. These distortions are caused by either the spherical shape
or the position of the camera lens and results in straight objects in reality to appear curved in the image.
Image rectification is therefore needed to get a better estimation of the real world position of objects in
an image.

There are two sets of parameters that are needed for image rectification, these are internal (intrinsic)
and external (extrinsic) camera parameters. Internal parameters determine the image coordinates of a
point given the spatial position of said point with respect to the camera. External parameters characterise
the geometrical relation between the camera and the scene [11]. While intrinsic calibration is only done
once for a camera, extrinsic calibration is required when the position and orientation of the camera is

3

subjected to large changes, such as the case of a vehicle driving on the road [12]. Given a sufficient
number of visible points, their placement in the image, and their placement in real world coordinates,
the internal and external camera parameters can be estimated [11].

1.3.2 Lane detection

Lane detection is a crucial part of the development of autonomous vehicles and many active safety
systems, such as Lane Keep Assist (LKA), Lane Departure Warning (LDW) and Lane Change Support
(LCS). In these applications, lanes are in most cases detected in real-time with computer vision tech-
nologies, by using one or multiply road facing cameras mounted at the front of a vehicle. Lane detection
is also used to analyse NDS videos in order to extract information about the events that lead to a crash
or a near-crash [13]. In fact, lane change events, lane type and vehicle localisation using lanes are some
of the most important measures when it comes to investigation of crash and pre-crash events [13]. The
goal of this literature review is to investigate how a lane detection algorithm can be structured and how
it can be used in practice.

1.3.2.1 Algorithm

A simple but robust lane detection algorithm is described in [14]. The input data to the algorithm is
an image captured by a road-facing camera mounted on a moving vehicle. In order to detect the lanes,
the image needs to be processed. The basic idea behind lane detection is to identify the lane boundaries,
or the edges of the lanes. The edges of the lane can be defined as a rapid change in intensity from one
pixel to another. In the case of detecting the lanes on a road, the difference in intensity between the
yellow or white lane and the gray asphalt needs to be identified [15]. In order to easier detect change in
colour, the image in the algorithm [14] is converted to grayscale. An alternative approach is to filter out
all the colours in the image except for yellow and white and therefore distinguish the lanes from other
objects in the image. The problem with this approach is that worn out lanes have a different colour than
newer lanes, and the brightness of the image affects the colour, making it hard to find a colour threshold
which will work in all videos [16]. The next step in the construction process of the algorithm described
in [14] is to remove noise from the image, for example strong shadows. One of the most used filters in
these kinds of tasks is the Gaussian blur filters, which is a low pass filter that smoothens the image [17].
There are also filters that adjust the brightness and contrast of the image. The contrast between the
asphalt and the lane is identified by using an edge detector.

For the algorithm described in [14], a canny edge detector was used. In order to determine which of
the identified edges are lanes, the algorithm [14] used a Hough transform to search for lines which are
horizontal with a maximum of 45 degrees slope to either the left or the right. These identified lines are
considered lanes, all the other detected lines are rejected. The last step in the development process of
the algorithm described in [14] is to define the region of interest (ROI). In this step, the processed image
is cropped so all unnecessary information in the image is rejected, for example the environment on the
side of the road. In this case, ROI only consist of the road near the vehicle.

1.3.2.2 Critical aspects

Even though lane detection methods have been improved during recent years, there are still challenges
to overcome in this field. Complex illuminations and shadows from the environment can cause the camera
to miss lanes on the road, or wrongly recognise objects and shadows as lanes [14]. The ability of the
algorithms to detect lanes is heavily dependent on the time of the day, the weather and the season of
the year. In order for the lane detection algorithm to be robust, it must be able to detect the lanes in
different conditions.

1.3.3 Heading angle and lateral offset estimation

Calculating the heading angle of the POV is not an easy task, especially using a mono camera system.
In [18], the authors estimate the 3D pose of an object by following some feature points between

frames and constructing a 3D trajectory as well as the object’s structure. The estimation is fortified by
using the optical flow of the feature points. A more straightforward method is introduced in [19] where
an extended Kalman filter is used to estimate the rotation and translation of an object between frames,
given that the feature points’ coordinates are known in 3D-space and 2D-space.

4

Another method, proposed in [20], utilises the concept of homography for calculating the change
in a plane between frames. This method was intended to calculate the angular rate of a POV along
intersections and curves. The calculation is enhanced using an extended Kalman filter to better track
feature points between frames. The homography method is also utilized in [21] to estimate the yaw angle
of an unmanned aerial vehicle (UAV). The proposed method uses a reference on the ground to calculate
the homographies over time and estimate the yaw angle from that.

Finally, a method is developed by Nilsson where the heading angle of the POV is estimated by
measuring the POV corners in relation to its previously known length and width [22]. This method was
found to be reliable on proper measurements which can sometimes not be available based on the quality
of the frames taken by the camera, in addition to the prior estimation of the POV’s width and length.

1.3.4 Range and range rate estimation

Intelligent vehicle systems are increasingly relying on vehicle sensors for calculation of distances and
speeds between vehicles [23]. Engineers have used different sensors and hardware for range estimation
and speed calculation. Some of those vehicular systems used for range estimation are radars, lidars and
camera systems, being monocular and stereo vision used for distance calculation [24]. In fact, radars
can also provide a range rate estimation using the Doppler effect [25]. Time-of-flight cameras are also
an option for distance calculation that offers depth scanning of the environment as well [26].

For the distance estimation using a monocular vision camera, several methods have been developed.
One of those methods would be using the width of a vehicle and its corresponding number of pixels in
the image frame [22]. Another method suggested machine learning for 3D reconstruction using a still
monocular camera setup [27]. Several research has also been conducted on distance calculation using
the triangulation method with accounting for the pitch angle of the camera as in [28], [29] and [30].
An interesting approach that is based on the triangulation method and takes into account the extrinsic
parameters of the camera (pitch, yaw and roll) is discussed in [31]: the authors define a homography
matrix that rotates the image in such a way that the camera in the rotated image is pointing towards the
vanishing point of the lanes. This homography matrix is based on the Euler-Rodrigues rotation formula
[32]. The optical flow method is also one option for measuring the motion of an object between frames
by the tracking of feature points [33].

1.3.5 Manual Annotation

Manual annotation for extracting data from videos can be a time- and resource-consuming task [34].
Since SHRP2 does not include data about the lead vehicle, such as lateral speed, longitudinal speed and
lateral position in the lane, this data is currently acquired through manual annotation of the videos,
where the annotator manually measures the pixel width of the lead vehicle in the image with a ruler and
a constant assumed vehicle width [35].

Environmental factors, such as surface condition, lighting condition, forward visibility are also iden-
tified using the forward roadway view footage [36].

For studying safety-critical lane changes, one study was found that used dash-cam footage from the
SV. Annotation in this study was done through viewing the video and noting the time where half of the
SV has crossed the lane edge [37].

In an other study, comprehensive Examination of Naturalistic Lane-Changes, a population of 8,667
lane changes were studied. This population was constructed using two research vehicles driven by 16
participants over the period of 320 days. The vehicles used in this study were modified and equipped
with radars and cameras on all sides of the vehicles enabling full comprehension of the SV’s surroundings.
A Sample of 500 critical lane changes was chosen for an in-depth analysis. A tool was used to integrate
video, radar and sensor data to display the event in a graphical representation. The tool allowed the
annotator to study the behaviour of the driver during the lane-changing manoeuvre using the driver face
camera. It also allowed the annotator to estimate the curvature of the lanes through using sliders and a
comparison to the video image [38].

1.3.6 Python Modules

Python offers the ability to use numerous open source modules and libraries for different computer
vision applications. Below is a brief description of some of those modules and libraries. A more detailed
description of the exact versions used in the project environment is included in the appendix.

5

OpenCV

The openCV library is an open source tool that provides many image processing functions [39]. One
of its functionalities is that it can read images from a video file frame by frame and display said images
in a predefined window. It can also, in the same window, edit the image with multiple drawing functions
using the keyboard and mouse as inputs. There are also some image recognition tools that can be helpful
for the future automatization of the annotation tool.

Numpy

This is a general purpose array processing package that provides high-performance multidimensional
array objects and tools for working for these arrays [40].

Scipy

Scipy is a scientific library that has functions to import and export data to and from .mat files in
Python [41].

Math

The Python Math library offers access to some common math functions and constants in Python
[42]. This library is a built-in module in Python, hence needs no installation. It does, however, require
to be imported in the script where its functions are to be used.

Tkinter

Tkinter is the most commonly used GUI programming toolkit for Python and therefore has many
tutorials on how to make a simple GUI [43].

Pickle

Python’s Pickle module is used for serializing and de-serializing a Python object structure. Any
object in Python can be pickled so that it can be saved on disk. What Pickle does is that it “serializes”
the object first before writing it to file. Pickling is a way to convert a python object (list, dict, etc.)
into a character stream. The idea is that this character stream contains all the information necessary to
reconstruct the object in another python script [44].

Matplotlib

The Matplotlib is a Python 2D plotting library that is easy to use and produces publication quality
figures [45].

Time

The time module contains several time relate functions [46].

1.4 Ethics Assessment

This project uses naturalistic driving data collected by VTTI (Virginia tech transportation institute)
for the purpose of studying human behaviour and developing safety systems that benefits the community
and the research field. The study sensor data and on-board videos from more than 3,100 volunteers and
up to 2 years of driving under everyday conditions [47]. When working with such data, it is very important
to respect the privacy and integrity of the studied subjects and always preserve their anonymity. For
this reason, all the team members underwent an online ethics course which introduced them to how to
treat data collected from human subjects and to what are the possible ethical risks associated to the use
of NDS.

The data used in this project is secured in safety rooms on specific computers. The rooms have
restricted access and the team members got access to the rooms after completing the online ethics course
mentioned above. By gaining access to the data, the team members pledged to follow the terms and
conditions set by VTTI and always keep the privacy of the human subjects as a priority in this research.

6

2 Methodology

In order to develop a tool for data annotation, some steps are to be taken. First, some frames of
reference will be defined that will be used throughout the report. Then a description of how to rectify an
image for its intrinsic and extrinsic parameter is shown. The extrinsic rectification discussed relies on the
lane lines which brings up the importance of discussing lane tracking. After that, three main parameters
of the POV are calculated: its heading angle, lateral offset and longitudinal range with respect to the
SV. Some vehicle tracking techniques are also discussed.

