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FREDRIK SANDELL, DAVID RUNEMALM
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract

Software drivers are typically hard to debug since their operation is closely linked to
the functionality of the hardware for which they are developed. The problems with
driver debugging is especially complicated if the hardware device has got interde-
pendencies on complicated external systems, as is the case with 3G modems. The
purpose of this thesis is to develop a 3G modem simulator framework that can be
used to control the environment in which 3G modem drivers are developed. Using
a simulator to control a development environment is not a new approach. However,
up to this point a modem simulator has not been used during 3G modem driver
development.

The modem simulator described in this thesis is implemented on a separate piece
of hardware which ensures that it can be used with any host system. The simulator
is highly configurable and can be used to induce 3G modem failures to test edge cases
and stress test the driver software. Tests have been performed which shows that the
system is indeed capable of simulating a 3G modem when attached to different host
systems.

The mobile communication industry is constantly evolving, therefore future de-
velopment of the simulator system is proposed that would increase the capabilities
of the system and keep it up to date and ready for the next generation of modems.

Keywords: modem simulator, 3G modem, broadband modem, BeagleBoard-xM,
MBM, MBMSF
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Chapter 1

Introduction

The gradual increase in cell phone network bandwidth over the last decade has given
rise to a new industry within computer networking. The goal of this industry is to
offer consumers Internet access by transmitting data through a link to the cell phone
network. Through this link; laptops, tablets and other similar devices, from now
on referred to only as hosts, can stay connected even without the presence of an
Ethernet or a Wi-Fi connection.

The task of maintaining the link to the cell phone network is usually handled
by a separate piece of hardware, a mobile broadband module, from now on referred
to only as module. The module is usually connected to the host by using a USB
link. By using an interface exposed by the connected module the host may transmit
data through a cell phone network. The interface between the module and host does
however require the host to have access to a set of drivers which controls the low
level communication with the module.

1.1 Problem definition

The functionality of driver software is per definition intimately tied to the operation
of the hardware with which it interacts and the module drivers are no different. This
presents a problem when the drivers are to be tested since it means that it is hard
to isolate and test the driver software separated from the rest of the module system
functionality.

The development of driver software is usually carried out in parallel with the
development of the module itself. Therefore, both the module drivers and the module
are bound to contain errors. This leads to several complications when debugging
the software drivers:

• Isolating the origin of a failure is often difficult since it may well be due to a
fault in the module itself.

• It is also hard to stress test the driver software since only limited low level
control over a module is available.
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1.2 Purpose & Outcome

The purpose of this thesis have been to create a Mobile Broadband Module Simulator
Framework(MBMSF) which enables isolated testing of the host drivers without the
presence of a real module. The benefits of using a simulated module when developing
drivers are threefold:

• A fault in a system using a simulated module can easily be traced to the driver
software.

• Simulating a module allows development of drivers to start before the module
hardware platform is available; thereby reducing time to market[43].

• Using a simulated module drastically increases the control over the module.
This can be used to inject faults in the simulated module and thereby stress
test the driver software.

Beyond the MBMSF implementation an evaluation of the completed system is pre-
sented to verify the implementation. Further, future system features are suggested
and possible implementations are described to provide guidance when the MBMSF
system is to be upgraded.

During the research for this thesis no information was found regarding systems
that have been developed to simulate mobile broadband module functionality. Sim-
ulations with the purpose of facilitating debugging is however used in many areas of
software development, for example embedded system development such as presented
by A. Gosh et al. [24]. The most closely related work is the open source project
Ofono phonesim which has been used when creating the implementation presented
in this thesis. The Ofono phonesim is discussed in section 2.2.4.

1.3 Limitations

The thesis is based on problems faced by the Mobile Broadband Module(MBM) de-
partment within the company Ericsson AB. Because of this the implementation of
MBMSF will be guaranteed to be compatible only with the Ericsson mobile broad-
band driver software. To implement a general solution compatible with other module
systems is likely possible but most information about module to host interfaces are
proprietary and therefore inaccessible.

Further the MBMSF is only intended to simulate the host to module interface.
No attempts have been made to simulate other types of module interfaces, such as
with SIM-card or cell phone network interfaces.
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Chapter 2

Theoretical Framework

This chapter contains basic information for the context of this thesis project. Ini-
tially an overview of mobile broadband communication is given, seen from a module
point-of-view. The chapter also presents an overview of the BeagleBoard-xM hard-
ware as well as software frameworks which together will form the platform for the
MBMSF.

2.1 Mobile Data Communication

The goal of a mobile data communication link is to enable devices connected to the
cell phone network Internet access. For this to be achieved the cell phone network
core is linked to the Internet infrastructure through a wired high speed connection.

Figure 2.1: Network Overview

For the data packets to be made avail-
able for routing in the cell phone net-
work core they need to be transmitted
between the connected device and the
cell phone network. This is done by
means of a radio link. The cell phone
network core is connected to a large
number of base stations covering the ge-
ographical area in which the connected
device is used. Each of these base sta-
tions contains radio receivers and trans-
mitters and forward data packets be-
tween the connected device and the cell
phone network core. The radio trans-
mission between the base station and
the connected devices are controlled by
several different communication protocols and which of these are used at any given
moment is determined by the physical environment in which the device is located
and network settings. Figure 2.1 displays an overview of a mobile data communi-
cation link. Currently in a European network a 3G compatible device is required
to support GSM, EDGE and several different releases of the UMTS protocol (com-
monly referred to as 3G) [48]. If the device is to be sold globally even more protocols
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are required. Within each of the protocols several modes of operation exists, each
with its own control messages [42]. In the end the control data complexity required
to maintain a continuous radio connection towards a cell phone network is consid-
erable. Because of the complexity associated with the radio transmission and the
requirement of special hardware, radio transmitter and receiver, the cell phone net-
work communication functionality is usually removed from the rest of the device and
placed in a separate physical module. Having this functionality in a separate module
enables it to be added to a device more easily than if it were to be integrated into
the device architecture. A single version of such a module can then be integrated
into a variety of devices with a minimal amount of device adaption required.

2.1.1 Mobile Broadband Module

The task of the mobile broadband module is to handle the complexities of cell phone
network communication and present a simple standardized network interface to the
host. A common way to connect a mobile broadband module to a host is to use the
Universal Serial Bus (USB) standard. More information about the USB protocols
are available in section 2.3 in this chapter.

The module interfaces

Even though the USB protocol is most known for connecting external units to a
host device it is also common to use the USB bus for attaching units built into the
host device. This is the case with the Ericsson mobile broadband module which is
embedded into a host device and usually never visible to the end user. A picture of a
detached Ericsson F3607gw mobile broadband module can be viewed in Figure 2.2.

Figure 2.2: Detached Ericsson Mobile
Broadband Module F3607gw with SIM-
card. A: PCI mini express interface. B:
Radio antenna socket. C: GPS antenna
socket.

The modules supplied by Ericsson may
have a form factor of either full or half
size PCI Express mini card [25]. The
module displayed in Figure 2.2 have the
full size form factor. Each module re-
gardless of its form factor have three ex-
ternal interfaces, the main one being the
PCI mini express interface marked with
A in Figure 2.2. This interface connects
directly to the PCI bus of the host and it
is over this interface all module to host
communication occur. The PCI express
standard supports the use of either the
USB or PCI protocols for communication [41]. The Ericsson mobile broadband mod-
ule uses the USB protocol standard for communicating with the host. This fact in
combination with the ubiquitous presence of USB interfaces on modern computers
greatly simplified the development of the MBMSF. Interfaces marked with B and C,
on Figure 2.2, are the sockets for attaching GPS and Radio antennas. The antennas
for these two interfaces are normally integrated into the host device to increase the
antenna area.
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Subscriber Identity Module (SIM)

To connect to a cell phone network a device needs to be registered with a mobile
operator. The registration allows the device to use the network infrastructure main-
tained by the operator. The authentication process when connecting to a cell phone
network requires the connecting device to provide the network with details of the
users subscription. In particular the International Mobile Subscriber Number(IMSI)
is provided to the network for subscription identification. The IMSI number and
other subscriber details are usually stored in a Subscribed Identity Module(SIM)
card [36]. Apart from the IMSI number and other parameters used for subscriber
identification several other properties are stored on the SIM card. Such properties
may include specific billing options, quality of service parameters and many more.
An Ericsson mobile broadband module communicates with a SIM card reader em-
bedded in the host to retrieve the parameters stored on the sim card trough the
USB interface.

Module AT-command communication

As previously explained the module communicates with the host by using a USB pro-
tocol. As explained in section 2.3 the USB protocol can be extended with additional
protocol layers to let a USB interface provide several different types of transmission
interfaces. One of these interfaces used in the module to host connection is a simple
serial character interface. Over this interface; control data is transmitted between
the host and module in the form of AT-commands.

AT-commands is an old standard for communicating with computer modems by
serially transmitting character strings [37]. The host simply transmits a character
string to the modem over a serial link, in this case a special interface exposed by
the USB interface, and waits for a serial character response. The basic structure
of AT-commands have remained largely unaltered over the years and AT-command
can roughly be divided into four basic variants, as seen in table 2.1.

Type Syntax

Basic AT-command ATCMD1

Extended AT-command AT+CMD2

Set parameter(s) AT+CMD3=1,2

Read parameter(s) AT+CMD3=?

Table 2.1: AT command types

Common for all forms of AT-commands are the prefix of ”AT” which denotes
that what follows is an AT-command. Even though the fundamental principle of
AT-commands is very simple, the specification of the standard AT-commands is
complex. A large number of AT-commands are required to cater to the various
functions that a modem is likely to support. Each vendor usually also add their
own proprietary AT-command specification which extends the standard specification
with product-specific AT-commands. Ericsson is no exception and provides their
own AT-command specification that allows the host to exert greater control over
the module than otherwise possible through the standard AT-command set.
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2.2 Development Tools and Material

Many different tools have been used in the creation of the MBMSF system. Physi-
cally the MBMSF runs on stand-alone hardware with a processor architecture that
differs from what is normally used in PCs. Because of this cross-compiling have been
necessary for any program that is intended to run on the MBMSF system. The most
important tools and contributions to the MBMSF system is described below.

2.2.1 BeagleBoard-xM

BeagleBoard-xM [27] is a hardware board with interfaces and processing power com-
parable to that of a PC, with the additional properties that it is significantly smaller
and cheaper. It is an evolved version of the original BeagleBoard [26] that was de-
veloped at Texas Instruments (TI) to demonstrate the OMAP3530 system-on-a-chip
ARM processor. It has been widely adopted by development- and hobby projects
and has a relatively large open-source community supporting it. The most notable
differences between the BeagleBoard-xM and its predecessor is the DM3730 1GHz-
processor which replaced the OMAP3530 720 MHz processor, double amount of
DDR memory (512MB) and that it comes with four instead of one USB ports. Fur-
thermore it has no NAND memory whereas the BeagleBoard came with a NAND
module of 256MB capacity. [27] The community support, price, performance, exten-
sive peripheral support and low power consumption of the BeagleBoard-xM makes it
a suitable platform for many types of embedded projects. Several operating systems
has already been ported to it, among them Linux and Unix distributions such as
Ubuntu [17] and Angstrom [16], but also Android [15] and non-UNIX based ones
such as Windows Embedded [18].

2.2.2 Cross-Building

A common way to develop software for an embedded system is to use a cross-
compiling toolchain to first build the binaries on a host computer and then transfer
them to the embedded device. This is sometimes a necessary method e.g. when
developing for a micro controller without an OS with software development sup-
port. In that case it would be unfeasible to develop directly on the target machine,
but there are also several convenience reasons for using a cross-build system. For
example the same workstation can be used to develop for multiple platforms and
a potential integrated development environment (IDE) does not have to be setup
every time the target machine has to be restarted. Cross-building support for the
BeagleBoard-xM platform exists in form of toolchains as well as automated cross-
building environments. A commonly used toolchain is the GNU ARM
toolchain [5].

