

The Monte Carlo Method and Quantum
Path Integrals
Master’s Thesis in Applied Physics

JOAKIM LÖFGREN

Department of Applied Physics
Division of Materials and Surface Theory
Chalmers University of Technology
Gothenburg, Sweden 2014

Thesis for the degree of Master of Science in Engineering Physics

The Monte Carlo Method and Quantum
Path Integrals

JOAKIM LÖFGREN

Department of Applied Physics
Division of Materials and Surface Theory

Chalmers University of Technology
Gothenburg, Sweden 2014

The Monte Carlo Method and Quantum Path Integrals

JOAKIM LÖFGREN

c© JOAKIM LÖFGREN, 2014

Department of Applied Physics
Division of Materials and Surface Theory
Chalmers University of Technology
SE-412 96 Gothenburg
Sweden
Telephone: +46 (0)31-772 1000

Cover:
Using the path integral formulation a quantum system can be mapped to a classical
system of polymer-like entities.

Chalmers Reproservice
Gothenburg, Sweden 2014

Abstract

Cubic structured perovskites is a family of solids displaying a wide range of interesting
physical properties, including several types of structural phase transitions. Frequently,
these transitions give rise to competing crystal strucutres separated by small energy
barriers in which case it is not obvious that zero-point fluctuations and other nuclear
quantum effects can be neglected. One such perovskite is barium zirconate where the
possible prescene of antiferrodistortive (AFD) phases related to tilting of the oxygen
octahedra have been a matter of some debate. The interest in this material is motived
by its application as a proton conducting electrolyte in solid oxide fuel cells. To take
quantum effects into account when calculating properties a path integral formulation
may be used. This approach leads to a multi-dimensional integral which can be calcu-
lated using Metropolis Monte Carlo, resulting in the path integral Monte Carlo method
(PIMC).

In this study PIMC simulations are used to calculate various properties of barium
zirconate, most notably the momentum distribution which is sensitive to nuclear quan-
tum effects. To describe the inter-atomic interactions a rigid ion model is adopted with
a simple pair potential consisting of a short-range Buckingham potential and the long-
range Coulomb potential. Tuning of the parameters in the Buckingham potential allows
for the introduction of AFD instabilities to the system. In this way two different model
systems are established, one stable cubic system and one with AFD phases. Comparing
the momentum distributions for these model system excludes the possibility that an
oxygen atom can simultaneously occupy two different sites in the unstable system.

The thesis also serves as an introduction to PIMC simulations in general. Different
algorithms for sampling new paths and calculating the momentum distribution are in-
vestigated and compared. All algorithms in the project have been implemented from
scratch and the source code is made available in an appendix.

Keywords: path integral monte carlo, perovskites, octahedral tilting, momentum
distribution

Acknowledgements

I would like to sincerely thank professor Göran Wahnström for his counsel and patience
in supervising this thesis. It is rare event when a thesis combines so many of your inter-
ests and provides insights into so many different fields. Addional thanks go out to Erik
Fransson and Johannes Laurell H̊akansson for their many insights and a fruitful collab-
oration on modelling the system interactions, and to Erik Jedvik for the entertaining
discussions in the late afternoons. I am also immensely grateful to all my family and
friends who have kept me company and supported me over the years. I would never
have come this far without you.

Joakim Löfgren, Gothenburg, early summer 2014

CONTENTS

1 Introduction 1
1.1 Purpose and scope of the thesis . 2
1.2 Reading guide . 3

2 Barium zirconate 4
2.1 The cubic perovskite structure . 4
2.2 Antiferrodistortive instabilities and octahedral tilting 5
2.3 A quick note on unit systems . 7

3 Inter-atomic interactions 9
3.1 Potentials . 9
3.2 The model potential part I: Short-range interactions 10
3.3 Computer simulations and periodic boundary conditions 11
3.4 An algorithm for calculating the potential 13
3.5 The model potential part II: Long-range interactions and the Ewald sum-

mation . 14

4 The Monte-Carlo method 16
4.1 Ensemble averages . 16
4.2 Monte-Carlo integration . 17
4.3 The Metropolis-Hastings algorithm . 21
4.4 The complete Metropolis Monte Carlo algorithm 23
4.5 The pair correlation function . 25

5 Quantum statistical mechanics and path integrals 26
5.1 The density operator . 26
5.2 The thermal density matrix . 27
5.3 Path integrals . 30
5.4 The classical isomorphism . 33

i

CONTENTS

5.5 The path integral Monte Carlo method . 35
5.6 Estimators . 37
5.7 Improving the sampling . 38

5.7.1 Centre of mass displacements . 39
5.7.2 The Bisection Algorithm . 39

5.8 The momentum distribution . 42
5.9 Algorithms for computing for the momentum distribution 43

5.9.1 The open chain method . 44
5.9.2 The trail method . 45

6 Results 48
6.1 Verification part I: The potential . 49
6.2 Model potentials and antiferrodistortive instabilities 51
6.3 Verification part II: The Path Integral Monte-Carlo method 55
6.4 Barium Zirconate . 57

6.4.1 Internal energy . 58
6.4.2 The pair correlation function . 61
6.4.3 The momentum distribution . 63

7 Discussion 68
7.1 Inter-atomic interactions and the Ewald summation 68
7.2 Simulation algorithms . 69

7.2.1 The sampling of new paths . 69
7.2.2 Calculating the momentum distribution 70

7.3 Properties of barium zirconate . 71
7.3.1 The momentum distribution . 71

7.4 Outlook and future prospects . 72

8 Conclusions 74

References 77

A The Ewald Summation 81

B Notes on programming 87
B.1 Programming in Fortran 90 . 87
B.2 Random number generation . 89
B.3 Source code . 89

ii

CHAPTER 1

INTRODUCTION

Energy related materials is an active and important area of research where increasingly
advanced applications require an understanding of the materials on an atomic level. One
important example is fuel cells. In a fuel cell hydrogen is oxidised at the catode and the
protons are then transported through an electrolyte to the anode, to which electrons are
also led through an external circuit. The protons and electrons then combine with oxy-
gen at the anode to form water and electrical power can be extracted from the current
produced by the electrons. Lately there has been considerable interest in solid oxide
fuel cells (SOFC) where the electrolyte is a ceramic, typically yttria/scandia stabilized
zirconia conducting oxygen ions. The SOFC operates at high temperatures in the range
700−1000 K which can lead to complications and efforts have thus been made to reduce
the operating temperature. One promising alternative is to use a proton-conducting
solid oxide as electrolyte instead. Here, one of the main contenders is (yttrium-doped)
barium zirconate, a perovskite structured oxide with remarkably good proton conduc-
tivity. Clearly, to construct an effective fuel cell one must have a good understanding
of the structure and dynamics of the electrolyte and during the last decade perovskite
oxides such as barium zirconate have been the subject of intense research.

Alongside the more traditional theoretical and experimental methods, computer sim-
ulations have become an everyday tool in materials science. Some of the benefits of
simulations are, in no particular order:

• An excellent tool for testing models and theoretical ideas, scanning for specific
properties or predicting new materials.
• One has complete control over the system and it is possible to probe extreme con-

ditions which can be difficult to produce in a laboratory such as low temperature
and high pressure environments.
• It is typically cheaper to perform a simulation rather than an experiment.
• Simulation codes and settings can be distributed and shared, allowing for easy

reproduction and verification of results.

1

1.1. PURPOSE AND SCOPE OF THE THESIS

To study the dynamics and structure of a material, two of the most common simula-
tion methods are molecular dynamics (MD) and Monte Carlo (MC). Both MD and MC
require that one can describe the inter-atomic interactions in the system with sufficient
accuracy. For heavier elements, a classical description of the nuclear motion is a valid
approximation, the impact of quantum mechanical effects on the structure and thermo-
dynamics is usually limited to systems consisting of lighter elements e.g. hydrogen or
helium. A dramatic example is liquid helium-4 where the liquid undergoes a transition
to a superfluid at very low temperatures, a purely quantum mechanical effect. Another
situation where quantum corrections can be important arises when there are two or more
competing structures in a material with small energy differences. This type of effect oc-
curs in several perovskites where the oxygen atoms form octahedra around the cations.
Distortions of these octahedra such as out-of-phase tilting can lead to new stable con-
figurations that are relatively close in energy to the undistorted phase. In such a case it
is not evident beforehand that quantum fluctuations can be neglected and a quantum
mechanical treatment of the nuclear motion is necessary. One way to accomplish this is
the path integral method which is also the main topic of this thesis. The path-integral
approach to quantum mechanics was originally conceived by Feynmann although he
drew heavily on ideas put forward by Dirac. Following this approach one can map the
quantum mechanical problem to a classical system which leads to a multi-dimensional
integral that can be sampled using MD or MC. This thesis focuses on MC techniques
and the resulting method is known as path integral Monte Carlo (PIMC).

1.1 Purpose and scope of the thesis

The aim of this thesis is to show how PIMC simulations can be used to calculate quantum
corrected properties for a system. More precisely, we will study a perovskite structured
oxide, namely barium zirconate with a simple pair potential describing the inter-atmoic
interactions in this system. This model potential consists of a Buckingham potential
describing the short-range interactions and a Coulomb potential describing the electro-
static interaction between the ions. We are also interested in describing more generic
behaviour found in perovskite structured oxides such as antiferrodistortive (AFD) phase
transistions related to tilting of the oxygen octahedra. Here, a first goal is to show that
it is possible to capture this sort of behaviour by tuning the parameters in the potential.
The result is a simple model consisting of two potentials, one describing a system with
only a cubic phase and the other one describing a similar system that also includes AFD
phases. The potentials can then be used in conjunction with PIMC simulations in order
to calculate properties with quantum mechanics taken fully into account. A main aim is
to calculate the momentum distribution of the system, the shape of which is influenced
by nuclear quantum effects e.g. tunneling and zero-point energy fluctuations. An im-
portant point here is to compare the results for the two different potentials. Since there
are very few codes available which offer the right amount of control for these type of
calculations we have elected to implement all algorithms from scratch. Thus a large part
of the work consists of describing these algorithms and how they work in some detail.

2

1. INTRODUCTION

1.2 Reading guide

In Chapter 2 the perovskite structure is introduced and the barium zirconate unit cell
is described. Furthermore, the oxygen octahedra surrounding the zirconium cations are
illustrated and the chapter concludes with a discussion of antiferrodistortive phase tran-
sitions relating to tilting of these octahedra. Chapter 3 treats inter-atomic interactions
and describes in detail the different components of the pair potential. The long-range
coulomb interaction is given a special treatment in Section 3.5 where the Ewald sum-
mation is introduced. The chapter also contains general information on how to set up
a simulation and an outline of the actual algorithm for calculating the potential on a
computer. Chapter 4 is essentially a review of some basic results from statistical me-
chanics, Monte Carlo integration and the Metropolis algorithm. The experienced reader
should feel free to skip directly ahead to Chapter 5. Here we begin with a brief review
of the density matrix formalism and quickly proceed to show how the thermal density
matrix of a system can be expanded into a path integral. Following that we introduce
the powerful PIMC method and the last part of Chapter 5 explore various improve-
ments of the basic algorithm and also covers how to calculate the internal energy and
momentum distribution. In Chapter 6, the first sections aim to verify that the programs
are working correctly and also discusses modifications to the model potential. In the
second part of the chapter the results from the main simulations are presented. Finally,
in Chapter 7 the implications of our results are discussed and there is also an outlook
discussing future prospects and possible ways to extend the study.

There are also two appendices in this report. Appendix A contains a derivation of the
Ewald summation while Appendix B includes a brief discussion on the implementation
of the algorithms in Fortran 90 as well as source code for many of the more important
subroutines used. On a related note, throughout this thesis algorithms are described by
general step-by-step instructions outlined in gray. The intent is that these instructions
should be clear enough that any reader can confidently proceed to implement the algo-
rithms in his or her favourite programming language. As mentioned above, Fortran 90
specific implementations can be found in Appendix B.

3

CHAPTER 2

BARIUM ZIRCONATE

Barium zirconate is a solid oxide belonging to the family of perovskite structured ma-
terials which have been studied extensively during the last hundred years due to a wide
range of interesting properties including but not limited to ionic conductivity, magnetic
properties, superconductivity and various other phase transitions such as ferroelectric
and antiferrodistortive (AFD) transistions. In this chapter we will begin by describing
the geometry of a material with perovskite structure and conclude with a more specific
discussion of barium zirconate and AFD instabilites.

2.1 The cubic perovskite structure

A solid with a perovskite structure has the general chemical formula ABX3. Here A and
B are cations while X denotes of anions. In the simplest case we have a cubic perovskite
which can be described geometrically as a bravais lattice with a five atom basis. The
primitve lattice vectors are thus of the form ai = ax̂i where a is the lattice parameter
and i = 1,2,3. An arbitrary lattice point can then be specified by a translation vector
T = n1a1 +n2a2 +n3a3 for some integer combination (n1, n2, n3). To each lattice point
we then attach a basis consisting of five ions, the coordinates of each ion relative to the
lattice point is given in Table 2.1.

Atom Coordinate relative to lattice point

A x1 = a
(

1
2 ,

1
2 ,

1
2

)
B x2 = a (0,0,0)
X x3 = a

(
1
2 ,0,0

)
X x4 = a

(
0,12 ,0

)
X x5 = a

(
0,0,12

)
Table 2.1. Coordinate vectors relative to a lattice point for the five atoms in the perovskite

basis.

4

2. BARIUM ZIRCONATE

For the specific case of barium zirconate which has the formula BaZrO3, the cubic
unit cell is illustrated in Fig. 2.1. Here the Ba2+ ions (green) are located in the middle
of cell while the Zr4+ ions (blue) can be found in the corners and the O2− ions (red)
are located midway along the edges of the cell. Note that the radius of the spheres
representing the ions in Fig. 2.1 are scaled in order to represent the true relative ionic
radii.

Figure 2.1. The perovskite unit cell structure. The unit cell is cubic with a barium ion located
in the centre (green), zirconium atoms in the corners (blue) and finally the oxygen atoms
located half-way along the edges (red). This image was produced using VESTA [12].

2.2 Antiferrodistortive instabilities and octahedral tilting

If we imagine a bulk sample of a cubic perovskite we can see from the unit cell Fig. 2.1
that the X anions will form octahedra around the B cations. Note that one octahedron
around a B cation only involves the six closest X anions. Thus, in the case of barium
zirconate the oxygen ions will form octahedra around the zirconium atoms as depicted
in Fig. 2.2. It turns out that several perovskite structured oxides e.g. CaTiO3, PbZrO3

exhibit so called antiferrodistortive structural phase transitions related to tilting of oxy-
gen octhadera seen in Fig. 2.2. These phase transitions are temperature dependent and
typically only observed below a certain transistion temperature which is not necessarily
easy to determine.

Geometrically we describe a tilt as a rigid rotation about an axis through the B
cation in the centre of the octahedra although, stictly speaking, this is not true since
two neighbouring octahedra share an oxygen atom meaning there will be some distortion
when there is a tilt. Often the rotation is completely out-of-phase in one or more
directions and it is customary to describe a tilt system using glazer notation. According
to this notation a tilt is specified by a±,0b±,0c±,0 where the letters specify the relative

5

2.2. ANTIFERRODISTORTIVE INSTABILITIES AND OCTAHEDRAL TILTING

Figure 2.2. An illustration of two ZrO6 octahedra in barium zirconate. In perovskite systems
with AFD instabilities there are phases where these octahedra exhibit out-of-phase or in-
phase tilting in one or more directions. This image was produced using VESTA [12].

magnitude of the rotations about the cartesian coordinate axes. As an example consider
a = b 6= c which means that we have an equal rotation angles about x and y while the
rotation about z is either larger or smaller. The superscripts gives information about the
phase of the tilt where a minus sign signifies out-of-phase rotations between neighbouring
octahdera and vice versa. For instance, a+a+c− would mean in phase rotations with
equal magnitude about the x- and y-axes while we have an out-of-phase rotation with
a different magnitude about the z axis. A zero superscript indicates that there is no
rotation about that particular axis.

In perovskites with AFD instabilites there are several competing structures where in
addition to an untilted cubic structure there can exist stable or metastable phases with
tilted octahedra. In these AFD phases the unit cell becomes distorted and no longer
cubic, implying that the crystal symmetry has been lowered. Usually the energy differ-
ence between the different phases is very small which further complicates the situation
since even small approximations in a calculation can have a bearing on the results.