Finally, this tool requires a GUI, which is described in details in this section, to interact with the
user.

2.1 Image Rectification

Before an image can be used for calculation, some image processing had to be performed on the
frames in order to get rid of the distortions and account for the camera’s extrinsic parameters.

2.1.1 Frames of reference

In order to get the right equations for the rectification of the images, some frames of reference that
can be followed throughout the rest of the calculations were defined.

y

x

v

u

Figure 2: Camera frame of reference

All frames read by the OpenCV library are images which follow the uv frame of reference presented
in Figure 2. In order to apply the extrinsic parameters (which is explained in a later section) on
certain points of the image, a frame of reference conversion is required. Extrinsic parameters and the
transformation from 2D to 3D are applied on an xy frame of reference similar to the one presented in
Figure 2. Once in 3D, the points will be expressed in the XY Z frame of reference presented in Figure 3.

Y

Z

X

Figure 3: Vehicle frame of reference

7

2.1.2 Intrinsic Parameters

The intrinsic parameters in this project are limited to the radial and tangential distortions which are
explained in the literature review and in [11]. For rectifying an image using the OpenCV library, the
camera matrix and an array of distortion coefficients are required as an input. The camera matrix is
defined by its focal lengths and the coordinates of its principal center which are provided from VTTI
such that

A =

fu 0 cx
0 fv cy
0 0 1

 (1)

where

f =

[
fu
fv

]
=

[
347.1960
352.3415

]
(2)

c =

[
cx
cy

]
=

[
241.5788
188.9012

]
(3)

The array of distortion coefficients is expressed as

DistortionCoefficients =
[
k1 k2 p1 p2 k3

]
(4)

where k1, k2 and k3 are radial distortion coefficients, and p1 and p2 are tangential distortion coefficients.
Those coefficients are acquired from VTTI. The array used for the rectification is hence

DistortionCoefficients =
[
−0.432387 0.183867 − 0.038207 0.000657 0.000187

]
(5)

It is important to keep in mind that not all videos in the database are recorded using the same
camera. This means that using those distortion coefficients for all the videos is one of the assumptions
in the project.

2.1.3 Extrinsic Parameters

Any point (x′, y′) in the xy image frame can be rectified with the extrinsic parameters to a point
(x, y) which can be used for further processing and distance calculation later on. This can be seen in
Figure 4 where point p has the coordinates (x, y) after the rectification is applied to point p′.

p

Camera

Y

Z

X

P

focal axis

Image plane

image center

vanishing point

p′

Camera

Y

Z

X

P

focal axis

Image plane

image center

vanishing point

Figure 4: Rectifying the camera’s extrinsic parameters with homography

This rectification is interpreted as a transformation matrix called the homography matrix H. The
homography matrix is in general a relation between two images of the same object taken from a different
camera or pose. In this case, the different camera poses are of the same dashcam before and after
accounting for the extrinsic parameters which are the pitch and yaw of the SV. The theory of this
transformation matrix is described here. A point (x′, y′) is transformed to (x, y) using the homography
matrix H. lxly

l

 = H

x′y′
1

 =

r11 r12 fur13

r21 r22 fvr23
r31
fu

r32
fv

r33

x′y′
1

 (6)

8

where the l is an arbitrary scaling factor and the components ri,j form the Euler-Rodrigues rotation
matrix [48] which states

R = I + (sinα) Jv + (1− cosα) J2
v = r(i, j) (7)

where we will define α =
∥∥Ω
∥∥, Ω = (θ, φ, ψ), v = (vx, vy, vz) = Ω

α , and Jv is a skew-symmetric matrix
defined as

Jv =

 0 −vz vy
vz 0 −vx
−vy vx 0

 (8)

R ≈ I +

 0 φ −ψ
−φ 0 θ
ψ −θ 0

 =

 1 φ −ψ
−φ 1 θ
ψ −θ 1

 (9)

Here, the angles θ, ψ and φ are the camera’s pitch, yaw and roll angles respectively. So the homography
matrix becomes

H =

 1 φ −fuψ
−φ 1 fvθ
ψ
fu

− θ
fv

1

 (10)

In this project, it is assumed that the roll angle φ of the vehicle is negligible. Since the camera and
the SV are assumed to share the same angels, the homography matrix narrows down to

H =

 1 0 −fuψ
0 1 fvθ
ψ
fu
− θ
fv

1

 (11)

In order to get the pitch and yaw angles (θ and ψ), the vanishing point method will be used. In
an image plane, all lines lying on one plane and parallel to each other will meet at a point called the
vanishing point. Considering the ground plane, this means that parallel lane lines will intersect at a
certain vanishing point in the image plane. In 3D, this point has a coordinate Y =∞, meaning it is on
the horizon. Joining all parallel lines of different slopes together will eventually create a set of vanishing
points which, if joined, make up the horizon (also referred to as vanishing line) [49].

Finding the vanishing point in the image plane is a straight forward task. Whether it is by automatic
lane detection, or by manually selecting points on the lane lines, an equation of each lane line can be
developed. The vanishing point is then the intersection of those two lines. Considering two points on
each lane, where points (x11, y11) and (x12, y12) are on one line, and (x21, y21) and (x22, y22) are on the
other, the coordinates of the vanishing point become:

xvp =
b2 − b1
m1 −m2

, (12)

yvp = m1xvp + b1 (13)

where each line has an equation y = mx+ b, m is the slope of the lane line and b is the y-intercept.
Now from the location of the vanishing point in relation to the centre of the image, the pitch and yaw

can be estimated, and the homography matrix can be created that for the vanishing point vp as follows:

0 = xvp + fuψ (14)

0 = yvp + fvθ (15)

This can be assumed since the mapping of the vanishing point using H should give a zero vector. Hence,
the pitch and yaw angles are calculated as:

ψ =
−xvp
fu

(16)

θ =
−yvp
fv

(17)

9

2.2 Lane Tracking

To be able to calculate the distance between the POV and the lane, the lane has to be found in the
video frame by frame. This could be done manually by the user or automatically by a software. The first
option is easier to implement in a tool, but is a time-consuming task for the user. The second option is
more demanding to implement, but if done correctly, could speed up the annotation process and provide
more data to be used for analysing and model driver behaviour. The development process of the two
lane detection methods, manual tracking and automatic tracking, are presented in this section.

2.2.1 Manual Tracking

In this method, the lanes are defined manually by the user through marking points on the left and
the right lanes in the video frames. The coordinates of these points were then used to calculate a linear
line through the aforementioned points. To speed up this process, the user can define the lanes in one
frame (possibly, the initial frame), skip through multiple frames, and define the lanes again (possibly,
in the last frame). The program will then interpolate the lane placement and draw a an approximation
of the lane placement on every frame between these two frames. The user will now be able to view all
the frames with the drawn approximated lane and make changes in the markings of the points if the
approximation of the lane position is not correct.

2.2.2 Automatic Tracking

The aim was to develop a robust lane detection algorithm that required little manual work from the
user. Robust in this case means that the lane detection should work well with both low and high quality
NDS videos. Also, it should work well on videos recorded both during the day and during the night. All
the steps involved in the development process of the lane detection algorithm are described below. An
important remark is that the algorithm is based on the one described in the literature review, section
1.3.2, but different approaches were tested in order to make the lane detection as good as possible. Three
different definitions of region of interest was tested, this is presented later in this section. Also, Four
different colour scales were tested, which are also presented later in this section.

An overview of the developed automatic lane detection algorithm is presented in figure 5. All steps
in the development process of the algorithm are described below.

10

Figure 5: Final algorithm based on results obtained after masking

2.2.2.1 Region of Interest

The first thing to do in order to detect the lanes in one frame is to define the Region Of Interest
(ROI). The ROI contains all the interesting information in an image, in this case the area where the lanes
are, and ensure that all the unnecessary information is ignored. A well-defined ROI contains as little
unnecessary information (such as the landscape around the road, the road shoulders and other vehicles)
as possible. Since the aim is to make the lane detection as automatic as possible, the ROI needs to be
define with as little user input as possible. The different ROI:s that were considered for the algorithm
are described below, together with their respective pros and cons.

ROI 1: Lower half of the image

The ROI is defined as the bottom half of the image, like the region in red marking in Figure 6. The
positive aspect of this ROI is that the user doesn’t need to manually define the ROI. However, the ROI
will contain a lot of unnecessary information, such as the landscape around the road, the road shoulders
and the road between the lanes. This will lead to problems later when its time to detect the lanes.

11

ROI 2: Triangular shape

The ROI is defined as a triangle that contains the whole road, like the region in black marking in
Figure 6. This ROI needs to be defined by the user in the beginning of the annotation for the first frame,
but the same ROI can be used in the upcoming frames. Assumed that the road doesn’t have any sharp
turning during the event of interest, the same ROI can be used for the whole video.

ROI 3: Focus on one lane

The ROI is defined as a small rectangle that mainly contains one of the lanes, like the region in blue
marking in Figure 6. This ROI needs to be defined by the user for at least two frames, the idea is that
the user defines a ROI for the first frame and then define a new ROI for a frame a couple of time steps
later. The ROI is then interpolated between the two frames and automatically updated for every frame.
The number of frames for which the interpolation can be applied depends on the shape of the road. If
the road has a sharp turn, the user needs to define the ROI for more frames compared to a relative
straight road. Also, the user needs to define one ROI for both the left and the right lane. This type of
ROI consist of little unnecessary information, which will be helpful later when it is time to detect the
lanes.

After trying all three types of ROI, the ROI focused on one lane successfully detected the most
number of lanes and is therefore then one used in the lane detection algorithm.

Figure 6: Approach to selecting different Region of interest

2.2.2.2 Colour selection

The next step is to detect all the edges of lanes in the defined ROI for all the frames. As described
in the literature review, section 1.3.2, the edges in an image is found by looking at the rapid change in
intensity from two adjacent pixels. The intensity can be amplified and therefor make the edges more
easy to detect by using different colour scales and mask out certain colours. In this case, the boundary
of the yellow or white lanes and the gray asphalt is what defines the lanes and should be detected. The
sections below describe different colour scales and how effective they are in amplifying the pixel intensity.

