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Abstract

In this thesis we have evaluated the possibility of using data extracted from Smart
Eye tracking profiles for the task of driver identification in near-IR videos using
face recognition techniques. Two texture-based methods are presented to solve
this task. The first method utilizes local binary patterns (LBP) combined with
local discriminant analysis (LDA) to identify subjects whilst the second method
investigates brute-force template matching for identification purposes.

The LBP-method was evaluated for both closed-set and open-set identification
and achieved good results. In the closed-set scenario, a recognition rate of 98%
was reached on our own data set of 47 videos containing 24 different subjects,
despite the fact that the subjects had modified their appearances in half of the
videos. The LBP-method is fast and our results demonstrates the LBP-method’s
ability to handle partial facial occulusions and appearance variations. The tem-
plate matching method showed decent results with a peak recognition rate of 81%
in the closed-set scenario. However, the method proved very time-consuming due
to large number of templates in the profiles, limiting the method’s viability in
real-time applications. Future refinements and extensions are proposed for both
methods.
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Chapter 1: Introduction

Face recognition is a subject that has developed rapidly during the last decade. Its
progress can be largely attributed to its highly sought-after applications; Entertain-
ment, information security, surveillance and law enforcement are just a few areas
where face recognition technology is coveted [1]. Fingerprints and iris recognition
are two highly accurate biometrics (measures that can be used to describe human
characteristics or traits) but both require the user to be cooperative [2]. Face
recognition on the other hand is a biometric that can be used in non-cooperative,
unconstrained settings where the subjects do not know that they are being iden-
tified.

The demands between areas of usage might vary, but the rewards for a definite
solution to the problem of unconstrained face recognition and the possibilities that
such technology could offer are seemingly endless. Replacing computer passwords,
PIN codes or passport controls with images or video sequences of faces would have
drastic changes on everyday life. Face recognition has in fact been used for pass-
port control at the China-Hong Kong border for self-service immigration clearance
since 2005, with more than 400,000 people crossing every day [3]. This is a sign
that the technology is getting closer to such applications, but that it has not fully
matured yet. New discoveries in overlapping disciplines such as image processing,
pattern recognition, machine learning, computer vision, computer graphics and
psychology are often applied and united in face recognition [1], making it a diverse
subject. It is exciting, difficult and can be approached in many different ways.

Although the first automatic face recognition system was proposed in 1973, it was
not until the early 1990s that the research gained momentum. The seminal work
on Eigenfaces and face representations in low dimensional spaces played an impor-
tant role in popularizing the subject [3], since it was a new way of approaching
the problem of face description and many people found that interesting [4]. Other
factors such as increasing computational power and the creation of more diverse
publicly available face databases has also helped stimulate the development.

Providing more annotated data to train and test algorithms on and defining fixed
evaluation protocols has simplified the process of comparing methods and results
immensely. Most of the research on face recognition has historically been done on
gray-scale image databases with limited or controlled variation. Typical examples
include the FERET database [5] (1199 subjects captured in various controlled se-
tups of pose and illumination), the Yale database [6] (15 subjects in 11 different
configurations) and the BioID database [7] (1521 images of 23 subjects with no
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CHAPTER 1. INTRODUCTION

restrictions except full frontal pose). More recently, the research has been focused
on face recognition in unconstrained environments, with barely any restrictions
on variations in facial expressions, clothing, lighting, pose and background. The
”Labeled faces in the wild” (LFW) data set [8] was created using images found on
the web and has been used extensively to evaluate performance in unconstrained
environments due to its natural or random variability. Research on face recogni-
tion in other mediums such as high resolution images and 3D scans [9], spectral
images [2] and videos [10] has also become more prevalent. All mediums may have
their own strengths, such as higher quality informaton, but they may also possess
their own set of challenging problems.

The task of face recognition can be seen as a non-linear, high-dimensional, pattern
matching problem [2]. It can be divided further into face verification, where a face
image is matched against another face image to determine if they display the same
person or not, and face identification, where a match instead is searched for among
a set of N previously stored face images [3]. With no prior knowledge of what can
be considered relevant information when perfoming face recognition, this is a very
challenging problem, especially due to all the inherent variations in face images.
Yang et al. [11] lists varying scale, head orientations and poses, facial expressions,
imaging conditions (lighting and camera characteristics), facial features (beards,
mustaches, glasses) and partial facial occulusions as difficulties in the general case
of face detection. These unfortunately also apply to face recognition. Abate et al.
[2] also considers time as a factor that might affect performance, since aging could
drastically alter the apperance of an individual.

The complexity of the problem increases when considering fully automated sys-
tems. The face recognition problem will then extend into several sub-steps, which
might vary depending on the method of choice. The common denominator of all
methods is that they require one or many face images, so naturally the first step is
to detect any present face. The face is then cropped from the image and prepro-
cessed into a more suitable representation, which usually involves normalization
with respect to illumination or geometric transformations, for example transla-
tions and rotations. This is to improve performance in unconstrained settings and
reduce the pose and lighting variations that might occur [3]. Once normalized, the
final step of face recognition can be divided additionally into feature representation
and classification [12]. Features are extraced from the face in order to simplify the
task of finding a match in the face database. They are usually created by encod-
ing the face information to a compact and discriminative representation using a
descriptor, that optimally should be invariant to face image variations. Examples
of feature descriptors include local binary patterns, histogram of oriented gradi-
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CHAPTER 1. INTRODUCTION

ents, Gabor wavelets and SIFT descriptors [13] [14]. A classifier is then applied
to the feature to find the best match amongst the stored faces, that also has been
processed in this way. Researchers have continuously improved the performance of
their systems by adding new concepts and changing the methods within this type
of pipeline, where the constructed methodology is very intertwined with the used
data medium.

Smart Eye AB is a company that provides specially designed camera systems and
state-of-the-art gaze tracking software using near-IR video streams [15]. Their
products are used in a wide array of applications, for example research relating
to behavioural patterns of drivers and detection of behind-the-wheel drowsiness.
Their system tracks the gaze and facial features and builds a tracking profile which
contains information of the user, such as feature templates, full camera images
and 3D-models. The profiles are augmented while the program is running, so the
tracking accuracy increases the longer a person is tracked, and it takes time for
the system to reach a point of high tracking accuracy. It is therefore of interest to
use existing tracking profiles on previous users, to avoid creating new profiles each
time. The goal of this project is to develop a face recognition algorithm which can
recognize the current user by the information present in the tracking profiles, so
that the correct user profile can be loaded automatically.

Near IR-images has been used before in face recognition by Li et al. [16], but
their work was done in a cooperative setting. The intended application of this
project is driver identification during the short period of time after which the user
has entered the vehicle. The users will be non-cooperative and in motion with
varying day-to-day appearances, making it a very difficult task. A successful iden-
tification at this stage of the trip could however be used to load the stored profile
and quickly increase tracking accuracy, and also in future customer applications,
such as automatic configuration of user-specific seat, steering wheel and mirror
settings. Since the scenario is very specific and the image representation is rather
uncommon, the project includes the creation of a database that can be used for
evaluation of the face recognition system. Other gray-scale databases captured in
the visible spectrum such as FERET cannot be used [5] because of the difference in
image representation. The task of identification is simplified by the fact that there
are a limited amount of people using the same vehicle, our database is therefore
not required to be as large as ordinary face recognition databases containing many
thousand subjects.

In this thesis we present two methods that use textural information from the
tracking profiles to identify the subjects in pre-recorded near-IR videos. The first
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CHAPTER 1. INTRODUCTION

method utilizes a local binary patterns combined with linear discriminant analysis
(LDA) to encode face images in a compact and discriminative form, simplifying the
process of matching faces between users. Local binary patterns is a local texture
operator that has previously shown great results when applied to face recognition
[17], both by itself and together with LDA [13]. This suggests that a combina-
tion of both could also work well for videos. The second method uses brute-force
template matching, using normalized cross-correlation, to identify the users. Both
methods treat the videos as a sequence of gray-scale images.

The thesis is structured as follows: The purpose and goal of the project is sum-
marized in Section 2, together with the restrictions of the project. In Section 3, a
detailed description of the subject of face recognition and the theory behind our
methods are presented. Section 4 describes our methods, how they were imple-
mented and what parameters that were used. Our results are shown and discussed
in Section 5, and the thesis is summarized and our conclusions are presented in
Section 6.
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Chapter 2: Project description

2.1 Purpose and goal statement

The purpose of this project is to investigate how the content in the Smart Eye
tracking profiles, both image data (templates and full-size images) and 3D models,
can be used to identify users in a generic real-world scenario where the Smart
Eye camera systems are currently being used. This would be beneficial for both
Smart Eye and their customers, since an identification feature could be used by
Smart Eye to prevent the creation of new tracking profiles for previously seen users,
decreasing the time until high tracking accuracy can be accomplished. In future
customer applications, the knowledge of user identity could be utilized to load
stored user-specific comfort settings. The goal is to propose one or many methods
that can be shown to successfully identity previous users and to distinguish them
from new users, for whom a tracking profile needs to be created. The option
of adding additional information to the tracking profiles in order to enhance the
proposed methods should also be evaluated.

2.2 Restrictions

The project will evaluate face recognition on a pre-recorded database of users in-
stead of on real-time video streams. The goal is to find a method that works well
and not to create a fully functional application. This allows us to evaluate the
trade-off between identification accuracy and computational time. Optimally, the
proposed method allows for real-time applications with high recognition rate. The
database will be recorded in a controlled artificial environment with a camera setup
used regularly by Smart Eye. The environment and user behaviour will simulate
a real-world scenario that is a representative application of the Smart Eye system,
more specifically a driver entering a motor-vehicle and acting naturally, perform-
ing the tasks ordinarly done in the first thirty seconds of the drive. Performance
on this database will therefore hopefully generalize to both the real scenario and
similar ones.

Smart Eye Pro 6.0 will be used to create both videos and tracking profiles. Our
program will only be compatible with the format associated with that specific veri-
sion of Smart Eye Pro. The tracking profiles are created using real-time videos
streams in Smart Eye Pro, running the tracking feature continuosly while the user
is in camera.
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2.2. RESTRICTIONS CHAPTER 2. PROJECT DESCRIPTION

The profiles are assumed to be complete and free from noise, in the sense that
they only contain correct information and that they are representative of the user
with respect to templates and 3D models. This is certainly not true, but if this is
assumption is not made the errors made by our methods cannot be distinguised
from the errors in the profiles, unless controlled errors are inserted and the out-
comes are measured. That is not in the scope of this project and will be left to
others to investigate.

The database will consist of one tracking profile and two video sequences per per-
son, where each video is assumed to contain only one person and that the face
is almost always visible during the duration of the video. In the first video, the
user will have the same appearance as when the tracking profile was created. Dif-
ferences in image content between the profile and the video is then only due to
scaling and rotations of the face, a simplified scenario to test that the methods are
working as intended. For the second video, the user will have a modified appear-
ance, such as wearing hats, sun-glasses et.c. These videos will contain occlusions of
the face, testing the methods ability to generalize and handle local face variations,
something that will occur in real world settings where the user might change their
apperance daily. The size of database is restricted to 20-25 different people. It is
small compared to other face recognition databases and cannot be said to repre-
sent performance over a whole population, but not many privately owned vehicles
are used by more than a handful of people and this should be enough to ensure
performance for that specific scenario.

Finally, even though Smart Eye Pro is used to create profiles and videos, our
program will be developed independently as a stand-alone program in MATLAB
without any previously created Smart Eye software or code. It will only use the
profiles and the videos to accomplish its identification task. All code is strictly
developed by us or contained as built-in functions in MATLAB unless stated oth-
erwise.
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Chapter 3: Theory

3.1 Face detection

Face detection is a specific case of the more general task of object detection, where
the goal is to find all available instances of an object in an image, defined by
bounding boxes indicating the position and size of the object. This is usually done
by moving a window, containing the current region-of-interest (from now on called
ROI), across the image in a horizontal raster scan manner, row-wise starting from
top to bottom, and using a classifier to determine if the ROI contains the chosen
object or not. This must be done using ROI’s of varying size in order to find objects
of captured in the image at different scales. If the classifier gives a positive response
for a specific ROI, the position and size of the ROI is defined as the bounding box
of the object and the algorithm moves on until all of the image has been processed.