The origin of the octahedral tilting is still not completely understood on a microscopic
level but several explanations and models of varying complexity have been proposed. A
particularily simple model that still has at least some predicative power comes from
steric considerations. In this model the ions are considered hard spheres and one defines
the Goldschmidt ratio

6

2. BARIUM ZIRCONATE

τ =
1√
2

(
RA +RX
RB +RX

)
(2.1)

where RA,B,X are the ionic radii. For a perfect cubic structure the cell length can be
expressed either as

√
2(RA + RX) or 2(RB + RX) and the Goldschmidt ratio is simply

the ratio of these two. It follows that a τ ≈ 1 indicates that all ions can approximately
fit in the cubic lattice and we expect the system to be cubic. When τ < 1 however there
is a mismatch in size between the A and B cations and it is energetically favourable for
the octahedra to tilt and the cell is no longer cubic. As an example consider CaTiO3

which is known to have AFD instabilities and has a Goldschmidt ratio τ = 0.97. This
is a very crude model however, and as such it should only be relied on for prediciting
tendencies.

A convenient way of determining if a system has instabilites is to calculate the phonon
spectrum. Here, phase transitions which lower the crystal symmetry appear as soft
phonon modes with imaginary frequencies. By analysing the polarisation vectors of these
soft phonon modes one can then determine the corresponding displacements of the atoms
in the new phase. Phonon spectra are typically calculated using density functional theory
(DFT) or obtained from direct diagonalization of the dynamic matrix. Interestingly,
analysis of phonon spectrum calculated for BaZrO3 using DFT give different predictions
based on the type of approximation used for the exchange-correlation functional. The
details are not important here but using the local density approximation (LDA) one
finds that there are indeed soft phonon modes corresponding to AFD phases while
using the generalized gradient approximation (GGA) one instead finds that the system
remains cubic [17]. Thus the result depends heavily on what apporoximations we make
and it is not known whether the instabilites are really there. Experimental evidence
suggests that the cubic strucutre is retained down to at least T = 2 K [10]. It has been
hypothesised that there is only a weak AFD instability and that long-range ordering of
tilted octahedra is subsequently suppressed by quantum zero-point lattice vibrations,
although a recent study claims to have refuted this idea [9]. While solving this issue is
beyond the scope of this thesis it can be viewed as a step in the right direction. Instead
of doing ab initio calculations, a simple model based on a pair potential is used and by
modifying the parameters in this potential we can go from a cubic system to one with
AFD instabilities as will be shown in Chapter 6.

2.3 A quick note on unit systems

In litterature on computational solid state physics and adjacent fields, results are often
reported in what we shall refer to as metallic units 1. In this system the basic units of
some common physical quantities are:

In this thesis we will strictly adhere to these units when reporting results (unless
stated otherwise) so as to not cause any confusion. Since one of our main goals is to take
into account quantum mechanical corrections it is however more convenient to work in

1This name is, altough convenient, not widely in use.

7

2.3. A QUICK NOTE ON UNIT SYSTEMS

Quantity Unit Abbreviation

Distance ångström Å
Energy electronvolt eV
Temperature kelvin K
Time picosecond ps
Charge multiple of the electron charge
Mass grams/mole g/mol

Table 2.2. A table displaying the basic units of measurements for various common physical
quantities according to the metallic unit system.

atomic units when deriving our equations and implementing algorithms on the computer.
In the atomic unit system Planck’s constant, the electron charge and mass as well as the
coulombic force constant are all unity by definition i.e. ~ = 4πε0 = me = e = 1. The
atomic units of some common physical quantites are listed in Table 2.3 and compared
with the correspoding metallic units.

Quantity Unit Conversion factors

Distance bohr 0.5292 Å
Energy hartree energy (Eh) 27.2114 eV
Temperature kelvin unchanged
Time ~/Eh 2.4189× 10−5 ps
Charge multiple of the electron charge unchanged
Mass multiple of the electron mass 5.4858× 10−4 g/mol

Table 2.3. A table displaying the basic units of measurements for various common physical
quantities according to the atomic unit system. For comparison with the metallic unit
system the relevant conversion factors are listed in the rightmost column.

8

CHAPTER 3

INTER-ATOMIC INTERACTIONS

The first section in this chapter covers the basics of of inter-atomic interactions and
potentials. We then move on to describe a model for the short-range interactions in our
barium zirconate system, how to calculate the total energy on a computer and what
boundary conditions to use. The chapter concludes with a summary of the Ewald sum-
mation, an advanced method for calculating the electrostatic interaction in an efficient
way.

3.1 Potentials

Consider a system of N interacting atoms1. Classically, this system can be described by
a Hamiltonian

H =
N∑
i=1

p2
i

2mi
+ V(qi) (3.1)

where {qi}Ni=1 and {pi}Ni=1 denote sets of generalised coordinates and conjugate mo-
menta. With complete knowledgde of the Hamiltonian and the relevant initial conditions
one may solve for the motion of the system using Hamilton’s equations. The potential
V can be represented as a sum over N -body-interactions. In cartesian coordinates we
have

V =
∑
i

V1(xi) +
∑
i

∑
j>i

V2(xi,xj) +
∑
i

∑
j>i

∑
k>i,j

V3(xi,xj ,xk) + . . . (3.2)

In the above summation the first term does not represent an interaction between
the atoms since it only depends on the coordinates of individual atoms, hence this

1Although we shall be mainly concerned with ionic systems, the basic theory outlined here applies
equally well to a system of atoms or molecules.

9

3.2. THE MODEL POTENTIAL PART I: SHORT-RANGE INTERACTIONS

term is only important in the prescence of an externally applied field (e.g. an electric
field). The second term represents pairwise interactions between atoms and is, for many
applications, the only relevant term. If important, the effects of three-body, i.e. the V3

term, or higher-order interactions can sometimes be modelled and included in the pair
potential to yield an effective pair potential. In practice one often uses a model for the
pair potential containing several free parameters which are then fitted to experimental
data to yield correct values for a small set of properties. For a solid such a set may
include e.g. the equilibrium lattice parameter, bulk modulus and so on. In this work
we shall be exlusively concerned with just such an empirical pair potential for BaZrO3,
where the parameters are adjusted in order to create a set of two differnet potentials in
order to allow for anti-ferrodistorive instabilities. This topic will be discussed in some
detail in Chapter 6 Section 6.2.

3.2 The model potential part I: Short-range interactions

For ionic systems we can describe the inter-atomic interactions using a rigid-ion model
where the electrons are effectively replaced by atomic charges and potential terms mod-
elling van der Waals interaction and pauli repulsion. Recall that the van der Waals
interaction is a quantum mechanical effect arising from fluctuating dipole moments and
manifests as a weakly attractive force between two atoms. Pauli repulsion on the hand
is as the name suggests a repulsive force, arising from overlapping electronical orbitals.
When modelling these interactions they are usually grouped together in a single short-
range pair potential. The two most popular forms are the Lennard-Jones potential and
the Buckingham potential. We shall use the Buckingham potential which has the form

V(r) = Ae−r/ρ − C

r6
. (3.3)

The first term on the right side of Eq. (3.3) represents the Pauli repulsion and is
modelled using a simple exponential function giving a strong repulsion at short distances.
The second term represents the van der Waals interaction and is attractive as noted
above and has a characteristic 1/r6-dependence. We have yet to include a coulombic
term in this potential since, as it turns out, calculating the Coulomb interaction is non-
trivial matter and the discussion of this topic will be suspended until section 3.5. The
three Buckingham parameters (A, ρ,C) are usually fitted to experimental data so that
the potential reproduces known values of e.g. the lattice parameter.

For systems that are not monatomic the strength of the interactions depends on the
type of the interacting atoms e.g. in the case of BaZrO3 the Pauli repulsion between
Ba- and O atoms will be different from the repulsion between Zr- and O atoms and
so forth. Thus we end up several sets of the parameters (A, ρ,C) for the different
interacting atomic species. For BaZrO3, an appropriate set of fitted parameters have
been determined by Stokes and Islam [4] and are listed in the table below.

10

3. INTER-ATOMIC INTERACTIONS

Interaction Parameter Value

Ba-O A(eV) 931.700

ρ(Å
−1

) 0.3949

C(eV Å
6
) 0.0000

Zr-O A 985.869
ρ 0.3760
C 0.0000

O-O A 22764.300
ρ 0.1490
C 27.890

Table 3.1. A table displaying fitted parameters for the Buckingham potential, describing the
short-range interactions in BaZrO3. The parameter values were originally determined by
Stokes and Islam [4].

3.3 Computer simulations and periodic boundary condi-
tions

If one wishes to perform atomic scale simulations on a real system such as a solid or
a liquid on a computer, the first difficulty one encouters is that of finite memory. The
sheer number of atoms in a piece of material is so large that we cannot possibly store
positions and solve equations of motion et cetera for them all. Instead, one has to make
due with a relatively small number of particles occupying a small volume. In this thesis
we shall be exlusively concerned with the calculation of bulk properties which, in theory,
requires an infinite system in order to eliminate surface effects. It turns out one can
model the behaviour of such a system by a construction known as periodic boundary
conditions (or PBC for short) which we will now describe in some detail.

First, let us assume that we have an N -particle system located in a cubic box with
side L and volume V . Now, imagine making an infinite number of replicas of the system
and placing them around the original box in a manner such that all of space in filled
without any overlap. Consequently, each particle in the orginal box now has an inifinite
number of replicas or periodic images in the surrounding boxes. If we turn on some
interaction, the motion of the original particle is followed by all its periodic images.
Thus, as a particle crosses the face of one box one if its images will enter the box on the
opposite side. This scenario is depicted in figure Fig. 3.1.

The point is that while what we have described above is an infinite system, we only
need to store on a computer the coordinates of each of the original particles since the
motion of the images are identical. During the simulation, as a particle crosses one of
the main boxes boundaries its coordinates are simply translated so that the particle
reenters the box on the other side.

If a particle has the cartesian coordinate xi then the coordinates of an arbitrary
periodic image of the particle clearly has the form xi + n where n = L(nx,ny,nz) and
(nx,ny,nz) are integers. It follows that we can write the total interaction energy for the

11

3.3. COMPUTER SIMULATIONS AND PERIODIC BOUNDARY CONDITIONS

Figure 3.1. An illustration of the periodic boundary conditions setup. The original simulation
box is displayed in the centre with thick black borders, surrounded by its six closest periodic
replicas. Note that the atoms labled 1 and 2 in the original box has a periodic image in
each of the replicate boxes which follow the same motion as the original atom. Hence, when
atom 1 leaves the box, one of its periodic images 1′ will enter the box on the opposite side
as depicted in the figure.

system as a sum over particles and their images, assuming a central pair potential so
that V2(xi,xj) = V2(xi − xj) in Eq. (3.2) we can write

V =
1

2

∑
n

N∑
i=1

N∑
j=1

V2(xij + n). (3.4)

where xij = xi − xj and we implicitly assume that when n = 0, the i = j terms are
exluded2. While equation Eq. (3.4) is exact and completely general for pair potentials
in a periodic system the sum is infinite and hence needs to be truncated in order to be
calculated on a computer. The most common way of limiting the number of interacting
particles is known as the minimum image convention which states that a particle only
interacts which the closest periodic image of each of the other particles. For a given
particle pair, the distance bewteen one particle and the closest periodic image of the
other is known as the minimum image distance. An equivalent way of visualising the
minimum image convention is that a particle with cartesian coordinate xi interacts only
with those particles that can be found in a cubic box with side L centered on xi. As a

2This means that we allow an ion to interact with its periodic images but not with itself.

12

3. INTER-ATOMIC INTERACTIONS

further restriction, one typically only includes interactions with particles within a sphere
(rather than a box) of radius rcut < L/2 centered on xi. The parameter rcut is known
as the cut-off radius for the potential and must be chosen large enough that the total
interaction energy converges. In the case of the Buckingham potential Eq. (3.2) this is
achievable for relatively small values of rcut since the two potential terms decay as e−r

and 1/r6 respectively.
Note that the PBC are an artificial construction and as such can introduce unwanted

correlations and distorsions in a simulation, especially when calculating forces in e.g. a
molecular dynamics program. Therefore, one must avoid working with systems that
are too small. In particular for a solid such as BaZrO3 working with a single unit cell
is not enough, instead we work with supercell consisting of several primitive cells (i.e.
containing only a single lattice point each) packed next to each other. The size of a
supercell is specified according to Nc,x×Nc,y×Nc,z where Nx is the number of primitive
cells in the x-direction and so on. In this thesis we will only deal with cubic supercells
and for computational reasons they will never be larger than 4×4×4. A more detailed
account of the concepts explained in this section can be found in [1].

3.4 An algorithm for calculating the potential

We will now make use the ideas developed in the last section and describe an algorithm
for calculating the total short-range interaction energy of the system as defined by the
Bucking potential. To simplify things we will consider a monatomic system withN atoms
total so that the interaction can be described by a single set of Buckingham parameters
A, ρ,C. As discussed in the last section a finite system with periodic boundary conditions
must be used and to truncate the sum Eq. (3.4) a spherical cut-off rcut is introduced.
The algorithm then basically consists of looping over atom pairs and add up pairwise
interactions provided that the minimum image distance is less than rcout. How the
minimum image distance is calculated depends on where the coordinate system is located
relative to the simulation box. Here, there are two standard choices: a) let the origin
coincide with the lower left corner of the box or b) with the centre of the box. In either
case the minimum image distance r between two atoms with coordinate xi and xj is
calculated according to

r =
∣∣∣xij − Lfround

(xij
L

)∣∣∣ (3.5)

where fround denotes a function that rounds each element of a vector to the nearest
integer. The algorithm for calculating the interaction energy is summarised step by step
below.

Calculating the Buckingham potential
1. Choose a radial cut-off which satifies the minimum image convention i.e. rcut <
L/2.

2. Loop over all possible atom pairs (i,j) and for each pair do the following:

13

3.5. THE MODEL POTENTIAL PART II: LONG-RANGE INTERACTIONS AND
THE EWALD SUMMATION

2.1. Calculate the minimum image distance r:

r =
∣∣∣xij − Lfround

(xij
L

)∣∣∣
where xij = xi − xj

2.2. if r < rcut, add to the total potential energy V the contribution from the
interaction between atom i and j given by

δV = Ae−r/ρ − C

r6
(3.6)

The most expensive element of this algorithm is clearly the evaluation of the tran-
scendental exponential function. In general, much of the appeal of using a rigid-ion
model with a pair potential is that the calculations become very cheap.

3.5 The model potential part II: Long-range interactions
and the Ewald summation

Up until this point we have only accounted for the short-range interactions in our system.
In a realistic ionic system one of course also has coulombic interactions between the
charged ions. The electrostatic potential has the basic form

Φ(r) =
q

r
. (3.7)

For a periodic system consisting of N ions with charges {qi}Ni=1 we can write the
total electrostatic interaction energy on the form Eq. (3.4):

Vcoul =
1

2

∑
n

N∑
i=1

N∑
j=1

qiqj
|xij + n|

. (3.8)

The crucial difference is that while the terms contributing to the Buckingham po-
tential decay as e−r and 1/r6 respectively, the coulomb potential only decays as 1/r.
Thus if we were to adopt an identical approach to computing this electrostatic energy
as we did the short-range interactions (i.e. simply truncate the sum by introducting a
radial cut-off) we would have to include far too many terms in Eq. (3.8). There is also
a more subtle problem with the 1/r decay, in mathematical terms the summation in
Eq. (3.8) is conditionally convergent, meaning that the result depends on the order of
the summation. Thankfully, there is way to overcome these difficulties, namely a pow-
erful technique for computing long-range interactions known as the Ewald summation.
Unfortunately, the derivation is quite lengthy and as such we have chosen to place it in
appendix A to which the curious reader is referred. We shall instead be content with a
short summary of the results: if the system is periodic, one can replace the summation
in Eq. (3.8) with two rapidly converging sums, one in real-space and one in reciprocal
space. The final expression for the total electrostatic energy of the system is

14

3. INTER-ATOMIC INTERACTIONS

Vcoul =
1

2

∑
n

N∑
i=1

N∑
j=1

qiqj
erfc(α |xij + n|)
|xij + n|

+
2π

V

∑
k 6=0

N∑
i=1

N∑
j=1

qiqj exp (ik · xij)
exp (−k

2

4α)

k2

− α√
π

∑
i

q2
i

(3.9)

Here n = L(nx,ny,nz) as usual and similarily the reciprocal space vectors k are
given by k = 2π

L (nkx ,nky ,nkz) with (nkx ,nky ,nkz) an integer vector. Since the two sums
in Eq. (3.9) (the real-space sum over n and the reciprocal sum over k) both decay
rapidly we can proceed to truncate using two radial cut-offs, one in real-space and
one in reciprocal space. The parameter α found in Eq. (3.9) is known as the splitting
parameter and controls the relative convergence speed between the two sums. For a
detailed derivation and discussion of these results the reader is referred to appendix A.
An implementation of the Ewald summation in Fortran 90 can be found in appendix B.

