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Aspect-Based Sentiment Analysis Using The Pre-trained Language Model BERT
MICKEL HOANG
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Abstract

Sentiment analysis has become popular in both research and business due to the
increasing amount of opinionated text generated by Internet users. Sentiment anal-
ysis focuses on classifying the overall sentiment of a text, which may not include
important information such as different sentiment associated to specific aspects in
the text. The more complex task of identifying the sentiment of certain aspects in
a text is known as Aspect-Based sentiment analysis (ABSA). This paper show the
potential of using the contextual word representations from pre-training language
models to solve out-of-domain ABSA by constructing a generic ABSA model using
BERT, together with the method of fine-tuning the model to make it learn when
aspects are related or unrelated to a text. To our knowledge, no other existing work
has been done on out-of-domain ABSA for aspect classification.

Keywords: Pre-training, science, computer science, engineering, thesis, natural lan-
guage processing, Deep learning, contextual word representation, Aspect-based sen-
timent analysis, BERT.
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1

Introduction

Sentiment analysis, also known as opinion mining, is a field within Natural Language
Processing (NLP) that consists in automatically identifying the sentiment of a text,
often in categories like negative, neutral and positive. It has become recently popular
in both research and business due to the large and increasing amount of opinionated
text from Internet users, such as social media platforms and reviews [1]. Knowing
how users feel or think about a certain brand, product, idea or topic is a valuable
source of information for companies, organizations and researchers, but it can be a
challenging task. Natural language often contains ambiguity and figurative expres-
sions that make the automated extraction of information in general very challenging.

Traditional sentiment analysis focuses on classifying the overall sentiment of a text
without specifying what the sentiment is about. This may not be enough if the text is
simultaneously referring to different topics or entities (also known as aspects), possi-
bly expressing different sentiments towards different aspects. Identifying sentiments
associated to specific aspects in a text is a more complex task known as aspect-based
sentiment analysis (ABSA). ABSA has been a research topic that gained traction
during SemEval-2014 Workshop [2], where it was first introduced as Task 4. The
task was, given a text about restaurants or laptops, to identify the aspects of the
given topic and predict the sentiment polarity for each aspect that was identified.

Similar tasks reappeared in the SemEval-2015 [3] and SemEval-2016 [4] workshops,
some of them more generalized. This thesis aims for the Unconstrained evalua-
tion, which are using additional resources such as external training data due to
the pre-training of the base model. Furthermore, the thesis evaluates mostly for
SemEval-2016, because its ABSA subtasks are evaluating in both Sentence Level
reviews and Text Level reviews, as in SemEval-2015, but also provides new test
datasets. In addition, submissions from SemEval-2016 use newer techniques and are
better than submissions from previous ABSA tasks.

There have been many recent developments in the field of pre-trained NLP models,
for example ELMo [5], Universal Language Model Fine-tuning (ULMfit) [6] and
BERT [7]. These NLP models are pre-trained on large amounts of unannotated
text. Their use has shown to allow better performance with a reduced requirement
for labeled data and also much faster training. At SemEval-2016, there were no
submissions that used such pre-trained NLP model as a base for the ABSA tasks.



1. Introduction

1.1 System overview

The system in this thesis consist of three models. One of the models classifies what
the text is about, namely aspects, the other classifies the sentiment for a given text
and aspect and the last one classifies both of sentiment and aspect simultaneously.
The output of the entire ABSA system is the aspects and the sentiment polarity
associated with each of them in the input text.

Aspect classifier. The aspect classifier in this thesis aims to extract the aspects
from the given text. Two different machine learning models are implemented and
evaluated in this thesis, which is multiple single Sentence classifiers assembled to
one model and a Sentence Pair classifier model.

Sentiment classifier. The point of the sentiment classifier is to output the senti-
ment polarity when given an aspect and text as input. The sentiment classifier in
this thesis is constructed as a Sentence Pair classification model.

Combined model. This is a single Sentence Pair Classification model that does
the work of both the aspect classifier and the sentiment classifier.

1.2 Aim

This thesis aims to use a pre-trained NLP model to improve performance for aspect-
based sentiment analysis, by using the contextual word representation learned from
the pre-training of the NLP model. Furthermore, the goal is to make the Aspect
Classifier more generic by training the model to also work for out-of-domain aspects.

1.3 Delimitation

This thesis will not consider the Opinion Target Expression (OTE) ABSA subtask
of SemEval-2016. Another delimitation of our implementation is the pre-training
NLP model, where we choose to use the pre-trained weights from the team behind
BERT, and not pre-train a language model ourselves.

1.4 Thesis outline

The remainder of this paper is organized as follows. Chapter 2 will go through the
state of the art for the aspect-based sentiment analysis task. It will further explain
the two main techniques used in this thesis project, namely the pre-trained NLP
model BERT and also Aspect-Based sentiment analysis. This will provide the reader
with the necessary background of the techniques and give him the understanding
to follow the rest of the thesis. Furthermore, it will also explain how previous work
has solved the same task with and without a pre-trained NLP model. Chapter 3
will provide a detailed description of our models, how we use the pre-trained NLP
model to downstream and fine-tune it to be able to solve ABSA tasks and how we
generate additional data for the generic models. The evaluations of our models and

2



1. Introduction

the metrics we use will be presented in Chapter 4, together with the previous work
that scored best followed by a discussion in Chapter 5. Finally, a conclusion is given
in Chapter 6.
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State of the art

In this chapter, we explain the theory and implementation of the techniques and
pre-trained NLP models used throughout the thesis. We will further describe the
key concepts behind the State of the art results together with the previous works.

Section 2.2 will cover the pre-trained model used in the thesis project, which has
achieved State of the art in several NLP-task, together with the model architecture
and the key features of the model. Thereafter, Section 2.3 will explain the task
ABSA from SemEval. Previous work that reached State of the art with and without
a pre-trained model will be briefly described in Section 2.4 and Section 2.5.

2.1 Pre-training Tasks

The classic approach for solving machine learning task is to train a model from
scratch with the training data for the specific task. NLP is a diversified research field
that contains many distinct tasks which have small sets of human-labeled training
data. There has been proven that a large amount of training data has shown to
increase the performance of deep learning models, which can be seen in the computer
vision field with ImageNet [8]. The same concept can be applied to deep learning
NLP models. The development of a general-purpose language model uses a large
amount of annotated text, which is called pre-training, and the general purpose for
the language model is to learn the contextual representation of words.

2.1.1 Language Model

Programming languages or formal languages can be specified with rules on how to
properly use the language. Natural languages differ because they can have ambigu-
ous structures and also possess terms that can be used in ways that make them
ambiguous but can still be understood by humans. With words that change their
usage, specifying and structuring a language with grammar can be a problem.

The language models are key components when solving NLP problems. They con-
tribute with a form of language understanding, which makes it able to predict the
next or missing word in a text input by using the previous context. To be able to
uses context to predict words, a form of learning which involves understanding the
word occurrence and also the word prediction, are used when training on text data.
The language model learns the context by using techniques such as word embedding

5



2. State of the art

which use vectors to represent the words in a vector space. With a large amount of
training data, the language model learns more representations of words, depending
on the context, and allows similar words to have a similar representation [9].

2.2 BERT

There have been several pre-training model architectures that have performed well
in NLP-tasks such as BERT [7], ULMfit [6] and ELMo [5]. This thesis will exclu-
sively make use of the most recent pre-trained model BERT and briefly describe the
other pre-training models in the Section 2.2.1.

Pre-trained models aim to learn a generalized language model by extracting features
which can be used for other NLP task without the need to retrain the whole model.
This form of training is named transfer learning [10] and usually improves the per-
formance of other tasks that is related to the pre-training task.

Bidirectional Encoder Representations from Transformers (BERT), is a pre-trained
NLP model that is designed to consider the context of a word from both left and
right sides [7]. While the concept is simple, it reaches a new State of the art results
for several NLP task such as sentiment analysis and question answering. BERT ex-
cels at tasks associated with general language understanding because of the ability
to fine-tune the BERT model to a certain task and also because BERT can repre-
sent a word context from both left-to-right and right-to-left simultaneously, which
means it can extract more context features of a sequence compared to training left
and right separately as ELMo [5].

The pre-training of the language model BERT, which trains on both left and right
context, is a modified language model using masks called Masked Language Model
(MLM) as described in Section 2.2.5.1. The purpose of MLM is to mask a random
word in a sentence with a probability of 15%, when the model mask a word it re-
places the word with a token [MASK]. The model later tries to predict the masked
word by using the context from both left and right of the masked word with the
help of transformers. In addition to left and right context extraction using MLM,
BERT has an additional key objective which differs from previous works, namely
next-sentence prediction, as explained in Section 2.2.5.2. This makes BERT improve
on the semantic understanding, which fine-tuned tasks such as question answering
and natural language inference use.