However, the task is complicated by the fact that objects do not only vary in
sizes, but in pose (orientation of the object with respect to the camera), illumina-
tion (there could be shadows or reflections on the object for example), appearance
(texture variations within the object class), occlusions (parts of the object is ob-
scured) and deformations (facial expressions in face detection). Restricting the
task to finding faces offers some case specific cues that be used such as skin colour,
facial shape and structure (arrangements of facial features) and motion (if more
than one image available). These cues may be useful for small scale models with
designed for specific conditions, but not for the more general case of face detection.

The most successful methods for face detection are called appearance-based meth-
ods, where a model is trained to find the characteristics of a face using a set of face
images. The performance of the method thus depends on the models ability to
extract and learn discriminative information about faces and on the face database
itself, since it must contain enough variation for to model to be able to generalize.

The algorithm proposed by Viola and Jones [18] has since its publication in 2001
been the de facto method for face detection. Its novel approach increased accuracy
but most importantly speed, allowing for real-time applications that at the time
could process 15 images per second [19]. It uses a training method called boosting,
where a cascade of weak classifiers (multiple classifiers placed after each other) is
trained using a large set of simple but computationally efficient features, so that
only the best candidates manage to pass through the whole cascade of classifiers.
Progress have been made since, especially in the case of unconstrained face detec-
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3.1. FACE DETECTION CHAPTER 3. THEORY

tion, thanks to more challenging databases such as the ”Face detection data set
and benchmark” [20], their webpage providing summarized results of recent publi-
cations evaluated on the data set together with baseline methods such as V-J.

Zhu et al. [21] proposed a unified method for face detection, pose estimation and
fiducial point localization using a mixture of trees with a shared pool of parts that
performed very well on all tasks. Their model could successfully handle rotations
and deformations of the face, because they merge multiple parts located at fiducial
points into a global mixture model, that assumes certain tree structures depending
on the pose of the face and what parts that are located. Boosting is however
still the most applied method for face detection because of its easily available
implementations [19]. The remainder of this section will describe the original
Viola-Jones algorithm in more detail. For a historic overview of face detection
prior to the V-J method, see [11].

3.1.1 Viola-Jones algorithm for face detection

A vital contribution of the method is the use of the integral image representation
together with Haar-like features, shown in Figure 3.1. There are four types of
features, whose output at a specific coordinate position is a scalar value calculated
from the difference between grey and white areas of the feature. The values of
the gray and white areas are determined by the sums of pixels values within. The
calculation of all features at a certain position is thus a succession of double sums
(in x and y direction) and subtractions.

Figure 3.1: The four types of Haar-like features used in the Viola-Jones method.
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3.1. FACE DETECTION CHAPTER 3. THEORY

The integral image, also known as a summed area table, is a technique that enables
fast and simple computations of sums over rectangular areas in an image. Each
pixel (x,y) in the integral image is equal to the sum of pixels above and to the left
of (x,y) in the original image, as shown in Equation 3.1.

II (x, y) =
∑

x′≤x , y′≤y

I (x′, y′) (3.1)

Any rectangular sum can then be calculated using very few operations. In practical
terms, an integral image is the double cumulative sum of an image, along the row
dimension and the column dimension. Each point in the integral image corresponds
to the sum of the original image up to that point, see Figure 3.2.

Figure 3.2: The sum of the gray area in the image corresponds to point D in the
integral image. In order to obtain the sum of the striped rectangular area, simple
arithmetic operations are required.

Any arbitrary rectangle can be defined in the image as four points, these points
are the four corners of the rectangle, A, B, C and D as shown in Figure 3.2.
There are also four areas numbered in the Figure, and we can now define the value
each of these four corners as a sum of these areas. Point A in the integral image
corresponds to area 1, B is the union of 1 and 2, C is the union of 1 and 3 and D
is the union of all gray areas. This gives us

Area 4 = II(D) + II(A)− II(C)− II(B) (3.2)
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3.1. FACE DETECTION CHAPTER 3. THEORY

and that any arbitrary rectangular sum can be calculated with only four references.

The features are calculated within a specific ROI in an image in all ways possible
by varying their size and orientation, forming an over-complete set. The minimum
ROI size of 24x24 pixels used in the original paper yields a set of over 160,000
features. The ROI itself is then moved across the image at multiple scales as well,
making it a very exhaustive search unless the feature set is reduced. The reduction
of features is performed with a method called boosting.

The idea of boosting is that instead of training a single strong classifier from
training data, multiple weak classifiers (also called weak learners) are trained and
combined into a single strong classifier. This is done by training each weak learner
in sequence, optimizing the current learner with respect to classification accuracy
on the data set, and then increasing the weights on misclassified examples so that
the following weak learners are more prone to correctly classify those examples.
The strong classifier is created by a weighted majority vote of the weak learners,
which will then have learned to correctly classify different subsets of the data set.
The original AdaBoost algorithm can be found in [22, p. 439] and has been shown
to achieve classification rates close to 100%, under the assumption that there is
enough available training data and each individual learner has an accuracy above
50%.

Viola and Jones use the AdaBoost algorithm to select the features that are most
appropriate for classification purposes. They restrict the algorithm such that each
weak learner constitute one feature (out of the over 160,000 available in the over-
complete set of Haar-like features), the one selected being the one that has the
highest classification accuracy. They then update the weights on the examples, so
that the next selected feature will be better at classifying the examples the previ-
ous feature misclassified. This is repeated until a desired classification accuracy is
reached.

However, to speed up the process they restrict the strong classifier to only use as
many features as required to met a certain detection rate and instead use many
layers, or cascades, of strong classifiers to improve performance. Each layer can be
trained to achieve 100% detection rate but with the price of a high false positive
rate. By moving down the layers, the detection rate decreases slower than the
false positive rate due to them being calculated as multiplicative sums. If D is
the final detection rate after 10 layers and each layer has a detection rate of 99%,
the detection rate is D =

∏N
i=1 di = 0.9910 ≈ 0.9. If the false positive rate for

each layers is 30%, the total false positive rate is F =
∏N

i=1 fi = 0.310 ≈ 6 ∗ 10−6.
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This shows that high detection rates can be achieved with very low false positive
rates. The approach is faster because of the fact that many larger sub-windows
will be rejected already on the first layer of the cascade and very few examples
will reach the deepest layers of the cascade. For a pseudo-code algorithm of their
boosted cascade classifier, see the original paper [18]. Note that the algorithm is
appearance-based and can be used to find any type of object.

3.2 Template matching

There are many ways of finding known patterns in an image, one is to use a tech-
nique called template matching. The idea is to use pre-existing models of the
desired pattern to be found and try to match the models within the image. This
is usually done by sweeping a template, a pattern similar to the one we are trying
to find, across the image in a horizontal raster-scan and at each pixel calculate the
distance (or similarity) between the template and the current region-of-interest. If
the distance is small, then the two patterns are similar, and if it is big, it would
tell that the pattern is not similar to the template. The technique can be used for
a large variety of problems including pattern recognition, tracking and computer
vision [23]. There are several different approaches in template matching (feature-
based, area-based etc.) and the choice depends on the application.

One method of finding similarities between templates and images is called normal-
ized cross-correlation (NCC). The strength of NCC is that it is not as sensitive to
linear changes in amplitude in comparison to the ordinary cross-correlation [24].
This is achieved by subtracting the mean values of both the template and the ROI
from the correlation similarity and dividing by their standard deviations. The
NCC similarity measure is defined between the values of -1 and 1, where 1 is re-
turned if template and ROI are exactly the same and -1 is returned if they have
180 degrees phase shift. The NCC can thus be seen as a cross-product between
two normalized vectors (the template and the ROI). On the other hand, unlike
cross-correlation, NCC does not have a straight forward simple frequency domain
expression, which makes it more computationally demanding. Simpler similarity
measures include the sum of absolute differences and the geometric distance.

3.3 Feature description

Comparing objects in ordinary gray-scale images is a difficult task. Images can
be thought of as a very high dimensional discrete function, spanning a vast image
space Rn, where n is the number of pixels. Due to the vastness of image space,
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object images are very sparsely located, leading to large distances even between
similar objects. This is also called the curse of dimensionality. Template matching
in ordinary image space is very sensitive to changes in lighting, geometric trans-
formations, occlusions and noise. Images also inherently contains large amounts of
redudant information due to the fact that intensity values amongst neighbouring
pixels are often highly correlated. Image compression techniques are used to encode
images into more compact representations, where redudancy has been removed. A
perfect object description would remove distortions together with redundancy and
only retain the primary core of what constitutes the object in the image. The idea
is that a suitable feature description improves the chances of template matching by
transforming the object from image space into a feature space, where the distance
between object descriptors are smaller and have better defined decision boundaries.

There are many different types of feature descriptors, some of the most frequently
used are histogram of oriented gradients (HoG) [25], local binary patterns (LBP)
[26], scale invariant feature transform (SIFT) [14] and Gabor filters [27]. Edges
in images represent sudden changes in intensity and are often used for object
recognition because of their robustness to lighting variations. They are generally
calculated by convolution of the images with a gradient filter. By discretizing the
gradient directions into a number of bins, histograms of the gradient direction can
be built by counting the number of times each direction occurs. Such histograms
are what constitutes the HoG-operator. Gabor filters, also called Gabor wavelets,
are Gaussian kernels that have been shown to be able to capture information both
with respect to spatial locality and orientation. By convolving a set of Gabor fil-
ters of varying scale and orientation, a suitable feature description can be obtained.

In face recognition, the descriptor has to be able to capture discriminative informa-
tion for faces as a whole while simultaneously also capturing the information that
separates faces from each other. Better results have been obtained by combining
feature descriptors, examples include HoG+LBP [28] and Gabor+LBP [13],[29].
Hand-crafted features as the ones previously mentioned has recently been substi-
tuted by learning algorithms that themselves select features appropriate for dis-
crimination between faces. Lei et al. [30] proposed a way to learn a discriminant
face descriptor (DFD) that minimizes the difference between features of the same
person and maximizes the difference between features of different persons. Deep
convolutional neural networks have also been used to obtain face representations to
great success [31]. However, most of the feature descriptors used in face recognition
are derivatives of the local binary pattern operator, which will now be explained
in detail. For a survey of LBP derivatives refer to the article by Nanni et al. [32].

12



3.3. FEATURE DESCRIPTION CHAPTER 3. THEORY

3.3.1 Local binary patterns

Local binary patterns are feature vectors extracted from a gray-scale image by
applying a local texture operator at all pixels and then using the result of the
operators to form histograms that are the feature vectors. The original LBP op-
erator is constructed as follows: Given a 3x3 neighbourhood of pixels as shown
in Figure 3.3, a binary operator is created for the neighbourhood by comparing
the center-pixel to its neighbours in a fixed order, from the left-center pixel in
counter-clockwise manner. If a neighbour has a lower intensity than the center
pixel it is assigned a zero, otherwise a one. This will yield an 8-bit binary number,
whose decimal valued entry in a 256 bin histogram is increased by one. The com-
plete LBP-histogram of an image will then depict the frequency of each individual
binary pattern in the image. Due to its design, the feature vectors are robust to
monotonic intensity variations since the LBP-operator is not affected by the size of
the intensity difference. The feature vectors are not affected by small translations
of the face either since the same patterns will be accumulated in the histogram
regardless of their positions.