15

CHAPTER 4

THE MONTE-CARLO METHOD

The previous chapter was dedicated to calculating the short- and long-range interactions
in our system. Combining the Buckingham potential with Coulomb potential expanded
using the Ewald summation resulted in a simple model allowing us to compute the total
interaction energy of the system or for any one particle in the system. We would now
like to put this knowledge to use and calculate properties, these could be e.g. thermo-
dynamical quantities or properties related to the structure such as a pair correlation
functions. Using tools from statistical mechanics, these properties can be obtained as
ensemble averages defined by integrals involing a probability distribution function. The
result is a non-trivial multi-dimensional integral over phase space. In order to calcu-
late such integrals efficiently on a computer, we will introduce the powerful Metropolis
Monte Carlo method (MMC). The following section provides a very brief review of some
basic results from equilibrium statistical mechanics that we will need, readers that wish
to refresh their knowledge on the subject are encouraged to consult one of the many
excellent texts on the subject e.g. [5].

4.1 Ensemble averages

In classical statistical mechanics the ensemble average (or statistical average) of a quan-
tity O is given by an integral

〈O〉 =

∫
dΓρ(Γ)O(Γ) (4.1)

where the variable Γ denotes a point in phase space and ρ is the probability distribu-
tion function. Note that for a classical N particle system a point in phase space is defined
by the positions and momenta for all the N particles i.e. Γ = {x1, . . . ,xN ,p1, . . . ,pN}.
In this thesis we will work exclusively in the canonical ensemble where the number of
particles N , the volume V and the temperature T are all constant and consequently

16

4. THE MONTE-CARLO METHOD

we sometimes refer to this as the NV T -ensemble. In this ensemble the equilibrium
probability distribution function is the Boltzmann or canonical distribution

ρNVT(Γ) =
1

Z
e−βH(Γ) (4.2)

where β = 1
kBT

and

Z =

∫
dΓe−βH(Γ) (4.3)

is the partition function. Hence we can write the equilibrium average for a quantity
O in canonical ensemble as

〈O〉 =

∫
dΓO(Γ)

e−βH(Γ)

Z
. (4.4)

The classical Hamiltonian has the form H = T + V where T =
∑N

i=1
pi

2mi
only

depends on the momenta P = {p1, . . . ,pN} and the potential V = V(X) only depends
on the positions of the particles X = {x1, . . . ,xN}. Thus the integral over e−βH(Γ) in
the partition function Eq. (4.3) can be separated into one momentum integral and one
position (configurational) integral. If O is independent of the momenta, the integrals
over P in the nominator and denominator of Eq. (4.4) will cancel and one is left with
an average

〈O〉 =

∫
dXO(X)e−βV(X)∫
dXe−βV(X)

. (4.5)

Thus, fom here on we denote the position distribution ρNVT(X) = exp (−βV(X))/Z
with Z =

∫
dXe−βV(X) and write our ensemble averages

〈O〉 =

∫
dXρNVT(X)O(X). (4.6)

Multi-dimensional integrals such as Eq. (4.6) cannot be evaluated using direct nu-
merical integration methods e.g. Simpson’s rule due to the sheer number of operations
that would be required .Instead we will use a famous method based on results from
statistics, namely the Monte Carlo method which is the topic of the next section.

4.2 Monte-Carlo integration

Monte-Carlo integration is different from most other numerical integration methods in
that it draws on results from mathematical statistics and therefore has probabilistic
elements. To illustrate how the method works, consider integrating a function of one
variable f over the interval [a,b]:

I =

∫ b

a
dxf(x). (4.7)

17

4.2. MONTE-CARLO INTEGRATION

Let ξ be a continuous random variable with a probability density function ρ defined
on [a,b] such that ρ(x) 6= 0, ∀x ∈ [a,b] and

∫ b
a dxρ(x) = 1. Multiplying and the dividing

by ρ we can rewrite Eq. (4.7)∫ b

a
dxf(x) =

∫ b

a
dxρ(x)

f(x)

ρ(x)
. (4.8)

Recall from statistics that if g is a arbitray function the expected value of g(ξ) is
given by

〈g(ξ)〉 =

∫ b

a
dxρ(x)g(x). (4.9)

Now let g be defined by g(x) = f(x)/ρ(x), from Eqs. (4.8) and (4.9) it follows that

〈g(ξ)〉 =

〈
f(ξ)

ρ(ξ)

〉
=

∫ b

a
dxρ(x)

f(x)

ρ(x)
=

∫ b

a
dxf(x). (4.10)

Hence, if we can find a way to approximate the expected value 〈g(ξ)〉 we have also
found an approximation to our original integral Eq. (4.5). The obvious approach is
to randomly draw a collection of samples {ξi}Nsi=1 from the distribution ρ and then
approximate the expected value 〈g(ξ)〉 using the sample mean of g:

〈g(ξ)〉 ≈ ḡNs =
1

Ns

Ns∑
i=1

g(ξi). (4.11)

The law of large numbers, which is a fundamental result of statistics, guarantees
that as Ns tends towards infinity the above approximation become exact i.e.

lim
Ns→∞

ḡNs = 〈g(ξ)〉 (4.12)

We call Eq. (4.11) the Monte-Carlo estimate for I. In conclusion, we have the
following recipe for estimating the integral Eq. (4.7):

Monte Carlo integration
1. Choose an appropriate probability density function ρ.
2. Generate a large collection of samples {ξi}Nsi=1 randomly drawn from ρ.

3. Compute the sample mean: 1
Ns

∑Ns
i=1

f(ξi)
ρ(ξi)

.

4. Approximate the integral using the sample mean:
∫ b
a dxf(x) ≈ 1

Ns

∑Ns
i=1

f(ξi)
ρ(ξi)

.

The simplest choice one can make is to let ξ be uniformly distributed over [a,b] so
that ρ(x) = 1/(b− a) and ∫ b

a
dxf(x) ≈ b− a

Ns

Ns∑
i=1

f(ξi). (4.13)

18

4. THE MONTE-CARLO METHOD

For many application this choice of ρ is far from optimal however, since every point
in the domain of integration is sampled, on average, an equal number of times. This
can be disadvantageous when the integrand f is only appreciable in certain regions of
the domain and for any outlying points the integrand is small enough that only a few
samples are actually required. The solution is to choose ρ in a way that it, to some
extent, captures the behaviour of f . Such a choice of a non-uniform distribution ρ is
referred to as importance sampling and will be a crucial component in our calculations.

It is completely straightforward to generalise the results derived above to multi-
dimensional integrals. If f is a function of Nd variables {x1, x2, . . . ,xNd} to be integrated
over D ⊂ RNd and ρ = ρ(x1, x2, . . . ,xNd) a suitable (joint) probability density we can
proceed in the exact same manner as above. The resulting estimate of the integral is∫

D
dx1 . . . dxNdf(x1, x2, . . . ,xNd) ≈

1

Ns

Ns∑
i=1

f(ξi)

ρ(ξi)
(4.14)

where {ξi}
Ns
i=1 are drawn from the multi-dimensional probability density ρ. It is when

the number of variables becomes large and the integrand is appreciable only over certain
regions of the domain D that Monte-Carlo integration really shines. Taking a look at
the ensemble average

〈O〉 =

∫
dXρNVT(X)O(X) (4.15)

from the previous section Section 4.1 we can see that it fits the profile for an ideal
Monte-Carlo case perfectly: with N particles there are 3N coordinates that we need to
integrate over. Furthermore, if the energy happens to be large for a particular configura-
tion the integrand will be vanishingly small due to the inverse exponential in ρNVT. We
can now write the Monte-Carlo estimate for Eq. (4.15). The integrand is ρNVT(X)O(X)
and if ρ is an arbitrary probability density, we have according to Eq. (4.10)

〈O〉 =

〈
ρNVTO
ρ

〉
(4.16)

A suitable choice for ρ is to simply let ρ = ρNVT. Since the canonical distribution
varies exponentially with the energy it ought to give a good indication of where the
integrand ρNVTO is significant for most forms of O. From Eq. (4.11) the Monte-Carlo
estimate then reduces to

〈O〉 ≈ 1

Ns

Ns∑
i=1

O(ξi) (4.17)

where {ξi}
Ns
i=1 are now randomly drawn from the canonical distribution ρNVT. Let

us take a step back and look at what we have accomplished. When we set out at the
beginning of Section 4 the goal was to be able to calculate properties of the BaZrO3

system, such as thermodynamical quantities or correlation functions. These properties
were then expressed as ensemble averages in Section 4.1, which subsequently forced us

19

4.2. MONTE-CARLO INTEGRATION

to consider efficient ways to computing multi-dimensional integrals, finally leading us to
this section and Monte-Carlo integration. The techniques developed here have led us
to Eq. (4.17) and hence the only problem left is how to generate samples ξi from the
canoncial distribution.

Before moving on to solving the problem of how to sample the canonical distribution,
we will briefly discuss the error associated with a Monte Carlo estimate since the method
does us no good unless it can produce approximations to the integral I with small errors.
Going back to our one-dimensional example, the variance of g(ξ) = f(ξ)/ρ(ξ) is defined
as

Var [g(ξ)] =
〈
g(ξ)2

〉
− 〈g(ξ)〉2 (4.18)

and the standard deviation is σ(g(ξ)) =
√

Var [g(ξ)]. It follows from the central limit

theorem that if the samples {ξi}Nsi=1 are statistically independent then the sample mean
ḡNs in Eq. (4.11) is approximately gaussian distributed with variance

Var [ḡNs] =
Var [g(ξ)]

Ns
. (4.19)

The error incurred by replacing the exact integral I with the Monte Carlo estimate
Eq. (4.11) is then given by the standard deviation

σ [ḡNs] =
σ [g(ξ)]√

Ns
. (4.20)

Eq. (4.20) tells us that the error decreases as the square root of the number of samples
wherein lies the power of Monte Carlo integration. We note further that in the case of no
importance sampling i.e. ρ ≡ 1 then g(ξ) = f(ξ) and the error is σ [f(ξ)] /

√
Ns, but if we

choose ρ so that it captures the behaviour f then σ [g(ξ)] < σ [f(ξ)] and we decrease the
error. Eq. (4.19) relies on the assumption that the samples are statistically independent
which is not true in a MMC simulation where new configurations are generated from
old ones inducing a high amount of correlation. To account for this we introduce the
statistical inefficieny s which can be interpreted as the number of MC steps between
truly independent configurations i.e. Ns/s is the number of statistically independent
samples. We can estimate s using block averaging. Let Nb be the block size and define
the j:th block average of g:

Gj =
1

Nb

Nb∑
i=1

gi+(j−1)Nb (4.21)

where gi ≡ g(ξi). An estimation of s is then given by

s = lim
Nb→large

NbVar[G]

Var[g]
(4.22)

We then replace Eq. (4.19) with

20

4. THE MONTE-CARLO METHOD

Var [ḡNs] = s
Var [g(ξ)]

Ns
. (4.23)

and the MC error estimate is given by the corresponding standard deviation.

4.3 The Metropolis-Hastings algorithm

In the previous section we used Monte Carlo integration and importance sampling to
show that ensemble averages can be computed in an efficient way provided that we
can find a method for sampling the canonical distribution. To accomplish this we will
now introduce the Metropolis-Hastings algorithm, which is essentially a biased random
walk through phase space that after an initial equilibration period will start to generate
samples distributed according to ρNVT. Starting from an initial state Γ0, new states are
chosen with a probability given by a transition rule

P(Γm → Γn) (4.24)

i.e. Eq. (4.24) is interpreted as the probability of transitioning from the state Γm
to Γn. Note that the transition probability only depends on current state and not
any of the previous states, in other words the random walk is memoryless and we say
that it constitutes a Markov chain. For a finite state space {Γ0,Γ1, . . .} an arbitrary
distribution can then be defined by a vector ρ where the m:th element ρm gives the
probability of finding the system in state Γm. Similarily, we can regard the transistion
rule Eq. (4.24) as a matrix P with elements Pnm ≡ P(Γm → Γn) (note the intentional
reversal of the order of the labels m and n in this definition). Each individual column of
P sum up to unity and we call a matrix with this property a stochastic matrix. If the
distribution at step k of the walk is ρ(k), making a transition according to P will thus
alter the distribution and the new distribution is given by a matrix multiplication

ρ(k+1) = Pρ(k). (4.25)

In this notation the limiting distribution ρ(∞) is

ρ(∞) = lim
k→∞

Pkρ(0) (4.26)

where ρ(0) denotes the initial distribution. From Eq. (4.26) it is apparent that ρ(∞)

is a solution to the eigenvalue equation

Pρ(∞) = ρ(∞) (4.27)

One can prove [1] that if the transition rule is defined in a way such that the resulting
Markov chain is ergodic, meaning that any one state of the system can be reached in a
finite number of transitions regardless of the intial state, then Eq. (4.27) has a unique
solution. In the Metropolis-Hastings algorithm, one chooses the transition rule P so

21

4.3. THE METROPOLIS-HASTINGS ALGORITHM

that the limiting distribution is given by canonical distribution ρ(∞) = ρNVT. More
precisely, P is constructed to statisfy the condition of detailed balance

ρmPnm = ρnPmn. (4.28)

Summing over n in Eq. (4.28) we find that the left-hand side
∑

n ρmPnm = ρm since
the sum over a column of P is unity as noted above and hence∑

n

Pmnρn = ρm. (4.29)

But this is just Eq. (4.27) again and we can conclude that if P satisfies detailed
balance (and has columns which all sum to unity) the Markov chain will converge to a
unique distribution. The next step is to write P(Γm → Γn) as the product of a trial
transition T (Γm → Γn) and an acceptance probability A(Γm → Γn):

P(Γm → Γn) = T (Γm → Γn)A(Γm → Γn) (4.30)

or in matrix form

Pnm = TnmAnm. (4.31)

In the traditional Metropolis-Hastings algorithm the trial transition has the form of
a randomly proposed movement for a single atom and whether the proposed movement
is accepted or not is subsequently determined by the acceptance probability. Thus,
consider an atom labled i with a coordinate xmi and a box B centered around xmi with
side δl. A new position xni for this atom is then proposed with probability

Tnm =

{
1/Ncube, xni ∈ B

0, otherwise
(4.32)

where Ncube is the total number of states insibe B which is, of course, finite on
a computer. Eq. (4.32) means that we propose a new position for an atom with uni-
form probability inside a box with side δl centered around the atoms current location.
Whether to accept this movement or not is then determined by the acceptance proba-
bility A defined for m 6= n as

Anm =

 1,
ρNVT(X←xni)
ρNVT(X←xmi) ≥ 1

ρNVT(X←xni)
ρNVT(X←xmi) , otherwise

(4.33)

where X = {x1, . . . ,xN} are the current positions of all the atoms as usual. The
notation X← xni indicates that we replace the coordinate of atom i with xni in the con-
figuration X, but keep the configuration otherwise unchanged. When defined in this way
the acceptance probability is symmetric and it follows that the complete transition rule
will satisfy detailed balance [1]. From section Section 4.1 ρNVT(X) = exp [−βV(X)] /Z
so it follows that

22

4. THE MONTE-CARLO METHOD

ρNVT(X′)

ρNVT(X)
=

exp [−βV(X′)] /Z

exp [−βV(X)] /Z
= exp

[
−β
(
V(X′)− V(X)

)]
. (4.34)

If we define the difference in potential energy ∆V = V(X ← xni) − V(X ← xmi) we
can rewrite the acceptance probability Eq. (4.33) using Eq. (4.34):

Anm =

{
1, ∆V ≤ 0

exp [−β∆V] , otherwise
(4.35)

We have now arrived at the final form of the acceptance probability, combining this
with the trial transition Eq. (4.32) yields a complete transition rule which can be used
to generate a random walk in phase space that will eventually converge in the sense
that the generated states are sampled from the canonical distribution. One of the main
reasons that the Metropolis-Hastings algorithm is so effective is that there is no need
to compute the normalisation factor 1/Z for the canonical distribtuion since this factor
is cancelled in Eq. (4.34) and we only have to worry about computing the difference in
potential energy. Furthermore, since only a single atom is moved in each step, if we have
a pair potential ∆V can be obtained by subtracting the potential energy of the atom
being moved in old configuration from the potential energy of the same atom in the new
configuration:

∆V = V(X← xni)− V(X← xmi) =

N∑
j 6=i

[
V2(xni − xj)− V2(xmi − xj)

]
(4.36)

Here we have used again the notation introduced in Section 3.1 Eq. (3.2) where
V2(xi−xj) represents the pairwise interaction (short-range as well as coulombic) between
atoms i and j. Eq. (4.36) means that at no point in our algorithm are we forced to
compute the total interaction energy for the entire system.