BERT is made as a general model that easily can be fine-tuned by adding an ad-
ditional output layer on top of the Transformer, which is an attention based [11]
seq2seq model [12]. The added layer does not need to be trained on a lot of pa-
rameters, due to the pre-training and thus only needs minimal training data for
downstream tasks. The downstream tasks can either be sequence-level or token-
level and are visualized in Figure 2.1.

6
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Figure 3: Our task specific models are formed by incorporating BERT with one additional output layer, so a
minimal number of parameters need to be learned from scratch. Among the tasks, (a) and (b) are sequence-level
tasks while (c) and (d) are token-level tasks. In the figure, E represents the input embedding, 7} represents the
contextual representation of token i, [CLS] is the special symbol for classification output, and [SEP] is the special
symbol to separate non-consecutive token sequences.

Figure 2.1: Task specific models from original paper [7].
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2.2.1 Previous work

Transfer learning has made a big impact in the machine learning field computer vi-
sion. Machine learning models that apply the task of computer vision, such as object
detection, classification and segmentation, rarely train from scratch. Instead, they
utilize transfer learning from pre-trained models that have trained on big datasets
such as ImageNet [8]. In the NLP field, transfer learning is important because of the
vast amount of training data needed for language understanding. The base models
that has trained on large annotated corpus have more word representation and con-
textual features which can be transferred to other models for task that are related
to the tasks used when training on the large corpus, given that the objectives used
for the pre-training on the large corpus is extracting general features which can be
adapted to other domains than just the base model [6].

In the NLP field, the deep learning models require large datasets because the mod-
els are trained from scratch and are task-specific. One of the first breakthroughs
of a general language model to address an effective transfer learning method that
can be applied to many NLP-task is the Universal Language Model ULMFiT [6].
The concept was to first train the language model on the general-domain corpus to
extract general features of the language in different layers. For the fine-tuning of
the full language model for a specific task, the original paper proposed the use of
discriminative fine-tuning and slanted triangular learning rates to get task-specific
features.

BERT is the first deeply bidirectional and unsupervised language representation
model, which can be seen in Figure 2.2 that compares the deep architecture of BERT
to other architectures such as ELMo. There have been several other pre-trained NLP
models before BERT that also uses bidirectional unsupervised learning, one of them
is ELMo [5], which also focuses on contextualized word representations. The word
embeddings ELMo generates are produced by using a Recurrent Neural Network
(RNN) named Long Short-Term Memory (LSTM) [13] to train left-to-right and
right-to-left independently and later concatenates the word representation, which
Figure 2.2 describes. BERT does not utilize LSTM to get the word context fea-
tures, but instead uses Transformers [11], which is attention based mechanisms that
are not based on recurrence and will be further described in Section 2.2.3.

RNN models [14] generate sequences of hidden states as a function of the previous
state combined with the input for the current input position. Essentially, for every
recursion, the model has to update the weight for every layer in the architecture to
minimize the error, which the network does by propagating back through the layers.
When solving for a task, it is sometimes enough to just look at the recent informa-
tion gathered, but other times the network needs more information further back in
the input sequence, which RNNs are not able to provide with, due to the information
have been overridden. The RNN has a problem with Long-Term Dependencies, and
is thereof not able to process very large input and store all information about the
past inputs [15] which is a problem known as vanishing gradients [16].
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BERT (Ours) OpenAl GPT

Figure 1: Differences in pre-training model architectures. BERT uses a bidirectional Transformer. OpenAl GPT
uses a left-to-right Transformer. ELMo uses the concatenation of independently trained left-to-right and right-
to-left LSTM to generate features for downstream tasks. Among three, only BERT representations are jointly
conditioned on both left and right context in all layers.

Figure 2.2: Deeply bidirectional model architecture compared to ELMo bidirec-
tional model architecture from the original paper [7].

2.2.2 Input Representaion

The text input for the BERT model is first processed through a method called word-
piece tokenization [17], which is a technique to represent words as tokens instead
of strings. With this, we get a set of tokens, where each represents a word. There
are also two specialized tokens that get added to the set of tokens, and these are
classifier token [CLS], which is added to the beginning of the set, and separation
token [SEP] which signifies the end of a sentence. If BERT is used to compare two
sets of sentences, these sentences will be separated with a [SEP] token, which can
be seen in Figure 2.3. This set of tokens is later processed through three different
embedding layers with the same dimensions that later get summed together, and
then passed to the encoder layer:

o Token Embedding Layer:

In this embedding, each token in the input will be mapped to a high dimen-
sional vector representation of the given token.

e Segment Embedding Layer:

As one of the uses in BERT is to be able to find relations between pairs of
sentences, this layer is used to separate these sentences. This layer has only
two representations: 0 for tokens that belong to the first sentence, and 1 for
the tokens that belong to the second sentence.

o Position Embedding Layer:

As BERT uses Transformers, a position embedding is needed to capture the
sequential context of the tokens. BERT has learned the position embedding
layer during the pre-training. .
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Figure 2: BERT input representation. The input embeddings is the sum of the token embeddings, the segmentation
embeddings and the position embeddings.

Figure 2.3: Input with tokenization and embeddings from original paper [7].

2.2.3 Transformers

Previous works, which established State of the art in sequence modeling, used the
common framework sequence-to-sequence (seq2seq) [12], with techniques such as
Recurrent neural networks (RNN) [14] and long short-term memory (LSTM) [18].
Seq2seq models consist of Encoder-Decoder based architecture, where the encoders
map the input sequence into a high dimensional vector that is then used as an in-
put vector to the decoders, which turns the high dimensional vector to an output
sequence.

The architecture of Transformers is not based on RNN but on attention-mechanics [11],
which decide what parts are important in each computational step. The encoder
does not only map the input to a high dimensional space vector, but also uses the
important keywords as an additional input to the decoder. This, in turn, improves
the decoder because it has additional information such as important sequences and
which keywords that gives context to the sentence.

The transformers use self-attention layers instead of recurrent layers because self-
attention have shown to compute better in parallelization but mostly due to the
ability to connect all layer positions with a constant number of computational op-
eration, whereas recurrent layers require a constant number of operations, which
makes it faster than RNNs. The image in Figure 2.4 describes the architecture of a
Transformer, while the Transformer used in BERT only consists of the input embed-
dings. The left part is the Encoder and the right part is the Decoder. Both Encoder
and Decoder are implemented with components that are stackable, described as V.

Attention encoders are composed of two modules, namely a multi-head attention
layer and a feed forward neural network, while the decoders are composed of a
masked multi-head attention layer, multi-head attention layer and a feed forward
layer. The multi-mead attention layer, described in Figure 2.5 from the original
paper, are based on the attention function:

10
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Figure 1: The Transformer - model architecture.

Figure 2.4: Transformers architecture from original paper [11]. The Transformers
in BERT uses only the encoder, which is the input embedding (left) part.

Q T
Attention(Q,K,V) = softmax(

vV

dj are dimensions of the keys and query

Q are vector representation of the (query) one word in the sequence
K are vector representation of all (key) words of (key,value) in the sequence

V are vector representation of all (values) words of (key,value) in the sequence

The attention weights are based on how each word in the sequence (Q) is influenced
by all other words in the sequence (K). The weights then apply the SoftMax function
and lastly apply to all the words in the sequence (V). The system learns different
representations of Q, K and V by applying this attention-mechanism repeatedly.
The Transformers do not know how the sequences are fed into the model, like the
RNN;, and instead uses the Encoder input-sequence where the position is taken into

account from the Multi-Head Attention module.

Each position of the attention

modules has different matrices for Q, K and V, which variate depending on the
usage of the whole encoder input sequence or parts of the decoder input sequence.

11
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Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

Figure 2.5: Multi-Head Attention architecture from original paper [11].

2.2.4 Task Specific Models

The original BERT paper pre-trained the model to get word embeddings to make
it easier to fine-tune the model for a specific task without having to make a major
change in the model architecture and parameters. Usually, only one additional
output layer on top of the model was required to make the model more task specific.

2.2.4.1 Single Sentence Classifier

To capture the context of longer text sequences, single word semantic vectors are
not enough, instead compositional semantic vector spaces are used instead [19].
Benchmark tasks for single sentence classifier, which is used in BERT, are The
Stanford Sentiment Treebank (SST-2) [20] and the Corpus of Linguistic Acceptabil-
ity (CoLA) [21]. SST-2 is a single sentence classification task for sentiment analysis
while the task of CoLA is to determine whether a sentence, in English, is linguisti-
cally acceptable or not.

