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Göteborg, Sweden 2015





MASTER’S THESIS IN SYSTEMS, CONTROL AND MECHATRONICS

Utilization of Quadnocular Stereo Vision for Simultaneous Localization and
Mapping in Autonomous Vehicles

ROBERT ANDERSSON
OSKAR NORESSON

Department of Applied Mechanics
Division of Vehicle Engineering and Autonomous Systems

CHALMERS UNIVERSITY OF TECHNOLOGY
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Abstract

The introduction of autonomous vehicles in commercial applications has an enormous potential to drastically
improve both working conditions and productivity. Among the many challenges of realizing autonomous driving,
precisely determining the vehicle’s pose and constructing an accurate map of an unknown environment might
be the two most crucial to overcome. Simultaneously dealing with both these problems is known as SLAM,
simultaneous localization and mapping.

We have designed and implemented a stereo camera system with which SLAM is performed using only
visual information. The proposed system achieves multi-range depth resolution by utilizing four cameras and is
implemented exclusively with the help of open-source libraries. Depth images from separate camera pairs are
computed in real time with a correlation based block matching algorithm and merged employing a perspective
transform. The joint depth map and the corresponding RGB image are then used by a graph-based SLAM
algorithm to produce a trajectory estimate and a probabilistic 3D voxel grid map.

The system was furthermore evaluated on simulated and real data. The evaluations suggested that with the
current configuration it is not motivated to merge depth images from more than two camera pairs, since adding
an extra camera pair considerably decreases the frame rate without necessarily improving the quality of the
resulting depth map. A number of different image feature extractors were investigated which revealed that
binary feature descriptors are suitable for landmark representation in visual SLAM.

We can conclude that the system is indeed a fully working prototype, but in order to increase robustness
and accuracy to a degree that it is useful in a commercial application a number of future improvements are
needed.

Keywords: Autonomous vehicles, computer vision, SLAM, stereo vision, image feature extraction
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Nomenclature

Acronym Definition

BRIEF Binary Robust Independent Elementary Features

BRISK Binary Robust Invariant Scalable Keypoints

EKF Extended Kalman Filter

EMM Environment Measurement Model

FAST Features from Accelerated Segment Test

FPS Frames Per Second

FREAK Fast REtinA Keypoints

GPU Graphics Processing Unit

IMU Inertial Measurement Unit

IR InfraRed

LIDAR LIght Detection And Ranging

OpenCV Open source Computer Vision library

ORB Oriented FAST Rotated BRIEF

PCL Point Cloud Library

RANSAC RANdom SAmple Consensus

RGB-D Red Green Blue Depth

RMS Root Mean Square

ROI Region Of Interest

ROS Robot Operating System

SGBM Semi-Global Block Matching

SGM Semi-Global Matching

SIFT Scale-Invariant Feature Transform

SLAM Simultaneous Localization And Mapping

SURF Speeded Up Robust Features
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1 Introduction

Although the concept of autonomous vehicles has been around for quite a while, it has recently become a very
hot topic, gaining a lot of public attention as well as research grants. Early spectacular autonomous concept
vehicles, including for instance the Google self-driving car [1] or the Mercedes-Benz F015 [8] have been smaller
vehicles for personal transportation or surveillance. However, there are also potential upsides of replacing the
driver in vehicles operating in heavy industrial and logistic applications, such as construction trucks and wheel
loaders. Monotonous and hazardous driving tasks can be obliterated, costs for salaries and training can be
minimized and utilization rates can be increased dramatically since robot drivers do not mind working around
the clock.

An essential part in realizing autonomous driving is to find methods for acquiring accurate estimates of the
vehicles’ position and orientation as well as creating maps of the environment in which the vehicle operates. This
type of problem is closely related to the simultaneous localization and mapping problem, also known under the
acronym SLAM, which for the last decade has been a thoroughly studied topic within the field of autonomous
robotics. The problem consists of estimating the robot’s pose in a map representation of the surrounding
world while at the same time incrementally updating the map with the information from current and past
sensor readings [10]. The complexity of the SLAM-problem lies in its innate ”chicken or egg”-characteristics; to
update the map the robot needs to know its position and to know its position it needs to have a reliable map.

Localization and mapping for autonomous robots is traditionally based on input data from a laser scanner.
This has the advantage of providing accurate distance measurements with high frequency, from which topological
features can be extracted and used as landmarks for awareness of egomotion and position. However, high
precision laser scanners tend to be extremely expensive. Furthermore, they traditionally only sweep in one or a
few layers, resulting in a 2D map of the environment. If the laser scanner is to be mounted on a vehicle moving
on a non-planar surface, which is the case for any terrain vehicle, the roll or pitch of the vehicle can not be
inferred from a planar sensor reading.

Ideally, the sensor readings for a mapping application would be depth images which are not limited to
one plane. This could be achieved by using an RGB-D sensor such as the Microsoft Kinect, which utilizes an
infrared laser and an image sensor to project an IR-grid pattern and calculate depth through triangulation of
the discrepancy between the projected pattern and the reflected pattern. In any outdoor application however,
the possibilities of using this active sensor approach would be limited since sunlight would interfere with the
IR-grid [25]. Although accurate and fast, it is also limited in its depth range [20]. A stereo camera on the
other hand is a passive light sensor, thus more appropriate for outdoor use. Compared to laser scanners, it is a
versatile and inexpensive sensor with many other potential application areas in autonomous vehicles, such as
object detection or road sign classification. This master’s thesis aims to develop and implement a system where
this versatility is utilized, resulting in a proof-of-concept prototype that can contribute to make a commercial
terrain vehicle autonomous.

1.1 Purpose & objective

The purpose of this thesis is to explore the possibilities of utilizing a quadnocular (i.e. using four cameras)
stereo camera in a localization and mapping application so that autonomous navigation is possible. The
intention is to create a stereo camera system capable of replacing or complementing an RGB-D camera or a
LIDAR sensor, although no formal comparison will be conducted between the precision of our system and the
accuracy of available sensor systems.

The main objective of this thesis is to create and implement a functioning system for extracting and analyzing
information from quadnocular stereo vision data in real time in a moving vehicle. This includes developing a
proper camera setup, computing depth from visual data, extracting and comparing appropriate image features,
as well as implementing algorithms for localization and map building. The objective is furthermore to evaluate
this system in order to find a suitable system configuration.

1.2 Scope

The goal of the project is not to optimize algorithms or to do in-depth research on a single particular algorithm.
Instead, we aim at creating a functioning concept utilizing state of the art methods for the different subsystems
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needed in the system. Thus, implementation and configuration of the methods will be a substantial part of the
project work.

The final prototype created in this project should be possible to use in a real, all-terrain truck. This ambition
poses different system requirements than if it was only mounted on a small, short-ranged and differentially
steered robot which is moving on a planar surface. The broad scope of this thesis makes it absolutely necessary
not to re-invent the wheel if the project is to be finished within the given time frame. Thus, available open-source
software will be utilized where applicable. This includes the robotics framework ROS and available 3rd party
packages therein, or libraries such as OpenCV and PCL.

An important limitation is that the system relies only on the data provided by the stereo cameras. In a
future development of the prototype however, it would be useful to utilize sensor fusion techniques to integrate
other sensors such as IMUs or wheel sensors with the visual odometry in order to make the SLAM procedure
more robust and precise.

1.3 Thesis contribution

The novelty of this thesis lies in the system perspective and the integrated implementation of separate subsystems
such as camera calibration, depth map creation, visual odometry and incremental map building. As the main
objective of the project is to build a fully functioning prototype stereo vision SLAM system, including hardware
design and full software implementation, it is not sufficient to solely evaluate our prototype on simulated data
or pre-recorded benchmark data sets.

One of the most commonly used sensors in SLAM-applications are laser range scanners [30]. The use of
stereo vision to solve the SLAM-problem is a rather novel approach. A traditional binocular stereo camera
setup yields a single depth map, which is typically most accurate on a specific depth. We propose a quadnocular
stereo camera setup in order to allow for pairwise combination of cameras with different baseline - shorter
baseline for close range focus and depth perception, and wider baseline for higher accuracy on longer distances.
This allows for creation of depth images with varying depth resolution that can be merged into a single depth
map which is accurate on both short and long distances.

A central part of the SLAM problem is to recognize visual landmarks when they are reobserved. We have
therefore emphasized this aspect by performing an extensive evaluation of image feature extraction algorithms,
in a simulated environment as well as in a more applied context. In particular we investigate the potential of
utilizing binary feature representations to speed up the feature matching in the SLAM application without
compromising with the application’s robustness.

1.4 Thesis outline

This report is divided into five parts. This introductory chapter is followed by a theory chapter which aims to
give the reader an understanding of stereo vision, image feature extraction and map building. Next, we explain
how the system was constructed and evaluated in a methodological chapter and then proceed to present and
comment on the outcome of the evaluation. Finally we conclude the report with a short summary and propose
possible topics for continuation and improvement.
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2 Theoretical background

The stereo camera mapping and localization system developed in this thesis relies on four concepts which are
given a fundamental theoretical background in the following chapter. First, we introduce stereo vision and
describe how depth can be reconstructed from visual data alone. Next, we present algorithms for image feature
extraction which is required for visual SLAM as well as utilized in the merging of depth maps from different
camera pairs. The third concept we introduce is SLAM itself, including the problem formulation and the most
common solution approaches. Finally, we present methods for representing 3D maps in a robotics application.
The aim of all four sections is to first briefly describe and motivate the overall concept, and then to give the
reader a more focused orientation of the algorithms that were actually implemented.

2.1 Stereo vision

The concept of stereo vision is based on the fact that perception of depth is possible by observing a 3D world
coordinate point from different viewpoints. The relative displacement of the image plane projection of the
point on the respective camera image planes, the so-called disparity, can be used to triangulate the depth if
geometric information about the cameras is available. The geometric relationships used to reconstruct depth
from disparity is explained further in section 2.1.5.

