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Modelling the Effect of Stationary Fluctuations in Nuclear Reactors Using Proba-
bilistic Methods
Monte-Carlo Based Method for Calculating the Effect of Stationary Fluctuations in
1D and 2D
ANDREAS TATIDIS
Department of Physics
Chalmers University of Technology

Abstract
A Monte-Carlo-based method for determining the effect on the neutron flux of sta-
tionary fluctuations in 1D and 2D is proposed in this study. The cross-sections of
the two-group balance equations relying on the diffusion approximation in the fre-
quency domain are split into their real and imaginary parts, and a modified Green’s
function technique is used. In this technique, the balance equations for the real part
of the balance equations are mimicked with Monte Carlo using an equivalent sub-
critical system. The exact same balance equations are obtained for the imaginary
part. The coupling between the real and imaginary parts are resolved outside of
the Monte Carlo Code, taking advantage of the properties of the Green’s function.
The amplitude and phase close to the point of perturbation agree well with diffu-
sion based-codes such as CORE SIM. This method is applicable to any frequency,
and any type of cross-section perturbation. The Green’s function is furthermore
found to be insensitive to frequencies around and above the plateau region. Using
the Green’s function at one given frequency within this frequency range has thus a
negligible impact on the estimated fluctuations in neutron flux.
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1
Introduction

Today, the fleet of nuclear reactors in operation in Europe is getting close to the
end of its lifetime. More than 60% of the reactors in operation are over 30 years
old and due to ageing of the reactor vessels and material stresses more problems
are expected to occur. Furthermore, the conservatism in nuclear safety analyses has
been reduced as the tools available today have an increased fidelity and refinement.
For these reasons there is a need today for better core monitoring techniques to
early detect any possible unexpected core behaviour.

Nuclear reactor systems, even at steady-state conditions, display fluctuations
in neutron flux around their mean value. Such fluctuations are referred to as ”noise”
and arise due to the turbulent flow, the presence of boiling, mechanical vibrations,
and the stochastic nature of the nuclear reactions taking place in the core. The mean
values representative of the steady-state are, in most cases, more important than
the fluctuations. However, the fluctuations contain information about the dynamics
of the system and are of great importance for diagnostic purposes when determining
e.g. the possible location of perturbations in the system that cause fluctuations of
the neutron flux in the system [3].

Despite the stochastic nature of the driving fluctuations, the modelling of the
noise is mostly performed with deterministic models [4, 5, 6, 7, 8]. In such models,
multi-group diffusion theory is used to derive balance equations, those equations
are split into a mean value and a fluctuating part, and Fourier transformed since
the noise sources tend to be stationary. The static solution is used to estimate the
multiplication factor, keff , as well as the static flux. The main reason to use Monte
Carlo codes instead of the more used deterministic codes is that Monte Carlo tends
to use fewer approximations, and describes the space-dependence of a system with
more details independently of mesh size and size of the system.

An earlier project at the Division of Subatomic and Plasma Physics, Depart-
ment of Physics, Chalmers University of Technology aimed to demonstrate the fea-
sibility of using Monte Carlo code by splitting the balance equations into real and
imaginary parts [2, 1]. This project coupled diffusion theory with the Monte Carlo
simulations by using custom cross-sections representing multi-group diffusion the-
ory according to [9]. This model, when performing the simulations, ignored the
coupling between the imaginary and real parts which means that the simulations
could only be performed for frequencies that yield fluctuations with a purely real or
purely imaginary part. For frequencies with both real and imaginary contributions,
iteration between the real and imaginary parts would need to be performed, calcu-
lating each part separately until convergence. Furthermore, the developed model
was unable to handle possible negative contributions in the real or imaginary parts
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1. Introduction

of the balance equations. Although not stated in that report, ignoring the coupling
between real and imaginary components has the repercussion that the model does
not work for high frequencies, since by ignoring the coupling the neutron speed de-
pendent terms are also ignored. Such terms are the main contributing terms for high
frequency perturbations. The previous model is furthermore unable to estimate the
fluctuating flux for frequencies where both the real and imaginary parts have signif-
icant contributions due to the absence of the coupling. That means that the model
works for low frequencies f .0.005 Hz where the phase is expected to be −π/2 rad
or f ≈ 1 Hz where the phase is expected to be 0 rad, as explained in section 2.2.

A different approach is hereafter presented here that makes it possible to de-
termine the noise at any frequency without any modification to the existing Monte
Carlo source codes. This is made possible by splitting only the cross-section matrix
into its real and imaginary part and acting upon the imaginary cross-sections as an
external source. The real part of the cross-sections are used to determine a modified
Green’s function, which is estimated with Monte Carlo code, and then the noise is
determined by taking advantage of the Green’s function technique.