Figure 3.3: For a 3x3 neighbourhood in the image, the local binary pattern is
determined by comparing the center pixel to its nearest neighbours in the fixed
order assigned by the arrow. The binary pattern yields a binary number which is
accumulated by one in the LBP histogram.

The operator can be extended from its nearest neighbours by instead defining a
radius R where a chosen number of P points are sampled. The intensity values
of the points are then calculated using bilinear interpolation, as explained in [22,
p. 122]. The number of points will then determine the number of possible bi-
nary patterns and also the length of the feature vector. To reduce the length of
the feature vectors, Ojala et al. [26] found that patterns with at most 2 binary
transitions (0 to 1 or 1 to 0) provides over 90% of all spatial texture patterns,
because they represent structures such as edges, spots and flat areas. These are
called uniform patterns. For the LBP operator with R = 1 and P = 8 there are
58 uniforms patterns, all remaining patterns are accumulated into an additional
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59:th bin. To simplify notation, this specific local binary pattern operator can be
written as LBPu2

8,1.

3.4 Linear subspaces

In the previous section, various methods for feature description of gray-scale im-
ages were introduced. Even though individual elements in the feature vectors may
give more information about the image than for example a single pixel element
would, there is still features more important than others. If one were to select
a subset of features, which ones should be selected to retain the most amount of
information? This process is called feature selection or dimensionality reduction.

Intuitively, a good way of selecting features would be by their variance. Features
with low variance may not be very discriminative with respect to the overall struc-
ture of the data, compared to features with large variance that may have greater
separability between classes. However, features are often correlated, prohibiting
their removal. Assume that there is a data set of N observations {x1,x2,...,xN},
where each observation xj has n dimensions (features). All observations are lo-
cated in a linear space Rn, that is spanned by a set of orthogonal basis vectors
x̂i ε Rn also called eigen-vectors, where i = 1,...,n, that allows each observation to
be expressed as a linear combination of eigen-vectors xj =

∑n
i=1 aix̂i [22]. The goal

is to find a transformation matrix T, that maps the data points onto the eigen-
vectors whose directions are defined such that the decrease of variance captured by
each eigen-vector is maximized [33]. This means that in the transformed subspace,
the first dimension is spanned by the eigen-vector in the direction of the maximum
variation in the data, the second dimension represents the second most significant
direction with respect to variation, and so on in decreasing order. This can also
be defined as maximizing the determinant of the total scatter matrix, such that

T = arg max
W

∣∣W TSTW
∣∣ = [x̂1,...,x̂n] (3.3)

where ST =
∑N

j=1 (xj − µ) (xj − µ)T is the total scatter matrix and µ is the mean
of all observations [6]. A transformation that fulfills this condition is called the
Karhunen-Loève transformation, whereas the method is generally referred to as
Principal component analysis (PCA). A feature vector xj can be transformed to
the linear subspace by a simple matrix multiplication yj = TTxj. The variance
of each individual eigen-vector is given by its eigenvalue, since λi = σ2

i . The or-
thogonality ensures that the vectors will be mutally independent of each other and
that variables in the transformed feature space is decorrelated. Features with small
eigenvalues can thus be removed without a significant loss of variance by projecting
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the data onto the linear subspace Rm spanned by the eigen-vectors {x̂1,x̂2,...,x̂m}
with the largest eigenvalues. Note that the data retains its dimensionality as long
as its mapped onto all eigen-vectors, i.e. m = n. Finding the eigen-decomposition
is usually done by singular value decomposition of the covariance matrix of the
data, this is possible because the matrix is symmetric positive semi-definite [34].

PCA is in a sense a unsupervised learning algorithms, since it requires no prior
knowledge of the data and only utilizes the data itself to find a suitable represen-
tation. However, if class labels are known for each data point then more optimal
transformations with respect to data structuring can be found. Linear discrimi-
nant analysis (LDA) is a supervised learning algorithm that finds a transformation
that maximizes the ratio of the determinant of the between-class scatter matrix
and the determinant of the within-class scatter matrix [6]. As in PCA, a set of
eigen-vectors and eigenvalues are used to transform the data onto a linear sub-
space, where the eigen-vectors now are both separating data points of different
classes while simultaneously clustering data points of similar class. A property of
LDA is that the dimensionality is reduced to m = c− 1 where c is the number of
classes, which for images is a large reduction in dimensionality. Note that LDA is
almost always preceded by PCA [35][36], since removing low variance dimensions
is a good way of reducing noise, but also because the dimensionality needs to be
reduced in order for the within-scatter matrix to be non-singular [6].

Whitening is a technique that is often performed in subspace methods and has
shown to improve performance [6]. A whitened space is defined as subspace where
each feature dimension has sample variance one. This is realized by dividing each
dimension xi in the transformed space (after PCA) by its standard deviation,
which is the square-root of the corresponding eigenvalue. The feature vector in
the whitened subspace is therefore

x̄i =
xi
σi

=
xi√
λi

(3.4)

This can be imagined as a sphering of the data, where the axes of the subspace
(the eigen-vectors) will have same length. The reason to use whitening is that
when comparing data points in the subspace, with for example euclidean distance,
each feature dimension should be treated as equally discriminative since they are
uncorrelated and thus should have equal sample variance, otherwise the distance
contribution by some features will be larger than others. Even though eigen-
directions with large eigenvalues contains contains more of the variation in the
data, the discriminative power of less significant eigen-directions should not be
suppressed, which is why whitened subspaces are preferred in pattern recognition.
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3.4.1 Nearest neighbourhood classifier

The simplest method for matching feature vectors is using the nearest neighbour-
hood classifier. It calculates the distance between the probe vector to be classified
and the gallery vectors, and then assigns the probe the class label of its nearest
neighbour in the gallery. If the distance is zero, then the images matched are
exactly the same. The distance measure can be converted to a similarity measure
simply by negating it, such that the chosen match is the one with the maximum
similarity value. The choice of distance metric depends on the type of task, only
euclidean distance, cosine distance and chi-square similarity were evaluated in this
project. These are defined as

Euclidean distance: dexy =

√
(x− y) (x− y)T (3.5)

Cosine distance: dcxy = 1− x · y
‖x‖ ‖y‖

(3.6)

Chi-square distance: dχ
2

xy =
N∑
i=1

(xi − yi)2

xi + yi
(3.7)

where x and y are row vectors of length N . For an analysis of nearest neighbour
pattern classification, see the article by Cover et al. [37]. The advantage of the
NN-classifier is that it does not require any training stage and that it naturally
extends to multi-class classification. Training other classifiers such as support
vector machines (SVM’s) and neural networks is often computationally demanding
for high-dimensional data with many examples. Even though they may increase
matching performance by accounting for non-linearity in the data, training would
have to be done every time the gallery is altered.

16



Chapter 4: Method

4.1 Test environment

Since the Smart Eye image acquisition system is not operating in the wavelengths
of visible light, the image content will differ from colour or gray scale images. This
means that training algorithms on public databases which is not in the near-IR
spectrum could be harmful to algorithm performance and testing on such databases
could also prove to be non-representative of the actual performance on Smart Eye
images. There is no publicly available database of near-IR videos to our knowledge
and thus we have chosen to create our own database for evaluation of the methods
developed in this project.

4.1.1 System description

An artificial test environment was used in this project to simulate a real-world
scenario where a driver enters a motor-vehicle. The setup included an adjustable
driver’s seat, a steering wheel and a table as the top of the dashboard. Three
Basler acA640-120GM monochrome cameras using 8 mm focal length lenses with
aperture F1.4 was used for image acquisition purposes. These were placed so that
one was on the dashboard in-front of the driver looking through the steering wheel,
one was on the right-side of the driver looking up to mimic a camera mounted be-
low the dashboard, and the last camera was placed to the left of the steering wheel
at the corner of the dashboard (beside the imagined left rear-view mirror). This
camera setup is regularly used in Smarteye applications, Figure 4.1 shows a set of
images taken using the setup.

(a) Camera 1 (b) Camera 2 (c) Camera 3

Figure 4.1: Example images taken with the camera setup.

These cameras respond to both visible light (400-700 nm) and near-infrared light
(700-1100 nm). To control the illumination, 40 V flashes sending out light at 850
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nm was placed beside each camera pointing towards the user. The cameras and
flashes were then connected to a 12 V Smart Eye Exponator connected to a com-
puter. The image data retrieved from the cameras were 8-bit monochromatic with
resolution 640 x 480 pixels at a frame rate of 60 Hz. With 3 cameras this generates
around 3.1 GB image data per minute. All videos were stored uncompressed in the
format *.smb, a binary format with each image separated by a description header.
With knowledge of the contents of the header, the videos can easily be read in
MATLAB.

The Smart Eye tracking profiles also contains image data stored in *.smb files
that can be read in a similar manner as the videos, where the data consists of
feature templates followed by a selection of full-view images in different poses.
Accompanying the image data is also a ASCII file that describes the content of
the *.smb file. This file is parsed using our own MATLAB routine to associate
each template with a facial feature.

4.1.2 Video databases

Two databases were created for this project, a small preliminary one that was used
to test the algorithms and a larger database which was collected for the real evalu-
ation. The databases themselves consist of two parts: a profile data set containing
user data in the form of models and templates, and a data set of video sequences.
The profiles were used to create a stored data set of subject information that could
be matched against the video sequences. All recordings and profile tracking were
done using the Smart Eye Pro 6.0 software.

The first data collection task was to create a tracking profile of the user, who was
asked to look around in order for the software to be able to build a profile with
templates from all angles of the face. There was no way to control the quality of
the profiles until after their creation, which leads to a variance in quality of the
tracking profiles. For example, some profiles were more extensive, containing up
to 900 templates, whereas others only had about 250 templates. This must be
considered in the analysis of the results.

The user was then asked to act in a manner similar to how he or she would in
a real car while the cameras were recording. The length of the sequences were
limited to 2000 image sets, which is equivalent to a video sequence slightly longer
than 30 seconds with a 60 Hz setting, a time frame during which a recognition is
desirable. If all the video sequences were longer it would yield large amounts of
data to analyze, which would be very time consuming. On the other hand, if they
are too short there is a risk that the person would not expose him/herself enough
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for the methods to be properly evaluated.

The pilot database did not have any specific requirements regarding the user be-
haviour or demographic. It was recorded in a small room with two cameras, using
a fixed aperture setting during the recording session. It consists of seven people,
all of which were males in the age range of 24-51 years with an average age of 30
years distributed over 11 videos. Further information can be found in Appendix
A.4. All persons had one video with ordinary apperance, out of which four also had
a video with a modified appearance. The modifications are specified in Appendix
A.4.

The real database was requested to have a wider representation in age, gender and
ethnicity. The setup was as described in Section 4.1.1 and during the recording
session a fixed step-by-step methodology was followed: the user was first asked to
sit down in the car seat and adjust the seat to his/her liking, then the cameras
were adjusted so that the face was centered in all of them and the apertures were
adjusted so that all faces were equally exposed. Finally, to ensure correct tracking
performance, the positions of the cameras in the world coordinate system was re-
calibrated.

This database consisted of 24 people with a male to female ratio of 15:9, over an
age interval from 24 to 51 years with an average age of 30 years. The goal was
to have an as varied demography as possible in the database to be able to fully
evaluate the face recognition algorithms. Almost every person in the database (23
out of 24) were recorded two times, once with ordinary apperance and a second
time with a modified appearance. If they wore glasses, they took them off and put
on a hat for example, see Appendix A.3 for specifics.

4.1.3 Video classification

Our task is to match the subject in each of the N videos to a known database of
M subject-specific profiles, where the subject in each video n is represented by a
personal profile m. This is the ordinary setup, additional setups can be created to
test algorithm performance in cases where the user is previously unseen (i.e. new
to the system) by simply removing the subject’s profile.