2.2.4.2 Sentence Pair Classifier

The Sentence Pair classification deals with tasks such as the determination if two
sentences are equivalent in terms of semantic meaning, the model has to take two
text input as described in Section 2.2.2. This kind of task evaluates how good a
model is on a comprehensive understanding of natural languages and the ability to do
further inference on full sentences [22]. There exist a benchmark that evaluates the
natural language understanding on models named General Language Understanding
Evaluation (GLUE) [23], which consist of several tasks such as Multi-Genre Natural
Language Inference (MNLI) [24], The Semantic Textual Similarity Benchmark (STS-
B) [25] and Microsoft Research Paraphrase Corpus (MRPC) [26].

12
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2.2.5 BERT pre-training methods

The methods used in the pre-training of BERT aims to generate generalized fea-
tures for bidirectional language representation. Furthermore, BERT shows that
this approach reduces the need for feature-engineered task-specific architectures by
transfer the learned word representation and fine-tune it to other tasks. General-
ized methods are crucial to achieve a model that can be utilized in transfer learning
and BERT contributes with two pre-training tasks named Masked Language Model,
which is a more complex version of the normal language model described in Sec-
tion 2.1.1, and Next Sentence Prediction. These two tasks will be further explained
in Section 2.2.5.1 and Section 2.2.5.2.

2.2.5.1 Masked Language Model

BERT uses a mask token [MASK] to pre-train deep bidirectional representation
for the language model. But the difference from the normal conditional language
model that trains left-to-right or right-to-left prediction of words, where the pre-
dicted word has positioned the end or start of the text sequence, BERT masks a
random word in the sequence. The other reason for using a mask token to pre-train
is because the standard conditional language model is only able to explicitly train
left-to-right or right-to-left due to the words can have the masked word, from left-to-
right, unmasked in the right-to-left, in a multilayered context and thus know what
the masked word should be.

The original BERT paper masked a word with a probability of 15%, which was
distributed as:

e 10% were replaced with a random token

o 10% were left intact

« 80% were replaced with the [MASK] token

The reason for this is because of the conflict that otherwise would arise if the pre-
training only made the model predict the mask tokens while the fine-tuning task
would not contain any mask tokens. The model would then try to find mask token
to predict but not find any in the fine-tuned task, which would result in bad perfor-
mance. The pre-training would only make the model learn to extract the features
from the mask token, which would not be much due to the masking only have a
probability of 15% and thus make it converge slower. However, the mask token
probability, used in the paper, showed that the language model learned to extract
contextual word features instead.

2.2.5.2 Next Sentence Prediction

To understand the relationship between two text sentences, BERT has been pre-
trained to predict whether or not there exists a relation between two sentences.
Each of these sentences, Sentence A and Sentence B, have their own embeddings, in
which we call embedding A and embedding B. An example given from the BERT
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paper was the following:

sentence A : [CLS] the man went to the store . [SEP]
sentence B : he bought a gallon of milk . [SEP]
Label : IsNextSentence

sentence A : [CLS] the man went to the store . [SEP]
sentence B : penguins are flightless . [SEP]
Label : IsNotNextSentence

During training, sentence B is the follow up of sentence A in half of the time to
be used to predict IsNextSentence label. On the other half of the time, a random
sentence is chosen for sentence B to predict IsNotNextSentence label.

2.3 Aspect-Based Sentiment Analysis

Sentiment analysis is a field in NLP and is a task to predict the sentiment in a text.
A typical sentiment analysis usually focuses on predicting the overall negative or
positive polarity of a text sentence, which generally works for real-world applica-
tions if the text sentence only contains one topic or aspect and one sentiment.

Aspect-Based Sentiment Analysis (ABSA) is a more complicated task that focuses
on identifying the attributes or aspects of an entity. For example, laptops can have
aspects like the battery, screen or touch-pad, etc. The ABSA task would then
be able to determine the sentiment for each aspect mentioned in the text. This
makes ABSA tasks work on both Sentence- and Text-Level because it can identify
when there are several opinions made in the same sentence. An example could be
"The actor is so good, but this movie just horrible"', which ABSA would output
as a positive sentiment about actor but a negative about movie while sentiment
analysis would classify as negative and neglect the actor as positive because movie
has a more negative sentiment and thus gives the text an overall negative sentiment.

2.3.1 SemEval ABSA task

Aspect-Based Sentiment Analysis was first introduced in SemEval-2014 [2] and pro-
vided datasets with annotated reviews about restaurants and laptops. The ABSA
task in SemEval-2014 did not contain full reviews until SemEval-2015 [3] and the
dataset for SemEval-2016 [4] did not change from 2015 except additional test data.

The goal of the SemEval ABSA task is to identify opinions expressed towards spe-
cific aspects of a topic within customer reviews. Especially, given a text review
about a certain topic, from the dataset (e.g. laptop, restaurant), the objectives for
SemEval-2016, are to address the following:
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Aspect Category Classification aims to identify the topic and aspect pair, about
an opinion, is expressed in the text. The topic and aspect should be chosen from
an already defined set of topic types (e.g. LAPTOP, RESTAURANT, FOOD) and
aspects (e.g. PRICE, QUALITY) per domain. The topic can be assigned one or
more aspects, depending on the context of the text, in which the topic appears.

Opinion Target Expression (OTE) is the task to extract the linguistic expres-
sion, used in the text input that refers to the reviewed entity, for each entity-aspect
pair. The OTE is defined with one starting and ending offsets in the sequence. If
no entity is explicitly mentioned, the value returned is "NULL".

Sentiment Polarity Classification has the objective to predict a sentiment po-
larity for each identified topic and aspect pair with the labels positive, negative,
neutral, (conflict). The neutral label indicates that a topic and aspect pair are mod-
erately positive or negative and conflict indicates that the sentiment for the aspect
have multiple sentiments for example "The spaghetti was good but the scallops were
overly salted", which the spaghetti was positive but the scallops, which is also in the
spaghetti, is negative.

Subtask 1: Sentence Level is a text-input which only consist of one single sen-
tence. Usually, the sentence level is divided from the text level data samples.

Subtask 2: Text Level are full reviews or text-input. Where several aspects can
be mentioned and also several opinions on the aspect can be given in the reviews.

2.4 ABSA without BERT

This section will briefly explain the key concepts for the submissions which ranked
highest on the benchmark for SemEval-2016. Furthermore, this thesis will use these
submissions as the baseline for the evaluations.

The submissions which took first spot on the SemEval ABSA challenges, for the
first submissions of 2016, was using the machine learning algorithm support-vector-
machine (SVM) [27][28] or conditional random field classifiers [29], even though deep
learning models have shown to perform well in sentiment analysis [30], the deep
learning submission for those years ended in a very bad spot. The bad performance
on ABSA task does not indicate that deep learning is a bad choice for this kind of
task, but rather the choice of model and training tasks was lacking.

2.4.1 NLANGP

The NLANGP [31] placed first on SemEval-2016 subtask 1 and 2, which was the
subtask of aspect classification and opinion target expression, used a deep learning
approach to extract additional features for their solution. Their aspect-classifier
model was implemented by training multiple binary classification models for each
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aspect. For the target-extraction-classifier model, they used sequential labeling clas-
sifiers, which they trained using conditional random fields.

The aspect-classifier included an additional category as "NIL" that was used if a text
did not include any of the aspects that it was trained with. The binary classification
model had a softmax as output which was modified with a threshold to solve the
problem where a text might contain multiple aspects.

24.2 UWB

The UWB model [32] leaned heavily towards using contextualized word representa-
tion features for their solution by using techniques such as GloVe [33] and different
variations of Bag-of-Words [34].

Both their aspect classifier and sentiment classifier model used a maximum entropy
classifier [35] to decide between the categories with a certain threshold to be able to
solve for multiple aspects in one text-input. Their solution for text level sentiment
classification was to use an algorithm to decide the sentiment by:
1. last seen sentiment polarity for a category: If the polarity frequency for the
category is the same as the last polarity seen for the category.
2. polarity label with the highest frequency for the entity: If the polarity fre-
quency for the category is the same as for the entity.
3. Conflicted: If none of the states above is true, which they justified by ex-
plaining that the last polarity tends to reflect the final sentiment for a certain
aspect category.