The Monte Carlo code used for this project is MCNP6.2 [10]. For this method,
as of the writing of this report, the Monte Carlo code Serpent 2.1.19 [11] has been
proven to be incapable of being modified in the desired manner [12], because Serpent
expects the first interaction to be an elastic scattering which is formally not defined
in this present method.

Although the time required to perform such Monte Carlo simulations is long,
once the Green’s function is obtained, the estimation of the induced neutron noise
can be done in seconds, which speaks for its usefulness.
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2
Theory

2.1 Balance Equations & Green’s Function
The neutron flux, φ, is here defined by the time-dependent two-group diffusion
equation as:
[ 1
v1

∂
∂t

0
0 1

v2
∂
∂t

]
φ = ∇ ·

[
D1,0 0

0 D2,0

]
∇φ

+
[
(1− β)νΣf,1 − Σa,1 − Σr (1− β)νΣf,2)

Σr −Σa,2

]
φ+

[
λC
0

]
(2.1)

where the flux, cross sections and concentration of precursors are dependent on time
and space, the diffusion coefficients are dependent only on space, as neglecting the
time-dependence has no impact for practical noise calculations[7]. The term of the
left hand side describes the time dependence of the flux, the first term on the right
side describes how the neutrons diffuse and leak out of the system, the second term
describes all the neutron interactions that can occur and the last term describes the
neutron contribution from decaying fission products. The flux matrix, φ = [φ1, φ2]ᵀ,
contains both the fast and thermal components and has the size 2N ×N , where N
is the size of the fast and thermal fluxes, respectively, originating from the spatial
discretization of the equations. Each cross-section Σ is a diagonal matrix of the size
N , and the thermal component contian neutrons with energies below 0.625 eV while
the fast component contains neutrons above 0.625 eV. The equation for one-group
of precursors of delayed neutrons, C, is defined as:

∂

∂t
C = βνΣf,1φ1 + βνΣf,2φ2 − λC, (2.2)

where the left hand side describes the time-dependence of the precursors, the first
and second terms of the right side describe the production of precursors resulting
from fission in the fuel and the last term describes the decay of the concentration of
precursors. The removal cross-section is defined as:

Σr = Σs0,1→2 − Σs0,2→1φ2/φ1, (2.3)

and describes the exchange of neutrons between energy groups.
All time-dependent quantities, X(r, t), are split into a time-independent mean,

X0(r), and a fluctuating part δX(r, t), Fourier transformed in time and the second
order fluctuations, assumed to be small, are ignored. The derivation of the noise
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2. Theory

diffusion equation assumes that the reactor is operating at steady-state conditions.
To ensure such a condition and to avoid any deviation from it due to the spatial
discretization, the fission cross-sections are re-normalised according to: νΣf,g =
νΣf,g/keff . The static part of the diffusion equation thus becomes

∇ ·
[
D1,0 0

0 D2,0

]
∇φ0 +

[νΣf,1,0
keff

− Σa,1,0 − Σr,0
νΣf,2,0
keff

Σr,0 −Σa,2,0

]
φ0 = 0, (2.4)

and the dynamic part is

∇ ·D∇δφ+ Σδφ = −δS (2.5)
where the matrices are defined as:

D =
[
D1,0 0

0 D2,0

]
(2.6)

Σ =
νΣf,1,0

keff

(
1− iωβ

iω+λ

)
− iω

v1
− Σa,1,0 − Σr,0

νΣf,2,0
keff

(
1− iωβ

iω+λ

)
Σr,0 − iω

v2
− Σa,2,0

 (2.7)

δS =
[ δνΣf,1

keff

(
1− iωβ

iω+λ

)
− δΣa,1 − δΣr

δνΣf,2
keff

(
1− iωβ

iω+λ

)
δΣr −δΣa,2

]
φ0. (2.8)

The normal procedure to solve these equations is to first solve the static one to obtain
the static flux, φ0, and the multiplication factor, keff , and then update the cross-
sections, Σ & δΣ, with these values before solving the dynamic equation. However,
Monte Carlo can not interpret complex valued cross-section since the complex values
do not have a direct physical meaning. A way to work around this problem is to
split the cross-section matrix, (2.7), in the dynamic equation into its real, ΣR, and
imaginary part, ΣI , move the imaginary cross-sections to the right hand side and
redefine the source term as

