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Abstract 

In this thesis we investigate an enterprise IT system based on a simple 3-layer client-server 

model, with clients connecting to local servers which are then in turn connecting to a central 

enterprise wide server. The system that is analyzed is a retail system, consisting of Point of 

Sale (POS) clients and one server in every shop to handle the clients. The local servers in turn 

communicate with a central server that keeps track of all retail transactions from all the shops, 

and all the reference data (articles to sell, prices, campaigns, etc) being sent to the shops. 

Because of cost and maintenance issues there is a demand for being able to deliver the service 

without the overhead for the local servers. Finding a way to eliminate the local server from 

the system is the purpose of this thesis. This is achieved by closely examining the data flow 

and functionality of the local server, thereby being able to suggest two different approaches to 

solve the problem using a peer-to-peer approach. The two different designs are compared and 

evaluated, showing the difference in the approaches. This result can also be used in a more 

generalized manner to look at removing layers of servers in similar systems. 
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1 Introduction 

As the Internet grows larger, bandwidth is becoming cheaper and workstation computer grows 

more powerful, the traditional client-server model is growing old. As large servers are not 

only expensive, but also frequently becoming bottlenecks in large systems, an alternative to 

this model is an important field of research and development. The solution to these problems 

could be a distributed architecture [1]. 

One way of catering for the increased demand from users is to create large-scale distributed 

systems that serve cheap “thin” clients with distributed services. This is generally referred to 

as cloud computing. 

Another approach is using the excess resources readily available in most modern workstation 

computers. By sharing resources, the requirements for expensive servers are reduced. Instead, 

clients utilize resources on other clients as needed to create a peer-to-peer system. This thesis 

will investigate using such a peer-to-peer architecture to create a distributed system. 

1.1 Retail system 

In this thesis we are looking at a retail system built for an enterprise environment. Primarily, it 

is a point of sale (POS) system, with centralized administration and integrations with several 

other systems. The software is developed by a company called Extenda, and it is widely used 

both in Sweden and internationally. 

Due to the business critical nature of a POS system (the shop generally cannot legally sell 

merchandise without a functional cash registrar) there are very high requirements on 

availability at the POS. 

1.1.1 System use 

The system is used on several different levels and by different personnel for different 

purposes. 

Cashier 

The cashier is the end user at the point of sale, or cash registrar. This computer is generally 

referred to as the POS client. The cashier interacts with the system using a combination of a 

graphical interface, touch screen, keyboard, scanner, and other peripherals. In some cases, for 

example at a self-checkout terminal, the customer is actually their own cashier. 

The cashier primarily serves customers, but could also perform some simple administrative 

tasks at the POS client, for example cashing up or changing their password. 

Shop manager 

Personnel that performs economic and administrative tasks for the entire shop. This could 

include regular tasks like banking cash or performing end of day for the shop, a process in 

which the current business day is closed and can be filed to accounting. 

Company administrator 

This is typically the IT department or some other centralized part of the company that handles 

economic transactions or shop administration. This could include tasks like adding new users 
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(for example cashiers), administrating prices, articles, receipt texts, etc (some of these tasks 

could also be delegated to the shop manager). An administrator can control all aspects of the 

POS environment. 

1.1.2 System design 

 

Figure 1 - Extenda system design, based on a client-server model. 

The system is interconnected in a way that makes it possible for a large organization to 

specify all data that is needed in a shop (articles, users, customers, etc, also referred to as 

“reference data”) on an enterprise-wide scale. It also ensures that all sale transactions 

(receipts) are collected on an enterprise-wide level. In most cases, most data originates from 

and all receipts are forwarded to an external Enterprise resource planning (ERP) system which 

maintains control of the overall economy and resources. 

POS client 

The POS client is the actual till where sales are performed. The POS client has all the 

reference data it needs stored locally. This data is the same for all clients operating in the 

same shop, and is acquired from a POS Server that operates in the shop. When a receipt is 

created, it is first stored locally and then sent to the POS Server. 

There are two main reasons why the POS client is not operated as a thin client. Firstly, the 

availability requirements demand that the shop can still operate the POS client, even if the 

network connection is not working properly. Secondly, the client integrate with a lot of 

complex peripherals, like card terminals, automated cash changers, special keyboards and 

cash drawers. This puts some requirement on the computer hardware at the client. 
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POS Server 

In every shop there is a local server, referred to as the POS Server, which has two basic tasks. 

The first task is to handles the synchronization of reference data to all POS clients in the shop, 

and the second task is to handle the receipt flow from the POS clients. On top of this it acts as 

a local control tool to synchronize certain requests from the clients. 

The reference data is pushed to the POS Server from a central system called Centraloffice 

(CO, see below). The POS Server performs a version control and increments the database 

version for each update from CO. The clients regularly poll the server to see if there is a new 

version available – if there is, it will fetch the new version from the server. 

The POS Server delivers updates to the client of two different types. A minor update is 

delivered as a change of some specific reference data, for example a new price for a specified 

article. A major update is delivered as a complete database, with all the reference data. 

Usually, major updates are only generated when there is a specific instruction from CO to 

perform this. 

All receipts are sent to the POS Server from the clients, and are then processed at the server. 

The server performs some conversions of the receipts to match the format that CO expects. 

The receipts are also saved locally on the POS Server. 

Centraloffice 

The Centraloffice (CO) application stores all available information regarding all shops for the 

customer, both reference data and receipts. CO is usually populated by data from an external 

ERP system, and all economic transactions are forwarded to the ERP system from CO as they 

arrive from the shops. 

All accounting activities in the system are handled in CO. This is where the amount of cash in 

the different tills are calculated, as well as where cash corrections and end of day can be 

performed. CO has a web-based user interface where the shop manager or a company 

administrator can perform different tasks and look at information from shops. 

1.1.3 Customer expectations 

From the shop’s point of view the reliability of the POS client needs to be very high, since the 

company will likely lose both money and customers if they can’t process sales in a shop. It is 

also very important that sales transactions (receipts) always are delivered to the accounting 

and ERP systems, even in case of failure at some step in the process. This is because the 

company may otherwise get in trouble if they are audited. The customer will also expect the 

reference data in every POS client to be correct at any point in time. 

While not a strict requirement in the same sense, speed at the POS client is generally an 

important factor. In some supermarkets (or hypermarkets) a few seconds extra delay for every 

receipt is enough to have a negative impact on sales over a longer period. 

1.2 The problem 

The POS Server has no interaction with the end user, and is mostly noticed by the shop as the 

extra computer they need to have in every shop causing higher maintenance costs. For this 

reason, some shops have requested an alternative to having a POS Server. Primarily these are 
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smaller shops (1-6 clients), but the problem has been defined to find a general solution to be 

able to remove the POS Server from the system in the environments where it is feasible. 

1.3 Objectives 

The goals of this thesis are: 

1. Find a method to replace the functionality of the POS Server and put it in the POS 

clients or CO servers. 

2. Design a way to implement this, fulfilling the following objectives: 

a. It should be possible to perform sales at the client even if the network 

connection is disrupted. 

b. Receipts should be saved in strictly more than one place in the shop. 

c. There should only be one active connection to CO from any given shop at any 

time. 

3. Build a proof of concept to show that the design works as expected. 

1.4 Scope 

This master thesis project consists of four large parts, as presented below. 

Investigation 

During the investigation, the specific requirements for the end product were structured, and 

available methods for similar implementations were explored. Different approaches and 

algorithms were looked at and documented. The investigation was limited to looking at 

different approaches to distributed systems.  

Design 

During the design stage, the information gained in the investigation were used to construct a 

rough design for a proof of concept. At the early stages of the design phase, two specific 

approaches were chosen, and all the work into the design were based on these approaches. 

The design was revisited at times during the next phase, as new information was discovered. 

Proof of concept 

A proof of concept was also implemented, using the design specifications. This phase was 

mostly limited by time, and had a strict deadline for last delivery. The main goal of the proof 

of concept was to validate the design and to be able to see the differences between the two 

approaches. It was therefore important that enough development was done to get an idea 

whether the designs were functional or not. 

Report 

At the end of the testing, a report was written consisting of a complete documentation of the 

work and results of the project. 
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2 Background 

2.1 Detailed system overview 

This part describes the current system in detail, specifically the areas that are directly affected 

by the proposed changes. 

2.1.1 Relevant functions on POS/POS Server 

These are the functions that are identified in the current environment that will likely be 

affected by this project, with a detailed description of how they work today. 

Reference data update (“minor update”) 

A minor update is an update to the reference data in a specific shop. This data is always sent 

as a change, including only the specific data that is being changed. 

