
-15 -10 -5 0 5 10 15 20

-15

-10

-5

0

5

10

15

Manifold Traversal for Reversing the
Sentiment of Text
Master’s thesis in Algorithms, Languages and Logic
and Complex Adaptive Systems

MARIA LARSSON
AMANDA NILSSON

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2017

Master’s thesis 2017

Manifold Traversal for Reversing the
Sentiment of Text

MARIA LARSSON
AMANDA NILSSON

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2017

Manifold Traversal for Reversing the Sentiment of Text
MARIA LARSSON
AMANDA NILSSON

© MARIA LARSSON, AMANDA NILSSON, 2017.

Supervisors: Mikael Kågebäck, Department of Computer Science and Engineering
Advisor: Jonatan Bengtsson, Findwise AB
Examiner: Richard Johansson, Department of Computer Science and Engineering

Master’s Thesis 2017
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Traversal of a feature vector, representing a sentence with negative sentiment,
towards a positive sentiment. The two dimensional visualization was created using
principal component analysis.

Typeset in LATEX
Gothenburg, Sweden 2017

iv

Manifold Traversal for Reversing the Sentiment of Text
MARIA LARSSON
AMANDA NILSSON
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Natural language processing (NLP) is a heavily researched field within machine
learning, connecting linguistics to computer science and artificial intelligence. One
particular problem in NLP is sentiment classification, e.g determining if a sentence
holds a positive or negative opinion. There exist many established methods for
solving the sentiment classification problem but none for modifying a negatively
classified input so that it receives a positive classification. In this paper we propose
a method for reversing the sentiment of sentences through manifold traversal. The
method utilizes a convolutional neural network (CNN) and pre-trained word vectors
for encoding sentences in a continuous space. The sentence representations are tra-
versed through optimization of a test statistic as to resemble the representations of
sentences with the opposite sentiment. Finally a recurrent neural network (RNN)
is used for decoding the vector representation and generating new sentences.

The encoder in our model achieves 80% accuracy on the sentiment classification task
and produces sentence representations in 300 dimensions. Visualizations of these
representations, using PCA, shows clustering with respect to both sentiment and
different topics, indicating that the representations hold information about both
sentiment and textual content. Decoding the traversed feature vectors using our
RNN language model produces, in most cases, understandable sentences where the
sentiment has changed compared to the original sentence.

Keywords: Manifold traversal, sentiment classification, convolutional neural net-
works, recurrent neural networks, natural language processing

v

Acknowledgements
We would like to thank our supervisors Mikael Kågebäck, at Chalmers, and Jonatan
Bengtsson, at Findwise, for their commitment and support throughout this project.
Fredrik Axelsson, whom we also would like to thank, offered his assistance when
this project was defined. Thank you all for your patience and time.

We would also like to thank Richard Johansson, our examiner, for encouraging us
to develop and thoroughly motivate our project plan, at an early stage.

We thank Simon Almgren for his valuable input and help with debugging code.
Sorry for the inconvenience.

Finally we would like to thank Greta.io and Google for the trip to San Francisco
and the free GPU usage on Google Cloud Platform.

Maria Larsson and Amanda Nilsson, Gothenburg, June 2017

vii

Contents

List of Figures xi

1 Introduction 1
1.1 Background . 1
1.2 Project aim . 2
1.3 Problem definition . 2
1.4 Related work . 3
1.5 Limitations . 4

2 Theory 5
2.1 Word embeddings . 5
2.2 Artificial Neural Networks . 5

2.2.1 Feed forward neural networks 6
2.2.2 Convolutional neural networks 8
2.2.3 Recurrent neural networks . 10

2.2.3.1 Gated recurrent unit 11
2.2.4 Gradient descent . 12
2.2.5 Preventing overfitting . 12

2.3 Maximum mean discrepancy . 13
2.4 Broyden-Fletcher-Goldfarb-Shanno algorithm 13
2.5 Principal component analysis . 14

3 Model 15
3.1 Sentiment classification and encoding sentences 15
3.2 Manifold traversal of the representation space 16
3.3 Decoding sentences using a recurrent neural network 16
3.4 Training the CNN and the RNN . 16

4 Experiments 21
4.1 Accuracy of the neural networks . 21
4.2 Encoding sentiment and semantic content 21
4.3 Preserving semantic content during traversal 22
4.4 Evaluation of the complete model . 22

5 Results and discussion 23
5.1 Accuracy of the CNN and RNN . 23
5.2 Encoding sentiment and semantic content 24

ix

Contents

5.3 Preserving semantic content during traversal 25
5.4 Evaluation of the complete model . 28
5.5 Design choices and future work . 30

5.5.1 Model . 30
5.5.2 Data set . 30
5.5.3 Evaluation metrics . 31

6 Conclusion 33

Bibliography 35

x

List of Figures

2.1 Neuron (computation unit) . 6
2.2 Fully connected feedforward neural network 7
2.3 Single layer convolutional neural network 8
2.4 The convolution operation . 9
2.5 Basic RNN unit . 10

3.1 Overview of the complete model . 15
3.2 Training scheme for the CNN and RNN 17
3.3 Differences in the input to the RNN during training and evaluation . 18

5.1 Loss and accuracy during training of the CNN 24
5.2 Perplexity of the RNN during training 25
5.3 Dimensionality reduction, using PCA, of feature vectors generated by

the CNN . 26
5.4 Original and traversed feature vectors 27

xi

List of Figures

xii

1
Introduction

As we live in an increasingly digitalised society, algorithms for text analysis can
be used for a variety of purposes and may greatly relieve manual work. Machine
learning is commonly used to predict labels for different types of data. In contrast,
this project uses machine learning algorithms for changing a labelled input in such
a way that it is classified with the opposite label. This is achieved by defining and
traversing a manifold from the source classification to the target classification.

1.1 Background

Natural language processing (NLP) is a heavily researched field within machine
learning, connecting linguistics to computer science and artificial intelligence. Some
examples of NLP tasks are machine translation, part of speech tagging, question an-
swering, text summarization and sentiment analysis. The latter, sentiment analysis,
also known as opinion mining, is the task of deciding what opinion or emotion an
input is holding. One example is deciding if a text is positive or negative. Sentiment
analysis is used primarily for predictions and decision making. A positive post in a
popular blog or a tweet from a popular person can sway the public opinion about
basically anything. Consumers tend to base their purchases on the opinions of oth-
ers. A lot of opinions are published on the Internet and it may be hard to find the
right site and to filter among different posts and opinions. Sentiment analysis can
be used to classify different comments and give an overall opinion. This is not only
useful for consumer products and services, but also for political elections, health
care, social events, predicting sales performance or changes in the stock market,
troll filtering in social media and enhancing anti-spam filtering.

Many machine learning applications are about classifying an input. Szegedy et al.
[1] showed that it is also possible to introduce small random perturbations in an
input such that the predicted label changes. An interesting question that arises is
whether it is possible to find a meaningful way of changing the input so that the
label changes accordingly. This concept can be referred to as manifold traversal.
A manifold is a topological space in n dimensions, e.g a plane, sphere or cylinder
in 3 dimensions. The problem becomes to find an underlying manifold that may
be traversed in order to change the input. This concept has not previously been
applied in NLP. Take for example “I love ice cream” as input, this sentence can be
classified as positive, as it says something positive about ice cream. The task is to
change the sentence into something negative about ice cream.

1

1. Introduction

Changing text with a negative classification so that it receives a positive classification
can be useful in writing, in a similar way spell checking is used today. The way
spell check is used is that misspelled words, or bad grammar, are highlighted and
accompanied with a suggested change. Similarly, very negative sentences could be
highlighted and a suggestion on how to change the sentence into being more positive
could be presented. The ability of generating new sentences with the opposite
sentiment can also be useful in data augmentation for machine learning tasks, where
the amount and quality of data can be a limitation.

1.2 Project aim
The aim of this research project was to develop an algorithm for transferring a
sentence with negative sentiment to a positive sentiment, and vice versa. We wanted
to examine whether it was possible to find a representation of sentences that could
be both encoded to, and decoded from, a continuous space.