For a generic test run of the face recognition system, each video is processed and
returns a subject ID, represented by an integer. The ID is determined using the
video data and the data extracted from the previously stored profiles. When all
videos have been processed, the identities selected by the algorithms are compared
to the real identities of the subjects in the videos and if the response is a match
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then the video has been correctly classified. Mathematically, this can be written
as

rn =

{
1 , if IDn = ID∗n

0 , if IDn 6= ID∗n
(4.1)

where rn is the classification response for the n:th video, IDn is the identity chosen
by the system and ID∗n is the correct identity of the subject in the video. The
recognition rate of the system is defined as

R =
# of correctly classified videos

# of videos in the database
=

∑N
n=1 rn
N

(4.2)

This measures the global performance of the system, but does not detail the per-
formance of the algorithm on each individual video or the strength of each decision
made by the system on specific videos.

Each video is treated as a sequence of images, where each image is processed
independently by the system. If the current image meets the requirements of the
system, the identity of the person in the image is determined by selecting the closest
match in the gallery defined by some similarity measure. Just as in Equation 4.1,
the identification response for each processed image i is defined as

fn,i =

{
1 , if idn,i = ID∗n

0 , if idn,i 6= ID∗n
(4.3)

where idn,i is the chosen image identity. This means that for the n:th video con-
taining z processed face images, we have a vector vn = [id1,.., idz] containing the
identification responses of all frames in that video. The final decision of a sub-
jects identity in a video is chosen as the identity whose profile has been the best
match the most amount of times i.e. IDn = arg max (f) where fj =

∑z
i=1 fj,i is

the amount of times profile j was selected for video n. Additionally, in cases where
multiple identities have the same amount of identity classifications (it is common
that the first two images are classified as different persons), the identity whose
average distance metric is lowest over all classified images is selected.

The recognition rate will vary depending on how many images in each video that
were processed, it is therefore of interest to investigate the recognition rate as a
function of the number of images processed. Images are not randomly picked from
the video, but in the correct order corresponding to the video. Since the goal is
to correctly identity the subjects as early as possible, face images are evaluated as
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they are obtained.
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(a) Good results.
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(b) Decent results.
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(c) Bad results.

Figure 4.2: Plots showing the accumulated number of idenfications as a function
of the number of processed face images, the correct identity is marked by the red
dashed line.

Typical results from a few processed videos is shown in Figure 4.2. On videos
where the algorithm has high performance, as in Figure 4.2a, the correct identity
(marked by the red dashed line) is almost exclusively chosen as the output for ev-
ery image. This ensures that the final decision on the identity of the subject in the
video is correct, no matter the number of images processed. This is not the case in
Figure 4.2b, where the final decision will vary depending on how many images the
algorithm has processed. Figure 4.2c illustrates a video where the correct identity
is barely selected at all, an indication that the person has either changed their
appearance drastically or that the gallery for some reason does not contain face
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descriptors representative of the subjects actual appearance. The latter case is far
more concerning, since this indicates that the algorithm cannot properly process
the information in the tracking profiles. One must therefore evaluate modified
and unmodified videos seperately to ensure that algorithm performance is mostly
lowered by modifications rather than improper matching procedures.

As the time between images processed by the system might vary between videos,
plotting the recognition rate as a function of the number of processed images might
provide an estimate of how much information that is needed for a correct classi-
fication, but not of the average time to make that classification. The recognition
rate is thus also plotted against time.
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(a) Video of unmodified subject.
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(b) Video of modified subject.

Figure 4.3: The mean distance between the current image face descriptor and the
identities in the gallery for the aligned cosine setting evaluated for two different
videos. The red dashed line is the correct match. The difference in distance between
correct and false matches in much smaller when the subject is modified.

Subjects modifying their appearance is problematic for identification tasks, almost
always resulting in reduced recognition rates. The effects of modifications can be
investigated by calculating the probe to gallery distance as a function of the number
of processed face images. Since every subject has multiple entries in the gallery, a
mean distance between the probe and each identity must be used. This is shown
in Figure 4.3 for one modified and one unmodified video, with the correct identity
marked by the red dashed line. It can be seen that the distance between the
probe and the correct identity is much smaller in the unmodified video than in the
modified. The difference in distance between the correct and the false matches is
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also very small in the modified video, leading to misclassifications of images where
the distance is larger, due to perhaps head rotations or facial occulusions.

4.1.4 Closed-set identification

When a threshold has been fixed on either the amount of images or the time re-
quired to make the final decision classification, a cumulative match characteristic
(CMC) curve can be created. This is done by plotting the probability that the
correct identity is among the top n matches as a function of rank-n. The probe, in
this case the subject being identified, has rank-n if it is the n:th closest neighbour
to the correct identity in the gallery [38]. Plotting CMC-curves is the common way
of visualizing results in closed-set identification, where the probe is assigned a class
label from the gallery no matter the distance to its nearest neighbour. Because
of the fact that our system classifies images sequences, the definition has to be
changed such that rank-n instead is determined by the number of correct image
identifications instead of a single image similarity.

A probe video n with corresponding profile identity m has rank-n if fm is part
of the n:th largest elements of fn, the vector that contains the number of times
each profile has been selected as the image identity. Mathematically, we define the
identification (and detection) rate at rank-n as

PDI (τ,n) =
|{fm : m ∈PG , rank (fn) ≤ n}|

|PG |
(4.4)

=
|{fm : m ∈PG , rank (fm) ≤ n}|

N
(4.5)

where PG is the gallery. This definition thus gives us the probability that the probe
of a subject that belongs to the gallery has the n:th most amount of identifications
to the correct sample in the gallery. The ordinary definition of identification rate
can be found in in [38].

4.1.5 Open-set identification

The problem can be changed to open-set identification by imposing a distance
threshold on the distance metric, such that if the distance to the nearest neigh-
bour is larger than the threshold, then the probe is assumed to not be present in
the gallery and the subjects identity is set to unknown. Receiver operating char-
acteristic curves, shortened ROC-curves can then be plotted. ROC-curves plots
the recognition rate as a function of the false positive rate. To do this one must
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first choose which rank-n to plot, rank-1 being the most common choice, and then
vary the threshold. The open-set recognition rate is then

PDI (τ,n) =
|{fm : m ∈PG , rank (fm) = 1, and d∗m ≤ τ}|

|PG |
(4.6)

where fm is the amount of times profile m has been selected, PG is the gallery , τ
is a threshold on the distance measure, and d∗m is the smallest distance between
the probe and the closest match in the gallery. This definition thus gives us the
probability that the probe of a subject that belongs to the gallery has the smallest
distance measure to the correct sample in the gallery and its distance is smaller
than the distance threshold. The distance threshold is set to τ = ∞ in closed-
set identification. The recognition rate is now only concerned with the best match.

Just as for the recognition rate, the false positive rate has to be redefined to
accommodate for classification of image sequences. Even if one image was classified
as not part of the gallery, other images could be classified as part of the gallery and
thus cause problems. If a probe is classified as not part of the gallery, it is denoted
as class unknown. A false positive is thus defined as the case when the class
unknown has less identifications than one of the profiles part of the gallery PG for
a probe with profile m ∈ PN not in the gallery. Note that |PG ∪PN | = N is
the size of the database. The false positive rate is therefore

PFA (τ) =
|{fm : m ∈PN , f0 < max (f)}|

|PN |
(4.7)

where PN is the subset of the data base that is not part of the gallery, f0 is the
number of times that the class unknown was selected for subject with profile m
and f = [f1,...,fM ] contains the number of times each profile was selected for image
identification. Note that in comparison to the closed-set identification, the data
set must in open-set identification also contain subjects not part of the gallery
and thus our data set must be divided into two equally sized parts. The ordinary
definition of the false positive rate for images can be found in [38].

The performance of the system in open-set identification is usually measured by
the identification rate at a specific false positive rate or by the area-under-curve
(AUC), which can be calculated using the trapezoidal method. The AUC measures
the performance of the system over the whole range of false positive rates.
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4.2 Face detection

The Viola-Jones face detection algorithm with boosted Haar-cascades, as explained
in Section 3.1.1, was used to locate faces in the videos and profiles. It is fast, ac-
curate and allows easy implementation in MATLAB with the Computer Vision
toolbox, which contains functions that can be used to create cascade objects and
applying them to images. To reduce the information that needs to be processed,
a decreased number of image sets per second were searched for faces, the original
frame rate of 60 Hz (image sets per second) is rather redudant and the difference
between closely acquired images is very small. A frame rate of 6 Hz was used for
the LBP-method which is enough to capture movements of the subject while keep-
ing the images unique. The template matching method used a lower frame rate of
2 Hz because of its long computational time.

Instead of training new Haar-cascades, the publicly available ones in the open-
source computer vision toolbox OpenCV was used [39]. It contains multiple cas-
cades, four of them trained on full frontal faces. More information on these Haar-
cascades can be found in the article by Castrillón et al [40]. See Appendix A.1
for a full list of the Haar-cascades used in this project and a summary of their
corresponding settings.

Images of full frontal faces are generally more descriptive and discriminative than
images of rotated faces, which is why full frontal cascades are desirable in face
recognition tasks. However, the OpenCV cascades are trained on different image
sets, so one cascade of classifiers might consider a face full frontal and another
might not. In order to make the face detector more robust, all four frontal face
OpenCV Haar-cascades are applied on the image. Only when all cascades declares
a successful face detection is the face classified as full frontal and thus cropped
from the image. The face box used for cropping the image is set too the mean of
the face boxes produced by each cascade. This method increases robustness both
to face box size and head rotations, with most face detections close to full frontal.

A typical detection made by the face detector is shown in Figure 4.4. The blue
boxes mark the detections by the four individual OpenCV Haar-cascades and the
mean face box marked in red is the final output. Because of the fact this is a clear
full frontal face image, the blue boxes are tightly packed and hard to discern from
eachother. The mean face box is returned since all of the Haar-cascades had a
positive detection. If one of them had not found a face, an empty face box had
been returned. This detection scheme could thus remove correct detections, where
only two or three Haar-cascade has returned a response, at the cost of detection

25



4.2. FACE DETECTION CHAPTER 4. METHOD

Figure 4.4: A face detected using the Viola-Jones algorithm and OpenCV Haar-
cascades. The blue boxes represent individual detections made by different Haar-
cascades, whereas the red box is the mean box of all detections and the final output
of the detector.

robustness. Using less than four Haar-cascades has not been investigated.

The mean face box is in itself not the optimal choice, since it is exposed to out-
liers. However, it gets more stable with an increasing number of detections, so
four cascades should yield decently stable detections. The Viola-Jones algorithm
might not produce the best croppings in terms of facial accuracy but it is very
stable with respect to false detections.

Each cascade can be tuned by the following parameters: min size, max size, scale
factor and merge threshold. These can be used to tailor the performance of the
detector for each specific task.

Min size and max size is used to regulate the bounding box search interval. Since
the goal is to find faces in a relatively constrained environment, the bounding box
size can be used to decrease run-time and homogenize results. Face images will
often be scaled to a fixed size at a later stage, and in these scaled images there will
be variations in information content between faces that initially were small and
others that initially were large. Scaling is an approximative operation and fixing
the face size range ensures that results in later operations are not compromised.
Min size [200,200] and max size [400,400] were selected, which seemed to include
most full frontal face images in the profiles.

The scale factor determines in which increments the bounding box size is increased.
Small increments increases detection accuracy but also increases run-time. The
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merge threshold regulates how many detections that needs to be merged in order
to be classified as a correct detection. Increasing this parameter might increase
accuracy up to a certain value, after which detections are rejected too frequently.
With no particular preference between accuracy and speed, the standard values of
these parameters were used. See Appendix A.1 for specifics.