The POS Server is a single point of contact in the shop from CO, which is designed in a way 

that it always communicates with exactly one IP address for every shop (the POS Server in 

the shop). Whenever there is new data, CO will push the new data to the POS Server with a 

reference data message. It stores this message in the pos_messaging database on the POS 

Server, and validates and processes the message. 

As the POS Server processes the message, it updates its own serverpos database containing a 

complete current reference data database, using the update information in the reference data 

message. At the same time it adds the change to the serverupdates database that contains all 

the changes in data. The POS Server then increments the database version. 

The POS clients are informed of any database update on the POS Server. The update will be 

fetched by the POS client from the server, and the client will add the updates to its local 

clientupdates database. 

The client has two databases for reference data containing the complete reference data set, 

posa and posb, which both should mirror the serverpos database. The client only uses one 

database at a time, and always applies updates to the inactive database to avoid database 

changes in the middle of a receipt. If the inactive database has a more recent version then the 

active database, it will switch active databases on next opportunity. This is done between two 

receipts, or when no user is logged on to the till. 

After the information from the clientupdates database has been applied to both posa and posb, 

the record is removed from clientupdates. 

Complete reference data update (“major update”) 

When there is a large change that affects a large portion of the database, or when manually 

triggered, CO will send out a “major update”. It will collect all reference data for the specified 

shop, package it, and send it all to the POS Server using a web service request. 

The POS Server will drop its serverpos database, and completely rebuild it using the update 

from CO. When it is completed, it will empty the serverupdates database, create a database 

dump, increase the reference data database version, and signal the clients that there is a major 

update available by putting a special record into the serverupdates database. 
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The POS clients will fetch the database dump, drop their inactive database and recreate it with 

the dump. When possible, it will switch active databases and do the same thing with the other 

database. 

Transactions 

A transaction can be either a receipt or a control transaction (login, logout, open cashdrawer, 

etc). A transaction is always created at a POS client. It is quickly saved in the 

clienttransactions database as a Binary Large Object (BLOB), and then forwarded to the POS 

Server in binary format. When the POS Server receives the transaction, it is first saved in the 

servertransactions database. It is then converted to a standard POSlog format, and sent on to 

CO. 

Receipt parking 

Parking a receipt is technically the same operation as finishing a receipt, except the receipt 

status is set to SUSPENDED instead of COMMITTED. 

Fetching a parked receipt however, requires some new functionality. The POS client can send 

a request to the POS Server to get a list of parked receipts. When a specific receipt is selected 

in the POS client to be restored, the POS client sends a request for the receipt information to 

the POS Server. 

Post-void and returns 

Shops can in specific circumstances perform a post-void on a receipt – that is, they can cancel 

the receipt after it has already been printed and sent to CO. It is also possible to perform a 

return on an old stored receipt, even if it is from another shop. To handle these special cases, 

there is both a service to search for old transactions on the POS Server, and a service to fetch 

(and update) transactions already stored at CO. 

Shop-specific status and counters 

On the POS Server in the serverstates database there are accumulators that are updated when 

transactions are received from the clients. There are several different accumulators storing 

different types of data, as well as some historical data. 

Single point of contact 

In some situations it is impractical to have each POS client make their own connection to a 

service, both inside of the shop and on an enterprise-wide scale. In the later case, it could in 

fact be a problem for the service if all the POS clients in all the shops try to connect. This has 

to be considered in the design. 

There is one core implementation that relies on the server being a single point of contact. This 

is the Global Blue Refund service for tax free shopping that requires the integration to be 

limited to one point per shop, due to limitations at the service provider. 

In-shop integration 

The POS Server acts as an integration point between the POS system and other services in the 

shop. For example, this applies to the bottle deposit system that maintains a record of returned 

bottles to a Tombra bottle recycle machine in order for a customer to get their deposit back. 
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2.1.2 Communication 

CO to POS Server 

The communication of data from CO to the POS Server is done using web service requests. In 

most instances, CO will be the one to initiate the communication. 

Messages from CO to POS are encoded in an Extenda specific XML format called Generic 

External Interface (GEI). Messages arriving from CO at the POS Server are handled by the 

messaging component, which validates the message and stores it locally before letting the 

POS Server process it. The messaging component will also reply to CO when the message has 

been validated and successfully stored. 

POS Server to CO 

Communication from the POS Server to CO is done by using web service requests, and is 

initiated by the POS Server. This communication consists of transactions from the POS 

clients, encoded in ARTS XML POSLog format [2]. 

The outgoing POSLog message is first saved locally database before being sent to CO. 

POS client-server communication 

Communication between the server and clients in the shop are performed directly via TCP/IP 

sockets. The data sent can be binary data, SQL statements or a database dump. 

Transactions are sent as binary data, and reference data updates are sent as SQL statements – 

unless it is a “major update”, in which case the entire database is sent as a database dump. 

The client will initiate the communication just after boot. It will peer up with the server and 

register all the “services” (more on this later) that the server provides. It will also perform a 

connectivity check (“heartbeat”) at regular intervals to ensure connectivity. The address of the 

server is a configurable variable set in one of the client configuration files. 

The POS Server will maintain a list of currently connected clients. 

2.1.3 Data synchronization 

Data synchronization in the current system is fairly straightforward as all transactions are 

handled by the POS Server. 

When a retail transaction is committed on a till, it is saved to the local clienttransactions 

database. It is also sent to the server, where it is saved in its servertransactions database. In 

that way, the transaction is saved on both the client and the server. 

Maintaining track of the reference database is done by a version control where the POS Server 

increments the version by 1 for every new update to the database. The SQL query for the 

corresponding database update is stored in serverupdates, and sent to and saved in the POS 

clients’ corresponding clientupdates database. A POS client will recieve the “next” update 

compared to their own database version and apply it, until they have the same database 

version as the server. 
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2.1.4 Code structure and principles 

The entire retail system is built on Java. The architecture is built upon the dependency 

inversion principle [3], and utilizes an in-house core framework to facilitate this. The POS 

client and the POS server share the same source code, but use different “node configurations”, 

which tells the frameworks which classes to load for the specific application. In this way, 

several completely different types of applications can be started from the same source, with 

just a few changes in the configuration files. 

From the POS code it is possible to run the POS client, the POS Server, but also a large 

variety of different client configurations (touch client, self-checkout client, test client with 

fake peripherals, etc) and even other types of services depending on the same code – for 

example an implementation called POS-services, which forms the base for a number of 

potential mobile POS implementations, like wireless selfscan systems. 

2.1.5 Code implementation 

Most of the source code consists of different modules that can perform simple operations, 

while being completely independent of each other. This should ensure that changes in part of 

the code do not have unpredictable effects in other parts of the code. This is achieved by 

applying the dependency inversion principle and using a service locator. The service locator 

creates an appropriate object (as per configuration) for an instance during runtime. 

Services, requests and responses 

The system is event driven and loosely coupled. When an event occurs, for example caused 

by a user is pressing a button, a ServiceRequest object is created with all the information on 

what action needs to be taken. 

The request is then sent to a ServiceDispatcher that looks at the request to determine which 

type of ServiceHandler should handle the request. The handler found can either be 

representing a local or a remote service, which in the remote case is then located at the POS 

Server. 

If it is a remote service, the resulting handler will forward the request to a node where the 

service is located and then receive the ServiceResponse back, which is then returned down the 

chain back to the original invoker. If the ServiceDispatcher cannot find a matching handler for 

the requested service (for example because the client is not connected to the network), then it 

will throw an exception. 

Because of the lose couplings between the objects, the ServiceDispatcher does not need to 

know anything about how or where the request is handled – it simply has a list of handlers 

with one or more associated services. 

Data synchronization 

Data synchronization is done using the same event-driven architecture. When a change is 

made to one of the transaction databases (for example serverupdates), the RecordReporter 

object is notified and ensures that the update is properly delivered to any receivers (be it the 

POS server or the clients), and their corresponding database. 
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This is done via the ServiceDispatcher – the RecordReporter on the server sends the new 

record to the ServiceDispatcher, and it is forwarded to the client where a RecordCollector 

object handles it and saves it to the database. 

2.2 Inversion 

As the software explored is built around the dependency inversion principle and inversion of 

control, a short introduction to the concepts around dependency inversion is introduced in this 

chapter. 

