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Human detection and pose estimation using ceiling-mounted cameras
HARISH RAVI
Department of Electrical Engineering
Chalmers University of Technology

SANJEEV MADHAVAN
Department of Applied Physics
Chalmers University of Technology

Abstract
This project is part of an idea for developing a futuristic factory, wherein a fleet
of Autonomous Transport Robots(ATRs) and humans work assembling trucks at
Volvo Group. This will be made possible with the help of an array of ceiling-
mounted cameras to look over the entire factory floor. Volvo Group calls this a
"Generic Photogrammetry-based Sensor System(GPSS)".
Our thesis project deals with the detection of humans and the estimation of their
poses from ceiling-mounted cameras. Though there are many state-of-the-art (SOTA),
deep learning models to detect human poses, they happen to perform poorly for
this application. This is because these models are trained using standard datasets
available in the wild which consist of front-facing camera views, whereas Volvo’s ap-
plication involves top-view images. The challenge in using top-view images was the
scarcity of top-view based human pose datasets available for training these models
and the extensive manual efforts needed for annotating these datasets. To address
these concerns, we propose a semi-automatic image annotation pipeline using tri-
angulation of multi-view cameras. The setup for this pipeline will have two side
cameras in addition to the top camera from which hundreds of synchronized im-
ages are going to be collected. Google’s open-to-use MoveNet model will then be
applied on side camera images to predict human poses by body key points. These
detected key points are triangulated to 3D space and then re-projected to top-view
images resulting in the generation of annotated top-view images. Further, for im-
plementing our human pose model, we will adopt a top-down approach, comprising
a human detector and followed by a pose estimator network predicting the poses of
detected humans. Our selected models will be fine-tuned with our generated training
data. As a last step, we also introduce two custom metrics along with the standard
metrics used in the literature to evaluate our fine-tuned model based on Volvo’s
requirements. Our improved fine-tuned model results in fewer false detections and
also has higher accuracy.

Keywords: Computer Vision, Deep learning, automatic annotation, Hu-
man detection, Human Pose Estimation, ceiling mounted cameras, trans-
fer learning, OpenMMLab
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1
Introduction

This chapter gives an overview of the company’s background, project
background, project description, aim and limitations of the project.

1.1 Company Background
Volvo AB are pioneers in the design and manufacturing of buses, trucks, and con-
struction equipment. Based in Gothenburg, the company was established in 1915 as
a subsidiary of SKF, a ball-bearing manufacturer that is also based in the same city.
Volvo has been at the forefront of innovation throughout its century-long history.
Volvo Trucks were one of the first trucks to use exhaust gas recirculating (EGR)
valves. Currently, their focus is on developing future transport solutions that in-
clude but are not restricted to automation and electromobility [9]. Hereafter, Volvo
AB will be called Volvo.

1.2 Project Background
The advancements in software technology and data science are enabling the Fourth
Industrial Revolution [10]. While the first three industrial revolutions have brought
about immense change, the impact of Industry 4.0 will be much wider and far
greater [11]. By enabling "smart factories", the fourth industrial revolution aims to
create an environment where virtual and physical systems of manufacturing pro-
cesses cooperate globally with each other in a flexible way. This gives a huge ad-
vantage in terms of customization of products and models [12].
Recent trends such as electrification and the development of autonomous technolo-
gies are impacting not only the engineering aspects of truck companies but also
the manufacturing and production entities. Until now, truck manufacturing didn’t
require many assembly lines to cater to producing models. However, all this is
expected to change when newer technologies are introduced such as hybrid, fully
electric and fuel cell-based powertrains with varying levels of autonomous capabili-
ties. [13]. As a result, the existing factory setups will get more crowded, and difficult
to meet up with the product’s diversity.
Volvo’s solution to this challenge is to develop a futuristic factory, incorporating flex-
ible manufacturing concepts where Collaborative Robots (Cobots) and Autonomous
Transport Robots (ATR), humans and robots can work and collaborate on equal
terms. For this Unified Environment [14], a Generic Photogrammetry-based Sensor
System (GPSS) is being set up. This system depicted in Figure 1.1, consists of

1



1. Introduction

Figure 1.1: Generic Photogrammetry-based Sensor System (GPSS) at Volvo’s
Factory.

a series of ceiling-mounted Red-Green-Blue (RGB) cameras that can "see around
corners" and have the ability to detect and track humans. For this factory for the
future to become a possibility, we need an Artificial Intelligence (AI) system that
can predict the poses of humans so that the robot can plan its trajectory safely,
keeping a safe distance from the workers.

1.3 Project Description
In this project, we are using a series of RGB cameras mounted on the ceiling of
a manufacturing plant to detect humans and predict their poses. The top view
orientation of the camera gives a wider view of the factory floor with minimal ob-
struction. For the safety of workers, ATRs must always keep a safe distance from the
workers. At the same time, as ATRs and humans will work closely together in the
Unified Environment, the ATRs should also be allowed to come close to the human
(approximately an arm’s length distance), This requires that we should determine
their 3D positions with high precision.

Assuming that the camera’s orientation with respect to the factory floor is known,
a 2D detection of the human feet can be transformed into a 3D estimate of the
feet’s location under the assumption that the feet are placed firmly on the floor and
the human is standing. This constraint simplifies the problem and allows for quite
accurate 2D / 3D bounding box predictions of (standing) humans from simple 2D
detections of the human’s feet in the image.

Though various deep learning approaches that can detect 2D human poses [5,15–17]
exist, however just using these models without training on top-view data generates

2



1. Introduction

below-par results. The reason is that these models were trained on many standard
datasets consisting of almost no top-view images. In fact, we observed that at the
time of this thesis, there were no datasets comprising top-view images of humans.
Therefore, the difficulty here involves gathering ground truth data from Volvo’s
factories that can be used to train the chosen model. Since, we wanted to avoid ex-
tensive manual labour in annotating data, we developed a semi- automatic labelling
or annotation approach based on utilizing multiple views from several calibrated
monocular cameras including the top-view.

1.4 Objectives of the Project
The goal of our thesis is to develop and train a deep learning-based model to detect
and localize humans from ceiling-mounted cameras with a focus on minimizing false
negatives on human detection and maximizing feet key-point detection accuracy.

To achieve this goal, we aim to:
• Evaluate and select various SOTA human pose estimation models with em-

phasis on real-time implementation on edge cloud and inference speed.
• Develop a semi-automatic data annotation pipeline that can leverage views

from multiple cameras to automatically generate the required annotated top-
view dataset.

• Fine-tune the chosen model with the generated dataset, and compare the re-
sults with the original model based on both standard and custom metrics
chosen based on the requirements from Volvo’s use case.

1.5 Challenges
An important challenge in this project, when compared to other human pose es-
timation tasks was that we need to predict the pose of humans from images and
videos of top-view ceiling-mounted cameras instead of the commonly used side-view.
This can lead to complex scenarios where all body key points would be not visible
and the key points might be subjected to varying degrees of occlusions compared
to the usual case. Key points are a set of distinctive anatomical landmarks on the
human body that are used in pose estimation algorithms to determine the position
and orientation of the body in space. Some of body key points are head, shoulder
joints, ankles, wrists etc. This problem is illustrated in Figure 1.2, where all body
key points (marked as dots) of the human in the two side view images are all visible,
whereas most of the key points are occluded in the top-view. This makes it harder
to estimate human poses with accurate key points in top-view images.
Another challenge was explained in Section 1.3 which describes the general lack of
available annotated top-view data sets in the wild which we can readily use for our
application.

3



1. Introduction

Figure 1.2: Human key points occlusions in the top-view image.

4



2
Theory

This chapter aims to provide an overview of the relevant theoretical
frameworks used in the thesis. Since we use deep learning methods to
solve the human detection and pose estimation tasks, this chapter has
been divided into four main sections: Introduction to deep learning,
Object detection using Deep learning, Human pose estimation using
Deep Learning, and Camera-based computer vision.