24.3 GTI

The GTTI [36] got the highest score for text level aspect classifier on the restaurant
dataset. Their solution was using multiple binary classifiers, one trained for one
aspect. Instead of using deep learning techniques, a machine learning linear SVM
[28] was combined with word lists. The word lists were generated by extracting all
nouns and adjectives from the sentences for each category aspect predicted from
the linear SVM. There existed a word list for each aspect in the category (e.g.
restaurant had ambience, price, quality, etc). For the text level aspect category
classifier, their model was taking the sum of all outputs from sentence level aspect
category classifier.

2.4.4 XRCE

The XRCE model [37] scored highest on the sentiment polarity benchmark for the
restaurant dataset. Their model is using a syntactic parser as the base to extract
information from text (e.g. tokenization and extraction of dependency relations
such as subject, object and modifiers). The model further implemented a semantic
extraction component on top of the syntactic parser to get semantic information
about aspect target and their polarities. The additional information gathered from
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the component where the context and polarity scope of the words associating with
the lexical semantic features for the different aspect categories (e.g. ambience, price,
quality, etc).

2.4.5 IIT-T

The best score on the sentence level sentiment classifier for the laptop dataset was
achieved by IIT-TUDA, which used SVM for both the aspect classifier and senti-
ment classifier [38]. For the aspect classifier, the IIT-T generated an aspect list for
each domain to be able to combine all the domain-specific content words. For the
sentiment classifier, they used lexical acquisition [39][40] together with a polarity
lexicon to make the model learn sentimental word features.

2.4.6 ECNU

ENCU took the first spot on the text level sentiment classifier for the laptop dataset [41].
They used features from linguistics, sentiment lexicon, topic model and word2vec to
predict the sentiment of an aspect. Their concept was to use opinion target expres-
sion to acquire potential words related to the given aspect as a pending word, which
could be words in the same fragment as the aspect. ENCU used several external
sentiment lexicons to train their sentiment lexicon features and their word2vec. A
logistic regression classifier, together with the generated features, was used to detect
the sentiment polarity in a given aspect for text input.

2.4.7 Lsislif

For the out-of-domain ABSA in sentiment classification task on SemEval-2015 Task
12 subtask 2 with the hotel dataset, Lsislif [42] took the first spot and is the baseline
for our thesis, due to ABSA in SemEval did not have this kind of task. This model
uses a logistic regression model with a weighting schema consisting of positive and
negative labels, which they used to extract the different features: lexical, syntactic,
semantic and lexicon.

2.5 ABSA with BERT

Pre-trained models, which have been trained on large amounts of data, have over the
years been shown to yield very good results on NLP tasks [23]. The use of contextual
word representation results in much better performance comparing to non-contextual
word representations methods, such as word2vec[9] and bag-of-words [34].

2.5.1 (BERT-PT) BERT Post-Training for Review Reading
Comprehension and Aspect-based Sentiment Analysis

BERT has been pre-trained on a large corpus such as Wikipedia articles, which
makes the NLP model lack in the domain of opinion text. The paper of BERT-PT
[43] proposes a post-training named review reading comprehension for the BERT

17



2. State of the art

model before the fine-tuning to ABSA tasks. The post-training, which is inspired
by the machine reading comprehensions, works as follows:

1. getting a question from a review about a product

2. finding the sequence of tokens (words) that answers the question correctly
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Models

This chapter presents the different models implemented in this thesis, how the in-
puts are processed and the generation of additional data for the fine-tuning, to make
the models more generic by being able to predict out-of-domain aspects. Some ad-
justments and experiments had to be performed for the fine-tuning training, which
differs from previous work and will be explained further in Section 3.3 and Sec-
tion 3.2.

The models implemented in this thesis are two aspect classification models, one sen-
timent polarity classification model and one combined model that consist of both
aspect and sentiment classification. Section 3.5 explains one of the two aspect clas-
sification models that is trained to determine which aspects are contained in a text
input. This model has a fixed amount of aspects from the training dataset, and
for each single sentence classifier it decides whether the text is related to a specific
aspect or not and thus predicts which aspects are related to the text. The other
aspect classification model, explained in Section 3.6, replaces the need of multiple
single-sentence classifiers and instead is trained as a more generic model, using sen-
tence pair classification, to find semantic relation between aspect and text input.
The model predicts whether there is a relationship between the text and each aspect,
which are given as input and thus can predict relation of a text with aspects that
are out-of-scope of what the model was trained on. The sentiment polarity classifier,
described in Section 3.4, is a classification model that is trained to determine the
sentiment labels [positive, negative, neutral, conflict] for a given aspect and text
input. Finally, Section 3.7 explains the last model, which is a combination of both
the sentiment and aspect classification models, which gives a sentiment if the aspect
is related, otherwise it returns the unrelated label.

3.1 Implementation details

We implemented our model with the usage of BERT in pytorch. We used the
pre-trained uncased base BERT model, which consists of 12 layers of transformer
blocks, 768 hidden layers, 12 self-attention heads and a total of 110M parameters.
The implementation, training and testing were performed in Google Colab, with the
graphics card they offered, which is a Tesla K80. The training time for each model
varied. The training time on each model took roughly 1 second per 40 samples, as
such the training time varied from 5 minutes for sentiment classification in the text
level restaurant dataset, and 3 hours on the combined model with both datasets in
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sentence level. The hyperparameters used across all models are 5 epochs, with the
learning rate 2e — 5, batch size of 32, and dropout of 0.1.

3.2 Pre-processing entity and aspect pairs for BERT

The format of the pairs in the SemEval-2016 dataset is originally structured in the
form of "ENTITY#ASPECT". To better fit the BERT model when training and to
be able to have the pre-trained data in BERT to be useful for these pairs, we format-
ted it to have a sentence-like structure, such as the pair "FOOD#STYLE__OPTIONS'
gets parsed into only "food, style options'. This parsed text is what we use as an
aspect in the models for this thesis and in the flowcharts within this chapter.

3.3 Data Generation

Pre-trained NLP model requires less labeled training data to teach a model to solve
for a specific task such as ABSA. BERT is constructed as a general language model,
which made it easier to use the pre-trained word embeddings to fine-tune to a specific
task and is one of the main reasons why this work uses BERT. The data provided by
SemEval, on ABSA tasks, was not enough to teach the models to learn generic As-
pect classification. Additional generated data was required for the model to be able
to discern between aspects with a precision that performed better than the baselines.

The datasets used in this thesis is taken from SemEval-2016 - Task 5 [4], where each
sample in the dataset contains text which has been annotated by a list of aspects
and each of these pairs has also been annotated sentiment polarity, consisting of
‘positive’, ‘neutral’, 'negative’ or ’conflict’. The annotations to be generated are
those which has an aspect that are not related to the subject, for example, the
text "The food tasted great!" and the aspect ’restuarant, ambience’ does not have
any relations. As the datasets have a fixed amount of aspects (e.g. the restuarant
dataset has 12 different types of aspects), we can assume that each aspect that has
not been annotated for a specific text is unrelated to said text. The aspects which
are not related to the text will be added to the list of aspects for the text with an
‘'unrelated’ label instead of a sentiment label. Table 3.1 and Table 4.1 shows the
distribution of the original data and our generated data in the training- and test
datasets respectively.

Sentence Level Text Level
Restaurant Laptop  Both | Restaurant Laptop Both
Texts 2000 2500 4500 334 395 729
Unique Aspects 12 81 93 12 81 93
Aspect with Sentiment 2507 2908 5415 1435 2082 3517
Aspect without Sentiment 21493 199592 413085 2573 29913 64280
Total Aspects 24000 202500 418500 4008 31995 67797

Table 3.1: Describes the distribution of data on each training dataset.
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3.3.1 Unbalanced Data

The data generated was far more than the original data from SemEval and it caused
the model to be biased. This resulted in the models learning more about the fea-
tures from the generated data and thus performed worse than using only the original
data. The solution was to use weighted cost-function that was based on how much
bigger the generated data was, compared to the original data, to balance the learn-
ing of features from both the original data and the generated data. The datasets
from SemEval-2016 are also very unbalanced, and it becomes even more so when
the unrelated data is generated, as seen in Aspects without Sentiment compared to
Aspects with Sentiment in Table 3.1.

To compensate for the unbalanced data, three different methods were applied:

e Oversampling the polarity labels. Increases training time but too much will
likely cause overfitting.

o Undersampling the unrelated data. Lowers training time and stops overfitting
of the unrelated label. However, it might reduce performance.

o Weighting each label depending on how frequent the label shows up in the
training set, the higher the frequency of a label, the lower the weight of the
given sample( . The weights are then used in the cross-entropy loss
function.

label__count )

3.4 Sentiment Classifier

This is a model for predicting the sentiment of a text, given a specific aspect. It
is implemented using the architecture of a sentence pair classification model, where
the first input is the text to be evaluated, and the second input is the aspect that
the text will be evaluated on. The output of this model will be one of the labels
Positive, Negative, Neutral and Conflict, where Conflict means that there are parts
of the text where the aspect is viewed as positive and other parts where the aspect is
viewed as negative. With this structure, a model is trained for each of the 6 datasets
in Table 3.1.