∇ ·D∇δφ+ ΣRδφ = −δS − iΣIδφ = −S, (2.9)

where

ΣR =
νΣf,1,0

keff

λ2+ω2(1−β))
λ2+ω2 − Σa,1,0 − Σr,0

νΣf,2,0
keff

λ2+ω2(1−β))
λ2+ω2

Σr,0 −Σa,2,0

 (2.10)

ΣI =
−νΣf,1,0

keff

ωβλ
λ2+ω2 − ω

v1
−νΣf,2,0

keff

ωβλ
λ2+ω2

0 − ω
v2

 . (2.11)

Now all the real valued parameters are on the left hand side of (2.9), while the right
hand side contains complex valued parameters. Therefore, by using the Green’s
function technique, the Green’s function of this modified neutron noise diffusion
equation is given by

∇ ·D∇
[
G1→1(r, r′, ω)
G1→2(r, r′, ω)

]
+ ΣR

[
G1→1(r, r′, ω)
G1→2(r, r′, ω)

]
= −

[
δ(r− r′)

0

]
, (2.12)
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and

∇ ·D∇
[
G2→1(r, r′, ω)
G2→2(r, r′, ω)

]
+ ΣR

[
G2→1(r, r′, ω)
G2→2(r, r′, ω)

]
= −

[
0

δ(r− r′)

]
. (2.13)

All values in these equations are real and the equations resemble a static equation
with an external source. Therefore, the Green’s function can be estimated with
Monte Carlo code, by acting upon the Dirac delta functions as if they were external
sources and by inputing the correct real valued cross-sections, ΣR, to the problem.
The dynamic flux is then given by the integral equation

δφ(r, ω) =
∫
V
G(r, r′, ω)

(
δS(r′, ω) + iΣIδφ(r′, ω)

)
dV ′, (2.14)

which is a Fredholm equation of the second kind, with the Green’s function defined
as

G =
[
G1→1 G2→1
G1→2 G2→2

]
, (2.15)

where the first index, g, of Gg→g′ describes which energy group the neutron source
emits neutrons in and the second index, g′, describes in which energy group the
neutron is absorbed in.

The frequency dependent factor when splitt into its real and imaginary parts
is equal to

1− iωβ

iω + λ
= λ2 + ω2(1− β)

λ2 + ω2 + i
ωλβ

λ2 + ω2 . (2.16)

It is seen that the real part is bound between 1 and 1− β and that it is close to its
lower limit for frequencies at the plateau region or for frequencies above f &1 Hz,
with an relative error of ∼ 10−6, that is for frequencies ω >> λ the real part of the
frequency-dependent factor is asymptotically equal to a constant

1
keff

λ2 + ω2(1− β)
λ2 + ω2 ' 1− β

keff
. (2.17)

The imaginary part, on the other hand, is zero at low or high frequencies outside
of the plateau region. Furthermore, The Green’s function, since it is determined by
the real valued cross-sections, has a weak frequency dependence for values on the
plateau and above, which means that the Green’s frequency can be fixed at ∼1 Hz
and the dynamic flux will be valid for any frequency from 1 Hz to ∞Hz.
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2. Theory

2.2 Stationary Noise Fluctuation Basics

A typical transfer function for neutron noise in light water reactors, according to
the point kinetic model [3], is described by the zero-power reactor transfer function:

G0(ω) = 1
iω
(
Λ + β

iω+λ

) , (2.18)

λ is the precursor decay constant describing the decay rate of fission products that
emit neutrons, Λ, the mean prompt neutron lifetime and, β, the delayed neutron
fraction, and its Bode diagram is displayed in figure 2.1. Typical values for these
quantities are λ ≈ 0.0851 s−1, Λ ≈ 0.1 ms and β ≈ 530 pcm (per cent mille). For low
frequencies, f . 0.005 Hz, and high frequencies, f & 500 Hz, the same behaviour
concerning the phase is obtained, both having similar time delays. At frequencies
around 1 Hz, at the plateau region, the phase is close to zero meaning that there is
no delay in the response. The lower and upper cut-offs for this transfer function are
at the λ/2πHz and β/Λ2πHz, respectively. At these points, the real and imaginary
parts of the dynamic fluxes are of the same order making these regions especially
interesting from a computational point of view. Therefore these cut-off points have
been chosen for the comparison with CORE SIM.
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Figure 2.1: Typical zero-power reactor transfer function for light water reactors
according to the point kinetic model, with cut-offs at λ/2πHz and β/Λ2πHz.
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2.3 Discretization of Integral Equation
The discretization of the integral equation for the one dimensional case is done as
followed. x is represented by the index n and x′ by the index m. As a result, the flux
is represented as δφ(x) = δφn and the Green’s function as Gg→g′(x, x′) = Gg→g′,nm,
with a mesh size of N . Element wise, the integral equation in one dimension is