2.1 Introduction to Deep Learning

Deep learning is a family of machine learning that is based on artificial neural net-
works. Artificial Neural networks (ANNs) are complex systems resembling the func-
tions of how neurons work in a biological brain context. These biological neurons
are wired together to form a complex network, where information is transmitted
from one neuron to another using electrical signals as an intermediate connection.
Each neuron processes the information it receives from its connected neurons and
produces an output to be sent to other connected neurons. Artificial neural networks
are mostly based on the neuron model proposed by McCulloch and Pitts [18]. Con-
sider a neuron i - connected to N number of neurons, with neuron j in its vicinity.
McCulloch and Pitts modeled the activation si of neuron i using equation 2.1. Here,
vj represents the incoming signals from the j connected neurons, wij represents the
connection strengths (weights) between neuron i and j. The function g(.) is called
an activation function, and bi represents the activation threshold or bias [19].

si = g

 N∑
j

wijvj + bi

. (2.1)

A simple illustration of this neuron model is shown in Figure 2.1

5



2. Theory

Figure 2.1: Illustration of an activation process of McCulloch-Pitts neuron.
wi1,i2,...,i5 are connection strengths(weights) of five other neurons connected to neu-
ron i. The incoming signals v1,2,...,5 are multiplied with the connection strengths and
summed together. The activation function g(.) is applied to this sum to turn it into
the output si. This figure is based on Figure 2 in [1].

2.1.1 ANN architectures

We can visualize ANNs as weighted directed graphs with nodes representing the ar-
tificial neurons, and directed edges with weights are the connections between other
neuron outputs and inputs. Hence, according to [1], ANNs can be grouped into two
main categories based on their connection pattern:

• Feed-forward networks, in which graphs have no loops.
• Recurrent (or feedback) networks, in which loops, occur because of feedback

connections.
Different connectivities in these two types, lead to different behaviours in the net-
work. For instance, feed-forward networks are generally considered to be static,
producing only one set of output values that is independent of the previous network
state. Recurrent networks, on the other hand, are dynamic systems meaning that
when a new input pattern is presented to it, due to its feedback paths, inputs to
each neuron are then modified to enter a new state.
For this thesis scope, we would be looking deeper into a more common family of feed-
forward networks called multi-layer perceptrons and Convolutional Neural Networks.

6



2. Theory

Figure 2.2: An illustration of MLP with 3 layers; an input layer, a hidden layer,
and an output layer.

2.1.2 Multi-layer perceptrons and fully connected layers
Perceptrons are single-layered, simplest neural networks similar to McCulloch-Pitts
model shown in Figure 2.1. However, it was realized that these single-layer percep-
trons were limited in their capability to learn only linearly separable patterns as
proved by Minsky and Papert in 1969 [20]. Multilayer perceptrons(MLPs) are the
most common part of the family of feed-forward networks, where several of these
Mcculloch-Pitts Neurons are coupled together in a layered structure. The left-most
layer is the input layer and the right-most layer is the output layer. The in-
termediate layers are called hidden layers, where the states of the hidden layers
cannot be read out. Input data fed to the neural network is captured by the input
neurons. A single hidden layer MLP is illustrated in Figure 2.2.

Fully-connected layers, also known as linear layers, connect every input neuron to
every output neuron and are commonly used in neural networks. In figure 2.2, the
hidden layer shown is also a fully connected layer, as is the case in a traditional MLP.
It is also usually the last layer that is used to perform the classification decision in
classification tasks.

2.1.3 Activation Function
In ANNs, each layer’s output is computed by first calculating the sum of products of
inputs and their corresponding weights which is then passed over an activation func-
tion. This output is supplied as the input to the next subsequent layers. Therefore,
activation functions basically transform the input signal into the output signal. The
requirement of a neural network is to learn and represent any arbitrary, complex
function to map the inputs to the outputs. Thus, if a neural network uses a linear
function, it would lack the ability to extract complex information represented by
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non-linearity in the real world. Therefore, non-linear functions are the most com-
monly used than linear functions in real-world applications. Some of the common
activation functions [21] are illustrated in Figure 2.3.

Figure 2.3: Common activation functions used in ANNs.

2.1.4 Forward propagation
Forward propagation refers to the steps performed to compute the output of the
neural network given the input data. In other words, forward propagation refers to
the calculation and storage of variables for a neural network from the input layer to
the output layer in order.
Consider a simple neural network represented in Figure 2.2 which consists of only
one input, hidden and output layer. Also, let’s assume that the bias or activation
threshold term is neglected or zero and the input is x ∈ Rd.
The intermediate variable is:

z2 = W ⊤
1 x (2.2)

where W1 is the weight parameter of the hidden layer and z2 is the intermediate
output of the hidden layer.
Next, applying the activation function θ1 on the intermediate output of the hidden
layer, we get the activation function output a2 as follows in Equation 2.3

a2 = θ1 (z2) (2.3)

Next, the overall output of the neural network, which is obtained by propagating
the intermediate activation output from the hidden layer, can be represented as
Equation 2.4.

z3 = W2
⊤a2

y = θ2 (z3)
(2.4)

8
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where W2 is the weight parameter of the hidden layer and z3 is the intermediate
output of the output layer, the activation function of the output layer is represented
as y. For larger networks with many layers, the output of each layer becomes the
input for the next layer, and the above process of computing the weighted sum and
applying the activation function is repeated for each subsequent layer until the final
output is obtained. This final output is typically a vector of probabilities or a scalar
value, depending on the task at hand. For instance, in a classification task, the
output could be a vector of probabilities for each class, while in a regression task,
the output could be a scalar value.

2.1.5 Back-Propagation
Back-propagation [22] is a neural network’s training procedure that repeatedly ad-
justs the weight parameters of the network aiming to minimize a measure of the
difference between the actual output and desired output, also known as the loss
function L.
Essentially, the loss function is a mathematical function that quantifies the difference
between the predicted output of the neural network and the ground truth output.
The loss function is used to measure the performance of the network during training
and to adjust the weights and biases of the network to improve its performance.
There are many different types of loss functions used in deep learning, depending
on the type of problem being solved. For example, for regression problems where
the goal is to predict a continuous output, a common loss function is the mean
squared error (MSE) loss. For classification problems, where the goal is to predict
a discrete output, binary cross-entropy and categorical cross-entropy loss functions
are commonly used.
For supervised learning, the actual outputs are essential for error calculations which
are afterwards propagated to every node in the previous layers. This error e, Equa-
tion 2.6 is obtained as a gradient of the loss function L with respect to each layer’s
weights Wi given the input of the node x and the activation function θ.

ai = θ (Wix) (2.5)

e = ∂L

∂Wi

= ∂L

∂ai

∂ai

∂Wi

(2.6)

The gradient’s computation requires the application of the chain rule in order to
compute the partial derivative ∂L

∂Wi
. Using these gradients of the loss functions,

weights are updated by an optimization algorithm such as gradient descent (or its
variants) [23] to move the model towards the minimum of the loss function.

2.1.6 Convolutional Neural Network
Convolutional Neural Networks (CNNs) are a family of neural networks mainly used
for processing images or visual data [24]. CNN-based architectures have become
predominant in the field of computer vision. For instance, in the famous ImageNet
challenge [25],use of CNNs boosted significant performance [24].
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CNNs have become the go-to models because of their architecture. They are specif-
ically designed to extract information from 2D and higher-order input spaces. Thus
this process eliminates the need for various traditional and manual image processing
methods.

CNNs achieve this function by incorporating a special mathematical operation called
convolution (Equation 2.7).

y = x ⊛ w (2.7)

Here, the input data to the node is x and the output from the network is y. The
important difference is on how the weights w, mostly referred to as kernels are ap-
plied to the input x. Instead of applying weights through a traditional multiplication
operation as seen in the case of MLPs in Equation (2.1), they are applied through a
convolution operation which is defined as "computing the weighted average of a point
of data by its adjacent points of data" [19]. Thus, in other words, CNNs weights are
specifically designed to form a convolution filter that is replicated over the whole
visual field of the input. Another speciality of CNN is that all the weights of a
convolution layer are the same thereby decreasing the number of parameters of the
network and thus simplifying the training process. These filters convolves each pixel
it covers and each output of these filter forms a feature map. Convolutional layers
are usually defined by the number of feature maps, kernel size, and stride parame-
ters (a parameter of the CNN’s network filter that modifies the amount of movement
over the image in turn affects the encoded output volume).

2.1.6.1 CNN structure

The layers usually part of CNNs are listed below:

• Convolutional layer or CONV - This layer serves as a feature extractor.
Here nodes of a CONV layer perform convolution on different parts of the
image known as local regions each computing a dot product between their
weights and this local region.

• Pooling/Subsampling - This layer performs a down-sampling operation
along the spatial dimensions (width, height) to eliminate variance within local
regions of the image by reducing the spatial size. This also reduces the number
of parameters and the computational load in the network. A popular type of
pooling is max-pooling which extracts the maximum value of the sub-region
on which it is applied.