3.5 Multiple Single Sentence Aspect Category Clas-
sifier

The system has to classify aspects in the text input, a normal softmax only gives one
output, if not considering the use a certain threshold, while a model with multiple
single sentence classifier can give multiple outputs.

This model consists of unique submodels for each pre-defined aspect to be used.
These submodels are very similar to single sentence classification tasks in the BERT
paper, such as the SST-2 Sentiment analysis. It inputs the text and uses the 'related’
and ’unrelated’ label to predict whether or not the aspect, in which the submodel is
trained on, is related to the text or not. This model is trained solely on the text level
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restaurant, as it grows linearly in computing time and disk space by every unique
aspect in the dataset.

3.5.1 Implementation

In a full model, with the single sentence classification models, every pre-defined
aspect that is related to a text will be prepared to send its corresponding aspect
to the sentiment model which performs best within the domain the single sentence
classification model is trained on. The entire structure is described in Section 3.4,
while the others are ignored. It then outputs the sentiment paired with the aspect.
The entire structure is visualized in the flowchart on Figure 3.1.

Text, Aspect 1
Text, Aspect 2
Text, Aspect i
Text, Aspect n Text, Aspect 1, Polarity 1
> BER.T Text, Aspect 2, Polarity 2
<| Polarity
Text, Aspect n, Polarity 3
| Appends to I

a list with elements
(Text, Aspect i)

BERT
CATEGORY
(BINARY)
Aspect 1..n

J

Figure 3.1: Describes entire structure with the single sentence classification model.
The text gets passed into a fixed amount of single sentence classification models,
which classifies the text as related /unrelated for each model. The related ones gets
passed into the sentiment model, with its given aspect.

3.6 Sentence Pair Aspect Category Classifier

This is a model for aspect classification, with the structure of a sentence pair clas-
sification task described in Section 2.2.4.2, with the text and aspect as input. This
model is used to predict whether or not the aspect input is related to the text or not,
with the labels 'related” and 'unrelated’. With the aspect as input, it is possible to
handle new aspects out-of-domain of what the model was trained on, as well that it
takes less training time, power and space compared to using multiple single sentence
classifiers described in Section 3.5. With this structure, a model is trained for each
of the 6 datasets in Table 3.1.

3.6.1 Implementation of full model

For implementing the full model, the best performing sentiment classifier and the
best performing sentence pair aspect classification classifier is chosen seperately. The
sentence pair aspect classification model for all aspects is used to see which aspect
the text belongs to. With the use of the labels 'related’” and 'unrelated’, every aspect
that are unrelated to the text will be ignored, while the aspects that is related to a
text will be prepared to be sent as an input to the sentiment model, structured as
described in Section 3.4. It then predicts the sentiment paired with the aspect. A
visual representation of this implementation can be viewed in Figure 3.2
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AText, Aspect Text, Aspect, Polarity
Text, Text, Aspect BERT BERT
Aspect (ASPECT) \/ 7] Polarity
| Passes the input |

if BERT (ASPECT)
returns 'related’

Figure 3.2: Describes the two models in the system. The BERT model to left
identifies if the aspect given is related or not. If it is related, the input gets passed
to the second model. The second model is the sentiment analysis model for the
aspects.

3.7 Combined model

This model is structured as a Multi-class Classification model for predicting both
the aspect category and the sentiment using the Sentence Pair classification task
described in Section 2.2.4.2. The model also needs both the aspect and the text as
input and will return a sentiment label if the aspect is related to the text. Otherwise,
it returns the unrelated label. The flowchart of the model can be seen on Figure 3.3.
Compared to other models, the entire structure depends on a single BERT model,
making it much more lightweight. For each of the 6 datasets in Table 3.1, a combined
model is trained.

This model also has the possibility to behave as either an aspect category model by
mapping the polarity labels to a 'related’ label, or it can behave like a sentiment
model by ignoring the value of the 'unrelated’ label, it can also act like both aspect
and sentiment model simultaneously.

Text, Aspect, Polarity
Text, Text, Aspect BERT
Aspect (COMBINED)

| Passes Aspect I
and Polarity if the
BERT (COMBINED)
model does not return
"unrelated" label.

Figure 3.3: Describes a single model. As the combined model directly returns the
sentiment labels if it is related, and the 'unrelated’ label when it’s not, it works as
both a categorization and sentiment model.
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Evaluation

This chapter presents the evaluation of the experiments from the models explained
in Chapter 3. Section 4.2 shows the evaluation for aspect category classifiers while
Section 4.3 shows the evaluation for sentiment polarity classifiers. For both of these
Sections, the evaluation of the Combined model will also be shown. The evaluation
and results for each model implemented are presented in Table 4.2a to Table 4.5c¢,
with the previous State of the art models as the baseline. The different models
were trained for each dataset (restaurant, laptop and both laptop and restaurant
combined) as shown in Table 3.1 and evaluated for both in and out-of-domain.

The evaluation on the SemEval-2016 Task 5, is for the following subtasks:

« aspect categorization (subtask 1 & 2, Slot 1)

o aspect sentiment polarity (subtask 1 & 2, Slot 3)
We evaluate the models on six different datasets, presented in Table 4.1. The restau-
rant and laptop datasets are from from SemEval-2016 [4], and the hotel dataset is
from SemEval-2015 [3]:

o Sentence level & Text level restaurant datasets

o Sentence level & Text level laptop datasets

» Sentence level & Text level hotel datasets

Where sentence level corresponds to subtask 1 and text level corresponds to subtask
2 in SemFEval-2016. This makes it possible to examine how well the models compare
and perform with different amounts of aspects, out-of-domain and also how well
it performs on text with different lengths. The text level hotel dataset had to be
generated because the hotel dataset consisted of only a sentence level dataset. This
was done by concatenating all the sentences to a full text and label the text with
all the aspects from the sentence level inputs.

Sentence Level Text Level
Restaurant Laptop Hotel | Restaurant Laptop Hotel
Texts 676 782 226 90 80 30
Unique Aspects 12 81 28 12 81 28
Aspect with Sentiment 859 777 339 404 545 215
Aspect without Sentiment 7253 62565 5989 676 5935 625
Total Aspects 8112 63342 6328 1080 6480 840

Table 4.1: shows the different test datasets and their distribution of data used for
evaluations.
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The sentence pair aspect category classifier, the sentiment classifier, and the com-
bined classifier, each described in Section 3.6, Section 3.4 and Section 3.7 respec-
tively, have all each trained a model for each dataset described in Table 3.1. This
results in 18 models, where each of these models has been tested on every dataset
described in Table 4.1. In addition to these models, there is also the model consist-
ing of multiple single sentence aspect category classifiers. This model can only be
tested on the dataset, which has been trained on text level Restaurant, due to poor
scalability.

4.1 Evaluation Metrics

Accuracy is the simplest metric we use to evaluate our models, it displays the ratio
between correct predictions and all predictions.

True Positive + T'rue Negative
Total Predictions

Accuracy =

Precision evaluation metric is used to measure the predicted positive output, the
ratio between the correct positive predictions and the total positive predictions is
given.

True Positive

Precision =
True Positive + False Positive
Recall is the third metric, it is used to measure how the real positive values are
predicted. Out of all the real positive values, a ratio between the predicted positive
values and all predictions is given.

Recall — True Positive

True Positive + False Negative

F1 Score is a harmonic mean of Precision and Recall. It is a useful alternative
measure to Accuracy when there’s a disproportionate amount of negative labels in
the data.