4.4 The complete Metropolis Monte Carlo algorithm

We will now combine the results from Sections 4.1, 4.2 and 4.3 into a single powerful
algorithm. The algorithm is quite general but to make things more concrete we will
comment on what some of the steps entail for our BaZrO3 system. When combining the
Metropolis algorithm with Monte Carlo integration one speaks of a Metropolis Monte
Carlo (MMC) or a Markov-Chain Monte Carlo (MCMC) method. For applications in
physics when the limiting distribution is the Boltzmann distribution the name canonical
Monte Carlo is also used sometimes, in this thesis we shall stick with the name Metropolis
Monte Carlo however. The full algorithm is summarised below, note that we have
dispensed with the superscript indices used in the previous section and now write the
old position of an atom i as xold

i and similarily the new position after a trial displacement
is denoted xnew

i .

23

4.4. THE COMPLETE METROPOLIS MONTE CARLO ALGORITHM

The Metropolis Monte Carlo method
1. Initialise the postions of all the N atoms. For a liquid or a solid such as BaZrO3

an appropriate choice would be to use the T = 0 equilibrium configuration.
2. Choose at random an atom i with coordinate xold

i and generate a trial state by
displacing it symmetrically according to xnew

i = xold
i + δl(2η − 1) where η is ran-

dom vector drawn from the uniform distribution on [0,1]. Note that simultaneous
storage of the both new and old coordinate is required at this point.

3. Compute the difference in potential energy: ∆V = V(X ← xnew
i)− V(X ← xold

i).
If the potential consists of pairwise interactions use Eq. (4.36).

4. If ∆V ≤ 0 the trial state is immediately accepted and the old coordinate can be
deleted. If ∆V > 0 generate a uniform random number q in [0,1]:

4.1. If q ≤ exp (−β∆V) the trial state is accepted and the old position can be
deleted.

4.2. Else if q > exp (−β∆V) the trial state is rejected and the atom’s old position
must be restored.

5. After one or several atoms have been moved, update the average value of any
property of interest O(X), note that all moves contribute equally to the average
i.e. regardless of whether the old position was restored or the trial state was
accepted. Also update the error.

6. Repeat steps 2 to 5 a large number of times.
7. Compute the ensemble average of O by normalising with the number of times the

code has passed through step 5. Also compute the errorbars.

A few comments are appropriate here. Firstly, in step 1 we could instead give each
atom a random starting position in the simulation box but this would slow down the
convergence since we would begin from an extremely unlikely starting configuration. For
a solid going to a non-zero temperature below the melting point means that the atoms
will vibrate around their equilibrium position and hence intialising the system using this
configuration is a better approach. In steps 2 through 4 we make a transition according
to the rule defined by Eqs. (4.32) and (4.35), and it is important to note that if the trial
state is rejected we keep the old configuration which still contributes to the average in
step 5.

If we are doing a simulation at non-zero T the starting configuration, no matter
how well we chose it, will still be in an unlikely state and hence there is a certain
thermalisation period before we start to sample the correct distribution. To adjust for
this we can start by running the simulation without actually updating the averages.
We call this the equilibration period and it usually extends over a number of steps
corresponding to a few multiples of the thermalisation period. After equlibration when
we are sure that the correct distribution is being sampled we start to record O(X).
Sometimes when updating O(X) is an expensive operation in itself one typically waits
until several moves have been accepted before updating the average, see step 5 above.
It is convenient to divide an MC simulation into cycles, where one cycle constitutes N
attempted one atom moves meaning that a trial movement has been proposed for each

24

4. THE MONTE-CARLO METHOD

atom in the system on average once. Properties O which are expensive to calculate are
usually only updated once each MC cycle.

There is also the question of the free parameter δl, which controls the maximum
length of the trial displacement in any direction. If we choose a very small δl we will
find that more moves tend to be accepted since the change in potential energy will not
be as big. This might lead to slow convergence since the atoms are only allowed to take
very small steps toward the optimal configuration. We might also worry that we are not
sampling the correct distribution since unlikely moves will be accepted more frequently
as well. Conversely, if we choose δl very large, we will find that only a small number of
moves are accepted and in this case we might not be exploring a large enough region of
phase space in order to get a reliable estimate of the ensemble average. To be on the
safe side it is therefore common practice to tune the δl parameter so that roughy half of
the trial moves are accepted.

4.5 The pair correlation function

As an important example of a property that can be calculated using the canonical
Monte Carlo Method we will consider the pair correlation function g, which describes
the distribution of atomic pairs in the system. More precisely, in the canonical ensemble
we define the pair correlation as the integral

g(x1,x2) =
V 2(N − 1)

NZ

∫
dx3dx3 . . . dxNe

−βV(X) (4.37)

This equation can be cast in an equivalent form that shows clearly how to calculate g
in a MC simulation. Integrating over the remaining two coordinates to get an ensemble
average and introducing δ-functions to compensate we see that, since the choice of x1

and x2 is arbitrary provided the system in monatomic, Eq. (4.37) can be rewritten

g(r) =
1

ρ2

〈∑
i

∑
j 6=i

δ(xi)δ(xj − x)

〉
=

V

N2

〈∑
i

∑
j 6=i

δ(x− xij)

〉
(4.38)

with r = |x|. From Eq. (4.38) it is clear that g(r) can easily be calculated using the
canonical MMC method, all we have to do is to discretise the δ-function and then average
the sum V

N2

∑N
i=1

∑N
j=1 δ(r−|xi − xj |) over a large number of configurations. To do this

we loop over all atomic pairs and calculate the corresponding distances while collecting
all the occurences in a histogram. A Fortran 90 program for calculating g(r) has been
implemented and can be found in appendix B. Section 6 contains some examples of g(r)
for our BaZrO3 system.

25

CHAPTER 5

QUANTUM STATISTICAL MECHANICS AND PATH
INTEGRALS

Thus far we have studied atomic systems from a classical viewpoint using the language
statistical mechanics. As mentioned in the introduction, a classical treatment of the
nuclear motion is not always a valid assumption. In general, quantum effects are mostly
important when the temperautre is low and the system consists of lighter atoms such as
hydrogen or helium. However, when there are competing structures with small energy
differences such as in e.g. barium zirconate which has AFD phases it is not obvious that
quantum effects can be neglected. In this section we will show how to treat the nuclear
motion using quantum statistical mechanics, the first point of order to develop the
density operator formalism. The density operator contains in principle all information
we need about the system (it is analogous to the propagator) and by expanding this into
a so called path integral we will be able to compute it numerically.

5.1 The density operator

In Section 4.1 we saw that in classical statistical mechanics the fundamental quantitity
is the probability distribution which can be integrated to yield the probability of finding
the system in a certain region of phase space. With knowledge of the probability density
one can proceed to define e.g. thermodynamical quantities or transport properties as
averages over phase space. In quantum statistical mechanics the density operator plays
a similar role and generalises the concept of a wave function. More precisely, the density
operator describes statistical mixtures of states. As an easy example consider a spin-1

2
system and suppose that we know that with probability P1 the state is | ↑〉 and with
probability P2 = 1 − P1 the state is | ↓〉. We call this a statistical mixture of | ↑〉 and
| ↓〉 states or simply a mixed state, while e.g. | ↑〉 is referred to as a pure state. Note
that a statistical mixture is fundamentally different from a superposition of | ↑〉 and
| ↓〉 inasmuch as any such linear combination will have a definite spin direction. To

26

5. QUANTUM STATISTICAL MECHANICS AND PATH INTEGRALS

be able to describe statistical mixtures of states we will introduce the density operator
formalism.

A statistical mixture of states is specified by a set of state kets {|ψi〉} with corre-
sponding probabilities Pi. The density matrix is defined as

ρ =
∑
i

Pi|ψi〉〈ψi|. (5.1)

If the weights Pi in the above equation are to be interpreted as probabilities they must
satisfy the normalisation condition

∑
i Pi = 1 which gives a corresponding normalisation

condition for the density operator itself

tr(ρ) = 1. (5.2)

We are often interested in determining the average of an observable O since these are the
values one can measure. For a pure state this average would simply be the expectation
value of O but for a mixed state the natural definition is to weigh the expectation values
of O taken relative to states |φi〉 with the corresponding probabilities Pi and then sum
over all such terms:

〈O〉 =
∑
i

Pi〈ψi|O|ψi〉. (5.3)

Eq. (5.3) is the quantum mechanical equivalent to the classical ensemble average
Eq. (4.1). To illustrate the usefulness of the density operator we will now show that it
can be used to calculate the ensemble average Eq. (5.3). To see how this is done we will
rewrite Eq. (5.3) in an arbitrary basis {|b〉} using the completeness relation

∑
b |b〉〈b| = 1:

〈O〉 =
∑
b

∑
b′

(∑
i

Pi〈b|ψi〉〈ψi|b′〉

)
〈b′|O|b〉

=
∑
b

∑
b′

〈b|ρ|b′〉〈b′|O|b〉 = tr(ρO)

(5.4)

where we recognise the expression enclosed by paratheses in the first line as the matrix
element of the density operator written in the basis {|b〉}. Often the use of a basis is
implied and one then simply refers to ρ as the density matrix. Equation Eq. (5.4) states
that in order to calculate the ensemble average of O we simply need to take the trace
of the matrix product of ρ and O and since the trace is independent of the basis we can
work in whatever basis happens to be convenient.

5.2 The thermal density matrix

Consider a system in thermal equilibrium at temperature T where the number of parti-
cles N and volume V are constant. In what follows all the particles in our system are

27

5.2. THE THERMAL DENSITY MATRIX

assumed to be distinguishable so we can disregard bose and fermi statistics. Further-
more, suppose the exact energy eigenstates and eigenvalues are |φn〉 and En i.e.

H|n〉 = En|n〉. (5.5)

From statistical mechanics we know that the appropriate probability distribution for
this type of system is the canonical distribution which gives the probability of finding
the system in a state with energy En as

Pn =
e−βEn

Z
(5.6)

where the normalising constant Z =
∑

n e
−βEn is the partition function and β = 1

kBT
as usual. The density operator can then be written

ρ =
∑
n

e−βEn

Z
|n〉〈n| = e−βH

Z
. (5.7)

In literature on quantum statistical mechanis is somewhat of a convention to omit the
partition function Z in the above equation and refer to

ρ = e−βH (5.8)

as the thermal density operator. This convention will be followed for the rest of this re-
port. As an imidiate consequence of Eq. (5.8), note that the partition function is related
to the thermal density matrix 1 through Z = tr(ρ) and the average 〈O〉 = 1

Z tr(ρO).
With these results one can proceed to identify familiar thermodynamic quantitites with
operator averages. To illustrate this consider the internal energy E of the system which
is identified with 〈H〉:

E = 〈H〉 =
1

Z
tr(ρH) =

∑
n

(
Ene

−βEn

e−βEn

)
=
∑
n

(
− ∂

∂β
ln
(
e−βEn

))
= − ∂

∂β
ln(Z).

(5.9)

This should be a familiar formula to any student of thermodynamics. When performing
calculations, especially on a computer, one often works in the position-space representa-
tion. The thermal density matrix matrix element at temperature T is then a continuous
function

ρ(X,X′;β) = 〈X|ρ|X′〉 (5.10)

1Since unnormalised weights are being used for the density matrix the trace is no longer unity.

28

5. QUANTUM STATISTICAL MECHANICS AND PATH INTEGRALS

where X = {x1,x2, . . . ,xN} are the coordinates of all the N particles in the system. It
is sometimes useful to express the thermal density matrix using the eigenenergy wave-
functions φn(x) = 〈x|n〉, Eq. (5.10) then reads

ρ(X,X′;β) =
∑
n

φ(X)∗φ(X′)e−βEn . (5.11)

Using the completeness relation for the position base kets∫
dX|X〉〈X| = 1 (5.12)

the average of an observable O in position-space becomes

〈O〉 = tr(ρO) =
1

Z

∫
dXdX′ρ(X,X′;β)〈X′|O|X〉. (5.13)

Similarily, the parition function is written

Z = tr(ρ) =

∫
dX〈X|ρ|X〉. (5.14)

Before moving on to the much anticipated path integrals we will consider a simple, yet
important, example of a thermal density matrix, namely that of a free particle in a
cubic box with side L and periodic boundary conditions. From elementary quantum
mechanics we know that the solutions to the Hamiltonian eigenvalue problem are plane
waves φk(x) = 1√

V
eik·r where the wave vectors are given by k = 2π

L n with n an integer

vector. The associated eigenenergy values are Ek = ~2k2

2m . Together with Eq. (5.11)
these results allow us to write the free particle density matrix

ρ(x,x′;β) =
1

V

∑
k

e−βλk2
e−ik·(x−x′) (5.15)

where λ = ~2
2m if we write the ~ explicitly2. This expression can be simplified somewhat

if we assume that the thermal de Broglie wavelength Λ ≡
√
βλ� L. Λ is approximately

the de Broglie wavelength of the particle at temperature T and we are thus assuming
that this wavelength is much smaller than the size of the box. This means that the
k-values are densely packed in the k-space volume (2π)3/V and the sum in Eq. (5.15)
can be replaced by an integral 1

V

∑
k −→

∫
dk

(2π)3
. Note that this approximation only

becomes exact in the limit of an inifinite box and thus fails to account for the periodic
boundary conditions. Carrying out the integration the result is

ρ(x,x′;β) =
1

(4πλβ)3/2
exp

(
(x− x′)2

4λβ

)
. (5.16)

The generalisation to N free particles is trivial:

2Here we briefly deviate from the use of atomic units so the reader can get some sense of where the
~ factor will appear in the final equation

29

5.3. PATH INTEGRALS

ρ(X,X′;β) =
1

(4πλβ)3N/2
exp

(
(X−X′)2

4λβ

)
=

1

(4πλβ)3N/2
exp

(
N∑
i=1

(xi − x′i)
2

4λβ

) (5.17)

5.3 Path integrals

Before doing anything, let us assess our current situation. In order to incorporate
quantum effects into our simulations we have been forced to abandon the region of
classical statistical mechanics and venture into the quantum regime. The thermal density
matrix in principle contains all the information necessary in order to calculate any desired
property of the system. We were also able to calculate the thermal density matrix in the
simple case of a system of N free particles confined to a cubic box but it is clear (since
solving for the density matrix of anN -particle system is at least as complicated as solving
the N -particle Schrödinger equation) that we, in general, cannot hope to find analytical
solutions. As so often happens, one is thus forced to resort to numerical methods. There
are plenty available but we shall focus on a particularily powerful method known as the
Path Integral Monte-Carlo method, or PIMC for short. The starting point of the PIMC
method is the expansion of the density matrix in a path integral. The result will be a
seemingly much more complicated expression than what we have encountered so thus far.
By serendipity however, it turns out that the path integral expression is very amendable
to numerical calculations. The brief presentation of the subject found here is based on
a more detailed account by Ceperley [2] to which the curious reader is referred. Before
getting into the details let us record one essential property of the density matrix:

e−(β1+β2)H = e−β1He−β2H (5.18)

i.e. the taking the product of two density matrices we obtain a new density matrix
at a lower temperature. To write Eq. (5.18) in the position-space representation, apply
the completeness relation Eq. (5.12) between the two density matrices in the right-hand
side of Eq. (5.18):

ρ(X1,X3;β1 + β2) = 〈X|ρ(β1)ρ(β1)|X′′〉

=

∫
dX2ρ(X1,X2;β1)ρ(X2,X3;β2)

(5.19)

Now, imagine we would like an expression for the density matrix at temperature T , by
making repeated use of the property Eq. (5.18) this density matrix can be written as a
product of M density matrices at a higher temperature M × T i.e.

e−βH =
(
e−τH

)M
(5.20)

30

5. QUANTUM STATISTICAL MECHANICS AND PATH INTEGRALS

where τ = β
M . To write this in position-space one simply repeats the process used to

reach Eq. (5.19): connect all the density operators on the right-hand side of Eq. (5.20)
by integrals using the completeness relation and then squeeze the result in between a bra
and a ket to obtain a matrix element. The resulting expression for the thermal density
matrix at temperature T is

ρ(X0,XM ;β) =

∫
dX1dX2 · · · dXM−1ρ(X1,X2; τ)ρ(X2,X3; τ) · · · ρ(XM−1,XM ; τ)

(5.21)
This is our basic path integral. It is customary to refer to τ = β

M as the time step and to
Xk = {x1k,x2k, . . . ,xNk} as the k:th time slice. Two neighbouring slices are separated by
a time step τ and hence we can assign a time tk = kτ to slice Xk. From this viewpoint,
Eq. (5.21) is a ”sum” over discrete paths where a path is essentially a trajectory of the
system: {X0,X1, . . . ,XM}. Note that referring to τ as the time step can be somewhat
misleading since we are not actually talking about the real time in the quantum system
and has the units of inverse energy. The terminology derives from the pure state QM
path integrals where one derives an expression identical to Eq. (5.21) for the propagator
of the system, in which case one would really be dealing with a time step.