• Fully connected - This layer is the same as the one found in traditional MLP.
Fully connected means that every neuron in the previous layer is connected to
every neuron. This layer performs the reasoning of the network by processing
all the features through the network.

10
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Figure 2.4: Pre-training vs Transfer learning vs fine-tuning.

• Classifier - Outputs posterior probabilities for each class, usually consisting
of a soft-max function with a cross-entropy loss function. The soft-max func-
tion takes a vector of scores and squashes it to a vector of values between 0
and 1 that add up to 1.

Generally, a standard convolutional neural network consists of many pairs of con-
volutional layers and a subsequent max-pooling layer followed by one or more fully
connected layers using a RELU activation function [26].

2.1.7 Transfer Learning
Although deep learning technology has achieved great success, it still has some limi-
tations for certain real-world applications. In an ideal setting, we assume that there
are abundant labelled training data and also that these would resemble similar char-
acteristics of the application that we test the model on. However, collecting suffi-
cient training labelled data is often expensive and time-consuming. Semi-supervised
learning approach [27] can be considered as a solution for this problem but often
these methods result in unsatisfactory results or add more complexity.
Transfer learning aims to improve the performance of a network in a new but sim-
ilar domain as the network was trained on. In this way, the dependence on a large
number of target domain data can be reduced [28]. For instance, a network trained
to identify images of cats and dogs can be transfer learned to identify other animals.
According to the literature, three major transfer learning scenarios exist for CNNs
as explained in the following categories, refer Figure 2.4:

• Pretrained CNN as fixed feature extractor: Here, consider a pre-trained
CNN on ImageNet for example, where the last fully connected layer (or clas-
sifier layer - which outputs the class scores for all the categories) is removed
and retrained according to the number of classes based on the new dataset for
the target task. This scenario can be used when the new dataset is small and
very similar to the original dataset.

• Fine-tuning CNNs: This second strategy is when not only to replace and
retrain the classifier layer as discussed above but also to fine-tune the weights
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of the pre-trained network by back-propagation during training. It is often
possible to only fine-tune some higher-level portions of the network as the fea-
tures of earlier lower layers of a CNN contain more generic features, such as
edge detectors that should be useful for many tasks and can be reused but
whereas the later layers use larger filters with a larger receptive field to ex-
tract high-level features such as object parts, textures, and complex patterns
specific to the input dataset.

• Pretrained models: Most often training CNNs from scratch can take a
couple of weeks even on multiple GPUs. Hence, developers usually release
checkpoints of CNNs for the benefit of others to use for fine-tuning. This sce-
nario can also be used when the new dataset is large and very different from
the original dataset. For example, the mmDetection [29] library has a Model
Zoo [30] where contributors share their network weights.

2.2 Human detection (Object detection using deep
learning)

Human detection is an application of the original object detection task. This de-
tector is a computer vision problem dealing with localizing instances of semantic
objects of a certain class (here humans) in digital images and videos [31]. The loca-
tion of these object instances is commonly represented by a rectangular bounding
box that is drawn around the instance and contains every part of it, as shown in
Figure 2.5

Figure 2.5: Example of human detection result with a bounding box.

Object detection can be divided into 2D object detection where the bounding box
is drawn on a 2D plane like on a camera image whereas, in 3D object detection, the
bounding box is 3D. Here, we concentrate on 2D object detection and particularly
on a specific two-stage detector known as Faster R-CNN which would be elaborated
in detail in the following sections. Now, we will look into some of the standard
datasets available for object detection tasks.
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2.2.1 Datasets for object detection
Datasets have always played a key role throughout the history of object recognition
research, not only as a benchmark for comparing the performance of competing
algorithms but also as pushing the field toward increasingly complex scenarios. For
generic object detection tasks, there are four famous datasets [32].

2.2.1.1 ImageNet dataset

An important large-scale benchmark dataset is ImageNet dataset [33]. It is a result
of The ImageNet Large Scale Visual Recognition Challenge which is a benchmark
in object category classification and detection on hundreds of object categories and
millions of images. ILSVRC2014 has 200 object classes and nearly 450k training
images, 20k validation images, and 40k test images.

2.2.1.2 PASCAL VOC dataset

This popular dataset was the result of a multi-year effort from 2005 to 2012. The
PASCAL VOC dataset [34] contains 20 object categories spread over 11,000 images.
The 20 categories can be considered as four main branches; vehicles, animals, house-
hold objects, people. However, these PASCAL datasets suffer from data class im-
balance for instance in VOC2007 dataset the class person is nearly 20 times larger
than the smallest class.

2.2.1.3 MS COCO dataset

MS COCO dataset [35] has come to be the de-facto standard for object detection
just like ImageNet was in its time. MS COCO database was a response to the
criticism that ImageNet was largely atypical of real-world scenarios. It contains
over 330,000 images with more than 2.5 million object instances labelled across 80
object categories, making it one of the largest and most diverse datasets available.

2.2.1.4 Open Images dataset

Open Images [36] is a dataset of 9.2M images annotated with image-level labels,
object bounding boxes, object segmentation masks, and visual relationships. Open
Images V5 contains a total of 16M bounding boxes for 600 object classes on 1.9M
images, which makes it the largest existing dataset to date.

For our work, we don’t use any of these standard datasets in our models, mainly
because these open datasets are trained only on side view images and using them
would provide poor results. Still, we adopted the data format and the evaluation
metrics from MS COCO dataset such as mean average precision (mAP) as they
are widely used in the computer vision community allowing comparisons using a
common standard benchmark.
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2.2.2 Faster RCNN model architecture
Faster RCNN is a type of object detection model that is built on top of the popular
R-CNN (Region-based Convolutional Neural Network) object detection model [37].
The main goal of Faster RCNN is to improve the speed of the R-CNN model while
still maintaining a high level of accuracy.

Figure 2.6: Faster RCNN Architecture overview.

Faster RCNN consists of three parts: a base network, an RPN (Region Proposal
Network) [37] and a classification layer. The base network is typically a pre-trained
CNN (Convolutional Neural Network) model, such as VGG or ResNet, that is used
to extract features from the input image [38, 39]. The RPN is a fully convolutional
network that takes the feature map produced by the base network as input and
generates a set of object proposals, or potential regions in the image where an
object might be present [37]. The RPN then passes these object proposals to the
Fast R-CNN model, which classifies each proposal as either an object or background
and refines the boundary box around the object [37].
In this thesis, we would be using the above Faster RCNN model for its efficiency
and accuracy discussed briefly in the Methodology section 3.

2.3 Human Pose Estimation using deep learning
Human pose estimation is a common computer vision task with a focus on the
detection of human body key joint points, such as ears, shoulders, elbows, wrists,
waist, knees and ankles, etc., from a single image. There are several approaches
to solving the problem of human pose estimation, ranging from traditional model-
based methods to more recent deep learning-based approaches. Accurate human
pose estimation is a challenging task especially due to the variability present in
human appearance, pose, and occlusion. The deep learning model used in this
project detects 17 key points of the human body in the image, similar to Figure 2.7.
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Figure 2.7: Human Keypoints in COCO Dataset [2].

2.3.1 Datasets for human pose estimation
A good human pose estimation model requires training on a suitable dataset. In this
case, the dataset is a collection of videos or images with coordinates of key points
of the humans in the image. There is no standard for the number of key points
therefore the number of key points is one of the selection criteria of the training
dataset. There are several public datasets available and there are features that
differentiate one dataset from another. As the input feed in this project is from
top-view cameras of a factory floor, occlusions are commonly present. Based on this
assumption, the following are the datasets that were considered during the selection
of suitable training datasets.

2.3.1.1 MPII

This dataset was created in 2014 and has close to 25K images with over 40K people.
The data-set comprises human performing different activities and overall there are
410 labelled activities. The feature of this data set that would be useful to our
project is that the test set contains body part occlusions and head orientations [40].

2.3.1.2 OCHuman

This dataset was created in 2019 and focuses on heavily occluded humans. This
can be seen in Figure 2.8. The annotation provides bounding-box, human poses,
and instances. Even though the size of the dataset is small with close to 5000
images, the average MaxIoU of each person is 0.573. Therefore, a pre-trained model
trained on this dataset can solve challenging pose estimation tasks with respect to
occlusions [3].
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Figure 2.8: Sample of OCHuman Dataset [3].