4.3 Feature extraction

The Viola-Jones algorithm was also used with the OpenCV Haar-cascades to ex-
tract facial feature points from the face images. The face images are mostly full
frontal (some rotated faces are still included), so the centers of the eyes and the
mouth are extracted from the face images due to their robustness and invariance
over different individuals. This is essential to the facial alignment step, since it
cannot be performed without feature points. The following cascade settings were
used: a scale factor set to 1.05 and a merge threshold set to 4. The min size was
set to [20,20] for the eyes and [15,25] for the mouth, which were the smallest values
allowed. Max sizes were set to [100,100] and [100,150] for the bounding boxes. The
merge threshold was set to 8 for the eyes and 12 for the mouth to decrease the
amount of spurious responses. An explaination of these settings is given in Section
4.2 and a summary of the settings is available in Appendix A.1.

Figure 4.5: Eye and mouth center points detected using the Viola-Jones algorithm
and OpenCV Haar-cascades.

Figure 4.5 shows the detected features after the image in Figure 4.4 has been
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cropped using the detection marked by the red box. The figure shows that all
three features has been successfully found with good accuracy on the eye centers
and decent on the mouth position. It is reasonable to assume that the detections
for the mouth position will have a larger variance because of a larger difference in
mouth appearance between individuals than the eye centers.

To increase accuracy and speed, the knowledge of facial geometry for full frontal
face images was used. It was implemented by only searching for features in the
parts of the image where the features intuitively should be located. The left eye
center was only searched for in the top-left quadrant, the right eye center in the
top-right quadrant, and the mouth center in the bottom half of the face image.
This could be done more accurately by tiling the face image into even smaller
pieces, but this is sufficient to remove obviously inaccurate detection results.

In the cases where multiple boxes for the same feature are found, the box with
the smallest area was selected for the eyes and the box with the largest area was
selected for the mouth.

4.4 Facial alignment

Aligning faces with respect to scale, orientation and cropping has been shown to
improve performance in face recognition and is often a crucial step in such systems
[41]. Using the previously extracted eye and mouth center points and a simplistic
2D face model, an affine transformation can be found by solving the linear least-
squares problem defined by Equation (11.17) in [42]. This transformation can be
applied to the facial image to normalize the face with respect to scale and rotation.

The face model was defined as the positions of the eye centers and the mouth seen
from a full frontal pose. The interocular distance between the eye centers was used
as the only model parameter and set to D = 112 pixel units. This is motivated
later in the identification step. Eye positions were chosen to have the same height,
in such a way that a connecting line segment between has a 0 degree angle in
reference to the image coordinate system. The mouth center position was defined
as D pixel units below the eyes in the middle of the connecting line.

The affine transformation, once calculated, is then applied to the full image con-
taining the face. The facial feature points were also transformed, since the transfor-
mation affects their coordinate positions. Note that all three points are necessary
to calculate the affine transformation, which utilizes sheering in x and y directions
and translation to find the optimal transformation, whereas only two points are
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required to normalize for scaling and rotation. However, the translation elements
in the affine transformation are set to zero since the position of the face model
is arbitrary, only its shape is of interest. For consistency, only images where all
three facial features were found are aligned. The rest are regarded as not suitable
and an empty matrix is returned instead of the aligned facial image. This provides
assurance that the aligned face images usually are good full frontal views of the
face.

When the full image has been aligned using the transformation, the aligned face
can finally be cropped. The face center is defined as the center point between the
eyes and mouth center, this is roughly the position of the nose. Using the face
center as a point of reference, the face box is set to size [224,224] pixels i.e. two
times the interocular eye distance defined earlier for the face model and the face is
cropped. The face box must however be within the image for the cropping to be
successful, a try catch statement is thus used to avoid errors and an empty matrix
is returned if the box is out of bounds.

(a) Unaligned face. (b) Aligned and re-cropped face.

Figure 4.6: A face before and after the alignment step, detected feature points
are marked in red. The eyes have been horizontally aligned and the image has been
cropped tighter around the face. Note that the images are not shown in their original
sizes, the aligned image has been enlarged for viewing purposes.

The results of a typical facial alignment is shown in Figure 4.6, where the affine
transformation has successfully aligned the feature points according to the face
model. The eyes are horizontally aligned to eachother with the interocular distance
normalized to the fixed distance and cropping is centered directly on the face. In
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this example, the face has only been rotated around the cameras z-axis which
points straight out of the camera. The affine transformation have managed to
reduce the difference in facial symmetry due to rotations, even though the output
is slightly skewed.

4.5 Face recognition

Two methods were evaluated seperataly in the face recognition step, these are
described in detail below.

4.5.1 Using local binary patterns

Two stages are involved when using local binary patterns, from now on called LBP,
in face recognition. First, a database of biometric signatures, in this case LBP-
vectors, must be created so that new previously unseen signatures can be classified
using a matching process. This is the training stage, where face descriptors (or
feature vectors) are extracted using the image content in the Smart Eye tracking
profiles. Once the training has been completed, images or videos containing a per-
son of unknown identity can then be processed and compared to the database to
find the best match and hopefully the correct identity of the person.

Each profile contains several full scale, non-cropped images of the subject in dif-
ferent poses. The Viola-Jones face detector explained in Section 4.2 is applied to
all images and face boxes are extracted. The face is then either cropped from the
image and nothing else or the face image gets processed by the feature extractor
(Section 4.3) so that the facial alignment step (Section 4.4) can be performed.
Both options are available to allow for performance comparisons and evaluate the
benefit of the alignment step.

Once a face image is retrieved, aligned or not, it is passed to the identity detection
step for encoding. To increase the number of face images in the database, the left-
right flipped verision of the face image is also processed and stored. The face image
is first resized to the fixed size of [224,224] pixels. This is necessary for non-aligned
images due to the varying face box output of the face detector. The size is already
correct for aligned images thanks to the choice of interocular distance and cropping.

The methodology for LBP face recognition proposed by Ahonen et al. [17] has
been adopted with some simplifications. The face image is first tiled, meaning
that the image is divided into non-overlapping blocks. Each tile is encoded us-
ing the LBP-operator which yields a normalized histogram containing the image
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information for that specific tile. Its length depends on the settings of the LBP-
operator. The LBPu2

8,2 settings suggested in [17] were used, see Section 3.3.1 for an
explaination of the operator. To encode face tiles into LBP-histograms, the code
provided by Heikkilä and Ahonen [43] was used. All tile-specific histograms are
finally concatenated into a single feature vector, a face descriptor, which now is
an encoded representation of the face image. An example of the tiling process is
shown in Figure 4.7, dividing the image into four tiles. No further normalization is
performed on the concatenated feature vector, because it did not seem to increase
performance.

Figure 4.7: Illustration of the encoding process. The face image is divided into
tiles, that each are encoded using the LBP-operator into normalized histograms,
which then are concatenated into a single face descriptor.

The size of the face descriptor depends on the length of the tile-specific feature
vectors and the number of tiles, which in turn is determined by the size of the face
image and the size of the tiles. One must therefore make a choice on the trade-off
between description accuracy and locality of the operator and the length of the
face descriptor, which will have dimension 1x(N ∗M) where N is the length of the
LBP operator for each tile and M is the number of tiles. The face size was set to
[224,224] pixels and the tile size to [32,32] pixels, this generates a tile grid of size
[7,7]. The uniform LBPu2

8,2 has 59 bins so the final concatenated feature vector has
59 ∗ 7 ∗ 7 = 2891 elements. This is small compared to the dimensionality of the
face image.

Once a face descriptor has been created it is added to the gallery of all previously
stored face desciptors together with a number indicating its class label (identity).
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The database may however not be defined in a way optimal for descriptor match-
ing. Principal component analysis is applied to the database to transform it to
the linear subspace that is defined by the inherit variance of the data. To remove
noisy and statistically irrelevant dimensions, only the eigenvectors whose eigen-
values constitutes 99.999% of the total sample variance in the data is kept. The
code used for perfoming both PCA and LDA was created by Deng Cai and can
be found at [44]. It is worthy to note that the eigenvalues returned by the code
are all normalized to approximately 1, suggesting that the eigenvectors have been
whitened, and that distances that are calculated in the LDA subspace are therefore
Mahalanobis distances. For a detailed description of PCA, LDA and whitening;
see Section 3.4.

Figure 4.8: Illustration of the face recognition process. The face is detected,
searched for features, aligned, encoded using the LBP operator, processed using
the linear subspace methods and then finally classified using the nearest neighbour
method.

The database now contains information suitable for matching. When an unknown
face image is found in a video or a sequence of images, it is processed as shown
in Figure 4.8. Instead of storing the reduced descriptor in the gallery, the probe
is matched to all descriptors in the gallery using the nearest neighbour classifier.
Restricting the largest allowed distance to the nearest neighbour with a thresh-
old changes the the task from closed-set identification to open-set identification,
as explained in Section 4.1.3. Neighbours with distances above the threshold are
then deemed too far away from the subject to actually be the same person and
the identity is assigned as unknown.
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The choice of a proper threshold depends on the length of the feature vector and
the distance metric itself. The former dependency can be removed by dividing
the distance by the length of the feature vector, whereas the latter cannot and
distance metrics has to be evaluated separately. Three different distance metrics
were evaluated for the 1-NN classifier: euclidean, cosine and chi-square distance.
The chi-square distance requires the feature vectors to be positive normalized his-
tograms and was therefore omitted for the PCA+LDA method. Since testing
various distance metrics generates a lot of data to process, open-set identification
was only evaluated on the distance metric and method that performed the best in
the closed-set identification.

For every image that is processed, an identity is assigned and the result is stored
in an accumulator matrix that counts the number of times each identity has been
selected, including the unknown identity. The number of processed images for
each video will vary since the subjects do not perform the exact same movements,
which affects the output of the face detector. Only the result up to the minimum
amount of images included in all videos are shown. It would not be wise to include
result after that, since the recognition rate would then be calculated for a subset
of the database.

4.5.2 Using template matching

One of the downsides of the LBP-method is that it requires full frontal images
from a video source of which there is no control of the content, therefore it is not
guaranteed, although plausible, that a full frontal image will be present in the
image stream. The worst case running scenario would then be one camera placed
in an non-frontal position where the chance of the driver facing that camera is low,
in this case the LBP-method would falter since very few, or non at all, full frontal
face images will be captured.

The way to tackle this issue is to implement a method which is not pose dependant,
and since the Smarteye tracking profiles contain templates of all features in differ-
ent poses, they have been used in implementing a template matching algorithm.

The face recognition problem is then reduced to ”How to recognize a person from
a set of templates?”, and it is not straight forward to answer this question. Since
each profile contains a high number of templates, and it is assumed that since we all
are humans with human facial features, all templates will correlate positively with
every face, since the NCC scores are between negative one and positive one, but
they will only score very high in the image of the same person. This is however not
always true and sometimes person A’s template will score close to 1 on an image of
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person B, see fig 4.9, therefore the recognition cannot be based on any single tem-
plate, but has to use one of the two classification methods developed in this project.

Figure 4.9: Left image shows a face image of a person A, and the image to the
right shows a template of a mouth corner of a person B. The red star in the left
image indicates where the template from B scored 0.964 in A, which shows that even
features may score high in other parts of the face, and therefore no conclusions can
be made from a single template score

Frame score classification (FSC) is a classification method which consists of a
two step classifier. First it classifies separate frames independently, a frame score
vector is formed to count how many frames each profile has been classified as.
Then the whole video is classified as the profile with the highest frame score.

A frame classification is done by matching every template, using NCC, to the
frame, and if the strength of the cross-correlation is higher than a threshold T,
then a template counter, Ctemp, is incremented, see equation 4.8. A template score
vector (TSV) of size nprofiles, see equation 4.9, keeps track on how many templates
in each profile were stronger than the threshold for said frame.