The main principle behind stereo vision is illustrated in figure 2.1, where the disparity is the difference
between the horizontal image projections u and u′ on the left and right cameras [33]. However, in order to
actually compute the disparity, it is necessary to first have an understanding of the camera model and how the
images are prepared for stereo matching.

b

z

x

X = [x,y,z]T

f

U = [u,v]T U’= [u’,v’]T

C C’

h h

u u’

Figure 2.1: The fundamental geometry of a rectified (see section 2.1.3) stereo camera system seen from above.
A point X will be projected to different horizontal image coordinates u and u′ from which the depth z can be
inferred. As described in section 2.1.5, two pairs of similar triangles (green and blue) can be utilized to form a
relation between the disparity and the depth.

2.1.1 Camera model

The most simple camera model is the pinhole camera, where an object is projected onto an image plane by only
allowing a single ray of light to enter the camera from any single point. To ensure this, light is only allowed
to travel though a microscopic pinhole. However, such a model makes the exposure process slow and does
not work in practice. Introducing lenses considerably accelerates the exposure process, but at the price of
also introducing lens distortions. Manufacturing a camera that introduces no image distortions is in practice
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unfeasible, especially at a reasonably modest price tag.
Two of the most prominent lens distortions are radial and tangential distortions. The former occur when

the lens shape is non-perfect, typically when the lens is stronger than necessary towards the periphery causing
noticeable image distortions towards the edges and corners of the resulting image. The latter occur when
the lens is not completely parallel to the image sensor, typically due to poor precision during manufacturing,
causing elliptical displacement of the image.

The camera intrinsics matrix

M =

fx 0 cx

0 fy cy

0 0 1


contains the focal lengths of the camera (fx and fy) and the displacement between the center of the image
sensor and the optical axis of the lens (cx and cy). A point P with real world coordinates (X,Y, Z) can be
reprojected into a point p on the image sensor with homogeneous coordinates (x, y, w) using the the relationship

p = MP. (2.1)

Solving equation 2.1 will yield that w = Z. Since p is written in homogeneous coordinates, dividing equation
2.1 by w (or Z) will give the actual pixel coordinates in terms of real world coordinates.

For describing the distortions introduced by the camera lens, the ”plumb bob” model can be used consisting
of two pairs of equations: {

xundistorted = x(1 + k1r
2 + k2r

4 + k3r
6)

yundistorted = y(1 + k1r
2 + k2r

4 + k3r
6)

(2.2)

{
xundistorted = x+ [2p1y + p2(r2 + 2x2)]

yundistorted = y + [2p2x+ p1(r2 + 2y2)]
(2.3)

where (k1, k2 and k3) describes the radial distortion, (p1 and p2) describes the tangential distortion and r
is the radial distance from the optical center of the camera. The camera intrinsics matrix together with the
distortion coefficients, commonly arranged as [k1 k2 p1 p2 k3], make up the intrinsic camera parameters [5].

2.1.2 Camera calibration

The cameras need to be calibrated in order to estimate and compensate for the intrinsic camera parameters, the
transformations from world to camera coordinates (the so called extrinsic parameters), as well as for angular
and translational differences between camera pairs. This can be done in a two stage process where first single
camera calibration and then stereo calibration is performed. During single camera calibration, the intrinsic and
extrinsic parameters are estimated individually for each camera. During stereo calibration, the transformation
(rotation and translation) between the two camera planes is estimated.

The calibration process is normally performed using a calibration pattern, an object with known dimensions
and easily detectable features. A typical calibration pattern is a checkerboard with alternating black and white
squares of known size. In order to end up with a successful calibration, it is important to both translate and
rotate the calibration pattern in between the calibration views.

Single camera calibration can be performed by observing a set of images each containing different views of
the checkerboard. On this set of images, a corner detection algorithm can be applied to find the image locations
of all interior corners of the checkerboard pattern. Information about the geometry of the checkerboard and the
image coordinates of the checkerboard corners can then be used as input for an optimization problem, which
when solved yields the intrinsic parameters (as described in section 2.1.1) as well as the extrinsic parameters
for the camera as a 3× 3 rotation matrix and a 3× 1 translation vector.

Stereo calibration can be done by performing single camera calibration for two different cameras both
observing the same static calibration pattern. The goal is to calculate the rotation matrix R and the translation
vector T describing the transformation from the right camera frame to the left camera frame. A point P (in
world coordinates) on the calibration pattern can be expressed in the left camera coordinate frame as

PLeft = RLeftP + TLeft (2.4)

and similarly in the right camera coordinate frame as

PRight = RRightP + TRight. (2.5)
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Combining the fact that the two cameras are related as

PRight = RPLeft + T (2.6)

with equation 2.4 and 2.5 gives the rotation matrix

R = RRightR
T
Left (2.7)

and translation vector [5]
T = TRight −RTLeft. (2.8)

2.1.3 Undistortion and rectification

To be able to construct a high quality depth map, the images taken by the cameras need to be preprocessed.
First a distortion map should be created from the distortion coefficients in the intrinsic camera parameters
which describes how the lenses have distorted the images. This distortion map can then be used to undistort
the images. After undistortion, the images look as if captured with a pinhole camera, given that the calibration
was successful. The images must also be rectified, by utilizing the stereo parameters described in section 2.1.2.
Rectification means that the image planes are aligned such that corresponding points lie in the same row on
both images and that the cameras are horizontally aligned. The points are thus located on the same so-called
epipolar lines. Since the points are located on the same line, the epipolar constraint can be formulated, which
reduces the otherwise two dimensional stereo correspondence problem (see section 2.1.4) to a one dimensional
search problem. Simply put, it is only required to look for the corresponding pixel or block of pixels in one row
instead of in the whole image when comparing the left and right images [33].

2.1.4 Stereo correspondence

The next step in estimating depth from a stereo image pair is to calculate the disparity by performing stereo
correspondence. The problem is described in figure 2.2. For a given point in 3D space, the stereo correspondence
problem consists of finding the corresponding image locations of the point’s projections in two rectified images
which depict the point from two different viewpoints. The difference between the horizontal coordinates is the
disparity d. The output from the stereo correspondence process is a disparity map d(x, y), which is an image
where the intensity of a pixel with coordinates (x, y) is the disparity d.

u

v

U

IL IR

U
d

U’

u

v

Figure 2.2: The objective of a stereo correspondence algorithm is to find the horizontal distance d between the
corresponding points U and U′ in two rectified images.

Stereo matching is a very active research area and algorithms exist in a wide variety. It could be done
for instance by extracting feature keypoints (such as those described in section 2.2) and matching keypoints
from the two images. Such an approach is, although reliable and fast in finding the correct pixel matches, not
sufficient for this kind of application. The reason is that 3D map building relies on dense disparity images,
whereas keypoint matching methods only generate sparse disparity images where disparity is calculated only
for the actual keypoints.

A more suitable approach is thus a correlation based method, where a region in the first image is compared
with a region of the same size in the image it is to be matched with. The region is then horizontally shifted in
the matching image. The location where the regions have a correlation peak gives the disparity [6].
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One popular correlation based stereo correspondence method is the semi-global matching algorithm (SGM).
The objective is to iteratively minimize a cost function based on comparing pixel intensities while traversing
epipolar lines in the matching images. The larger the correspondence of the intensities, the smaller the cost. In
theory, the cost is minimal when the matched pixels correspond to the same world point. In practice however,
due to e.g. noise, this will often not be the case and finding a distinctive minimal cost can be very difficult.
The SGM cost function therefore also penalizes change in disparity between neighboring pixels. This penalty
term minimizes the number of false discontinuities in the disparity and thereby increases the smoothness of the
final disparity map [16].

2.1.5 Reprojection

Given a rectified image pair, depth can be estimated from the disparity image by taking advantage of the
geometric relations illustrated in figure 2.1. In the figure, two pairs of similar and right-angled triangles can be
found with hypotenuses UC, CX and U′C′, C′X respectively. The catheti of the similar triangles are related
as

u

f
= −h+ x

z
,

u′

f
=
h− x
z

(2.9)

which when eliminating x and solving for z yields

z =
2hf

u′ − u
=

bf

u′ − u
=
bf

d
. (2.10)

The depth z is thus directly proportional to the baseline b and the focal length f , and inversely proportional to
the disparity d [33]. In a stereo camera system, there are thus two central design parameters; the baseline and
the focal length. Depending on how these design parameters are selected, the range in which objects can be
detected will be altered. A shorter baseline or focal length will decrease the disparity for a given depth and
hence depth resolution will be poorer on longer distances. A longer baseline or focal length will analogously
increase the depth resolution far away from the camera. However, if the baseline is larger, the overlapping area
of the two images will be reduced, limiting the field of vision on shorter distances. The stereo correspondence
search problem will furthermore have a larger search space since corresponding pixels are located further apart.
One way to balance this trade-off between optimal depth perception performance on short and long distances
would be to use a multi-baseline camera system [19].

2.2 Feature extraction

As localization and map-building rely on matching landmarks seen in separate time instances, a crucial step in
the visual SLAM process is to detect, extract and match reliable image features which represent these landmarks.
Features are prominent keypoints in the image, which are assigned descriptors that characterize some properties
of the image patch surrounding the keypoint to enable comparison and recognition. By detecting features in two
different frames and computing the distance between the keypoints in descriptor space, it can be determined
whether the features represent the same real world landmark or not.

2.2.1 Vector-based features

The problem of detecting, describing and matching image features is a well-studied topic in the field of computer
vision. Early attempts for feature detection include the combined edge and corner detection method proposed
by Harris and Stephens [15]. Their method is based on the idea that when a window function is shifted in all
directions over the image, the change in intensity can be used to detect corners and edges. When the window is
shifted over a flat region without corners or edges, no intensity change is seen. However, when the window
is shifted over a corner, the intensity will change in all shifting directions. When shifted over an edge, large
intensity changes will be observed only when the shifting direction is perpendicular to the edge. This idea is
illustrated in figure 2.3.
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Figure 2.3: Shifting a window function over a flat region will not lead to any significant intensity changes in
any direction (left panel), whereas shifting over an edge will do so when the shifting direction is perpendicular
to the edge (middle panel). If a corner is present in the window, all directions will give intensity changes (right
panel).