2.3.1.3 Human 3.6M

This large-scale dataset contains 3.6M 3D human poses. This dataset was also
created in 2014 with 11 professional actors. There were 17 scenarios in this dataset
and each image has 24 keypoint annotations [41].

2.3.1.4 COCO (Common Objects in Context)

COCO dataset is the most popular dataset for object detection, instance segmen-
tation and pose estimation tasks. For keypoints detection there are over 200K
images and 250K subjects. This dataset has 17 keypoints. The annotation has
both localization of humans using bounding box coordinates and their respective
keypoints [35].

2.3.2 Approaches and Networks for human pose estimation
In real life conditions, an image can contain multiple humans and each person might
have different poses. This situation increases the chances of occlusions and complex-
ity in estimation of poses. To overcome this problem, human pose estimation can
be categorized into two approaches [42].

2.3.2.1 Top-Down

In this two part approach, for each person, the human is localized using a human
detector first, then for each segment within the bounding box regions of each de-
tected human, keypoints are predicted. The advantage of top-down approach is the
capability to split the task into multiple relatively easier tasks of object detection
and single-person pose estimation. As the object detector performs well in detecting
small candidates, the pose estimation model is also expected to perform well [43].
As the performance of this approach depends on the human detection result, images
with tightly crowded scenes may lead to detection errors, resulting in poor pose
estimation [42].
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2.3.2.2 Bottom-Up

In this approach, first, all the key-points of the human are detected. Then in the
optimization stage, the detected key-points are associated with the corresponding
targets [44]. This approach is robust to occlusion and complex poses. However,
since this method does not have the structural information of the human body, the
chances of false positives,occurring are high. In human pose estimation tasks, false
positives refer to cases where the pose estimation algorithm detects a body part or
joint that is not actually present in the image. Reducing false positives in human
pose estimation is critical to ensure that the algorithms produce reliable results and
are useful for various applications.

Figure 2.9: Human Pose Estimation algorithm.
(a): The example of a bottom-up approach. (b): The example of a top-down

approach [4].

Even though the above approaches have their own features, the performance of a
pose estimation model depends as well on the network used. The following table
shows pre-trained models of various networks and their corresponding results.

Network Input Size mAP Flops
(GFLOPs)

GPU Inference Speed
(FPS)

Hourglass 52 (3×256 × 256) 0.726 28.67 25.50 + 1.68
HRNet W48 (3×192 × 256) 0.756 15.77 15.03 + 1.03

LiteHRNet 30 (3×192 × 256) 0.675 0.42 11.86 + 0.38
ResNet-50 (3×192 × 256) 0.718 5.46 64.23 + 6.05

Table 2.1: Model complexity information and inference speed various top-down
models in MMPose. mAP = Mean Average Precision trained with COCO dataset [8].
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Network Input Size mAP Flops
(GFLOPs)

GPU Inference Speed
(FPS)

Hourglass AE (3×512 × 512) 0.613 221.58 3.55 + 0.24
HRNet W48 (3×512 × 512) 0.665 84.12 5.27 + 0.13
ResNet-50 (3×640 × 640) 0.479 45.62 8.20 + 0.58

Table 2.2: Model complexity information and inference speed various bottom-up
models in MMPose. mAP = Mean Average Precision trained with COCO dataset [8].

From the above section, we can infer that even though bottom-up approach is robust
to occlusion and complex poses, our current focus is more towards reliable results.
Therefore, we have chosen the top-down approach. While selecting the pre-trained
model, we wanted our model to have low GFLOPs (Giga Floating Point Operations
per second) and high mAP (mean Average Precision). From 2.1, HRNet W48 pre-
trained meets our criteria. The relatively low GPU inference speed was a trade-off
we accepted.

2.3.2.3 Deep High-Resolution Representation Learning for Human Pose-
Estimation(HRNet)

HRNet [5] is a state-of-the-art algorithm in the field of semantic segmentation, hu-
man pose estimation and facial landmark detection. This network takes an image of
size W x H x 3 and aims to estimate K heatmaps, one for each key point, resulting
in heatmaps {H1, H2, ..., Hk} indicating the confidence of the kth key point network
that combines low and high-resolution convolutional networks.
The architecture of the algorithm has multiple sub-networks connected in parallel.
Starting from a high-resolution sub-network at the top, high-to-low-resolution con-
volutional networks are gradually added one after one by downsampling from the
previous high-resolution sub-network.

channel
maps

conv.
unit

strided
conv. upsample

Figure 2.10: An example of an HRNet architecture: Here, there are four stages.
The 1st stage consists of high-resolution convolutions. The 2nd (3rd, 4th) stage

repeats two-resolution (three-resolution, four-resolution) blocks. More details can
be found in [5].

From Figure 2.10 of the architecture, it can be seen that at the end of each stage, a
full connection to the multi-resolution group of the next stage can be seen. Here, the
information is transferred from high to low resolution and vice-versa through up-
sampling and downsampling respectively. High-to-low-resolution occurs via strided
3x3 convolutions and low-to-high resolution occurs via 1x1 nearest neighbour up-
sampling. An overview of this exchange unit can be seen in Figure 2.11.
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strided
3× 3

up samp.
1× 1

feature
maps

Figure 2.11: HRNet exchange unit: Illustrating how the fusion module aggregates
the information for high, medium, and low resolutions from left to right, respectively.
Source: [5]

The HRNet body consists of four parallel subnetworks over 4 stages, containing 1,
4, and 3 exchange units for the 2nd, 3rd, and 4th stages respectively. Two different
versions of HRNet are used, HRNet-W32 and HRNet-W48, with different num-
bers of channels. In this way, the network maintains high-resolution representation
throughout the whole process.

2.4 Performance Metrics
Evaluating the performance of human pose estimation results requires the evaluation
of the human detector and pose estimation model. As the pre-trained models are
trained with the COCO dataset, the evaluation metrics of the COCO dataset [35] is
used. This section consists of two parts. First, the metric to quantify the prediction
of human detection and estimation of the pose is discussed, and in the second part,
based on the confusion matrix generated from the previous parts, we evaluate the
model using the COCO metrics for precision and recall which are mean average
precision (mAP) and average recall (AR) respectively.

2.4.1 Qualitative Analysis of Prediction
The first step in analyzing the performance of prediction requires finding out how
much the predicted point overlaps with the actual ground truth. In our case, to find
this overlap, we have the Intersection Over Union (IOU) metric from our human
detector, and Object Keypoint Similarity (OKS) from our pose estimation model.
Even though these evaluators assess in different ways, their results are used to gen-
erate a precision-recall curve which is required to calculate mean average precision
(mAP) and average recall (AR). This topic will be discussed in the next section.

2.4.1.1 Intersection Over Union (IOU)

Intersection Over Union is used to describe the extent of overlap of two boxes. The
value varies between 0 to 1 and the greater the overlap region, the greater the IOU
metric value.
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Figure 2.12: Intersection Over Union (IOU).

From the above figure 2.12, we can see that IOU is simply a ratio. The overlap
area between the predicted bounding box and ground truth bounding box is the
numerator and the denominator is the union of areas encompassed by both the
predicted bounding box and the ground-truth bounding box.

2.4.1.2 Object Key-point Similarity (OKS)

This metric gives a measure of how close a predicted key point is close to the ground
truth. Object key-point similarity is related to IoU in the key points prediction
performance.
For each object, the ground truth key points are of the form [x1, y1, v1, ..., xk, yk, vk]
where x,y are the key-point locations and v is a visibility flag defined as v=0: not
labelled, v=1: labelled but not visible, and v=2: labelled and visible. However, the
predicted vi is not used during evaluation. The mathematical equation for OKS is
given below.

Σi[exp( −d2
i

2s2k2
i
)δ(vi > 0))]

Σi[δ(vi > 0)] (2.8)

where

• di is the Euclidean distance between the predicted key point and corresponding
ground truth

• s is the object’s scale
• k is the per-keypoint constant that controls fall off.
• vi is the visibility flag.

2.4.2 Quantitative Analysis of Prediction
The second part is to discuss how the results of IOU and OKS are quantified. To
start with, let us discuss the four parts of the confusion matrix:

• True Positive: A correct detection (detection with IOU ≥ threshold)
• False Positive: A wrong detection (detection with IOU ≤ threshold)
• False Negative: A ground truth not detected
• True Negative: The part of the image that was not detected by the model.
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Using the above confusion matrix, we find precision and recall.
Precision measures the proportion of predicted positives that are correct. In other
words, it is the True Positives of total detections.
Recall measures the proportion of actual positives that were predicted correctly. In
other words, it is the True Positives of all ground truths.