δφn =
∑
m

∫
L
Gnm

(
δSm + i[ΣIδφ]m

)
dx′, (2.19)

L ∈ [a, b] and[ΣIδφ]m is displayed here as a vector to simplify the indexing. Discretiz-
ing the integral equation in one dimension, with a fixed step size ∆x′ = (b− a)/N ,
makes it apparent that the discretized equation is a linear matrix equation in the
form of (

I − iGΣI∆x
)
δφ = GδS∆x, (2.20)

where ∆x is a constant step size, and can easily be solved numerically. The Green’s
function is defined as:

G =
[
G1→1 G2→1
G1→2 G2→2

]
, (2.21)

and the perturbation, δS, and the imaginary cross-section matrix, ΣI , are defined
as before in equations (2.8) and (2.11), respectively.

The discretization in two dimensions is done similarly to [13]. Analogously as
for the one dimensional case the integral equation, in the domain A ∈ [a, b] × [c, d]
with a square mesh size of N ×N , becomes(

I − iGΣI∆x∆y
)
δφ = GδS∆x∆y, (2.22)

where I is the identity matrix and ∆x = (b− a)/N , ∆y = (d− c)/N . The discrete
Green’s function is defined as Gg→g′(x, y, x′, y′) = Gg→g′iljm, with i, l, j,m corre-
sponding to x, y, x′, y′, respectively, resulting in the Green’s function

Gg→g′ =


G

(1,1)
g→g′ G

(1,2)
g→g′ ... G

(1,N)
g→g′

G
(2,1)
g→g′ G

(2,2)
g→g′ ... G

(2,N)
g→g′

... ... . . . ...
G

(N,1)
g→g′ ... ... G

(N,N)
g→g′ ,

 (2.23)

and G
(i,j)
g→g′ = [Gg→g′iljm]Nl,m=1, where the entire matrix, of the size 2N2 × 2N2, is

given by

G =
[
G1→1 G2→1
G1→2 G2→2

]
. (2.24)

The cross-section matrix, ΣI,2D, is defined, by splitting the cross-section matrix, for
the one dimensional case, into its sub-matrices, as

ΣI,1D =
[
ΣI

1,1 ΣI
1,2

0 ΣI
2,2

]
(2.25)
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2. Theory

ΣI,2D =
[
I ⊗ΣI

1,1 I ⊗ΣI
1,2

0 I ⊗ΣI
2,2

]
, (2.26)

where ΣI,1D is defined in the same way as the one dimensional case and ⊗ is the
Krönecker product that multiplies every element of the left matrix with the whole
right matrix, and the dynamic flux and noise source are defined as vectors in the
form [δφ]Ni,j=1 and [δS]Ni,j=1.

2.4 Relating G1→g′ and G2→g′ Simulations Through
their Source Strengths

The Green’s components of (2.12) are determined with two different simulations,
one for g = 1 and one for g = 2, and therefore they are not directly related to each
other. However, since they have the same source strength (equal to unity), they can
be normalized according to the source position. This method of normalization is
chosen because of the fact that if all parameters in a system are known, the solution
for a source calculation is unique and no external quantity is needed (as the power for
normalization of the static flux calculation). In one dimension, this can be achieved
by integrating the top equation of (2.12) and the bottom equation of (2.13) on a
small length, ε, around the source point. The following relations are then obtained:

lim
ε→0

N11(x′)D1(x′)
[

d
dxG1→1

]x′+ε

x′−ε
= −1 (2.27)

lim
ε→0

N22(x′)D2(x′)
[

d
dxG2→2

]x′+ε

x′−ε
= −1, (2.28)

where N11 is the amplitude of G1→1 and N22 is the amplitude of G2→2. In two
dimensions the source strength is obtained integrating around the source. Using the
divergence theorem on the left hand side results in

lim
ε→0

N11(x′, y′)D1(x′, y′)
[ ∂

∂x
G1→1

]x′+ε

x′−ε
+
[
∂

∂y
G1→1

]y′+ε

y′−ε

 = −1 (2.29)

lim
ε→0

N22(x′, y′)D2(x′, y′)
[ ∂

∂x
G2→2

]x′+ε

x′−ε
+
[
∂

∂y
G2→2

]y′+ε

y′−ε

 = −1, (2.30)

The amplitudes N12 and N21 are given by

N12(r′) =N11(r′)maxr′ G1→2

maxr′ G1→1
(2.31)

N21(r′) =N22(r′)maxr′ G2→1

maxr′ G2→2
, (2.32)

since G1→1 and G1→2 or G2→1 and G2→2 come from the same simulation and are
already related to each other, they only need to be re-normalized according to N11
or N22, respectively.
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2. Theory