Color selection: Grayscale

It is easy for the human eye to differentiate the gray asphalt from the yellow or white lanes, but due
to shadows, complex lightning and worn out lanes (which change the pixels intensity on the road), it
can be hard for a computer to distinct between the white/yellow lane and the road surface. Using a
grayscale filter to convert the original RGB image to an image which consist of different shades of gray
will reduce the shadows and lightning’s influence and hence make the distinction between lanes and road
surface clearer. Figure 7 (top right) shows the original image after a grayscale filter been applied.

Color selection: Colour scales

An alternative method to detect lanes is to filter out all the colours in the image except for the colours
that the lane has, namely yellow and white. Different colour scales have different colour contrast, and a
higher colour contrast makes it easier for a computer to detect a certain object with a certain colour. The
different colour scales which was investigated during this work was RGB, HSV and HSL. The original
RGB image, which can be seen in figure 7 (top left) was converted to a HSV image and HSL image,

12

shown in figure 7 (bottom right and bottom left respectively). The threshold values for yellow masking
and white masking for the different colour scales are shown in table 1.

Colour conversion
Colour scale Lower white Upper white Lower yellow Upper yellow

RGB 160, 160, 160 255, 255, 255 150, 150, 0 255, 255, 80
HSV 0, 0, 160 0, 0, 255 60, 255, 150 60, 175, 255
HSL 0, 0, 160 0, 0, 255 60, 255, 75 60, 255, 170

Table 1: Threshold for yellow and white masking for different colour scales

Figure 7: Image conversion on different color scale

2.2.2.3 Filters

In order to obtain a correct detection of objects in an image, it is first necessary to distinguish them
correctly. The noise and details in an image are reduced using a well known filter called Gaussian filter.
The Gaussian filter is simple as it requires varying only one parameter; the variance. As seen in the
equation below, it can be inferred that the amount of filtering is inversely proportional to the variance.
Based on the level of suppression required on an image, the respective variance can be applied. Other
filters that can be considered are the mean-average and the median filters. Although they work well in
reducing noise in an image faster than the Gaussian filter, they are ineffective in identifying the rate of
change of frequency in an image which has sharp changes in colour.

G(x, y) =
1

2πσ2
e

−x2+y2

2σ2 (18)

If the frame in which the lanes shall be detected is taken during night time, or if there are strong shadows
in the frame, the brightness needs to be increased for better lane detection. And in the same way if the
frame is taken during strong sunlight, the brightness needs to be decreased. The brightness and contrast
of an image can be adjusted by applying a filter. In figure 8, a filter is applied to the original dark frame,
figure 8 (left), so the frame gets brighter, figure 8 (right), and therefor the lanes gets more visible. In
figure 9, a filter is applied to the original light frame, figure 9 (left), so the frame gets darker, figure 9
(right), and therefor the lanes gets more visible.

13

Figure 8: Increase the brightness of an image with a filter

Figure 9: Decrease the brightness of an image with a filter

2.2.2.4 Canny edge detection

The edges in the defined ROI are now ready to be detected. The edge detection is done with a canny
function. The canny function was applied to all three different colour scales frames and the gray scale
frame presented in figure 7 and the result is presented in figure 10. The canny function applied to the
original RGB image can be seen in figure 10 (top left). The canny function applied to the converted HSV
image and the converted HSL image can be seen in figure 10 (bottom right and bottom left respectively).
Finally, the canny function applied to the gray scale image can be seen in figure 10 (top right).

Figure 10: Edge detection using canny operator

14

2.2.2.5 Hough Transform

Hough transform is a widely used technique in computer vision and image analysis for feature ex-
traction. Originally, it was used to identify lines but later was developed for other shapes as well.

Figure 11: A line in polar co-ordinates

Considering the equation of a line in polar co-ordinate system from Figure 11, where r represents the
perpendicular distance to the line, (θ) is the angle in radians with the X-axis and (x,y) are points on
line for which r and θ are constants.

r = xcos(θ) + ysin(θ) (19)

Since the variables (r,θ) of the equation of line have to lie between definite values, the equation of line in
Cartesian form can not be used as slope may take values up to infinity. From the equation 19,it can be
inferred that for known points (x,y), the subsequent (r,θ) can be plotted. Each point gives a sinusoidal
curve in the (r,θ) plane.The points which are collinear yield curves which intersect at common point
(r,θ) This essentially forms the principle behind the Hough transform. The threshold can be set for
the number of lines which intersect ar r and θ. The Hough transform declares a line based on the set
threshold.

2.2.2.6 Averaging lines

As seen in section 2.2.2.5, the Hough transform is used to identify which of the detected edges are
part of a lane and reject those edges that are not part of a lane. In the ideal case, the Hough transform
identify two edges as parts of a lane, the vertical left and right side of the actual lane. The detected
lanes position is estimated by taking the average slope and the average position in x,y- coordinates of
the detected edges. In some cases however, the Hough transform misdetect an edge as part of a lane,
which will lead to a worse estimation of the lanes position. In order to avoid misdetection of lanes, the
algorithm only consider the edges which have a similar slope, that is maximum 60 degrees different, to
the region of interest.

The estimated lanes are drawn on the frame which are analysed so the user can visually determine
if the estimation is accurate. Also, the estimated lanes end-points in x,y-coordinates are given as an
output from the algorithm

2.2.2.7 Bird’s eye perspective

The image obtained from forward facing camera appears to converge to an infinite point in the image
plane due to perspective. It is vital to correct this as it affects the parameters to be calculated. To
change the perspective as viewed from the top gives a better understanding of the lanes, especially the
curved ones.

The most commonly used technique is bird’s eye transformation. This allows the image to be trans-
formed such that it appears as seen from the top. This method could be an alternative to solving the
heading angle problem. However, it’s limitation is that only lanes are seen clearly where as objects are
stretched in the vertical direction and may not useful in annotating cars.

15

2.2.3 Semi Automatic Tracking

This method will let the user define the Region Of Interest in a couple of frames, then the lane
detection algorithm described above could search for the lanes within this RIO. This would allow for
faster annotation compared to manual annotation and better lane detection.

2.2.4 Test of Lane detection algorithm

Some tests was performed in order to determine which of the colour scales gives the best result in
terms of detecting lanes and should therefor be used in the final lane detection algorithm described in
section 2.2.2. The four different colour scales, namely RGB, HSV, HSL and gray scale was tested on
three different scenarios, NDS videos containing dashed lanes, NDS videos containing solid lanes and
NDS videos recorded during night time. Three representative videos were used for each of the three
scenarios and the results are presented in section 3.2.

In order to check how trustworthy the lane detection algorithm is in the sense that the detected lanes
are actually lanes and not something else, a misdetection test was performed. In the test, the ROI of
the lane detection algorithm was defined in an area of the frame where no lanes are present, and the
percentage of misdetected lanes was noted. The test was done both for videos recorded both during day
time and videos recorded during night time. The results of this test are presented in section 3.2.

In order to check how accurate the lane detection are, a flickering test was performed. Flickering is
the relative horizontal movement in pixels of the detected lane from one frame to the next frame. Lanes
are used as an measuring rod for the vehicles position on the road, and high flickering creates the false
impression the the vehicle has a lateral movement. The flickering test was performed for one NDS video
recorded during day time and one NDS video recorded during day time and the result is presented in
section 3.2.

2.3 Heading Angle

The heading angle is one of the parameters of interest for the project, partly because it is relevant
in the development of the driver model, and partly because it helps enhance the other calculations that
will follow (i.e. lateral offset and longitudinal range). Three methods for calculating the heading angle
are introduced here, although only the first method is used for the development of the tool.

2.3.1 Method 1 for Heading Angle: Triangulation

After identifying the vanishing point and rectifying the image for intrinsic and extrinsic parameters,
one can transform points on the picture from the 2D view to a 3D view, as long as one of the coordinates
is known. For the sake of this project, the transformations will be on the ground plane, meaning that
the Z-component of the points to be calculated is known and equal to the height of the camera above the
ground. The following figure depicts what is meant by transforming the view from 2D to 3D coordinates.

16

.

HA

Figure 12: 2D to 3D transformation

In order to change from 2D to 3D coordinates, the following method can be used starting with
calculating the Y-coordinate (longitudinal distance) of a ground point and then its X-coordinate) lateral
offset.

C

Image plane

focal axisY

Z

X
.

y

fv

Dy

H

Figure 13: Distance calculation in yz-plane of vehicle reference frame

Dy

H
=
fv
y
⇒ Dy =

Hfv
y

(20)

17

C

Image plane

focal axisY

X

Z

.
x

fu
Dy

Dx

Figure 14: Distance calculation in xy-plane of vehicle reference frame

Dy

Dx
=
fu
x
⇒ Dx =

Dyx

fu
=
Hfvx

fuy
(21)

The coordinates in 3D of the wheels can now be expressed asXY
Z

 =

 Dx

Dy

−Hcamera

Using the X and Y coordinates of the two wheels, one can get the equation of the line joining the

two wheels and by getting the slope of this line one can easily calculate the heading angle of the POV.
The heading angle is hence

HA = ψPOV = −tan−1

(
X1 −X2

Y1 − Y2

)
(22)

2.3.2 Method 2 for Heading Angle: Number plate

This method is suggested by the team members but not used in the project. It was also not found to
be used in other research either. The method can be described as follows: using the number plate of a
car, which has a standard shape and size, one can check the edges of the plate and calculate the size and
angles shown in the picture. Based on that, one can get the heading angle of the vehicle. This method
may not be the best way to follow, due to the limited quality of the videos available in the dataset.

2.3.3 Method 3 for Heading Angle: Side plane homography

This method is also based on the homography concept. By checking the change in the homography
of the side of the car and tracking this plane as the car moves, one can achieve the rotation of this
plane relative to the camera and hence the relative heading angle of the POV. This method has several
difficulties, especially the translation of the camera, and is to be investigated in future work.

18

2.4 Lateral Offset

The lateral offset is another important parameter for developing a driver model. In fact, the lateral
distance to the lane marking and the ”speed of attack” of the POV towards the lane line are of paramount
interest in this project. Two methods for estimating the lateral offset of the POV are discussed here.

2.4.1 Method 1 for Lateral Offset: Pixel width

Using the pixel size of the rear end of the vehicle, one can get the distance from the center of the
vehicle to the focal axis of the camera. This is solved by a system of 2 equations where the unknown
variables are the lateral offset L and the range of the car D.