The expression Eq. (5.21) looks very complicated but, as it turns out, it is possible to
find a reasonably accurate and cheap-to-compute approximation to the density matrix
if the temperature is high. This means that if we choose M so that MT is large enough
we can replace all the density matrices on the right-hand side of Eq. (5.21) using this
approximate expression and (hopefully) still obtain a reasonable approximation to the
low temperature density matrix on the left-hand side. Thus, while all results have
been exact up to this point we will now introduce some approximations. The Hamilton
operator is the sum of the kinetic energy operator and a potential energy operator
H = T +V. From the Baker-Campbell-Hausdorff lemma it follows that for two operator
A and B:

eAeB = eA+B+ 1
2

[A,B]+H.O.T. (5.22)

Letting A = −τT and B = −τV in Eq. (5.22) yields

e−τT e−τV = e−τ(T +V)+ τ2

2
[T ,V]+H.O.T. (5.23)

Thus, neglecting all commutators between T and V we have the following approximation

e−τ(T +V) ≈ e−τT e−τV (5.24)

Since this approximation means throwing away a term that is second order in τ we
can improve the accuracy by increasing M .In path integral litterature Eq. (5.24) is
referred to as the primitive approximation. We can now approximate the density matrix
at temperature MT :

ρ(X,X′′; τ) ≈ 〈X|e−τT e−τV |X′′〉 =

∫
dX′〈X|e−τT |X′〉〈X′|e−τV |X′′〉 (5.25)

31

5.3. PATH INTEGRALS

As usual, we are working in the canonical ensemble with a system of distinguishable
particles confined to a cubic box with periodic boundary conditions, it follows that the
first matrix element on the right-hand side of Eq. (5.25) is the free particle density
matrix given by Eq. (5.17):

〈X|e−τT |X′〉 ≈ 1

(4πλτ)3N/2
exp

(
(X−X′)2

4λτ

)
. (5.26)

The ”≈” sign serves to remind us that Eq. (5.26) holds if the thermal de Broglie wave-
length Λτ ≡

√
τλ � L. Now assume that V and H commute (this is usually the case),

and can thus be simultaneously diagonalised, so that V|X〉 = V(X)|X〉. For the second
matrix element on the right-hand side of Eq. (5.26) this means

〈X′|e−τV |X′′〉 = e−τV(X′′)δ(X′ −X′′). (5.27)

Upon substituting Eqs. (5.27) and 5.26 into Eq. (5.25) one finds that

ρ(X,X′′; τ) ≈ 1

(4πλτ)3N/2
e

(X−X′′)2
4λτ e−τV(X′′). (5.28)

This is the desired approximation to the high temperature density matrix, valid in the
primitive approximation Eq. (5.24). Returning to Eq. (5.21) we can now write this
path integral in the primitive approximation using Eq. (5.28) to replace all the matrix
elements on the right-hand side of Eq. (5.21), the result is

ρ(X0,XM ;β) ≈ 1

(4πλτ)3NM/2

∫
dX1dX2 · · · dXM−1 . . .

exp

(
−τ

(
M∑
k=1

(Xk −Xk−1)2

4λτ2
+ V(Xk)

)) (5.29)

Since we have now made use of the approximation Eq. (5.28) a total of M times
there seems to be a possibility of accumulating an error when M becomes large. This is
not the case however and in fact taking the limit M → ∞ the error goes to zero. This
is expressed in the Trotter formula [15]

e−β(T +V) = lim
M→∞

(
e−

β
M
T e−

β
M
V
)M

. (5.30)

To simplify our notation we will refer to the two neighbouring time slices (Xk−1,Xk)
as the k:th link and then define the action of this link as

Sk−1,k =

(
(Xk −Xk−1)2

4λτ
+ τV(Xk)

)
. (5.31)

The total action is then obtained by summing over all the links: S =
∑M

k=1 Sk−1,k.
Note that the specific form of the action given in Eq. (5.31) is dependent on the ap-
proximation made in Eq. (5.24). The general definition of the action is Sk−1,k =

32

5. QUANTUM STATISTICAL MECHANICS AND PATH INTEGRALS

−ln (ρ(Xk−1,Xk)) and one then refers to the expression Eq. (5.31) as the primitive
action.

With Eq. (5.31), we can write Eq. (5.29) in the shorthand notation

ρ(X0,XM ;β) ≈ 1

(4πλτ)3NM/2

∫
dX1dX2 · · · dXM−1 exp

(
−

M∑
k=1

.Sk−1,k

)
(5.32)

In particular, the partition function becomes

Z ≈ 1

(4πλτ)3NM/2

∫
dX1dX2 · · · dXM−1dXM exp

(
−

M∑
k=1

Sk−1,k

)∣∣∣∣
X0=XM

(5.33)

The point here is that looking at the integrands in Eqs. (5.32) and (5.33), we see that
they remain positive at all temperatures and are very reminiscent of a configurational
intergral for a classical system, see Section 4.1. This suggests the use of Monte-Carlo
simulations in order to compute the integrals.

5.4 The classical isomorphism

By careful interpretation of Eqs. (5.32) and (5.33) it turns out that we can map our
quantum system to a classical polymer system. Burrowing some terminology from the
mathematical theory of abstract spaces this map is referred to as an isomorphism. To
see how such a connection can arise, we need to take a closer look at the different
interactions in the quantum system. The kinetic part of the interaction found in the
exponential in Eq. (5.29) is

M∑
k=1

(Xk −Xk−1)2

4λτ2
=

M∑
k=1

N∑
i=1

(xik − xik−1)2

4λτ2
=

N∑
i=1

(
M∑
k=1

(xik − xik−1)2

4λτ2

)
. (5.34)

Looking closely at the expression enclosed by parantheses in Eq. (5.34) we can see
that it has the same form as the potential for a set of particles {xik}Mk=1 where each
particle xik is coupled to its closest neighbours xik−1 and xik+1 by springs. Hence we
can think of each atom i as a sort of polymer consisting of M particles which we refer
to as beads. We should keep in mind that a set of beads {xik}Mk=1 really represents the
coordinates of a single atom i in the different time slices. As we saw an example of
in Section 5.2, many thermodynamical quantities are directly related to the partition
function. In this case we need to take the trace of the density matrix and only diagonal
elements are involved. The same is true for quantities that are diagonal in position-space
like the pair correlation function. We must thus take the trace in Eq. (5.29) i.e. integrate
over XM and let X0 = XM in the integrand. Correspondingly in the polymer system,
the first and last bead belonging to a particular chain must be identical, resulting in

33

5.4. THE CLASSICAL ISOMORPHISM

a ring polymer. The words polymer and chain will be used interchangeably and a ring
polymer is thus sometimes referred to as a closed chain. Later on we will also encouter
open polymers which will also be called open chains.

There is also a potential interaction in the polymer system, from Eq. (5.29) we see
that this interaction has the form

M∑
k=1

V(Xk) =
1

2

M∑
k=1

 N∑
i=1

N∑
j=1

V2(xik − xjk)

 . (5.35)

In the ring polymer system we interpret this as a potential interaction between
equally labeled beads belongning to different atoms. Hence the potential interaction in
the quantum system translates to a rather peculiar potential interaction in the poly-
mer system, where only beads in same time slice as allowed to interact. The different
interactions in the polymer system are represented pictorially in Fig. 5.1.

Figure 5.1. An illustration of the classical isomorphism in one dimension. The figure depicts
two atoms, each represented as a polymer consisting of five beads. The kinetic interaction
between neighbouring beads belonging to the same atom is represented by springs. The
potential interaction between beads which are in the same time slice (as indicated by the
numbers) but belong to different atoms is represented by double arrows. Also note that
according to Eq. (5.33) the first and last bead are connected so that each atom is represented
by a ring polymer.

With the classical isomorphism we realise that in order to compute the path integral

34

5. QUANTUM STATISTICAL MECHANICS AND PATH INTEGRALS

we can just do a classical Metropolis Monte Carlo simulation for a ring polymer system
with interactions described by Eqs. (5.34) and (5.35). A more thorough explanation
of the algorithm will be given in following section. As a final remark, the assumption
of distinguishable particles that we have made makes the situation considerably easier.
Including bose statistics would further complicate the picture of the paths given above
while taking fermi statistics into account comes with an infamous sign problem, see [2].

5.5 The path integral Monte Carlo method

We will now describe in detail how to perform Monte-Carlo simulations to compute
configurational integrals in the path integral formalism. As we saw in Section 5.4 the
quanutm system can be mapped to classical ring polymer system with interactions de-
fined by Eqs. (5.34) and (5.35). It therefore suffices to do a classical canonical Monte-
Carlo simulation of this polymer system, which means that only a few modifications to
the algorithm presented in Section 4.4 are necessary. Firstly, since each atom is now
represented by M beads, there are NM beads total and 3NM coordinates that we need
to store. Note that since we have a ring polymer system the first and last slice are
identical i.e. X0 = XM and hence we only store one of them which explains why we use
M beads rather than M + 1. For the trial moves, the simplest approach is to propose a
displacement for one bead at a time in exactly the same way as we did for the atoms in
the classical simulation. The major difference instead comes during the rejection step
since there is now a new harmonic interaction given by Eq. (5.34) that we must calculate
and take into account. Consider then moving a single bead located at xold

ik to a new
position xnew

ik . In PIMC simulation it is customary to refer to the action or difference in
action rather than the interaction energy, the distinction being that one multiplies the
interaction energy by τ to obtain the corresponding action 3. To compute the change in
potential action we need only look at slice k since the potential action is local to each
slice according to Eq. (5.35), thus we get

∆Spot = τ
(
V(Xk ← xnew

ik)− V(Xk ← xold
ik)
)
. (5.36)

Note that much like in Section 4.4, if we have a pair potential there is no need to
compute the potential action for the entire configuration in the current slice since not
all beads are moving. We can thus save a lot of effort by computing the potential action
difference as

∆Spot = τ

N∑
j 6=i

[
V2(xnew

ik − xjk)− V2(xold
ik − xjk)

]
. (5.37)

For the kinetic part of the action we need only look at the current atom i to which
the bead with label ik belongs, since according to Eq. (5.34) only beads belonging to the

3Note that the action quantity as defined here is dimensionless since τ has the unit of inverse energy
(rather than having units of energy × time).

35

5.5. THE PATH INTEGRAL MONTE CARLO METHOD

same atom are connected by springs. The bead ik is then a part of two links, namely
(xik−1,xik) and (xik,xik+1) and the change in potential action is therefore

∆Skin =
1

4λτ

[
(xnew
ik − xik−1)2 + (xnew

ik − xik+1)2 (5.38)

−
(
xold
ik − xik−1

)2
−
(
xold
ik − xik+1

)2
]
.

Whenever k = 1 in Eq. (5.49) we simply set k − 1 = M in agreement with the ring
polymer condition and conversely if k = M we set k + 1 = 1. Now, the total change
in action is ∆S = ∆Spot + ∆Skin and hence the correct Boltzmann factor to use when
testing whether to accept or reject the proposed move is exp (−∆S). For clairty’s sake
all the steps in the Path integral Monte-Carlo method are summarised below.

The Path integral Monte Carlo method
1. Initialise the postions of all the NM beads. For a liquid or a solid such as BaZrO3

an appropriate choice would be to place all the beads belonging to the same atom
at the coordinate that atom would have in the T = 0 equilibrium configuration.

2. Choose at random a slice k and an an atom i. Propose a trial movement for the
bead xik by displacing it symmetrically according to xnew

ik = xold
ik +δl(2η−1) where

η is random vector drawn from the uniform distribution on [0,1].
3. Compute the diffence in potential action between the new and old configuration:

∆Spot = τ
(
V(Xk ← xnew

ik)− V(Xk ← xold
ik)
)

4. Compute the diffence in kinetic action between the new and old configuration:

∆Skin =
1

4λτ

[
(xnew
ik − xik−1)2 + (xnew

ik − xik+1)2

−
(
xold
ik − xik−1

)2
−
(
xold
ik − xik+1

)2
]

5. If ∆S = ∆Spot + ∆Skin ≤ 0 the trial state is immediately accepted and the old
coordinate can be deleted. If ∆S > 0 generate a uniform random number q in
[0,1]:

5.1. If q ≤ exp (−∆S) the trial state is accepted and the old coordinate can be
deleted.

5.2. Else if q > exp (−∆S) the trial state is rejected and the atom’s original
position must be restored.

6. After one or several beads have been moved, update the average value of any
property of interest O using the newly generated configuration. Note that all
moves contribute equally to the average i.e. regardless of whether the old position
was restored or the trial state was accepted. Also update the error.

7. Repeat steps 2 to 6 a large number of times.
8. Compute the ensemble average of O by normalising with the number of times the

code has passed through step 6. Also compute the errorbars.

36

5. QUANTUM STATISTICAL MECHANICS AND PATH INTEGRALS

A few comments are appropriate here. In the first step we must choose initial posi-
tions for all the beads in the path. In Section 4.4 we saw that in the canonical Monte-
Carlo Method one usually initialises a solid in the T = 0 equilibrium configuration.
Extending this idea to a path integral Monte-Carlo simulation we simply put all the
beads representing the same atom in the T = 0 equilibrium position for that atom.
One could conceivably displace the beads randomly around these equilibrium positions
but this will in general only slow down the convergence. The reason is that the kinetic
spring action Eq. (5.34) limits the distance between neighbouring beads to within the
order of the thermal wavelength, larger separations quickly become unfavourable ener-
getically. Regarding the choice of the number of beads M to use in the simulation we
can conclude from Eq. (5.30) that using a larger number of beads gives a better approx-
imation of the quantum mechanical effects. Comparing the PIMC method above and
the classical MMC method it is also clear that for M = 1 the PIMC method reduces to
the MMC method. Typically, the number of beads actually used in a PIMC simulation
must be determined from a convergence study where one tries to determine what value
M yields an asymptotic value for a quantity of interest, see Section 6.4. For a classical
MMC simulation we defined a MC cycle as N attempted moves and analogously we will
define a PIMC cycle as MN attempted moves meaning that a trial movement has been
proposed for each bead in system on average once. Just as in the classical MMC we
have an adjustable parameter δl controlling the maximum distance in any direction a
bead can be displaced. For the same reasons mentioned in Section 4.4 this parameter is
tuned so that roughly half the proposed movements are accepted.