The Dependency Inversion Principle (DIP) “is about the view from one part of your system to 

anther; [you should] strive to have dependencies move towards higher-level (closer to your 

domain) abstractions” [4]. Schuchert proceeds to point out that DIP “is about the level of the 

abstraction in the messages sent from your code to the thing it is calling”, in contrast to 

Inversion of Control (IoC), which is a way of moving the control of the program flow to an 

external component or Dependency Injection (DI), which is a way to wire uncoupled modules 

together during runtime execution. 

Schuchert defines the difference between the three related expressions with the following: “DI 

is about wiring, IoC is about direction, and DIP is about shape.” The three are often used 

together. In this study, only DIP and IoC is explored as DI falls outside of the scope of this 

project (it is not used in the product). 

2.2.1 Dependency Inversion Principle 

The concept of the Dependency Inversion Principle (DIP) was first introduced by Robert C. 

Martin in 1995 in an article called “OO Design Quality Metrics” [5], and later named and 

further explored in a 1996 article called “The Dependency Inversion Principle” [3]. In the 

1996 article, Martin defines the principle as: 

A. High-level modules should not depend upon low-level modules. Both should 
depend upon abstractions. 

B. Abstractions should not depend upon details. Details should depend upon 
abstractions. 

Definition: The Dependency Inversion Principle 

The Dependency Inversion Principle is a way to decouple modules in a computer system. By 

defining clear modules and interfaces between them, it is possible to build a computer system 

where modules do not need to have any knowledge of how other parts of the system works. 

If the DIP is applied, these interfaces are defined in their own module and defined from the 

point of view of the higher-lever modules [6]. It is also important that any module in the 

system only handle issues on its own level. For example, a higher-lever module would never 

handle database interaction (or indeed even have knowledge that there is a database involved 

anywhere), and a module handling database interaction would not have any business logic. 

If this is done properly, the modules should be completely independent of one another. This 

has several advantages, which includes better reusability (you can simply move functionality 
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to a new project or other part of the system) and easier maintenance (a fix in one module 

could never cause problems in another). 

2.2.2 Inversion of Control 

Inversion of Control is a way of wiring modules together during runtime and controlling the 

program flow [7]. In its most used form, it is used in user interfaces to for example wire a 

method to be activated when a user presses a button. However, in the investigated system it is 

used more widely – the entire program flow is controlled by an external framework. 

When using the Dependency Inversion Principle in designing a computer system, there has to 

be a way of specifying what implementations to use for the lower-level modules. However, 

specifying which implementation to use in the higher-level modules would cause rigidity in 

the system that is unwanted. It would not be possible to change implementation of the lower-

level modules without changing the code of the higher-level modules, which goes against the 

principle. 

Inversion of Control is a method of wiring the implementations together without having to 

limit the options in the source code. Instead, an external framework is used that will populate 

the different interfaces with implementations during runtime. This can either be done using 

Dependency Injection or Dependency Lookup [8]. 

The framework will maintain control of the program flow, and will call into the application 

code when appropriate. IoC is also referred to as the Hollywood Principle – “Don’t call us, 

we’ll call you” [9]. Typically, the framework will wire the system according to user-defined 

configuration files. 
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3 Theory 

3.1 Peer-to-peer networks 

The definition mostly used for a peer-to-peer network (as opposed to a network based on the 

client/server model) is that each peer (or “node”) is sharing part of their resources with the 

other connected peers [10]. The idea is that all participating nodes are participating on the 

same conditions, or as “equals”, as described by Kini & Shetty [1]. 

Kini & Shetty proceeds to suggest that peer-to-peer based architectures are a better way to 

utilize the resources on a large scale system such as the internet, compared to the traditional 

client-server model where the server can become a bottleneck. 

Schollmeier [10] defines two types of peer-to-peer networks. The pure peer-to-peer networks 

where all participants are equal, and the hybrid peer-to-peer network where there is some 

central authority required for some parts of the functionality. 

3.1.1 Pure peer-to-peer networks 

A pure peer-to-peer network [1] [10] per definition does not utilize any sort of centralized 

mechanism. As such, peer discovery – the process of finding other nodes to connect to – 

becomes a challenge. 

The process can be executed either by using some type of broadcast or multicast to discover 

nearby nodes, or by maintaining a list of addresses to possible nodes. The first option is 

mostly useful in a smaller intranet or an environment that is well-defined by the developer, 

and the second option can be very limiting for the application’s reach – it might not find many 

nodes. 

On the other hand, not being dependant on any single server for providing the service can be 

an advantage as a server can be a single point of failure. 

3.1.2 Hybrid peer-to-peer networks 

There are several types of hybrid peer-to-peer networks. The most simple hybrid peer-to-peer 

network is based around a log server that provides a list of all connected peers. Any new node 

wishing to connect can simply ask the server where to find a peer to connect to. There are 

more complex variations of hybrid peer-to-peer networks, but they are outside the scope of 

this thesis. 

3.1.3 Overlay networks 

To facilitate communication between the peers in the peer-to-peer network, an overlay 

network is created with the connections between the peers. An overlay network is a form of 

“virtual” network that works on the application level and is based on top of some other 

network (for example TCP/IP) [11]. 

The manner in which this overlay network is designed can be essential for the performance of 

the peer-to-peer network, and usually depends on the type of service the network is intended 

to provide to its peers. 
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3.2 Distributed systems 

A distributed system is a loosely coupled system of several processes working in parallel, 

where processing times and delays may be arbitrary [12].  

Leslie Lamport describes a distributed system as: “A distributed system is one in which the 

failure of a computer you didn't even know existed can render your own computer unusable” 

[13]. 

As shown below, the main issues in a distributed system can typically be traced back to the 

asynchronous communication and parallel execution which in most cases make it impossible 

for any single node to have knowledge of a current global state. This can cause difficulties 

when trying to synchronize and maintaining a coherent dataset throughout the system (data 

integrity). 

Below, we are introducing some of the fundamental concepts used to work around those 

problems. These aspects are imperative when designing a distributed system as in this project. 

3.2.1 Causality 

Causality is about the ordering of events within a distributed system. Knowledge of the order 

of events is useful for many applications, for example for determining the most recent value 

of a shared variable [14] or the order in which database updates should take place [15]. 

While the ordering of events in a single-threaded process is trivial, Lamport shows in his 

article “Time, Clocks, and the Ordering of Events in a Distributed System” [16] that the 

ordering in a parallel distributed system is not always possible to determine. He also defines 

the causality concept of “happened-before”, with which we can define a partial ordering of 

events in a distributed system. 

Lamport defined the happened-before relation ( ) as: 

Definition A1. If events  and  occur on the same process,  if the 

occurrence of event  preceded the occurrence of event . 

Definition A2. If event  is the sending of a message and event  is the reception 

of the message sent in event , . 

Lamport timestamps 

Lamport suggested [16] that the partial ordering can be decided by using “logical clocks”, 

which are simple integers. If every process starts at 0 and then increment by 1 every time 

there is a local event, every process would keep its own local time. By adding the sender’s 

current time to all messages sent, the logical clock is updated at the receiver to match 

Definition A2. 

In this way, Lamport timestamps satisfies the happened-before relation in an implementation 

of a distributed system. However, sometimes it will report events as being ordered when they 

are in fact concurrent. 

Lamport timestamps exhibit the weak clock condition, which states that, for events a and b 

[14]: 
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Definition A3. a  b  =>  L(a) < L(b), where L(x) is the logical time of event x. 

Vector clocks 

Colin J.Fidge [17] describes an improvement to the Lamport timestamps that can provide all 

possible ordering of events in a distributed system, thereby being able to identify all causal 

relationships in the system and specifying which events are in fact concurrent. This is done by 

each process maintaining a vector of logical clocks keeping track of the last known logical 

time of each of the other processes. This entire vector is then included in every message. 

This way, the receiver do not only know at what logical time the message was sent, but also 

what information the sender had when sending the message. Using this information some 

conflict resolver in any of the processes can resolve conflicting concurrent events. 

The rules for comparing the vectors of a system based on vector clocks are defined as [14]: 

Definition A4.   

 

 

 

Note that we can now define parallel ( ) clock vectors. This means that for event a and b: 

Definition A5. a = b  �  V(a) = V(b) 

a  b  �  V(a) < V(b) 

a || b  �  V(a) || V(b) 

 

This is called the strong clock condition. Torres-Rojas & Ahmad suggests that this type of 

clock characterizes causality, while a clock that satisfies only the weak clock condition is 

consistent with causality. 

The main drawback with Vector Clocks is that the data structures for maintaining the clocks 

will grow linear with the number of participants in the distributed system. The consequence of 

this is that for very large systems, this can be very expensive both concerning bandwidth 

when sending messages and concerning processing power when comparing large clock 

vectors [15]. This can be counteracted by carefully designing garbage collectors and routines 

for maintaining reasonably sizes vectors [18]. 