C

Image plane

focal axis

W

.

.

θ1

θ2

w

fu

D

L

a

b

Figure 15: Distance calculation using pixel width method

a

fu
= tan (θ1) =

L− W
2

D
(23)

b

fu
= tan (θ2) =

L+ W
2

D
(24)

By solving the system of equations above, we get the following results:

D =
Wfu
b− a (25)

L =
W

2

(
a+ b

b− a

)
(26)

In some cases, the POV will have a certain heading angle, which will cause the pixel width w = b− a
to seem smaller than what it is in reality. To account for that, the heading angle should be incorporated
in the pixel width w such that

w′ =
w

cos(ψPOV)
(27)

It is important to note that this method gives the relative distances of the POV with respect to the
camera’s center. In order to get the lateral offset of the POV to the lane, further development of this
method is required where the position of the SV in its lane in known.

19

2.4.2 Method 2 for Lateral Offset: Triangulation

Using a similar approach to what was explained earlier, one can get the 3D coordinates of the contact
between the wheels and the ground (Xw, Yw, Zw). Also, getting the equation of the lane line in 3D follows
the same method. With the wheel coordinates and the lane line equation in hand, it becomes simple to
get the distance between the wheels and the lane. This approach is in fact a simple 2D calculation since
all the points lie on the ground plane. The equation used to get the distance between the points and the
lane line is:

lateralDistance =
mXw − Yw + b√

a2 + 1
(28)

where the equation of the lane line in the ground plane is Y = mX + b.
By deriving the resultant distance with respect to time (i.e. dividing the change in the lateral distance

by the time step of each frame), the lateral offset speed and the ”speed of attack” of the POV towards
the lane line are obtained.

2.4.3 Error Estimation

The two methods mentioned above rely on assumptions that affect the accuracy and precision of the
results. To check the performance of the tool, the resultant distances will be compared to radar data
that is available for the dataset in hand. The errors are hence calculated based on the difference between
the output of the tool and the radar data.

Those errors are caused by the following assumptions:

• Width of POV

• Length of trunk of POV

• Camera’s height

• SV’s hood length

• Extrinsic parameters (pitch and yaw angles of camera)

• Manual selection of the POV’s rear and wheels as well as the manual selection of points on the
lane lines

• Interpolation between frames

2.5 Range Estimation

For the estimation of the range between two vehicles, several methods are available. Two methods
which are be implemented in this project are described here.

2.5.1 Method 1 for Range Estimation: Pixel width

The pixel width method, which is explained earlier, can be used for estimating the range between
the two vehicles based on the number of pixels that the rear end of the POV encompasses on the image
frame. The distance D is calculated in Equation 25 which is derived earlier.

As mentioned earlier, the range estimation is enhanced by accounting for the heading angle of the
POV as shown in Equation 27.

2.5.2 Method 2 for Range Estimation: Triangulation

This method has also been described before. For the sake of the range estimation, the tool will get
the 3D coordinates of the rear left point of the POV, which lies on the ground. For this method to work
properly, the used must be careful when defining the rear of the vehicle. While the pixel width method
relies on the number of pixels which are estimated by the brake lights, this method assumes that the
lower edge of the box defined by the user for the rear end of the POV is on the ground plane. Using this
assumption, the tool will calculate the distance to the lower left corner of the user defined box.

Another way to get the range is to calculate the distance to the rear wheel, which was defined for
calculating the heading angle, and account for the length of the POV’s trunk.

20

2.5.3 Error Estimation

Similar to the estimation of lateral distances, the longitudinal distances also rely on the assumptions
discussed earlier. For the same reason as before, an error will be calculated based on the difference
between the output of the tool and the radar data available.

2.6 Vehicle Tracking

To be able to calculate the speed and the distance to the POV, the width of the POV has to be found
in video frame by frame. Like lane tracking, this could be done manually by the user, automatically by
the program or in a semi-automatic fashion.

2.6.1 Manual Tracking

The user was asked to mark in the video image, frame by frame, where the rear of the POV is. Here,
the rear of the vehicle is roughly defined by the two brake lights. To simplify this process, the user is
given the option to define the rear of the POV in one frame, skip though multiple frames, then define the
rear of the POV again in a later frame. The program will then interpolate the box coordinates between
the user-defined inputs and estimate the width of the POV in the intermediate frames without any input
from the user, in a similar manner to the manual lane tracking mentioned earlier. The user is then able
to view all the video frames and make corrections where the estimations are not accurate (i.e the box is
not bounding the rear of the POV).

2.6.2 Automatic Tracking

The openCV library has some functions that can perform object tracking using pre-trained neural
networks for identifying shapes in images. Depending on the quality of these algorithms, the POV could
be identified in the video frames automatically. In that case, the user would only need to check the video
images to assure that the automatic tracking has identified the POV correctly, through all the frames.

2.6.3 Semi-Automatic Tracking

If the object tracker mentioned above is not accurate enough, one hybrid solution could be to combine
the automatic tracker data with some user defined inputs, in order to make a more accurate estimation
of the POV position across frames. This would have the benefit of reducing the time needed to annotate
one video while maintaining good output quality.

2.7 Design of Tool and Graphical User Interface

The GUI should be intuitive and simple to use. The available input methods are the keyboard and
mouse. These controls should be optimised to speed up the annotation process. The basic outline of the
tool is described in the titles mentioned in this section.

2.7.1 Video Player

The video player must have the ability to load a video file from a chosen path and view it in a window.
Since the goal is to annotate through the video and mark objects in the frames, the user should be able
to play, pause and skip through frames.

The openCV library has a imread() function that can read video files frame by frame and store
them into arrays objects in the program memory. This would later allow for iterations through the
video frames as well as drawing and marking objects on the frame by the user. The library also has an
imshow() function that can show the chosen image in a predefined window. These two functions will be
used to develop the video player

2.7.2 Controls

The controls are what allow the user to control the video and mark objects in frames. This was done
using keyboard buttons, where different keys were mapped to do different functions. Visual buttons were
also added alongside the keyboard controls for better usability.

Upon selecting a frame of interest, the user should be able to define an object in the frame. For this
scope of this project, only the following objects were considered relevant for the intended output:

21

• POV placement
The user should select a rectangle in the part of the frame where the rear pf the POV is, since the
range estimation will be calculated using the vehicle width in pixels.

• POV wheels
To be able to calculate the heading angle, the user should identify the points where the POV wheels
touch the ground.

• Right/Left lane
The user should define points where the placements of the right and left lanes are.

For drawing and marking objects, the openCV library has a function to save the position and action
of the computer mouse. These functions were used to draw shapes on the image to visualise user input.

Keyboard controls were implemented using the openCV waitkey() function that logs key presses
while an OpenCV window is active. Upon pressing a key, a status variable would change within the
program depending on which key was pressed. Visual control buttons with the same functionality were
implemented in a separate window alongside the main view window using Tkinter and mapped to the
same status variable. This way, both keyboard and visual buttons would work in tandem to improve
usability.

2.7.3 Displaying Information

It is important that the user sees areas that are marked and what the program has identified them
as. This was done using different shapes and colours, alongside a window to display information to the
user about the current status of the program (i.e what input is currently being saved).

Different colours were implemented when drawing shapes in the image, using the openCV library. A
separate window was implemented below the main view window using Tkinter, to display information
about the current status of the program.

2.7.4 Loading and Saving Data

There are two inputs to the program, the video and the corresponding .mat file containing the time-
series data of the SV, which will be needed to calculate the output variables.

All the user input described above was saved in a structured manner that allows for ease of access
within the program. This was done through creating a class with fields, much like a struct type in Matlab,
that will be passed on as an argument to functions within the program. That way, the functions will
have access to all available information, which was especially useful in the early testing and debugging
phase. After the user is done with annotating a video, the data was saved to allow for re-annotation at
a later time.

Two output files were created, first of which is a .pickle file containing the annotation output. This
file was exported using Pickle since it is easier to import the data back into Python as it maintains the
structure and data types as the original object. The other is a .mat file that contains the same data
but is compatible with Matlab. This should make it easier for the annotator to post-process the data in
Matlab, since it is a more familiar program for most and is the same type of file as the time-series data
available from SHRP2.

2.7.5 Writing a User Manual

After completion of the tool, a user manual was written to instruct the user on how to use the tool
and some basic overview on the structure of the output data. This also includes guidelines on how to
get better output accuracy.

2.7.6 Testing User Sensitivity

To investigate how sensitive the tool is to the user input, a sample of videos were annotated by the
four different members of the team multiple times, since not all annotators will input data identically.

22

3 Results

The results from the project are presented in this section. Note that all images of dash-cam footage
presented below are not from the SHRP2 data since these cannot be shared and published. Instead,
sample free to use videos were used to better show the findings in this section. However, the plots that
are presented below were drawn using time-series data acquired from the SHRP2 data.

3.1 Image Rectification

Both intrinsic and extrinsic image rectification were implemented. The results from the image recti-
fication are shown below.

3.1.1 Rectification Using Intrinsic Parameters

Initially, the video was rectified frame by frame using the intrinsic camera parameters. It is important
to note that these parameters are camera specific and were acquired for the type of camera used to collect
the SHRP2 data.

Figure 16 shows the result from this rectification on a sample image. Note that this image was resized
to be the same resolution and aspect ratio as the videos in the SHRP2 data, hence the grey bars on the
top and bottom.

Distorted image Rectified image

Figure 16: Image rectification using intrinsic parameters

In figure 16, it is apparent how the distorted image is stretched and straight objects, like poles, are
not straight in the image. The rectification should correct that using the intrinsic parameters. This is
not the case in the example presented, where the poles in the rectified image are still not completely
straight. This is because the camera used in this example is not the same as the one used to collect the
SHARP2 data, and should therefore have different intrinsic parameters.

3.1.2 Rectification Using Extrinsic Parameters

In practice, if the extrinsic calibration is done correctly, then the VP of the lanes should always be
moved to the centre of the image. This meant that if the VP is initially not at the centre of the image,
the corresponding cam pitch and cam yaw were calculated and used as described in section 2.1.3 to shift
the VP so that it was at the same coordinates as the centre of the image, as shown in Figure 17. Note
that only the VP is being transformed, hence the black background in the calibrated figure, which is
only drawn to show the effects of the extrinsic calibration.