Precision = TruePositives

TruePositives + FalsePositives
(2.9)

Recall = TruePositives

TruePositives + FalseNegatives
(2.10)

Therefore, if a model has high precision and recall, then the model correctly predicts
the samples and also predicts most of the positive samples. But if a model has high
precision and low recall, it correctly predicts samples as positive but has only a
few positive samples. In our context, this means that the detected key points are
accurately predicted but only a few key points have been predicted.
As high precision and high recall can be ideal, a Precision-Recall curve is formed to
understand the trade-offs based on different thresholds.

2.5 Camera-based computer vision
The training of our pose-estimation model requires images taken from ceiling-mounted
cameras. The images captured will be distorted and the parameters and character-
istics of the camera have to be found to make the image useful. This section will
explain the concepts of computer vision that have been applied to generate the
training data for our pose-estimation model.

Figure 2.13: World coordinate system with camera extrinsic parameters [6].
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2.5.1 Extrinsic Parameters
The extrinsic parameters are the parameters used to describe the transformation
between the cameras and their external world. They are also called camera poses.
In Figure 2.13, a single point Mw on a world coordinate system with optical center
C can be transformed to a new camera coordinate system Mc with centre O by
rotation R and translation t with the equation:

Mw = RMc + t (2.11)

Here R and t are extrinsic parameters [6] and this Euclidean transformation can be
used to describe the extrinsics of a camera, in other words, how a certain camera is
placed and rotated in a coordinate system.

2.5.2 Intrinsics Parameters
Each camera has different properties compared to another, hence these properties
need to be modelled before using various computer vision algorithms. We call these
properties inherent to a camera,the intrinsic parameters. A common way of referring
to a certain camera’s calibration settings is writing it as a matrix K. These settings
are commonly known as camera intrinsics.

K =

fx s cx

0 fy cy

0 0 1

 (2.12)

The variables fx and fy represent focal length with respect to the camera sensor for
x and y dimensions. Variable s denotes skew to account for misalignment between
the camera sensor axis and principal point (or image center). Lastly, the variables cx

and cy denote the image center in pixel coordinates. The intrinsics for each camera
need to be estimated and this process is commonly called as calibration process.
These tend to differ for every camera even those of the same model and manufac-
turer. The calibration process used in this thesis will be explained in Section 3 in
detail.

2.5.2.1 Distortion of Image

In an ideal camera, the linear projection model is obeyed, i.e, a straight line in
the world would also, result in a straight line in the image. In the real world, on
the other hand, many wide-angle lenses have noticeable radial distortions where the
projected straight line has a visible curvature. The two common forms of radial
distortions as seen in Figure 2.14 are barrel distortion and pincushion distortion [7].
Therefore, to have an accurate image for training and annotation, the image should
be undistorted first.
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Figure 2.14: Effect of radial distortion. Solid lines: no distortion, dashed lines:
with radial distortion (a: pincushion b: barrel) [7].

2.5.3 Camera Matrix
The camera matrix P, also known as the projection matrix, is a 3x4 matrix that
represents the relationship between the 3D world coordinates of a point and its 2D
image coordinates captured by a camera.The camera matrix P can be written as:

P = K[R|t] (2.13)
Xcam = −R−1t (2.14)

where,

K is a 3x3 matrix known as the camera intrinsic matrix that contains information
about the camera’s focal length, principal point, and skew coefficient.
R is a 3x3 rotation matrix that describes the orientation of the camera in the world
coordinate system.
t is a 3x1 translation vector that represents the position of the camera center in the
world coordinate system.

For a camera defined by (2.13), the center of the camera, Xcam in the world co-
ordinate system is given by equation (2.14).

The camera matrix P can be used to project a 3D point X in the world coordinate
system onto its corresponding 2D image point x in the camera coordinate system,
which will be discussed in detail in the below section on 2.5.5.

2.5.4 Triangulation
Triangulation is the process of finding a 3D point given the pixel coordinates of the
point in two or more different views as shown in Figure 2.15. To solve this problem,
we need to know the projection camera matrices P for all the cameras involved.
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𝑂
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𝑥

𝑦′

X

Figure 2.15: Triangulation: In practice, the image points x and y cannot be
measured with arbitrary accuracy. Instead points x′ and y′ are detected and used
for the triangulation. The corresponding projection lines (dotted) do not, in general,
intersect in 3D space and may also not intersect with point X.

There are many advanced algorithms for triangulation [45], however the most com-
mon and the simplest is the solution utilizing the Direct Linear Transformation
(DLT).

For each input image, we have a measurement,

λ1x′ = PX ,

λ2y′ = P ′X
(2.15)

where,
x′, y′ are the 2D camera-space coordinates of a world point in the first and second
cameras.
λ1,2 are unknown non-zero scale factors.
X represents the 3D world-space coordinate that we intend to recover.
The two equalities (Equation 2.15) mathematically denote that the vectors λ1x

′

(λ2y
′) and PX (P ′X) are parallel and therefore the cross products are zero, x′ ×

PX = 0 (y′ × P ′X = 0). Scale factors were eliminated by cross-products.u
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where, u,v, are the pixel coordinates of x′ and three-row vectors of P represented
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as p1,p2 and p3. But the third row is a linear combination of the first two rows
which then only gives 2 systems of equations, which is not enough to solve the 3
unknowns in X. This is expected since we can’t determine a 3D coordinate from a
single camera view. Since we have two cameras, we can extend the matrix to have
more rows.

AX =



vpT
3 − pT

2
pT

1 − upT
3

v′p′
3

T − p′
2

T

p′
1

T − u′p′
3

T

...

 X = 0

Since there are more equations than unknowns, we cannot find exact solution, we
solve the least squares minimization problem using SVD [46] which allows us to
estimate the value of X and thus the 3D coordinate of any point for which we know
the camera-space coordinates from two cameras for the projection matrices P, P ′

has already been determined. The advantage of this method is that it can be easily
extended to any number of two or more views. For our thesis work, we take use two
views.

2.5.5 (Re)projection

Figure 2.16: The different mappings from 3D to 2D from left to right.

Here, in this thesis, we define re-projection as mapping 3D points to image points
in 2D, given that the camera matrix P is known. With this information, one would
be able to find the projection of any 3D point of the scene, say a new third camera
image point in 2D (up to a scale factor λ). An illustration of the different mappings
is shown in Figure 2.16
The equation for this projection is given by,

λx = PX

= K
[
R t

]
︸ ︷︷ ︸

P

X1
X2
X3


︸ ︷︷ ︸

X

(2.16)
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where Equation 2.16 is usually called the camera equation and this process is illus-
trated in Figure 2.16.
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Methodology

In this chapter, the methods used to perform our task of human de-
tection and pose estimation will be discussed as modules. We start by
explaining the camera setup which is crucial for our data collection and
the semi-automatic annotation pipeline.

3.1 Camera Setup
In our case, the collection and annotation of data require at least three cameras: a
ceiling-mounted camera and two front-facing cameras. The images of the ceiling-
mounted camera will be used for training and testing the human detector and pose
estimation model. The significance of the two front-facing cameras will be discussed
in detail in the next section when we discuss the training data annotation, but in
brief, the side cameras will be used to predict the human key points from the front
view which will be later triangulated and re-projected to the ceiling-mounted camera
images to get the required key point annotations for the training data.

Figure 3.1, an image taken from the top-view camera, depicts the setup of the
cameras. The two side-view (front-facing) cameras are placed perpendicular to each
other, right below the top-view camera. As a result of this arrangement, an object
at the center of the three cameras can be captured with minimal overlap.
After the cameras are set up, a continuous synchronized image feed is collected from
all three cameras. This data was collected for different processes such as calibration,
pose estimation, etc., which will be discussed in the following sections.

3.2 Modules of Human Detection and Pose Esti-
mation

The project has been divided into four modules based on the tasks and their signif-
icance. The choices and motivations taken for each module will also be discussed.

3.2.1 Module 1: Image Pre-Processing
As the data for our project are images taken from a ceiling-mounted camera, the
first stage was calibrating the camera for the collection of synchronized images.
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Figure 3.1: Camera Setup with two Side-View cameras taken from Top-view
camera.