Other logical clock algorithms 

There are several other, later, algorithms based on logical clocks as well. Francisco Torres-

Rojas and Mustaque Ahamad [14] provides a cheaper variant of the vector clocks algorithm, 

that will however sometimes order concurrent events. They call it plausible clocks, and in 

tests they have performed the algorithm ordered 93% of the event pairs in the same way that 

vector clocks would have in a system with 76 sites and 96 million event pairs using only 7 

clocks. 
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Almeida, et al., [19] suggests a vector clock algorithm for dynamic distributed systems where 

the number of nodes vary over time. They call this Interval Tree Clocks. The algorithm is 

based around three basic functions; fork, event and join, through which the causality of all the 

classic distributed operations can be described. 

Causality in practice 

In practice, causality can have several different applications, including being able to collect a 

global state of a distributed system [16] which is useful for among other things debugging. 

Causality is also useful when it is important that certain events are applied in the same order 

on a number of loosely coupled nodes, for example a distributed database or file system. In 

this case, the order of a read and write could make a big difference for an application. 

Implementing a state machine with a logical clock that can provide some total ordering of 

events is a very useful way of maintaining consistency throughout the system. 

For example, using logical clocks, a read operation on a specific node could be delayed until 

such a point that the node can be sure that no write operation happened anywhere else 

causally before the read operation [15]. 

3.2.2 Atomicity 

Atomicity is about only letting one process at a time enter some specific critical section, 

thereby avoiding conflicting updates to some shared environment. As early as 1965 Dijkstra 

[20] realized that this was an important field of study, and today this is one of the methods of 

ensuring data integrity in a distributed system. That is, only allowing one process at a time to 

perform changes in the shared data set. 

Non-blocking 

An algorithm for atomic operations that is non-blocking will progress in some bounded 

amount of time. 

A non-blocking algorithm is considered lock-free if, at any time, some thread is always 

allowed to make progress (ie, the system as a whole will never halt), although a specific 

thread may run into starvation [21]. 

A non-blocking algorithm is considered wait-free if every thread will continue to make 

progress in a bounded time, even facing delays or failures of other threads [21]. 

ACID 

Härder and Reuter [22] defined four properties for database transactions that are often 

associated with persistent data in distributed systems. These properties are atomicity, 

consistency, isolation and durability (ACID). The idea is that a user should never be able to 

see any “half-finished” transactions – it’s a principle of complete success, or complete failure 

of a transaction. If it is successful, then it will be changed as an atomic operation regardless of 

the size of the operation, and it will remain successful. 

These transaction properties allow several operations to be performed at the same time, but if 

they try to change the same data then one of the operations will fail, which means the failed 

operation will look like it has not been performed at all. To fulfill ACID requirements, the 
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database manager has to be able to isolate different processes from each other’s database 

operations. 

Semaphores 

Mutual exclusion is one of the first ways to provide atomicity in a loosely coupled system. 

The concept of semaphores in this area was first introduced by Dijkstra, who introduced an 

algorithm for mutual exclusion [20] and a definition of a semaphore [23]. 

Dijkstra introduced semaphores as a new type of primitive to simplify the solution of the 

mutual exclusion problem. They are a type of non-negative integers that allows for an atomic 

operation of either increasing its value by 1 (the “V-operation”), or decreasing the value by 1 

if the result is non-negative (the “P-operation”). 

The idea is that there are X resources available, and to use one of them a process has to use 

the P-operation. If it fails, there are no resources currently available. When a process is 

finished, the resource is released using the V-operation. 

This makes the mutual exclusion problem simpler, as the P-operation would otherwise (on a 

normal integer for example) be two different operations (first reduce the value by one, then 

check the result to see if it is negative), where another process could potentially change the 

value of the semaphore between these operations. 

Lamport’s bakery algorithm 

Leslie Lamport [24] suggested an improved mutex algorithm to Dijkstra’s original problem, 

which he called the bakery algorithm. Lamport describes it as based on a system commonly 

used in bakeries, where the customers will receive a number upon entering the shop. The 

customers are then served in the numbered order. 

This is a true solution for the mutual exclusion problem, in that it does not require any lower-

level mutual exclusion such as semaphores [25, p. 12]. 

Compare-and-swap 

Compare-and-swap (CAS) is an optimistic (it is assumed to be correct until the CAS 

operation fails) way of performing some atomic calculation based on a value and then 

updating the value with the result. It relies on an atomic CAS primitive that will take a 

variable, a value, and a new value. It will then compare the value with the current value of the 

variable and if they match it will replace it with the new value. 

This can be of use in any implementation where an algorithm reads a value, performs some 

calculations and then needs to replace the old value with the new value. In order to ensure that 

no other thread has changed the value in the mean time, CAS can be used. If CAS fails, the 

algorithm will have to read the new value and perform all calculations again. 

3.2.3 Coordinator 

An alternative to implementing some distributed algorithm to perform atomic operations is to 

use a coordinator, or “leader”. In this case, any critical operation has to be approved by the 

leader before it can be performed. In this way, atomicity can be guaranteed in much the same 

way as a simple client-server model. 
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There are two problems with using a coordinator in a distributed system. Firstly, it means that 

one node, the leader, will need to devote some processing power to coordinating, which can 

be disruptive for the normal work of that node. The second problem is the leader election 

problem, where the nodes have to agree on a leader in order for the system to make progress. 

Leader election 

A leader election in a distributed system is a process in which a number of nodes decides 

among themselves which node should be the coordinator. After the leader election, only one 

node should call itself coordinator, and all other nodes know the identity of the coordinator 

[26]. 

Garcia-Molina [26] suggests two algorithms for leader election. The first is the Bully 

Algorithm, in which all nodes will check if any nodes with higher priority (or node ID) are 

available. If not, it will decide that it is the new leader, and inform all other nodes of that 

decision. The other nodes will then keep checking that the leader is still available. 

This algorithm will not work properly with arbitrary link failures, which may cause a situation 

where different nodes have different opinions about which node is actually the coordinator. 

The second algorithm is called the Invitation Algorithm, in which all nodes first become a 

leader in their own “group” (of one node), and then merge with other groups that it has full 

connectivity with. 

Sigh & Kurose [27] suggested that in practice, finding a leader may not be enough – the 

elected leader should in fact be the best suited leader. They suggest different methods of 

letting the nodes vote on who should become the coordinator. 

3.2.4 Consensus 

In the consensus problem, the system must reach a decision when provided with (potentially 

different) suggestions from the nodes in the system [28]. A consensus algorithm can, in much 

the same way as Lamport clocks [16], be used to implement a state machine to maintain 

consistency throughout a distributed system. 

However, instead of just tracking the order of events, the system has to agree on which event 

should be next before it is performed. The safety requirements for consensus are [29]: 

• Only a value that has been proposed may be chosen, 

• Only a single value is chosen, and 

• A process never learns that a value has been chosen unless it actually has been. 

Consensus can be perceived as difficult to implement in a distributed system, as much of the 

research is very theoretical [28]. It includes difficult and sometimes vague concepts such as 

eventual guarantees where it is not possible to be certain that a property will hold within a 

bounded amount of time. 

Even worse, Fischer, Lynch and Paterson [30] showed that in a completely asynchronous 

system there are always cases in which consensus cannot be reached if a single process fails. 

While this is a theoretical result (in practice, it is very unlikely [28]), it shows how difficult 

this subject is. 
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Paxos algorithm 

The Paxos algorithm was created by Leslie Lamport [31], and is a consensus algorithm most 

often implemented to drive a state machine [29]. 

The algorithm defines three types of nodes in a distributed system. The proposer nodes that 

may suggest a new value to be used next at the beginning of the round. The acceptor nodes 

that decides which value will be the new value for a given round. Lastly, the learner nodes, 

that learns and remembers which value was chosen for a particular round. A node in the 

system can take on several of these roles at the same time. 

Paxos, when used to implement a state machine, works by having a proposer propose a new 

value for the system in the first round. If a majority of the acceptors agree, the learners are 

informed and the command can be executed. If it fails in the first round, a second round with 

an increased message number will be attempted. When the algorithm agrees on a value, the 

instance of Paxos is terminated and a new instance is started. 

3.2.5 Eventual consistency 

While most users typically expect their system to demonstrate ACID [22] properties, in some 

larger systems this may affect availability negatively [32]. Furthermore, Gilbert & Lynch 

could prove that it is in fact impossible to guarantee consistency, availability and partition-

tolerance in the same distributed system. Only two out of the three can be achieved at the 

same time. 