1.3 Problem definition
The goal in this project was to develop a machine learning algorithm for changing
the sentiment in a sentence. The problem was divided into three subproblems:

• representing sentences in a continuous space
• exploiting the sentence representation and traversing the manifold in such a

way that the sentiment changes
• generating a new sentence from the representation space

In order to use continuous optimization methods for the manifold traversal it was
desirable to work with continuous sentence representations. Since words belong to
a discrete space, it was not intuitive how such a sentence representation should be
achieved. It was desirable for sentence representations to be independent of sentence
length and also for original and generated sentences to be independent of their re-
spective lengths. The reason for having length independence was that an intuitive
way to reverse the sentiment in a sentence is by adding or removing the word ’not’.

The manifold traversal needed to be guided by some carefully selected optimization
criteria. Because only the sentiment of a sentence should change in the manifold
traversal, the method was to encourage changes of the sentence representation to-
wards the opposite sentiment whilst penalizing other changes. On the other hand,
the method was not to encourage coarse changes that may cause us to deviate from,
or move too far along, the manifold.

To generate a sentence from the sentence representation, arrived at through mani-
fold traversal, an inverse transformation of the encoding procedure was needed. This
inverse transformation required the sentence modelling to be invertible or differen-
tiable. Given an output sentence, we wanted the following three points to hold for

2

1. Introduction

the algorithm to be considered correct:
• The sentiment of the output sentence must be the opposite of the sentiment

of the source sentence.
• The output sentence must preserve the semantic similarity of the source sen-

tence, e.g. if the source sentence is about ice cream, then the output sentence
should also be about ice cream.

• The output sentence should be grammatically correct.

1.4 Related work

In a series of experiments, performed by Kim [2], a simple convolutional neural
network was trained and evaluated on different sentence classification tasks. The
tasks were: binary and fine-grained sentiment classification, subjectivity analysis
and question classification. The latter is the task of deciding which of 6 question
types a question belongs to. From the different experiments, they were able to
show that a convolutional neural network (CNN) using a single convolutional layer
performed well on all tasks. Furthermore, their results showed that building the net-
work on top of pre-trained word vectors developed by Mikolov et al. [3] significantly
increased classification performance compared to using randomized word vectors.

Gardner et al. [4] developed a general purpose method for changing labels in images.
Various label changing problems such as face aging, changing hair color and chang-
ing winter scenes to summer scenes were solved using deep manifold traversal. The
algorithm was based on the idea that natural images incorporate a low dimensional
manifold which may be traversed in order to make meaningful changes to an image.
The method presented in [4] transformed images to a deep feature space using a
CNN and then traversed this space towards the target features. A new image was
then reconstructed from the deep feature representation.

Text prediction, or language modelling, can be performed on both word and char-
acter level. Graves [5] implemented and evaluated two language models, one word-
by-word and one character-by-character long short-term memory recurrent neural
network. The motivation for using character level language modelling is that the
vocabulary becomes very small. A disadvantage is that recurrent neural networks
(RNNs) are unable to remember past information for a long time and character
level language models depend on this to a greater extent than word level language
models do. Both models were tested on the Penn Treebank data set and the results
suggested that the word-level RNN performed better than the character-level RNN.

Recently, Radford et al. [6] implemented a byte-level recurrent language model to
generate text. The model was then trained on additional tasks such as sentiment
analysis and paraphrasing. The model consisted of a single layer multiplicative
long short-term memory (mLSTM) cell and when trained for sentiment analysis it
achieved state of the art on the movie review data set1 created by Pang and Lee

1https://www.cs.cornell.edu/people/pabo/movie-review-data/

3

1. Introduction

[7] in 2005. They also found a unit in the mLSTM that directly corresponds to the
sentiment of the output.

1.5 Limitations
This project was restricted to changing the sentiment of sentences containing no
more than 30 words. The model has a fixed vocabulary and does not recognize
other words. Instead these words are swapped for an “Unknown”-token. Similarly
all digits are represented with a “Digit”-token. The smaller vocabulary resulted in
less computations and hence a faster training procedure. However, the algorithm is
not optimized for speed, since the aim was primarily to investigate if it was at all
possible to traverse the manifold in a sentence representation space.

4

2
Theory

This chapter gives an introduction to artificial neural networks and detailed descrip-
tions of feed forward, convolutional and recurrent neural networks. In particular,
this chapter focuses on the applications of neural networks in natural language pro-
cessing. Furthermore, this chapter contains the theory behind the maximum mean
discrepancy test statistic, used in a central part of this project, and the optimization
method used in combination with this statistic. Finally, details on a dimensionality
reduction method, used for visualizing the results, are given.

2.1 Word embeddings

In NLP, it is often desirable to work with vector representations of words. One
way is to use one-hot vectors. A one-hot vector is a vector of zeros in all but one
element. For example, all rows in an identity matrix are one-hot vectors. However,
this representation describes all words as equidistant and encodes no relationship
between similar words. Another way to represent words is to use word embeddings
[3, 8], which is the representation of words as dense real-valued vectors. The word
embeddings are based on the distributional hypothesis [9], which states that words
that are used in the same contexts tend to have similar meanings. Hence, the
semantics and syntactic information about a word can be captured by assigning
similar embeddings to words that occur in similar contexts. The advantage of using
word embeddings, instead of one-hot vectors, in neural networks is that the network
is able to generalize from previously seen data when presented with new data.

2.2 Artificial Neural Networks

Artificial neural networks (ANNs) can be applied to solve various problems such as
function approximation, pattern classification, and object recognition. Inspired by
the cooperation of neurons in the human brain, ANNs connect a large number of
basic computation units that are adapted for solving specific tasks [10]. A single
computation unit, called a neuron, is illustrated in figure 2.1. A neural network
consists of many neurons put together as a network, where the output from one
neuron is the input to other neurons. The output from the neuron in figure 2.1 can
be calculated as

y = f

(
n∑
i=1

wixi

)
,

5

2. Theory

where xi are the input signals, wi are the weights that correspond to each input
signal, and f is an activation function.

Figure 2.1: The computation unit has n input signals, x1, . . . , xn, and one output
signal, y. Each input signal has a weight, w, which regulates its significance to the
output.

Neural networks are trained through presenting them with a set of training exam-
ples. Each example consists of an input and its corresponding output. For example,
if a neural network is trained for sentiment classification on sentences, the training
data set can contain positive and negative sentences as inputs and binary labels as
outputs.

In the following sections three types of neural networks used in this project are
described: feedforward neural networks, convolutional neural networks and recurrent
neural networks.

2.2.1 Feed forward neural networks
The feedforward neural network (FFNN) can be seen as a weighted directed acyclic
graph where the nodes are the neurons and the edges are the links between the
neurons. The neurons are typically structured in different layers: first an input
layer and last an output layer and an arbitrary number of so called hidden layers
in between. A fully connected FFNN neural network is when all neurons in each
layer have a connection to all neurons in the next layer. In figure 2.2 a fully con-
nected FFNN is illustrated. The connections between neurons in different layers are
weighted depending on their significance.

We denote the weights in a FFNN w
(l)
i,j , where i is the index of the neuron sending the

signal, j the index of the neuron that is receiving the signal and l is the layer. For
example, between input neuron x2 and the hidden neuron h3 the weight is denoted
w

(1)
2,3. To calculate the output of the network in figure 2.2 we first calculate the values

of the hidden neurons

h1 =f(x1w
(1)
1,1 + x2w

(1)
2,1 + x3w

(1)
3,1)

h2 =f(x1w
(1)
1,2 + x2w

(1)
2,2 + x3w

(1)
3,2)

h3 =f(x1w
(1)
1,3 + x2w

(1)
2,3 + x3w

(1)
3,3)

(2.1)

6

2. Theory

Figure 2.2: Example of a fully connected FFNN with one hidden layer. The
neurons in the input layer are denoted x1, x2, x3 (purple circles), the neurons in the
hidden layer are denoted h1, h2, h3 (blue circles) and the neuron in the output layer
is denoted y (green circle). The connections between the neurons in the different
layers are represented by an arrow.

and then the output,
y = f(h1w

(2)
1,1 + h2w

(2)
2,1 + h3w

(2)
3,1) (2.2)

where f is an activation function.