23

points before calibration points after calibration

Figure 17: Image rectification for extrinsic parameters (VP (red) and Image Centre (aqua))

3.2 Lane Tracking

The three methods of lane tracking previously mentioned were studied. Manual tracking was easy to
implement. Fully automatic tracking was more demanding and was not pursued due to the limited time
frame of the project. However, semi-automatic was implemented. The results from all three methods
are presented below.

3.2.1 Manual Tracking

It was found that this method did help in determining the lane placement accurately, given the SV
lateral placement in the lane is somewhat constant, as shown in figure 18 where the user inputs the
placement of the lanes in frames 1 and 30, and the program interpolates the placement in the frames
between. In this way, the user was able to track the lane in 30 frames, through manually defining the
placement in only two frames.

User input
frame 1

Interpolated lane placement
frame 10

Interpolated lane placement
frame 20

User input
frame 30

Figure 18: Results from the interpolation method for lane tracking

24

3.2.2 Automatic Tracking

Four different masking methods were tried, namely gray scale, RGB, HSV and HSL, in order to see
which method gives the best results. The lane detection algorithm was tested on three different scenarios,
NDS videos containing dashed lanes, see figure 19, NDS videos containing solid lanes, see figure 20, and
NDS videos recorded during night time, see figure 21. Three representative videos were used for each of
the three scenarios and the results are presented below, in terms of percentage of detected lanes.

Figure 19: Percentage of detected lanes for different masking methods on dashed lanes during day time

Figure 20: Percentage of detected lanes for different masking methods on continuous lanes during day
time

25

Figure 21: Percentage of detected lanes for different masking methods on continuous lanes during night
time

Based on this experiment, gray scale seems to be overall best during videos recorded during day time.
While HSV masking is more or less equal good as gray scale when it comes to videos recorded during
night time.

3.2.2.1 Misdetection of lanes

In order to determine how accurate the results presented in the previous section are, the percentage
of misdetected lanes for each masking method was calculated. The ROI of the lane detection algorithm
was defined in an area of the image where no lanes are present, and the percentage of misdetected lanes
for each masking method was assessed. The experiment was done for videos recorded both during day
time and videos recorded during night time. The results are presented in Table 2.

Mis-detectin Rate
Making Type Day Time (%) Night Time (%)

Gray 2 4
RGB 8 12
HSV 8 45
HSL 5 53

Table 2: Mis-detection of lanes for different masking methods during day and night time expressed in
percentages

The result shows that gray scale has by far the smallest percentage of misdetected lanes. The results
also show that colour masking causes very high percentage of misdetected lanes during night time. A
high misdetection rate leads to misleading result.

3.2.2.2 Flickering

The result from the flickering test are present in figure 22 and figure 23. The result in figure 22
shows that automatic lane detection tends to have less flickering when analyse videos recorded during
day time compared to manual tracking of lanes. However, the result in figure 23 shows that automatic
lane detection tends to have more flickering when analyse videos recorded during night time compared
to manual tracking of lanes.

26

Figure 22: Flickering of the detected lanes during day time for manual tracking and automatic tracking
of lanes

Figure 23: Flickering of the detected lanes during night time for manual tracking and automatic tracking
of lanes

3.2.2.3 Bird’s eye transformation

The figure below shows the perspective transform obtained on a test image. The end co-ordinates
of the test image from the original view are selected as source and the destination co-ordinates(the co-

27

ordinates of trapezoidal view as seen in figure of bird’s eye transformation) are specified as a separate
array. The source and destination on original and bird’s view respectively are given as input to a
transformation matrix. This is followed by a function named warped perspective in openCV library which
modifies the translation,scaling and rotation matrix to give the resulting bird’s eye view transformation
as shown in the figure below.

Figure 24: Original view

Figure 25: Bird’s eye transformation

3.3 Heading Angle

Only the triangulation method was implemented for the heading angle. Even though this method
relied on the user to define the POV wheel placement on the ground, it proved to be the easiest to
implement and provided good results, as presented below.

Figure clearly shows how the POV is maneuvering: first by having a small heading angle which
increases to reach a maximum during the maneuver and then decreases back to a low value when the
POV is ending the maneuver to continue straight ahead.

In Figure 26 and the graphs that follow, ”Event 1” refers to the annotation of an event where the SV
is changing lanes, while ”Event 2” refers to the annotation of an event where the SV stays in its lane (i.e
not changing the yaw angle of the camera). It is seen in Figure 26 that Event 1 seems to have a jumpy
behaviour and that is because the SV is changing lanes at the same time as the POV is changing lanes,
and because the event takes place on a curved road. Those added to the assumption errors and hence
show a more jerky motion of the POV’s heading angle.

28

Event 1 Event 2

Figure 26: POV Heading Angle

3.4 Lateral Offset

The plots presented blow were done for critical lane-changing events in the SHRP2 data that have
radar range available. These were the same as ”Event 1” and ”Event 2” presented earlier.

3.4.1 Filtering

The acquired lateral offset from the annotation tool was used to calculate the lateral offset rate to the
POV. It was found that the raw output was not smooth enough and required filtering to gain reasonable
lateral offset rate values, as shown in Figures 27 and 28. Better results were acquired after applying two
filters to the estimated range before calculating the range rate. Filter specifications are presented below
in Table 3.

Name Type Specification
filter 1 Savago Poly order 2 and window length 11
filter 2 Moving Average Window length 11 frames

Table 3: Filters used on the raw estimated range

29

Figure 27: Estimated Lateral offset and offset rate for Event 1

Figure 28: Estimated Lateral offset and offset rate for Event 2

3.4.2 Comparing Estimated Lateral Offset to Radar Data

After filtering, the results of the pixel width method were compared to the available radar data, as
shown in Figures 29 and 30. As seen in these figures, the lateral offset gained from the pixel width
method followed approximately the same shape as that of the radar data in both events 1 and 2.

In event 1 of Figure 29, it is apparent how the SV was in the same lane as the POV, as the lateral

30

offset was ≈ 0[m]. The SV changed lane after ≈ 22[s], then the POV cut in-front of the SV until the
POV was completely in the same lane, as the lateral offset returned to ≈ 0[m].

Figure 29: Estimated Lateral Offset vs Radar Data Event 1

In event 2 of Figure 28, it is apparent how the SV was already in a different lane from the POV before
the critical event, as the lateral offset was ≈ −3[m]. After ≈ 24[s], the POV started to cut in-front of
the SV until the POV is completely in the same lane as the SV, as the lateral offset returned to ≈ 0[m]

Figure 30: Estimated Lateral Offset vs Radar Data Event 2

31

The lateral offset rate, however, did deviate more from the radar data, but did so more in event 1,
where the SV was changing lane before the critical event, compared to event 2, where the SV was in the
same lane for the entire duration of the critical event.

3.4.3 Comparing Triangulation method to Pixel Width method and Radar Data

The results found above were compared to the estimated offset gained from the triangulation method,
as presented in Figure 31. As seen in this figure, the lateral offset using this method in event 1 deviates
more from the both radar and the estimated offset gained from the pixel width method. For event 2,
however, both methods produce approximately the same results. Due to time constraints, lateral offset
rate gained from the triangulation method was not compared to the other results.

Event 1 Event 2

Figure 31: Comparing the two methods with Radar Data

Please note that there is something wrong with the sign conversion when plotting the triangulation
method in Figure 31, that’s why the lateral offset does the sudden jump after 26[s]. The same problem
shows up in Figures 32 and 33. This issue has been fixed in the tool but at the time of writing of the
report (January 6, 2020), the team does not have access to the updated figures. The report will be
updated once the figures are acquired after the holidays.

3.4.4 Estimation Error

Using the radar data as reference, the error for different lateral offsets was calculated, as shown
in Figure 32 where it is apparent how the pixel width method remains within an error in the range
∈ (−0.5, 1.5)[m] in event 1. In event 2, the error value is smaller, but remains within the same range. It
is also apparent that the lateral offset error using the pixel width method is not affected by the actual
lateral offset. On the other hand, the triangulation method shows more fluctuation when it comes to
calculating the lateral offset to POV. However, this method, as discussed earlier, allows for the calculation
of the lateral offset to the lane lines, and not just the relative offset between the two vehicles.

32

Event 1 Event 2

Figure 32: POV lateral offset error vs POV actual lateral offset

This was also calculated for different heading angles, as shown in Figure 33 which shows the relation
between the POV’s heading angle and the lateral offset estimation. From those plots, there doesn’t seem
to be a solid relation between the heading angle and the error in estimating the lateral offset with the
pixel width method. The error seems to mostly stay in the range ∈ (−0.5, 1)[m]. The triangulation
method shows a larger offset error compared to the pixel width method. Since the figure only shows two
events, the results of this test are deemed to be inconclusive.

Event 1 Event 2

Figure 33: POV lat offset error vs POV estimated heading angle

3.5 Range estimation

The plots presented blow were done for critical lane-changing events in the SHRP2 data that have
radar range available. These were the same as ”Event 1” and ”Event 2” presented earlier.

3.5.1 Filtering

The estimated range acquired from the annotation tool was used to calculate the range rate to the
POV. As was the case for the lateral offset, the estimated range had to be filtered to gain reasonable
range rate values, as shown in Figures 34 and 35. This was done in the same was as for the lateral offset
with the same filter specifications presented in Table 3.

33

Figure 34: Range and Range rate with filtering Event 1

Figure 35: Range and Range rate with filtering Event 2

3.5.2 Comparing Estimated Range to Radar Data

After filtering, the range and range rate attained from the pixel width method were compared to the
radar, as shown in Figures 36 and 37. From these figures, it appeared that the relative speed between
the SV and the POV was higher in event 2 of Figure 36 compared to event 1 of Figure 37.

In both cases, the estimated range captured the same shape as that of the radar data. However,

34

there appeared to be a constant offset in the range estimation in both cases, which meant that the POV
seemed further away that it actually was.

Figure 36: Estimated Range vs Radar Data Event 1

Figure 37: Estimated Range vs Radar Data Event 2

For event 1 of Figure 36, the range rate fluctuated for ranges above ≈ 15[m]. At closer ranges below
≈ 15[m], the range rate error was smaller and appeared to keep the same shape and value as that of the
radar data.