OpenEmbedded (OE) [14] is a cross-building environment supporting a wide-
range of embedded devices, among them the BeagleBoard-xM. This tool automates
the process of building Debian packages or whole Linux distributions by using pre-
defined ”recipes-files” and is explained in more detail in section 2.2.6.
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2.2.3 Ofono

Ofono is a software framework which can be used by a host device to handle inter-
action with cell phones and mobile module equipment [13]. The Ofono framework
includes features common for module modem interaction such as call handling, net-
work selection and several other features. The Ofono framework uses module specific
drivers for communication with the module itself but presents a generic interface for
module interaction to higher layers in the host software stack. The generic software
interface given by Ofono can thus be used by host software independently of module
type and vendor. The Ericsson Linux drivers are written as a plugin to the Ofono
framework and conforming to the Ofono specifications. This allows the host driver
development in Linux systems to become independent of higher layers in the host
software stack and thereby allowing for the use of generic connection management
software.

2.2.4 PhoneSim

A key software component used in the thesis is Ofono phonesim, from now on referred
to as phonesim. Phonesim is a project connected to the Ofono project and more
information regarding the phonesim project can be found in on the Ofono web
site [13]. Phonesim was originally written to simulate a cell phone on the host.
The phonesim software establishes an interface through which the Ofono framework
is able to transmit AT-commands. By doing this, phonesim bypasses the driver
layer of the Ofono framework and allows higher layer Ofono software sections to
be tested without the need for hardware or drivers. It accomplishes the simulation
by maintaining a state machine which specifies in what logical state the simulated
module is. Most of the state machine related functionality in the MBMSF is based on
the phonesim implementation and a detailed description of that MBMSF subsystem
can be found in B.1.1.

2.2.5 GNU Make

GNU Make[6] is a free version of a common development tool, Make. The purpose
of the tool is to ease compilation of software projects by automatically resolving
dependencies between source files and thereby compile them in the correct order.
GNU Make, as other versions of Make, ensures that only updated versions of the
source files are compiled. This ensures short build times when only a few source
files have been updated in a large software project. Gnu Make also have several
other benefits such as hiding build information from end users and providing an
easy method of installing and un-installing software from a system.

2.2.6 OpenEmbedded

OpenEmbedded [14] is a build tool used for building software targeted towards
embedded systems. The actual building core of OpenEmbedded consists of the build
tool BitBake [1]. OpenEmbedded additionally incorporates a framework on top of
BitBake for cross-compilation, packaging and installation of packages. With these
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additional capabilities, OpenEmbedded is able to cross-build whole distributions for
embedded devices.

BitBake uses recipes to define packages, its dependencies on other packages, and
in what order to build them. These recipes is analogous to make’s Makefiles (see
Section 2.4.1), although recipes are much more independent in relation to each other
than make’s Makefiles. This recipe independence naturally provides a higher flex-
ibility in creating and maintaining, as well as composing recipes. This has lead
to OpenEmbedded being a popular tool for maintaining distributions that with a
high degree of automation is able to be cross-built for multiple hardware platforms.
Furthermore, OpenEmbedded provides a user-generated database of recipes, en-
couraging distribution and re-usability of community work for platform support of
software packages.

OpenEmbedded was used in the MBMSF project to cross-build the Linux ker-
nel (along with some additional user-land tools). In the build process, a cross-
compilation toolchain was created that could be used later in the project for cross-
building the kernel module (see section 4.1), together with make.

2.2.7 Qt

The simulation framework which is described in the method section of the report
is written using the C++ framework Qt. Qt was originally developed by Nokia
[20] as a way of increasing C++ portability by introducing a set of libraries, a
special build system and additional syntactic features that are pre-processed by the
Qt build system. It is the Qt build system that enables the introduction of extra
syntactic features and a higher degree of portability. The build system is called
qmake and is essentially a multi layered Make file system[19]. The qmake is very
similar to the more general cmake [2] pre-processing system and the two systems can
to some extend be used interchangeably. Before software written in Qt is compiled
the qmake parses a special configuration file, the project file, and the source code;
qmake then generates additional source files when needed to support the extra Qt
syntax features. The qmake also generates ordinary Makefiles when performing the
pre-processing based on the input in the project file. A standard gcc compiler can
then be invoked to compile the source code based on the instructions in the generated
Makefiles. Since the Makefiles are generated based on a single project file, only this
file requires modification when new directives needs to be given to the compiler.
This simplifies cross-compilation since the switch for target platform is reduced to
a single variable in the project file.

2.3 Universal Serial Bus (USB)

USB [38] is a serial bus standard in the personal computer (PC) interconnectivity
domain. It is commonly used to connect peripheral devices to a PC to extend
its functionality. Examples of common type of devices to connect are printers,
keyboards and web cameras. The protocol is currently at revision 3.0 (USB 3.0) [39]
but revision 2.0 (USB 2.0) [38] is still of most widespread use in consumer products
at the time of writing. USB supports plug n’ play, which makes it flexible to the
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end-user, and it also provides high data transfer speeds. The maximum theoretical
speed limits are 480 Mbps for USB 2.0 and 5.0 Gbps for USB 3.0.

This chapter is a summary of the USB architecture, providing a knowledge base
for the discussions throughout the paper involving the USB protocol. It is especially
relevant for the implementation section 4.1 of the USB driver that has been devel-
oped in this project. That driver is formally defined as a Linux USB gadget driver
but from now on it’s referenced simply as a gadget driver. The area of focus for this
driver is marked out as a logical entity in Figure 2.3 which depicts a logical overview
of the USB system.

For information in greater detail than what is provided by this chapter, refer to
the latest specification of USB 3.0 [39].

Figure 2.3: Architectural overview of the USB system. The focus of the implemen-
tation for the gadget driver is marked out with A.

2.3.1 Specification

The USB protocol is maintained by the USB Implementers Forum [22] and is cur-
rently at its third revision. Note however that because this project uses software
implementing USB 2.0, we will from now on refer to USB 2.0 whenever the USB
specification is referenced throughout the text.

2.3.2 Layering

USB is divided into three logical layers. These are depicted in Figure 2.3 and from
the bottom up they are; bus layer, device layer and function layer. The bus layer,
is where the actual data communication between the physical devices takes place
through cables, hubs and other types of infrastructure. At the middle layer, func-
tionality specific to the devices operating systems are implemented. This software
supports the USB system on respective device and is independent of the devices that
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are actually connected to the host. Finally, the top layer is where the USB func-
tions are implemented. These functions are a collection of (mostly standardized)
interfaces, such as Ethernet, serial or mass-storage. It can also expose a proprietary
protocol interface such as a GPS or modem. For this project, the gadget driver will
expose ACM and NCM interfaces at the USB function entity (section 4.1.1).

2.3.3 Bus Topology

Figure 2.4: USB physical topology exam-
ple.

The physical USB bus topology is of a
tiered-star type and because of this cre-
ates a tree-like structure when multiple
nodes are connected, as seen in Figure
2.4. The nodes in the tree are divided
into classes called hubs and functions.
The hubs provides ports for functions
to connect to. Thus, the functions are
leaves in the USB topology tree and as
already mentioned they are endpoints in
the communications. The host, which
also is responsible for constructing and
maintaining this bus tree, provides a
root hub. From this hub, all other exten-
sions to the tree are connected; which
can be both hubs and functions.

2.3.4 Device Types

Figure 2.5: USB device types:
A) Compound device
B) Composite device
C) Regular device

Two terms that is used to classify
devices are compound- and composite-
devices. Compound devices contains a
hub which has one or more functions
permanently connected to it. The em-
phasis here is that all nodes are con-
tained in one single package. Composite
devices however does not include a hub.
They are simply functions but they all
have multiple interfaces, which are con-
trolled independently of each other. As
an example, the MBMSF is a compos-
ite device because it does not include a
hub but it provides multiple interfaces
(one NCM and three ACM). If a device
does not provide multiple interfaces and
is not a compound device it is simply
called a device.
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2.3.5 Configurations, Interfaces and Endpoints

There are some concepts in the USB protocol that is vital to understand in order
to understand the enumeration process. These are configurations, interfaces and
endpoints, as can be observed in Figure 2.6.

Figure 2.6: The concept of configurations, interfaces, endpoints and pipes.

A configuration is fundamentally defined as a set of interfaces where interfaces
provides functionality to the host device. A device may implement several configu-
rations and the host can instruct the device to switch configuration. By switching
configuration the device exposes different functionality at the function layer. As an
example, a device may have an initial configuration that makes the device show up
to the host as mass-storage, containing drivers intended to be installed. When these
drivers has been installed and brought into operation, they will instruct the device
to switch configuration, after which the device instead of mass-storage will provide
whatever functionality it was created for, such as a modem or printer.

Pipes

While data is physically transmitted between host and device over cables at the
physical layer, the very same flows are also abstracted as pipes interconnecting
entities at the upper layers, these pipes are depicted in Figure 2.6. The pipes are
all terminated at so called endpoints which are bundled together and connected to
interfaces on either side of a USB connection.

In all USB connections a special pipe is required, the Default Control Pipe
(DCP). This pipe is special because it is not connected to any functions in the
function layer of the USB stack. Instead, it is used to generically manipulate the
device by sending control messages, and plays a vital role in the enumeration of a
device.
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2.3.6 Enumeration

Enumeration is the process carried out when a device is attached to the USB. During
this process, the host uses the default control pipe to query the device for informa-
tion, giving it an address and configuring it. The configuration involves activating
a configuration and by this selecting which group of interfaces the device should
activate.

2.4 Linux Kernel

The MBMSF utilizes a Linux version 2.6.39 [31] operating system kernel. This
chapter is devoted to describe the subsystems and parts of that kernel relevant for
this project. This means that if someone wants to reproduce the MBMSF gadget
driver, they will find useful background information for this here.

The chapter begins with explaining the concept of kernel modules in the Linux
core, as well as how these are developed by using ”kbuild”, the Linux kernel au-
tomated build script. After that follows information about the USB subsystem
including the architecture and development of USB device drivers (gadget drivers).
Finally, the end of this chapter will specifically explain the ACM- and NCM inter-
face drivers developed by the Linux community for Linux kernel 2.6.39, since these
are the drivers utilized by the MBMFS gadget driver in this thesis.

2.4.1 KBuild

The build system used by Linux is called kbuild, which stands for ”kernel build” [45].
This build system consists of hundreds of Makefiles residing in different directories
throughout the Linux source code. Every Makefile defines what to be built (the
targets) in that specific directory, and also in what way. The target is specified
to be built as either a built-in or a kernel module, (the latter being the case for
the gadget driver). These targets in the Makefiles that explains how and what to
build are used by the make [35] command line tool that parses and executes relevant
commands needed to generate corresponding output.

The Makefiles also has means to specify to make how to recursively descend
down specific directories in the source tree, passing arguments to targets to execute
in those directories authoritative Makefiles.

There are five parts of the Makefiles [29]:

• Makefile (the ”top” Makefile)

• .config (kernel configuration file, referenced by kbuild Makefiles)

• arch/<arch>/Makefile (the Makefile specific to <arch> architecture)

• scripts/Makefile.* (common rules for all Makefiles)

• kbuild Makefiles (authoritative Makefiles used in kernel build)

The top Makefile together with the kbuild Makefiles forms the tree of Makefiles
that is involved in building the kernel or kernel modules. To start such a build, the
make command is executed on the top Makefile.
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For more information regarding the kbuild system, please refer to the Makefile
documentation [29].

2.4.2 Kernel Modules

A kernel module is fundamentally a loadable piece of code that may extend a running
kernel with new functionality when loaded. The gadget driver is built in shape of
a loadable kernel module. By allowing code to be loaded on-demand like this offers
advantages such as flexibility and minimal memory footprint by not bloating the
running kernel with unused program code. However, this flexibility can come to the
cost of lower efficiency due to the overhead involved in the kernel mechanisms that
provides this functionality.