Note that the normalization is done according to diffusion theory and not
transport theory which Monte Carlo is based on. For a potentially better result
of the normalization, the discontinuity of the neutron current at the source point
should be used, that is equation (2.27) is replaced by

lim
ε→0

N11(x′) [J1→1]x
′+ε
x′−ε = 1. (2.33)

This, however, has proven to be cumbersome for the automation of the simulations,
because of the structure of the output file of MCNP.
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3
Method

3.1 Implementation
The Monte Carlo-based noise method can be implemented in the following way.
Once the geometry and materials have been chosen, a set of homogenized cross sec-
tions that resembles two-group diffusion theory are calculated from a Monte Carlo
simulation, according to [2, 9], and an ACE-file (A Compact Evaluated nuclear
data file) [10] is created with these new cross sections. The cross-sections that are
inputted in the ACE-file in this case are macroscopic and are used in MCNP by
inserting a material density of 1 particle/barn · cm. The cross-sections and quanti-
ties used in the custom ACE-files are the macroscopic transport cross-section Σtr,
non-elastic scattering cross section Σs, macroscopic absorption Σa, macroscopic fis-
sion cross-section Σf , average neutron yield ν, and fission spectrum χ which is not
included in table 3.1 since only fast neutrons are produced in this case. The cut-off
between energy groups is set at 0.625 eV. The diffusion coefficient for comparison
with diffusion based code is defined as D = 1/3Σtr.

When the cross-sections are known, a criticality simulation is performed, with
the two-group cross sections in Monte Carlo to estimate keff and the static flux.
With this estimated multiplication factor, the average neutron yields are updated
with the factor (2.17). Note that the neutron yields are updated and not the fission
cross-section, since the fission, absorption and capture cross-sections in the ACE-
files are dependent on each other, whereas only one value changes if the neutron
yield of a group is updated.

The Green’s function (2.12) is determined with Monte Carlo by substituting
the Dirac deltas on the right side with volumetric sources that cover the unit mesh
volumes, that is the source strength is divided by the unit mesh volume. When
integrating on the mesh size, the source strength is multiplied by the unit mesh vol-
ume and the source strength after integration is independent of the mesh size. Two
simulations are performed per mesh volume, one with a fast source that determines
G1→1 & G1→2 and one with a thermal source that determines G2→1 & G2→2.

When the Green’s function is determined, then all the needed information is
known, and the dynamic flux is obtained by solving the matrix equation (2.20).
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3. Method

The methodology for Monte Carlo-based noise calculation is summarised in
six steps:

1. Choose geometry & material for the system.
2. Determine the corresponding two-group cross sections for Monte Carlo.
3. Perform a static criticality simulation to estimate keff , φ0.
4. Update the average neutron yields according to:
νnew = νold/keff · (λ2 + ω2(1− β))/(λ2 + ω2).

5. Determine the systems Green’s function with two source simulation at each
mesh volume.

6. Solve the matrix equation (2.20) to determine the neutron flux fluctuation δφ.

3.2 Verification

Three geometries are considered hereafter. A homogeneous slab reactor between
x = ±100.5 cm with vacuum boundaries (see figure 3.1) to demonstrate validity of
the method, a one dimensional system of eleven 1 cm thick fuel pins with a 0.25 cm
thick layer of water as moderator between each fuel pin and 0.125 cm thick layer
of water between the end fuel pins with vacuum boundary (see figure 3.2) to show
that the presented method can handle complex geometries, and a two dimensional
homogeneous square reactor of 101×101 cm2 with vacuum boundaries (see figure
3.3) to illustrate that the method can be extended to higher dimensions.

-100 -50 0 50 100

Distance from centre [cm]

Homogeneous

Vacuum

Figure 3.1: One dimensional 201 cm wide homogeneous slab reactor with vacuum
boundaries.

-8 -6 -4 -2 0 2 4 6 8

Distance from centre [cm]

Fuel

Water

Vacuum

Figure 3.2: One dimensional reactor with eleven 1 cm wide fuel pins with 0.25 cm
thick layer of light water between the fuel pins as moderator and 0.125 cm thick
layer of light water between the fuel pins and vacuum boundaries.
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Figure 3.3: Two dimensional 101 × 101 cm2 square slab reactor with vacuum
boundaries.

The parameters for both systems are given in table 3.1 and the point-kinetic
data, as well as the perturbations, are given in table 3.2. The frequencies that are
analyzed are those at the cut-off regions and frequencies on the plateau region for
the respective systems.