If the inputs are denoted as a vector x, the weights between the input layer and
the hidden layer are denoted with the matrix W(1), the weights between the hidden
layer and the output layer with the matrix W(2), then equations (2.1) and (2.2) can
be written as

h = f(W(1)x) (2.3)

and
y = f(W(2)h), (2.4)

where f is an activation function. Three typical activation functions used in neural
networks are the sigmoid function,

σ(x) = 1
1 + e−x

,

the hyperbolic tangent,

tanh(x) = ex − e−x

ex + e−x
,

and the rectified linear function,

ReLu(x) = max(0, x). (2.5)

7

2. Theory

2.2.2 Convolutional neural networks
Convolutional neural networks (CNNs) were originally invented for computer vision
but have shown to be effective for NLP and have recently achieved remarkably
strong performance on sentence classification [2, 11, 12]. A simple CNN consists
of an input layer, one or more convolutional layers followed by pooling layers and
a classification layer [2]. This section will explain the basics of a CNN and the
structure of the described CNN is illustrated in figure 2.3.

Figure 2.3: This model describes a single layer CNN. The input “I really like
strawberry ice cream!” is mapped to a sentence matrix where each row corresponds
to a word embedded as a vector (embedding size 4 in the illustration). In this
illustration there are three filter sizes: 3, 4 and 5, and two filters of each size. Each
filter is applied to the sentence matrix resulting in one feature map for each filter.
In this illustration one value is extracted from each feature map in the pooling layer.
The extracted values are concatenated into a feature vector which is connected to
a fully connected feedforward layer. The last layer classifies the label and returns a
probability distribution over the labels. In the illustration there are two labels (red
and blue).

8

2. Theory

Figure 2.4: The convolution operation on a sentence matrix. The sentence matrix
is illustrated in white and contains 5 rows, each representing one word. The convo-
lutional filter is illustrated in purple and is of height 3. Hence, the filter is applied
to each substring of 3 consecutive words of the sentence. From equation (2.6) the
result is a scalar (green, blue and yellow). Finally the scalars from each application
are concatenated into a feature map.

Given an input sentence, each word is mapped to a d-dimensional vector wi. For a
sentence with s words, the word vectors constitute a sentence matrix

S =

w1
...

ws

which is fed to the convolution layer. In the convolutional layer the features of
the sentence are extracted. The convolution operation applies a matrix, called a
filter, to the sentence matrix. Since each row in the sentence matrix represents one
word it is common to use filters with the same width as the word representation.
The height of a filter determines how many subsequent words are looked at in one
application. Given a convolutional filter M of size m × d and the sentence matrix
S, one application of the filter results in a matrix

A = M� Si:i+m−1,

where Si:i+m−1 is the set of m consecutive words in the sentence matrix S and � is
the elementwise product. The entire convolution operation results in a feature map
c = [c1, . . . , cs−m+1] ∈ Rs−m+1, where each feature, ci is given by

ci = f

∑
k,l

(ak,l) + bi

 , (2.6)

9

2. Theory

where bi ∈ R is a bias, f is an activation function and the summation is over all
elements ak,l ∈ A. The operation is illustrated in figure 2.4.

The feature maps from the convolutional layer are given as input to the pooling
layer. The purpose of the pooling layer is to capture the most important features of
the input sentence. To accomplish this, a pooling function is applied to the feature
maps to combine the features from the convolutional layer into one fixed size vector.
A common pooling function is the max-function, which extracts the maximum value
from each feature map. The extracted values are then concatenated into one vector
which represents the features of the input. This vector is then passed to a fully
connected layer which predicts the label.

2.2.3 Recurrent neural networks
Recurrent neural networks (RNNs) have proven to be successful in capturing the
semantic composition in text [13] and are used in NLP tasks such as speech recog-
nition [14] and machine translation [15]. Sentences may be viewed as sequences of
words and given such a sequence, an RNN can be used for building a probabilistic
model for predicting the next word, given the previous words in the sequence. Which
words have the largest probability depends on the data set that is used for training
the network. The RNN recursively processes the sequence of inputs. To make use
of the sequential information, such as the semantics in a sequence of words, a state
s is updated and passed on from each time step to the next. A basic RNN model is
illustrated in figure 2.5.

Figure 2.5: A basic RNN
unit. The state s is calculated
given the input vector x and
weight matrices Wx and Ws.
The output distribution y is
then calculated from the state
and the weight matrix Wy.

The input to the network is a sequence of words represented as one-hot vectors
x ∈ Rv, where v is the number of words in the vocabulary known to the network.
Given the input vectors x1, . . . ,xn the state, s ∈ Rm, is updated as

st = f(Wxxt + Wsst−1) (2.7)

where Wx is the weight matrix for the inputs, Ws the weight matrix for the state
and f is an activation function, see figure 2.5. The output from the network is given
10

2. Theory

by
yt = σ(Wyst + b),

where Wy is the weight matrix for the output, b is the bias and σ is the softmax
function

σ(x)j = exj
n∑
i=1

exi
for j = 1, . . . , n.

2.2.3.1 Gated recurrent unit

While RNNs in theory are capable of processing information an arbitrary num-
ber of time steps back it is in practice difficult to achieve such a behaviour using
gradient-descent training [16]. During training, the gradient is multiplied by the
weight matrix once for every time step. If the weights are very small or large this
can lead to an exponential decay or blow up of the gradient. A gradient that blows
up results in oscillating weights and the network cannot be trained. Conversely, if
the gradient vanishes it becomes hard to capture the long-term dependencies. These
problems can be reduced through remodelling the conventional recurrent unit. One
such model is the gated recurrent unit (GRU) which was proposed by [15].

With the GRU, [15] introduced a reset- and an update gate. The reset gate allows
the network to forget information that is irrelevant at a later time step. The update
gate promotes long term memory of the network by controlling to which extent
information from a previous time step influences the current time step. Denoting
the reset gate r and the update gate u the update of the hidden state s can be
described mathematically with the following equations. The reset gate is computed
as

r = σ(Wx,rxt + Ws,rst−1)

where xt is the input to the recurrent unit, Wx,r and Ws,r are weight matrices, st−1
is the previous hidden state and σ is the softmax function. Using the same notation,
the update gate is expressed as

u = σ(Wx,uxt + Ws,ust−1)

where Wx,u and Ws,u are weight matrices. Finally, the state s is updated as

st = (1− u)� s̃ + u� st−1 (2.8)

where 1 is a vector of all ones, � denotes elementwise multiplication and the vector
s̃ is given by

s̃ = tanh(Wxxt + Ws(r� st−1)).

Here, Wx and Ws are weight matrices. The update rule for the state st described
in equation (2.8) can thus replace the rule previously used in a conventional RNN,
described in equation (2.7).

11

2. Theory

2.2.4 Gradient descent
When training a neural network, the goal is to minimize an error function. Training
the network requires a set of inputs x with known outputs y. A common error
function is the cross-entropy error function,

E(y, ŷ) = −
∑
i

yi log ŷi, (2.9)

where y is the target output and ŷ is the predicted output from the network. This
equation implicitly depends on the weights of the network, as defined in equations
(2.3) and (2.4) for the simple FFNN. The gradient descent method can be used for
updating the weights. The idea is to move the weights, w(l)

i,j ∈W, in the direction of
the negative gradient ∂E/∂w(l)

i,j such that the error function is minimized. For each
training example the gradient is calculated and the weights are updated according
to the gradient descent algorithm

w
(l)
i,j = w

(l)
i,j − η

∂E

∂w
(l)
i,j

,

where η ∈ R is the learning rate. In order to update all weights in the network, the
error is backpropagated from the output through the network.

When training an RNN, the current state depends on the previous states so the
gradients have to be backpropagated from time t, through the network, to the first
time step. Because the weight matrices are shared between time steps, the gradients
have to be summed over the time steps. Thus, when training the RNN, the weights
are updated as

wi,j = wi,j − η
∑
t

∂E(t)
∂wi,j

, (2.10)

where η is the learning rate and E(t) is the error at time step t.