{
if Tempi > T then Cp

temp = Cp
temp + 1

else nothing

}
(4.8)
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Video \ ID 1 2 3 4 5 6 7

1 22 1 0 0 0 0 1

2 13 0 4 0 0 0 8

3 3 11 5 1 1 0 1

4 0 14 4 0 0 0 0

5 0 0 36 0 0 0 2

6 3 0 1 16 0 0 1

7 0 2 0 22 0 0 5

8 2 0 0 0 21 1 14

9 1 2 0 0 22 3 8

10 4 2 1 0 0 10 2

11 0 0 1 0 0 0 33

Table 4.1: The FSV is shown here for each video in the pilot database, the high-
lighted numbers are the correct IDs for each video, and as it can also be seen is
that all the highlighted IDs also have the highest score, which would give a 100%
recognition rate. The threshold for this classification was 0.945.

TSV =



C1
temp

C2
temp

.

.

Cn
temp


(4.9)

The frame classification is then done by choosing the profile which had the highest
score in the TSV, this score is itself counted for each profile and saved in a frame
score vector (FSV) similar to the TSV. When all frames have been classified , a
final classification is done by counting all the separate frame classifications and
choosing the profile with the highest frame score, see figure 4.10. An example of
how the TSV looks when the pilot database is analyzed for each frame can be seen
in figure 4.11. It can be seen that the correct profile have in general a higher score
than the other profiles, the FSV:s for all videos are shown in table 4.1
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Figure 4.10: FSC is a classification method with a two-step classifier. In the first
step, each frame is classified by its TSV to a profile ID, and in the second step, all
the classifications are summed up into a FSV and the ID which got the highest score
is finally classified as the user ID.

Accumulative score classification (ASC) which is similar to the FSC, but in-
stead of classifying every frame, the TSV is accumulated over all frames. The final
classification is then based on the maximum value found in the accumulated TSV.
The accumulated TSV for the analyzed videos in the pilot database can be shown
in figure 4.12

The template matching shows good results on the pilot database, but the issue is
that the time consumption is proportional to the number of templates. It shows
that, on an Intel Quad Core CPU @ 2.40 GHz, it takes on average 0.08s to cross-
correlate one template (24x24) to an image (640x480). It does not sound like much,
but if there are 10 profiles, each with 100 templates, the time consumed to tem-
plate match would be 0.08*10*100 = 80s, which is not practical, especially since
the number of templates is normally higher. There are two ways to try to reduce
the time consumption, either to make the algorithm faster, which is a challange,
or to reduce the amount of data processed. The following settings are tunable:
- Size of image. Either to resize the image, or to crop the image to only include
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Figure 4.11: In the analysis of this video, only every 30th set of images were
analyzed by the algorithm, and only for 40 frames. The video shows person ID 3 in
an simulated car ride, and ID=3 was cyan in this image, it is easy to see that the
highest TSV for almost all frames was the correct profile. The threshold was chosen
to 0.945
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Figure 4.12: The figures show the same analyzed video as in figure 4.11, but shows
the accumulated TSV, the color coding is the same as before, it can be seen that
the correct profile accumulates a high template score.

the face, or both.
- Number of templates. We can reduce the number of templates which are cor-
ralated
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- Which frames to analyze. Instead of analyzing each and every frame, we can pick
and choose some frames in order to reduce the data volume processed.

Regarding the size of the image, it is of no interest to cross correlate against the
part of the image that is not the face of the user, therefore we can use, for example,
the Viola-Jones face detector to reduce the size of the image, see figure 4.15, in
this example the amount of pixels were reduced by roughly 70%, and the time to
do NCC went from 0.0707s -> 0.0118s, which is a reduction with 83%, it could
be thought that the time consumption also should reduced with 70%, but the im-
plemented NCC-function makes a simple calculation in order to choose between
time-domain convolution and fourier-domain filtering to do the cross-correlation,
therefore it can optimize the method depending on the size of the image, that is
why the speed might improve to more than expected when cropped. The image
can also be resized, which also is proportional to the pixels in the image, if the
image is resized to 50% of the original size, 320x240, the amount of pixels is a
quarter of the original, and the time is reduced to 0.018s which is 25% of the
original time, just as expected.

- Number of templates. As mentioned, the time consumption is proportional to
the number of templates, therefore it is of interest to try and keep it as low as
possible. The problem is that there is no way of knowing what information is
stored in the templates before it is looked at, what is known is which feature it
represents and from which camera it was captured. Therefore there is no way to
control the quality of the templates or from which pose they are taken. Optimally
we would like to have a number of templates evenly scattered over a range of poses
for each feature.
The problem of many templates, is that there is a risk that the Smarteye software
has several templates that are very similar to eachother, and that the template
matching would give a biased result, just because one profile has many templates
that look one way and therefore has a high score.
The path that was chosen to deal with this is to do the same normalized cross-
correlation as before, but NCC between two templates, all-to-all, and disregard
the ones that have a cross-correlation value above a certain threshold, see equa-
tion 4.10, see figure 4.13. It is assumed that if two templates correlate high with
eachother, they will therefore also correlate high in the image, giving a biased re-
sult.

{
∀Ti, i 6= j if NCC(Ti,Tj) > T, then throw away Tj

else nothing

}
(4.10)
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Figure 4.13: Here, the total amount of templates is seen how it varies with different
template reduction thresholds.

Another issue that arises when the number of templates is reduced, is that good
templates might be deleted so that there is no templates above the threshold, but
sometimes the results might not change much, see figure 4.14.

Possibly the easiest way to reduce the amount of data that needs to be processed
is simply by skipping frames completely that are not seen as important. Since
the videos are captured in 60Hz, that is 60 frames per second, the consecutive
frames will differ only slightly, making the analysis of them uninteresting. The
best would be to build up a collection of frames from different poses, but since
the pose is unknown in the video, only every x:th frame is processed. X used for
template matching was chosen to 30, which would lead to 2 processed image sets
per second. The amount of data processed is then reduced by 96.7%, but it is
possible to even further reduce the frames by only analyzing the ones which have
a face in them as detected by the Viola-Jones algorithm, but this would take away
the advantage that the template matching has over the LBP-method.
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Figure 4.14: (Left) Looks like a scaled version of the unreduced classification, even
though the template reduction threshold is 0.1, (Right) Video 10 did not manage
to get a correct classification, only two templates managed to match above the
threshold (0.945).

480x640 301x301

Figure 4.15: The picture to the left shows the original image of the size 480x640,
and to the right, the face-image, as detected by the Adaboost algorithm.
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Chapter 5: Results & Discussion

5.1 Face detection

Applying the face detector described in Section 4.2 to all the images in the profiles
reduces the number of images from 1696 to 1614. The reduction in gallery size is
not very large since the images stored in the profiles contains faces with multiple
facial features visible. The images that were rejected are most likely of faces
rotated too much from full frontal pose. Searching each image for a face takes
approximately 0.029 seconds, which is decently fast but not enough to handle the
system in real-time. With a frame rate of 60 Hz and 3 cameras, the time to process
one image would need to be below 1

60∗3 = 0.0056 seconds, more than 5 times faster.
This is a clear trade-off, the additional accuracy provided by four cascades may
not outweigh the loss in speed in other contexts since real-time was not a goal of
this particular project, as explained in Section 2.2.

5.2 Feature extraction

All three facial features were found in only 1098 out of the 1614 face images, fur-
ther reducing the size of the gallery. Even though detection of features is decently
fast, the feature detector cannot handle partial occulusions such as glasses very
well. The run time is around 0.1 seconds per face image, despite limiting the search
areas for each feature. It could have been investigated if Haar-cascades specifically
trained to find the left eye and right eye seperately would have increased accuracy.

A solution to the problem of outlier detections would have been to use a prior
distribution model to limit the search areas for each feature [45] or to select the
most probable configuration of features [46]. By analyzing a database of facial
images with annotated feature points, the mean and variance of each feature point
position can be calculated and thus provide an area where the feature is most likely
to be found. This can be done if the face images are assumed to be in a full frontal
pose and could have increase both speed and accuracy of the feature detectors.

While three and even two features (both eye centers) are enough to perform a
global facial alignment as explained in Section 4.4, a detector that found more
facial feature could have increased robustness in the alignment step, as discussed
in Section 5.4.1.
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5.3 Facial alignment

Figure 5.1: A set of aligned faces. The cropping is worse for faces rotated around
the cameras y-axis, because the affine transformation assumes that the face is full
frontal. The right-most column contains two cases where the feature detector has
provided faulty feature points, yielding a badly aligned or cropped image.

A set of eight aligned images is shown in Figure 5.1. For completely full frontal
images or images rotated around the cameras z-axis, the alignment and cropped
works very well, but performs worse for rotations around the y-axis. The face
model is defined for full frontal, with the mouth being centered between the eyes.
As the head is rotated around the y-axis, the eye positions move closer together
from the cameras perspective and thus the cropping does not get a tight fit around
the face anymore. The right-most column shows two cases where the feature de-
tector has provided the alignment step with faulty feature positions. Such cases
can lead to misalignment and incorrect normalization with respect to scale, which
both yields bad cropping. Note that rotations around the x-axis will not affect the
reuslts as much because the interocular distance will remain almost constant from
the cameras perspective, only scaling in the vertical direction will vary.

This facial alignment method is very simple and can reduce transformations in
some cases, but then a rotated face will differ from a face that was in an initially
correct position because of skewing. Our method cannot reduce deformations of
the face due to expressions either, the facial alignment step can unfortunately only
be as good as the feature detection step allows it to be. If more feature points were
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found, an alignment method that more effectively reduces distortions due to head
rotations and facial expression, such as piecewise affine warping [31][47] could be
used.

The current alignment method would also benefit from access to more than three
feature points. The affine transformation could then have been calculated more
robustly and not been affected as much by outlier detections, where either of
the feature points are misplaced, which usually leads to severe deformations of the
facial image. The number of face detections discarded due to missing eye or mouth
detections could have been decreased, since additional feature points would have
provided redundancy when calculating the affine transformation. They would also
have provided more information about the boundaries of the face and thus ensured
tighter cropping.

5.4 Face recognition

5.4.1 LBP-method
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Figure 5.2: The recognition rate of the LBP-methods on the complete database
as a function of the number of processed face images for different distance metrics.
Unaligned reaches a mean recognition rate of 89%, whereas aligned achieves 93%.
Note the difference in processed face images between the methods.

Figure 5.2 shows the results of the aligned and the unaligned methods seperately for
varying settings on the complete video database. PCA in combination with LDA
was applied to the face descriptors for all settings except the ones marked ”clean”.
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The aligned settings outperforms the unaligned ones, despite the fact that it has
processed a fewer amount of face images. The unaligned settings scores a mean
recognition rate of 89.0% after 61 processed face images, with the LDA-euclidean
and LDA-cosine acquiring the highest recognition rate of 91.5%. The aligned set-
tings has a mean recognition rate of 93.2% after 22 processed face images, with the
LDA-cosine performing the best and acquiring a recognition rate of 97.9%. The
alignment procedure thus increases overall performance, leading to better decisions
despite using less data. The clean settings performs worse in both cases, indicating
that dimensionality reduction and class clustering using the PCA+LDA method is
beneficial to the performance. However, the chi-square similarity is almost equal
in performance despite using the full feature vector, motivating the choice made
by Ahonen et al. [17] to use the chi-square similarity for LBP face recognition.
Our performance could have perhaps been improved further by using their weigh-
ing scheme, such that more discriminative tiles contributes more to the similarity
score.
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Figure 5.3: The recognition rate of the LBP-methods on the unmodified database
as a function of the number of processed face images for different distance metrics.
Both methods achieve 100% recognition rate. Note the difference in processed face
images between the methods.

Figure 5.3 shows the result on the unmodified subset of the database. Both the
unaligned and aligned settings acquire a mean recongition rate of 100%, with the
unaligned method requiring 35 images and the aligned method requiring only 12
images. This shows that the algorithm eventually correctly classifies all unmod-
ified videos for both methods. The LDA-cosine performs slightly better overall
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than LDA-euclidean and clean chi-square, only needing 9 face images per video for
the aligned method to stabilize at 100% recognition rate.
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Figure 5.4: The recognition rate of the LBP-methods on the modified database
as a function of the number of processed face images for different distance metrics.
Unaligned reaches a mean recognition rate of 77%, whereas aligned achieves 86%.
Note the difference in processed face images between the methods.