5.6 Estimators

In the path integral formalism there are frequently several different ways of calculating
the same property and we refer to these as different estimators. In theory, each estimator
naturally gives the same result, but in practice they may not be equally well suited for
numerical calculations e.g. one estimator might give a significantly higher variance than
another. In this thesis we shall mainly be concerned with computing pair correlation
functions as well as position and momentum distributions, the later of which are treated
separately in Section 5.8. To illustrate the concept of estimators we will briefly discuss
how to compute the total internal energy of the system. This will be useful when
studying the convergence of the Monte-Carlo simulations, see Chapter 6. The simplest
estimator for the energy is the thermodynamic estimator which is based on the relation
given in Section 5.2 Eq. (5.9):

E = 〈H〉 =
1

Z
tr(ρH) (5.39)

In the path integral formalism with the primitive approximation one can show [2]
that this leads to

37

5.7. IMPROVING THE SAMPLING

E =

〈
3

2τ
−

M∑
k=1

(Xk −Xk−1)2

4Mλτ2
− 1

M

M∑
k=1

V(Xk)

〉
. (5.40)

In a PIMC simulation we would thus compute the sums inside the mean in Eq. (5.40)
and then average over a large number of generated configurations in order to obtain the
total internal energy E. It is also possible to derive other estimators for the energy, one
way is to use the quantum mechanical version of the virial therorem leading to the virial
estimator.

For the pair correlation function g(r), no major modifications to the method de-
scribed in Section 4.5 are necessary, we simply have to average over each time slice as
well, leading to the following estimator

g(r) =

〈
V

MN2

M∑
k=1

N∑
i=1

∑
j 6=i

δ(xik − xjk − x)

〉
. (5.41)

As a final remark, note that the form of any particular estimator is dependent on the
choice of approximation for the action which is in turn decided by the approximation
in Eq. (5.24). There are other approximations to the action with a higher order of
accuracy such as the Li-Broughton action which we will not consider in this report. The
reader should be aware however that the form Eq. (5.40) is valid only in the primitive
approximation.

5.7 Improving the sampling

In the simplest form of the PIMC method described in the previous section new paths
are sampled by moving each bead individually with a displacement proposed the same
way as in the canonical Monte-Carlo Method. We call this type of move a single slice
move. Unfortunetaly, there is a fundamental problem with only using single slice moves
for sampling the path. To get accurate results we want to use as many beads as possible
i.e. M should be a large integer in which case the time step τ = β/M would be very
small. Now, since two neighbouring bead are effetively coupled by a spring with a
certain stiffness, we find that their relative motition is restricted to a scale set by the
thermal de Broglie wavelength Λ =

√
λτ . This wavelength decreases with the number

of beads and consequently the rate of convergence decreases as we increase M in order
to make the calculations more accurate. Another situation where using only single slice
is not satisfactory is when there exist alternate stable configurations involving specific
movements of entire atoms, which is the certainly the case for perovskite oxides with
AFD phases.

To remedy these inadequacies of the single slice moves we will introduce two new
types of moves in this section. Centre of mass displacements are useful for converging
the potential action and exploring AFD configurations et cetera. Bisection moves can
be used to replace the single slice moves and improves the convergence considerably by

38

5. QUANTUM STATISTICAL MECHANICS AND PATH INTEGRALS

samlping the kinetic action exactly and using the potential action to pre-reject unlikely
configurations early on.

5.7.1 Centre of mass displacements

The most straightforward way to improve the sampling is to introduce centre of mass
displacements (COM), which are the PIMC equivalent to a one-atom move in a classical
MC simulation. One atom is chosen randomly and all beads belonging to that atom
are subsequently displaced using the same uniform random displacement for each bead.
Note that the inter-bead distances are preserved by this type of move and hence it can
be visualised as displacing an entire polymer ring by a fixed distance through its centre
of mass. COM moves are particularly useful for converging the potential part of the
action Eq. (5.35) and in addtion are very easy to implement. As with the single slice
moves there is a free parameter that is tuned to maintain a fifty-percent acceptance ratio
for the COM moves.

5.7.2 The Bisection Algorithm

Another problem with single slice moves not mentioned in the introduction to this
section is the question of sampling the kinetic part of the action. This part of the
action converges very slowly and typically sets the rate of convergence for systems with
a weak potential interaction, e.g. systems described by a Lennard-Jones potential. In a
bisection move, the kinetic action is sampled exactly, thus removing entirely the need to
calculate and Metropolis test the kinetic action. In addition, each move involves several
beads and is constructed in such a way that it has a very high probability of being
accepted.

More precisely, in a bisection move we randomly choose an atom i for which we wish
to sample a new path. A part of the path is then cut out to be sampled and we refer
this partial path as a clip. The sampling procudure is then partitioned into bisection
levels where the number of beads included in the clip Nc is determined by the maximum
level lmax according to Nc = 2lmax + 1. To make things concrete let us consider the case
when lmax = 3 so that Nc = 9, if we assume the clip begins at bead 1 the following
beads are included in the clip: {xi1, . . . ,xi9}. Beginning at the coarsest level l = 3 only
the midpoint xi5 of the clip is sampled and the new coordinate must be chosen in a way
such that the kinetic action (i.e. the free particle density matrix) is sampled exactly.
One can show analytically [2] that this condition is satisfied if we choose

xnew
i5 =

xi1 + xi9
2

+ ζ
√

4τλ (5.42)

where ζ is a normally distributed random vector with mean zero and unity variance.
In this level one thus ”pretends”that the clip only consists of the three beads {xi1,xi5,xi9}
separated by a time step 4τ . We then proceed recursively to sample the remaining beads
except for the endpoints {xi1,xi9} which remain fixed. In level l = 2 we sample new
midpoints xi3,xi7 for the two subclips {xi1,xi3,xi5} and {xi5,xi7,xi9} according to

39

5.7. IMPROVING THE SAMPLING

xnew
i3 =

xi1 + xi5
2

+ ζ
√

2τλ (5.43)

and

xnew
i7 =

xi5 + xi9
2

+ ζ
√

2τλ (5.44)

Note that in Eqs. (5.42) and (5.43) the last term on the right-hand side now contains
a factor 2τ instead of 4τ since the time step separating the beads {xi1,xi3,xi5,xi7,xi9} in
this level is only 2τ . The bottom of the recursion is reached at the finest level l = 3 where
new midpoints xi2,xi4,xi6,xi8 must be sampled for the 4 new subclips obtained after the
last completed bisection level. The time step separating two neighbouring beads is now
τ and the sampling of the 4 midpoints is otherwise completely analogous to Eqs. (5.43)
and (5.44). The entire recursive sampling process is illustrated in Fig. 5.2, here beads
that do not move in the current level are displayed in gray while the displacement for
the beads that are sampled is indicated by arrows.

Figure 5.2. An illustration of the bisection process. Beads that are not sampled in the current
level are displayed in gray while moving beads are displayed in white with arrows indicating
the new positions. Note the recursive nature of the procedure where midpoints are succesively
sampled as new subintervals are created.

40

5. QUANTUM STATISTICAL MECHANICS AND PATH INTEGRALS

In this way, the free-particle density matrix is exactly sampled and we do not have
to worry about the kinetic action. Rather, a bisection move must be either accepted or
rejected based on the potential action. The obvious way to go about this would be to
recursively sample the whole clip as described above and then proceed to do a Metropolis
test of the entire newly generated clip. While there is no fault in this method there is
a considerable increase in efficiency to be gained by rejecting unlikely configurations
already at the coarser levels l = 3,2 based on the potential action. It is easy to see why
this must be true since beads closer to the endpoints, which are already themselves in
a favourable position, are only moved a little bit while the midpoint could potentially
move a great deal more and hence it is likely that the change in potential action is
unfavourable here. Consequently, at level l = 3 we calculate

∆V(l = 3) = V(X5 ← xnew
i5)− V(X5) (5.45)

and do a Metropolis test with the Boltzmann factor: exp [−4τ∆V(l = 3)]. Similarly
for the finer levels, noting that the time step in level l is 2l−1τ and the beads can be
indexed k = 1 + ns with the step s = 2l−1 and n = 1, . . . ,2(lmax−l−1) − 1, we compute

∆V(l) =
2(lmax−l−1)−1∑

n=1

[
V(X1+ns ← xi1+ns)− V(X1+ns)

]
(5.46)

and accept or reject based on the Boltzmann factor: exp
[
−2l−1τ∆V(l) + 2lτ∆V(l + 1)

]
.

Note that Eq. (5.46) is completely general and holds regardless of the maximum number
of levels lmax. The bisection move will only be accepted if all levels are accepted meaning
that should one of the coarser bisections be rejected before we reach l = 1 the whole
bisection process is aborted. Hence, no time is wasted considering improbable moves
that will almost certainly be rejected at the finer levels. Also note that in the finest level
the exact action is computed while in the coarser levels the sampling and Metropolis
testing is effectively done at a different temperature since the time step is larger than τ .
An implementation of the bisection algorithm in Fortran 90 can be found in appendix
B. We also provide a more general step-by-step description of the algorithm in which
step 2 to 5 in the original PIMC algorithm described in Section 5.5 are to be replaced
by the following:

The bisection algorithm
1. Choose an atom i at random and a random starting bead k1 for the clip. Define

the clip by
{
xik1 ,xik2 , . . . ,xikNc

}
where Nc = 2lmax +1 and taking the ring polymer

condition into account. The maximum level lmax is set before the simulation is
performed and must not give a clip size that exceeds the number of beads i.e. it
should satisfy Nc < M .

2. Loop over levels starting at the coarsest level l = lmax and proceeding down to
l = 1. In each level l do the following:

41

5.8. THE MOMENTUM DISTRIBUTION

2.1. Sample 2lmax−l new midpoints:

xnew
ik =

xik−s + xik+s

2
+ ζ
√

2l−1τλ

for k = 1 + 2ms with the step s = 2l−1 and m = 1, . . . ,2lmax − l. If l = lmax

save the old positions in case the bisection is later rejected.
2.2. Calculate the difference in potential action:

∆Spot = 2l−1τ∆V(l) = 2l−1τ
2(lmax−l−1)−1∑

n=1

[
V(X1+ns ← xi1+ns)− V(X1+ns)

]

with s = 2l−1 and n = 1, . . . ,2(lmax−l−1) − 1.
2.3. If ∆Spot ≤ 0 the level is accepted and we proceed to the next level. If

∆Spot > 0 generate a uniform random number q in [0,1]. If q ≤ exp (−∆Spot)
the level is accepted, else if q > exp (−∆Spot) the entire bisection move is
rejected and the old positions must be restored.

3. If all levels were accepted, the entire bisection move is accepted and old coordinates
the in path should be replaced with the newly sampled coordinates in the clip.

5.8 The momentum distribution

An important property of a solid or a liquid is the momentum distribution, classically
this is given by the Maxwell distribution which is independent of the potential. In the
quantum case there is no such uncoupling however, and quantum effects related to the
nuclear motion e.g. zero-point energy fluctuations and tunneling can significantly al-
ter the momentum distribution, thus making it a desireable object to calculate. One
can also measure the momentum distribution experimentally through neutron Compton
scattering experiements [11] allowing for comparison between experimental and simula-
tion results.

Before defining the momentum distribution, consider the single particle density ma-
trix ρ(x1,x

′
1;β), which can be obtained from the many-body density matrix by integrat-

ing out the dependence on the coordinates of all atoms but one:

ρ(x1,x
′
1;β) =

∫
dx2 . . . dxN 〈x1,x2, . . . ,xN |ρ|x′1,x2, . . . ,xN 〉. (5.47)

In Section 5.3 an arbitrary matrix element of the density matrix in position-space
was expanded into a path integral, see Eq. (5.29). Applying this expansion to the matrix
element on the right-hand side of Eq. (5.47) and then interpreting the result through
the semi-classical isomorphism we find that this corresponds to a polymer system where
with N−1 ring polymer chains and one open chain representing atom 1. We then define
the end-to-end distance distribution of the open chain according to

42

5. QUANTUM STATISTICAL MECHANICS AND PATH INTEGRALS

n(R) =

∫
dx1dx

′
1δ
(
x1 − x′1 −R

)
ρ(x1,x

′
1;β) (5.48)

which can be interprested as a measure of the uncertainity of the atom’s position.
Note that in order to calculate the single-particle density matrix n(x1,x

′
1) one needs

access to off-diagonal density matrix elements as is evident from Eq. (5.47). The mo-
mentum distribution is now defined as the fourier transform of the single particle density
matrix

n(k) =
1

(2π)3

∫
dx1dx

′
1n(x1,x

′
1).e−ik·(x1−x′1) (5.49)

Using Eq. (5.48) an equivalent form is

n(k) =
1

(2π)3

∫
dRn(R)e−ik·R. (5.50)

A dramatic example of how quantum effects can change the momentum distribution
occurs in superfluid helium where the momentum distribution does not go to zero with
increasing k as expected classically. Instead the distribution tends towards a finite value
which is related to the condensate fraction of the superfluid phase [2]. A more relevant
example for this thesis is the symmetric double-well potential which has two equivalent
minima separated by a potential barrier. Suppose that the temperature is low so that
the ground state is the most probable and the barrier height is such that the lowest
energy level is located below the barrier, depending on the barrier height a particle may
not have enough energy to surmount the barrier but can still tunnel through it with
a certain probability. The spatial wave function is then bimodal and extends over a
distance corresponding to the separation of the equivalent minima. As the temperature
increases the particle’s energy will increase until it can surmount the barrier (in a classical
sense) and this effect will soon come to dominate the tunneling effect if the temperature
continues to increase. Another possibility is that the barrier is so low that the lowest
energy level is located above the barrier meaning that zero-point motion has effectively
erased the barrier. The resulting wavefunction would then be unimodal and the particle
is simultaneously occupying the two equivalent sites. By the Heisenberg uncertainity
principle this would show as a narrowing of the momentum distribution compared to the
case where either one or the other site is occupied. Another feature which is indicative
of tunneling but can also be observed when the barrier is erased by zero-point motion
is a node and subsequent tail at the end of the momentum distribution [7].

5.9 Algorithms for computing for the momentum distri-
bution

In a simulation one typically calculates n(R) = n(|R|) in Eq. (5.48) or just the radial part
n(r) and then takes the fourier transform in order to obtain n(k). As we mentioned in the

43

5.9. ALGORITHMS FOR COMPUTING FOR THE MOMENTUM DISTRIBUTION

previous section, calculating the single particle density matrix by definition requires off-
diagonal density matrix elements. These cannot be obtained from an ordinary PIMC
simulation such as was described in Section 5.5, where only the diagonal part of the
density matrix was required, leading to the ring polymer condition. An off-diagonal
element of the density matrix, on the other hand, corresponds to an open polymer chain
which makes the situation much more complicated. Indeed, if we wish to allow one or
more chains to be open, one cannot calculate diagonal properties in the same simulation
and additional code is required to account for the open chains. This is entirely the
case in the open chain method, which is the most common method for calculating n(R).
While the implementation is relatively simple this method has a few shortcomings to
be discussed later. Another more recent method is the trail method introduced in [3]
which allows for the momentum distribution to be calculated in an all-closed (i.e. ring)
polymer simulation. Both methods are covered below.

5.9.1 The open chain method

The most straightforward way to calculate n(R) is the open chain method. From
Eq. (5.47) and Eq. (5.48) it follows directly that n(R) can be calculated as an en-
semble average in a polymer system consisting of N − 1 ring polymer chains and one
open chain. The estimator for n(R) is then

n(R) =

〈
δ
(∣∣x1 − x′1

∣∣−R)〉 (5.51)

During the simulation, the ring polymers are treated in exactly the same way as
before, see Section 5.5. Assuming that the polymer representing atom 1 is to be open,
we introduce a new bead x1M+1 representing the endpoint of this chain which now
consists of the beads (x11,x12 . . . ,x1M ,x1M+1) and move this new bead in usual way
during the Monte Carlo simulation, only taking into account that the chain is open when
calculating the kinetic action since the two endpoints only have one neighbour. For
each newly generated configuration, the end-to-end distance |x11 − x1M+1| is recorded
and the resulting histogram of these distances must then be directly proportional to
n(R). One of the major drawbacks of this method is that no diagonal properties can be
calculated in the same simulation since these require all chains to be closed as described
in Section 5.4. Furthermore, it turns out that the endpoints of the open chain tend
to favour larger separations meaning that the single-particle density matrix is under-
sampled for smaller separations. To remedy this it is possible to artificially introduce
a bias to the sampling but we shall not pursue the matter further, more details can be
found in [2]. Below we include a modified step-by-step adaption of the PIMC method
described in Section 5.5 to the new polymer system with one open chain:

The open chain method
1. Choose one atom i′ to be open and introduce an extra bead M+1 with coordinate

xi′M+1 desribing the endpoint of the open polymer chain. Perform steps 1 through
3 of regular PIMC algorithm described in Section 5.5 where a random atom i is

44

5. QUANTUM STATISTICAL MECHANICS AND PATH INTEGRALS

symmetrically displaced and the difference in potential action is calculated. The
new bead M + 1 is treated exactly the same as all other beads.