35

For event 2 of Figure 37, tracking was started when the POV was at a range of ≈ 15[m] and, as a
result, both the range and range rate did not fluctuate.

3.5.3 Comparing Triangulation method to Pixel Width method and Radar Data

The triangulation method is also tested for the range estimation and compared to the radar data as
shown in Figure 38. It is evident from the figure that the triangulation method offers more accurate
results compared to the pixel width method, but shows more fluctuation. Upon further testing on
several events, it was proven that although the triangulation method might provide a more accurate
result at some times, the pixel width method has a better precision where the results would be relatively
consistent. One should keep in mind also that the fluctuation shown in Event 1 of Figure 38 is caused
by the SV changing lanes on a curved road as mentioned earlier.

Event 1 Event 2

Figure 38: Comparing the two methods with Radar Data

3.5.4 Estimation Error

To understand the performance of the two methods in estimating the range between the SV and
POV, some figures were developed that show the relation between the range and its error (Figure 39) as
well as the relation between the range and the POV heading angle (Figure 40).

From Figure 39, three main characteristics are observed. First, and most importantly, both methods
show that as the range increases, the error increases. Second, the triangulation method has a lower error
on average compared to the pixel width method. Third, the triangulation method has more fluctuation
while the pixel width method seems to give more stable ranges. Fourth, at higher ranges there is more
fluctuation in the error for both methods.

36

Event 1 Event 2

Figure 39: POV range error vs POV actual range

From Figure 40, not much can be seen. The results are similar to what was discussed above where the
triangulation method is more accurate but less precise compare to the pixel width method. Interestingly,
it can be seen from Event 2 of Figure 40 that as the heading angle increases, the range error decreases.
This is more apparent in the pixel width method.

Event 1 Event 2

Figure 40: POV range error vs POV estimated heading

3.6 Vehicle tracking

The three methods of tracking that were previously mentioned were studied during the course of
project. Due to the time frame of the project, more focus was put on manual annotation, since it was
the easiest to implement and was needed for testing other functions in the tool, such as range estimation.
Automatic tracking was studied briefly, but was not implemented in the final tool. The results from all
there methods are presented below.

3.6.1 Manual Tracking

It was found that this method, although simple, did help identify the POV accurately given the
relative speed between the POV and the SV was constant and both vehicles are heading in the same
direction, as shown in Figure 41, where the user inputs the POV placement in frames 1 and 30, and
the tool interpolated the placement in the frames between. In this case, the user was able to track the
vehicle in 30 frames through manually defining the POV in only 2 frames.

37

User input
frame 1 (Green)

Interpolated POV placement
frame 10 (Aqua)

Interpolated POV placement
frame 20 (Aqua)

User input
frame 30 (Green)

Figure 41: Results from the interpolation method for vehicle tracking

This method becomes less accurate in transient maneuvers, where the relative speed between the
vehicles is not constant, i.e the vehicles are braking or accelerating. What this means is that the user
would need to annotate more frames for the POV tracking to be more accurate.

3.6.2 Automatic and Semi-automatic Vehicle Tracking

Automatic vehicle detection was achieved on single images using openCV and a pre-trained neural
network called You Only Look Once (YOLO) which is an advanced tool developed for object detection[50],
as seen in Figure 42.

38

Figure 42: Vehicle detection with the YOLO algorithm

As seen in the Figure 42, YOLO is able to detect the entire vehicle. This is a problem since the
method used for range estimation in this project requires only the placement of the rear of the vehicle
in the image. This meant that the bounding box marked by YOLO is not on its own usable for range
estimation. Instead it would have to be combined with some user defined box around the rear of the
vehicle, which would make the tracking semi-automatic. Due to the limited time of this project, this
method was not tested.

3.7 Tool and Graphical User Interface design

The design of the GUI was kept simple as initially intended, following the same outline described in
the methodology section. More focus was put on verifying that the user inputs were processed and used
correctly within the program to extract relevant variables.

3.7.1 Video player and Controls

Upon initialization, the user is asked to choose the path of the video that is to be annotated. The
user shall then have the option to either re-annotate the data using previously annotated data for the
same video, or start over. The video will then be loaded and the user presented with the view shown in
Figure 43.

39

Control button windowMain window for video player

Information window

Figure 43: Overview of GUI

3.7.2 Displaying Information

When a user chooses to input the placement of different objects in the image, the information window
will show what the user has chosen to specify. When the user is defining an object, the figures drawn in
the main window are blue, stating the the user is still editing this specific input. When the user presses
enter, the input is confirmed and drawn with a different color. These stages are shown in Figure 44
below.

40

User pressed define POV button User is defining POV (Blue)

User has confirmed the input (Green)

Figure 44: The different stages of taking user inputs

The same was done for all four input types using blue when the user is editing an input and a
different colour when the user has confirmed the input, as seen in Figure 45. Moreover, the colour of
an interpolated placement is shown in a different colour to help the user know what is user defined and
what is interpolated, as seen in Figure 41.

41

Figure 45: Different colours used for Left lane, Right lane and POV wheels

Also, two plots are made in real time as the user is inputting data, as seen in Figure 46. The first
plot shows the calculated range and range rate to the POV. This plot will also plot radar data if that
is available. The second plot uses the distances gained from the triangulation method to draw the area
around the SV as seen from above. This was especially helpful during the development stage, where these
plots helped visualise the output parameters from the tool, such as range, lateral offset and heading angle.

42

View in the main window Real-time plot of range and range rate to POV

Top view plot

Figure 46: Overview of the different plots

3.7.3 Loading and Saving User Inputs

Upon selecting a video to annotate, the program will find the event ID from the video name and
search in a specified folder for the .mat file containing the time-series data for the SV provided in the
SHRP2 data. If no file is found, a message will be printed stating this, but the user will be able to
annotate the video nonetheless.

As mentioned in section 2.7.4, two output files are created upon finishing the annotation, one .mat
file and on .pickle file, both containing the same data. The .pickle file allows for easier re-annotation
of a previously annotated video. Upon selecting a video, the program will search for a .pickle file with
the same event ID. If one is found, the user will have the option to either reuse the old annotation and
modify it, or start an new annotation.

3.7.4 Testing User Sensitivity

To test the sensitivity of the tool for different annotations, one video was annotated 5 times by the
same user, as seen in Figure 47. The average for all 5 annotations has been computed and compared to
the radar range, as seen in Figure 48.

Initially, this was supposed to be done by all four members of the team. however, due to time
constraints, only one member had the time to conduct this test. This was done for Event 1.

43

Figure 47: Same video annotated 5 times by same user

As seen in Figure 47, at a range of above ≈ 15[m], the range is sensitive to user inputs. However, when
the range is below ≈ 15[m], the estimated range converges towards the same value for all 5 annotations.

Comparing the average to the radar data, as shown in Figure 48, provided more accurate results
compared to only annotating one time, as in Figure 36.

44

Figure 48: 5 time average vs Radar data Event 1

4 Discussion

The results presented above are peculiar and interesting. While some deserve to be explained further
to understand how they are helpful for the tool development, others should be questioned and criticised.
This will be done below in this section.

4.1 Image Rectification

While image rectification is a key factor in analysing images to calculate distances, there is not much
to say about the results of the image rectifications in this report when it comes to intrinsic parameters.
In fact, the values used for intrinsic rectification are provided by VTTI, and although not all cameras in
the NDS are the same, the intrinsic rectification provided reasonable results overall.

For the extrinsic parameters on the other hand, the project follows a rather unorthodox approach
where not the whole image is rectified for the extrinsic parameters, but only the points needed for
calculation. Those points are rectified for the camera’s pitch and yaw only, excluding the roll motion
of the vehicle since the SV is assumed to be driving in its lane and not making any maneuvers. This
rectification was more important for getting a more accurate result for distance calculation, but does not
have a drastic effect on the results.

45

4.2 Lane Tracking

Lane detection was observed on variety of spectrum, starting from quality of videos to different
types of lanes. The lane detection pipeline included obtaining rectified images, followed by masking,
filtering, edge detection and classification of geometry(Hough transform). The results obtained on all
quality of videos infer the simplicity and effectiveness of the algorithm, although the lane detection is
semi-automatic in nature. It can be further developed as an automatic detection using machine learning
optimisation. This further development can benchmark the existing tool. Bird’s eye transformation
can be explored further by integrating it in the GUI and compare the existing lane detection to draw
conclusions on the findings. It is important to notice some of the errors in lane detection like flickering and
false detection at times due to wrong masking. This issue can be addressed in the further development.
All in all lane detection works well for the naturalistic database used here and functions as a useful
technique.

4.3 Heading Angle

The heading angle, as mentioned earlier, is an important parameter because it helps in the estimation
of other parameters such as the longitudinal range between the two vehicles. The method proposed in
this project seems to be an innovative method which gives reasonable results. This method however
suffers from low precision since it relies on the human annotator to select the right pixels where the
wheels of the POV contact the road. Also, in some cases, the wheels are hard to capture, for example
when the POV is in front of the SV, or sometimes do not appear on the image.

There was no apparent way to verify the heading angle estimation using the time series data. Instead,
the estimated heading angle acquired from the annotation tool was evaluated through first annotating a
number videos and then comparing the heading angle visually through studying the footage. According
to the visual inspection, the heading angle estimation seemed to be accurate, reaching 0[rad] when the
POV is moving parallel to the lane and reaching a reasonable maximum value when the POV is cutting
in-front of the SV, as shown in Figure 26.

To understand the effect of the heading angle on the estimation of the other parameters, the error of
those parameters were measured as a function of heading angle. The results were shown in Figures 33
and 40, and will be discussed below as well.

4.4 Lateral Offset

4.4.1 Filtering

Applying a filter on the results improved the quality of estimating the speeds, especially at higher
distances where the filtering removed irrational sudden jumps in the velocities which are caused by
discrete pixel numbers. The results are satisfactory and allow for comparison between the resultant
values and radar data.

The filtering was only applied and tested on the pixel width method, which was used to calculate the
velocities. The triangulation method, on the other hand, was only developed for distance calculation.
The filtering, which proved to be effective, can be implemented on the triangulation method in order
to calculate the POV speed. This would be interesting since the triangulation method showed many
fluctuations due to its reliance on human annotations.