FlScore — 2 x Precision * Recall

Recall + Precision

4.2 Aspect Category Models

In this section, we evaluate how well the aspect classification works with our multiple
single sentence aspect classification model, sentence pair aspect classification model
and combined model, which are described in Section 3.5, Section 3.6 and Section 3.7
respectively. Each trained in all the different domains and levels described in Ta-
ble 3.1. All the result tables in this section are ordered by F1 score in descending
order.
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4.2.1 Sentence Level Datasets

In Table 4.2, the evaluations of the classifiers for aspects in sentence level are shown.
The "Model’ column represents which model type the classifiers are. The combined
model is defined as ’Combined’, and ’Aspect’ is a sentence pair aspect category
classifier. The other two columns, Domain and Level, is which domain and text
type it was trained on, 'Both’ indicates that it has been trained on both laptop and
restaurant.

o In Table 4.2a, where the classifiers are evaluated on the sentence level restau-
rant dataset, the aspect classifier which have been trained with the sentence
level restaurant dataset shows the best performance, the next best is the com-
bined classifier which also have been trained on the sentence level restaurant
dataset. The best performing model has 2 points higher F1 score than the
baseline BERT-PT.

e In Table 4.2b, where the classifiers are evaluated on the sentence level laptop
dataset, the aspect classifier which have been trained on both datasets in sen-
tence level has the best performance in all categories other than recall, the
combined model trained on both datasets shows that it has the best results
on recall. The best performing model did not manage to perform better than
the baseline NLANGP, it performs slightly worse.

e In Table 4.2¢, where the aspect classifiers are evalueted on the hotels dataset
in sentence level, there’s different classifiers that perfoms best in all the dif-
ferent evaluation metrics used. For the F1 score, the aspect classifier trained
on both domains in sentence level performs best, the classifiers with the best
recall is the combined model trained on both datasets in sentence level and
the aspect classifier trained on text level restaurant dataset. The aspect classi-
fier trained on laptop dataset in text level had the best accuracy and precision.

In out of scope, the restaurant dataset tends to be overly optimistic compared to
the other models, as seen on the low precision and accuracy and the high recall.
Within all evaluations in Table 4.2, the classifiers trained with the sentence level
datasets performs better than the the classifiers trained with the text level datasets.
The combined classifier performs worse than the aspect classifier.
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Model Domain Level F1 Precision Recall  Accuracy
Aspect Restaurant Sentence 79.864 80.189 79.542  96.326
Combined Restaurant Sentence 77.440  75.937 79.004 95.784
Aspect Both Sentence 74.423  65.055 86.944  94.526
Combined Both Sentence 61.510 46.601 90.444 §89.632
Aspect Restaurant Text 55.478  40.976 85.868  87.376
Combined Both Text 53.599  41.964 74.158  88.239
Aspect Both Text 52.324  39.558 77.254  87.105
Combined Restaurant Text 50.252  36.558 80.349  85.428
Combined Laptop Sentence 35.749  30.036 44.145  85.465
Aspect Laptop Sentence 34.064  26.385 48.048  82.963
Combined Laptop Text 29.178  26.0 33.243  85.219
Aspect Laptop Text 26.939  24.347 30.148  85.022
Baseline  Aspect (BERT-PT) | 77.97 - - -
Baseline ~ Aspect (NLANGP) | 73.031 - - -
(a) Performance of classifiers in aspect category task with dataset: Restaurant,
sentence level

Model Domain Level F1 Precision Recall  Accuracy
Aspect Both Sentence 51.651 40.719 70.610 98.412
Aspect Laptop Sentence 49.566  37.582 72.773  98.221
Aspect Both Text 38.959  27.521 66.666  97.491
Combined Both Sentence 38.729  25.482 80.661 96.934
Combined Laptop Sentence 38.484  25.890 74.936  97.122
Aspect Laptop Text 38.437  27.990 61.323  97.640
Combined Both Text 36.378  26.496 58.015  97.562
Combined Laptop Text 27.860  18.294 58.396  96.368
Aspect Restaurant Sentence 5.7403  2.9980 67.302  73.455
Combined Restaurant Sentence 5.2764  2.7471 66.539  71.308
Combined Restaurant Text 4.6303  2.3960 68.575  66.075
Aspect Restaurant Text 3.8446  1.9711 77.608  53.379
Baseline  Aspect (NLANGP) | 51.937 - - -

(b) Performance of classifiers in aspect category task with dataset: Laptop, sentence

level

Model Domain Level F1 Precision Recall  Accuracy
Aspect Both Sentence | 34.438 23.304 65.944  89.111
Combined Restaurant Sentence | 34.142  22.851 67.492  88.708
Aspect Laptop Text 33.788  28.215 42.105 92.843
Aspect Restaurant Sentence | 32.301  21.357 66.253  87.956
Aspect Both Text 32.049 22.344 56.656  89.581
Combined Both Sentence | 29.880  18.496 77.708 84.183
Combined Both Text 29.488  20.481 52.631  89.084
Combined Laptop Text 29.176  23.529 38.390  91.917
Combined Laptop Sentence | 29.087  19.798 54.798  88.412
Aspect Laptop Sentence | 24.137  15.205 58.513  84.049
Aspect Restaurant Text 17.896  10.112 77.708 69.078
Combined Restaurant Text 17.344 99115 69.349 71.334

(¢) Performance of classifiers in aspect category task with dataset: Hotel, sentence

level

Table 4.2: Evaluations of all aspect classification models on sentence level datasets
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4.2.2 Text Level Datasets

In Table 4.3, the evaluations of the classifiers for aspects in text level are shown.
The "Model’ column represents which model type the classifiers are. The combined
model is defined as ’Combined’, "Aspect’ is the sentence pair aspect category clas-
sifier, and ’Single’ is the Multiple Single Sentence Aspect Classifier. The other two
columns, Domain and Level, is which domain and text type it was trained on, 'Both’
indicates that it has been trained on both laptop and restaurant.

e In Table 4.3a, where the classifiers are evaluated on the text level restaurant
dataset, the aspect classifier trained on the text level restaurant dataset out-
performs the baseline model GTI with 1 point. The classifier that achieved the
highest recall is the aspect classifier trained on both restaurant and laptop in
text level. The highest precision was achieved by the aspect classifier trained
with the sentence level restaurant dataset. The accuracy was highest on the
multiple single sentence classifiers.

o In Table 4.3b, where the classifiers are evaluated on the text level laptop
dataset, the aspect classifier trained with both restaurant and laptop datasets
in text level achieved the highest F1 score, beating the baseline model UWB
with 4 points. The classifier with the best precision and acuraccy was achieved
by the aspect classifier trained on the text level laptop dataset. The model
with best recall was achieved by the aspect classifier traiend on the text level
restaurant dataset.

e The model that achieved the best in the text level hotels dataset in Table 4.3c
was the aspect classifier trained on both laptop and restaurant. The classifier
with the best precision and accuracy is the combined classifier trained on text
level laptop dataset. The classifier with the best recall is the aspect classifier
trained on the text level restaurant dataset.

Within all evaluations in Table 4.2, the classifiers trained with the text level datasets

performs better than the classifiers trained with the sentence level datasets. The
combined classifier performs worse than the aspect classifier.
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Model Domain Level F1 Precision Recall  Accuracy
Aspect Restaurant Text 85.049 84.223 85.891  88.703
Aspect Both Text 82.948  74.653 93.316 85.648
Combined Both Text 82.435  78.222 87.128  86.111
Combined Restaurant Text 81.562  80.481 82.673  86.018
Aspect Both Sentence | 78.818  81.866 75.990 84.722
Aspect Restaurant Sentence | 76.595  89.700 66.831  84.722
Combined Both Sentence | 76.013  69.787 83.460  80.636
Combined Restaurant Sentence | 70.783  86.715 59.796  81.852
Single Restaurant Sentence | 70.041  78.484 65.545  92.043
Combined Laptop Text 67.956  66.430 69.554  75.462
Combined Laptop Sentence | 65.728  66.066 65.394  74.929
Aspect Laptop Sentence | 64.194  56.111 75.0 68.703
Aspect Laptop Text 62.176  65.217 59.405  72.962
Baseline  Aspect (GTI) 83.995 - - -

(a) Performance of classifiers in aspect category task with dataset: Restaurant, text

level
Model Domain Level F1 Precision Recall  Accuracy
Aspect Both Text 64.298 60.919 68.073  92.314
Combined Both Text 63.902  57.372 72.110 91.717
Aspect Laptop Text 63.477 63.653 63.302  92.594
Aspect Laptop Sentence | 60.952  57.704 64.587  91.587
Combined Laptop Text 58.601  51.236 68.440  90.169
Aspect Both Sentence | 57.418  60.446 54.678  91.755
Combined Both Sentence | 56.032  49.147 65.160  89.844
Combined Laptop Sentence | 55.121  54.511 55.743  90.985
Combined Restaurant Sentence | 21.621  12.337 87.382  37.086
Aspect Restaurant Sentence | 21.513  12.256 87.889  34.806
Combined Restaurant Text 21.229  12.022 90.642  31.617
Aspect Restaurant Text 20.123  11.208 98.348 20.630
Baseline Aspect (UWB) | 60.45 - - -

(b) Performance of classifiers in aspect category task with dataset:

Laptop, text

level

Model Domain Level F1 Precision Recall  Accuracy
Aspect Both Text 60.765 48.263 82.005  62.759
Combined Laptop Text 59.366  53.699 66.371  68.049
Combined Both Text 58.886  46.218 81.120  60.165
Combined Both Sentence | 58.762  45.166 84.070  58.506
Aspect Both Sentence | 57.558  46.389 75.811  60.684
Aspect Restaurant Sentence | 56.706  44.982 76.696  58.817
Aspect Restaurant Text 56.171  41.884 85.250 53.215
Combined Restaurant Sentence | 55.006  46.530 67.256  61.307
Combined Restaurant Text 54.726  41.291 81.120  52.800
Aspect Laptop Text 53.989  49.152 59.882  64.107
Aspect Laptop Sentence | 53.265  40.717 76.991  52.489
Combined Laptop Sentence | 52.319  46.453 59.882  61.618

(c) Performance of classifiers in aspect category task with dataset: Hotel, text level.