Building an External Module

Kernel modules are usually built at the same time as the kernel itself. The modules
to build is then specified in the .config file mentioned earlier and the module source
code is part of the kernel source tree. However, it is sometimes desirable to build
a module of which the source code is separated from the kernel source tree. It
might even be cross-built from another machine, as is the case for the gadget driver
module in this project. Modules built this way in Linux is referred to as out-of-tree-
or external modules [28].

There are some prerequisites for building an external module. The source code
of the target kernel as well as the configuration and header files generated in the
build is needed. If this cannot be acquired from e.g. the source directory of the
target kernel, or as a Linux distribution package, there are other ways of setting
these files up. The steps to take then are:

1. Get the source code for the target kernel version.

2. Make sure the .config file contains the same parameter values as those used
for building the kernel, (these are commonly stored by Linux distributions at
/boot/config-<kernel-version>).

3. Run $ make modules prepare in the source directory to prepare the source for
external build. This will make sure all information that is required for an
external build exists, such as e.g. header files.

4. Make sure the top Makefile defines the exact same version information as the
target kernels Makefile.

When the kernel source code, configuration and header files are set up as defined
above, one last file is needed before starting the build. This is a Makefile residing
in the module source directory, containing information that make parses in order
to resolve object- and source file dependencies for the .ko module file that is to be
built. See [28] for more information about the syntax for defining this. After this,
all is set for externally building the module by executing the following command:

$ make -C <kernel> M=<source>
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In the above command, <kernel> and <source> are file system paths to the pre-
built kernel source and module source, respectively. What basically will happen
is that make will first switch to the <kernel> directory before operating on the
authoritative Makefile there. The M parameter tells make that external modules
are to be built and so the modules target in that Makefile will be executed. This
target is defined to parse the Makefile in <source> as explained above, and build
modules accordingly.

Loading

Loading a kernel module means installing the module into a running kernel. Most
Linux distributions based on Linux kernel 2.6.39 provides a package suitable for this
task named module-init-tools [30]. This package contains some useful user-space
tools, among which are:

• insmod (load a single module)

• modprobe (load a module and it’s dependencies)

• modinfo (show information about a module)

• lsmod (list modules currently loaded)

• depmod (create list of module dependencies)

• update-modules (generate modules.conf)

The recommended tool for loading a module is modprobe [50], because it loads
not only the wanted module but also any other modules it may be dependent on. A
module is dependent on another if it uses symbols exported by it. These symbols are
logically module services and are exported by a module by using EXPORT SYMBOL
in the module’s source code [49].

The recommended way to load a module (such as e.g. the gadget driver module
g mbm), is by executing the following command in a terminal:

$ modprobe g_mbm

The following chain of events are:

1. The file modules.dep is scanned for module dependencies.

2. If modules are found in step 1; insmod is issued on every one of these to load
them.

3. Insmod is finally called on g mbm, effectively loading it.

The file modules.dep is maintained by the depmod utility. When called, depmod
will search modules for symbols and derive dependencies between modules which
are then recorded in module.dep. To refresh this file with dependencies among all
modules, issue the following command in a terminal:

$ depmod -a
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Auto-Load

The following minimal actions is performed to make a module automatically load
at kernel boot time:

• Create file <module-name> in /etc/modutils/<module-name> with content
<module-name>.

• Run the command update-modules.

update-modules will thereafter make sure the module is loaded at every boot.

2.4.3 Linux on USB devices

A peripheral board embedding Linux and acting in the USB device (slave) role, will
utilize the Linux-USB Gadget API Framework (gadget API), see Figure 2.7 below.
This framework is part of the Linux kernel since version 2.4 and is used to support
gadget driver development in Linux. It supports writing simple device drivers as
well as composite ones, incorporating one single interface and configuration as well
as multiple ones.

Currently, there are several fundamental drivers providing ”basic” interfaces such
as serial, Ethernet and file-storage. The task of creating a composite driver is thereby
simplified by putting two or more of these interfaces together.

Figure 2.7: Linux-USB Gadget API Framework and gadget driver overview. The
implementation focus for the gadget driver in this project is marked out.

The peripheral controller layer at the bottom is sometimes further divided into
a platform-dependent and a platform-independent layer. The platform-dependent
layer contains controller drivers which are specific to the controller used in the sys-
tem. This means the other code throughout the entities can be generic. Exceptions
may occur if the hardware does not support the functions implemented in e.g. an
interface driver.

Gadget drivers are implemented at the gadget drivers layer. These drivers may
use the composite framework if a composite driver is to be developed. (Read section
2.3.4 for more information about composite devices). The composite driver exploits
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the interface drivers library, fundamentally providing the glue to tie these interfaces
together into a driver with multiple interfaces. This approach was chosen for the
gadget driver development in this project. More about the implementation of the
gadget driver is found in section 4.1.

2.4.4 Interface Drivers

Fundamentally, the interface drivers already mentioned above are ”building blocks”
that can be combined into a composite driver. There has been several interface
drivers developed by Linux community members and they are available through the
Linux source tree. Among these are [11]:

• GadgetZero (Essential for controller driver testing).

• GadgetFs (Fundamentally a wrapper, providing a user-mode API).

• File-backed Storage (Implements the USB mass-storage class).

• Serial (Used for serial data communication).

• CDC-Ethernet and -NCM (Subclasses of USB Communications Device Class).

Serial driver

The serial.c [32] interface driver implements the CDC-ACM protocol to provide a
serial interface. The CDC-ACM protocol is suitable for transferring character data
over a USB link, such as e.g. AT-commands.

Network driver

The CDC specification [23] defines two sub-classes for network data. These are
CDC-ECM and CDC-NCM [33]. CDC-ECM sends a single ethernet frame in every
USB package. By aggregating frames there is room for performance improvements
in the protocol, which is the main reason behind the development of CDC-NCM.
The frame aggregation implies less interrupts to be triggered and a better overall
performance.

However, the CDC-NCM implementation in Linux drivers lacks the frame ag-
gregation support. This means that the data throughput and performance overall
is affected negatively. This does not directly affect the usage of the MBMSF today
but might be an issue in a future deployment. This topic is discussed in section 7.2.
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Chapter 3

Design Decisions

During the course of the project several important decisions have been taken regard-
ing the design of the MBMSF implementation. In each case the benefits of a design
decision have been weighted against the alternative options that were available. This
chapter is intended to shed light on the most important of these design decisions
and thereby provide an explanation to the implementation.

To understand the design decisions it is important to understand the technical
requirements imposed on the implementation. The final objective of the MBMSF
implementation is to simulate a module in a way which makes it indistinguishable
from a real module, from the hosts perspective. This minimally requires at least
three things:

• Make the MBMSF present a correct interface towards the drivers on the host.

• Ensure that the MBMSF is capable of responding to control communication,
i.e. AT-commands.

• Ensure that data traffic can be routed through the interface that MBMSF
presents to the host.

The natural starting point in the development of the MBMSF was to establish on
which platform it would run, since this would decide how the MBMSF presented
itself to the host.

3.1 Platform

Inarguably, the most important design decision have been regarding what platform
to use. Two alternatives existed in the beginning of the project: Creating an all
software simulation of a module run on the host or run a software simulation of a
module on a separate piece of hardware.

Running on the host

Creating simulation on the host had the benefit of being simpler to implement
and thereby likely to have a shorter development time. A framework for simulating
hardware devices in the Windows operating systems exist, and could likely have been
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used to further speed up the development process [3]. The approach did however
suffer a major drawback. It is completely platform dependent. The implementation
of hardware enumeration and handling differ between different operating systems
[12][21]. Creating a simulator implementation on the host machine would require
the MBMSF to interfere with the operating systems normal hardware procedures.
Communication bound for the external hardware module that MBMSF simulated
would need to be re-routed to the MBMSF software system running on the host
operating system. Interfering with the hardware procedures in an operating system
independent way would in practice be difficult because of the differences that exist
in the hardware enumeration and handling. A software only implementation of
the MBMSF system would therefore likely need a different implementation for each
operating system that it was to support. The Ericsson department that ordered the
thesis performed driver development on at least Linux, Windows and Android and
this property was therefore considered a significant drawback.

Running on separate hardware

The second alternative was to implement the MBMSF on a separate piece of hard-
ware. As explained in Section 2.1.1 a real module communicates with the host
through the use of the USB bus. This property of the real system would allow a
separate system to simulate a module, connect to the host through an external USB
interface, and the host system would not be able to tell the difference. This ap-
proach would be independent on which operating system the host was running since
the hardware interface for a real module is common for all systems. A drawback
with this approach was that the implementation of the MBMSF was likely to be
more complicated due to the fact that the operating system that was to be used
on the platform needed to be cross compiled along with all software that were to
run on the MBMSF. Furthermore drivers for the MBMSF system would need to be
modified or developed to present the interface that the host system would expect
from a real module.

In the end the benefits of operating system independence in the second approach
outweighs the benefit of simplicity in the first approach. This especially since the
driver development for each new module in Ericsson is performed for Android, Linux
and Windows. A multi-platform solution would therefore be of much more use to
the Ericsson driver development team. Because of this the MBMSF is implemented
on a system-on-a-chip connected to the host by a standard USB cable.

3.2 Software

A real module uses a state machine to organize the communication with the cell-
phone network and the host. That the MBMSF would have to use the same method
was never in doubt since the AT-communication which it maintains are of a state-
full nature. For example the AT-command response to many AT-commands differ
depending on whether or not the module is in a connected state. However the im-
plementation of the MBMSF state machine was under discussion. Two alternatives
existed, implementing the state machine from scratch, or try to use some already
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existing implementation.
Implementing the MBMSF software from scratch was attractive because it would

allow the use of any language. Using a familiar language would possibly have short-
ened the development time and therefore left room for more features to be included.
However since the implementation would include a fairly standard state machine it
was deemed beneficial to look for an already existing solution for at least the state
machine part of the simulator implementation.

Such a solution was found, namely the open source project called ”phonesim”.
The implementation supplied the state machine system that was sought and it was
decided that much of the development time could be cut if phonesim could be used.
Even though the documentation was non existent and phonesim had been devel-
oped to run on x86 architecture the benefits of using the phonesim outweighs the
implement-from-scratch alternative.

3.3 The configuration system

Since the purpose of the MBMSF is to aid in the debugging of software drivers it
is important that the module can be easily configured to conform to a specific test
case. When deciding how to implement the configuration process two alternatives
were examined.

XML approach

The first alternative was a straight forward XML configuration system. The design
of this system would encompass two XML files that would specify all state machine
configurations that could apply to the MBMSF system. One file would fill the same
purpose that the state machine definition XML file do in the current implementation,
simply defining the correct module behavior. The other XML file, the AT alteration
XML, would apply the alterations to the AT-command responses. Keeping the AT-
command alterations in a separate XML file would ensure greater modularity and
each specific test scenario could be kept in a separate AT-command alteration file.

This XML approach was appealing since the XML parsing facilities were already
implemented and used to interpret the state machine definition XML. However the
approach also had drawbacks. Since it was clear that some AT-command modifi-
cations would only need to be applied under certain environment conditions, such
as for example low network coverage, it was obvious that some kind of conditional
statement would be required. The only conditional mechanisms that could be used
without any additions to the XML configuration syntax lay in the state machine.
Changing the XML syntax sufficiently to support conditional statements would be
cumbersome to use and an alternative was needed.

ECMAScript

Since the configuration required evaluation of possibly complex boolean expressions
it was obvious to look for a script solution, which would naturally support such
operations. In a recent version of the Qt framework an ECMAScript engine was
included into its library. The ECMAScript language standard is based on the several
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script systems, for example the well known JavaScript technology, and ECMAScript
have support complex conditional statements[40].

However, some uncertainties regarding the script solution were still present since
no documentation of the use of the script system for ARM architecture existed.
Because of the instruction set used on ARM processor on the BeagleBoard-xM some
features in the logging library had proven to be unusable; fears were that the same
could have been the case for features of the script library. The script solution
did also mean a more complex implementation and a slightly increased MBMSF
configuration complexity.