Since the filtering of the data is basic, the team discussed introducing more sophisticated filters to
the tool such as frequency filters in further developments.

4.4.2 Lateral Offset versus Radar Data

The lateral offset matches the radar data with a reasonably small error. The results from both
methods are precise where multiple annotations gave similar results. The pixel width method shows
a consistent performance with a persistent offset while the triangulation method has more fluctuations
in the results but is reaching more accurate values. The sensitivity of the tool can be enhanced by
combining the two methods in a sensor fusion manner in order to reduce the uncertainty of the results
and have a more robust estimation.

The error of lateral offset proved to be unaffected by the actual lateral offset when using the pixel
width method while no conclusive result was achieved for the triangulation method since there is an
error in the plotting of the curves as mentioned earlier (Figure 32). As for the relation to the heading

46

angle of the POV, Figure 33 showed no certain results and hence it was agreed that further testing of
the tool is required in order to reach a rational conclusion.

4.5 Range Estimation

4.5.1 Filtering

There is not much to add about the filtering of data to what was discussed in the lateral offset
method. It is worth mentioning that the filtering has a minor effect on the distance estimations, but the
main influence is on the POV estimated velocity.

4.5.2 Range versus Radar Data

The estimated distances follow the curves of the radar data to a great extent, especially under 15
[m]. However, it is noticed that the pixel width method has an obvious and constant offset from the
radar data as it was seen in Figures 36 and 37, and it is assumed that this is a calibration issue since, as
mentioned earlier, the width of the POV is assumed as well as the relative position between the camera
and the radar. Those factors could be the reason for the constant offset when using the pixel width
method. Regardless of the aforementioned offset, since the estimation curve follows the same shape of
the radar data curve, the resultant range rate is capturing the correct relative speed of the POV with
respect to the SV, as seen in Figures 36 and 37. The triangulation method, on the other hand, seems
to record the range more accurately although it suffers from some instabilities, especially if the SV is
making harsh manoeuvres.

As for the sensitivity of the estimations in relation to the actual distance, it was revealed that at
higher distances, both calculation methods have relatively higher errors up to 8 [m] at a range over 20
[m]. Another interesting observation confirms what has been discussed about the triangulation method
over and over: this method shows more fluctuations but has a lower average error. This was proven in
Figure 39. When comparing the range errors to the heading angle of the POV, an interesting aspect
was noticed, where the range error was decreasing with an increase in the POV heading angle (Figure
40). The result could not be explained by relying on only the two showcased events. In the future,
more annotations will be carried out by several annotators, and the results should explain or reject this
ambiguity.

4.6 Vehicle Tracking

Even though automatic tracking was not achieved, the tool was able to simplify the manual tracking
process through interpolating manual inputs. This proved to be capable of tracking the POV with
relatively good accuracy for being such a simple method. The downside with this method is that it
relies on the annotator marking the rear of the POV correctly. It was found that there are some simple
improvements that can be done to the GUI that will help the annotator increase accuracy, as mentioned
in following section.

Automatic tracking was promising and the YOLO is capable of identifying all vehicles in the frame,
as shown in Figure 42. However, there must still be user input to identify which of the identified vehicles
is the POV. It can be assumed that the POV is the closest vehicle, but that was not the case in all
events.

Moreover, as mentioned in section 3.6.2, the methods used for calculating the range to the POV rely
on the rear of the POV begin identified in the frame. The box found by the YOLO in Figure 42 bounded
all the pixels in the frame that contain part of a vehicle.

It was thought that the tracking could be made semi-automatic, where the annotator marked a box
around the rear of the POV, and the program would use that and track the vehicle found by the YOLO
algorithm across frames. Due to time constrains, however, this method was not tested.

The next step would be to combine the automatic detection using YOLO with the interpolated user
annotation to possibly gain more accurate and faster vehicle tracking.

4.7 Graphical User Interface

The user interface and overall programming of the tool functioned well and was responsive to user
inputs. The program was made modular with different small functions, which allowed for easier trou-
bleshooting and improving functionality without affecting previous progress.

47

Computational optimisation was not done which was initially not an issue, since the carried calcula-
tions were not CPU intensive. However, real time plotting shown in Figure 46 was slow and caused the
program to slow down. This mean that while playing the video with the plotting on, the video would
appear to play at about half speed. This was not a big issue for annotation, since all inputs when edited
when the video was paused on one frame.

The change due to user variation shown in Figure 47 was expected. The fact that the results converged
at ≈ 15[m] was better than initially thought. However, some changes were found that could reduce the
variation at distances larger than ≈ 15[m].

One solution would be to enlarge the frame to twice the size. This would effectively have made the
POV to look twice as big on the screen, which would have made drawing a box around the rear of
the POV easier. This would also have made marking other objects in the frame, such as POV wheels
and lanes, easier and more accurate, which would have improved the stability of heading calculation,
as discussed in 4.3. This method was tested briefly, but the resulting distance calculations were wrong,
since the pixel size of the POV was doubled. Due to time constraints, the team did not have the time
to troubleshoot and fix the distance errors and this method is to be pursued in future work. Another
solution to improve accuracy was to change the size of the blue box shown in Figure 44 used to define
the rear of the POV. It was found that the thickness of line used to draw this box is 2 pixels wide, which,
when the POV is further away than ≈ 15[m] was part of what caused the fluctuation seen in Figure 47.
This box was drawn using the cv2.selectROI() function, which does not allow for changing the width of
the bounding box. Another, similar function has been developed by the team where all parameters of
the box are changeable. However, this was not implemented in the tool due to time constraints, but is
relatively easy to add in future work.

5 Conclusion

To conclude with, this report portrays the development of a tool which can be used for annotating
NDD. This tool is designed to estimate several important parameters to help in establishing driver
models, specifically tailored to critical lane changes of a POV. Those parameters are the heading angle
of the POV, the longitudinal range and the lateral offset between the SV and the POV. The main
methods used for estimation are the pixel width method and the triangulation method, each having its
own strengths and weaknesses. The tool is also able to detect lanes which would ease the process on the
annotator.

All of this was designed into a convenient GUI designed using python language. In that GUI, the
annotator has to manually select, per frame, 2 lane lines, the POV’s rear as well as the contact points
of the POV’s wheels with the ground. The annotation is done on several frames manually and the tool
will automatically interpolate the annotations between those frames to make the task easier.

The results of the tool are satisfying. Comparison of some annotated events with radar time-series
data showed that the extracted variables are close to the actual radar values. The results revealed the
performance of the two discussed methods, where the pixel method showed to be more precise while the
triangulation method has a better accuracy.

To further improve the quality of annotation using the tool, simple GUI fixes can be implemented
such as resizing image frames by making them bigger and hence easier for manual annotation. Also,
better calibration for the estimated variables can be achieved through field testing, as done in [35]. As
of now, the next step is to use put this tool to use by studying different critical lane change events and
recreating the trajectory of the incidents so help analyse such cases.

48

References

[1] Jonas Bärgman, Christian-Nils Boda, and Marco Dozza. Counterfactual simulations applied to
shrp2 crashes: The effect of driver behavior models on safety benefit estimations of intelligent safety
systems. Accident Analysis & Prevention, 102:165–180, 2017.

[2] Marco Dozza and Nieves Pañeda González. Recognising safety critical events: Can automatic video
processing improve naturalistic data analyses? Accident Analysis & Prevention, 60:298 – 304, 2013.

[3] Richard Bishop. Intelligent vehicle technology and trends. 2005.

[4] Sten Bexelius. An extended model for car-following. Transportation Research, 2(1):13–21, 1968.

[5] Gustav Markkula, Ola Benderius, Krister Wolff, and Mattias Wahde. A review of near-collision
driver behavior models. Human factors, 54(6):1117–1143, 2012.

[6] What is Naturalistic Driving. http://www.udrive.eu/index.php/about-udrive/

what-is-naturalistic-driving. [Online; accessed 20-Sept-2019].

[7] Shauna Hallmark, Yu-Yi Hsu, Linda Boyle, Alicia Carriquiry, Ye Tian, and Abhisek Mudgal. Eval-
uation of data needs, crash surrogates, and analysis methods to address lane departure research
questions using naturalistic driving study data. Technical report, 2011.

[8] Gang Xu and Zhengyou Zhang. Epipolar geometry in stereo, motion and object recognition: a unified
approach, volume 6. Springer Science & Business Media, 2013.

[9] C Brown Duane. Close-range camera calibration. Photogramm. Eng, 37(8):855–866, 1971.

[10] Rahul Swaminathan and Shree K Nayar. Nonmetric calibration of wide-angle lenses and polycam-
eras. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(10):1172–1178, 2000.

[11] Jianhua Wang, Fanhuai Shi, Jing Zhang, and Yuncai Liu. A new calibration model of camera lens
distortion. Pattern Recognition, 41(2):607–615, 2008.

[12] Fei-Yue Wang. A simple and analytical procedure for calibrating extrinsic camera parameters. IEEE
Transactions on Robotics and Automation, 20(1):121–124, 2004.

[13] Pujitha Gunaratne Ravi Kumar Satzoda and Mohan M. Trivedi. Drive analysis using lane semantics
for data reduction in naturalistic driving studies. IEEE Intelligent Vehicles Symposium, 2014.

[14] Abdulhakam.AM. Assidi Aisha-Hassan Abdullah Othman O Khalifa, Md. Rafiqul Islam and Sheroz
Khan. Vision based road lane detection system for vehicles guidance. Australian Journal of Basic
and Applied Sciences, 2011.

[15] Preetam Suman Roshan Jahan and Deepak Kumar Singh. Lane detection using canny edge detection
and hough transform on raspberry pi. International Journal of Advanced Research in Computer
Scienc, 9, 2018.

[16] Martin McGinnity De-Shuang Huang, Laurent Heutte and Xiao-Ping Zhang. Advanced Intelligent
Computing Theories and Applications. Springer, 2010.

[17] 2010.

[18] S. D. Blostein, L. Zhao, and R. M. Chann. Three-dimensional trajectory estimation from image
position and velocity. IEEE Transactions on Aerospace and Electronic Systems, 36(4):1075–1089,
Oct 2000.

[19] H. Hajimolahoseini, R. Amirfattahi, and S. Khorshidi. Real-time pose estimation and tracking of
rigid objects in 3d space using extended kalman filter. In 2014 22nd Iranian Conference on Electrical
Engineering (ICEE), pages 1545–1549, May 2014.