A major issue with these so called Harris corners are that they are highly sensitive to changes in image scale
[32]. As a moving vehicle will observe the same landmark from different distances, a robust feature extractor
must take this into account and detect similar features regardless of the scale of the image in which they are
observed. Other desired properties of a feature detector and descriptor includes robustness against variation
in viewpoint, rotation and illumination, as all these are subject to change due to the mobile nature of the
application. If high robustness for those primary distortions is achieved, it is a reasonable assumption that also
robustness against various perspective changes and skew distortions will be an implicit consequence [4].

Furthermore, it is necessary to keep the computation runtime to a minimum to enable an online, real-time
execution of the SLAM application. We therefore present a set of more recent feature extraction algorithms
that to some extent balances this trade-off between robustness and computational complexity.

SIFT

Proposed by Lowe in 1999, the Scale Invariant Feature Transform (SIFT) is often referred to as the quality
benchmark for feature extraction algorithms due to its very high robustness against changes in scale, rotation
and illumination. In an extensive performance evaluation by Mikolajczyk and Schmid, SIFT or SIFT-based
descriptors were found to be of outstanding superiority to other descriptors for correctly matching features in a
textured scene [27]. However, this comes at the price of being considerably slower than other feature extractors.

Keypoint detection in SIFT is based on local extrema detection in the so-called Difference of Gaussian-
pyramid (DoG). To construct the pyramid, the image I is first transformed into scale space by convoluting it
with a Gaussian kernel G of scale σ giving the image

L(x, y, σ) = I(x, y) ∗G(x, y, σ) (2.11)

where

G(x, y, σ) =
1

2πσ2
e−(x

2+y2)/2σ2

. (2.12)

Each level D in the DoG-pyramid is then computed by varying the scale σ with a factor k and finding the
difference between the scale space images giving the DoG-image

D(x, y, σ) = L(x, y, kiσ)− L(x, y, kjσ). (2.13)

The DoG-pyramid is searched through in a bruteforce manner, where any pixel which is an extreme point in
a 3-by-3-by-3 neighbourhood (as seen in figure 2.4) is considered a potential keypoint. The keypoints then
undergo a screening process in which two categories of keypoints are pruned:
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Scale level

Figure 2.4: Three different levels in the DoG-pyramid illustrating the local extrema search. If the intensity of
the central pixel (red) is higher or lower than all its neighbours’ intensity (blue) it is considered a keypoint
candidate.

1. Keypoints that have a low contrast are sensitive to noise and are therefore removed by deleting all
keypoints with DoG-values below a certain threshold.

2. Keypoints that are aligned along edges (and not at corners) will yield a strong response from the DoG-
function but are difficult to localize correctly, especially under noisy conditions. They can be removed by
applying a similar approach as in the Harris detector as described above.

The keypoints are then assigned an orientation by finding the highest peak in a 36-bin histogram (each bin
corresponding to a 10-degree interval) in which the orientation of the gradients in a neighbourhood around
the keypoint are added. If the orientation of a keypoint is known, it can be used to rotate the keypoint
and its neighbourhood back to a normalized orientation before its descriptor is calculated. By doing so, all
keypoints are described in the same global orientation which is a how rotation invariance is achieved. Finally,
the descriptors are calculated from another histogram of oriented gradients, where 16 histograms with 8 bins
each result in a 128-dimensional descriptor vector for each keypoint [24].

SURF

A lot of effort has been made to achieve feature extraction with similar robustness as SIFT, but with a reduced
computational complexity to enable use in real-time or embedded applications. One such feature extractor is
SURF, Speeded Up Robust Features, which was proposed by Bay et al. in 2006 [3]. SURF builds on the same
principles as SIFT, but scale space images are instead constructed from integral images. The integral image
I∑, computed from the original image I as

I∑(x, y) =

i≤x∑
i=0

j≤y∑
j=0

I(i, j) (2.14)

has the advantage that once computed, it can be used to do the convolution with the Gaussian kernel using
only a few additions or subtractions regardless of the kernel size. The different scales can then be computed
efficiently by varying the size of the kernel, starting at 9× 9. A key to SURF’s efficiency is furthermore that
the different scales can be computed in parallel [4].

Orientation of keypoints is computed from the sum of the so-called Haar wavelet responses in the x- and
y-direction. Wavelet transforms are functions that model both temporal (or more correctly spatial as it is
an image and not a function of time) and frequency information [33]. As the orientation computation is
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a time-consuming process, there is also an upright version of SURF (U-SURF) where this step is skipped.
U-SURF can thus be utilized in applications that do not rely on rotation invariance to achieve higher extraction
speeds.

The descriptors are also based on wavelet responses. A square patch with normalized orientation around
the keypoint is divided into 4× 4 subregions. For each subregion, the horizontal (dx) and vertical (dy) wavelet
responses are calculated on a 5 × 5 sampling grid. Each of the 16 subregions are then described by a four-
dimensional vector, consisting of

∑
dx,

∑
dy,
∑
|dx| and

∑
|dy|. The SURF descriptor is thus a 64-dimensional

floating point number vector [4].

2.2.2 Binary features

Floating point descriptor vectors such as those generated by SIFT or SURF contain abundant information, but
are not ideal from an implementation perspective, especially in a real-time application. They quickly occupy a
lot of memory resources and require time consuming processor operations both for extraction and matching. In
the matching process, a metric of similarity is needed to compare features from the training set and query
set respectively and decide whether they are similar enough to be considered representing the same landmark.
Traditionally, the Euclidean distance is used, formulated as

Euc(x, x̂) =

√√√√ n∑
i=1

(fi(x)− fi(x̂))2 (2.15)

for the distance between features x and x̂ with descriptors f(x) ∈ Rn and f(x̂) ∈ Rn of length n. This
calculation requires at least n multiplications of floating point numbers, a simple but nonetheless relatively
slow task for a processor. Descriptor extraction and matching can be sped up significantly if they are instead
formulated as binary descriptors. A suitable metric of similarity is then the so-called Hamming distance.
The Hamming distance between features x and x̂ with the respective binary descriptors b(x) ∈ {0, 1}n and
b(x̂) ∈ {0, 1}n of length n can be computed as

Ham(x, x̂) =

n∑
i=1

bi(x)⊕ bi(x̂) (2.16)

where ⊕ is the exclusive or-operator [12]. Each of these operations can be performed in one or a few clock
cycles, making the binary feature extraction and matching procedure several magnitudes faster.

Because of memory limitations, a visual SLAM application running for more than a very brief period of time
requires feature descriptors that are compact to store. The 128-dimensional floating point vectors generated
by SIFT occupy 512 bytes, which is far from optimal when the number of descriptors increase by thousands
every second. This problem could be addressed by for instance reducing the dimensionality of the vector or
to use integer representation of the floating point numbers. However, reduction of dimensionality tends to
degrade performance and neither approach permits the use of the Hamming distance as a similarity metric.
Furthermore, it is not very efficient to first perform a series of time-consuming computational steps to produce
a long vector, and then spend even more time making it shorter. Instead, the binary feature extractors compute
the descriptors as binary strings directly. This yields for instance a 256-bit binary representation, i.e. a 16
times more compact descriptor than SIFT [7]. For this thesis, three such binary features are of special interest:
ORB, BRISK and FREAK.

ORB

ORB, which is an acronym for Oriented FAST and rotated BRIEF, is a binary feature which was proposed
in 2011 by Rublee et al. As the name suggests, it builds on FAST for keypoint detection. FAST is a highly
efficient corner detector, but unlike SIFT and SURF it does not have an orientation component. Calculating
the orientation of a keypoint however, normally requires long computational times, especially when using the
histogram of oriented gradients-approach as is done in SIFT. In ORB, the orientation is instead based on the
orientation of a vector between the corner’s center and its intensity centroid. The intensity centroid of the
keypoint neighbourhood, analogous to a physical object’s center of mass, can be calculated as

C = (
m10

m00
,
m01

m00
) (2.17)
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where

mij =
∑
x

∑
y

xiyjI(x, y). (2.18)

Finding the orientation of the vector from the corner center to the intensity centroid is then only a matter
of computing the inverse tangent. This intensity centroid approach has proven to be drastically more robust to
image noise than histogram-based approaches [31].

The descriptor calculation part of ORB is based on BRIEF, which uses a binary intensity test that is
performed 128, 256 or 512 times around a keypoint [7]. The test τ on the keypoint neighbourhood patch p is
defined as

τ(p,x,y) =

{
1 : p(x) < p(y)
0 : p(x) ≥ p(y)

(2.19)

where x and y are two pixel locations in the patch and p(x) is the intensity of the pixel at location x. The
test is performed n times on a smoothed image with location of points xi and yi selected from a Gaussian
distribution giving the binary string b of length n

bn(p) :=
∑

1≤i≤n

2i−1τ(p,xi,yi). (2.20)

Since the orientation of the keypoint is known from the detection step, the image patch on which the tests
are performed can be rotated to the global neutral orientation, resulting in a descriptor known as steered BRIEF
(sBRIEF). However, this procedure makes the appearance of the keypoint neighbourhoods more uniform, so
that the variance (and thus the discriminative property) of the descriptors is reduced. This problem is solved
in ORB by instead utilizing rotated BRIEF (rBRIEF), which includes a learning method for selecting a subset
of binary tests to maximize the variance. The final result is a feature detector and descriptor which is both
relatively fast (typically 10 times faster than SURF and 100 times faster than SIFT), rotation invariant and
discriminating [31].