2. Compute the diffence in kinetic action between the new and old configuration, if
i 6= i′

∆Skin =
1

4λτ

[
(xnew
ik − xik−1)2 + (xnew

ik − xik+1)2

−
(
xold
ik − xik−1

)2
−
(
xold
ik − xik+1

)2
]
.

However if i = i′ there are three different cases depending on which bead k is
displaced. If k 6= 1 and k 6= M + 1 we use the equation above for ∆Skin. However,
if k = M + 1 then

∆Skin =
1

4λτ

[(
xnew
i′M+1 − xi′M

)2 − (xold
i′M+1 − xi′M

)2
]
. (5.52)

and similarily if k = 1 then

∆Skin =
1

4λτ

[
(xnew
i′1 − xi′2)2 −

(
xold
i′1 − xi′2

)2
]
. (5.53)

3. If ∆S = ∆Spot + ∆Skin ≤ 0 the trial state is immediately accepted and the old
coordinate can be deleted. If ∆S > 0 generate a uniform random number q in
[0,1]:

3.1. If q ≤ exp (−∆S) the trial state is accepted and the old coordinate can be
deleted.

3.2. Else if q > exp (−∆S) the trial state is rejected and the atom’s original
position must be restored.

4. After each bead has been moved on average once, redcord the end-to-end distance
|xi′1 − xi′M+1| in a histrogram.

5. Repeat steps 2 to 6 a large number of times.
6. Normalise the histogram of the end-to-end distances to obtain n(R) and the per-

form a fourier transform to obtain n(k) as well.

5.9.2 The trail method

In the trail method one performs a standard PIMC simulation with N closed polymers,
just like we described in Section 5.5. To calculate the single-particle density matrix the
simulation is then halted after each MC cycle and during this time a polymer chain is
cut open and each bead is displaced. The ratio of the density matrices of the displaced
chain to the undisplaced one is then added to a histogram which is normalised at the
end of the simulation, yielding directly the singe-particle density matrix. The trail
method is inspired by a similar algorithm known as the MacMillan method [2] [3], the

45

5.9. ALGORITHMS FOR COMPUTING FOR THE MOMENTUM DISTRIBUTION

difference lies in how a chain is displaced after it is cut open during a halted simulation.
Assume that we choose the path representing atom 1 to become momentarily open and
cut this path at an arbitrary bead x1k, which thus makes up one end of the now open
chain. In the MacMillan method an extra coordinate representing the other end of the
chain is then introduced and sampled from the free-particle distribution, while the other
beads remain at their original positions. Note that already here we restrict ourselves to
sampling distances on the order of the thermal wavelength because of the effective spring
constant imposed by the kinetic action. In the trail method this problem is circumvented
by instead displacing each bead an amount proportional to the distance from bead to
the point where the chain was cut. The two endpoints of the chain thus always have
the largest relative displacement while two neighbouring beads have a small relative
displacement so that the springs connecting them are not stretched in an improbable
manner. To be more precise, assume we cut the chain at an arbitray point which now
makes up one end of the open chain and we label it k1 as a reference. The rest of the
beads are then labled starting from this incision point and we introduce a new bead
kM+1 to represent the other end of the chain. The trail displacement of the chain now
proceeds according to

xnew
ikα = xold

ikα +
δt(α− 1)

M
(2η − 1) (5.54)

for α = 1, . . . ,M + 1 with η a uniform random vector on [0,1]. Note that the bead
where we cut the chain is not displaced since we assumed this to be the kα=1 bead
meanwhile the displacement has a maximum value at the other end of the chain where
kα=M+1. In Eq. (5.54) the length scale of the displacement is controlled by the trail
displacement parameter δt. Clearly this parameter is at least of the same order as the
thermal wavelength, but depending on the system it can be significantly larger. Now, let
∆Skin denote the difference in kinetic action between the displaced and undisplaced chain
and let ∆Spot be the difference in potential action. The ratio is the density matrices is
thus given by exp [−(∆Skin + ∆Spot)] and the estimator for the single-particle matrix is
simply the average:

n(x1k1 ,x1kM+1
) =

〈
e(−(∆Skin+∆Spot))

〉
. (5.55)

We also provide a general step-by-step description of the algorithm in which the
following operations are to be perfomed at step 6 of the PIMC simulation described in
Section 5.5. Note that we use the superscripts ”old” and ”new” to indicate whether a
coordinate refers the the original (old) position of the bead or the new position in the
displaced chain.

The Trail method
1. Choose a random atom i and a random bead k1 in the ring polymer chain repre-

senting i (which consists of M beads) as the point of inciscion. The chain is now
considered to be open with one end defined by bead k1 and the other end by a
new bead kM+1 which is introduced and intialised so that xold

ik1
= xold

ikM+1
.

46

5. QUANTUM STATISTICAL MECHANICS AND PATH INTEGRALS

2. Compute the old kinetic action of the open chain

Sold
kin =

M∑
α=1

(xold
ikα+1

− xold
ikα

)2

4λτ

and the old potential action:

Sold
pot =

M+1∑
α=1

V(Xkα)

3. Perform a trail displacement of the open chain according to

xnew
ikα = xold

ikα +
δt(α− 1)

M
(2η − 1)

with η a uniform random vector on [0,1]. An apporiate value of the trail displace-
ment parameter δt must be chosen beforehand.

4. Compute the new kinetic action, i.e. that of the displaced open chain

Snew
kin =

M∑
α=1

(xnew
ikα+1

− xnew
ikα

)2

4λτ

and the new potential action:

Sold
pot = τ

M+1∑
α=1

V(Xkα ← xnew
ikα) (5.56)

5. Calculate the ratio of the displaced to the undisplaced density matrix:
exp [− (∆Spot + ∆Skin)] where ∆Skin = Snew

kin − Sold
kin and ∆Spot = Snew

pot − Sold
pot

and calculate the distance
∣∣∣xnew
ik1
− xnew

ikM+1

∣∣∣. Add these values to two separate

histograms: the action histogram and the distance histogram.
6. Repeat steps 1 through 5 a total N times so that each atom is, on average, open

once before continuing the all-closed polymer simulation.

After a sufficient number of MC cycles have passed and the simulation is completed
one then obtains the single-particle density matrix by normalising the action histogram
using the distance histogram. To obtain the momentum distribution, it suffices to do
a one-dimensional fourier transform of n(r) = n(|x11 − x1M+1|) as obtained from the
normalised histogram. This concludes the first part of the thesis and we now have all
the tools to analyse the structure of barium zirconate in the context of a full quantum
mehcanical treatment of the nuclear motion.

47

CHAPTER 6

RESULTS

In this chapter we will present the results of our simulations, focusing on pair correlation
functions and momentum distributions for the BaZrO3 system. The first part of this
chapter, however, will be dedicated to verifying that all the algorithms that have been
implemented are working properly.

The source code for all our programs can be found in appendix B, here we will only
provide a brief summary of the most important component programs needed to perform
a PIMC simulation:

• InitialiseLattice.f90: Initialises the system. A BaZrO3 supercell of a specified
dimension is created and the atoms are placed in their equilibrium configuration.
Arrays containing atomic type, charge and mass are also created.
• Potential.f90: Calculates the total interaction energy of a single atom in the

field of all the other atoms. Note that this includes both the Buckingham po-
tential which we described how to calculate thoroughly in Section 3.4 and the
Ewald summation which was the topic of Section 3.5. For more details on how to
implement the Ewald summation the reader is referred to appendices A and B.
• Metropolis.f90: Implements the PIMC method as described in Section 5.5. For

the sampling of new paths we have implemented both single slice sampling as well
as the bisection method (which is available in separate version of the Metropolis
program). Note that both versions use COM moves to help find AFD configura-
tions.
• OpenChain.f90: Implements the open chain algorithm as described in Section 5.9.

Note that this program is very similar to the regular PIMC program, the exception
being that one polymer chain is now open and diagonal properties cannot be
calculated.
• PairCorrelation.f90: Used in conjunction with the Metropolis.f90 subroutine

to calculate the pair correlation function.
• EnergyEstimator.f90: Implements the thermodynamic estimator for the internal

48

6. RESULTS

energy, see Eq. (5.40). Used in conjunction with the Metropolis.f90 subroutine.
• TrailMethod.f90: Implements the Trail method for calculating the single particle

density matrix, see Section 5.9.2.

Some minor subroutines for writing data etc. have not been listed above. All post-
processing of the simulation data has been carried out in MATLAB.

6.1 Verification part I: The potential

A good starting point is to verify the program responsible for calculating the potential
i.e. both the short-range interaction given by the Bucking potential in Section 3.2 as well
as the long-range coulomb interaction given by the Ewald summation in Section 3.5. As
a first step to verifying that our program is calculating the potential correctly we will use
it to calculate the equilibrium lattice constant for the BaZrO3 system. For this purpose
we will use the original set of parameters listed in Table 3.1, which have been reported
to give an equilibrium lattice constant a0 = 4.188 Å [4]. To test whether our program
can reproduce this value we will use a simple method: Several BaZrO3 supercells are
initialised using different lattice parameters with values in a suitable interval. For each
value of the lattice parameter we calculate the total interaction energy of the system,
the correct equilibrium lattice paramter is then the value for which the total interaction
energy is a minimum. The resulting curve is displayed in Fig. 6.1 where the interaction
energy per unit cell is plotted as a function of the lattice parameter a0.

Clearly from Fig. 6.1 the minimum in energy occurs somewhere in the vicinity of
a0 ≈ 4.2 Å and by doing a careful scan with a small step around that value we find that
the exact equilibrium lattice constant is a0 = 4.188 Å in agreement with the value found
in [4].

As a further check for the coulombic interaction and the implementation of the Ewald
summation one can compute the Madelung constant which is a dimensionless value that
depends only on the lattice structure and ionic charges and has been well documented
for nearly all of the commonly occuring lattice types. Consider a lattice with N ions, in
SI units the total electrostatic potential felt by an ion i in the field of the N − 1 other
ions is given by

Φi =
e

4πε0

∑
j 6=i

Zj
rij

(6.1)

where rij = |xi − xj | is the distance between atoms i and j and Zj is the number
of elementary charges on ion j. If we denote by d the nearest neighbour distance in the
lattice the Madelung constant can be defined as

Mi =
∑
j 6=i

Zj
rij/d

. (6.2)

We can then write electrostatic potential Φi = e
4πε0

Mi
d and the corresponding elec-

trostatic energy is

49

6.1. VERIFICATION PART I: THE POTENTIAL

2 4 6 8 10

−140

−120

−100

−80

−60

−40

Lattice constant a
0
 (Å)

T
ot

al
 in

te
ra

ct
io

n
en

er
gy

 /
un

it
ce

ll
[e

V
]

Total interaction energy as a function of lattice constant

Figure 6.1. The total interaction energy per unit cell as a function of lattice parameter a0 for
a 4×4×4 BaZrO3 supercell.

Vi =
e2

4πε0

Mi

d
. (6.3)

The number of Madelung constants associated with a particular crystal structure
depends on the number of different ions and the crystal symmetry. For BaZrO3 we are
looking at three different values: MBa, MZr and MO. These three different constants
can be combined to form a single, effective Madelung constant proportional to the total
electrostatic energy of one BaZrO3 formula unit. We define this effective Madelung
constant 1 as

Meff =
1

2
(ZBaMBa + ZZrMZr + 3ZOMO) =

1

2
(2MBa + 4MZr − 6MO) (6.4)

and consequently the total electrostatic energy per unit formula is Vformula = Meff
e2

d .
Now, we can easily calculate MBa, MZr and MO using our Potential.f90 subroutine if
we temporarily neglect all the contributions from the short-range Buckingham potential.
The program can then output the pure electrostatic energy felt an arbitrary ion in the
field of all the other ions and it is then a small matter to compute Meff from Eq. (6.4)
since e.g. MBa = VBa

4πε0d
e2

. We find that

1In litterature this is often just plainly referred to as the Madelung constant

50

6. RESULTS

Meff = −24.7549 (6.5)

which is in good agreement with e.g. the value Meff = −24.7550 reported in [6].
All calculations presented in this section were performed on a 4×4×4 BaZrO3 supercell
containing a total of 320 ions. For the Buckingham potential a raidial cut-off rcut = 6 Å
was used while for the Ewald summation the tolerance was set to ε = 10−7. We note
briefly that this tolerance factor is approximately an upper bound for the error and the
values for the radial cut-offs in real and reciprocal space mentioned in Section 3.5 are
then determined by ε. For a more detailed discussion of parameters used in the Ewald
summation the reader is referred to appendix A.

In conclusion, our program for calculating potential accurately reproduces the known
values of both the equlibrium lattice constant for BaZrO3 as well as the Madelung
constant for a perovskite structure system and proceed, reasonably condifident that the
program is working as intended.

6.2 Model potentials and antiferrodistortive instabilities

We saw in Chapter 2 that in many perovskite structured oxides there are antiferrodis-
tortive phases where the oxygen octahedra are tilted and where the tilting may be out-
of-phase between neighbouring octahedron in one or more of the x,y and z-directions.
The energy difference between these phases and the cubic strucutre is usually very small.
In the case of BaZrO3 it was also mentioned that calculations have given no conclusive
indications as to whether such antiferrodistortive instabilites can be found or if the ma-
terial remains cubic all the way down to T = 0. While we do not attempt to solve this
issue in this thesis, what we have done is create two sets of Buckingham pair potential
parameters for barium zirconate where one set describes a system with AFD instabilities
while the other set given a cubic system and the purpose of this section is to show how
this was done. In Chapter 2 Section 2.2 we briefly described a steric model which partly
explains the origins of the octahedral tilting and saw that instabilities are related to the
Goldschmidt ratio which in turn depends on the ionic radii. In this model tilting occurs
because of a mismatch in size between the A and B cations in a perovskite. In the rigid-
ion model with a Buckingham potential, the relative ionic radii are partly determined
by the ρ parameters found in the exponential Pauli repulsion term:

V(r) = Ae
− r
ρ − C

r6
. (6.6)

This suggests that in order to go from a stable system to an unstable one or vice versa
one can simply change the relative magnitudes of the ρ parameters for the Ba-O and
the Zr-O interactions (while leaving the other parameters unchanged). A good starting
point is to first investigate the original set of parameters values by Stokes and Islam
given in Table 3.1 by looking at the phonon spectrum as mentioned in Section 2.2. The
following analysis and results were kindly contributed by E. Fransson and J. H̊akansson
[16] who have calculated phonon spectra and analysed the resulting eigenmodes for

51

6.2. MODEL POTENTIALS AND ANTIFERRODISTORTIVE INSTABILITIES

different sets of parameters (ρBa-O,ρZr-O). For the Stokes values ρBa-O = 0.3949 Å
−1

and

ρZr-O = 0.3760 Å
−1

the resulting phonon spectrum is displayed in Fig. 6.2.

X M R M
−5

0

5

10

15

20

25

30

Γ Γ Γ

F
re

qu
en

cy
 [T

H
z]

Figure 6.2. Phonon spectrum for the pair potential described in Chapter 3. Phonon mode
frequencies are displayed along lines of high symmetry in the brillouin zone. Note that
there are no soft modes with imaginary frequency present indicating that the system is
stable and will remain cubic.

Here, the phonon mode frequencies are plotted along the usual high symmetry lines
of the brillouin zone. Imaginary frequencies are represented as negative values in this
figure but as we can see such soft phonon modes are absent, indicating that the crys-
tal is stable. This leads us to conclude that the set of parameters determined for the
Buckingham potential by Stokes and Islam yields a BaZrO3 system without AFD in-

stabilites. However, changing the size of the parameters to ρBa-O = 0.3820 Å
−1

and

ρZr-O = 0.3885 Å
−1

, which corresponds to a decrease in the Goldschmidt ratio, results
in a quite different phonon spectrum shown in Fig. 6.3.