3.2.1.1 Undistortion of Images (Intrinsic Calibration)

The purpose of intrinsic calibration is primarly to estimate and correct the distor-
tions in images taken directly from the camera. To do this, a set of images with
checkerboards were taken. An example of the checkerboard image can be seen in fig-
ure 3.3. The undistortion process involves the following steps which were performed
using the OpenCV library functions in python.

• cv2.findChessboardCorners: For each checkerboard image, the corners were
found. These corner points were then refined using cv2.cornerSubPix and
then added to image points. This function also returns if the checkerboard
was detected successfully. The object points were manually set based on the
checkerboard dimensions.
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Figure 3.2: Output after findChessboardCorners function.

• cv2.calibrateCamera: With the collection of image and object points, the cal-
ibration matrix, distortion coefficients, rotation, and translation vector could
be found using this function.

• cv2.getOptimalNewCameraMatrix: This function is used to refine the calibra-
tion matrix based on a scaling parameter alpha, which has values from 0 to
1. With alpha as 0, only the sensible pixels or minimum unwanted pixels are
retrieved from the calibration matrix. The ROI (region Of interest) is also
obtained from this function. This will be helpful for cropping the distorted
image.

• cv2.undistort: After the calculation of the optimized calibration matrix, cali-
bration matrix, distortion coefficients, ROI, and shape of the image, we would
be able to get the undistorted image from this function. The image that out-
puts from this function is then cropped based on the shape of the image from
ROI. The final cropped image would be our undistortedimage.

(a) Original distorted image. (b) Undistorted image.

Figure 3.3: Intrisic calibration mainly to estimate and remove distortion effects
from raw camera images.

3.2.1.2 Extrinsic Calibration

Extrinsic calibration is performed to map points from 3D coordinates to 2D coor-
dinates and vice-versa. For this, the orientation of the cameras i.e., rotation and
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translation with respect to the scene are computed. The calibration process is similar
to intrinsic calibration. Here, Aruco markers are used in place of the checkerboard.
An Aruco marker [47] is a binary square marker with wide black border and inner
binary matrix. This 4×4 inner matrix determines the ID of the marker. As the
field of view for the camera was wide, an Aruco board was used instead of a single
Aruco marker. The markers were generated using Aruco marker generator and the
markers were printed and stuck in a long vertical board.

Figure 3.4: Process of extrinsic calibration. Computes the orientation (Rotation
and Translation) of the camera with respect to each other in the scene.

Unlike intrinsic calibration, where lots of checkerboard images were needed, a single
clearly visible Aruco board on all the cameras was enough to obtain robust extrinsic
calibration. The captured image is first undistorted using the steps discussed above
in intrinsic calibration. Then, the following steps using the following functions of
OpenCV are performed to finally obtain the poses of the cameras in the scene.

• cv2.aruco.detectMarkers: We define Aruco board parameters in openCV and
then use this function to detector corners of Aruco markers as shown in Figure
3.5.
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Figure 3.5: Detected corners in an Aruco board.

• cv2.aruco.estimatePoseBoard: Once the corners are detectors, we can estimate
the pose ( R and t ) of the camera using this function. Having known all the
parameters needed for camera matrix P can then be computed.

3.2.2 Module 2: Semi-Automatic Training Data Annotation
3.2.2.1 Annotation of key points using triangulation and re-projection

As discussed in the camera setup section and from Figure 3.1, in addition to the
ceiling-mounted camera, there exists two side cameras. These side cameras were
primarily used to aid the annotation of the human key points for the images taken
on the top-view camera. To begin with, time-synchronized images from all three
cameras were captured. Care was taken to ensure that the person or human was
visible on all three cameras. Thereafter, for each image captured on the top-view
camera, there are two side-view images that capture the same person from their
respective angles. After the images were captured, the human pose key points an-
notation for the top-view cameras was created with the following steps.
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Figure 3.6: Keypoint triangulation using side-view cameras.

For each image captured on the three cameras:

1. First, the human key points were detected on each of the two side-view images
using a pre-trained MoveNet model [48]. As the pose of the human on the
side-view cameras was completely visible, the MoveNet model detects the 17
body key points fairly well.

2. Next, from the already computed respective camera pose and orientation from
the external calibration process, the 17 key points are triangulated into 3D
key points using the technique described in Section 2.5.4.

3. Finally, the obtained 3D points are re-projected to the 2D camera coordinates
of the top-view camera using the projection matrix of the top-view camera.
In this way, each of the predicted human key points of the side view camera
images was re-projected to the top-view camera image obtaining the annotated
key points.

3.2.2.2 Bounding Box Annotation

The dataset for training our human detector and pose estimator models requires key
points coordinates and the bounding box coordinates used to localize the human. A
simple method to do this labeling is to draw a bounding box on the top-view images.
In order to avoid a manual process, we wanted to develop an automatic process of
annotating the bounding boxes. Below, we explain our process of obtaining bounding
box annotations for the top-view camera images from the human ankle key points
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annotations. Here, our main assumption that simplifies this process is that both
ankle points lie on the ground. This assumption is realistic as all factory floors
are mostly likely level ground and humans detected at factory floor will be only
standing.

1. We compute the camera matrix for the top-view camera by using an Aruco
board placed on the ground (same process as external calibration).

2. The left and right ankle 2D key points of the top-view camera obtained in the
previous section are transformed into 3D world coordinates, using the camera
matrix of the top-view camera.

3. Based on the three-dimensional left and ankle key points, a 3D bounding box
structure of an arbitrary dimensions (1.8 m height and 0.5m width) is centered
on the midpoint of the left and right ankle points. This assumed dimensions
is chosen such that it fits well with the average human’s dimensions. By this
way, we ensure that the person is covered from head to ankle and shoulders.

4. The points of the outer edges of the 3D bounding box are then transformed
back to the image coordinates of the top-view camera. These points, after
re-projection, cover the human on the top-view camera. As the positions
of the points changes during transformation, regardless of the orientation of
the person on the top-view camera, the 2D bounding box covers the person
completely.

These steps are represented in the below figure.

2D Point

3D Point

Figure 3.7: Pictorial representation of bounding box.

3.2.3 Module 3: Training of HDPE Model
In this module, we look into the training details involved in the transfer learning
of the HDPE models. Information about the dataset used is also explained before
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Figure 3.8: The process flow in a top-down human detection and pose estima-
tion(HDPE) network.

we look into transfer learning (or fine-tuning) details for the human detector model
and pose estimation model. In the fine-tuning process, a model can be trained
several times with the use of checkpoints, and not trained from scratch to learn
new things repeatedly. In our work, we used MMDetection [29] and MMPose [49]
toolboxes both from OpenMMLab project for the human detector and pose estimator
models, respectively. OpenMMLab has a wide collection of object detector and pose
estimation models that are pre-trained on a variety of widely used datasets. For our
task, we have picked the Faster R-CNN model for the human detector network and
the HRNet-W48 model for pose estimation. Both models were pre-trained with the
COCO dataset [35]. For visualizing and keeping track of the training and evaluation
progress, a sub-tool of Tensorflow was used called Tensorboard [50].

3.2.3.1 Dataset for training and testing

In this section, we look into the train-val-test data split in detail.
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Figure 3.9: Dataset for training and testing the fine-tuning process.
Dataset 1: In order to induce data variability, images from two cameras (CAM 1
and CAM 2) were used for the training (80%) and validation dataset (20%). All the
required labelling was created using our semi-automatic annotation process.
Dataset 2: The test dataset consisted of a total of 74 images from a different camera
(CAM 3) feed to test generalization.

The number of annotated images generated from our semi-automatic annotation
pipeline was 1895 images. These images consisted of one object class for all the
images which were termed as "person", bounding box coordinates, and human key
points annotations as per COCO format [35]. In order to generalize the model, this
data consisted of images compared from two ceiling cameras. Out of the 1865 images,
the training-validation split was decided as 80/20% in order for the validation set
to have a lesser variance in the metrics.
As for the test dataset, a total of 74 images, amounted to roughly 3% of train-val
dataset was chosen. These test images were generated from a third camera, different
from the camera used for the training/validation sample dataset. Also, the labeling
was done manually using an open-source labeling tool CVAT. [51]

3.2.3.2 Fine-Tuning Human Detector

There are two steps for fine-tuning the Faster R-CNN model. They are:

1. Creating Train-val-test annotation file: Fine-tuning requires training the model
with a new set of training data. Therefore, the initial step is to create an an-
notation JSON file that is in the COCO format. This annotated top view
dataset was created by following the steps in Module 3.2.2
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2. Modifying config file: To perform transfer learning, the base config file from the
MMdetection toolbox was inherited and only the following changes were made:

• "num-of-classes" parameter: As we want the detector model to detect just
human or person class, the number of output classes were changed to 1
to include "person" class. By changing this in the classification head, the
weights of the pre-trained models are mostly reused except for the final
prediction head.