BRISK

The Binary Robust Invariant Scalable Keypoints, abbreviated BRISK, is another attempt to merge the high
scale and rotation invariance of the SIFT and SURF descriptors with the low computational time of the binary
features. Just like the ORB detector, the keypoint detection stage in BRISK is based on FAST with a computed
orientation. However, as in SIFT, maxima are searched for in the scale space and not only in the image plane
which is a key procedure to achieve scale invariance. By calculating a metric of scale for each feature as well
as an orientation, they can be scale normalized in the same way as rotation is set to a neutral level before
descriptor extraction.

Descriptor computation is done by sampling and smoothing points in a circular pattern, concentric with
the keypoint location, as illustrated in figure 2.5. The sampling points are smoothed with different standard
deviation σ depending on their distance to the keypoint in order to avoid aliasing effects. A set of sampling
point pairs from the sampling pattern is formed by pairwise combination of the points. Each point may then
contribute to several pairs.

A subset of pairs with longer point to point distance is used for determining the orientation of the keypoint
and a subset with 512 pairs of rotated points with shorter distance is used for building the descriptor. The
descriptor bit string is formed by using an intensity test on the sampling point pairs, in a similar fashion as is
done when calculating ORB descriptors [22].
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Figure 2.5: The circular sampling pattern for BRISK descriptor computation. Blue circles mark the location
of the sampling points and the radius of the red circles correspond to one standard deviation in the Gaussian
smoothing around that sampling point. The keypoint itself is located at the origin.

FREAK

FREAK, short for Fast REtinA Keypoints, is only a method for feature description and does not include a
detection step. It is biologically inspired by the human retina, hence the name. The sampling pattern, which in
BRISK was a number of concentric circles, is in FREAK also circular but analogous to the ganglion cells of the
retina the sampling points are more concentrated closer to the center. Furthermore are the Gaussian kernels
with which the receptive fields around sampling points are smoothed different from those used in BRISK. Also,
the receptive fields are overlapping. Similar to in ORB, the pairs for bit testing are selected according to a
learned pattern in order to maximize variance. The binary string is then built in a cascade approach with bit
testing on the pairs mainly in the peripheral circles first. The more central pairs are thus compared last. This
enables a sped up, coarse-to-fine matching procedure where bits are compared in groups of 128. If a match is
confirmed using a coarse bit sequence, there is no need to continue and compare bits from the central sampling
points [2].

2.3 SLAM

Simultaneous Localization And Mapping, SLAM, is the process of incrementally building and updating a map
of an unknown environment while at the same time using the incomplete map for localization within the map.
SLAM might initially appear to be a ”chicken or egg”-problem since an accurate map is needed for accurately
estimating the pose, and an accurate pose estimate is needed for accurately building the map [10]. It is however
possible to find a solution to the SLAM problem [9].

2.3.1 Problem formulation

The SLAM problem deals with simultaneously estimating an agent’s (such as a robot or a vehicle) location and
the location of landmarks in the vicinity of the agent, without knowing the true respective locations. This is
done by taking sensor measurements of the true distance between the agent and the landmarks, as is shown in
figure 2.6. The error between true and estimated landmark positions is primarily due to agent pose uncertainty
at the time of landmark observation, implying that said error is highly correlated between landmarks. The
relative location between landmarks can therefore be accurately determined without accurate estimates of the
absolute landmark locations [10].
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Figure 2.6: The SLAM problem deals with simultaneously estimating the agent and landmark locations using
sensor measurements between the true location of the agent and surrounding landmarks.

In order to describe how SLAM is solved, the following notation is needed:

• A state vector, xk, describing the agent’s pose.

• A control vector, uk, describing an estimation of the agent’s motion between time k − 1 and k, derived
from e.g. the control input or wheel odometry.

• A landmark location vector, mi, for landmark i.

• A landmark observation vector, zk, describing the location relative the agent of the observable landmarks
at time k.

• The set of agent poses, the trajectory X0:k = {x0,x1, ...,xk}.

• The set of control signals, U0:k = {u1,u2, ...,uk}.

• The set of landmark locations, m = {m1,m2, ...,mn}, constituting the map.

• The set of landmark observations, Z0:k = {z1, z2, ..., zk}.

In order to solve the SLAM problem in a probabilistic way, the joint posterior density of agent and landmark
location needs to be calculated in each time step, using the initial pose, x0, the set of control signals U0:k, and
the set of landmark observations Z0:k

P (xk,m|Z0:k,U0:k,x0). (2.21)

The probability of making a landmark observation, zk, given a known agent and landmark location is known
as the observation model and is described by

P (zk|xk,m). (2.22)

The vehicle motion model describes how the next state, xk, depends only on the preceding state xk−1 and
the control signal uk

P (xk|xk−1,uk), (2.23)

here assumed to be a Markov process.
Equation 2.21 can then be solved in a recursive fashion by alternating between a prediction (time-update)

step

P (xk,m|Z0:k−1,U0:k,x0) =

∫
P (xk|xk−1,uk)× P (xk−1,m|Z0:k−1,U0:k−1,x0) dx (2.24)
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and a correction (measurement-update) step

P (xk,m|Z0:k,U0:k,x0) =
P (zk|xk,m)P (xk,m|Z0:k−1,U0:k,x0)

P (zk|Z0:k−1,U0:k)
. (2.25)

2.3.2 Solution approaches

Different approaches to solving the SLAM problem involves different ways of representing the observation and
motion model, leading to different ways of calculating equation 2.24 and 2.25 [10].

There are primarily three main approaches which most SLAM solutions are based on:

• Extended Kalman filter (EKF) based methods

• Particle filter based methods

• Graph-based methods

In EKF SLAM, a single state vector and covariance matrix is used to represent the estimated agent and
landmark locations and the corresponding associated errors respectively. An extended Kalman filter is used
when updating the state vector and covariance matrix. EKF SLAM is computationally limited since the size of
the covariance matrix grows quadratically with the number of observed landmarks [35], clearly making it an
infeasible approach for performing visual SLAM where landmarks are constituted of a large number of image
features.

The particle filter based methods use particles for estimating the agent and landmark locations. A direct
implementation of particle filters for solving the SLAM problem is not computationally feasible due to the high
dimensionality of the state-space [10]. By instead using a Rao-Blackwellized particle filter, which is used in e.g.
FastSLAM [28], it is possible to solve the SLAM problem. FastSLAM relies on the fact that it is possible to
factorize the posterior according to:

P (X0:k,m|Z0:k,U0:k,x0) = P (m|X0:k,Z0:k)P (X0:k|Z0:k,U0:k,x0) (2.26)

where the the probability distribution is conditioned on the entire trajectory X0:k rather than the pose xk as
in equation 2.21. Each particle is associated with an individual map of the landmark locations. The landmarks
locations are updated assuming perfect agent pose estimates. Each particle thus corresponds to a different
vehicle trajectory hypothesis. By utilizing many particles, a probabilistic model of the agent location can be
achieved [10].

The graph-based methods can be thought of as nodes connected in a graph, where each node correspond
to agent or landmark locations. Arcs in the graph represent constraints between different agent poses, e.g.
from odometric readings, or between agent poses and landmark locations, from sensor readings. The graph
generated in graph-based SLAM is sparse meaning that relatively few connections exist between nodes. At
worst, the number of constraints between nodes is linear in elapsed time and the total number of nodes. The
sparse nature of the graph-based methods enables efficient solving of the SLAM problem using sparse nonlinear
optimization techniques. Compared to EKF SLAM, longer mapping sequences are possible since the memory
requirement of graph-based SLAM is a linear function of time [35].

Graph SLAM is usually divided into two parts, the front-end and the back-end. The former deals with
finding the constraints mentioned above in order to construct the graph. The front-end is thus highly dependent
on the type of sensors used. The back-end on the other hand optimizes the constructed graph and is sensor
independent [14].

2.3.3 RGB-D SLAM

One of the graph-based methods for solving the SLAM problem is RGB-D SLAM. It is a six degrees of freedom
SLAM system designed for use with RGB-D sensors such as Microsoft Kinect or ASUS Xtion Pro Live. A
schematic overview of the RGB-D SLAM system architecture is given in figure 2.7 and as other graph-based
SLAM methods it consists of a front-end and a back-end.
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Figure 2.7: The system architecture of RGB-D SLAM [11].

The RGB-D SLAM front-end takes RGB images and depth maps as input. In each time step, image features
are extracted from the RGB image and the detected keypoints are assigned a descriptor vector as well as
a 3D position from the depth map data. The features and their 3D position data are stored in a database
from which the features from the current image frame are matched against previous frames. Employing the
least squares method, the found correspondences are used to compute an estimate of the transform, which
describes the egomotion of the camera system compared to a previous frame [11]. RGB-D SLAM utilizes the
RANSAC method [13] to protect against outlier feature correspondences, which otherwise would have distorted
the transform.

By performing egomotion estimation sequentially over a series of frames, a process known as visual odometry,
a set of transforms is generated that describes the movement of the camera. The transforms are furthermore
verified using an environment measurement model (EMM), penalizing poses corresponding to improbable sensor
measurements. The EMM used is beam-based, meaning that motion transformations corresponding to depth
measurements that should have been occluded by other depth measurements are penalized.

True path
Estimated path
Found correspondence

Figure 2.8: Illustration of how loop closure reduces accumulated errors when correspondence is found to a
previous node.

14



When searching in the database for correspondences to the current frame’s features, the best matches do
not necessarily have to generate a transform to the most recently added nodes. If for instance the camera has
moved around the block in a city and revisits a location along the traveled path, the best match is likely found
in a much earlier node. This information can be used to perform loop closure, i.e. connecting the frontier
node to a much previous node and thereby correcting the trajectory between the nodes that are connected.
Loop closure is very efficient for correcting accumulated drifting errors in the visual odometry procedure, as is
illustrated in figure 2.8.

The set of transformations exits the front-end as pairwise connections of poses, constituting the constraint
arcs in the pose graph. Because of measurement noise, it is not a trivial task to create a consistent trajectory.
To form this trajectory, a global optimization of the graph is required. As is explained in section 2.3.2, this is the
task of the back-end [11]. The graph optimization is performed using the g2o framework [21], which produces
an optimal trajectory by minimizing an error function consisting of the constraints and their uncertainties.
The output is thus an optimized pose graph, which can be used to create a global map by projecting the stored
point clouds to the corresponding positions in the global map coordinate frame [11].