Eventual consistency is about being able to maintain availability at the cost of consistency. 

This means that while the system will always respond, a read operation may in some cases not 

reflect the latest write operation [33]. Not being able to read the most recent information can 

result in uncanny effects, especially in business critical systems [34]. 

Eventual consistency is a weaker property then what can be achieved using atomic operations 

or a state machine powered by consensus or Lamport clocks. However, it allows for progress 

in situations where atomic operations, consensus or a logical clock approach would otherwise 

fail. 

3.3 Theory applications 

A lot of the important work being done in the area of distributed computing was published 

during the 1970s and 80s, which is also where most of the related work to this thesis can be 

found. While this does not necessarily mean nothing has happened since then most of the 

basic concepts in the field were published during this time period. Most of the concepts have 

evolved over time to perform better or be able to do more. However, since one of the 

objectives was to find a simple and easily understandable solution to the problem, an effort 

has been made to locate the most basic variants of the different approaches. 

Synchronization approaches 

As the more complex parts of this work is related to the synchronization between the different 

nodes in the network, this is where most of the research into previous performed work was 

concentrated. 
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Most notably the works of Leslie Lamport [16] [24] [25] [29] [31] and to some extent Edsger 

Dijkstra [20] [23] was utilized in the design process when looking at different approaches to 

synchronize the system. While Dijkstra’s works lay a solid ground to basic synchronization in 

a distributed system, his approach (semaphores) proved too rigid for this application. Instead, 

Lamport’s more adaptable “logical clocks” approach (or “Lamport clocks”) [16] was 

implemented almost straight out of the article early in the process. 

Also used in the design process was some of Garcia-Molina’s work on leader election 

algorithms [26], where one of the algorithms suggested, the “Bully Algorithm”, was 

implemented in a final design. 

Useful concepts 

Other related work that was not directly used in the designs still added valuable theory around 

the issues in the different design approaches. 

The concept of ACID transactions [22] have been very useful to describe expected behaviors 

in the system, and define whether a design is working as intended or not. Eventual 

consistency was not intentionally implemented at first, but ended up being a natural side 

effect in some specific situations. Gilbert & Lynch’s article [32] on the subject was helpful in 

determining how to look at this issue. 
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4 Methodology 

4.1 Investigation phase 

During this phase both the Extenda system and general theory in the area of distributed 

systems were explored. 

Theory and related work 

Research was done mainly in the field of distributed systems and peer-to-peer networks. The 

focus was on algorithms and principles for coordinating an asynchronous distributed system. 

This was done mainly using library sources, but also some online sources. 

The system 

The Extenda system, the system where the work was to be applied, was researched in three 

ways. During the first time, the documentation of the system was of great use. 

However, when more specific aspects of the system needed to be looked into two other 

sources proved more useful. The first was help from the system architects, and the second was 

reading the source code. Using those sources, a more complete picture of the system could be 

constructed which was useful for beginning the next phase. 

4.2 Design phase 

During this phase the knowledge of the system was applied to the different principles 

researched in the previous phase, in order to decide on the best way forward. At this point, the 

advisor was consulted in determining what might be the best way to proceed, based on the 

pros and cons with the different alternatives. 

After consulting the advisor, a decision was made to explore two different approaches in order 

to see the options in action. 

4.3 Proof of concept phase 

A proof of concept was created for both options, and compared to the current solution. In 

order to be able to easily see the result, a simulator was used to test the different approaches. 

A large part of the phase was dedicated to building a solution where a simple version of the 

system could be used with the simulator. 

As the first step was to build a working demonstrating copy of the actual system, a lot of that 

time went into testing the current client-server solution in the simulating environment. When 

it performed as expected, the other two options were developed. 

While developing the two concepts in the simulator, a lot of problems arose with the 

implementation where the behavior was not as expected when based on how the current 

system performed. These problems were solved, and can be seen as indications as to what 

type of problems will arise when trying to implement these concepts in the actual product. 

As problems were found and resolved, parts of the design was revisited and updated 

accordingly. 
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The results were analyzed using different test cases, where aspects of the implementation 

were tested in the simulator. Using this, the key aspects of each used algorithm could be 

devised. As the results were analyzed a final description of the two concepts and their pros 

and cons was created. 
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5 Design 

This section includes all design considerations and decisions that were made in this project, 

and is a specification of what a final design should look like. 

5.1 General approach 

The general idea with the project is to minimize the impact on the production code when 

implemented. Because the system in production is very clearly divided into layers, the goal is 

to only change the code responsible for delivering messages between the nodes. In this way, 

none of the actual business logic in the tills would need to be changed. 

The idea with the proof of concept was to try and determine if this is at all possible, by using 

the same business logic code in all POC implementations. An effect of this was that it became 

clear which parts of the code would need to be changed in order to implement this in reality. 

Common for all distributed implementations is that all transaction data (receipts) have to be 

distributed to and stored on all the tills. This is because if some nodes crash, the transactions 

should still be recoverable from any other node in the system. Because problems with missing 

transactions from cashed nodes sometimes need to be resolved manually by system 

administrators it is important that all transactions can always be expected to exist on all nodes. 

5.2 Controlled actions 

The main focus of this design is to define how a number of special actions, now referred to as 

“controlled actions”, are to be handled in the system. A controlled action is an action that 

needs to be handled in a controlled manner – for example a login or resuming a parked 

receipt. 

Generally, a user expects this type of action to demonstrate ACID properties (see 3.2.2). It 

should for example not be possible for two different tills to resume the same parked receipt. 

This makes controlled actions more complicated to handle. 

Not all actions on a till are controlled actions – committing receipts, for example, have lower 

requirements. It does not need to demonstrate atomicity or isolation properties, two receipts 

can thus be ordered in different ways when stored on different nodes – or even be missing 

from some node. This does not affect the overall functionality of the system. 

5.3 Causality 

Causality is not strictly a requirement in any of these implementations, as for example receipts 

do not have to arrive to Centraloffice in the correct order. 
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5.4 Peer to peer network 

The peer-to-peer network is of a pure p2p design 

(see 3.1.1), which utilizes the fact that all clients 

are in the same IP network. It uses broadcast to 

find the other peers in the network and then 

establishes connections to them.  

5.4.1 Network structure 

The overlay network is a full mesh network (see 

Figure 2), which ensures that the time for a 

message to reach all the connected nodes is 

relatively low. 

5.5 Coordinator design alternative 

The most straightforward way to implement a peer-to-peer variant of the system is a 

coordinator approach. In this design, a coordinator (or “leader”) is selected. The leader then 

performs all of the same duties as the server would. In this way, all controlled actions are 

ordered and handled by the leader, ensuring consistency. 

5.5.1 Leader election 

To facilitate this, some type of leader election has to be considered. This is implemented using 

a simple bully algorithm (see 3.2.3), which is modified to be more rigid in that it will not 

change leader unless the old leader is unavailable or some other specific criteria is fulfilled. 

A new leader will be elected when: 

a) The old leader is no longer available, or 

b) the current leader received a significant priority change and there has not been a leader 

election for some time (to avoid flapping). 

Typically, b) may happen when a user logs into the till on the leader node. 

The algorithm for setting priority between the nodes for leader election should take several 

different considerations into account. The node with the highest priority will be picked as 

leader in an election. 

Current use of the node 

If the till in question is currently logged in, it should have a lower priority. This is because 

some of the coordinator work can be CPU intensive, potentially affecting sales on the till 

negatively due to delays. 

Historical use of the node 

Based on the number of transactions created on the till over the past week a lower priority can 

be set on nodes that historically generated more transactions. This should be an indication of 

whether the node in question is a till that is being used a lot, thereby being able to avoid 

electing a node with a very popular till. 

Figure 2: The full mesh overlay network used 

for testing all the designs. 
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A configurable priority 

In some cases, a shop may want to manually increase or decrease the likelihood of some node 

being picked as the leader. 

The name of the node 

Lastly, the name of the node (till number) can be used to determine which till should be 

elected leader. 

5.5.2 Synchronization 

In the client/server configuration all synchronization was done via the POS server and the 

POS Server kept all records. However, in the coordinator design the leader could change at 

any time, which means that the new leader needs to know everything the current leader 

knows. 

As it is difficult to predict which leader would take over, all the nodes need to have the same 

information. This means that instead of sending transactions to just one other node (the POS 

server), all transactions need to be sent to and stored at all other nodes in the system. 