2.2.5 Preventing overfitting
To prevent neural networks from overfitting a technique called dropout can be used
[17]. The idea behind dropout is to randomly disable weights in order to prevent
their co-adaptation. Dropout is implemented through creating a mask of Bernoulli
random numbers, equal to 1 with a probability p and otherwise 0, and apply that
mask to the weights of the network. If p is close to 1 few units are dropped and vice
versa. Specifically, in the CNN described above, dropout can be applied to the fully
connected layer during training. In the RNN, dropout can be applied to the input
of the GRU.

Another technique for preventing overfitting is to use regularisation. Regularisation
introduces an additional term to the loss function used in training. In a CNN
l2 -regularisation can be implemented through adding the l2 -norm of the weight
matrices as a term in the loss function.

12

2. Theory

2.3 Maximum mean discrepancy

The maximum mean discrepancy (MMD) [18] is a test statistic used to determine
whether two distributions are the same. This statistic is useful when, for example,
determining whether measurements from two setups of the same experiment may be
analyzed jointly. Another application is to use the statistic for distinguishing sick
people from healthy people, when analyzing tissue samples [18].

Given two distributions, Psource and Ptarget, the objective of the MMD is to find a
smooth function which is large for samples from Psource and small for samples from
Ptarget. Given such a function the MMD is the difference between the mean function
values for the two sets of samples. Gretton et al. [18] presents an empirical estimate
of the MMD:

MMD(F , X, Y) = sup
f∈F

(
1
m

m∑
i=1

f(xi)−
1
n

n∑
i=1

f(yi)
)

(2.11)

where X = [x1, x2, . . . , xm] are samples drawn from the source distribution Psource
and Y = [y1, y2, . . . , yn] are samples drawn from the target distribution Ptarget. The
function f belongs to a class, F , of smooth functions and should be chosen as to
maximize the difference between the mean values of f applied to X and Y . In both
[18] and [4], F is a reproducing kernel Hilbert space allowing comparison of multi-
dimensional feature vectors. The function f ∗ attaining the supremum in equation
(2.11) can be empirically estimated as

f ∗(z) = 1
m

m∑
i=1

k(xi, z)−
1
n

n∑
i=1

k(yi, z), (2.12)

where k(x, x′) is a kernel function. The method presented by Gardner et al. [4] uses
a Gaussian kernel function

k(x, x′) = e−
1

2σ |x−x
′|2

with σ being the kernel bandwidth.

2.4 Broyden-Fletcher-Goldfarb-Shanno algorithm

The Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS)[19] is a quasi-Newton
optimization method for real-valued, multivariate, functions. Given an objective
function f(x), the algorithm finds a local minimum, x∗. The algorithm updates
an initial guess, x0, until a minimum is found. In the traditional gradient descent
method, the current guess is updated as

xn+1 = xn − λ∇f(xn)

where λ is the step size and ∇f(xn) is the gradient of f in xn. In quasi-Newton
methods, however, the gradient is multiplied by the inverse of an approximation of

13

2. Theory

the Hessian at the minimum, H ≈ ∇2f(x∗) [19]. This approximation is also updated
in each iteration of the algorithm. In BFGS H is updated as

Hn+1 = Hn + yy>

y>s
− (Hns)(Hns)>

s>Hns
, (2.13)

where
y = ∇f(xn+1)−∇f(xn) and s = xn+1 − xn.

The algorithm consists of the following steps:
1. Find a search direction d = −H−1

n ∇f(xn).
2. Update the current guess xn+1 = xn+λd, where an optimal λ is found through

line search.
3. Update the approximation of the Hessian, H, as in equation (2.13).

The above steps are iterated until a minimum x∗ is found.

2.5 Principal component analysis
Principal component analysis (PCA) is a method used to give a simplified view of
multidimensional data. PCA can be used for data reduction, outlier detection, clas-
sification, prediction etc. [20]. Given a matrix of data, where each row corresponds
to an observation and each column corresponds to a variable, the goal is to project
this matrix on to a subspace with fewer dimensions.

Let X be a data matrix with k rows and n columns. The first step in PCA is to
compute the mean for all variables

µ = 1
k

(x1 + · · ·+ xk)

and re-center the data around the mean forming a new matrix, B, which is the
elementwise subtraction of µ from each row of X. The next step is to compute the
n× n covariance matrix

S = 1
k − 1B>B.

Since S is symmetric it may also be orthogonally diagonalized. The eigenvalues,
λ1, . . . , λn, of S are sorted in decreasing order and their corresponding orthonormal
eigenvectors, u1, . . . ,un are the principal components for the data matrix [21]. The
variance of the data is greatest in the direction of the first principal component and
so on. In order to achieve a representative dimensionality reduction in, for example,
two dimensions, the data matrix may be projected onto the plane spanned by u1
and u2.

14

3
Model

As stated in the problem definition the project consists of three subtasks. The first
task is representing sentences in a continuous space. The second task is exploiting
the sentence representation and traversing the manifold in such a way that the sen-
timent changes. The third task is generating a new sentence from the representation
space. Our model uses a CNN for sentiment classification and sentence encoding.
The encoded vectors are traversed using the MMD statistic and finally decoded us-
ing an RNN. An overview of the complete model is presented in figure 3.1. Each of
the steps are given more detail in the sections below.

Figure 3.1: Overview of the algorithm and its different stages. An input sentence
is represented as a matrix using word embeddings and given as input to a CNN. The
CNN outputs a feature vector, z, representing the sentence. This vector is moved in
a semantic space using the MMD statistic. The traversal results in a new vector, z∗,
that should represent a sentence with the opposite sentiment. This vector is given
as input to a text generating RNN which outputs the new sentence.

3.1 Sentiment classification and encoding sentences

A sentence is represented as a matrix where the rows correspond to the, 300-
dimensional, word2vec [3] word embeddings for each word in the sentence. This
matrix is given as input to a CNN, which is trained for binary sentiment classi-
fication. The CNN used in this project follows the work by Kim [2], with some
modifications regarding filter sizes and number of filters. The network consists of
one convolutional layer, one max-pooling layer and finally one fully connected feed
forward layer. The filter sizes used for the convolutional layer were 1, 2, 3 and 4 with
75 filters per size, resulting in 300 filters in total. The pooling layer threrfore outputs
a 300-dimensional feature vector denoted z. This feature vector is extracted from the
CNN along with the predicted label, i.e positive or negative. The 300-dimensional
feature vector is used as the encoding of the input sentence.

15

3. Model

3.2 Manifold traversal of the representation space
Since the CNN is trained on binary sentiment classification, two separable distribu-
tions, one for positive and one for negative sentence representations, are generated.
The MMD statistic, described in section 2.3, can be used to traverse a vector origi-
nating from one of these distributions to the other. The result of the traversal is a
vector that resembles the encoding of a sentence with the opposite sentiment.

When moving the feature vector z by minimizing equation (2.12), the semantics
of the original sentence may be lost if z is moved too far along the manifold. To
control how far z is moved from its original location a budget of change [18], λ,
is used. A source and a target set of sentence representations are created. The
source set contains feature vectors for sentences with the same sentiment as z and
the target set contains feature vectors for sentences with the opposite sentiment. A
matrix V = [zt1, · · · , ztn, zs1, · · · , zsm, z] is created from the target set zt, the source
set zs and z. The traversed feature vector, z∗, can then be expressed as z∗ = z+Vδ,
where δ is the displacement of z. Equation (2.12) can now be written as

f ∗(z + Vδ) = 1
m

m∑
i=1

k(zsi , z + Vδ)− 1
n

n∑
i=1

k(zti, z + Vδ), (3.1)

where
δ = arg min

δ
f ∗(z + Vδ) + λ‖Vδ‖2, λ ∈ R. (3.2)

The minimization over δ uses the BFGS algorithm [22] described in section 2.4. The
optimization of (3.2) is constrained by the budget of change, enforced in the last
term.