2.4 3D map representations

The map representation is of great importance in a successful map building application. It is necessary
to represent the map in a compact yet descriptive manner, so that longer mapping sessions do not yield
unmanageable file sizes. For navigation purposes, maps need to be efficiently searchable by allowing fast access
and queries, requiring an intelligent data structure.

The most direct way of representing 3D maps is probably a point cloud. Every measured point can simply
be described by its x-, y- and z-coordinate in 3D space, and there is thus no need for data discretization. Con-
sequently, the memory demands grows linearly with each sampled point, making it a highly memory consuming
map representation, especially for depth sensors with high frequency or spatial resolution. Furthermore, since
points have no extension in space, there is no direct method for distinguishing between free and occupied space.

The latter could be achieved by discretizing the points into a 3D voxel grid representation. If a point is
found within the bounds of a voxel (i.e. a cell in a cubic grid in 3D space), that voxel is set to occupied. If no
point is within the voxel, it is considered free. Although convenient and easily implemented, this could lead to
incorrectly occupied voxels caused by outliers or noisy sensor measurements, which is very probable when using
e.g. stereo cameras. Another major drawback with the voxel grid representation is that the entire extent of the
map has to be known when allocated and it is furthermore not very memory efficient [17].

A more compact representation is a 2.5D map, such as an elevation map. Elevation map data is stored
in a 2D grid, where each grid cell value corresponds to the average height of that cell. This could however
be problematic if vertical objects are to be represented, and when considering e.g. underpasses or bridges
where a cell is supposed to be free at a lower elevation but occupied further up. One solution would be to use
multi-level surface maps, which allows more than one surface level in each grid cell [36].

OctoMap

OctoMap is a 3D-map framework based on octrees, which is a tree data structure in which each node can be
divided into eight children. In the OctoMap framework, each node on a certain level correspond to a voxel with
a certain side length, so that each voxel can be subdivided into eight equally sized voxels until desired map
precision is obtained.

Figure 2.9: Left panel: An OctoMap with free space (green), occupied space (red) and unexplored space
(transparent). Right panel: The corresponding octree.
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OctoMap is a probabilistic map representation. Each voxel is assigned an occupancy probability, i.e. the
probability of a certain voxel being occupied given sensor measurements up until the current time. If this
probability is above a certain threshold, the voxel is considered as occupied, otherwise it is considered as free.
The probabilistic framework allows for the creation of accurate maps even when the measurements are noisy.
The probabilistic representation also has an innate means of removing outliers since solitary points likely will
not lead to a voxel being considered as occupied. Another consequence of this is that moving objects will only
be present in the OctoMap if they are static enough to be observed in the same location a sufficient number of
times.

By utilizing the OctoMap framework, it is possible to model occupied, free and unexplored areas. Furthermore,
it has the advantage of using high precision only where needed, making it very memory efficient. This property
is illustrated in figure 2.9 where two occupied voxels are shown in red. Instead of allocating memory for voxels
the same size as the smallest voxels, larger voxels can be used in uniform regions, reducing the total number of
voxels in the map and hence also reducing the memory required to store the map [17].
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3 Method and evaluation setup

An overview of the overall system architecture is shown in figure 3.1. First the cameras were calibrated
and geometrically related to each other resulting in a set of intrinsic and extrinsic parameters. Using these
parameters, the raw images taken from each of the four cameras were undistorted, rectified and cropped. This
resulted in three pairs of grayscale images between the main camera (number 0) and the other three cameras,
as well as an RGB image from the main camera. Using a correlation based block matching algorithm (SGBM)
three depth maps, relating the main camera to the other three cameras, were generated. The depth map from
cameras 0 and 1 was assigned as the main depth map, acting as a base for the merging with the other depth
maps. Using estimated geometric transformations between the main and the other two depth maps, a single
depth map was created, with the aim to cover a larger depth range than the individual depth maps. The
merged depth map was sent together with the main camera RGB image to the RGB-D SLAM application,
which generated an estimate of the pose trajectory and an OctoMap of the environment.
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Figure 3.1: Overview of system architecture.

3.1 Hardware construction

A camera rig with four vertically aligned cameras was constructed. The casing of the camera rig, shown in
figure 3.2, was milled from a solid block of aluminum. This made the entire structure rigid and hence not prone
to flexing meaning that the extrinsic camera parameters were not subject to change. The aluminum casing of
the camera rig also ensured that the heat dissipated from the cameras was evenly distributed over the entire
rig, ensuring no overheating of the cameras. The main camera was paired with the other three cameras (see
figure 3.5), providing three camera pairs with a baseline of 11, 19 and 30 cm respectively. The focal length of
the lenses could be manually set in the range 3.3-12 mm, but since all stereo pairs shared the main camera
they all had to be set to approximately the same length. Unfortunately, this means that the long and short
range pairs have to be focused on the same distance.
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Figure 3.2: A rendered 3D model of the aluminum casing of the stereo camera rig.

The cameras used were 2 megapixel network cameras from Arecont Vision, model AV2116DNv1, although
cropping and downsampling was performed internally so that the output images had a resolution of 960x464
pixels. The AV2116DNv1 cameras have global shutters, as opposed to the alternative rolling shutters. With a
rolling shutter camera, the image sensor is exposed to light in a rolling fashion causing each row of the image
sensor to collect the same amount of light but in slightly shifted time windows. This leads to geometric image
distortions if the camera is moved relatively to the scene during image capture. With a global shutter camera
however, the entire image sensor is exposed to light at the same time [23]. Maximum framerate of the cameras
was 30 FPS, although the shutters were not synchronized. The lack of synchronization between the cameras
could in worst case cause a timing error of 1

60 s between corresponding frames in two cameras. Assuming an
agent speed of 10 m/s, the environment will in the worst case move approximately 0.17 m likely reducing the
quality of the resulting depth map.

The aluminum casings of the cameras were removed in order to mount them in the camera rig. The four
cameras were internally connected to a 5-port D-Link Gigabit DGS-1005D network switch, which enabled data
transfer over Ethernet in a single cable. The camera rig also contained a voltage regulator allowing a single
power source to be used for the cameras and the network switch. Power and data cables were then joined in a
single 8-connector output contact. The finalized camera system can be seen in figure 3.3. The software was
implemented on a platform with a 5.0 GHz 8-core processor and 32GB 2133MHz RAM.

(a) Front view

(b) Back view

Figure 3.3: The camera rig with four network cameras and joint data and power 8-connector contact visible.
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3.2 Camera calibration and parameter estimation

The estimation of the intrinsic and extrinsic camera parameters was performed using an asymmetric checkerboard,
ensuring an unambiguous orientation determination of the checkerboard. The checkerboard was translated
and rotated in between the different views in order to estimate all parameters with sufficient accuracy. By
reprojecting the positions of the checkerboard corners with the suggested calibration model and observing the
RMS of the reprojection errors, a metric of the accuracy of the calibration result was achieved. If the RMS was
higher than a threshold of 0.3 pixels, the calibration of the camera or camera pair was considered unsuccessful
and therefore redone.

Two different types of calibrations were performed; single camera (once for each camera) and stereo
calibration (once for each camera pair). During single camera calibration, the main objective was to obtain an
accurate estimate of the lens distortions. It was observed that when the calibration pattern was translated such
that all parts of the image had at least once been covered by the calibration pattern, the most accurate lens
distortion parameter estimates were obtained. The stereo calibration was instead aimed at finding an accurate
estimate of the geometric transformation between the cameras rather than finding accurate estimates of the
lens distortions of the individual cameras. It was discovered that observing the calibration pattern at different
angles and distances was more important than observing the calibration pattern at all parts of the image in
order to obtain an accurate estimate of how the cameras were geometrically related to each other.

3.3 Stereo vision

In order to create an accurate depth map, the steps depicted in figure 3.4 had to be performed. First, the
raw images from the cameras, (a) and (b), were undistorted and rectified in order to successfully be able to
compare the images. This included finding values for the distortion coefficients k1, k2, p1, p2 and k3 as well
as estimating the geometric transformation relating the cameras in each camera pair. The undistortion and
rectification process will generate invalid pixels, seen as black regions along the edges in (c) and (d). The ROI
within each rectified image was selected as the largest rectangle containing only valid pixels. Each image was
then cropped to remove invalid pixels, by omitting the regions outside the union of the individual ROIs, giving
(e) and (f). Using the semi-global block matching algorithm, SGBM, a disparity map of the surroundings was
generated (g). SGBM is the OpenCV implementation of the SGM method described in section 2.1.4, and is
largely equivalent except for some pre- and post-processing steps and that correlation is computed on blocks of
pixels rather than single pixels [29]. By using the relation between disparity and depth described in equation
2.10, the corresponding depth map was computed (h).

(a) Raw left (b) Raw right (c) Undistorted & rectified left (d) Undistorted & rectified right

(e) Cropped left (f) Cropped right (g) Disparity map (h) Depth map

Figure 3.4: Example of the most important steps in the stereo vision process. The raw images from the left (a)
and right (b) camera are undistorted and rectified (c, d), and cropped (e, f). A correlation based block matching
algorithm is then used on the cropped images to calculate a disparity map (g) which can be reprojected to a
depth map (h).
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3.4 Depth map merging

Pairing the cameras as in figure 3.5 gave three stereo camera pairs with different baselines, all sharing the
leftmost camera (number 0). The procedure described in section 3.3 was performed once for each camera
pair to produce three rectified RGB-images and their three associated depth maps. The RGB-images were
thus actually captured with the same camera and the corresponding depth maps depicted the same view,
although with different depth ranges depending on the baseline of the camera pair. Due to differences in the
camera calibration of each stereo pair, a joint depth map could not be achieved by simply overlaying the depth
maps. However, since the three depth maps are related spatially the same way as the three RGB-images,
finding a geometrical transformation which relates the RGB-image enables depth map overlaying if the same
transformation is first applied to the depth images.