• Training hyperparameters: the learning rate and the number of epochs
were modified to 0.0025 and 40 respectively to facilitate fine tuning. The
optimizer used was the Stochastic gradient descent (SGD).

3.2.3.3 Fine-Tuning Pose Estimation Model

Similar to the human detection model, fine-tuning the pose estimation model also
requires modification of the annotation file and the config file.

1. Creating Train-val-test annotation file: As the training will be performed on
data annotated using the automatic annotation pipeline, the 17 key points
generated using this pipeline should be converted to COCO format JSON file.
As the human detector and pose estimation model are given the same JSON
file, the key points annotation should be clearly distinguished from the detec-
tor points.

2. Modifying the config file: Here, since the pre-trained pose estimation model
was also trained on COCO dataset, we didn’t require to change the number
of joints in "inference channel" as there are 17 key points in our training data
also. With regard to the learning rate and a number of epochs, they were
changed to 0.0005 and 100. The optimizer used was ADAM.

3.2.4 Module 4: HDPE Model Evaluation
In the final module, after training the human pose model, the results are evaluated
by various metrics. The metrics consists of both the standard COCO evaluation
metrics as discussed in Chapter 2 and custom test metrics which will be discussed
further below.
The COCO metrics for key-point evaluation computes the average precision and
average recall based on all the 17 key points of a person with various thresholds.
This can be used to compare our model with the pre-trained model. In our project,
however, upon these basic metrics, there are two additional important metrics for
better understanding the performance during the implementation of the model.

• Average Precision and Average Recall for 2 key points: This metric is similar
to COCO metrics but instead of 17 key points, only the left and right feet
ankle key points are considered. The detection of humans and the key points
are preliminarily used by the ATRs to maneuver the factory floor safely. The
most important key points that help ATRs in this task will be the left and
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right ankle points, as these are the points that are planted on the ground most
of the time and even if predictions of other key points are not perfect, based
on these 2 key-points, the ATRs can make safe path calculation. These two
key points are also important to track as they are prone to occlusion when
viewed from a ceiling-mounted camera.

• Mean L2 Pixel Error of Ankle Points: This metric is used to find the dis-
tance between predicted and target points in pixels. In the real world when
evaluating the performance of the model to analyze safe contact between the
human operator and ATRs, this metric will be informative as the distance
between target ground truth and prediction can be found in pixels which can
be converted to a measurement system.

(a) AP and AR for 2 feet ankle key-
points. (b) L2 pixel error of ankle key points.

Figure 3.10: Custom test metrics for feet ankle key points.
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Results

This chapter will provide the results of the aforementioned methods to
perform human detection and pose estimation. The test set was not
used during the training and validation process and hence the findings
reported in this section are on the test set. In this chapter, we divide
it into human detection tasks and human pose estimation tasks, and
finally, we also look into the multi-human pose estimation results.

4.1 Evaluation of Human Detector Model results
The primary objective of our human detector model, as the name suggested is to
localize the human’s position in 2D coordinates in the image taken from the top view
with the help of bounding box coordinates. These detections are crucial because the
human pose estimator model, discussed later, needs these bounding boxes to predict
the poses of the human.
The pre-trained deep learning model used for the human detection task in our thesis
is Faster-RNN model which was trained in the original COCO dataset but tuned
further to detect the "human" class. The weights and the checkpoints of this model
already exist as part of the OpenMMLab framework [30] which could be downloaded.
Though this model is one of the SOTA models that exist for object detection, we
observe that it performs poorly for top-view images, which is an important feature
of our application. Hence, we fine-tuned the above model using our own annotated
training set explained in Chapters 3.2.2,3.2.3 This model is referred as fine-tuned
model.
The side-by-side visual comparisons can be seen from the following figures 4.1,4.2,
and 4.3.
The comparison of performance of pre-trained Faster RCNN model and fine-tuned
model can be seen in the table below. From the table, it is clear that the fine-tuned
model performs better than the pre-trained model in all metrics for top-view images.
Particularly, the improvement in AR which in turn demonstrates the number of
missed detections is important for this application.
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Metric Pre-trained model Fine-tuned model
(AP) @[ IoU=0.50:0.95] 0.009 0.298
(AP) @[ IoU=0.50] 0.036 0.851
(AR) @[ IoU=0.50:0.95] 0.048 0.399
(AR) @[ IoU=0.50] 0.137 0.918

Table 4.1: Performance Comparison for human detector using COCO metric. AP
= Average Precision, AR= Average Recall.

To further understand the above table and the performance of the fine-tuned and
pre-trained models, the models are compared in the following scenarios.

4.1.1 Analysis of false negatives

(a) Pre-trained(off-the-shelf) model (b) Fine-tuned model

Figure 4.1: Comparison of false negative detections between (a) Pre-trained and
our (b) Fine-tuned detector models.

A high average recall indicates that the detector is able to identify most instances,
while a low average recall indicates that many instances are being missed. Missed
detections, also known as false negatives, are instances that should have been iden-
tified as a certain class but were not. Here, it is important that the detector exhibits
high recall than high precision, as it’s far more serious if it misses detecting a human
on the scene rather than being correct most of the time.
Figure 4.1 shows a sample result where the pre-trained model has missed detecting
the human in the image, whereas the fine-tuned model accurately detects it.
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4.1.2 Analysis of occlusion handling

(a) Pre-trained model (b) Fine-tuned model

Figure 4.2: Human detector’s occluded detection comparison between (a) Pre-
trained and our (b) Fine-tuned models.

To further evaluate false negative detection performance, in Figure 4.2 we notice an
improvement in the occlusion handling capability in our fine-tuned model compared
to the pre-trained. Occlusion handling is important for a human detector model
because it allows the model to accurately detect and localize humans even when
they are partially occluded by objects or other people in the scene. This evaluation
was also done to understand the performance of our human detector model in cases
where the humans are partially visible in the edges of the area covered by the camera.

4.1.3 Analysis of bounding box

(a) Pre-trained model (b) Fine-tuned model

Figure 4.3: Human detector’s bounding box regression comparison between (a)
Pre-trained (b) Fine-tuned models.

But a downside of this approach can be seen in Figure 4.3. In this figure, the pre-
trained model has a tighter bounding box than the fine-tuned model. The difference
in dimensions can be explained by understanding the datasets the models are trained
with. In the case of the pre-trained model, the model is trained with COCO dataset,
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which is a huge dataset consisting of tightly annotated bounding boxes. In the case
of fine-tuned model, however, the pre-trained model is re-trained with a relatively
small dataset generated using the semi-automatic data annotation pipeline. In this
pipeline to cover a wide range of human angles, a wide fixed bounding box is used.
As we re-train with this dataset, the quality of bounding boxes decreases, leading
to less tightness.

4.2 Evaluation of Human Pose Estimation Model
results

In this subsection, the results comprising the performance of the human pose esti-
mation model are presented. The used human pose estimation model follows the
top-down approach to predict the key points of the human given the bounding box
detections from the earlier human detector model.
We observed the standard COCO metrics alone were not enough to capture the
important aspects of our application on the factory floor. Hence, we also present
the results evaluated by our custom metrics in this section.
The pre-trained model used for human pose estimation model used in our work is
HRNet W48 model pre-trained on COCO Dataset. The checkpoint model consisting
of pre-trained weights is available for download, as part of (MMPose) OpenMMLab
framework [49]. Just like in the human detector case, the pre-trained human pose
estimation model is also re-trained on our semi-automatically annotated top-view
dataset. This re-trained model is referred to as the "Fine-tuned" model in the
previous chapter. Now, having established the basic understanding of both the
pose estimation models presented in our results section, the discussion continues to
the findings from the experiments listed below.

4.2.1 Evaluation of 17 key points using Standard COCO
metrics

Here, in this experiment, standard COCO metrics AP and AR for all 17 key points
for both the pre-trained and our fine-tuned model are presented in Table 4.2.

Metric Pre-trained model Fine-tuned model
(AP) @[IoU=0.50:0.95] 0.628 0.449
(AP) @[IoU=0.50] 0.933 0.828
(AR) @[IoU=0.50:0.95] 0.697 0.504
(AR) @[IoU=0.50] 0.959 0.849

Table 4.2: Performance comparison for human pose estimation model - Standard
COCO metrics. AP = Average Precision, AR= Average Recall.
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(a) Pre-trained model. (b) Fine-tuned model.