3.3 Decoding sentences using a recurrent neural
network

The traversed feature vector z∗ is given as input to an RNN trained for generating
text. In addition to z∗, the RNN receives a start-of-sentence token as input in the
first time step. For each time step, the RNN outputs the most probable word and
feeds this word as input to the next time step. When the most probable word is
an end-of-sentence token, the generation of words is terminated. The RNN consists
of a single layer GRU cell, described in section 2.2.3.1, with a state size of 300.
The weight matrix for the input, Wx in figure 2.5, consists of the 300-dimensional
word2vec word embeddings for the words in the vocabulary.

3.4 Training the CNN and the RNN
When training the CNN on binary sentiment classification, the loss is calculated
as the cross-entropy error between the predicted label and the true label for each
sentence, see equation (2.9). Additionally, the CNN needs to encode information

16

3. Model

Figure 3.2: Training scheme for the CNN and RNN. The CNN takes a sentiment
labeled sentence as input and produces a sentiment label and a feature vector z as
output. The sentiment label is used when calculating the loss of the CNN and the
feature vector is given as input to the RNN. In addition to the feature vector, the
RNN takes the sentence (without a label) and a start-of-sentence token as input.
The RNN produces a sentence as output and this sentence is used to calculate the
loss of the RNN. Both networks are then updated using the unweighted sum of their
respective losses.

about the topic and semantics of the sentence. Therefore the CNN is trained to-
gether with the RNN. During training, the feature vector produced by the CNN
is given as input to the RNN and the loss for text generation is computed. These
errors are added, producing a total loss which is used to update the weights in both
networks. A schematic of the training procedure is illustrated in figure 3.2. In ad-
dition to the feature vector, the RNN takes a start-of-sentence token as input and
is trained to generate the original sentence. The loss of the RNN is measured by
calculating the cross-entropy error between the predicted word, ŵ, at time step t,
in the generated sentence and the actual word, w, at the same time step from the
original sentence, see equation (2.10). During training, at time step t the correct
word from the previous time step t− 1 is fed as input to the network. At evaluation
time, however, the predicted word from the previous time step is used as input to
the network in order to reduce the time it takes to train the neural network. Figure
3.3 highlights the differences in the input to the RNN during training and evaluation.

When the training of the CNN did not further improve performance, the CNN
weights were locked and the RNN was retrained. The sentences from the training
data were run through the trained CNN to create a set of feature vectors in 300
dimensions which served as input to the RNN. The training set was partitioned
into batches of 64 sentences. All sentences shorter than 30 words were padded with
“padding tokens” to the full length. The RNN was then trained to reproduce the
original sentences over 14 epochs, given the sentence representations.

17

3. Model

(a) During training, the RNN is given the correct word as input in each time step.
Here, the RNN erroneously predicts the word “ocean” instead of “sky” and the word
“cloudy” instead of “blue”, but the correct words is used as input in the next time
step.

(b) During evaluation, the RNN is given the predicted word from the previous time
step as input in each time step. Here, the RNN erroneously predicts the word
“ocean” instead of “sky” and the word “cloudy” instead of “blue”, and uses the
predicted words as input in the next time step.

Figure 3.3: Differences in the input to the RNN during training and evaluation. In
this example, the correct sentence is “the sky is blue”. During evaluation, previous
erroneous predictions impact future predictions.

The CNN and the RNN were trained on three labelled data sets containing positive
and negative sentences. The first data set is the movie review sentence polarity data
set v1.01 (MR), introduced by Pang and Lee [7] in 2005. MR is a well known data set
for sentiment analysis and consists of 10 662 labelled movie-review sentences from
the movie review site www.rottentomatoes.com. The second data set is smaller and
was introduced by Kotzias et. al [23] in 2015. It contains 500 reviews for cell phones
and accessories from Amazon, 500 reviews for restaurants from Yelp and 500 movie
reviews from IMDB2. Both data sets have equal amounts of positive and negative

1https://www.cs.cornell.edu/people/pabo/movie-review-data/
2https://archive.ics.uci.edu/ml/machine-learning-databases/00331/

18

3. Model

sentences. The third data set is a subset of a data set3 containing product reviews
from various online sources, created by Täckström et al. [24]. In this data set,
only the sentences that were either positive or negative were extracted, in total 923
positive and 1 320 negative sentences.

3https://github.com/oscartackstrom/sentence-sentiment-data

19

3. Model

20

4
Experiments

The model, presented in the previous chapter, was implemented using the program-
ming language Python 3. The TensorFlow [25] and NumPy [26] libraries were used
for building the neural networks and the SciPy [27] library was used for optimizing
the test statistic during the manifold traversal. The implemented model was evalu-
ated with the goals for the project in mind, i.e reversing the sentiment of sentences
while generating semantically similar and grammatically correct sentences. Each
component of the model was tested separately and the complete model was tested
as a whole. This chapter presents the experiments performed for evaluating the
model. The results of the experiments are presented in chapter 5.

4.1 Accuracy of the neural networks
The manifold traversal is guided by the MMD statistic, relying on the existence of
two distinguishable distributions of positive and negative sentence representations.
Therefore, it is important that the classification accuracy of the CNN is high. Also,
when generating sentences from the traversed vector, it is important that the RNN
can decode the vector accurately. Thus, the RNN was evaluated on its ability to
reproduce a sentence given a feature representation. The accuracy of the CNN
and the RNN was therefore measured during training. The sentiment data set was
randomly separated into a training set, containing 90% of the data, and a test set,
containing the remaining 10%. The weights in the neural networks are only updated
using the loss from the training set, not the test set. The training set was divided into
batches of 64 sentences and the accuracy of both neural networks was evaluated on
the test set periodically every 10th batch during training. The classification accuracy
of the CNN was measured by simply calculating the percentage of correctly predicted
positive or negative labels on the test set. In order to measure the accuracy of the
RNN, the average per-word perplexity was calculated on both the training and test
set. The perplexity can be interpreted as the number of words the RNN chooses
between in each step and is calculated as eloss. For the RNN, the cross-entropy loss
was used, see equation (2.10).

4.2 Encoding sentiment and semantic content
In order to evaluate whether the encodings from the CNN contained information
about sentiment and semantics, the feature vectors for the sentences were visual-
ized for different sentiments and topics. The subset of feature vectors, used in each

21

4. Experiments

experiment, was reduced from 300 to 2 dimensions using PCA, described in section
2.5. The visualizations were made using the first two principal components.

First, 1000 randomly sampled feature vectors, from the entire sentiment data set,
which were correctly classified as either positive or negative by the CNN were visu-
alized. Then, feature vectors with an additional topic label were visualized. This
labelled data set was created through extracting sentences, containing specific words,
from the original data set. Sentences containing “movie”, “phone”, “food”, “com-
edy” or “drama” were extracted. The latter visualization was created in order to see
how distinct topics (“movie”, “phone” and “food”), as well as more similar topics
(“drama” and “comedy”), were clustered.

4.3 Preserving semantic content during traversal
To assess whether the content in a sentence is preserved in the traversal, it was de-
sirable to traverse and visualize sentences with distinct topics. The choice of topics
was sentences containing either the word “phone” or “move”, because such sentences
would likely have little correlation in contrast to, for example, sentences contain-
ing either “comedy” or “drama”. Negative sentences containing the word “movie”
and positive sentences containing the word ”phone” were traversed using different
settings for the hyperparameters σ and λ. The optimization of the MMD was set
up with 90 positive examples and 90 negative examples for the source and target
sets. The examples consisted of an equal amount of sentences containing the word
“movie” and sentences containing the word “phone”. The topics of the sentences
were not used for the traversal but needed when visualizing the results. For the
visualization, the feature vectors for the examples and the traversed feature vectors
were reduced to 2 dimensions, using PCA, similarly to the experiment described in
section 4.2.