In the end the benefits of the script solution resulted in the current implemen-
tation using scripts and a set of configuration files. The configuration process may
require the user to apply changes in more files than what would have been the case
using the XML solution, but the flexibility in terms of configuration is far greater.
Since the end user in the scope of this thesis is software engineers the slightly in-
creased configuration complexity was considered a low price to pay for the flexibility
the script implementation offers.

3.4 Network Forwarding

The very purpose of a module is to provide network access to the host. Therefore
an important part of the module simulation is the ability to forward network traffic
in realistic manner. To accomplish the network forwarding several alternatives was
available. One alternative was to let the network traffic be routed between the net-
work interface of the host to the network interface of the BeagleBoard-xM without
any interference. This approach is as displayed in Figure 7.1 in Section 7.1. This
alternative had the appeal of being easy to implement. A transfer of raw Ethernet
data between the two interfaces would suffice to implement this solution. The sec-
ond alternative was to implement some kind of IP routing on the BeagleBoard-xM
that would ensure that datagram bound received on the BeagleBoard-xM network
interface would reach the host.

The first alternative, a simple bridge between the two network interfaces, was
deemed sufficient and was initially implemented. During the course of the project
however new constraints became apparent and the implementation was revised. A
detailed discussion about the change between the two network forwarding alterna-
tives are described in Section 7.1.
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Chapter 4

Implementation

The implementation chapter is intended to explain how the MBMSF system has
been constructed and more specifically the architecture of each subsystem. An
overview of the subsystems of which the MBMSF consists can be viewed in Figure
4.1. The chapter is divided into three sections signifying the three major subsystems
developed to enable the MBMSF to successfully simulate a 3G module. The commu-
nication subsystem enables the MBMSF to enumerate as a real module would and
creates several logical data channels. It thereby exposes the two other subsystem to
the host, the simulator and the network forwarding subsystem.

The simulator handles control data communication with the host and essentially
defines the behavior of the MBMSF. The network forwarding subsystem provides
the host with an IP address and ensures that network communication from and to
the host is routed correctly.

Some implementation details have been omitted from this chapter but are avail-
able in Appendix B. For the USB driver implementation in section 4.1, it is rec-
ommended that the reader has got some background knowledge in the Linux USB
framework. This information can be acquired in section 2.3.

Figure 4.1: Architectural overview of the MBMSF.
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4.1 Gadget Driver

The USB gadget driver implements the communication subsystem of the MBMSF
so that it may communicate with the host it connects to. This subsystem’s respon-
sibilities is to identify the MBMSF device on the bus as the F5321gw module it
simulates, and to support in establishing communication channels upon host and
device interconnection, which is as part of the enumeration process. The channels
will transport serial data constituting control data, Ethernet frames, GPS coordi-
nates and debug output. These channels are the only interfaces available to the
simulator- and networking-subsystem as can be seen in figure 4.1 above, meaning
that all communication with the host is routed through these channels.

Using channels to communicate over the USB is an inherent necessity imposed by
the USB standard specification. Moreover, the development efforts of implement-
ing gadget drivers for peripheral devices depends on supporting frameworks and
libraries provided by the operating system it will run in. In the case of the MBMSF,
which runs a Linux operating system on top of a BeagleBoard-xM hardware chip,
the supporting framework is the Linux Gadget API, (more closely described in chap-
ter 2.4.3). The design of the framework means that the work of developing a gadget
driver for the MBMSF system is fundamentally about describing the USB configu-
ration, (including interfaces abstracting the channels), in a source code file written
in the C language. The underlying framework takes care of the generic internal
workings common to all gadget drivers needed to make a device successfully operate
on the bus.

The rest of this section will describe the configuration and interfaces as imple-
mented in the g mbm.c source code. However, the writing of source code is by itself
not enough to create the driver. A cross-compilation environment has been set up
on a development system and has been used to cross-build the driver for the target
architecture of the MBMSF. The output of this build is a Linux kernel module that
needs to be deployed and installed in the running MBMSF system. These addi-
tional efforts are not specific for this project but common to most software projects
in which the development and target system has different processor architectures.
Therefore, these methods are described in appendix B.2 and recommended for the
reader interested in the complete workflow of developing this gadget driver.

4.1.1 Source Code

The gadget drivers source code is written in C and based upon the reference driver
multi.c [46] provided by the Linux Kernel Project. This driver was originally written
by Michal Nazarewicz and is part of the Linux Kernel source tree since Linux version
2.6.33 [47].

The device simulated by the MBMSF is assigned an identity identical to the real
module it is required to mimic according to the project specifications. This means it
has been given a vendor id of 0x1917 and a product id of 0x0bdb, matching the mobile
broadband module F5321gw [4] developed by Ericsson AB. The driver incorporates
a single configuration utilizing five interfaces as explained in the following section.
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Configuration & Interfaces

Figure 4.2: The gadget driver identity
strings, configuration and interfaces. The
unused interface is positioned at interface
number eight.

One of the requirements on the MBMSF
is that existing client drivers developed
for hosts to communicate with the real
module must be compatible with the
simulated module. This further imposes
requirements on the gadget driver in ad-
dition to correct identification strings.
Figure 4.2 depicts the identity strings,
as well as the interfaces and their po-
sitioning inside the configuration. The
ACM interface number 8 is a so called
dummy interface. It is of no other use to
the gadget driver than to make it com-
patible with the Windows Vista client
drivers from Ericsson. The order of the
interfaces and the existence of a dummy
interface is not an issue for client drivers
on Linux hosts though, this is solely a
solution for making the driver compati-
ble with the Windows platform.

The dummy interface is from now on excluded when discussing the MBMSF’s
interfaces. The following is a list of the interfaces incorporated into the driver along
with their respective type and purpose:

• ACM - Debug channel (Output generated by simulator.)

• ACM - GPS channel (GPS coordinates encoded in NMEA sentences.)

• ACM - Control channel (AT-commands.)

• NCM - Network channel (Ethernet data.)

The hosts client drivers communicates with the simulator by sending and receiv-
ing AT-commands over the control channel. The GPS channel is used for trans-
porting NMEA sentences (spatial coordinates), generated by the simulator for the
host. The debug channel outputs debug data from the MBMSF; this data stream is
intended to be used for debugging purposes during software development involving
the simulator. If a task-specific filter is applied to this stream, it may show to be
even more effective and useful. An example of a filtering tool is SimDebug provided
in appendix D. The network channel is used for transferring network data between
the host and the MBMSF.

4.2 Simulator

The simulator is the engine that controls the behavior of the MBMSF. This means
listening to AT-commands sent from the host and reacting to these in some way.
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The simulator is also responsible for a number of other tasks. These include the a
GPS simulation and a logging system. Both of these tasks are described later in this
chapter. However, the main and most important task of the simulator is to maintain
AT-command communication with the host.

4.2.1 State Machine

Since a real mobile broadband module maintains a complex communication with
the cell phone network, it is usually modeled as a state machine. The simulator
also maintains a state machine that is used to decide which AT-command response
is appropriate when receiving an AT-command from the host. AT-commands enter
the simulator trough a tty terminal exposed by the USB composite driver described
in section 4.1. Each command arrives as a series of characters and are buffered
until a newline character is received. When a newline is registered the character
buffer is forwarded to the AT-command parsing unit of the simulator. This unit will
determine the appropriate action to take based on the received AT-command and
the current state. What states are available in the MBMSF is entirely based on the
content of configuration files loaded on system startup.

The simulator is entirely event-driven and in the current MBMSF implementa-
tion all events, and thereby subsequent actions that are taken to address the events,
are originating from received AT-commands. In reality a series of actions are carried
out whenever an AT-command is received in the simulator, in the future this series
of actions are referred to as an AT-action. This since each AT-command are asso-
ciated with one particular set of actions, an AT-action. The result of an AT-action
execution may be a character string sent back through the USB composite driver,
change of state or one of several other possibilities. For a more extensive explanation
please refer to section B.1 in Appendix B.

The AT-action execution is divided into several discrete steps, which are:

• Load static AT-action based on configuration file.

• Possibly modify AT-action parameters based on script.

• Commit AT-action parameters.

• Send response string to tty port (if response have been specified).

In the first step of the AT-action execution a set of static parameters are loaded.
These parameters are originally specified in a XML configuration file interpreted
at simulation startup. But included in the simulator is also a possibility to attach
ECMAScripts to an AT-action. The execution of a script is the second step in
the AT-action execution. How the script-to-AT-action binding is implemented and
used is described in greater detail in B.1 in Appendix B. A script attached to an
AT-action enables the AT-command response to be more dynamic, since the EC-
MAScript is more flexible than the statical AT-action configuration based on the
XML configuration. Each script attached to an AT-action is executed at run time
and have, through an API, the ability to read, test against and change all possible
AT-action parameters. This enables script writers to modify the behavior of the
simulator without the need to alter the simulator source code.
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Examples of parameters associated with an AT-action are:

• Response string to send to the host.

• State transition in the simulator State Machine.

• Time delay applied to the response sent back to the host.

• Assignment to variables maintained within the State Machine.

The third and fourth steps of an AT-action execution is simply to carry out the
directives set in place by the first and second step of the execution. The second and
third step needs to be separated because multiple ECMAScripts may be attached to
a single AT-action and each must be executed before the final AT-action parameters
are available.

GPS simulation

In addition to the handling of AT-commands the simulator also has a simple GPS
simulator that allow it to simulate a GPS receiver. Some of the models of the
Ericsson modules have a built in GPS receiver. Once the GPS receiver is activated
in a real module, it locates at least three GPS satellites and continually outputs
coordinates on a serial interface.

Several different operational modes exist in a real module. In the MBMSF the
implementation is simple. A thread within the simulator is dedicated to reading co-
ordinates from a prerecorded route file and output this to a dedicated serial interface
with a static time interval between output.

To support more than simple verification of GPS output interface features on
the host, this functionality would have to be more thoroughly integrated into the
state machine of the simulator.

4.2.2 Logging & Debugging

Since the purpose of the MBMSF system is to aid in the debugging of host software
client drivers, it is essential that the test engineer is informed of what goes on inside
the MBMSF. Apart from the setup of the configuration files, this is achieved with
the help of a logging system. The logging system implemented in the MBMSF is
based upon the log4Qt open source library, which in turn borrows heavily from the
well known Apache foundation logging implementation log4J for Java.

The MBMSF logging implementation is configured separately from the rest of
the simulator to ensure that an MBMSF erroneous configuration setup does not
interfere with the logging. If no logging configuration file exist a default one is
created at system startup to prevent log message loss. The log system configuration
allows several files to be created, each associated with its own log tag. Each log entry
within the simulator has got a log tag attached and this can be used to filter what
log messages should be routed into which file. The configuration of the log filtering
is done by editing a text file and can be changed before each startup of the MBMSF
system without the need to recompile the source code. The script system has access
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to a feature that lets scripts log messages. This feature allows introduction of new
log statements without recompiling the source code.

The log files are locally stored in the MBMSF’s filesystem. However since most
use cases does not include access to the filesystem of the MBMSF, an additional
serial interface has been set up in the usb gadget driver. By default this interface
forwards the base log to the host. This log stream can then be filtered and stored
on the host system in close to real time.

4.2.3 SimDebug Java Application

SimDebug is a small host side debug application written in Java. It was not written
as part of the project requirements but to aid in the development of the MBMSF.
The application description is provided in appendix D.

4.3 Network Forwarding

The purpose of the Network Forwarding Subsystem is to provide the host with the
ability to communicate with a network as if it were connected to a real module.
The final implementation of the network forwarding subsystem runs a DHCP server
using a NAT configuration on the MBMSF. This allows the MBMSF to forward data
between the two Ethernet interfaces it has access to. The first of the two interfaces
is exposed by the NCM gadget driver which is used to establish a network interface
between the module and host device. The other Ethernet interface is exposed by the
physical Ethernet connector which is located on the BeagleBoard-xM. The external
network interface, NIC 2 in Figure 4.3, is using a DHCP client to retrieve an external
IP address, alternatively a static IP setup can easily be configured. The internal
network interface, NIC 1 in Figure 4.3, runs a DHCP server that provides the host
with an internal IP address from a local address range.