The superiority of the aligned method is even clearer in the modified subset of the
database shown in Figure 5.4. The unaligned method only reaches a mean recog-
nition rate of 77.0%, the LDA settings once again performing the best with a score
of 82.5%. The aligned method achieves a 86.0% mean recognition rate, with LDA-
cosine reaching 95.7% recognition rate, outperfoming euclidean distance slightly.
We can conclude that recognition rate is overall lower for modified videos as in-
tuition suggests, since that subset of the database contains facial occlusions and
different appearances of the subjects.

The recognition rate can also be investigated as a function of time. This is interest-
ing because of the fact that the aligned method requires better face images where
the facial features have been found. This leads to a difference between the meth-
ods with respect to the time it takes for them to achieve their results. The results
for the full database are shown in Figure 5.5. It is apparent once again that the
aligned method achieves a higher mean recognition rate of 96% compared to 93%
after 30 seconds. The unaligned method performs better in the beginning because
it rejects less face images. Its performance also converges to a lower recognition
rate because of the lower quality face images. Note that the subjects generally do
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(b) Aligned.

Figure 5.5: The recognition rate of the LBP-methods on the full database as a
function of time. Unaligned reaches a mean recognition rate of 93%, whereas aligned
achieves 96% after 30 seconds has passed.

not sit down until after about 4 seconds, explaining the delay in the graphs. The
LDA-cosine still performs the best, acquiring 100% recognition rate on the aligned
method after 20 seconds.
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Figure 5.6: The recognition rate of the LBP-methods on the unmodified subset
as a function of time. Both methods achieve 100% recognition rate, the unaligned
method converging faster.
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The results of aligned and unaligned settings for the unmodified and modified sub-
sets are shown in Figure 5.6 and Figure 5.7 respectively. These figures reveal that
the unaligned method actually outperforms the aligned method on the unmodi-
fied subset with respect to time, reaching a mean recognition rate of 100% after
13 seconds compared to 18 seconds for the aligned method, because it does not
throw away as many face detections as the aligned method. But once the subjects
alter their appearance, the unaligned method underperforms and cannot reach the
same mean recognition rate as the aligned method, achieving 86% compared to
95%. Only the LDA-cosine setting reaches 100% recognition rate on the modified
subset.
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Figure 5.7: The recognition rate of the LBP-methods on the modified subset as a
function of time. Unaligned reaches a mean recognition rate of 86%, whereas aligned
achieves 95% after 30 seconds has passed.

From these results we can conclude that the aligned method requires less images
to acheive a higher recognition rate, outperforming the unaligned method espe-
cially on the modified subset, even though it takes slightly longer time to obtain
the needed amount of face images to surpass the results. An alignment proce-
dure that works also on rotated faces or faces with occuluded features together
with improved feature detectors would cut the gap in time for the aligned method
and hopefully also allow for faster increase in recognition rate. The LDA-cosine
setting is the overall top-performer in almost all cases, with LDA-euclidean and
clean chi-square slightly behind. This is reasonable because of the fact that the
LDA method has a supervised learning step that is designed to increase separation
between classes and decrease separation within classes. Since cosine often outper-
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forms euclidean, it seems to be a better measure of similarity between vectors. The
chi-square distance does however seems like a good alternative in cases where a
supervised learning step is not desirable, such as online setups where the database
will increase in size and require re-training of the LDA transformation every time
the database is updated.
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(a) Aligned LDA-cosine setting.
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(b) Unaligned clean euclidean setting.

Figure 5.8: CMC-curves for two settings on the full database with a false positive
rate of 1 for varying number of processed face images.

The cumulative match characteristic (CMC) was evaluated for the aligned LDA-
cosine setting by plotting CMC-curves, with the recognition rate shown as a func-
tion of rank. A false positive rate of 1.0 was used to keep the problem a closed-set
identification with the distance threshold set to τ = ∞. The full database was
evaluated for varying N = of frames until identification. The result is shown to-
gether with the base line unaligned clean euclidean setting in Figure 5.8, chosen
for simplicity where a face has been LBP-encoded straight from the face detector.

The rank-1 recognition rate is increased drastically for the aligned LDA-cosine
setting compared to the base line for all values of the number of processed face
images. The case where one image has been processed can be compared to turning
the video database into an image database since only the first face image is pro-
cessed. This curve in itself is interesting, since high performance on the first image
would make processing of more images redudant. It is clear that the curves are
lifted with increasing number of processed images for both settings, confirming the
intuitive notion that processing more face images increases the probability of the
correct match being found, or that it is at least ranked as a top candidate. The
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(a) Unmodified subset.
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(b) Modified subset.

Figure 5.9: CMC-curves for the LDA-cosine setting over each subset of the
database with a false positive rate of 1 for varying number of processed face im-
ages.

CMC-curves for the unmodified and modified subset for the LDA-cosine method is
displayed in Figure 5.9. The performance is decreased for all values of the number
of processed face images for the modified subset, whereas only a small number of
images is required to achieve good performance on the unmodified subset.

The mean distance between the correct and false matches for both the modified and
the unmodified subset of the database was also investigated to compare modified
and unmodified videos. Figure 5.10 shows that there is a clear separation in mean
distance, which is slightly increased for the modified subset, d̄mean = 2.2 ∗ 10−4

compared to d̄mean = 1.6 ∗ 10−4. A distance threshold should therefore be set
above the modified correct mean distance, such as τ = 3 ∗ 10−4, to remove weak
classifications and imposters.

ROC-curves can be plotted for the open-set identification by varying τ and re-
moving randomly selected profiles from the database so that half of the videos
are part of the gallery and the rest are of unknown persons not present in the
gallery. The result strongly depends on which profiles that are removed due to the
small database size, but only two runs were performed for each setting due to time
constraints and an average result of those runs was calculated. Optimally a high
number of runs should be used to calculate the average to get a better estimation
of the actual performance on the data set. The results are shown in Figure 5.11
with different values of N for the aligned LDA-cosine and aligned clean chi-square
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Figure 5.10: The mean distance between the current image face descriptor and
the gallery for the aligned cosine setting, divided into the correct match and false
match, for both the unmodified and the modified subset of the video database as a
function of the number of images processed. The dashed lines represent the mean
values.

methods. These were selected to allow for a comparison between the best super-
vised (LDA-cosine) and best unsupervised (clean chi-square) settings. The AUC is
also shown in the figures. Note that the range of the threshold τ must be changed
manually for each method since the range of distances varies.

The figure shows that the clean chi-square setting outperforms the LDA-cosine set-
ting: The recognition rate for N = 20 converges faster and reaches a higher value.
The AUC is also higher with 83.8% compared to 81.1% (where 1 is the maximum
value). The performance of the LDA-cosine setting is not as good for open-set iden-
tification as for closed-set identification, a result of the fact that it only maximizes
separation with respect to the subjects in the gallery. Once subjects are removed
from the gallery, the LDA-cosine can no longer retain its superiority over the un-
supervised chi-square setting, since it may have removed dimensions necessary to
efficiently discriminate between subjects that are part of the gallery and imposters
that are not. This shows the subtlety of face recognition and that algorithms also
must be chosen with respect to the desired type of identification task (face verifi-
cation, closed-set identification or open-set identification). It would be interesting
to investigate how the LDA settings are affected by the size of the database as
well, if more training data benefits the method in the open-set identification by
allowing the LDA-algorithm to learn a transformation that better separates the
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Figure 5.11: ROC-curves for two settings on the database for varying a number of
processed face images. The graphs show the average of two runs where the database
for each run was randomly drawn so that half of the profiles were part of the gallery.

overall population in face space instead of just a small subset.

One must remember that these results are dependent on the size of the database
and that performance is also tighly connected to the content of the database. A
larger variance in performance between different runs is to be expected for small
data sets because of the fact that they do not cover as much of the possible varia-
tion as large data sets. This means that one cannot create a database of the same
size and with the same settings but with different people and expect similar results.
Our database was rather homogenous with respect to age and ethnicity, mostly
consisting of middle-aged northern europeans. However, the task of differentiat-
ing people from eachother is harder in a homogenous data set than in a varied
data set, so this shows that the method can work well despite similar appearances
among subjects. This does not guarantee performance in other homogenous data
sets though, since we cannot predict if discrimination amongst subjects is harder
for the algorithm in other subsets of the total population.

The effects of adding the left-right flipped images to the database were not evalu-
ated. Even though it increases the amount of images in the database to compare
with, it may not be suitable and should be taken into consideration since it affects
the decision boundaries in the classification step, especially for the LDA method.
Adding flipped images to each class may lead to a transformed LDA-space sub-
optimal for comparing ordinary non-flipped images, since the algorithm clusters
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flipped and non-flipped images of the same class together and may therefore im-
pede its ability to generalize on ordinary images where the subject has modified
its appearance. Optimally, the alignment procedure should produce a facial image
completely devoid of facial asymmetry, so that adding left-right flipping becomes
redudant.

Due to the fact that the LDA method has whitened eigenvectors as output, it
transforms the data not only according to the class seperation of LDA but also ac-
cording to the variance of the transformed space, such that distances are calculated
in Mahalanobis space [35], or a dimensionless feature space. This may give an un-
fair advantage to the runs that uses the LDA method compared to the clean runs,
since any metric comparison is done in a transformed space designed to separate
the data with respect to its variance. This is generally more discriminative and
Mahalanobis cosine have been shown to perform better in PCA and LDA methods
than metrics in their original data space [48] [35]. To calculate the Mahalanobis
distance in the ordinary data space instead of in a linear subspace (PCA or LDA),
one requires the inverse of the co-variance matrix of the feature database to be
positive definite in order for the built-in MATLAB distance functions to work.
This was not fulfilled and thus the attempt to calculate the Mahalanobis distance
was abandoned.

Instead of using only PCA+LDA to find an optimal subspace, the unified frame-
work for subspace analysis proposed by Wang et al. [36] that also utilizes Bayesian
analysis besides PCA+LDA to reduce the intrapersonal variance of faces due to
transformations such as facial expressions and illuminations could have been in-
vestigated. Their results suggest that all the three subspace methods complement
eachother and thus should be used together.

The choice of using the ordinary NN-classifier could also be questioned. The effects
of classification with more than the 1-NN would have been interesting to investi-
gate, especially how it would affect the clean settings, because of the fact that the
high dimensionality leads to very sparse data points and badly defined decision
boundaries. Multi-class support vector machines and neural networks are options
for the classification of face descriptors, but they were dismissed for the simplicity
of the NN-classifier, both in conceptualization and implementation.

It would be interesting to investigate a classification method that takes advantage
of the previously processed face images when classifying new images, instead of
treating each image as an indepedent decision. This would most likely both in-
crease the identification accuracy and decrease the amount of information needed
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to make a correct final decision on the identity of the user. An easy approach
would be to calculate the class centers of all individuals in the gallery and then
assigning the probe class center the identity of its nearest neighbour class center.
A more refined method would be to use the manifold-manifold distance [49], de-
signed to match sets of images with eachother. This better corresponds to the
actual task posed when using the tracking profiles to identify subjects in video
sequences, since both the profiles and videos contain multiple images of the same
face. The complications with this approach would be that if the implmentation
was done for video streams instead of video sequences, the probe set of face images
collected from the stream would continuosly increase thus changing the manifold
of the probe set with each processed face image. This could be circumvented by
investigating the recognition rate as a function of the number of processed images
used for the calculation of the probe manifold and choose an appropriate image or
time threshold that meets a set average recognition rate.