4.4 Evaluation of the complete model
There exists no single correct output for the manifold traversal, e.g given the nega-
tive sentence “The food did not taste well”, both sentences “The food was amazing”
and “I liked the food” are valid outputs that reverse the sentiment. Therefore, we
used qualitative evaluation. The encoding-decoding, as well as the whole model, was
evaluated by generating sentences from the feature vectors z (representing the orig-
inal sentence) and z∗ (the traversed vector) respectively. The generated sentences
were manually compared to the original. We wanted the sentence generated from z
to closely resemble the original sentence and the sentence generated from z∗ to have
the same context, but opposite sentiment, as the original sentence.

22

5
Results and discussion

This chapter presents and discusses the results of the experiments from chapter 4.
The implications of the results, the evaluation method of the complete model as well
as design choices and data sets are also discussed. Some suggestions regarding how
to improve the model are given, along with some thoughts about what can be done
in the future.

5.1 Accuracy of the CNN and RNN
Training the CNN for sentiment classification, regarding the loss of the text-generating
RNN, resulted in a classification accuracy of 80% on the test set. The evaluation
procedure is described in section 4.1. The losses for the CNN and RNN were eval-
uated on the test set periodically during training and can be seen in figures 5.1a
and 5.1b. The combined loss of the CNN and RNN can be seen in figure 5.1c. The
classification accuracy was also evaluated periodically on the test set and is shown
in figure 5.1d.

As figure 5.1a shows, the loss of the CNN decreases exponentially and converges
towards 0.5. We found that using l2 -regularization prevented the network from
overfitting. Without regularisation the loss of the CNN started to increase after
about 2000 batches of training. The accuracy of the CNN, seen in figure 5.1d, is
very noisy after around 300-500 batches. This behaviour possibly occurs because
the CNN has to take into account the loss of the RNN during training. In figure 5.1b
we can see that the loss of the RNN is high and decreases relatively slowly between
batch 100-300. This presumably introduces noise in the CNN accuracy because the
CNN tries to adapt so that the RNN loss decreases. The noise is amplified because
the learning rate is higher in the beginning of training.

Figure 5.2 shows the perplexity for the RNN during its separate training (see section
3.4), computed for both the training and the test set. It is important to note that,
during training, the RNN takes the correct word from time step t as input for time
step t + 1, but during test the word with the highest probability at time step t is
used as input for time step t + 1. The special procedure during training decreases
the training time for the RNN.

23

5. Results and discussion

0 1000 2000 3000

Batch number (193 batches/epoch)

0

0.5

1

1.5

2

2.5

3
C
N
N

lo
ss

(a) Cross-entropy loss for the CNN, eval-
uated on the test set.

0 1000 2000 3000

Batch number (193 batches/epoch)

2.5

3

3.5

4

4.5

5

5.5

6

R
N
N

lo
ss

(b) Cross-entropy loss for the RNN dur-
ing CNN training, evaluated when feed-
ing states generated by the CNN.

0 1000 2000 3000

Batch number (193 batches/epoch)

2

3

4

5

6

7

8

9

T
o
ta
l
lo
ss

(c) Total loss during training of the CNN.

0 1000 2000 3000

Batch number (193 batches/epoch)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

C
la
ss
ifi
ca
ti
o
n
a
cc
u
ra
cy

(d) Classification accuracy for the CNN
on the test set.

Figure 5.1: Loss and accuracy evaluated periodically on the test set during training
of the CNN for sentiment classification. Subfigures 5.1a and 5.1d show loss and
accuracy of the CNN for sentiment classification over 10 training epochs. Subfigure
5.1b shows the loss of the RNN for text generation when fed with states from the
CNN during the training of the CNN and subfigure 5.1c shows the combined loss of
the CNN and the RNN.

5.2 Encoding sentiment and semantic content

Figure 5.3, visualizes clustering of the dimensionality reduced feature vectors. The
points are coloured based on their sentiment and, in figures 5.3b-5.3d, based on words
they contain. It is, as expected, evident from all graphs that the CNN distinguishes
positive from negative sentence representations as only the correctly classified sen-
tences were used for the visualization. Additionally, the figures suggest that the
CNN also makes a distinction between different topics.

Topics that are too similar like “comedy” and “drama” (figure 5.3d) seem to be hard

24

5. Results and discussion

0 500 1000 1500 2000 2500 3000

Batch number (214 batches/epoch)

0

5

10

15

20

25

30

35

40

45

50

P
er
-w

or
d
p
er
p
le
x
it
y

Training
Validation

Figure 5.2: Perplexity of the RNN during training. The RNN was evaluated on the
test set every 10 batches and the training perplexity was averaged over 10 batches.

to distinguish in contrast to the topics “movie” and “food” (figure 5.3c) where we
can see distinct clustering. Most likely, the sentences containing “drama” and the
sentences containing “comedy” are related, and since we used the word2vec word
embeddings the distance between the words is likely small. This might contribute
to the similar encoding of sentences containing “comedy” and “drama”. Another
aspect to keep in mind is that the clusters are visualized using PCA. Since we plot
the feature vectors in the space spanned by the first two principal components there
may still exist a dimension, in which the variance is lower, but where sentences with
“comedy” and “drama” are separated.

5.3 Preserving semantic content during traversal
To assess whether the content in a sentence is preserved in the traversal, figure 5.4
shows how negative sentences containing the word “movie” and positive sentences
containing the word “phone” are traversed using different settings of the hyperpa-
rameters σ and λ. The values for λ that were used and the resulting magnitude of
the displacement vectors δ are listed in table 5.1. When traversing the manifold for
the sentence containing the word movie, the displacement vector, δ, was initialized
to a vector of zeros so that the traversal starts at the original feature vector. When
traversing the manifold for the sentence containing the word phone, the displace-
ment vector was initialized with uniform random numbers (between 0 and 0.02 for
target indices and between -0.02 and 0 for source indices). The reason for the latter
initialization of δ is that the optimal displacement should, in general, move away
from the source vectors and towards the target vectors. The results in figure 5.4a
show that a vector representing a negative sentence containing “movie” is moved

25

5. Results and discussion

-20 -15 -10 -5 0 5 10 15 20

-20

-15

-10

-5

0

5

10

15

20

positive
negative

(a) Feature vectors for positive and neg-
ative sentences.

-15 -10 -5 0 5 10 15 20

-15

-10

-5

0

5

10

15

positive movie
positive phone
negative movie
negative phone

(b) Feature vectors for sentences contain-
ing either the word “movie” or “phone”.

-20 -15 -10 -5 0 5 10 15 20

-20

-15

-10

-5

0

5

10

15

positive movie
positive food
negative movie
negative food

(c) Feature vectors for sentences contain-
ing either the word “movie” or “food”.

-20 -15 -10 -5 0 5 10 15 20

-20

-15

-10

-5

0

5

10

15

20

positive drama
positive comedy
negative drama
negative comedy

(d) Feature vectors for sentences contain-
ing either the word “comedy” or “drama”.

Figure 5.3: Dimensionality reduction, using PCA, of feature vectors generated by
the CNN.

so that the resulting vector lies within the cluster of positive sentences containing
“movie”. In the same way, we see in figure 5.4b how a vector representing a positive
sentence containing “phone” is moved so that the resulting vector lies within the
cluster of negative sentences containing “phone”. This behaviour suggests that the
context and semantics may be preserved during the manifold traversal. We can also
see, in figure 5.4a, that the sentiment classification given by the CNN is not changed

26

5. Results and discussion

when λ is too small. While reasonable, this result tells us that the way in which
we enforce a budget of change actually may prevent the sentiment from changing.
Since it is always desirable to change the sentiment, there could be a reason for re-
laxing this constraint in the optimization. Doing so might require the introduction
of additional constraints, in order to preserve the semantics.

Since the manifold traversal is made using two sets of examples, source and target
feature vectors, the traversed feature vector will to a large extent resemble the
sentences in the target set. This means that if we traverse the manifold for a
sentence with a different topic than the sentences in the source and target sets, the
traversed vector might not preserve the topic of the original sentence.

-15 -10 -5 0 5 10 15 20

-15

-10

-5

0

5

10

15

(a) Traversal of the feature vector for
a negative sentence containing the word
“movie”.