Figure 4.3: An overview of the network forwarding implementation.
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Network Access to MBMSF

Apart from providing the host device with a way to forward data between an external
and an internal network interface using NAT, this setup provides another benefit. It
allows access to the BeagleBoard-xM itself through the use of dedicated ports. This
direct network access is very useful for reconfiguration as well as file transferring.
Accessing services on the MBMSF from the external network is done by addressing
the IP and UDP/TCP port of a service routed directly to the MBMSF. The routing
on the MBMSF is configured by an instance of iptables[10]. Currently only the TCP
port 22(SSH) is reserved for the MBMSF itself, traffic to this port will be routed
and consumed by the system on the BeagleBoard-xM, all other traffic is routed to
the host.

Even though network access to the MBMSF from the external network interface
is limited to the SSH port, no such restrictions apply for connections to the internal
network interface where the host resides. The MBMSF is the gateway for the host
and does therefore posses a unique, even though internal, IP address. This is useful
since it theoretically allows the MBMSF to be used for a larger set of tests. The
Ethernet connection can potentially be eliminated and only the USB link used when
a service is run on the BeagleBoard-xM itself, for example a FTP server as seen
in Figure 4.3. What effects this may have on tests are discussed in greater detail
section 7.2.
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Chapter 5

Evaluation

This chapter intends to explain how the MBMSF have been evaluated and what
actions have been taken to ensure that the system is functional. To ensure that
the MBMSF system works as intended a number of tests have been created. Most
of these tests are performed on a system level and verify the correct behavior of
system level functionality. Tests of smaller subsystems have been performed in a
less structured manner and have therefore been excluded from the thesis report. A
few tests have however been created to test non functional properties of the MBMSF.
These tests have yielded some unexpected results regarding the network throughput;
these results are discussed in section 7.2. The results, and a more precise explanation
of each test can be found in appendix C while the general outcome of the tests are
presented in chapter 6.

5.1 Functional tests

As explained above the main focus of the evaluation, and thereby the tests, have
been to verify that the functional requirements of the MBMSF have been fulfilled.
No pretense of full test coverage is made and only vital system functions are covered
within the test scope.

The most important of the functional tests can be seen in table C.1, C.2 and C.3
in appendix C. These tests verify that the AT-command communication channel
and script system work as expected. To support this statement, tests that run for
long time durations have been created and during these tests the MBMSF system
is put under more stress than it is estimated to endure during normal operations.

Another large section of functional tests that have been performed are the in-
tegration tests listed from test T.5 and beyond. These tests aim to prove that
the MBMSF system is Operating System(OS) independent. This was important to
prove since much of the reason for implementing the MBMSF on a separate piece of
hardware was to make the system OS independent. These tests also show that the
MBMSF work with software written for real Ericsson 3G modules.

28



5.2 Non functional Tests

The intention of these tests are not as with the functional tests, to establish that
the system is fulfilling requirements, but to determine the limits of the usage of the
MBMSF.

As seen in appendix C the non-functional tests are all built around the data
forwarding subsystem of the MBMSF. The result of these tests implies a limitation
of the usages of the MBMSF system; this fact and its implications are presented in
Chapter 7.2.
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Chapter 6

Result

The goal and subsequent requirements, specified in section A.1, have guided the
project development and have resulted in a mobile broadband module simulator
framework (MBMSF) running on a system-on-a-chip BeagleBoard-xM stand-alone
hardware. In this chapter, the result of the thesis project is presented. Important
features of the MBMSF system are enumerated and their role in fulfilling the project
goal is explained.

The module simulation

The MBMSF implementation described in chapter 4 have been verified to be able to
simulate a number of the operations that a real module performs. The MBMSF have
also been shown to work well with networking software on different host operating
systems. Software written specifically for Ericsson modules are compatible with the
MBMSF. All of this indicates that the MBMSF system is likely to work well as a
3G module simulator. Equally important is the ability to get the MBMSF to act
incorrectly but deterministically when debugging software drivers. To accomplish
this the MBMSF have been made highly configurable.

Flexible configuration

To provide as much flexibility as possible a number of configuration files have been
created. All these files use plain ASCII character encoding and have a standardized
formatting. Through the use of the configuration files it is possible to alter the
response that the MBMSF may give to any AT-command. The configuration pos-
sibilities are further extended by the introduction of a script engine which provides
the possibility to create dynamical responses to AT-command input. Conditional
script statements may be used to create sophisticated failure models which can be
used when debugging host client drivers. The scripts may also be used as assertions
to verify that the AT-command input from the host drivers are consistent with any
number of conditions. For a more thorough description of the configuration files and
script system please refer to section B.1.

30



Logging

To enable tracking of the MBMSF execution a highly configurable logging system
is implemented. It allows the log output configuration to be altered and does in
combination with the script system allow introduction of new log statements without
the need to recompile the MBMSF source code. Messages may be filtered by log level
or message priority and then routed to a file or terminal within the MBMSF system.
By default a copy of the raw unfiltered log is sent to a tty terminal connecting the
MBMSF to the host. This allows the user to review and filter the log from a running
MBMSF instance in close to real time without the need to mount the MBMSF file
system.

Operating System independence

Because the MBMSF is implemented on a physically separate device, the system is
host operating system independent and the MBMSF could theoretically be used to
debug client driver on any operating system. Test have verified that the MBMSF
can be used for driver development on Windows Vista and Linux hosts.

Data transmission simulation

The MBMSF system does not only simulate the serial communication between the
host and module but also offers the possibility to transfer data over a network
interface which the MBMSF composite driver expose in the host. This allows the
network interface subsystem of the host to be tested along with the AT-command
communication. This data forwarding capability is implemented in a way which
allows it to be isolated from the rest of the network. For a discussion regarding
this feature please refer to section 7.1. The isolation of the USB link could for
instance be used if properties of the link were to be tested without interference
from the rest of the network. Tests have shown that this data link is sufficient
to test data throughput levels used in current 3G networks, about 21Mbit/s. To
allow use cases with data transfer rates sufficiently high to simulate LTE level data
throughput would require software modification of the MBMSF, if at all possible
with the currently used MBMSF hardware. A discussion on this topic is available
in chapter 7.
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Chapter 7

Discussion and Future
Development

The intention of this chapter is partly to discuss problems that arose during the
course of the project and partly to give advice for further development of the
MBMSF system. A more more exhaustive discussion regarding the future devel-
opment sections is provided in Section 7.3.

7.1 Two methods of network forwarding

During the course of the thesis project two different implementations of the net-
work forwarding subsystem were created. The first version made use of a so called
Ethernet Bridge. The Ethernet Bridge software creates a virtual link between two
network interfaces on a machine. The data sent to one of the interface was forwarded
to the other. The forwarding was done on the data link layer which meant that en-
tire Ethernet frames were forwarded without ever being opened. This had the effect
that no routing was possible in the MBMSF. Moreover the MBMSF, for all practical
purposes, vanished from the network architecture once the bridge became active. A
DHCP request message sent from the host was indiscriminately forwarded to the
other network interface. This network forwarding setup worked well during active
use of the simulator. However, problems occurred as soon as something needed to
be reconfigured on the MBMSF. Either a serial link needed to be used to access
the MBMSF system, or the Ethernet bridge needed to be switched off to allow the
MBMSF to be addressed and accessed through SSH. Solutions mitigating this prob-
lem was investigated and in one instance even implemented. A script was created
binding the network forwarding process to one of the two physical buttons available
on the BeagleBoard-xM, pressing the button toggled the network forwarding on the
BeagleBoard-xM.

NAT solution

The first iteration of the network forwarding implementation did also have other
drawbacks. The main one being that the data throughput in the MBMSF sys-
tem would be limited by the throughput available on the BeagleBoard-xM physical
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Figure 7.1: An overview of the two methods for achieving network forwarding.

Ethernet interface. In many use cases the Ethernet throughput available on the
BeagleBoard-xM Ethernet interface could be as low as 100Mbit/s due to limita-
tions in the network architecture. This throughput is lower than what is planned
for the LTE mobile communication system. To be able to test throughput related
issues in drivers developed for LTE modules the MBMSF would have to be able to
support the throughput of such systems. Using a 2x2 multiple-input and multiple-
output(MIMO) configuration LTE should theoretically reach throughput speeds of
up to 73.40 Mbit/s [44]. Using a 4x4 MIMO configuration, likely to be used in the
future, even higher throughput will be achieved [44]. To simulate a 4x4 MIMO LTE
configuration the potential bottleneck that the BeagleBoard-xM Ethernet interface
presented a new network forwarding method needed to be implemented.

A hint of a solution to the problems with the first network forwarding implemen-
tation was given in the implementation of a real Ericsson module. In a real Ericsson
module a DHCP server setup is used to provide the host with an IP for the network
interface exposed by the module. The information regarding the real module net-
work setup lead to the second implementation of the network forwarding subsystem
described in section 4.3. Using a DHCP server with a NAT configuration in the
MBMSF enables the host to directly address the MBMSF with IP traffic. This does
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not only mean a permanently available ssh server for MBMSF configuration but
also allows data traffic to be sent to the MBMSF system itself. This also removed
the potential throughput bottleneck of the physical Ethernet interface by letting
network services be run on the MBMSF system. In Figure 7.1 this is exemplified
with an FTP server. The tests of the second implementation explained in Chapter
5 have been performed by sending data throughput over the USB link isolated from
the rest of the network.

7.2 USB data throughput limit

In the ideal case the data throughput on the USB link should be close to the theo-
retical limit of USB 2.0, about 480Mbit/s, enough to support LTE level throughput
testing. However as the test results in figure 7.2 show the actual measured through-
put only achieve a fraction of the theoretical USB limit.

Figure 7.2: Average throughput measurement using different drivers. NCM/x is the
results using the NCM channel of the gadget driver where x denotes direction; s =
receiving, c = transmitting. ETH and MASS is tested using Linux Ethernet driver
and gadget mass-storage driver, respectively.

During the first examination of the network forwarding throughput the first
version of the network forwarding implementation was used, described in section
7.1. This implementation left no room to separate the USB link throughput from
that of the Ethernet interface on the BeagleBoard-xM. The throughput bottleneck
could therefor well be within the Ethernet link to the rest of the network as seen in
figure 7.3 or in the Ethernet Bridge forwarding method. Partly to amend this the
second version of the network forwarding implementation was created. The second
implementation allows the throughput of the USB link to be isolated and tested
separately by letting either the host or module act as a server during a transfer. As
shown in the test results presented in figure 7.2 the throughput did even after the
isolation of the USB link not reach anywhere near the theoretical limits specified by
the USB standard. Initially the reason for this was assumed to be the incomplete
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Figure 7.3: An overview off the bottleneck in the network forwarding subsystem.

NCM gadget driver implementation used in the MBMSF. The driver implementation
used in the MBMSF for the data transmissions over the USB link is the NCM gadget
driver available in the Linux kernel. The NCM gadget driver implements the minimal
set of protocol functions to support the NCM protocol. One of the limitations that
this have introduced concerns the frame aggregation feature of NCM. The NCM
protocol is an addition to the underlying ECM protocol used for transferring network
data over a USB link. The ECM protocol induces a high number of interrupt on the
receiving end once the throughput of the data transmission increases since only one
Ethernet package can be transmitted in each USB transfer. Among other effects, this
can reduce the maximal throughput possible over a link using ECM. The incomplete
NCM gadget driver implementation used in the MBMSF does, just as the ECM
protocol, not aggregate Ethernet packages. For this reason it is suspected that the
relatively low data throughput experienced over the data link is caused by the lack
of frame aggregation.