Table 4.3: Evaluations of all aspect classification models on text level datasets
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4.3 Sentiment Models

In this section, we evaluate how well the sentiment classifications performs with
our sentiment model and combined model, which are described in Section 3.4 and
Section 3.7 respectively. Each model trained on all the different domains and levels
described in Table 3.1. The F1 score measured on the tables in this section is a
weighted average of the F1 on each label. All the tables in this section is ordered
by Accuracy in descending order.

4.3.1 Sentence Level Datasets

In Table 4.4, the evaluations of the classifiers for sentiment in sentence level are
shown. In the tables, the ’Model’ column represents which model type it is, "Com-
bined’ is the combined model, ’Sentiment’ is the sentiment classifier. The other two
columns, Domain and Level, is which domain and text type it was trained on. The
datasets in which these models have been tested can be seen in the description of
the tables.

o In Table 4.4a, where the classifiers are evaluated on sentence level restaurant
dataset, the combined classifier trained on both laptop and restaurant sentence
level datasets performs best on all metrics except for precision, the classifier
with the best precision is the sentiment classifier trained on both restaurant
and laptop datasets in sentence level. The classifier with the best accuracy
outperforms the baseline model XRCE with 1 point.

e In Table 4.4b, where the classifiers are evaluated on sentence level laptop
dataset, the combined classifier trained on both laptop and restaurant sentence
level datasets performs best on all metrics. This model barely outperforms the
baseline model IIT-T.

e In Table 4.4c, where the classifiers are evaluated on sentence level hotels
dataset, the combined classifier trained on both restaurant and laptop is the

best on all metrics. It oupterforms the baseline model lIsislif by 4 points.

Overall, the combined classifier performs better than the sentiment classifier.
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(a) Performance of classifiers in sentiment polarity task with dataset: Restaurant,

Model Domain Level F1 Precision Recall  Accuracy
Combined Both Sentence | 89.547 89.536 89.771 89.771
Sentiment Both Sentence | 89.214 89.605 89.502  89.502
Combined Restaurant Sentence | 86.961 86.585 87.752  87.752
Sentiment Restaurant Sentence | 85.343 85.520 86.137  86.137
Combined Both Text 83.318 83.951 83.983  83.983
Sentiment Both Text 82.594 82.197 83.176  83.176
Combined Restaurant Text 80.994 82.593 81.157  81.157
Sentiment Laptop Sentence | 81.645 83.808 81.157  81.157
Sentiment Restaurant Text 80.335 80.286 80.888  80.888
Combined Laptop Sentence | 79.625 79.504 80.753  80.753
Sentiment Laptop Text 77.535 78.941 76.446  76.446
Combined Laptop Text 60.521 62.985 60.026  60.026
Baseline  Sentiment (XRCE) | - - - 88.126

sentence level

(b) Performance of classifiers in sentiment polarity task with dataset: Laptop, sen-

Model Domain Level F1 Precision Recall  Accuracy
Combined Both Sentence | 83.171 83.610 82.824 82.824
Sentiment Laptop Sentence | 82.676  82.964 82.603  82.603
Combined Laptop Sentence | 82.451  82.500 82.442  82.442
Sentiment Both Sentence | 80.936  80.743 81.226  81.226
Combined Restaurant Sentence | 77.086  75.696 79.007  79.007
Sentiment Restaurant Sentence | 75.467  76.246 76.971  76.971
Combined Both Text 76.187  76.099 76.717  76.717
Sentiment Restaurant Text 74.403  74.378 75.594  75.594
Sentiment Both Text 75.509  76.428 75.219  75.219
Sentiment Laptop Text 76.377  79.491 74.593  74.593
Combined Laptop Text 72.958  74.282 72.391  72.391
Combined Restaurant Text 65.361  70.480 69.211 69.211
Baseline Sentiment  (IIT-T) | - - - 82.772

tence level

(c) Performance of classifiers in sentiment polarity task with dataset: Hotel, sentence

level

Table 4.4: Evaluations of all sentiment classification models on sentence level

Model Domain Level F1 Precision Recall  Accuracy
Combined Both Sentence | 89.997 90.953 89.473 89.473
Sentiment Both Sentence | 89.083  89.377 88.854  88.854
Sentiment Restaurant Sentence | 86.955  86.852 87.306 87.306
Combined Laptop Sentence | 86.164  86.082 86.996  86.996
Sentiment Laptop Sentence | 86.526  87.050 86.377  86.377
Combined Restaurant Sentence | 85.487  85.001 86.068  86.068
Combined Both Text 84.156  84.191 84.210  84.210
Sentiment Restaurant Text 81.761  81.790 81.733  81.733
Sentiment Both Text 80.967 81.611 81.114 81.114
Combined Restaurant Text 79.516  81.267 78.328  78.328
Sentiment Laptop Text 78.440  83.407 75.232  75.232
Combined Laptop Text 73.332  73.048 73.684  73.684
Baseline  Sentiment  (Isislif) | - - - 85.840

datasets
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4.3.2 Text Level Datasets

In Table 4.5, the evaluations of the classifiers for sentiment in text level are shown.
In the tables, the 'Model’ column represents which model type it is, ’'Combined’ is
the combined model, 'Sentiment’ is the sentiment classifier. The other two columns,
Domain and Level, is which domain and text type it was trained on. The datasets
in which these models have been tested can be seen in the description of the tables.

o In Table 4.5a, where the performance of the sentiment classifiers on the restau-
rant dataset in text level is measured, the classifier which performs best in text
level restaurant dataset is the combined classifier trained on both restaurant
and laptop datasets in text level. This classifier outperforms the baseline clas-
sifier UWB by 5 points.

o In Table 4.5b, which the performance of the sentiment classifiers on the laptop
dataset in text level is measured, the combined classifier trained with both
restaurant and laptop datasets in text level performed the best on all mea-
surements. It performed better than the baseline model ECNU by 3 points.

e In Table 4.5¢, where the performance of the sentiment classifiers on the hotels
dataset in text level is measured, the combined model trained on both datasets
performs best on all used measurements.

For out of scope, the classifiers trained on sentence level performs better than the

ones trained on text level. Overall, the combined classifier performs better than the
sentiment classifier.
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(a) Performance

Model Domain Level F1 Precision Recall  Accuracy
Combined Both Sentence | 86.255 86.188 87.531 87.531
Combined Restaurant Sentence | 84.094  81.813 87.022  87.022
Combined Both Text 84.729  84.102 86.633  86.633
Sentiment Restaurant Sentence | 83.383  81.039 86.259  86.259
Sentiment Both Text 82.514  81.252 84.405  84.405
Combined Restaurant Text 81.244  80.903 82.673  82.673
Sentiment Restaurant Text 80.364  78.832 82.673  82.673
Combined Laptop Sentence | 80.439  79.857 82.442  82.442
Sentiment Both Sentence | 79.396  77.652 81.424  81.424
Sentiment Laptop Text 79.294  77.698 81.188  81.188
Sentiment Laptop Sentence | 78.722  79.022 80.152  80.152
Combined Laptop Text 73.690  70.518 77227 T7.227
Baseline  Sentiment (UWB) | - - - 81.931

of classifiers in sentiment polarity task with dataset: Restaurant,

text level

Model Domain Level F1 Precision Recall  Accuracy
Combined Both Sentence | 79.355 80.758 78.719 78.719
Combined Restaurant Sentence | 75.645  73.449 78.154  78.154
Sentiment Both Sentence | 77.130  76.650 T 00T
Sentiment Laptop Sentence | 76.220  75.553 77.401  77.401
Combined Laptop Text 75.148  74.386 76.697  76.697
Combined Laptop Sentence | 75.435  74.623 76.647  76.647
Combined Both Text 74.638  73.302 76.146  76.146
Sentiment Restaurant Sentence | 73.414  71.258 75.706  75.706
Sentiment Both Text 75.132  76.170 74.678  74.678
Sentiment Restaurant Text 71.708  69.870 73.944  73.944
Sentiment Laptop Text 74.279  74.728 73.944  73.944
Combined Restaurant Text 69.151  69.053 71.926  71.926
Baseline Sentiment  (ECNU) | - - - 75.046