0 1 2 3

Pair 1
Pair 2

Pair 3
Figure 3.5: The leftmost camera was selected as the main camera, which was the left camera in each stereo pair.

This geometrical transform was approximated as a perspective transform. A perspective transform P
transforms a point (x, y) into (x′, y′) according to

P =

a1 a2 t1

a3 a4 t2

p1 p2 1

 x′ =
a1x+ a2y + t1
p1x+ p2y + 1

y′ =
a3x+ a4y + t2
p1x+ p2y + 1

(3.1)

where a1, a2, a3 and a4 describes the scaling, rotation and skewing, t1 and t2 describes the translation and p1
and p2 describes the perspective projection. In order to calculate the eight parameters of P in equation 3.1,
four or more pairs of corresponding points (xi, yi) and (x′i, y

′
i) are needed [18].

To find these four pairs of corresponding points, SURF-keypoints were detected in the rectified and
undistorted RGB-images. Each keypoint was assigned a descriptor and the descriptors were matched between
the images. In one of the images, the keypoint in each quadrant with the shortest distance in descriptor space
to the corresponding keypoint in the other image was selected, together with the corresponding points in the
other image.

The calculated perspective transforms were then applied to the depth maps, resulting in three depth maps
D1(x, y), D2(x, y) and D3(x, y) from camera pair 1, 2 and 3 respectively. For all x and y, these images either
has a depth value in millimeters or 0 if there is no depth available. Depth could be missing for mainly two
reasons; either because the calculated depth was outside the optimal range of the camera pair or because of
stereo correspondence occlusions. The merged depth image Dm(x, y) was then assigned with highest priority
for the depth data from the camera pairs with shorter baseline as is described in algorithm 1.

foreach x,y do
if D1(x, y) 6= 0 then

Dm(x, y) := D1(x, y);
else

if D2(x, y) 6= 0 then
Dm(x, y) := D2(x, y);

else
Dm(x, y) := D3(x, y);

end

end

end
Algorithm 1: Procedure for merging three depth maps.
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3.5 Visual SLAM

RGB-D data, consisting of a merged depth map, the corresponding RGB-image and complimentary camera
parameters was passed as ROS messages (see section 3.6) at a rate of approximately 1-3 Hz to RGB-D SLAM.
From the RGB image, features were extracted using one of the combinations of detectors and descriptors
presented in table 3.1 and assigned depth data from the depth map. The pose was computed frame by frame in
the front-end and the entire pose trajectory was continuously optimized in the back-end. For each frame, an
OctoMap was incrementally built from the pose and the corresponding point cloud either online or offline.

Using the online approach, the points were added to the OctoMap grid in real time. Besides being more
computationally expensive, this approach has the disadvantage that once the frame has been added to the
OctoMap, a retroactive change of the map is not possible. Optimizations of the pose trajectory, such as those
occurring at loop closures, will therefore only affect the current pose and not correct the location of the point
clouds that has already been projected to the OctoMap. After the frame has been added, the corresponding
point cloud can be cleared to free memory.

If instead the offline approach was used, the OctoMap was constructed after the mapping session was
finished using the optimized pose trajectory and the set of stored point clouds. This will generate a more
accurate OctoMap, especially if loop closure has occured, but storing the point clouds for each frame will for
obvious reasons require an extensive amount of memory.

3.6 Implementation

The entire system was implemented in C++ as executables (nodes) using the ROS framework. ROS, Robot
Operating System, is a collection of libraries and tools aimed at simplifying the process of creating robot
applications. It is an open source, pseudo-operating system which provides features such as hardware abstraction,
visualization tools and message-passing functionality. Recorded data can be stored as so-called bag files, allowing
for offline data evaluation and simulation [26]. There are also a large number of third party packages available,
such as the RGB-D SLAM package or support for relating different robot link coordinate frames through a
system of transformations.

The computer vision-related tasks (including e.g. feature extraction and stereo correspondence) in the ROS
nodes and the evaluation executables were implemented with the help of the OpenCV library, an open source
library written in C and C++. Furthermore was MATLAB R2014b with the Computer Vision Toolbox used
for rapid prototyping and data analysis.

3.7 Evaluation setup

As the objective of this thesis is to construct a system, the primary result is an evaluation of how well this
system and its submodules perform on their respective tasks. Thus, a series of evaluations were performed and
the experiment setups are explained below.

3.7.1 Depth estimation

The depth reconstruction accuracy was evaluated by comparing the distance given by the depth maps from each
of the three camera pairs with a known ground truth distance determined by a high precision laser rangefinder.
Distance was measured to a planar and texture rich target, which was placed perpendicular to the camera
planes. Measurements were collected at discrete distances, ranging from 1-20 meters from the target. For
each camera pair and distance, ten measurements were collected. Each measurement consisted of the mean of
nine quadratically positioned measured points which in turn consisted of the mean intensity (distance) of a
10× 10-pixel patch in the depth map, as illustrated in figure 3.6. Since a zero indicates that either the target is
out of range or that no correspondence was found for that pixel, only non-zero values were considered.
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Figure 3.6: Schematic view of one distance measurement, with nine patches each consisting of 10× 10 pixels.

3.7.2 Feature extraction algorithms

In order to find a suitable setup for the SLAM frontend, 14 different combinations of feature detectors and
extractors were evaluated with the objective to find a suitable combination in some key aspects; rotation-, scale-
and illumination invariance as well as computational speed. The OpenCV implementation of the algorithms
were used, unfortunately ruling out the use of BRISK as feature detector since this is defective in OpenCV 2.4.6.
The used feature detectors were SIFT, SURF and ORB, whereas SIFT, SURF, ORB, BRISK and FREAK were
used for extracting the descriptors. SIFT as detector and ORB as descriptor turned out to be an incompatible
combination and was thus removed from the experiments.

Table 3.1: Overview of the 14 evaluated combinations of feature detectors and extractors.

ID Detector Descriptor Distance measure
1 SIFT SIFT Euclidean
2 SIFT SURF Euclidean
3 SIFT BRISK Hamming
4 SIFT FREAK Hamming
5 SURF SIFT Euclidean
6 SURF SURF Euclidean
7 SURF ORB Hamming
8 SURF BRISK Hamming
9 SURF FREAK Hamming
10 ORB SIFT Euclidean
11 ORB SURF Euclidean
12 ORB ORB Hamming
13 ORB BRISK Hamming
14 ORB FREAK Hamming

The evaluation was conducted in the following way: First, a training image portraying a feature-rich scene
was taken with the left inner camera. From this training image, the features for the training set were extracted
using one of the 14 detector-/extractor combination, specified in table 3.1. Query images were then created
by rotating, scaling or adjusting the intensity in the training image, as illustrated in figure 3.7. Rotation was
performed in the range 0-180 degrees, scaling between 50-150 % and intensity was increased between 0-50 %.
The keypoint locations in the training set were then geometrically transformed (in case of rotation or scaling)
the same way as the training image to produce a ground truth reference for the query set. This query set
of features was created by utilizing the same detector-/extractor- combination as when the training set was
created.
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(a) Training image (b) Scaling (c) Rotation (d) Illumination

Figure 3.7: The training image (a) and examples of the three different distortions used to create the query
images. The distortions are (b) scaling to 70 % of the original size, (c) rotation by 36 degrees and (d) intensity
increased by 10 % to simulate varying illumination conditions.

A bruteforce matching was then performed, where each keypoint in the query set was assigned a best match
by comparing them to every keypoint in the training set. If the location of the query set keypoint was within
3.0 pixels from the actual location of its believed match, it was considered to be a correct match. Since feature
redundancy is beneficial to the visual odometry, the absolute number of correct matches was equally important
to determine as the percentage of correct matches. Furthermore, the computational time was measured by
dividing the processing time for the detection, extraction and matching by the number of found keypoints when
running on a dual core, 2.5 GHz Intel Core i5 processor.

Figure 3.8: Illustration of the keypoint matches to the training image for a scaled query image. A few obvious
incorrect matches can be seen in the upper left quadrant of the query image as well as in the upper right corner.

3.7.3 Benchmarking the SLAM system

To determine the optimal configuration of the constructed SLAM system, it is necessary to have a performance
metric for the entire system. Sturm et al. have proposed a methodology and provided a dataset for benchmarking
3D SLAM applications with RGB-D data input [34]. For a number of reasons, primarily related to the fact that
we provide our own data from the stereo camera system, this was not possible to implement. However, their
evaluation metrics were used as an inspirational source when designing our methods, which are described below.

When benchmarking the output of a SLAM application against a ground truth sequence, there are two
main approaches as there are primarily two types of output; a map from the mapping task and an estimated
trajectory from the localization task. If the generated 3D map is subject to evaluation, it could for instance be
projected on to a 2D plan of the mapped surroundings. Although there are automated tools for doing this,
map errors are often simply determined upon visual inspection.

Sturm et al. instead advocates a method where the estimated trajectory is compared to a precise ground
truth sequence. They determine this sequence by monitoring the camera pose with motion capture technology
and a set of high speed cameras. As such a system could not be utilized in this project, we had no access to a
proper ground truth sequence. This was solved by mounting the camera rig on a trolley and pushing it along a
known rectangular course, closely following marked lines in the floor. Since the geometry and extension of
these lines could be determined with a high precision laser range finder and the trolley was always moved in
a horizontal plane, it is possible to describe the translational component of the ground truth trajectory. We
also took advantage of the horizontal movement by assuming that the vertical axis of the true trajectory was
always parallel with the z-axis. We thus have a primitive ground truth sequence where five of the six degrees of
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freedom (x-, y- and z-position as well as roll and pitch) are known and only the yaw is uncertain. Since the
map is registered from the optimized poses in the estimated trajectory, the accuracy of the trajectory estimate
is also a measure of how accurate the map will be.

Figure 3.9: Experiment setup for the evaluation of the SLAM system.