Material
properties Fuel region Mod region Homogeneous

Σa,1,0 0.0188 cm−1 4 · 10−4 cm−1 0.0157 cm−1

Σa,2,0 0.1451 cm−1 0.0206 cm−1 0.1202 cm−1

Σf,1,0 0.00472 cm−1 - 3.775 · 10−3 cm−1

Σf,2,0 0.10045 cm−1 - 0.0804 cm−1

ν1 2.5636 - 2.5636
ν2 2.4367 - 2.4367
Σr,0 2.3 · 10−4 cm−1 0.0135 cm−1 0.0029 cm−1

Σtr,1 0.4117 cm−1 0.2865 cm−1 0.3866 cm−1

Σtr,2 0.5590 cm−1 1.0434 cm−1 0.6558 cm−1

D1,0 0.8096 cm 1.1635 cm 0.8620 cm
D2,0 0.5964 cm 0.3195 cm 0.5083 cm

Table 3.1: Cross section data for fuel and moderator, or for the homogeneous
region. Data taken from [1].

Point-Kinetic Data Perturbation Strength
β 530 pcm δνΣf,i 2S cm−1

λ 0.0851 s−1 δΣa,i S cm−1

v1 1.52 · 107 cm/s δΣr S cm−1

v2 4.13 · 105 cm/s Arbitrary noise source S ∈ C

Table 3.2: Point-kinetic data and perturbation strengths (i = 1, 2 for fast and
thermal groups, respectively.)
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System MCNP keff CORE SIM keff
Homogeneous 0.76548 ± 0.00031 0.76401
11 Fuel Pin 0.30171 ± 0.00002 0.29022
2D Homogeneous 0.71171 ± 0.00017 0.70992

Table 3.3: Multiplication factors for the different systems analyzed.

3.3 Symmetries
For the one-dimensional cases, the source calculations were performed for the right
half side of the space while the flux was estimated throughout the whole system,
and then the Green’s function was mirrored in order to save computational time.
The estimated Green’s function is denoted G

1/2
g→g′,ij where i = 1, 2, . . . , I and j =

J/2, J/2 + 1, . . . , J , where i represents the flux position and j the source position.
The right side of the sources was mirrored onto the left side according to

G
1/2
g→g′,ij = Gg→g′,I−i,J−j. (3.1)

For the two dimensional system, the source calculations were performed for the
top right quarter of the geometry while the flux was estimated throughout the whole
system. This was done in order to save computational time. The Green’s function
is denoted by G1/4

ijkl, where ij are the flux positions, i = 1, . . . , I and j = 1, . . . , J ,
while kl are the source positions k = K/2, ...K and l = L/2, ...L. The top right
quarter of the sources were mirrored to the top left, bottom left, and bottom right
according to

G
1/4
g→g′,ijkl = Gg→g′,I−i,j,K−k,l

G
1/4
g→g′,ijkl = Gg→g′,I−i,J−j,K−k,L−l

G
1/4
g→g′,ijkl = Gg→g′,i,J−j,k,L−l,

(3.2)

respectively.
Generally, the thermal source will generate more neutrons since neutrons from

the fast source escape before being thermalized. Therefore, it is advisable to use
fewer neutrons when determining G2→g′ . Before the source calculations are started,
it is also recommended to perform a simulation at a point near the middle of the
system where most of the neutrons are created and a point near the boundary where
fewer neutrons are created, as well as both fuel and moderator regions to get a sense
of the upper and lower time duration for the whole simulation.
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4
Results

In the following, three types of simulations are presented: direct CORE SIM sim-
ulation, Monte Carlo based simulation, and the same methodology as presented in
this report but with CORE SIM used to determine the Green’s function.

The validity of the method is shown in figure 4.1, where CORE SIM was used
to determine the Green’s function and then compared with a direct CORE SIM
simulation. The Green’s functions were calculated at three different step sizes, and
all of them overlap which means that the method is insensitive to the step size.

Figure 4.2 compares direct CORE SIM with four different Green’s functions,
calculated with CORE SIM, fixed at different frequencies. The Green’s functions
fixed at frequencies at the plateau region and above show little difference while the
Green’s function fixed at the lower frequency cut-off causes a deviation from the
direct CORE SIM simulation when trying to calculate frequency at the plateau.
Figure 4.3 compares the amplitude and phase of the fast flux as a function of fre-
quency of CORE SIM and the MCNP based method with a Green’s function fixed at
a frequency of 1/2πHz. The MCNP based method has similar behaviour as CORE
SIM at the plateau region. In this region, the phase at all points of the system is
closer to zero than CORE SIM, while the phase according to CORE SIM is greater
for an interval above the upper frequency cut-off. This demonstrates that noise
simulations at low frequencies are no longer reliable if the frequency for the Green’s
is fixed at the plateau region or above.