(b) Performance of classifiers in sentiment polarity task with dataset: Laptop, text

level

Model Domain Level F1 Precision Recall  Accuracy
Combined Both Sentence | 86.906 86.502 87.315 87.315
Combined Restaurant Sentence | 85.477  84.103 87.315  87.315
Combined Both Text 85.379  84.855 86.430 86.430
Combined Laptop Text 82.974  81.562 84.660  84.660
Sentiment Both Sentence | 82.532  81.580 83.775  83.775
Combined Laptop Sentence | 82.290  81.142 83.480  83.480
Sentiment Restaurant Sentence | 81.924  80.433 83.480  83.480
Sentiment Restaurant Text 80.761  82.057 81.415 81.415
Sentiment Laptop Sentence | 79.959  80.521 80.530  80.530
Combined Restaurant Text 78.887  R81.546 76.401  76.401
Sentiment Laptop Text 78.600  81.600 76.401  76.401
Sentiment Both Text 77.194  78.321 76.401  76.401

(c) Performance of classifiers in sentiment polarity task with dataset: Hotel, text

level

Table 4.5: Evaluations of all sentiment classification models on text level datasets
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4.4 Results

For aspect classification, the text level datasets in Table 4.3 produces better results
than the sentence level datasets in Table 4.2, in both of these tables, the aspect
classifiers always outperforms the combined classifiers. In out-of-scope evaluations,
aspect classification performs better with classifiers which have been trained on
datasets with more unique aspects.

For sentiment classification, the combined classifiers always outperformed the sen-
timent classifiers. In out-of-scope scenarios, the classifiers which have been trained
on sentence level datasets outperform the classifiers which have been trained on the
text level datasets.
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Discussion

This chapter analyzes the results of the experiments. Section 5.1 discusses the
generation of unrelated data and how it affects the learning of the model to predict on
out-of-domain tasks. Section 5.2 is about our thoughts on how the models performed
in the evaluations. Lastly, the future work is treated in Section 5.3.

5.1 Out-of-domain

The SemEval-2015 had out-of-domain sentiment classification with the dataset Ho-
tels but did not have any task for out-of-domain aspect classification. As shown in
the results Chapter 4. We tried to achieve and evaluate for a generic model, which
should not be restricted by the amount of aspects in the training dataset. To achieve
this we experimented with the sentence pair classification from BERT, together with
the contextual word representation to find semantic similarities between an aspect
and a text. To teach a model whether an aspect was related or not to a text, we
fine-tuned the model with additional unrelated generated data.

Our out-of-domain implementation performed with good results on the out-of-domain
evaluation. In aspect category for hotels in Table 4.3c, which our aspect models have
not been introduced to before, the model achieved a slightly higher F1 score than
the in-domain baseline for laptop F1 score in Table 4.3b. This shows the potential
of using semantic similarities to find features for the relation between aspect and
a text input. However, to compare these models more in-depth, a better measure-
ment would be to also look at both precision and recall, as the laptop domain has
much more unique aspects, which in turn makes it more likely to predict more false-
positives that gives it a lower precision. Unfortunately, the data from the baseline
model does not include such information.

5.2 Models

For all the experiments and evaluations done in Chapter 4, we trained the models on
each specific dataset and tested in the others. Our expectation was that the model
would be able to improve the performance by using a combined dataset (restaurant
and laptop) to have more features to use for the aspect classification task. This
showed that it was not always the case, which we assume has to do with the differ-
ence between the number of unique aspects in the domains. The aspect classifiers
seem not to work well at the sentence-level test dataset. We suspect that the reason

37



5. Discussion

for this is due to each sentence not having necessarily have enough information to
validate if an aspect is relevant for a text. A sentence-level text input example is
“The thing wakes up super fast and is always ready to go.”, which is categorized
as "LAPTOP#OPERATION_PERFORMANCE'". In an out-of-domain and gener-
alized model, this sentence does not provide the necessary information to make it
clear that the aspect is related to the sentence and instead can be applied to a lot
of other aspects from other domains.

The combined model is consistently better than the sentiment model in all domains,
especially for in-domain where it slightly out-performed the Sentiment model. We
believe the reason for this is that the combined model is trained on the vast volume
of “unrelated” data, compared to the sentiment model, which allows it to learn to
ignore redundant features when predicting the sentiment. However, the combined
model performs worse than the aspect model in classifying relevant aspects. We
conclude that the reason for this is that the combined model has to find what is
“relevant”, where “relevant” for this model is related to the 4 sentiment polarity
labels, compared to the aspects model that was trained specifically on whether or
not the aspect is relevant to the text. Therefore the combined model has a harder
time classifying an aspect as relevant, due to the increased complexity of classifying
for additional labels and because of the lack of training data for each of the 4 related
labels.

5.3 Future Work

Given additional time, there exist several additional adaptions of our system to
make it perform better, which will be described in this section. In the field of NLP
in general for the GLUE benchmark, new state-of-the-art solutions are continuously
published at a fast pace. We assume there will be new and improved ideas of solving
ABSA using pre-trained language models, as we did in this thesis.

One of the future adaptions to our work is to use the BERT-big model, which is a
model with more hidden layers and has been trained on a larger corpus than the
normal BERT we used in this thesis. In the original BERT papers [7], it has been
shown that the big BERT model performs better than the original one.

Opinion target expression (OTE) might work well in BERT, by treating it like a
question answering task Figure 2.1 (c), where the aspect target is extracted as a
sequence, which is defined with a start and end offset within the input text. The
additional fine-tuning of OTE might result in the models learning more features
to reach better scores on the evaluations. Some of the previous state of the art
described in Section 2.4 and Section 2.5 based their aspect classifiers on the OTE
models.
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Conclusion

The purpose of the thesis was to evaluate a pre-trained NLP model, based on unsu-
pervised training on a large corpus to get contextual word representation features,
to solve an NLP task, ABSA, with the dataset provided from SemEval-2016. There
exists no ABSA task, from SemEval, that consists of a subtask where the models
should be able to classify out-of-domain aspects, even though an out-of-domain test
dataset was given (Hotel). The only out-of-domain subtask was to use the model
to classify the sentiment polarity and not classify the aspects, as such we did not
have a baseline to compare to. We developed a model that was able to classify out-
of-domain aspects with the help of a pre-trained language model. The evaluation
is based on the rules of SemEval-2016, where the aspect classifiers were measured
using F1 metrics and the sentiment classifier was measured using accuracy. The
models in this thesis were evaluated on two subtasks consisting of different level of
input (Sentence Level, Text Level), three different domains (Laptop, Restaurant,
Hotel) and two classifying tasks (Aspects, Sentiment).

We were able to implement a model that can predict the aspect of a text that is
outside the domain that the model was trained on, by constructing the aspect classi-
fier model as a sentence pair classification task, together with a method for training
the model with generated data that consist of related’ and "unrelated’ labels. The
sentiment classifier was trained with supervised learning using the relation between
an aspect and a text to learn when the contextual representation showed a sentiment
context, in the same way as the aspect classifier. The models were able to achieve
good evaluation score for some out-of-domain aspects in ABSA, surpassing all of
the original submissions from SemEval-2016 in their in-domain classifying, with the
exception of NLANGP [31] in the aspect category classification for laptop dataset
on sentence level. This shows that our generic aspect classifying approach is at least
as good as the in-domain trained models.

Four different models, based on sentence pair classification, were implemented and
evaluated: one sentiment classifier model, two aspect classifier models and the last
one which is a combined model that can be used to classify both aspect and sentiment
polarity using only one model. In addition to the four sentence pair classification
models, one Single Sentence classifier based model was implemented but is restricted
to the aspects in the training data and thus could not be tested for out-of-domain,
but was implemented to be compared with the other models on in-domain evalua-
tions.
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6. Conclusion

The results achieved in this thesis indicates that the sentence pair classification
models are able to use the pre-trained contextual word representations as features
to find relations between a text and an aspect but also between an aspect and sen-
timent with results that outperformed almost all of the baselines, which consisted
of the previous State of the art models. The combined model appeared to perform
well with classifying both aspect and sentiment using only one sentence pair classi-
fier. The combined model performed better than the sentiment classifier model, but
performed slightly worse on aspect classification compared to the aspect classifier
models.
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