-15 -10 -5 0 5 10 15 20

-15

-10

-5

0

5

10

15

positive movie
positive phone
negative movie
negative phone

(b) Traversal of the feature vector for
a positive sentence containing the word
“phone”.

Figure 5.4: Original and traversed feature vectors. Circles indicate the original
vectors and diamonds indicate traversed vectors. The traversals were made using
the different parameter settings presented in table 5.1.

Table 5.1: Different settings of the budget of change, λ, and the length of the
resulting displacement, δ, for the manifold traversal presented in figure 5.4.

movie phone
λ |δ| λ |δ|

5 · 10−4 2.842 1 · 10−3 4.088
4 · 10−4 3.552 7.5 · 10−4 5.747
3 · 10−4 4.731 5 · 10−4 9.684
2 · 10−4 7.062 2.5 · 10−4 17.970
1 · 10−4 13.614 1 · 10−4 24.227

27

5. Results and discussion

5.4 Evaluation of the complete model
In table 5.2 some of the better examples of sentences generated by the trained RNN
are shown. The original sentences originate from the data set and are generated
before and after manifold traversal, as described in the experiment in section 4.4.
The overall impression is that, while trained on the, very small, sentiment data set,
the model works well in terms of changing sentiment. But, as figure 5.4 shows, the
model fails to change the sentiment label if the budget of change is too small. We
see that in some examples, the sentence generated from z is not very similar to the
original sentence. In these examples, the sentence generated from z∗ is more similar
to the sentence generated from z than to the original sentence. This indicates that
information is lost in the encoding-decoding procedure.

A more accurate encoder and decoder would require a larger set of data for train-
ing. The encoder would benefit from training on a more varied data set because,
currently, sentences that have little relation to movie reviews are hard to encode.
The decoder would benefit from training on a larger data set in order to improve on
grammar. As the decoder does not require labelled sentences to train, the training
data set can easily be extended. However, creating a larger sentiment labelled data
set for the encoder is a project in itself. For the encoder and decoder to work well
together it is desirable to use closely related data sets for their training.

After the traversal, the traversed vector is passed as input to the last layer in the
CNN in order to make a sentiment prediction. Even though the sentiment classi-
fication from the CNN has changed to the desired label, it is, for some sentences,
difficult to manually decide if the generated sentence has the opposite sentiment.
This could be an effect from the problems in the decoding, discussed above. In table
5.2 we see that the generated sentences have the same topic as the original and that
the generated sentences are composed by words similar to the original words. The
decoder often generates expressions, of two or three words, like “just plain” and
“very dissapointed”. The RNN has likely learned these expressions. We also found
that shorter sentences were more easily encoded and decoded.

28

5. Results and discussion

Table 5.2: Examples of sentences generated by the RNN, both from the original
feature vector (z) and from the traversed feature vector (z∗), along with the original
sentences.

Original: the place was fairly clean but the food simply was n’t worth it
From z: the food was pretty clean but it was n’t worth the food place
From z∗: the food is also good food and also
Original: the food, amazing
From z: food, food, amazing
From z∗: the food, which, just plain food
Original: If you like a loud buzzing to override all your conversations,

then this phone is for you!
From z: if you like a loud buzzing to override your conversations,

then you is all for your phone to <UNK>
From z∗: the phone is great, especially the phone that is still a nice phone
Original: ...a roller-coaster ride of a movie
From z: a roller coaster of a movie coaster
From z∗: the movie is just a retread of garbage
Original: it ’s too bad the food is so damn generic
From z: it ’s the food is so too bad the food is
From z∗: it ’s the food is so nice food
Original: a sharp and quick documentary that is funny and pithy, while

illuminating an era of theatrical comedy that, while past, really isn’t.
From z: a sharp, <UNK> comedy that is n’t an engaging of theatrical,

but this film and an interesting theatrical
From z∗: the whole of this is so awful that this just plain, even if this one

this is just
Original: ...a delightfully unpredictable , hilarious comedy with wonderful

performances that tug at your heart in ways that utterly transcend
gender labels.

From z: a delightfully unpredictable, unpredictable that tug comedy with
your heart in your face that at its heart performances comedy

From z∗: the title of this is so bad that they not even even if , even if this one
Original: the food was excellent and service was very good
From z: service was great and the potatoes was great <UNK> <UNK>
From z∗: the whole was so bad and even the food was <UNK>
Original: an ugly , revolting movie.
From z: an ugly , <UNK> movie
From z∗: an excellent , good movie experience
Original: The movie was very interesting from beginning to the end.
From z: the movie was very interesting to the very interesting
From z∗: the movie was very disappointed the whole was very disappointed

29

5. Results and discussion

5.5 Design choices and future work
The following sections discuss the motivation for the model design, data sets and
evaluation metrics used in this project.

5.5.1 Model
The general idea of this project was to adopt the method presented by Gardner et
al. [4] and examine whether a method used for traversing the manifold for images
could be applied to text. As in [4], we chose to use a CNN as an encoder even though
RNN encoders are more common in NLP. The reasons for choosing a CNN were the
possibility of varying input lengths and because CNNs previously have been used
for sentiment analysis [2], which was a part of the project.

The CNN encoder was tested separately before introducing the loss from the RNN
into the error function for the CNN. We found that training the CNN separately
resulted in a higher classification accuracy (84%). However, when training the RNN
to decode sentences from the encoding from the CNN (trained without the RNN
loss) we found that the encoding did not contain much information about the words
that composed the input sentence. Hence, it was reasonable to train the CNN to
regard the loss from the RNN.

Gardner et al. [4] did not use a neural network as decoder, instead they differenti-
ated the encoding function and optimized over the input image. The reason why we
chose an RNN as decoder was that RNNs are commonly used for generating text
within NLP and have shown to perform well. It would have been possible to use a
different decoder, for example a CNN. As pointed out in section 5.4, the RNN needs
to be improved, for example by introducing a larger data set for training. Different
configurations of the filter sizes and number of filters used for the CNN might also
improve the decoder since theses parameters directly correlate to the RNN size.

In [4] the MMD statistic was used together with a Gaussian kernel function. Fol-
lowing their approach, the same statistic and kernel were used. It is possible to use
another kernel such as a linear or polynomial kernel. In this work we use BFGS
for the optimization of the MMD statistic, as in [4]. Since other methods were not
considered, a different optimization method may improve speed or correctness of
the traversal. When evaluating the objective function and optimizing δ, 90 positive
and 90 negative examples were used. Using more examples would increase computa-
tion time but probably allow for making more subtle changes to the original vector z.

5.5.2 Data set
The data sets used in this project consist of sentences written by people as reviews
of products or movies. Because reviews posted on the Internet do not require proof
reading, many sentences in the data set are subject to bad grammar and contain

30

5. Results and discussion

slang words as well as misspelled words. When we created the vocabulary, only
words occurring more than once were added and hence misspelled words and very
uncommon words were replaced by the unknown-token. Since the model is trained
to generate text that looks like text seen in the data set, it would produce better
sentences if presented with a more well-written data set. Another problem with
the data set is that it is not very diverse. A model trained on reviews can not be
expected to produce, for example, narrative sentences or dialogues. Furthermore,
the better part of the data set concern movies and cinematic experiences and it can
therefore be difficult for the model to generate sentences with different subjects.

In future work, the model could be extended to take paragraphs, instead of sentences,
as input. If the model can be trained on paragraphs, the Large Movie Review Dataset
[28] can be used. This data set contains a total of 50000 positively or negatively
labelled reviews. The RNN would likely benefit from using this larger data set as it
adds context to sentences.

5.5.3 Evaluation metrics
To compare the performance of different machine learning algorithms on a specific
task, it is desirable to have a qualitative or quantitative performance measure for
the given task. Scores and measures used for other NLP tasks, like BLEU [29] for
machine translation, are difficult to apply to the manifold traversal task since there
exists no single correct output for each input. Consider for example, the sentence “I
love music, it makes me wanna dance all night long”, traversed into “Music sucks,
I hate it”. The new sentence has the opposite sentiment and tells something about
music and would therefore be a valid output. This is also the reason why it is not
possible to train the model end-to-end.