[20] M. Gabb, A. Kaliuk, T. Ruland, O. Löhlein, A. Westenberger, and K. Dietmayer. Feature-based
monocular vehicle turn rate estimation from a moving platform. In 2013 IEEE Intelligent Vehicles
Symposium (IV), pages 642–647, June 2013.

49

http://www.udrive.eu/index.php/about-udrive/what-is-naturalistic-driving
http://www.udrive.eu/index.php/about-udrive/what-is-naturalistic-driving

[21] I. F. Mondragón, P. Campoy, C. Mart́ınez, and M. A. Olivares-Méndez. 3d pose estimation based
on planar object tracking for uavs control. In 2010 IEEE International Conference on Robotics and
Automation, pages 35–41, May 2010.

[22] Fredrik Nilsson. Vehicle tracking with heading estimation using a mono camera system, 2018.

[23] R. Bishop. A survey of intelligent vehicle applications worldwide. In Proceedings of the IEEE
Intelligent Vehicles Symposium 2000 (Cat. No.00TH8511), pages 25–30, Oct 2000.

[24] S. Sivaraman and M. M. Trivedi. Looking at vehicles on the road: A survey of vision-based ve-
hicle detection, tracking, and behavior analysis. IEEE Transactions on Intelligent Transportation
Systems, 14(4):1773–1795, Dec 2013.

[25] D. Kellner, M. Barjenbruch, K. Dietmayer, J. Klappstein, and J. Dickmann. Instantaneous lat-
eral velocity estimation of a vehicle using doppler radar. In Proceedings of the 16th International
Conference on Information Fusion, pages 877–884, July 2013.

[26] Y. Cui, S. Schuon, D. Chan, S. Thrun, and C. Theobalt. 3d shape scanning with a time-of-flight
camera. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
pages 1173–1180, June 2010.

[27] Ashutosh Saxena, Sung H. Chung, and Andrew Y. Ng. 3-d depth reconstruction from a single still
image. International Journal of Computer Vision, 76(1):53–69, Jan 2008.

[28] M. Jamzad, A. Foroughnassiraei, E. Chiniforooshan, R. Ghorbani, M. Kazemi, H. Chitsaz,
F. Mobasser, and S. B. Sadjad. Middle sized soccer robots: Arvand. In Manuela Veloso, En-
rico Pagello, and Hiroaki Kitano, editors, RoboCup-99: Robot Soccer World Cup III, pages 61–73,
Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

[29] Peyman Alizadeh. Object distance measurement using a single camera for robotic applications. PhD
thesis, Laurentian University of Sudbury, 2015.

[30] Zahari Taha and Jessnor Arif Mat Jizat. A comparison of two approaches for collision avoidance of
an automated guided vehicle using monocular vision. Applied Mechanics and Materials, 01 2012.

[31] H. Cheung, W. Siu, S. Lee, L. Poon, and Chiu-Shing Ng. Accurate distance estimation using camera
orientation compensation technique for vehicle driver assistance system. In 2012 IEEE International
Conference on Consumer Electronics (ICCE), pages 227–228, Jan 2012.

[32] Bob Palais and Richard Palais. Euler’s fixed point theorem: The axis of a rotation. Journal of
Fixed Point Theory and Applications, 2(2):215–220, Dec 2007.

[33] Lin Meng and Yifeng Wang. Tool development and quantitative analysis for naturalistic Left
Turn Across Path/Opposite direction (LTAP/OD) driving scenarios. PhD thesis, Masters thesis),
Chalmers University of Technology, Göteborg, Sweden.(ISSN . . . , 2016.

[34] Chris Schreiner, Harry Zhang, Claudia Guerrero, Kari Torkkola, and Keshu Zhang. A semi-
automatic data annotation tool for driving simulator data reduction. In Driving Simulation Con-
ference, North America, page 9. Citeseer, 2007.

[35] Jonas Bärgman, Julia Werneke, Christian-Nills Boda, Johan Engström, and Kip Smith. Using
manual measurements on event recorder video and image processing algorithms to extract optical
parameters and range. 2013.

[36] Shauna L Hallmark, Samantha Tyner, Nicole Oneyear, Cher Carney, and Dan McGehee. Evaluation
of driving behavior on rural 2-lane curves using the shrp 2 naturalistic driving study data. Journal
of safety research, 54:17–e1, 2015.

[37] Matthias Beggiato and Josef F Krems. Sequence analysis of glance patterns to predict lane changes
on urban arterial roads. In 6. Tagung Fahrerassistenzsysteme, 2013.

[38] Suzanne E Lee, Erik CB Olsen, Walter W Wierwille, et al. A comprehensive examination of natural-
istic lane-changes. Technical report, United States. National Highway Traffic Safety Administration,
2004.

50

[39] Gary Bradski and Adrian Kaehler. Learning OpenCV: Computer vision with the OpenCV library.
” O’Reilly Media, Inc.”, 2008.

[40] Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. The numpy array: a structure for
efficient numerical computation. Computing in Science & Engineering, 13(2):22, 2011.

[41] Eli Bressert. SciPy and NumPy: an overview for developers. ” O’Reilly Media, Inc.”, 2012.

[42] Travis E Oliphant. Python for scientific computing. Computing in Science & Engineering, 9(3):10–
20, 2007.

[43] Fredrik Lundh. An introduction to tkinter. URL: www. pythonware. com/library/tkinter/introduc-
tion/index. htm, 1999.

[44] pickle - python object serialization. https://docs.python.org/3/library/pickle.html.

[45] John D Hunter. Matplotlib: A 2d graphics environment. Computing in science & engineering,
9(3):90, 2007.

[46] Graphical user interfaces with tk. https://docs.python.org/3/library/time.html.

[47] Trip Files. Analyzing driver behavior using data from the shrp 2 naturalistic driving study. SHRP
2 Safety Project Brief, 2013.

[48] Jian S. Dai. Euler–rodrigues formula variations, quaternion conjugation and intrinsic connections.
Mechanism and Machine Theory, 92:144 – 152, 2015.

[49] Yue Wang, Eam Khwang Teoh, and Dinggang Shen. Lane detection and tracking using b-snake.
Image and Vision Computing, 22(4):269 – 280, 2004.

[50] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
real-time object detection. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016.

51

https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/time.html

6 Appendix

Notation Name Unit
a pixel size to left edge of POV [pixels]
b pixel size to right edge of POV [pixels]
C camera’s center
D longitudinal distance [m]
Dx lateral distance [m]
Dy longitudinal distance [m]
fu focal length in u-direction [pixels]
fv focal length in v-direction [pixels]
HA heading angle of POV [rad]
H height of camera from ground [m]
H homography matrix
k1 radial distortion coefficient 1
k2 radial distortion coefficient 2
k3 radial distortion coefficient 3
l arbitrary scaling factor
L lateral distance from camera center [m]
m slope of line
P point in 3D
p point in image frame post rectification
p′ point in image frame pre rectification
p1 tangential distortion coefficient 1
p2 tangential distortion coefficient 2
ψ camera yaw angle [rad]
φ camera roll angle [rad]
R Euler-Rodrigues rotation matrix
θ camera pitch [rad]
u u in uv image coordinate frame [pixels]
v v in uv image coordinate frame [pixels]
w width of POV in image [pixels]
w′ corrected width of POV in image [pixels]
W width of POV in real life
x x in xy image coordinate system [pixels]
x′ x coordinate pre-rectification [pixels]
X X in 3D coordinate frame [m]
y y in xy image coordinate system [pixels]
y′ y coordinate pre-rectification [pixels]
Y Y in 3D coordinate frame [m]
Z Z in 3D coordinate frame [m]

Table 4: Table of notations

package version
Python 3.7.1
openCV 4.1.1
numpy 1.16.4
scipy 1.2.1

tkinter 8.6.8
matplotlib 3.1.0

Table 5: Python modules and libraries

52

	Abbreviations
	Introduction
	Background
	Aim and Scope
	Literature Review
	Camera model and rectification
	Lane detection
	Heading angle and lateral offset estimation
	Range and range rate estimation
	Manual Annotation
	Python Modules

	Ethics Assessment

	Methodology
	Image Rectification
	Frames of reference
	Intrinsic Parameters
	Extrinsic Parameters

	Lane Tracking
	Manual Tracking
	Automatic Tracking
	Semi Automatic Tracking
	Test of Lane detection algorithm

	Heading Angle
	Method 1 for Heading Angle: Triangulation
	Method 2 for Heading Angle: Number plate
	Method 3 for Heading Angle: Side plane homography

	Lateral Offset
	Method 1 for Lateral Offset: Pixel width
	Method 2 for Lateral Offset: Triangulation
	Error Estimation

	Range Estimation
	Method 1 for Range Estimation: Pixel width
	Method 2 for Range Estimation: Triangulation
	Error Estimation

	Vehicle Tracking
	Manual Tracking
	Automatic Tracking
	Semi-Automatic Tracking

	Design of Tool and Graphical User Interface
	Video Player
	Controls
	Displaying Information
	Loading and Saving Data
	Writing a User Manual
	Testing User Sensitivity

	Results
	Image Rectification
	Rectification Using Intrinsic Parameters
	Rectification Using Extrinsic Parameters

	Lane Tracking
	Manual Tracking
	Automatic Tracking

	Heading Angle
	Lateral Offset
	Filtering
	Comparing Estimated Lateral Offset to Radar Data
	Comparing Triangulation method to Pixel Width method and Radar Data
	Estimation Error

	Range estimation
	Filtering
	Comparing Estimated Range to Radar Data
	Comparing Triangulation method to Pixel Width method and Radar Data
	Estimation Error

	Vehicle tracking
	Manual Tracking
	Automatic and Semi-automatic Vehicle Tracking

	Tool and Graphical User Interface design
	Video player and Controls
	Displaying Information
	Loading and Saving User Inputs
	Testing User Sensitivity

	Discussion
	Image Rectification
	Lane Tracking
	Heading Angle
	Lateral Offset
	Filtering
	Lateral Offset versus Radar Data

	Range Estimation
	Filtering
	Range versus Radar Data

	Vehicle Tracking
	Graphical User Interface

	Conclusion
	Appendix