No intensity normalization scheme was evaluated because of the fact that the cam-
era system itself reduces the variations in illumination. The LBP-operator is also
designed in such a way that is it invariant to monotonic gray-scale changes [17],
a property of histogram equalization which is normally used for intensity normal-
ization. It would have been interesting to investigate if normalization would have
improved or impaired performance, since it is a necessary step on ordinary gray-
scale images. However, Li et al. [16] also used near IR-cameras and flashes to
reduce illumination issues and did not use any additional normalization either and
therefore it may not be suitable for IR setups.

Even though the LBP-method has been evaluated for full frontal images, the
method itself could be used for faces in any pose, given that the faces retrieved
and stored from the profiles are in that pose. Profile photos for example may not
be as discriminative between individuals as full frontal photos, leading to lower
recognition rates in other poses, but the theory is not exclusive to full frontal. The
alignment procedure would have to use corresponding face models when aligning
and other features instead of mouth and eyes may have to be extracted, but noth-
ing limits the method it from working in other poses. Optimally, many different
”identificators” should be created, working in varying pose ranges and thus the
algorithm could handle pose variations much better and not have to throw away
as much video data as when only using full frontal images.

5.4.2 Template matching

Since the template matching is quite a time consuming task as of now, there had
to be done some restrictions in the number of simulations, and in trying to reduce
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Figure 5.12: Face detection using the ABD, it can be seen that the whole face is
captured, however because of the reflected light from the throat, also a big portion
of the neck is included.

the amount of data to process in order to make it runable. As will be shown,
the database was analyzed using the viola-jones face detector, because it reduced
the amount of images that had to be processed, but also a pararell simuation was
done using the adaptive blob detector (ABD), see fig 5.12 and 5.13, for a number
of videos to show that the results may be extrapolated.

As mentioned in chapter 4.5.2, each simulation can be done with different param-
eters, such as how many frames shall be processed and template reduction. Since
the database contains more than 13000 templates for 24 profiles, the time it will
take to match is unpractically long, and since there were no computers available
to be dedicated to the task it had to be done on a personal computer, which was
not available at all times either.

Information about the first run can be seen in figure 5.14. As can be seen the first
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Figure 5.13: Because the ABD does not consider anything other than ”blob-
structures” in the image, it cannot distinguish between face or non-face images,
therefore some faces might be cropped (left and middle) or occluded (right).

run reduced the templates by 20%, which was mainly done because the method
is so time consuming, and a template reduction parameter of 0.8 seemed to be
reasonable to still remove an amount of templates while retaining a sound set of
templates, however there is no known way to actually investigate this claim.

In the classification stage we first look at the FSC, and one of the difficulties is
to decide which threshold is good to use, therefore a bypass has been done by
sweeping over a range of plausable thresholds and evaluate the method based on
maximum performance.
As can be expected the results in figure 5.15, which are summarized in figure 5.16,
show that the method FSC has better performance for non-modified videos. We
can read out in the figure 5.16 that the best reached performance for all videos
is 83%, which is good results compared to a random classifier, however, the large
number of templates makes the whole process generally unpractical, as can be seen
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Figure 5.14: Table shows the settings which were used for the first template match-
ing run and the metainformation.
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Figure 5.15: Here the number of correct classifications is shown as a function of
threshold for Modified, non-modified and all videos for closed set identification.

in the table in figure 5.14.

We could also look at how the recognition rate (FSC) increases over frames ana-
lyzed, then we could see how fast a good recognition can be extracted. The number
of analyzed frames each video has in the first run, see figure 5.17, is totally de-
pendant on the pose of the user because the Viola-Jones face detector can only
detect full frontal faces. We would like to now plot the recognition rate based on
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Figure 5.16: Here the best performance from the first run are shown for the FSC.
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Figure 5.17: The number of analyzed frames in each video. For modified videos,
the minimum found was 29, and maximum was 137, while for non-modified the
minimum was 40 and maximum 143.

the frames, the thresholds will be as detected in the analysis above, see fig 5.16.
In order to include all videos, we will restrict the modified videos to 29 firstly
detected face frames and the 40 first for non-modified videos.

As can be seen in figure 5.18, even after a quite small number of frames we could
get an okay recognition rate. We can also see that the identification did not reach
the maximum as seen in figure 5.16, so we know that the more frames (data) we
have the better classification can be achieved. It is interesting to see that the
modified videos achieved higher recognition rate during fewer frames than the un-
modified set, although this is entirely dependant on the quality of those frames.

Another run was done using the ABD, in order to see how the identification was
with all frames included, since the ABD always give an output in the image whether
or not an user is actually present, see figure 5.19. As we can see the run time for
the second run is approximately the same, but with half of the number of analyzed
frames, this is a result of the ABD, as you can see in figure 5.12, the output box
is usually much bigger that it needs to be, which makes it more time consuming,
and only 11 videos were analyzed, this also restricted by the time available. What
we can do is to compare the analysis of the first 11 videos in both runs, and see
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Figure 5.18: recognition rate of 75% was reached for the non modified and 78%
for the modified set.

Figure 5.19: The table shows data and settings for the second run of the template
matching algorithm.

how they compare, if they are similar enough, we can extrapolate the results to all
videos, arguing that logically the rest of the videos will also show similar results. In
figure 5.20, the recognition rates are shown for both run 1 and run 2 for the first 11
videos only. We can see that for modified videos the method managed to get 100%
recognition rate for some threshold, but all videos the maximum recognition rate
was the same 81%, for for slightly different thresholds. But we can assume that if
we were to analyze all videos we would get somewhat similar peak performance as
in run 1.
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Figure 5.20: (Left) recognition rate for only the first 11 videos with run 2. (Right)
Same analysis as previously but on only the first 11 videos.

5.4.3 Alternative identification methods

The profiles as mentioned earlier also contains a face model of each person with
the coordinates of around a dozen facial feature points defined in three dimen-
sions. This face model could be used to classify subjects, under the assumption
that individuals have unique facial structures and that the differences in distances
and angles between features of different persons are large enough for discriminative
tasks and is not completely overwhelmed by noise.

This could be done in two ways: Either by projecting 2D feature points into 3D
space such that a comparison can be made between the stored models and the
model of the unidentified subject, or by projecting the stored 3D models to 2D
and then comparing the models. The first method required a minimum of 2 cam-
eras with different views of the subject in order to be able to create a 3D model,
whereas the second method could work with only one camera.

The bottle-neck of both methods is that they require accurate facial feature extrac-
tion together with proper pose alignment in order for the differences to not consist
mostly of noise. Two feature extraction methods were evaluated, a method that
used SVM’s trained on HoG-descriptors to find facial features and the template
matching method, as explained in Section 4.5.2. Neither of these feature extraction
methods were precise enough in their detection of facial landmarks to proceed with
the projective geometry and thus no proper conclusions could be made regarding
the use of the Smart Eye 3D models for identification purposes.
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Chapter 6: Conclusions

In this thesis we have evaluated two methods for face recognition in videos cap-
tured in the near-IR spectrum. The subject identification was done by utilizing
data available in previously stored Smart Eye tracking profiles. The evaluation of
the methods was performed on our own database of videos and tracking profiles,
consisting of 24 people and 47 videos. The data available in the tracking profiles
proved to be sufficient enough to reach good recognition rates for both methods.

The method based on the local binary pattern operator achieved good results on
both the modified and unmodified subset of the database. The setting aligned
LDA-cosine got the best result in closed-set identification (100% and 95% recog-
nition rate respectively) and the aligned chi-square similarity performed the best
in open-set identification (49% recognition rate at 2% false positive rate on the
complete data set). This indicates that a supervised learning step increases the
performance significantly in closed-set identification, where all subjects were part
of the gallery, whereas in open-set identification the supervised LDA-method could
not generalize as well and was outperformed by the unsupervised chi-square setting.
The decrease in performance may be due to the removal of dimensions necessary
for discrimination between imposters and actual subjects in the database. Overall,
the LBP-method is robust to both geometric transformations (scaling and rota-
tions) and to facial occulusions due to its ability to capture image information on
both a local and global level. The results showed that the facial alignment and
the dimensionality reduction procedure both were beneficial to the identification
process, significantly increasing the performance of the LBP-method. Despite our
rather simplistic implementation of the LBP-method, we have shown that it per-
forms well and that it could succesfully be used for driver identification.

The results for the template matching algorithm were acceptable, 81% recognition
rate for all videos, although they showed that the performance can be good in
certain circumstances (100% for modified videos in run 2). The problem is to
decide a threshold for the template scores and to keep the run time down. The
optimal threshold varies quite a bit from run to run, but it was high in most cases
( 0.97-0.98) indicating that most of the templates were not used. The biggest
flaw of the method is the run-time, and this is related to the large number of
templates, a factor which cannot be controlled in a simple manner. Some ways to
reduce the run-time can be to use a more specific face detector, such as the Viola-
Jones detector, which reduces the analyzed number of images. The Adaptive Blob
Detector (ABD) further increased the run-time, since it includes a larger output
image than the more precise Viola-Jones detector.
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Chapter 7: Future work

Refinements and extensions of the LBP-method would include using multiple iden-
tificators that works for face detections in different angles, so that not only full
frontal face images are used for identification. Detection of more than three fa-
cial features would be beneficial as well, so that the alignment procedure could be
enhanced by not only finding a transformation for the complete face image but
for local parts of the face as suggested by [31], that would to an extent prevent
the deformations of the face that are caused by a global face transformation. The
LBP-operator could be improved or exchanged for better face encoding, either by
using the simple multi-radius approach suggested in [13], or any of the extensions
described in [32]. Performance could also possible be increased by treating the task
as a set-to-set comparison instead of an accumulated example-to-set comparison
with the manifold-manifold distance [49], which would be more accurate problem
description with respect to the actual data available during each identification step.
These are all ideas to pursue in hopes of achieving higher recognition rates.

For the template matching method, a way to control the quality of templates is
required. One option is to compare all the templates to eachother and assume
that most of the templates are in fact of good quality, and therefore we could keep
the templates which are good by retaining the ones that are similar and throwing
away the outliers, and by that means reduce the number greatly. Other ways is to
improve the correlation method, by searching for the maximum correlation in the
image instead of doing an exhaustive search. This could be done by correlating
at different scales and then choosing to further analyze an area around regions
of interest. However if the database is large enough, this method is likely not
desireable at this moment, since the number of templates will be big anyway.
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Appendix A: Additional tables

A.1 List of OpenCV Haar-cascades

Type of
Haar-

cascade

Name Min
size

Max
size

Scale
factor

Merge
threshold

Face haarcascade frontalface default.xml
[200,200] [400,400]

1.1 4

Face haarcascade frontalface alt.xml
[200,200] [400,400]

1.1 4

Face haarcascade frontalface alt2.xml
[200,200] [400,400]

1.1 4

Face haarcascade frontalface alt tree.xml
[200,200] [400,400]

1.1 4

Eye haarcascade eye.xml [20,20]
[100,100]

1.05 8

Mouth haarcascade mcs mouth.xml [15,25]
[100,150]

1.05 12

Table A.1: Table containing the types, names and settings of the Haar-cascades
used in the face and feature detection steps. These are freely available in the OpenCV
package that can be downloaded at [39]. The settings are modified in MATLAB.
More detailed descriptions of the cascades can be found in [40].

A.2 Run times for LBP-method

Step Run-time per image (seconds)

Face detection 0.029

Feature extraction 0.10

Facial alignment 0.013

LBP-face recognition 0.047

Table A.2: Table displaying the run times of each step in the system for the
LBP-method. Performance evaluated on a 2.4 GHz Intel i7 processor.
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A.3 Video database information

Figure A.1: Table containing detailed information about the complete video and
profile database.
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APPENDIX A. ADDITIONAL TABLES

A.4 Pilot video database information

Figure A.2: Table containing detailed information about the pilot video and profile
database.
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