By examining the data throughput achieved by other unrelated USB bulk trans-
fer protocols it was verified that the general throughput limit over the USB link is
not limited to the throughput exhibited by the interface exposed by the NCM driver.
A possible solution to the limitation induced by the usage of the gadget NCM driver
is to implement the changes proposed in section 7.3.4. Doing so would inevitably
mean exchanging the NCM driver for a driver that supports the Mobile Broadband
Interface Model (MBIM) protocol [34].

Even though the throughput limitation discovered during the tests prevents the
MBMSF to be used as a simulator for LTE modules it is still more than enough
to reach the throughput speed achieved by the fastest 3G modules available at the
time of writing, 21Mbit/s.

7.3 Future Development

Even though tests in appendix C shows that the system is operational and fulfill the
requirements imposed by Ericsson many possibilities for enhancement exist. Part of
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the requirement of the thesis project was to create a system which could easily be
extended and maintained. Providing a detailed description of possible future devel-
opment of the MBMSF system is a way to argue for such properties. Other reasons
for the future development section does also exist e.g. the section 7.3.4 regarding
the MBIM protocol adaptation was specifically requested by Ericsson to ensure that
a plan for the MBIM implementation existed as the actual implementation could
not be fitted into the scope of the MBMSF project.

7.3.1 Event system

Currently the MBMSF lacks a complete event system. The only event to which call-
backs such as scripts may be applied to currently is on reception of AT-commands.
It would be beneficial to be able to bind callbacks, such as scripts, to other events
in the system. It would for example be very useful to bind a script to the event of
a variable modification. This would greatly ease emulation of unsolicited messages.
Attaching callbacks to state transitions would likewise be useful.

To implement this event system a general callback hook in each of the possi-
ble events would need to be created. This could be implemented as an additional
function call whenever a variable modification or a state transition occurred. An
example of an event callback execution is displayed in figure 7.4.

Figure 7.4: Proposed event triggering. In the second function call, the callback-
Lookup, the data structure displayed in the next figure would be used.

Figure 7.5: Example of data structure
maintaining the event callback informa-
tion.

The ”callbackLookup” function call
would iterate, or use a hash indexing
technique, to find a script that is as-
sociated with a particular instance of
the event. To maintain the callback
function list a data structure containing
all the registered events in the system
would need to be created. A figure of
the proposed data structure for main-
taining event callback methods are dis-
played in figure 7.5.

Since the data structure resembles
the structure used to hold the AT-
actions described in section 4.2.1 it may
even prove beneficial to extend the same
data structure.

Only events with actual callbacks registered would need to be maintained in the
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event data structure. The actual registration of events in the data structure could
be done at initialization through an XML file similar to the state machine definition
file and/or by allowing runtime registration of event callbacks.

7.3.2 Traffic shaping

Presently the bandwidth available to the host is always the maximal throughput
which the MBMSF system can provide. No bandwidth limitation techniques have
been applied on the current version of the network forwarding implementation. The
previous iteration of the network forwarding implementation used a traffic shaping
filter that allowed the maximal throughput to be modified at runtime. This feature
potentially allowed the MBMSF to simulate bad network conditions and even packet
loss.

As is described in section 7.1 the first network forwarding implementation was
abandoned due to its various drawbacks. The drawbacks was however not related
to the traffic shaping functionality and it is possible to implement in the current
MBMSF system. The traffic shaping in the first network forwarding iteration was
done using the Linux Class Based Queuing(CBQ) qdisk program. The program
queues datagrams bound for transmission on a network interface and transmits
them in a timed interval which will produce a data throughput that corresponds to
a value specified at program start. The interval between transmissions is dynamically
calculated based on the the total throughput available on the interface.

By letting the MBMSF create and modify the a CBQ qdisk filter applied on the
outbound network interface during runtime the MBMSF would be able to simulate
changes to the data link. This could be done by letting the MBMSF spawn and
execute separate processes that applied or modified a CBQ filter. The facilities for
spawning and executing such processes from within the MBMSF are implemented
but poorly tested.

7.3.3 Network AT-command Control

In the current implementation the link between the simulator and the network for-
warding subsystem is missing. This means that the state of the network connection
simulated on the MBMSF is not reflected on the actual network interface which the
MBMSF provides to the host. The MBMSF may respond to AT-commands as if
the connected state of the module is off line, but in reality the network interface
that MBMSF provides will accept any network traffic sent to it. In other words,
the network link is not severed when the state machine in the simulator enters an
off line state. The modifications required to accomplish a link between the MBMSF
state machine and the network forwarding subsystem should be relatively small since
the simulator currently has the ability to execute arbitrary bash commands on the
MBMSF system. Altering properties of the data forwarding setup would suffice to
sever or restore the connection. However if this is enough to successfully simulate
the correct disconnected behavior of the network interface provided to the host needs
to be investigated further.
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7.3.4 Adaptation to Mobile Broadband Interface Model

The main functionality of the MBMSF is built around parsing AT-command mes-
sages and responding to these. The AT-command standard was specified the first
time during the mid 1980 to define communication between the modems and com-
puters of that day. Because of this the communication is not perfectly suited for
the communication between modern modules and hosts. As a response to this a
new standard for module to host communication is emerging called Mobile Broad-
band Interface Model(MBMIM) [34]. This new standard is based on an entirely new
communication protocol and completely replaces the AT-communication standard.

MBIM Specification Introduction

AT-command communication uses a separate USB interface, the CDC ACM serial
interface (Section 2.4.4), for control data communication and second USB inter-
face for data transmission, CDC NCM (Section 2.4.4). Unlike the communication
performed with the AT-command protocol the MBIM control communication is
transmitted on the default pipe in the device layer of the USB protocol stack. This
usage of the default pipe is made possible by utilizing the interrupt channel on the
MBIM interface. This means that no separate serial drivers and pipes are needed to
create a control channel over which instructions can be sent to the module. Figure
7.6 compares the approaches to control data transmission.

Figure 7.6: The architectural difference between NCM and MBIM. MBIM have only
one interface used for both data and control message transfers.
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Figure 7.7: Sequence diagram of a MBIM con-
trol message transaction. Note that the ”Re-
sponse Available” message is sent asynchronously
and therefore does not require the host to wait for
the response. An unsolicited message only uses the
last three messages.

As previously mentioned
the control message transmis-
sion uses the default pipe and
since a single pipe can not han-
dle duplex communication the
MBIM interrupt pipe is used to
signal upcoming data transmis-
sion. By using the interrupt
pipe the default pipe is able
to transmit data in both direc-
tions, but never at the same
time. A sequence diagram of a
control message transaction in
the MBIM protocol is displayed
in figure 7.7.

A special packet is trans-
mitted over the interrupt pipe,
the receiving device responds
and a control packet data trans-
mission over the default pipe
can start[34]. Since a control
data transmission is always pre-
ceded by an interrupt neither
device needs to poll the incoming data buffer as was required in the AT-command
protocol. Another big difference between the MBIM protocol and using AT-
commands are that the transmitted control data is not sent as ASCII characters.
The control data is transmitted in binary form and marshalled to C structs on the
receiving end.

Changes Required to Support MBIM

Rather drastic changes to the MBMSF are required to be able to support the MBIM
protocol. The most obvious, and likely the hardest to implement, is the requirement
of drivers supporting the MBIM protocol. Currently no such drivers have been
implemented and added to the Linux kernel. And more importantly no MBIM
gadget(peripheral) drivers exist. The host side MBIM drivers are bound to be
implemented by the Linux community in the near future to provide support for
new hardware. However the support for the corresponding gadget drivers may take
time. Developing MBIM driver will be a rather complex task, possibly suitable for
a master thesis.

Apart from the requirements of a new gadget driver supporting MBIM a few
other changes would also be necessary to the MBMSF. The changes are required
to support the altered message format which the MBIM change brings. Since the
current MBMSF implementation is based on AT-commands, and thereby ASCII
pattern matching, a new command matching process needs to be developed. Instead
of matching incoming commands against AT-command strings listed in the state
machine definition file the incoming commands will be matched against a binary
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data structure. Each such structure defined in the MBIM have a unique id called
SID[34]. This id would be used to match the incoming command against an action
in the MBMSF. How the responses and actions to incoming commands are defined
would also need to be revised. The current method of defining these actions in the
state machine definition XML file would need to be reconsidered. Either an entirely
new way of entering these action would need to be created, possibly by developing a
tool which enabled the actions to be stored directly as a binary data structure. Or
by creating a tool which converted information stored in the state machine definition
XML file to data matching the data structures that the MBMSF were to receive. In
either case the method for defining command response actions would likely be more
complicated than in the current implementation that uses AT-commands.

7.3.5 Command Line Interface

It have been suggested that a a command line interface(CLI) towards the MBMSF
would be convenient feature. Such an interface would expose variables, scripts and
states to the end user. The user could through the CLI change these by entering
ASCII strings, just as in a normal UNIX-terminal. This would be useful in circum-
stances where the exact conditions of a fault were unknown and slight tuning of the
simulator may be required to find just the right setting to trigger a fault in the host
drivers. The implementation of such an interface would require some restructuring of
the internal system, however the most straight forward way would be to implement
the CLI on top of the already existing AT-command parser. CLI commands would
be passed as a parameter to a specially designed AT-command. This AT-command
would deliver the CLI-command to a parser which would carry out the instructions
that a command symbolizes. The commands could perhaps even be interpreted as
ECMAScripts, which would allow the script engine in MBMSF to be reused. Using
this method would allow CLI-commands to be issued over the normal serial com-
munication channel exposed with the ACM driver. No separate serial interface to
the module would thereby need to be implemented.
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Chapter 8

Conclusion

This thesis has produced a Mobile Broadband Module Simulation Framework (MBMSF)
that runs on a separate piece of hardware connected to a host device through a USB
cable. The MBMSF simulates a mobile broadband module to facilitate development
of module driver software. The implementation is host platform independent and
can be used with any operating system intended to support a module.

Testing of the complete system indicates that the MBMSF is able to handle
communication with the host system and communicate with software written for
interaction with real modules. Furthermore, the system supports a high level of
configurability through the use of an internal script engine that allows for conditional
alterations in the module state machine behavior. The high level of configurability
could potentially be used to test edge cases, stress test driver software or create
assertion tests. All of the activity within the MBMSF is logged and is by default
stored locally and also send over the USB link to the host for consumption. This
ensures that the developer is never in doubt of what is communicated between the
drivers and the MBMSF.

Moreover, the MBMSF is capable of simulating data communication between
the host and the module. Network traffic sent to the MBMSF can be transparently
re-routed to an external network to simulate a normal cell phone network connection
or handled locally on the MBMSF hardware to prevent external interference with
the data throughput.

System tests have showed that the maximal data throughput speed of the MBMSF
easily allows for 3G module data throughput levels but does not reach LTE data
throughput levels. This has lead to the conclusion that the MBMSF implementation
described in this paper is suitable for 3G modules simulations but will likely not be
sufficient to simulate LTE modules.

Beyond the implementation of the MBMSF an examination of future extensions
to the system has been conducted. The examination provides descriptions and advice
regarding the implementation of features that would further extend the capabilities
of the MBMSF.
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Appendix A

Requirements

A.1 Requirements, Limitations and Their Results

When the project was devised this short description was used to describe the in-
tended outcome of the thesis work:

Create a mobile broadband module (from now on “module”) simu-
lation framework. The framework will be used to support device driver
development before hardware is available and to simulate module failures
during driver testing.

In addition to the description several requirements where imposed on the project
to ensure that the desired outcome was achieved. Both the thesis description and the
requirements was originally provided by the Mobile Broadband Module department
of Ericsson. Some additions to the original requirements have during the course
of the project been appended to further extend and specify the MBMSF behavior,
these changes are reflected in the list below. The thesis requirements include a
functional specifications that described the intended behavior of the simulator.

• It should be possible to configure the simulated module to different
module configurations. It must be possible to control the simulated
module through XML or URC files.

• The simulated module must be able to read a definition file which
states which AT-commands are supported.