Figure 4.4: Human pose estimation model with 17 key points (a) Pre-trained and
(b) Fine-tuned models.

Table 4.2 shows the comparison between the pre-trained model and our fine-tuned
model when evaluated using Standard COCO metrics AP and AR. The values ob-
tained indicate that our fine-tuned model does not manage to outperform the pre-
trained model.
Though this is true when looking at just the metric values, the visual result sample
images tell a different point. This is more clear when one refers to figure 4.5b, where
the fine-tuned model seems to be able to predict the foot or the ankle positions more
accurately than the pre-trained model.

4.2.2 Visual inspection of ankle key points

(a) Pre-trained model (b) Fine-tuned model

Figure 4.5: Visual comparison of ankle prediction between (a) Pre-trained and our
(b) Fine-tuned model.
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In this test, we look at how accurately our fine-tuned model predicts the two ankle
points. These ankle predictions are important especially for our application, as we
intend to accurately localize humans in 3D using just 2D detections of ankle or feet
positions with the help of the assumption explained earlier in Section 1.3 that human
feet are always placed firmly on the floor and the human is standing. In Figure 4.5a
and Figure 4.5b, the blue and green lines represent the right and left side of the
human body, respectively. In the pre-trained model, the right leg is predicted as left
leg as it is in green whereas, in the fine-tuned model, the right leg is represented
correctly in blue colour.

4.2.3 Evaluation of ankle key points using custom metrics.

Figure 4.6: Comparison of ankle prediction for custom metric evaluation: Blue
and Green - Pre-trained model, Black and White - Fine-tuned model.

To further experimentally measure and verify our above results on ankle key points
prediction, we introduced our custom metrics which focus on the two ankle key
points instead of all 17 key points used as part of standard COCO metrics.
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Metric Pre-trained model Fine-tuned model
(AP) @[ OKS=0.50:0.95] 0.451 0.548
(AP) @[ OKS=0.50] 0.790 0.856
(AR) @[ OKS=0.50:0.95] 0.608 0.641
(AR) @[ OKS=0.50] 0.876 0.877

Table 4.3: Performance comparison for human detector using custom Metric -
mAP of 2 ankle points.

L2 pixel distance Pre-trained model Fine-tuned model
Left ankle 96.64523 78.95414
Right ankle 100.49078 85.60831

Table 4.4: Performance comparison for human detector using custom Metric -
Mean L2 Pixel error of each ankle point.

The evaluated results using two custom metrics can be summarized from the tables
4.3 and 4.4 respectively. A short description of each of these two metrics is needed
before we look into the results demonstrated. The first custom metric used in this
work is the Average Precision (AP) and Average Recall (AR) computed just for the
two ankle key points instead of all the predicted key points as in COCO metrics.
The second one is the L2 pixel distance metric, which is basically the L2 norm
difference between two-pixel points. This difference is helpful in quantifying the
difference between the pre-trained and fine-tuned compared to the ground truth key
point location in pixels.
The results from table 4.3 show quite clearly that the fine-tuned model is better at
predicting the ankle points than the pre-trained model. The L2 pixel difference table
4.4 results look promising as it shows that the fine-tuned model is able to reduce
the L2 norm pixel difference in both ankle positions. A lower value here is better
indicating the lower difference between prediction and ground truth positions. A
visual comparison of the same can be also seen in Figure 4.6.

4.2.4 Results on multi-human pose data
Here, we apply our human detection and pose estimation model on multi-human test
images without any retraining on multi-human datasets to check the adaptability
of the model. We observed that the model performed quite well for multi-person
images as shown in Figure 4.7.
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Figure 4.7: Results on Multi-person human test dataset without re-training.
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5
Conclusion

This section provides an explanation and possible interpretations for the findings in
the previous chapter’s results involving human detectors and human pose estimation
models. This discussion is then followed by an overall conclusion of our findings in
relation to the research questions to be addressed in this thesis work.

5.1 Discussions
As seen in the previous chapter, the fine-tuned model performs better than the pre-
trained model for both human detector and pose estimation models. This improve-
ment can be due to re-training the pre-trained model on our annotated top-view
dataset which was created using the semi-automatic annotation method 3.2.2.

We observed from Table 4.1 that the fine-tuned human detector has lesser false neg-
atives detections and better occlusion handling compared to the pre-trained model.
We speculate that these improvements are primarily due to re-training the pre-
trained model on our annotated top-view dataset. For our particular use cases
involving robots and humans, we believe that this trade-off in False Positives is def-
initely worth considering, ensuring safer scenarios.

In the case of the human detector, however, the pre-trained model has a tighter
bounding box than our model even though the recall is lower than the fine-tuned
model. The fit of the bounding box is an important aspect of a human detector,
as it directly affects the accuracy and precision of human detection. A bounding
box that is too small may exclude parts of the human object, making it difficult to
accurately detect and classify the object. On the other hand, a bounding box that
is too large may include parts of the background or other objects, which can lead
to false positives and reduce the overall accuracy of the detector. Since the poorly
fitted bounding boxes predictions from our fine-tuned model are directly a result of
our semi-automatic annotation method, we think that more advanced techniques to
create more accurate bounding boxes must be introduced.

When it comes to the multi-human pose estimation results depicted in Figure 4.7,
We believe that the combination of top-down model architecture selected made it
automatically suitable for multi-person pose tasks without the need for separate
retraining. This can be due to the Faster R-CNN model, which detects the individ-
uals and passes each individual detection through the single-person pose estimation
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model. Though this may be true, we presume that they might not produce the same
level of accuracy as a model that has been specifically trained on multi-person pose
estimation. Therefore, if we require high accuracy for multi-person pose estimation,
it is recommended to use a model that has been trained on a multi-person dataset.

5.2 Limitations and Future work
Due to the limited time for completion of this thesis, the scope had to be reduced,
which had led to few limitations. These limitations also illustrate improvement op-
portunities that can be done as future work.

1. Semi-automatic annotation method:
We use the MoveNet model for our annotation pipeline, hence the quality of
the annotated dataset is limited by this model’s accuracy and performance.
Further ways to improve the quality of annotation could be part of future
work. Similarly, the triangulation method used in this thesis is a basic ap-
proach and there are advanced methods in the literature that could give better-
triangulated results [52], [53]. Another limitation is that the automatic an-
notation pipeline was currently developed for single-person data only and the
extension to multi-human data would require more time. Hence, this topic is
left for future work. Another future scope could be to study if adding more
than two side-view cameras can improve triangulation without adding to the
complexity.

2. 2D vs 3D pose estimation:
The estimated pose results part of this work is in 2D space as the focus was
on the foot key-point estimation. However, there could be many Direct 3D
pose estimation models that could work well [54].

3. Hyper-parameter Tuning:
Due to lack of time, this thesis did not focus on Hyper-parameter tuning of
deep learning models which could help to find the optimal parameters to ex-
tract the best performance from the model. We believe it could bring immense
benefit when deploying as production systems.

4. Unsupervised learning framework:
Weakly supervised and unsupervised methods have grown in popularity due
to their efficiency in dealing with limited ground truth data. This method can
be especially important here as there are no large publicly available datasets
for top-view images.
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5.3 Conclusion
This thesis focuses on developing a deep-learning model to detect and estimate
human pose from ceiling-mounted cameras. It began by discussing the challenges
in the availability of training data for top-view images and the poor performance
resulting in using pre-existing and pre-trained models for this task. To overcome
these issues, we used a semi-automatic annotation method using multi-views (a
combination of side-view cameras and the intended top-view camera) to generate
a labelled or annotated top-view dataset of humans and their poses. This dataset
was then used to fine-tune and train a deep-learning model. Therefore, the core
of this thesis is the development of a semi-automation annotated method which
solved the problem of extensive manual annotation efforts and demonstrated that
automatic annotation methods can substitute the lack of manual annotation to
achieve satisfactory results. We also improved performance by fine-tuning the pre-
trained human detector and pose estimation models for Volvo’s use cases involving
top-view images. This proved that re-training on top-view images was necessary
to achieve accurate level predictions. Our fine-tuned human detector was able to
deal better with occluded body parts and also reduced false positives. Two custom
metrics for pose estimation were formulated which would better help to evaluate the
requirements for Volvo Group’s use case.
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