During evaluation, we used PCA to visualize the result as a complement to the
manual evaluation of the generated sentences. Manual evaluation tends to be sub-
jective if performed by only a few people and perhaps a survey would be a better
alternative for evaluating the performance of the model. In a survey, a group of
people are given a set of output sentences and are asked to grade the grammatical
correctness and give a sentiment classification according to their own interpretation.
In order to evaluate whether the sentiment has changed, an independent, preferably
high-confidence, sentiment classifier could be used. However, we believe that the
results seen in the visualizations, using PCA, support our conclusions about the
model performance.

31

5. Results and discussion

32

6
Conclusion

We introduce a model for reversing the sentiment of text through manifold traver-
sal. The model encodes a sentence into a 300-dimensional feature vector, using a
CNN that is trained for sentiment classification and sentence encoding. The feature
vector is then traversed through a vector space guided by the MMD statistic, and a
”budget of change” is used in order to constrain the displacement. The new vector
is decoded into a sentence using an RNN decoder.

The CNN achieves an accuracy of 80% on the sentiment classification task. Visual-
izations, using PCA, show that the feature vectors contain information about both
the topic, and sentiment, of the input. The results confirm that sentences can be
represented in a semantic space and traversed in such a way that information about
the sentiment changes but information about semantics and content is preserved.
It is also possible to decode these representations and generate corresponding sen-
tences. In order to improve the grammar of the output sentences, the RNN needs
to be trained on a larger data set.

Future work might involve changing the sentiment of paragraphs, and not just sen-
tences. Extending the model in this way would allow larger data sets to be used
for training, which might improve the model. It would be interesting to evaluate
different neural networks for encoding and decoding and compare the results.

33

6. Conclusion

34

Bibliography

[1] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfel-
low, and R. Fergus, “Intriguing properties of neural networks,” CoRR, vol.
abs/1312.6199, 2013.

[2] Y. Kim, “Convolutional neural networks for sentence classification,” CoRR, vol.
abs/1408.5882, 2014.

[3] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” in Advances
in neural information processing systems, 2013, pp. 3111–3119.

[4] J. R. Gardner, M. J. Kusner, Y. Li, P. Upchurch, K. Q. Weinberger, and
J. E. Hopcroft, “Deep manifold traversal: Changing labels with convolutional
features,” CoRR, vol. abs/1511.06421, 2015.

[5] A. Graves, “Generating sequences with recurrent neural networks,” arXiv
preprint arXiv:1308.0850, 2013.

[6] A. Radford, R. Jozefowicz, and I. Sutskever, “Learning to generate reviews and
discovering sentiment,” 2017, cite arxiv:1704.01444.

[7] B. Pang and L. Lee, “Seeing stars: Exploiting class relationships for sentiment
categorization with respect to rating scales,” in Proceedings of ACL, 2005, pp.
115–124.

[8] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for
word representation,” in Empirical Methods in Natural Language Processing
(EMNLP), 2014, pp. 1532–1543.

[9] Z. Harris, “Distributional structure,” Word, vol. 10, no. 23, pp. 146–162, 1954.
[10] M. Wahde, “Neural networks,” in Biologically Inspired Optimization Methods:

An Introduction. Ashurst Lodge, Ashurst, Southampton, SO40 7AA, UK: WIT
Press, 2008, pp. 151 – 172, ISBN: 9781845641481.

[11] A. Severyn and A. Moschitti, “Twitter sentiment analysis with deep convolu-
tional neural networks,” in Proceedings of the 38th International ACM SIGIR
Conference on Research and Development in Information Retrieval, ser. SIGIR
’15. New York, NY, USA: ACM, 2015, pp. 959–962.

[12] S. Poria, E. Cambria, and A. F. Gelbukh, “Deep convolutional neural network
textual features and multiple kernel learning for utterance-level multimodal
sentiment analysis.” in EMNLP, 2015, pp. 2539–2544.

[13] J. Ebrahimi and D. Dou, “Chain based rnn for relation classification,” in Pro-
ceedings of the 2015 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies. Den-
ver, Colorado: Association for Computational Linguistics, May–June 2015, pp.
1244–1249.

35

Bibliography

[14] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with deep re-
current neural networks,” in Acoustics, speech and signal processing (icassp),
2013 ieee international conference on. IEEE, 2013, pp. 6645–6649.

[15] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk, and
Y. Bengio, “Learning phrase representations using RNN encoder-decoder for
statistical machine translation,” CoRR, vol. abs/1406.1078, 2014.

[16] M. Sundermeyer, R. Schlüter, and H. Ney, “Lstm neural networks for language
modeling.” in Interspeech, 2012, pp. 194–197.

[17] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: a simple way to prevent neural networks from overfitting.” Journal
of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[18] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola, “A
kernel two-sample test,” Journal of Machine Learning Research, vol. 13, no.
Mar, pp. 723–773, 2012.

[19] C. T. Kelley, Iterative methods for optimization. SIAM, 1999.
[20] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,” Chemo-

metrics and intelligent laboratory systems, vol. 2, no. 1-3, pp. 37–52, 1987.
[21] R. Bro and A. K. Smilde, “Principal component analysis,” Analytical Methods,

vol. 6, no. 9, pp. 2812–2831, 2014.
[22] R. Battiti, “Optimization methods for back-propagation: Automatic parameter

tuning and faster convergence,” in International Joint Conference on Neural
Networks, vol. 1, 1990, pp. 593–596.

[23] D. Kotzias, M. Denil, N. de Freitas, and P. Smyth, “From group to individual
labels using deep features,” in KDD. ACM, 2015, pp. 597–606.

[24] O. Täckström and R. McDonald, “Discovering fine-grained sentiment with la-
tent variable structured prediction models,” in Proceedings of the 33rd European
Conference on Advances in Information Retrieval, ser. ECIR’11. Berlin, Hei-
delberg: Springer-Verlag, 2011, pp. 368–374.

[25] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Ten-
sorFlow: Large-scale machine learning on heterogeneous systems,” 2015, soft-
ware available from tensorflow.org.

[26] S. van der Walt, S. C. Colbert, and G. Varoquaux, “The numpy array: A struc-
ture for efficient numerical computation,” Computing in Science & Engineering,
vol. 13, no. 2, pp. 22–30, 2011.

[27] E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific tools
for Python,” 2001–.

[28] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts,
“Learning word vectors for sentiment analysis,” in Proceedings of the 49th An-
nual Meeting of the Association for Computational Linguistics: Human Lan-
guage Technologies. Portland, Oregon, USA: Association for Computational
Linguistics, June 2011, pp. 142–150.

36

Bibliography

[29] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: A method
for automatic evaluation of machine translation,” in Proceedings of the 40th
Annual Meeting on Association for Computational Linguistics, ser. ACL ’02.
Stroudsburg, PA, USA: Association for Computational Linguistics, 2002, pp.
311–318. [Online]. Available: http://dx.doi.org/10.3115/1073083.1073135

37

http://dx.doi.org/10.3115/1073083.1073135

	List of Figures
	Introduction
	Background
	Project aim
	Problem definition
	Related work
	Limitations

	Theory
	Word embeddings
	Artificial Neural Networks
	Feed forward neural networks
	Convolutional neural networks
	Recurrent neural networks
	Gated recurrent unit

	Gradient descent
	Preventing overfitting

	Maximum mean discrepancy
	Broyden-Fletcher-Goldfarb-Shanno algorithm
	Principal component analysis

	Model
	Sentiment classification and encoding sentences
	Manifold traversal of the representation space
	Decoding sentences using a recurrent neural network
	Training the CNN and the RNN

	Experiments
	Accuracy of the neural networks
	Encoding sentiment and semantic content
	Preserving semantic content during traversal
	Evaluation of the complete model

	Results and discussion
	Accuracy of the CNN and RNN
	Encoding sentiment and semantic content
	Preserving semantic content during traversal
	Evaluation of the complete model
	Design choices and future work
	Model
	Data set
	Evaluation metrics

	Conclusion
	Bibliography