Furthermore, a number of obstacles were placed on both sides of the course to allow for more visual features
to be found. The entire experiment setup, including the course, the obstacles and the trolley with the camera
system, is shown in figure 3.9. The processed stereo output, i.e. a merged depth map and an RGB image, was
recorded as ROS bagfiles for offline execution of the SLAM application. Four different sequences were recorded,
one with camera pairs 1 and 3, one with all three pairs and two with pair 1 and pair 3 alone.

The bagfiles were processed offline with RGB-D SLAM and a (post-optimization) trajectory array was
exported, including a timestamp and the camera pose for each added node. The estimated trajectory was then
rotated 3.5◦ around the z-axis and −14.0◦ around the y-axis to compensate for that the camera was tilted the
corresponding amount during the test.

The data was then analyzed in four primary categories; translational error, angular error, lost frames and
memory usage.

• The translational error was calculated as the shortest distance between each estimated position and the
ground truth course.

• Angular error was the 3D angular deviation (in degrees) between each estimated z-axis orientation and a
vertical unit vector.

• Lost frames was determined by comparing how many nodes that were added to the pose graph with the
total number of recorded depth map frames.

• The amount of free memory was monitored once every second while only running the RGB-D SLAM
application. The decrease of free memory during execution gave an indication of the memory usage for
different types of feature extraction configurations.
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4 Results and discussion

4.1 Depth estimation

The results from the evaluation of the depth reconstruction are largely in accordance with the expectations.
Due to the inversely proportional relationship between distance and disparity as described in section 2.1.5,
the camera pair with the widest baseline will have an advantage in long-range depth resolution over the pairs
where the cameras are closer together. As can be seen in figure 4.1, camera pair 3 generally has the smallest
error fluctuation in the distance readings. As the distance to the target increases, the two camera pairs the
narrower baseline struggles to give consistent readings, whereas the third camera pair more closely follows the
linear trend and has a lower standard deviation of the error for longer distances.
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Figure 4.1: Mean deviation from ground truth distance for the three different camera pairs with baseline of 110,
190 and 300 mm respectively at 1-20 meters distance from the measured object. The horizontal bars above and
below each mean data point correspond to one standard deviation.

In the other end of the trade-off between wide and narrow baselines, pair 2 and 3 fail to return a depth
estimation for the shortest distances, suggested by the missing 1.0-meter measurements in figure 4.2. This
is due to the fact that close range disparity is too large when a wider baseline is utilized, and the stereo
correspondence algorithm thus fails to find a suitable match below the specified maximum disparity. If the
maximum disparity was to be set higher, matching would be more computationally expensive.

Although more precise for most distances, camera pair 3 is not necessarily the best choice at all times.
Apart from the problem with surpassing the maximum disparity at short distances, other factors also impact
the choice of camera pair. The field of view is smaller for camera pairs with wider baseline making the use
of camera pairs with short baseline desirable. There will also be more occlusions at short range increasing
the portion of the depth map where depth cannot be determined. The stereo correspondence problem will
furthermore be more difficult as similarity decreases even for correctly matched image regions since the views
are more different with a wider baseline.

Furthermore, it can be noticed that the depth estimations from all three camera pairs deviate from the
ground truth and exhibit a drifting behavior, possibly due to the fact that the camera planes are not parallel
and coinciding with the face of the camera rig from which the ground truth distance was measured. As is
suggested by the least squares approximations shown as dashed lines in figure 4.2, the error drift can be
relatively well approximated by linear functions. This indicates that it is possible to compensate for deviation
from the true depth by subtracting this linear trend from the raw readings. Hence is a small error variability of
higher importance than a small absolute error.
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Figure 4.2: Mean error for shorter distances, with an approximated linear trend plotted with a dashed line for
each camera pair.

In conclusion, it is reasonable to use camera pair 1 on short range and then use camera pair 3 on medium
and long range. The results also suggest that the second camera pair should not be used, at least with the
current camera calibration. This camera pair is outperformed by the narrow pair on close distance and by the
wide pair on long distance, and we fail to find a suitable interval on medium range where the second pair is
needed. As it is a computationally very costly operation to perform stereo correspondence and depth map
merging with an additional camera pair, it is our belief that any possible minor gains in accuracy do not
motivate the drastic increase in computational time.

4.2 Feature extraction algorithms

The total processing time per keypoint for each evaluated detector and descriptor combination is shown in
figure 4.3. The processing time is an average of the duration of feature detection, description and matching for
both differently scaled, rotated and illuminated images.

Clearly, four combinations are substantially slower relative to the others; SURF/SIFT, ORB/SIFT,
ORB/SURF and ORB/FREAK. Using a binary detector compared to a vector-based detector produces
much fewer keypoints as is seen in table 4.1. Few detected keypoints in combination with relatively slow
extraction time makes ORB/SIFT, ORB/SURF and ORB/FREAK poor detector/extractor pairs, since a
high number of keypoints is required to accurately relate the poses between consecutive frames in a SLAM
application.

Table 4.1: Total number of found keypoints in the undistorted training image for all combinations of detectors
and descriptors. The feature extractors are abbreviated as follows: SI (SIFT), SU (SURF), O (ORB), B
(BRISK) and F (FREAK).

Extractor pair SI/SI SI/SU SI/B SI/F SU/SI SU/SU SU/O
Found keypoints 1924 1924 1716 1504 6440 6440 5670

Extractor pair SU/B SU/F O/SI O/SU O/O O/B O/F
Found keypoints 5288 3557 500 500 500 254 26
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Figure 4.3: Average computational time per matched keypoint for detection, description and matching with
rotated, scaled or increased illumination in the query images.

When examining processing times only with rotated images, as is illustrated in figure 4.4, it is noticeable
that regardless of whether SIFT, SURF or ORB is used as detector, SIFT is always slowest for description and
matching. This finding is in line with the expected results, since the calculation of the histogram of oriented
gradients in the SIFT-descriptor is known to be a very time consuming process. A more surprising finding
however, was that the matching was not significantly faster when binary features were utilized instead of the
vector-based features SIFT and SURF. The binary features are evidently faster than SIFT and SURF, but the
most noticeable time gains are instead related to a shorter description time for the former feature type rather
than a quick matching.
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Figure 4.4: Average computational time per matched keypoint for detection, description and matching with
rotated query images.

As the bruteforce matching compares a keypoint in the query image to every keypoint in the training image,
the matching time does not increase linearly with the number of keypoints as the detection or description time
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does. Matching time per keypoint is thus not a very accurate metric when the number of found keypoints is not
approximately equal. For that reason, comparing the matching time for SURF/SURF with e.g. ORB/BRISK
is not very fair, since the former matches 12 times more keypoints. However, if the same detector is used, the
results give an indication if matching is done efficiently since approximately the same number of keypoints are
generated.

Another negative aspect of the bruteforce matching approach is that every query image keypoint has to be
matched to a training image counterpart, regardless if such a keypoint counterpart exists or not. There is thus a
risk that a correct match for a query image keypoint is already occupied by an incorrect match, if the incorrect
match did not find a better correspondence. This is not not how it is done in RGB-D SLAM, where instead
only features that are similar enough according to the comparison metric are considered matches. However, we
are also interested in finding feature detectors that have a high degree of repeatability - i.e. they detect the
same keypoint if the same scene is reobserved. If the detector repeatability is sufficiently high, correct matches
being occupied by incorrect ones is less of a problem.

When analyzing robustness regarding change in rotation, scaling and illumination, the four slowest extractor
pairs from figure 4.3 were eliminated from further evaluation. The effect of rotation distortion is shown in
figure 4.5. For most extractor pairs, the ratio of correct matches is periodic with peaks in 90◦ intervals. This is
quite natural, since orientation normalization is most accurate around these peaks due to the horizontal-vertical
geometry of a 2D image. However, for some extractor pairs, matching is less correct at exactly 0◦ and 90◦

when the conditions are presumably ideal. This is likely due to numerical imprecision of the rotation matrix
and the inverse transformation utilized to rotate the query image. The same tendencies are observed when
scaling the image by a factor 1, as seen in figure 4.6.

Some extractor pairs stand out: SIFT/SIFT and SIFT/BRISK are remarkably robust against rotation
whereas SURF/SURF and especially SIFT/SURF are remarkably sensitive to rotation. It should be noted that
extractor pairs that use SURF as descriptor exhibited the worst performance, whereas using BRISK resulted in
the best performance. Furthermore are the SIFT/SURF (and also SIFT/FREAK) combinations deviating from
the periodic pattern, by performing gradually worse as rotation is increased. As they so drastically differ from
the behaviour of other extractor pairs, their sub-par performance is likely related to implementation issues.
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Figure 4.5: Ratio of correct matches with rotated query images.

Changing the scale of the query image less than approximately ±15% leads to a performance decline of
similar rate for all extractor pairs, as is illustrated in figure 4.6. SIFT/SIFT and SIFT/BRISK turns out to be
the most correct and robust extraction pairs, although the latter has a tendency to yield incorrect matches when
the query image is heavily scaled. Once again is the SURF/SURF pair not performing as well as its competitors,
and extractor pairs using SURF as descriptor exhibits the worst performance up until approximately ±20%
scaling. This is especially the case for the SIFT/SURF combination.
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Figure 4.6: Ratio of correct matches with scaled query images.

The illumination experiment, where the intensity of the query image was altered, did not suggest any
significant difference between the different extractor pairs as is shown in figure 4.7. The most prominent
exceptions from this statement are that SIFT/SURF once again appears to struggle more than other extractors
and that SURF/FREAK is slightly more robust under the specified conditions.
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Figure 4.7: Ratio of correct matches with gradually more illuminated query images.