Controlled actions 

In this design, all controlled actions are handled by the current leader. In this regard, the 

leader fills the same role that the POS server has today. 

Besides just handling all the controlled actions, the leader also has to inform all other nodes in 

the system of every controlled action performed, so that each node knows the complete state 

of the system (in case it becomes leader). 

Conflicting updates 

In some cases, when the system is segmented due to for example network failure, several 

leaders can be active and perform controlled actions at the same time. When they reconnect to 

each other there may be conflicting data on the nodes from the different segments. 

Because there can only be one leader, the first step is to select which leader will remain 

leader, and that leader can then decide on how to proceed with the synchronization. 

In this design, the conflicting updates themselves are handled by the higher logic and are not 

considered here. This is to conform to the current level of abstraction in the product, to avoid 

invasive changes in the higher logic 

5.5.3 Reference data flow 

Reference data is pushed to the leader from Centraloffice. To make this possible, a new 

functionality in Centraloffice has to be implemented to allow for the leader to inform 

Centraloffice of where to send updates. The leader will then handle the reference data in the 

same way that a POS server would have. 
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5.5.4 Transaction data flow 

When a retail transaction is created, it is first saved at the local node as a BLOB (Binary 

Large Object) and then distributed to all other nodes in the system, where it is also saved as a 

BLOB. This is important so that the transaction is still available if the creating node crashes. 

After committing the transaction, the creating node transforms the transaction into a POSlog 

XML file and sends it to Centraloffice. 

It would also be possible to configure it so that instead the current leader transforms the 

transaction into a POSlog and sends it to Centraloffice. In this case, information that the 

POSlog has infact been created (and sent) has to be distributed to the other nodes when it has 

been sent to Centraloffice. This is to avoid that some transactions are not being sent to 

Centraloffice at all if the leader changes at the same time as a transaction is committed, as it 

may not be clear which node is responsible for sending the transaction to Centraloffice at that 

point. This more complex information exchange is not needed if the node creating the 

transaction is always responsible for transforming it and sending it to Centraloffice, as it is 

always clear which node is responsible for sending which transaction. 

5.5.5 Points of integration 

Integration in the shop that require access to point of sale logic using the POS-services service 

will most likely require a separate server in the shop. For other, customer-specific 

integrations, one of the tills could act as a point of integration. Examples of customer-specific 

integrations could be services such as automated sales solutions like Vensafe [35] vending 

machines. 

Tax refund integration 

The integration to Global Blue tax refund requires the communication to Global Blue central 

servers to be from one specific IP address. One of the nodes should be pre-configured to run 

the GB service. This decision will not affect any other functionality. 

Bottle deposit integration 

The Tombra bottle deposit integration will be handled by the leader, and works basically the 

same way as on a standalone POS server. However, the bottle deposit data fetched by the 

leader has to be forwarded to all other nodes in the system before being deleted from the 

bottle deposit server. This is necessary in case the leader crashes. 

Another important requirement is that the nodes keep old bottle deposit receipts in storage 

even after they have been cashed in, for future reference in case of synchronization issues. 

This is in case some receipts are fetched again from the bottle deposit server after a crash, but 

have already been cashed in. In that case, it should not be possible to cash them in again. 

5.6 Logical clocks design alternative 

This design is based around a simple logical clock algorithm for causality-based 

synchronization (see 3.2.1). Controlled actions are handled by ensuring a total ordering of all 

events in the system, using a logical clock as baseline. If two controlled actions have the same 

time stamp, total ordering is achieved by ordering on node name (ie, till number). 
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5.6.1 Synchronization 

Synchronization is done using a logical clock algorithm, which is an algorithm where each 

node has its own logical clock that is incremented for each action taken by that node. It also 

has a list of the last reported time from all other nodes in the system. Using this information, 

each node can independently provide a total ordering between all events in the system. As 

long as all the nodes apply the same events in the same order, they will all have the same 

information. 

The requirement here is that before applying an event with timestamp N, all other nodes have 

to have reported a local time ≥ N. This means that for the system to make progress, all nodes 

need to be responsive. If some node stops responding, the system will halt until it either starts 

responding again or the connection to the node times out (at which point the system will 

proceed without the node). 

Controlled actions 

As all events in the system are causally ordered, and the ordering is total, no two events can 

ever be said to be concurrent. This means that all actions do in fact demonstrate atomic 

properties. 

Lazy commit 

Constantly keeping up to date with the current time of all other nodes is very resource 

intensive, as it requires all the nodes to be in contact with all other nodes for any single action 

performed on any single node. This is not very practical. 

The implemented logical clock algorithm is instead lazy in nature – that is, it will not strive to 

commit a message until it is required in order to process an action originating from itself. 

Because of this, it is important that the message queue is persistent as it is likely to contain 

important data that is yet to be committed. 

Typically, all nodes will be fully synchronized within two heartbeats if there are no actions 

taken during this time. The exact timing depends on the heartbeat frequency. 

Conflicting updates 

In some cases, when the system is segmented due to for example network failure, conflicting 

updates could be performed in tills that are not currently connected to each other. These have 

to be handled properly when the tills reconnect. 

In this design, conflicting updates are handled by the higher logic and are not considered here. 

This is to conform to the current level of abstraction in the product, to avoid invasive changes 

in the higher logic. 

5.6.2 Reference data flow 

For reference data to be handled correctly, one of the nodes need to be receiving the reference 

data pushed from Centraloffice. This can be determined by some simple type of priority, for 

example based on the node name. The selected node have to inform Centraloffice where to 

send the reference data, which requires new functionality in Centraloffice. 
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As reference data messages arrive, they are applied as actions, and are thus applied on all 

nodes in the system in the same order. 

5.6.3 Transaction data flow 

When a retail transaction is committed, it is handled as an action and is thus committed on all 

nodes. It is saved on all nodes as a BLOB, and the creating node then transforms the BLOB 

into a POSlog XML file which is sent to Centraloffice. 

5.6.4 Points of integration 

Integration in the shop that require access to point of sale logic using the POS-services service 

will most likely require a separate server in the shop. For other, customer-specific 

integrations, one of the tills could act as a point of integration. Examples of customer-specific 

integrations could be services such as automated sales solutions (like Vensafe [35] vending 

machines). 

Tax refund integration 

The integration to Global Blue tax refund requires the communication to Global Blue central 

servers to be from one specific IP address. One of the nodes should be pre-configured to run 

the GB service. This decision will not affect any other functionality. 

Bottle deposit integration 

The Tombra bottle deposit integration is implemented by fetching data from an FTP server. 

To facilitate this, one node has to be selected to fetch this information. This can be done 

through configuring a specific node for it, allowing the reference data handler perform the 

integration, or perform some selection (based on current local time on all nodes) singling out 

a specific node every time the FTP needs to be checked. 

Either way, an important requirement here is that the nodes keep old bottle deposit receipts in 

storage even after they have been cashed in, for future reference in case of synchronization 

issues. This is in case some receipts are fetched again from the bottle deposit server after a 

crash, but have already been cashed in. In that case, it should not be possible to cash them in 

again. 
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6 Proof of concept 

6.1 Purpose and scope 

The purpose of the proof of concept is to demonstrate the difference between different 

approaches to solving the problem with running the system without a dedicated server. 

In order to do this, a simulator is used to visually show how the nodes in the system 

communicate. Each till is represented by a very basic user interface, with the ability to log 

in/out, create a receipt, shut down/start up the node and disconnect the node from the network. 

There is also some key information from the till showing in the user interface. 

The idea is to be able to test some basic functionality of the tills in different situations, and 

most of the functionality can be broken down to two categories – things that synchronize with 

the server when possible, and things that require a reply from the server (controlled actions). 

In this case, logging in/out is used to simulate things that require a reply from the server while 

create receipts are things that will sync when possible. 

Being able to shut down/start up the till and disconnect/reconnect the till from the network are 

features that are useable when trying different test cases. 

6.2 System overview 

 

Figure 3: The simulator used for the proof of concept 

The proof of concept is based on a networking simulator called Netsim, in which you can 

program a node in Java to fit your purpose. 

In this case, a basic till construct was made with some basic functionality. To simulate the 

actual system, a service dispatcher was created to operate in much the same way as the 
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production system. In order to make the tests as realistic as possible the behavior of all 

components were designed to match the production system as closely as possible. 

To test the functionality, a client-server communication implementation was created (Figure 

4). As all functionality was working with the server/client system, the alternatives were 

developed and tested. 

6.3 Different approaches 

6.3.1 Client-server 

For reference, a server/client implementation was built based on the current product (Figure 

4). 