Figures 4.4, 4.5, 4.6 and 4.7 show the difference between CORE SIM and the
Monte-Carlo based method with different mesh sizes for the homogeneous system. A
finer mesh in MCNP results in a distribution and phase that more closely resembles
the results from CORE SIM, where a finer mesh is required in MCNP than in CORE
SIM to reach mesh convergence. Similar frequency dependence is observed for the
heterogeneous 11 fuel pin system as seen in figures 4.8 and 4.9. The response for the
MCNP based method is faster than CORE SIM at the plateau, while the opposite is
true for the eleven fuel pins system at high frequencies where the behaviour differs,
around the upper cut-off frequency, compared to the homogeneous case. The phase
at this upper cut-off frequency according to CORE SIM is larger than the Monte
Carlo-based method.

The dynamic calculations for the two dimensional square reactor are displayed
in figures 4.10, 4.11, 4.12 and 4.13. For all frequencies, the MCNP based method has
a larger phase than the phase given by CORE SIM. The absolute difference between
CORE SIM and the MCNP based method, for the 185 Hz, is ∼0.07 rad for the fast
phase and ∼0.04 rad for the thermal phase. The step size for the MCNP simulation
is 1 cm. The one-dimensional case suggests that this mesh size is not fine enough

14
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for the solution to be mesh independent. Observations from the one dimensional
homogeneous case suggest that a finer mesh results in a smaller phase.

Although not presented in any of the figures, when the Green’s function is
obtained with CORE SIM, for either low or high frequencies, the resulting flux dis-
tribution is indistinguishable from a direct CORE SIM simulation. It is unclear
whether the differences observed between MCNP and CORE SIM, for low frequen-
cies, in this regard is a result from the difference between transport and diffusion,
or due an issue of implementation in the Monte Carlo-based method.
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Figure 4.1: Homogeneous system with perturbation in the middle with a frequency
of 1/2πHz to show the validity of the method through comparison with CORE SIM
(blue), with the step size 0.25 cm, and three Green’s functions, calculated with
CORE SIM, with varying step size 1 cm (red), 0.33 cm (yellow) and 0.25 cm (pur-
ple). The x−axis displays the distance from the centre of the core, the y−axis the
amplitude of the flux relative to the max value in the fast group (left) and the y−axis
the phase in radians (right).
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of
Figure 4.2: Homogeneous system with perturbation in the middle at a frequency
of 1/2πHz calculated with CORE SIM directly (blue) and four different Green’s
functions from CORE SIM fixed at four different frequencies, 0.0135 Hz (green),
1/2πHz (red), 10/2πHz (yellow) and ∞ Hz (purple). The x−axis displays the
distance from the centre of the core, the y−axis the amplitude shows the flux relative
to the max value in the fast group (left) and the y−axis the phase in radians (right).
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Figure 4.3: Mean amplitude/Phase of the fast flux for the homogeneous system,
with a perturbation at the centre, as a function of frequency with a step size of
0.25 cm. The red graphs are simulated with CORE SIM and the dashed blue graphs
are estimated with the Monte Carlo-based method with a Green’s function fixed
at a frequency of 1/2πHz. The phase is collected a four points: the centre, 5 cm
off-centre, 7.5 cm off-centre and 25 cm off-centre.
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Figure 4.4: Homogeneous system with a frequency of 0.0135 Hz, with a step size
of 1 cm. MCNP-based simulations (red) are compared with CORE SIM (blue), and
the yellow graph in the phase plots displays the absolute difference of the phase in
radians, between CORE Sim and Monte Carlo. The x−axis displays the distance
from the centre of the core, the y−axis the amplitude of the flux relative to the max
value in the fast group (left) and the y−axis the phase in radians (right).
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Figure 4.5: Homogeneous system with flux frequency at 1 Hz and Green’s function
fixed at 1/2πHz, where the Green’s functions is calculated with MCNP with different
step sized, 1 cm (red), 0.33 cm (purple), and 0.25 cm (green), compared with CORE
SIM (blue). The right axis on the phase graphs displays the absolute difference
between the Monte Carlo method and CORE SIM, where the solid line represents
step size 1 cm, the dotted line step size 0.33 cm, the dashed line step size 0.25 cm. The
x−axis displays the distance from the centre of the core, the y−axis the amplitude
of the flux relative to the max value in the fast group (left) and the y−axis the phase
in radians (right).
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Figure 4.6: Homogeneous system at a frequency of 185 Hz and a Green’s function
fixed at a frequency of 1/2πHz, where the Green’s functions are calculated with
MCNP with different step sizes, 1 cm (red), 0.33 cm (purple), and 0.25 cm (green).
The CORE SIM simulaiton is represented in blue. The right axis on the phase graphs
displays the absolute difference between the Monte Carlo method and CORE SIM,
where the solid line represents step size 1 cm, the dotted line step size 0.33 cm, the
dashed line step size 0.25 cm. The x−axis displays the distance from the centre of
the core, the y−axis the amplitude of the flux relative to the max value in the fast
group (left) and the y−axis the phase in radians (right).
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Figure 4.7: Homogeneous system with a frequency of 1 Hz and Green’s func-
tion fixed at a frequency of 1/2πHz with a perturbation 50 m off-centre, where the
Green’s functions are calculated with MCNP with different step sizes, 1 cm (red)
and 0.25 cm (green), compared with CORE SIM (blue). The right axis on the phase
graphs displays the absolute difference between the Monte Carlo method and CORE
SIM, where the solid line represents step size 1 m, the dotted line step size 0.33 cm,
and the dashed line 0.25 cm. The x−axis displays the distance from the centre of
the core, the y−axis the amplitude of the flux relative to the max value in the fast
group (left) and the y−axis the phase in radians (right).
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Figure 4.8: 11 fuel pin system with a frequency of 1/2πHz. Comparison with
CORE SIM (blue), and MCNP (red), with a step size in MCNP of 0.025 cm. The
x−axis displays the distance from the centre in cm, the y−axis on the amplitude
graphs (left) are normalised according to the maximum value of the fast flux. The
left y−axis on the phase graphs (right) are in radians while the right y−axis shows
the absolute difference between the phases of CORE SIM and MCNP in radians.
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Figure 4.9: 11 fuel pin system with a frequency of 150 Hz and a Green’s function
fixed at a frequency of 1/2πHz. Comparison with CORESIM (blue), and MCNP
(red), with a step size in MCNP of 0.025 cm. The x−axis displays the distance
from the centre in cm, the y−axis on the amplitude graphs (left) are normalised
according to the maximum value of the fast flux. The left y−axis on the phase
graphs (right) are in radians while the right y−axis shows the absolute difference
between the phases of CORE SIM and MCNP in radians.
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Figure 4.10: CORE SIM simulation of two dimensional homogeneous reactor with
a frequency of 10/2πHz, with perturbation at the centre. The base axis displays
the distance from the centre, the z−axis of the amplitude (left) is normalised ac-
cording to the maximum of the fast amplitude, and the z−axis of the phase (right)
is displayed in radians.