In conclusion, our experiments reinforce the widely accepted depiction of SIFT as a very robust but also
slow feature extractor. We have furthermore seen that the binary features are extremely fast, but the low
number of detected keypoints might have implications for the SLAM front-end. SURF has shown to be a
wiser choice for a detector, since it generates the most number of keypoints by far. Using SURF for feature
description is not ideal, as its scaling and rotation invariance is not as impressive as its competitors. However,
combining SIFT or SURF detectors with BRISK as descriptor could be an interesting approach for a visual
SLAM application, since it preserves the high robustness and plentitude of features from the vector-based
features but adds the faster extraction and lower memory usage from the binary features.
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4.3 Trajectory estimation

The first evaluation was performed to decide which combinations of camera pairs that were most suitable for
the SLAM application. The same SLAM configuration was used for all four pair combinations and the result is
summarized in table 4.2.

Table 4.2: Key result parameters of trajectory estimation when evaluating camera pairs.

Camera pair Pair 1 Pair 3 Pair 1 & 3 Pair 1, 2 & 3
RMS of translational error 0.4739 m 1.1141 m 0.6008 m 0.3318 m
Added frames 91.52% 87.22% 99.64% 99.34%
Mean angular deviation 11.11◦ 17.80◦ 10.95◦ 11.01◦

There is no doubt that there is a correlation between the accuracy of the trajectory estimate and which
camera pairs that were used or merged. For instance, camera pair 3 performs significantly worse than the other
camera pair combinations. The position error is larger, the heading is more inaccurate and fewer frames are
added than with any other combination. This is exemplified further in figure 4.8, where the estimated position
of the cameras is shown when only the third camera pair is used. A more successful example is shown in figure
4.9, where depth images from camera pairs 1, 2 and 3 was merged into one depth map.
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Figure 4.8: Example of an unsuccessful localization using camera pair 3. The figure shows the estimated
trajectory, the ground truth course and the deviation between the estimate and the closest ground truth segment.
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Figure 4.9: Example of a more accurate localization than in figure 4.8, using camera pair 1, 2 and 3.
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Since the majority of the objects were relatively close to the camera pairs, camera pairs with poor depth
accuracy at close range (such as pair 3) suffered in this test, explaining the vast difference in performance
between these two camera pair combinations. If no depth is estimated for a feature close to the camera, the
feature can not be added to the constraints for that node. If too few features are added so that the inlier
threshold is not exceeded when matching the frame against other nodes, the entire frame will be ignored and
the node is not added to the graph. It is also more difficult to estimate ego-motion if many features or nodes
are ignored, explaining the large RMS of the translational error and the inaccurate heading estimate for camera
pair 3.
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Figure 4.10: The translational error between the estimated and true position at each time step for different
camera pair combinations.

The deviation between the true and estimated position using different camera pair combinations is shown
in figure 4.10. As mentioned above, it is clear that camera pair 3 performs worse than the other camera pair
combinations. It is furthermore suggested that the combination of camera pair 1, 2 and 3 outperforms the
other camera pair combinations since it has the smallest area under the curve and also the smallest maximum
error of approximately 75 cm.
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Figure 4.11: The orientation of the camera frame when moving in the same path as in figure 4.9 using all four
cameras.
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When building a 3D map, a good position estimate is not sufficient though. The orientation estimate is of
equal or greater importance, since this controls how each point cloud is registered in each node of the graph.
To illustrate how the orientation of the cameras is estimated when using all three camera pairs, a set of axes
representing the coordinate axis orientation of the camera frame is plotted in figure 4.11. It can be observed
that the blue z-axis is vertical or close to vertical for most of the time, which indicates an accurate orientation
estimation. This indication is however not sufficient as sole quality metric, since the error of the heading in the
xy-plane was not analyzed.

The deviation between the true and estimated heading using different camera pair combinations is shown in
figure 4.12. It is worth noting that at approximately the same position (at the third turn, at approximately 110
seconds) all camera pair combinations experience a drastic increase in angular error leading. This might have
to do with a lack of visual features at said location in combination with a large change in heading. The errors
of all evaluated camera pairs are similar, except for camera pair 3 which has a large persisting angular error up
until approximately 200 seconds.
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Figure 4.12: The angular error between the estimated and true heading at each time step for different camera
pair combinations.

While executing the evaluations of the SLAM system, an important discovery was made regarding the use
of multiple camera pairs. The frame rate of the depth maps was found to be inversely proportional to the
number of camera pairs used. Using one, two or three camera pairs gave a frame rate of approximately 3, 1.5
and 1 FPS respectively. This result is in line with our expectations since the processing of the images and
creation of the depth maps was found to be the bottle neck in the system, and hence doubling or tripling the
number of depth maps generated will lead to a decrease in frame rate of the same magnitude.

Although not affecting the results when the cameras are manually pushed around an indoor course, a
low frame rate might be troublesome when the camera system is implemented in a fast-moving vehicle. It is
therefore necessary to thoroughly evaluate the performance in a real vehicle before making the claim that a
multi-camera system is always better than a single camera pair. This is however beyond the scope of this thesis.

The second part of this trajectory estimation evaluation concerns another central theme in the visual SLAM
process; the choice of feature extraction method. The five most promising combinations from the experiments
described in section 4.2 were used on the test data recorded with camera pair 1. The key results are summarized
in table 4.3. The most striking result illustrated here is probably that ORB/ORB has slightly smaller mean
angular deviation of the z-axis, but performs substantially worse considering the other two quality metrics.
There is otherwise no significant difference between the results generated with the SIFT descriptor and those
where the binary descriptor BRISK is used. In particular the combinations where SIFT or SURF detectors are
paired with BRISK descriptors proves to be very robust.
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Table 4.3: Key result parameters of trajectory estimation when evaluating feature extraction configurations
using camera pair 1.

Feature detector/descriptor SU/B SI/SI SI/B O/O O/B
RMS of translational error 0.4711 0.4479 0.5082 0.8729 0.5052
Mean angular deviation 10.99◦ 11.03◦ 11.63◦ 10.68◦ 12.59◦

Added frames 91.84% 91.37% 95.92% 76.45% 90.27%

The total memory usage and the memory usage per added frame is shown in figure 4.13a and 4.13b
respectively for five different extractor pairs. Comparing figure 4.13a with the bottom row in table 4.3, it is
clear that the final memory usage is largely dependent on the number of added nodes. It is thus evident that a
large portion of the total memory used by RGB-D SLAM is allocated to storing the depth (cloud) data for
each node, to such an extent that the choice of feature descriptor is more or less completely overshadowed.
By dividing the total memory allocation with the number of added nodes (which is done with the data in
figure 4.13b) we see that extractor pairs with binary descriptors has a lower memory usage compared to the
vector-based extractor pair SIFT/SIFT. This confirms that the binary features are indeed more compact than
the vector-based features, as was discussed in section 2.2.2.
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Figure 4.13: The increased memory usage when running RGB-D SLAM with different extractor pairs. The
binary feature descriptors are equally compact, but more efficient than the SIFT descriptor when considering
that more nodes were added.
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5 Conclusions and future work

In this report, we present a complete quadnocular stereo vision system for real time visual localization and
mapping of a moving vehicle. Our contributions include hardware and system architecture design, software
implementation using open source libraries as well as an evaluation of the system’s performance. More
specifically, the system computes depth as well as performs SLAM using only the visual information provided
by the cameras, all in real time, as was stated in the objective of the thesis.

The objective was furthermore to find a suitable system configuration by evaluating how various system
parameters influenced the quality of the output. One such parameter was the camera pair setup. The goal
was to take advantage of the established correlation between wider baseline and better depth resolution at
long range (and vice versa). We showed that this could be handled by utilizing a multi-baseline camera setup,
however at the price of drastically reducing the frame rate of the depth map computation with each extra
camera pair. A possible way to balance this trade off is to use only two camera pairs, although the smallest
translational error was observed when all three camera pairs contributed to the depth map.

We have furthermore seen that the examined binary feature extraction algorithms, with a few exceptions, are
faster and more memory efficient than the vector based without compromising with the robustness. However,
the binary feature detector ORB generally generates fewer keypoints than SIFT or SURF which could cause
problems for the egomotion estimation, especially when ORB is also used as descriptor. From our experiments
we can therefore conclude that combining a vector-based detector with a binary descriptor is the most promising
configuration.

Given certain controlled conditions, primarily traveling at low speeds in a feature rich environment, the
proposed system is indeed a working proof-of-concept prototype. However, when implemented in a commercial
vehicle, no such demands can be made regarding the conditions under which the vehicle operates. The vehicle
must be able to move with a decent velocity and the localization system shall not fail if areas with plain texture
or repetitive features constitute a large part of the camera’s field of view. Furthermore is the achieved accuracy
even under optimal conditions probably not precise enough for some purposes, as localization errors up to 50
centimeters were commonly observed. We therefore suggest a set of improvements to increase the robustness
and precision of the system which can be used as guidelines for future work in this area.

What first and foremost dictates the maximum speed of the vehicle is if stereo images can be captured
simultaneously and if depth maps can be generated at a high rate. If that is not the case, camera motion
will lead to corrupt depth maps, incorrect 3D coordinates of the image keypoints and too large movement of
keypoints between consecutive frames which will make the egomotion estimation difficult or even impossible.
The use of synchronized cameras is a rather simple solution that likely will improve the quality of the resulting
depth maps for a moving camera system. It would furthermore be interesting to investigate how parallel
computing or utilization of GPU-based methods could accelerate the image processing tasks and thereby
increase the frame rate. It might also be worthwhile to investigate for instance the effect of subsampling the
point clouds for increased speed.

The use of the same camera both in a short range and long range camera pair was found to be problematic
due to conflicting desired camera focal length. An area worth investigating would therefore be possible ways of
improving the perspective transform approximation in the depth map merging, or perhaps merge the depth
information from separate camera pairs using a completely different method.

Although the accuracy of the mapping and the localization will probably benefit from the measures above or
from investing in high-precision hardware such as lenses with less distortion, it is in the end probably necessary
to rely on more than visual information to achieve localization which is useful in an autonomous vehicle. We
therefore believe that utilizing sensor fusion techniques to combine the visual odometry from stereo vision with
other data sources such as wheel sensors, IMUs or satellite positioning systems is the right course of action for
future development.
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