 

Figure 4: Client-server implementation, with a server (blue), two connected clients (green) and a 

turned off client (yellow) with a message being sent. 

6.3.2 Coordinator 

One of the options explored was to elect a coordinator or “leader” based on some priority and 

have that node act as server. This is a simple solution because it does not require much special 

consideration from developers during development or when troubleshooting an incident. 

The most complex aspect of this solution is how to handle leader transition, when for some 

reason a new leader has to be elected. 

This implementation is still largely built on the same principle as the standard server/client 

one, which means it has most of the same advantages and disadvantages as such a solution. 

Only minor changes were done to adapt the POC tills to this approach (see Figure 5). 
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Figure 5: The coordinator implementation, with a coordinator (blue) and 3 other connected nodes 

(green). 

6.3.3 Logical (Lamport) clocks 

The other explored option was an implementation based on logical clocks (see Figure 6). This 

is a more complex solution as it requires an understanding of Lamport timestamps in order to 

follow what is happening in the system. 

This implementation does not have a single entity that can make decisions, which means it is 

theoretically quicker at recuperating after a node crash. 
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Figure 6: The logical clocks implementation, with 4 connected client. Client D (blue) is completely 

synchronized, while the other clients (green) are not yet fully synchronized due to the lazy commit. 

6.4 Test environment/Proof of concept 

The main practical result of this project is a testing environment, where different types of 

synchronization can be tested on a simplified point of sale node. The core functionality of 

each node is a service dispatcher, designed to function as closely as possible to the service 

dispatcher in the actual point of sale system. 

6.4.1 Till interface 

Each node acting as a till has a basic interface that looks like the one below, giving some 

information to the user and a few options with which to test different functions (see Figure 7, 

Figure 8 and Figure 9). 

 

Figure 7: The basic till interface, which is the same for all implementations. 
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Input – argument to be inputted 

Login – Log in or out a user (specify the user name in the input field) 

Receipt – Create a receipt on the till 

Shutdown – Shut down the till 

loggedInUser – shows the currently logged in username 

loggedIn – is ticked if a user is currently logged in 

currRec – shows the current (next) receipt number 

connected – displays all other nodes that this node is connected to 

nodeState – shows the current state of the node (these varies depending in implementation) 

offlineMode – simulate disconnecting the network cable from this node 

 

Additional informational fields are also provided on the specific implementations. 

 

 

Figure 8: The coordinator implementation till interface. 
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Figure 9: The logical clocks implementation till interface 

 

currentLeader – the node currently winning or the node that has won the leader election 

localTime – the current logical time on this node 

boundTime – the lowest logical time reported by another node, the latest synchronized time 

queue – requests waiting to be handled on this node 

vector – the last reported time from each connected node 
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7 Results 

In general, both the coordinator design and the logical clocks design performs almost as good 

as or better than the original client/server configuration when looking at the protocol’s built-in 

delay times and message complexity in different situations. 

7.1 Test cases 

To check the performance of the implemented alternatives, a few test cases were devised and 

tried on the POC. During these tests four fully connected nodes were used, named from A 

alphabetically descending. Priority in leader election was based on name, in descending order. 

In each of the test cases, login/logout operations as well as receipt operations are tried from on 

all tills. The test cases are performed in order. Both new implementations are tested in these 

conditions. For reference, the server/client implementation is also tested in each case. For 

timeout implementations, a heartbeat is sent every 2000 time units and there is a 500 time unit 

timeout on a connection. A connection has to time out twice to be disregarded. Message travel 

time between nodes is on average 100 time units. 

7.1.1 Start up all nodes 

Client/server 

All tills online and ready within 200 time units. 

Leader election 

All tills online and ready within 600 time units. 

Logical clocks 

All tills online and ready within 1 time unit. 

7.1.2 Log in and create a receipt on all tills 

Client/server 

All receipts committed on server after 300 time units. 

Leader election 

All receipts committed on all tills after 300 time units. 

Logical clocks 

Most receipt committed on all tills after 300 time units, a few took up to 400 time units. 

7.1.3 Put till A offline 

Node A was put offline at time unit 1000. 

Client/server 

All tills went offline at time unit 5000. No online services available during or after these 4000 

units. 
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Leader election 

All tills except till A went offline at time unit 5000. New leader B elected at 5001, at which 

point B could reach online services. All tills online to new leader B at time unit 5100. No 

online services available on till C or D during these 4100 time units or B during 4000 time 

units. 

Logical clocks 

Online services readily available on till A. Online services available on B, C and D, but with 

an up to 3000 time units long delay on first invocation. 

7.1.4 Shut down till B 

Client/Server 

No change. Till B shut down. C and D still offline. 

Leader election 

Till B shut down. Till C took over leadership in 100 time units. Till D online again within 200 

time units. 

Logical clocks 

In worst case results in a 100 time unit delay for online actions on till C or D. 

7.1.5 Put till A online 

Till A is put online at time 5900. 

Client/server 

At time 6500 clients attempted a timed reconnect, C and D online at 6700. 

Leader election 

Till A attempted reconnect at time 6000. After 300 time units till C and D have been notified 

that till A is taking over as leader. At this point till A and D are online while till C is taking a 

timeout. After another 1700 time units till C is online and connected with till A as leader. This 

is at time 7900. 

Logical clocks 

Till A attempted reconnect at time 6000. The connection does not affect the status of any of 

the connected node. 

7.1.6 Put till C offline 

Client/server 

Till C loses all online functionality. 

Leader election 

No apparent effect, till C is elected as its own leader. 
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Logical clocks 

D and A risk an up to 3000 time unit delay on attempted online actions. C will perform 

actions without problems. 

7.1.7 Put till C online 

Client/server 

200 time units for C to connect with server again. 

Leader election 

200 time units for C to connect to the other nodes, then 1700 time units with timeout and 

reconfiguration to become an online client. 

Logical clocks 

No apparent effect. 

7.1.8 Start up till B 

Client/server 

Till B online after 200 time units. 

Leader election 

Till B online after 200 time units. 

Logical clocks 

Till B online at bootup. 

7.1.9 Test login of the same user on all tills at the same time 

Client/server 

First message to arrive to the server wins the login. 

Leader election 

First message to arrive to the leader wins the login, which will always be the current leader. 

Logical clocks 

Till with the currently lowest logical clock will win. If two are the same, they are prioritized 

on till name. Message order is not relevant. 

7.2 Network traffic in general 

In order for any these distributed protocols to work, it requires some extra network traffic. 

This is because all updates performed on a till (for example creating a receipt) need to be 

replicated to all other tills instead of just the server. The network traffic required for 

synchronizing with a new node is comparable to the amount of traffic generated in the 

client/server model in the same situation, as the first node that the new node connects to 

should be able to send all required data directly when connecting. 
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7.3 Death of a node 

When a node shuts down or is otherwise unexpectedly lost from the network, the system 

usually needs to reconfigure. Although this is done somewhat different in the coordinator 

approach and the logical clock approach, it turns out that in both cases the difficult part is 

actually detecting the death. Because this is done using a timeout there is typically a small 

time slot where the system is not functioning correctly because some node is not responding 

properly. 

In the coordinator approach, this is most notable if the leader is the dead node. During the 

timeout, controlled actions are still sent to the leader node but are never handled – and thus 

never approved. This has the potential of resulting in lost information if not handled properly 

by the higher logic. 

In the logical clock approach, the controlled actions are sent to all nodes but only approved 

when all nodes report ready. This means that during a timeout all controlled actions are put on 

hold. While this means no information is lost, it could cause a noticeable delay for the user 

performing the action. 

7.4 Birth of a node 

When a new node is introduced to the system, this does not normally affect the performance 

of the other nodes. However, a notable exception is that in the coordinator approach, if 

another leader connects so that the system has two leaders, the leader with the lower priority 

will need to revert to being a follower. 

This may cause a small window where information could end up being sent to the wrong node 

and thus get lost. 

7.5 Differences between the approaches 

Despite the fundamental design differences between the two alternatives, the perceived 

functionality is very similar. There are however some key differences is behavior. 

Most notable is the behavior when a node disconnects or connects. Generally, it turns out that 

the logical clock approach is better at handling new connections (they sync up faster), while 

the coordinator approach is better at handling nodes that disconnect. 

7.5.1 Workload distribution 

When performing controlled actions, the two different approaches perform the operations in 

slightly different ways. In the coordinator approach, the leader informs all other nodes of the 

changes being made. In the logical clock approach, the performing node informs all other 

nodes of the changes being made, and the time at which the change was made. 