Figure 4.11: MCNP based simulation of two dimensional homogeneous reactor
with a frequency of 10/2πHz, with perturbation at the centre. The base axis dis-
plays the distance from the centre, the z−axis of the amplitude (left) is normalised
according to the maximum of the fast amplitude, and the z−axis of the phase (right)
is displayed in radians.
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Figure 4.12: CORE SIM simulation of two dimensional homogeneous reactor with
a frequency of 185 Hz, with perturbation at the centre. The base axis displays the
distance from the centre, the z−axis of the amplitude (left) is normalised accord-
ing to the maximum of the fast amplitude, and the z−axis of the phase (right) is
displayed in radians.

Figure 4.13: MCNP based simulation of two dimensional homogeneous reactor
with a frequency of 185 Hz and a Green’s function fixed at a frequency of 10/2πHz,
with perturbation at the centre. The base axis displays the distance from the centre,
the z−axis of the amplitude (left) is normalised according to the maximum of the
fast amplitude, and the z−axis of the phase (right) is displayed in radians.
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5
Conclusion

An approach has been developed to perform dynamic calculations based on a Monte-
Carlo without any modification to the source code, by splitting the cross-sections into
their real and imaginary parts and acting upon the real values as if they represented
a static sub-critical system with an external source while treating the imaginary
values as an additional perturbation.

The results agree well with the results from CORE SIM concerning the am-
plitude and phase at the plateau region, while the behaviour of the two methods
differ slightly at frequencies near the upper cut-off frequency and above. MCNP
requires a finer mesh to achieve mesh convergence compared to CORE SIM. The
same Green’s function estimated at a given frequency within the range of the plateau
region and above can be used to calculate the dynamic flux with negligible errors,
thus demonstrating the versatility of the method.

In contrast to the previous work [2, 1], the method proposed here is applicable
to all frequencies and all noise sources. Based on the comparison with CORE SIM,
the method presented in this report result in a sharper flux distribution, which is to
be expected by transport theory.
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