• It should be possible to configure the simulated module to simulate
module malfunctions, failures and fail rates in a set of XML files.

• The framework should be documented and structured in a way which
enables further extension.

• Test cases simulating real-life scenarios should be created to verify
that the framework is functional and provide guidance for how the
framework is to be used.

Coupled with the requirements of the project several limitations was created to
further specify that requirements of the project:
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• The device framework will not simulate any interface other than the
interface between module and host drivers.

• No efforts will be made to copy the existing internal structure of
real modules.

• Only a subset of the existing device and host system interface will
be implemented. Minimally those interface parts that are required
to fulfill the specified test sessions.
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Appendix B

Detailed Implementation &
Deployment

This appendix provides a more detailed description of two of the simulators sub-
systems. It starts with the architecture of the simulator and ends with the imple-
mentation and deployment of the gadget driver.

B.1 Simulator

As mentioned in section 4.2 the simulator is the engine which controls the behavior
of the MBMSF. This appendix section will in detail explain how the simulator has
been constructed. Each functionally separate part of the simulator will be explained
separately to provide a deeper understanding of the MBMSF implementation.

B.1.1 State Machine Model

Just like in a real mobile broadband module, the simulated module maintains an
internal state machine. However, its state machine is heavily simplified. This sim-
plification can be done without any loss of simulation accuracy. This is due to the
fact that one of the main goals of placing the cell phone network communication in
a separate module is to present the host device with a simplified and standardized
network interface. In a real setting the host device is therefore unaware of most of
the complexities associated with the maintenance of the cell phone network data
link. The state machine in the simulator is constructed from a XML definition file
which is interpreted upon simulation startup. The state machine definition file is
used to generate a tree-like data structure which the simulator searches through
when an AT-command is received from the host. When a matching AT-command
entry is found in the tree structure the associated actions are executed and the
AT-response found in the entry is returned to the host. An example of the state
machine configuration XML can be viewed in Listing B.1. As seen in Listing B.1,
AT commands responses are also specified in the same file. Each state is associated
with several AT-commands and the appropriate AT-command response is in this
way determined by which state the simulator currently resides in. Two states may
have different AT-command responses for the same AT-command. For example the

vii



”AT+COMMAND1” command which is found in ”state1” on line 6 in listing B.1 is
also defined in ”state2” on line 18 in the same listing. This command have different
responses depending on in which state the state machine resides in.

1 <?xml version="1.0"?>

2 <simulator>

3 <set name="variable1" value="100"/>

4 <state name="state1">

5 <chat>

6 <command>AT+COMMAND1</command>

7 <response delay="500">${variable1}\n\nOK</response>

8 <set name="variable1" value="200"/>

9 </chat>

10 <chat>

11 <command>AT+CPIN=*</command>

12 <response>+CPIN: READY\n\nOK</response>

13 <switch name="state2"/>

14 </chat>

15 </state>

16 <state name="state2">

17 <chat>

18 <command>AT+COMMAND1</command>

19 <response delay="1000">Active\n\nOK</response>

20 <set name="variable1" value="300"/>

21 </chat>

22 </state>

23 </simulator>

Listing B.1: State machine definition file example.

Transitions between states is also defined in the state configuration XML. This
is seen at line 13 in Listing B.1. Issuing the command AT+CPIN=anything in
state state1 will trigger a state transition in the simulator and the AT command
responses will be altered accordingly. One other property of the state configuration
XML needs to be mentioned. The definition of global variables seen at line 3 in
Listing B.1. This allows global variables to be registered in the simulator. These
variables are used in AT-command responses, as seen at line 7 in Listing B.1. This
allows the MBMSF to respond with dynamic values. These variables may also be
altered by receiving particular AT-commands. The definition of an an AT-command
which alters a variable can be seen at line 8 in Listing B.1. All of this functionality
is augmented by the possibility of attaching scripts to an AT-command response.
How this is done is described in the next section.

B.1.2 Simulation Scripts

Beyond the functionality offered by the state machine definition file, a script system
have been created to increase the system flexibility. These scripts are read by the
simulator at startup and attached to the tree-like data structure of the AT-command
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responses that is generated from the state machine definition file. To understand how
these scripts are able to modify variables, state transitions, AT command responses
and response delays it is important to understand the processing of AT-commands
in the simulator.

When the simulator receives an AT-command a process of parsing the string data
will start. The AT-command needs to be matched against an existing AT-command
entry in the internal AT-command tree structure. This is done by iterating over the
AT-command entries in the current simulation state. The actual matching between
a received AT-command and the appropriate AT command response entry is done
by executing a regular expression match operation on the received AT-command.
If a match is found the process of executing the AT command response will start.
If no match is found in the current state the simulator will resort to searching the
default state for an appropriate AT-command response. If a match is found the
AT-command response execution will start, but if no match is found in the default
state a response value of ”ERROR” is returned to the host device to signal that the
AT-command is not supported.

The execution of an AT command response have four distinct steps, as depicted
in Figure B.1. The first step is the loading of parameters associated with the AT-
command response. These parameters are specified in the state machine definition
file described in previous section. The second step of the AT-command response
execution is the execution of associated scripts. How these scripts are associated with
an AT-command response is explained in the next section. When a script is run, get
and set methods for variables and access to several functions are made available to
the script by exposing C++ functions to the script engine. The scripts are through
the invocation of these C++ functions allowed to read and modify the parameters
that can be associated with an AT-command response. The third step of the AT-
command response execution is to carry out the instructions associated with the
AT command response. These instructions may have been modified by the scripts
in the previous execution step. Performing these operations may involve modifying
global variables and spawning additional threads to execute external programs. The
fourth and final step of the AT-command response execution is the transmission of
the response string back to the serial interface. This response string can be modified
by a script and a function call from a script may also introduce a delay before the
AT-command is sent to the serial interface.

Each script also returns a boolean value upon termination. This value is used
if the scripts is marked as an assertion test in the script bindings file. The script
binding file is described in the next section. Because the parameters specified in the
state machine definition file is loaded each time an AT-command response execu-
tion occurs, the values stored in the local variable scope is always the same when
script execution starts. This prevents a previous AT-command response execution
to interfere with the next execution.

B.1.3 Unsolicited AT messages

Unsolicited messages are in the current simulator implementation executed with
a periodic interval of two seconds. Each time the interval expires the script file
periodic.js is run. To create an unsolicited message the periodic.js can be altered to
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Figure B.1: Script Execution overview

look for changes in variables, states or other system parameters.

B.1.4 Configuration of Scripts

As described in the previous section, each AT command response may have one or
more scripts attached. To enable a high degree of configuration flexibility a set of
configuration xml files have been created named script configurations. A section of
such a file can be viewed in Listing B.2. These files specify to what AT command
and state a script file is to be associated. One script may be associated with several
AT command responses in several states. A script binding may also be tagged as
an assertion, as is done on line 20 in Listing B.2. This will trigger the simulator
to regard the script return value as a test result. A failed test result will generate
an error message in the simulator log file to allow easy tracing of the cause of the
failure.

1 <?xml version="1.0"?>

2 <bindings>

3 <binding>

4 <!-- what state(s) the script is applied to -->

5 <states>

6 <state>ALL</state>

7 </states>

8 <!-- what command(s) that the script is applied to -->

9 <ATs>

10 <AT>AT+CFUN?</AT>

11 </ATs>

12 <scripts>

13 <script>
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14 <!-- The path to the script relative from the

15 simulator executable -->

16 <path>definitions/scripts/test.js</path>

17 <!-- If this is an assertion, the return value of

18 the script must be true. Otherwise an error

19 is triggered -->

20 <assertion>true</assertion>

21 </script>

22 </scripts>

23 </binding>

24 </bindings>

Listing B.2: Script binding file example.

Several script xml files may be parsed and used in succession. This feature
enables the creation of specific failure scenarios or tests sessions that easily can
be added to a simulation instance. The section below describes how to configure
which script configuration files that are to be used and several other simulation
configuration options.

B.1.5 Global simulation configuration

The configuration of the global simulation settings is done in a separate file which
is parsed upon simulation startup. This configuration file contains important infor-
mation about what script files to load, what state machine definition file to use and
several other properties. This file allows a user to quickly change the behavior of
the simulation without the need to change file names or edit XML files or scripts.
Failure and test scenarios can be prepared in separate script configuration files and
can be enabled or disabled by adding the script configuration files in the global sim-
ulator configuration file. An example global simulator configuration file can be seen
in listing B.3.

1 #base state machine and at configuration file

2 base_config=definitions/state_machines/default.xml

3

4 #the script binding files that are to be used

5 section script_xml

6 definitions/script_bindings/scripts.xml

7 sectionEnd

8

9 #content for nmea output

10 nmea_file=definitions/gps/nmea.txt

11 #where to output nmea data

12 nmea_tty=/dev/ttyGS0

Listing B.3: Global configuration file example.
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B.2 Gadget Driver

Whereas chapter 4.1 describes the final implementation of the USB gadget driver
used by the MBMSF, this appendix contains a more detailed view of the development
work flow.

For the interested, build scripts, source code, cross-build toolchains etc. can be
achieved by mailing the authors of this thesis project. The addresses are found in
the beginning of this paper.

The work flow steps is depicted in figure B.2, and more carefully explained in
the following sections. The steps are:

1. Write the driver source code.

2. Compile kernel and cross-compilation tools.

3. Cross-build the driver using toolchain acquired in step 2.

4. Install the driver.

Figure B.2: Gadget driver implementation work flow.

B.2.1 Step 1 - Source Code

The gadget drivers source code is contained in one file named g mbm.c which borrows
code from the reference driver multi.c [46]. multi.c is provided by the Linux Kernel
Project as of version 2.6.33.

B.2.2 Step 2 - Build Kernel and Toolchain

The Linux kernel running the MBMSF is cross-compiled using OpenEmbedded which
is a ”build framework tool for embedded Linux” [14]. An overview of OpenEmbedded
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is found in section 2.2.6 of the theoretical framework chapter 2. More information
is naturally found on their homepage [14]. The bitbake recipe used to produce the
kernel was linux-omap. The cross-compilation toolchain derived from the process
was found in the staging directory of OpenEmbedded and used in the build of the
driver in the next step.

B.2.3 Step 3 - Build driver

The driver was ultimately built as an external loadable kernel module named g mbm.ko,
using the cross-build toolchain produced in the previous step. The build process was
automated by the use of kbuild and custom Makefiles. The technical background
of building external kernel modules for Linux is described in section 2.4.2 of the
theoretical framework chapter 2.

B.2.4 Step 4 - Install driver

The recommended, and probably simplest, way to install/load the gadget driver is
to use tools in the module-init-tools package. The general process of loading a kernel
module in Linux is described in section 2.4.2. We take the following actions to install
our module into the MBMSF after which it will load upon every system boot.

1. Place the module g mbm.ko generated by buildmodule.sh at
/lib/modules/2.6.39/kernel/drivers/usb/gadget/g mbm.ko.

2. Run $ echo ”g mbm” > /etc/modutils/g mbm

3. Run $ update-modules
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Appendix C

Tests

A serious of tests has been performed to ensure correct functioning and properties of
the MBMSF. These results are presented throughout this report along with arguing
around them. This appendix will describe more thoroughly how these tests were
implemented along with some raw test data.

The appendix is divided into two sections where the first covers functional tests
and the other section contains driver throughput tests.

C.1 Functional Tests

This section intends to provide a description of the functional tests performed on the
MBMSF system to verify that is conforms to the requirements specified in appendix
A.1.

C.1.1 Implementation

The tests were performed using bash scripting and execution in a terminal in Linux.
Fundamentally, the scripts fed AT-commands into the simulator and analyzed the
output to produce test results.

C.1.2 Results

The results, depicted in table C.1 below, are divided into six sections. These sections
are:

• T.1 - Log Channel Properties.

• T.2 - State Machine.

• T.3 - Variable Assignment.

• T.4 - Script Execution.