This is important when considering node workload. In the logical clock approach the 

workload, as well as the network load, will be much more balanced among the nodes when 

comparing to the coordinator approach where the leader will always have a considerably 

higher workload. 

This also means that the logical clock approach will, at least theoretically, scale better. 
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7.5.2 Local performance 

A client in the coordinator approach will have the same performance as a client in the current 

system, as there are no apparent changes in behavior depending. The current leader, on the 

other hand, will need to keep track of all the same information as a server normally would on 

top of running the till application for the user. This may result in degraded performance on the 

till in question. 

In the logical clock approach, every node has to have an idea of what every other node is 

doing. To ensure this, every node has to keep track of the latest received timestamp from 

every other node as well as handle a message queue. The vector with timestamps will grow 

proportionally to the number of nodes in the network. The number of messages normally in 

the queue will be related to the number of nodes actively sending messages. All in all, this 

means that the performance of every single till may go down slowly as the network grows 

larger and more active. 

Additionally, creating POSlog files at the individual nodes rather than a dedicated server is 

likely to cause a slight performance loss at the tills. It is not clear at this point whether this 

would be noticeable for the user. 

7.6 Design issues 

7.6.1 Data ownership and conflicting updates 

Because there is no central control or management in the system, a node will maintain 

ownership of any data produced by it. This means that if a specific node receives reference 

data from Centraloffice that is then distributed to the other nodes, the other nodes need to not 

only store the reference data but also where the data was produced (which node owns the 

data). 

So why is this important? It turns out that in some cases different nodes can produce 

conflicting data in parallel, for example while the network is segmented. To be able to merge 

this data later on, it is important to not only have the specific data but also some way of 

determining which data is “correct”. A straightforward approach is to let the data from the 

highest priority node (calculated in some consistent way) win, ensuring all nodes will have 

consistent data over time. 

7.6.2 Data storage 

Because every node owns its own data, every node also need to ensure that the data created is 

sufficiently secured in case the node fails. Typically, this is done by sending the data to all 

other nodes. 
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8 Discussion 

While the original plan was to have a finished solution by the end of the thesis project, the 

scope was somewhat altered during the course of the project. This was due to the fact that it 

was more difficult than expected to decide on the best approach as several different 

approaches to the problem have similar properties. 

Instead of implementing a solution, the thesis work was concentrated on comparing a few 

different solutions in order to be able to find the best suited solution and be able to suggest an 

implementation for future work. This means that instead of implementing a single finished 

implementation, several proof of concept implementations on a smaller scale were 

constructed and used for testing and simulation. 

8.1 Failures and unknown states 

If a node crashes while performing an action, it could be difficult (or impossible) to determine 

whether this action was actually finished or not. This is an important aspect to consider when 

handling controlled actions. 

For example, if a leader crashes when handling a login request, it is possible that the login 

request is approved, but the result is only distributed to some of the other nodes. In that case, 

the different nodes do not agree on the current state of the system. The problem will be most 

noticeable if the node requesting the login and the new leader disagree on the end result. 

Completely eliminating this problem would require a lot of overhead network traffic. Instead, 

regularly performing some kind of sanity check on the system to ensure consistency is 

probably a more efficient way of dealing with the problem. This would be a kind of eventual 

consistency, which could have some undesirable results (see 3.2.5). However, if it is only 

used for error handling it may be a better alternative then the overhead required to avoid the 

problems entirely. 

8.2 Design choices and designs not explored 

Despite having expanded the scope to include more than one design alternative, several 

alternatives had to be discarded in an early stage due to time condierations. 

8.2.1 The consensus approach 

A consensus approach was considered, based on the Paxos (see 3.2.4) algorithm. However, 

this was discarded due to the complexity of maintaining accurate information regarding the 

number of nodes in a single system. Because a consensus algorithm is based around majority 

decisions it needs to be clear how many nodes there actually are in the system, which is not a 

desirable requirement as shops should be able to add or remove tills as needed. 

8.2.2 The atomic operation approach 

Another possible solution to the problem would have been an atomic operation approach, with 

either underlying compare-and-swap or semaphore primitives, or using Lamport’s bakery 

algorithm (see 3.2.2). This approach, however, was not considered further as it was not 

believed to add anything of value compared to the coordinator approach or the logical clock 

approach. 
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8.2.3 Distributed database 

The option of using an underlying distributed database to distribute information in the system 

was considered, but discarded as it would require too heavy modifications to the current 

system architecture. It is also not clear that this approach would solve the problem – 

additional logic to handle controlled actions would still be needed and intimate knowledge of 

the inner workings of the database manager would likely be needed in order to ensure correct 

behavior. 

8.2.4 Mixed approach 

While looking at this problem it became increasingly clear that while each approach can solve 

the problem in its own way, a mixed approach may be a better solution. For example, a 

logical clock approach with some services being handled by a coordinator. This has however 

not been further explored. 

8.2.5 Issues not looked at 

Due to the change of scope of the thesis project, some issues were not taken into consideration 

when designing and comparing the alternative designs. 

POSlog handling 

In order to send transactions to Centraloffice a POSlog XML file has to be created from the 

transaction and then sent. In this thesis, we generally assume this operation is performed 

locally at the same node that created the transaction. However, no consideration has been 

taken regarding the performance implications of this behavior. 

No functionality for tracking which records have been sent to Centraloffice and not have been 

considered either. This could be an important consideration if a design decision is made to not 

create POSlogs locally, but rather at some specific node in the system. The system as a whole 

would then need to keep track of which POSlogs have not yet been created in case of failure 

in some nodes. 

Customer specific store-wide integration 

The POS server is commonly used as an integration point in the shop between the Extenda 

system and other systems in the shop (such as for example vending machines). While this has 

not been specifically considered, these integrations can likely be built to be run on the leader 

in the leader election approach. 

If it is not possible to have the integration point move around in the shop, the implementation 

will likely require the shop to run a POS server. 

8.3 Usability 

The main target of this project was small shops, where the POS server accounts for a large 

portion of the hardware at the retail chain. This is also where this solution is best suited to be 

implemented. 

This solution is not well suited to be implemented in large shops, as the network traffic and 

workload on all tills will increase linear with the number of nodes in the system. This means 
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that the system will not perform well in a large environment. In these cases, maintaining the 

POS server is a more efficient way of handling the workload. 

8.4 Future work 

This thesis project has outlined a possible direction for further development of the product. 

The next logical step would be to determine how to technically implement this into the current 

product. Because of the architecture of the product, implementing this change should not be a 

particularly invasive process. 

8.5 Other applications of the work 

Much of the work done here should prove useful for any generic project where a server/client 

system is to be transformed into a peer-to-peer based system. Much of the same problems 

should appear in any generic system with similar traits, and the concept of controlled actions 

versus actions that do not require the same control in regard to ordering or consensus should 

be useful when considering other systems. 
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9 Conclusions 

The purpose of this thesis was to find a solution to the problem of removing the in-shop local 

server in a retail (point of sale, POS) system, and instead letting the clients (POS client or till) 

communicate directly with each other and the enterprise wide Centraloffice (CO) 

management server. 

The objectives for the thesis were as follows: 

1. Find a method to replace the functionality of the POS Server and put it in the POS 

clients or CO servers. 

2. Design a way to implement this, fulfilling the following objectives: 

a. It should be possible to perform sales at the client even if the network 

connection is disrupted. 

b. Receipts should be saved in strictly more than one place in the shop. 

c. There should only be one active connection to CO from any given shop at any 

time. 

3. Build a proof of concept to show that the design works as expected. 

The three objectives were achieved by first looking at the current system and deriving what 

the current functionality of the local server (POSserver) was in the shop. Using other work in 

the field and articles as a base, two approaches based on a peer-to-peer structure were 

designed and described. One design was based on one of the nodes acting as a leader, and the 

other was based around a logical clock approach first suggested by Leslie Lamport (see 3.2.1). 

A simulator to test the base functionality of the system was designed, and both designs as well 

as the current client/server system were tested and compared in the simulator. In the end, most 

of the objectives were fulfilled: 

1. Two different methods of replacing the POS Server functionality and moving it to the 

POS clients have been identified. 

2. Two designs have been built, although they have not been designed detailed enough to 

be able to confirm whether requirement c can be fulfilled or not. 

3. Proof of concepts for both variants have been implemented. 

The result showed small differences in performance in some situation, but the most important 

difference was simplicity and stability in the leader approach versus adaptability in the logical 

clock approach. Both implementations, however, require more network traffic and would 

create a higher workload on the clients. 
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