• T.5 - Host Operating System.

• T.6 - Software Integration.
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Num Test Required Outcome Passed

T.1 Log Channel Properties

T.1.1 Log output over ACM
log channel works

Log data can be transmitted from
MBMSF to host device.

OK

T.1.1 Large log volumes. In-
duce high log volumes
sent from the MBMSF
to the host device.

All messages needs to be received.
No message loss may occur

OK

T.1.2 Long log duration. Re-
quire the system to
record log over long
time duration, at least
1 hour, 15 messages per
second.

No log messages may be lost. OK

T.2 State Machine

T.2.1 State machine transi-
tion works.

State machine transition based on
AT-command input works.

OK

T.2.2 Induce large amount of
state changes over short
time period based on
AT-command input

Ensure that all states that AT-
commands require have happened.

OK

T.3 Variable Assignment

T.3.1 Basic variable assign-
ment based on AT-
command input should
work.

Assigning, reading and reassigning
variable work in MBMSF.

OK

T.3.2 Assignment of very long
variable values

Assigning very long(more than 1000
characters) variable values should
not cause problems

OK

T.3.3 Assignment of 0 length
variable strings

Assignment of 0 length variable
strings should not cause problems

OK

Table C.1: Functional tests.
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Num Test Required Outcome Passed

T.4 Script Execution

T.4.1 Basic assignment
of scripts to AT-
commands by the use of
the configuration files
should work.

Using the script bindings XML, EC-
MAScripts should be attached and
executed once an AT-command ex-
ecution is run.

OK

T.4.2 Modifications of vari-
ables in scripts should
work

Altering the value of a variable in a
script should have permanent effect
on the variable

OK

T.4.3 Changing state within a
script should work

After the execution of a script
changing the state the change
should be complete

OK

T.4.4 Logging strings from
within a script should
be possible.

Invoking the log function call from
within a script the log string should
be written immediately to the log
file.

OK

T.4.5 Altering the response
string within a script
should work

Invoking a function from the script
should be enough to alter the re-
sponse string sent back to the host
device

OK

T.4.6 Applying delays to re-
sponse strings should
work

Invoking a function from within the
script should be enough to apply a
time delay when the AT-command
response is sent back

OK

T.4.7 Chaining scripts to-
gether should create
predictable results

Attaching and thereby executing
several scripts after each other when
an AT-command arrives should re-
sult in the following: if variable ”A”
is modified in script 1 and later ”A”
is modified in script 2, the modifica-
tion applied in script 2 should apply
to ”A” once the script execution is
finished. Other similar operations
should act in a similar fashion

OK

T.4.8 Persistence in script ex-
ecution

Ensure that the correct script is ex-
ecuted every time the AT-command
is received. two executions every
second for 4 hours

OK

Table C.2: Functional tests.
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Num Test Required Outcome Passed

T.5 Host Operating System

T.5.1 Linux(Ubuntu) compa-
bility

Test to ensure that MBMSF enu-
merates correctly on Linux(Ubuntu)

OK

T.5.2 Windows Vista compa-
bility

Test to ensure that MBMSF enu-
merates correctly on Windows Vista

OK

T.6 Software Integration

T.6.1 Linux interaction Test to ensure that MBMSF can
be controlled from built in network
controller in Linux(Ubuntu)

OK

T.6.2 Windows Vista interac-
tion

Test to ensure that MBMSF can
be controlled from built in network
controller in Windows Vista

OK

T.6.4 MBMSF Ericsson soft-
ware compatibility

MBMSF is detected by Ericsson
Wireless Connection Manager soft-
ware

OK

T.6.5 MBMSF to Ericsson
software information
exchange

MBMSF information is displayed in
Ericsson Wireless Manager

OK

Table C.3: Functional tests.
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C.2 Driver Throughput Tests

These tests are devised to acquire the average data throughput speed between a host
computer and the BeagleBoard-xM for three different drivers. The results are used
in the discussions in section 7.2.

The drivers tested are two gadget interface drivers (NCM and mass-storage) and
the Ethernet driver that comes with the Linux kernel 2.6.39 used for the MBMSF.
Throughput limit is tested in both directions where in indicates a direction from
the MBMSF to the host and out consequently means data directed from host to the
MBMSF. Both directions are tested except for the mass-storage driver where only
the in direction is measured.

The host computer used for these tests is a HP Compaq Mini 110c-1011SO
laptop [8] which is suitable as representative for deployed MBMSF hosts, because
it’s specifications are assumed to be that of an average laptop.

The results section below contains the raw results which are further summarised
into a diagram represented in figure 7.2 of section 7.2, around which arguing and
conclusions are discussed.

C.2.1 Implementation

Three drivers are tested. These are:

• NCM (NCM interface of the g mbm.ko gadget driver.)

• Mass-Storage (g mass storage.ko driver in the Linux 2.6.39 kernel)

• Ethernet (default driver for the Ethernet interface of the BeagleBoard-xM.)

The NCM and Mass-Storage drivers are interfaces of a gadget driver each. The
Ethernet driver is the driver installed by default by the Linux kernel for the Ethernet
controller of the BeagleBoard-xM used to control the physical Ethernet interface.

iperf [9] is used to test the NCM and Ethernet drivers. iperf is a utility that
measures throughput by starting a server instance on one of the devices and a client
instance on the other. The client instance then sends data continuously for a given
amount of time and reports average throughput with a specified interval. See the
results section for the output of the iperf invocations.

For the mass-storage test, a utility named hdparm [7] is used. This utility mea-
sures the in-directed data throughput of a storage device in Linux. To eliminate
throughput bottlenecks imposed from reading from the BeagleBoard-xM’s flash
memory, the file read from the mass-storage device is memory-resident. That is,
it is placed in the RAM memory of the BeagleBoard-xM which provides fast reading
speeds.

All tests are repeated several times to ensure that no fluctuations of test results
occurres.

C.2.2 Results

Following is an output of the test invocations of iperf and hdparm for the different
drivers as presented in the summarised figure 7.2.
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NCM/c (direction: in)

command executed on the MBMSF:

$ iperf -c 172.17.207.139 -t 70 -i 10

------------------------------------------------------------

Client connecting to 172.17.207.139, TCP port 5001

TCP window size: 16.0 KByte (default)

------------------------------------------------------------

[ 3] local 172.17.207.1 port 54295 connected with 172.17.207.139 port 5001

[ ID] Interval Transfer Bandwidth

[ 3] 0.0-10.0 sec 82.3 MBytes 69.1 Mbits/sec

[ 3] 10.0-20.0 sec 86.0 MBytes 72.2 Mbits/sec

[ 3] 20.0-30.0 sec 86.0 MBytes 72.2 Mbits/sec

[ 3] 30.0-40.0 sec 86.1 MBytes 72.2 Mbits/sec

[ 3] 40.0-50.0 sec 86.1 MBytes 72.2 Mbits/sec

[ 3] 50.0-60.0 sec 86.0 MBytes 72.1 Mbits/sec

[ 3] 60.0-70.0 sec 86.1 MBytes 72.2 Mbits/sec

[ 3] 0.0-70.0 sec 599 MBytes 71.7 Mbits/sec

NCM/s (direction: out)

command executed on host:

$ iperf -c 172.17.207.1 -t0 -i 10

------------------------------------------------------------

Client connecting to 172.17.207.1, TCP port 5001

TCP window size: 16.0 KByte (default)

------------------------------------------------------------

[ 3] local 172.17.207.139 port 35785 connected with 172.17.207.1 port 5001

[ ID] Interval Transfer Bandwidth

[ 3] 0.0-10.0 sec 41.9 MBytes 35.1 Mbits/sec

[ 3] 10.0-20.0 sec 41.9 MBytes 35.1 Mbits/sec

[ 3] 20.0-30.0 sec 42.1 MBytes 35.3 Mbits/sec

[ 3] 30.0-40.0 sec 42.2 MBytes 35.4 Mbits/sec

[ 3] 40.0-50.0 sec 42.0 MBytes 35.2 Mbits/sec

[ 3] 50.0-60.0 sec 42.1 MBytes 35.3 Mbits/sec

[ 3] 60.0-70.0 sec 42.2 MBytes 35.4 Mbits/sec

[ 3] 0.0-70.0 sec 295 MBytes 35.3 Mbits/sec

ETH/c (direction: in)

command executed on the MBMSF:

iperf -c 192.168.1.1 -t 70 -i 10

------------------------------------------------------------

Client connecting to 192.168.1.1, TCP port 5001

TCP window size: 16.0 KByte (default)

------------------------------------------------------------

[ 3] local 192.168.1.2 port 35652 connected with 192.168.1.1 port 5001

xix



[ ID] Interval Transfer Bandwidth

[ 3] 0.0-10.0 sec 113 MBytes 95.1 Mbits/sec

[ 3] 10.0-20.0 sec 112 MBytes 93.9 Mbits/sec

[ 3] 20.0-30.0 sec 112 MBytes 94.3 Mbits/sec

[ 3] 30.0-40.0 sec 112 MBytes 94.0 Mbits/sec

[ 3] 40.0-50.0 sec 112 MBytes 94.0 Mbits/sec

[ 3] 50.0-60.0 sec 112 MBytes 94.4 Mbits/sec

[ 3] 60.0-70.0 sec 112 MBytes 94.0 Mbits/sec

[ 3] 0.0-70.0 sec 786 MBytes 94.2 Mbits/sec

ETH/s (direction: out)

command executed on host:

iperf -c 192.168.1.2 -t 70 -i 10

------------------------------------------------------------

Client connecting to 192.168.1.2, TCP port 5001

TCP window size: 16.0 KByte (default)

------------------------------------------------------------

[ 3] local 192.168.1.1 port 43659 connected with 192.168.1.2 port 5001

[ ID] Interval Transfer Bandwidth

[ 3] 0.0-10.0 sec 113 MBytes 94.7 Mbits/sec

[ 3] 10.0-20.0 sec 112 MBytes 94.2 Mbits/sec

[ 3] 20.0-30.0 sec 112 MBytes 94.1 Mbits/sec

[ 3] 30.0-40.0 sec 112 MBytes 94.2 Mbits/sec

[ 3] 40.0-50.0 sec 112 MBytes 94.1 Mbits/sec

[ 3] 50.0-60.0 sec 112 MBytes 94.2 Mbits/sec

[ 3] 60.0-70.0 sec 112 MBytes 94.1 Mbits/sec

[ 3] 0.0-70.0 sec 786 MBytes 94.2 Mbits/sec

MASS (direction: out)

command executed on host:

$ sudo hdparm -t /dev/sdb1

/dev/sdb1:

Timing buffered disk reads: 64 MB in 3.07 seconds = 20.84 MB/sec

$ sudo hdparm -t /dev/sdb1

/dev/sdb1:

Timing buffered disk reads: 64 MB in 3.05 seconds = 20.95 MB/sec

$ sudo hdparm -t /dev/sdb1

/dev/sdb1:

Timing buffered disk reads: 64 MB in 3.06 seconds = 20.94 MB/sec

$ sudo hdparm -t /dev/sdb1

/dev/sdb1:

Timing buffered disk reads: 64 MB in 3.06 seconds = 20.89 MB/sec

xx



Appendix D

SimDebug

SimDebug is a platform-independent tool developed in Java. It was developed during
this project to aid in configuration of the MBMSF’s state machine and basically
provides an output of the GPS and debug channels from the MBMSF. It incorporates
filtering capabilities in UNIX grep style on the debug output stream.

The applications user interface is very simple. At program startup, the streams
needs to be manually configured for the two output windows through drop-down
boxes. After this assignment, the data coming from the MBMSF will be printed to
the output windows which are provided as tabs, see an example in the figure below.

SimDebug is not a part of the project requirements but provided as proof-of-
concept for the discussions in section 4.1 about debug output and filtering of the
same.

Figure D.1: The SimDebug application in action. Debug and GPS output from
MBMSF is supported as well as filtering capabilities.

xxi