Observe the prescene of imaginary R- and M -point frequencies in Fig. 6.3 which
are indicative of phase transistions that lowers the crystal symmetry. An analysis of
the polarisation vectors revealed displacements corresponding to four different unstable
modes: three R-point modes specified in glazer notation as a0b−b−, a−b−b−, a−a−a−

and one M -point mode a0a0c+. However, as it turns out, only AFD phases with a−a−a−

tilts are actually observed during simulations and therefore we shall focus on this type
of tilt. The absence of AFD phases with tilts specified by a0b−b−, a−b−b− and a0a0c+

is related to the depth and location of the energy minima as a function of rotation angle
for the tilted structures, see Fig. 6.4 for an example of such a curve. Henceforth, we
shall refer to the orginal set of parameters as the cubic system since in this case there

52

6. RESULTS

X M R M
−5

0

5

10

15

20

25

30

Γ Γ Γ

F
re

qu
en

cy
 [T

H
z]

Figure 6.3. Phonon spectrum for the pair potential with new values of ρBa-O and ρZr-O
described above. This time there are soft phonon modes with imaginary frequency indicating
a possible phase transition where the crystal symmetry is lowered.

are no AFD instabilities according to Fig. 6.2 while the new set of parameters shall be
referred to as the tilt system. For the sake of clarity we summarise these two model
potentials below:

1. The cubic system: Uses the original set of Buckingham potential parameters
found in Table 3.1 which yields a cubic system.

2. The tilt system: Uses the same parameters as the cubic system except for the

values of ρBa-O and ρZr-O which are changed to ρBa-O = 0.3820 Å
−1

and ρZr-O =

0.3885 Å
−1

. This system has AFD phases where the oxgen octahedra exhibit
a−a−a− tilts.

Naturally, one also would like to know how close the unstable tilt system is to
the original cubic structure in energy. This is easy to caculate since we already have
a program for calculating the total energy of the system, meaning we only have to
rotate the octhedra to establish a a−a−a− tilt and then record the difference in energy
between the tilted and the original structure. These calculations have been carried out
for different octahedral rotation angles in a small range and are displayed in Fig. 6.4.
Since two neighbouring octahedra share a common oxygen atom, the tilting is not truly
a rigid rotation but involves a small amount of distortion. Therefore, we have chosen a
small displacement parameter ∆ to characterise the magnitude of the tilt meaning each
oxygen atom in an octahedron is displaced an amount ∆ along a straight line in the
direction necessary to establish an overall a−a−a−-tilt. Keep in mind that changing the

53

6.2. MODEL POTENTIALS AND ANTIFERRODISTORTIVE INSTABILITIES

parameters in the potential also changes the equilibrium lattice constant and for the new
tilt system we find that a0 = 4.255 Å. Since the lattice constant and other properties
have now changed slightly, one could think of this new model potential as describing
some other cubic perovskite closely related to barium zirconate. The important point is
that in this system, which still highly resembles the old one, there are now AFD phases.

0 0.05 0.1 0.15 0.2
0

50

100

150

200

250

300

Displacement ∆ (Å)

E
ne

rg
y

di
ffe

re
nc

e
/ u

ni
t c

el
l (

m
eV

)

Energy difference between the a−a−a− AFD and the undistorted phase

0 0.05 0.1 0.15 0.2
−10

−5

0

5

10

Tilt systemCubic system

Figure 6.4. The difference in energy between undistorted and AFD phases for the two model
potentials as a function of the displacement parameter ∆ which determines the magnitude of
the tilt. Note that energy increases for the cubic potential as expected while for the unstable
potential the system can decrease its energy by tilting the octahedra. In glazer notation this
tilt is represented by a−a−a−.

From Fig. 6.4 it is apparent that tilting the octahedra increases the energy in the
case of the cubic system while the energy is lowered for the tilt system as expected. By
inspecting the rightmost figure we see that the maximum in energy difference between
the AFD and undistorted phase for the tilt system occurs at approximately ∆ = 0.13 Å
where energy for the AFD phase is lower by an amount ∆E ≈ −7.4 meV per unit cell.
Clearly this is a relatively small energy difference and it is not evident that quantum
fluctuations can be neglected.

Identical curves to those in Fig. 6.4 can be computed for the a0b−b−, a−b−b− and
a0a0c+ tilt modes and it is found that the minima in energy difference between the
cubic and distorted strucutures are more shallow for these types of tilt and occur at
larger values of ∆. As a consequence, only a−a−a− AFD phases are actually observed.
Note that geometrically, an a−a−a− mode corresponds to a rotation of the octahedra
about an axis ω = (1, 1, 1) through the zirconium atom. This rotation axis is only
unique up to a sign however, and consequently there are eight different possibilities
ω = (±1,±1,±1). For each oxygen ion there are thus several equivalent sites which

54

6. RESULTS

are separated by energy barriers. Thermal crossings of these barriers are possible at
non-zero temperatures but as the temperature tends towards zero the oxygen ions will
get stuck in one of the sites so that in the ground state an a−a−a− tilt with a definite
axis of rotation ω is established. Naturally, there is an equal probability to find each
one of the eigth rotations ω = (±1,±1,±1) in the ground state. On the other hand
at sufficiently high temperatures, the oxygen ions can move freely between the different
sites and the resulting system looks on average cubic [16]. These equivalent sites for
the oxygen atom in the tilt system will be important when we study the momentum
distribution later on.

6.3 Verification part II: The Path Integral Monte-Carlo
method

In Section 6.1 we verified that the potential is evaluated correctly by our program and
similarily, we now verify the implementation of the PIMC method as described in Sec-
tion 5.5. A convenient way to verify a large part of the program is to study a quantum
harmonic oscillator with no external driving forces. In this particularily simple case
one can derive an exact solution for the internal energy of the system as a function of
temperature and we can then check to see whether our program reproduces this value.
In particular, we compare the energies obtained by the different methods for sampling
the paths introduced in Chapter 5 Sections 5.5 and 5.7. In addition, to validate the im-
plementations of the open chain method and the trail method introduced in Section 5.9
we compare the distributions obtained to the analytic expression for the ground state
position distribution.

Consider a single, one-dimensional quantum mechanical harmonic oscillator (QHO).
The potential has the familiar quadratic form

V(x) =
1

2
mω2x2 (6.7)

where m is the mass and ω is the angular frequency. Recalling Section 5.2 we can,
with a bit of algebra, evaluate the partition function

Z = tr
(
e−βH

)
=

∫
dx〈x|eβH|x〉 =

e−
β~ω
2

1− e−β~ω
. (6.8)

The internal energy is given by Eq. (5.9):

E = 〈H〉 = − ∂

∂β
ln(Z) =

~ω
2

coth

(
β~ω

2

)
. (6.9)

From Eq. (6.9) we can evaluate the energy for a given angular frequency and tem-
perarature. To make things simple we work in the natural units of the oscillator
~ = λ = kB = 1 and in addition we set the oscillator angular frequency ω = 1. For
T = 0.1 K we find from Eq. (6.9) that E = 0.5000 K and expect to be able to reproduce

55

6.3. VERIFICATION PART II: THE PATH INTEGRAL MONTE-CARLO
METHOD

this value in a PIMC simulation using the thermodynamic estimator Eq. (5.40) to com-
pute the energy. A few minor modifications to the collection of subroutines described
in the introduction to this chapter are necessary: one has to write a new subroutine for
calculating the potential, but this is trivial given the simple harmonic form Eq. (6.7) and
furthermore there is no need to use any periodic boundary conditions. To intialise the
oscillator path we set x = 0 for each bead. This is also a good opportunity to compare
the performance of the simple single slice sampling technique introduced in Section 5.5
to the more advanced bisection algorithm described in Section 5.7.2. As discussed in
Sections 5.5, the number of beads M controls how well quantum mechanical effects are
approximated in the simulation. A value M = 1 corresponds to a classical MMC sim-
ulation and higher values of M will yield increasingly better approximations. Thus,
to reproduce the theoretical value E = 0.5000 K it is essential that enough beads are
included. To ensure this we calculate the energy for a wide range of M values and check
how many beads are necessary to reach an asymptotic value. Fig. 6.5 shows a compar-
ison of the energy at T = 0.1 K as a function of the number of beads calculated using
single slice and bisection sampling, respectively. In generating this figure all the PIMC
simulations were allowed to run until the estimated MC error2 was less than 1× 10−4.

From Fig. 6.5 it is immediately apparent that for values of roughly M > 50 an asymp-
totic value very close to the theoretical value E = 0.5000 K can be obtained equally well
using either sampling technique. Indeed, the figure suggests that in terms of the num-
ber of beads required for convergence, sampling new paths using the bisection algorithm
offers no advantage over single slice sampling. This is to be expected since regardless
of the sampling technique we are still working within the primitive approximations and
reducing the number of beads needed can only be achieved using a higher-order action
approximation. Instead, to reveal the difference in performance between the two sam-
pling techniques we will look at the time required for an individual PIMC simulation
to converge with an MC error less than 1× 10−4 as a function of the number of beads,
Fig. 6.6. Here it becomes clear that the bisection algorithm vastly outperforms single
slice sampling when it comes to the rate with which phase space is explored, e.g. using
M = 100 beads the PIMC simulation using bisection sampling only takes approximately
one third of the time required using single slice sampling3.

This is the desired result since the whole reason for introducing the bisection algo-
rithm was to improve the sampling of new paths. Also keep in mind that this is just
a model system for which evaluating the potential is relatively cheap, for a real sys-
tem such as the barium zirconate system we will study in the upcoming sections, using
bisection sampling can significantly reduce the simulation time. In conclusion, the im-
plementation of the PIMC algorithm gives satisfactory results for a QHO model system
and we have also shown that the sampling can be improved by a considerable amount
using the bisection algorithm.

Our next task is to verify the algorithms used to calculate the momentum distri-

2Calculated using the relations introduced at the end of Section 4.2, including an estimate of the
statistical inefficiency.

3These exact numbers depends, of course, on the system and implementation but the trend is quite
clear.

56

6. RESULTS

0 50 100 150 200
0.4

0.45

0.5

0.55

Number of beads M

E
ne

rg
y

(K
)

QHO internal energy

Single slice
Bisection

Figure 6.5. The internal energy for a quantum harmonic oscillator system as a function of
the number of beads M used in the PIMC simulation. Two sets of data are shown, the blue
circles show the results obtained using the bisection algorithm to sample new paths while
the red crosses show the corresponding results using single slice sampling. Observe that the
performance of the two sampling methods in this case is identical and an symptotic value
of the energy is attained for roughly M > 50.

bution. Recall from Section 5.8 that the momentum distribution can be obtained as
the fourier transform of the single particle density matrix or equivalently the end-to-end
distance distribution. This can be calculated using either the open chain method or the
trail method, both described in Section 5.9. A suitable test is to compare the distribu-
tion obtained using these two methods to the QHO ground state position distribution
if we perform our calculations at a low temperature so that mainly the ground state is
populated. Fig. 6.7 shows the position distributions obtained for T = 0.1 K using the
two different methods with M = 100 beads. The analytical predictions are displayed
in the same figure and we can see that both methods produce distributions that agree
farily well with analytical prediction. Comparing the performance of the two methods
the open chain algorithm converged significantly faster, within the span of a few minutes
on an average desktop computer compared to the trail method which took several hours.

6.4 Barium Zirconate

In Section 6.2 we established two model potentials for BaZrO3, both based on a Buck-
ingham potential for the short-range interaction and the Ewald summation for the long-

57

6.4. BARIUM ZIRCONATE

0 50 100 150 200
0

10

20

30

40

50

60

70

Number of beads M

Simulation time required for convergence

T
im

e
(m

in
ut

es
)

Single slice
Bisection

Figure 6.6. The time required in order to converge the internal energy of a QHO with an
error better than 1× 10−4 as a function of the number of beads used. Blue circles show the
times measured using the bisection algorithm to sample new path while the red crosses are
the corresponding times obtained using single slice sampling. Here we note that bisection
sampling yields a much better rate of convergence and that the discrepancy between the two
methods grows with the number of beads.

range electrostatic interaction. The first model potential describes a system without
AFD instabilities i.e. is always cubic while the other potential describes a tilt system
where there are AFD phases. The purpose of this section is to show the results from cal-
culations of pair correlation functions, momentum distribution and the internal energy.
These calculations have been performed for both model potentials and comparing the
results will enable us to see the impact of the AFD instabilites when nuclear quantum
effects are taken into account. In the first section, we look at the internal energy of the
system which is an important property in itself but here we will mainly use it as a means
of studying equilibration and convergence. The pair correlation function is treated in
the following section providing a nice visualisation of the quantum fluctuations. The last
part of this chapter deals with the single particle density matrix, momentum distribution
and algortihms used for their calculation.

6.4.1 Internal energy

The internal energy of the system can be calculated in a PIMC simulation using the ther-
modynamic estimator described in Section 5.6. The difference from a classical MMC

58

6. RESULTS

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

R (QHO units)

n 0(R
)

QHO ground state position distribution , M = 100

Analytical prediction
Open chain algorithm
Trail method

Figure 6.7. Verification of the open chain algorithm and the trail method by comparing the
end-to-end distance distributions obtained at T = 0.1 K to the ground state probability
distribution for the harmonic oscillator. From the figure it is observed that both algorithms
yield distributions in good agreement with the analytical prediction. The convergence rate
for the trail method turned out to be a lot slower.

simulation is the addition of a kinetic contribution from the springs coupling neighbour-
ing beads. While the internal energy is an important property of the system we shall be
more interested in calculating the momentum distribution (see Section 6.4.3) and the
energy calculations will primarily be used as a tool to study the equilibration and con-
vergence. In an ideal scenario one would determine a set of quantities to be calculated
and then perform a detailed convergence study for each of these properties, determining
the number of PIMC cycles as well as the number of beads required to obtain converged
results. In this work we are more interested in the qualitative behvaiour of the system
however, and will adopt a less rigorous approach when checking for convergence.

To get an idea of how long the system needs to equilibrate we can look at the total
energy for each generated configuration, i.e. the expression inside the angular brackets
in Eq. (5.40), as a function of the number of PIMC cycles. Such a plot is displayed in
Fig. 6.8 where the energy for each newly generated configuration of a BaZrO3 system is
recorded at T = 30 K.

From Fig. 6.8 a rapid initial increase in energy is observed during the first 50 PIMC
cycles after which the curve becomes more even and the energy starts to fluctuate around
a mean value. This behaviour makes sense since the system was initialised in the T = 0 K
equilibrium configuration. From Fig. 6.8 it can be discerned that the thermalisation
period is somewhere around 50 PIMC cycles in this case and it is good practice to

59

6.4. BARIUM ZIRCONATE

0 100 200 300 400 500
−141.88

−141.86

−141.84

−141.82

−141.8

−141.78

−141.76

−141.74

Number of MC cycles

E
ne

rg
y

/ u
ni

t c
el

l (
eV

)
Internal energy at T = 30 K, M = 20

Figure 6.8. Equilibration in a PIMC simulation of BaZrO3. Initially all the beads are in the
T = 0 K equilibrium configuration but as the simulation proceeds the internal energy of the
generated configurations starts to increase and after roughly 50 PIMC cycles the energy of
the configurations stabilises and starts to fluctuate.

let the actual equilibration period Neq extend over a number of steps corresponding to
a few multiples of this thermalisation time. Thus we will always use at least Neq =
200 equilibration cycles when attempting to calculate any property of the system. An
exception occurs if we do a so called warm start where the initial distribution is no
longer the T = 0 K configuration but rather some configurations stored from a previous
run. If the conditions were similar during this preliminary run we can afford to use a
shorter equilibration period. This will be the case when calculating properties for the
tilt system.

We will now look at the internal energy as a function of the number of beads M used.
Since increasing the number of beads used in a simulation quickly becomes expensive one
should do a convergence study to determine how many beads are required to reach an
asymptotic value, much like we did in the previous section with the QHO. Fig. 6.9 shows
the internal energy for a 2×2×2 BaZrO3 system for a few different values of M and at
two different temperatures. In creating this figure, all the simulations were allowed to
run until the estimated MC error was smaller than 1× 10−4.

We observe that at T = 30 K, increasing the number of beads yields a steadily
increasing energy from M = 1 to somewhere around M = 25 where an asymptotic value
has been obtained. Thus we can conclude that at this particular temperature, if we
are interested in the internal energy of the system, choosing 20 < M < 30 would be a
suitable compromise between accuracy and computational efficiency. As the temperature
increases the expectation is that fewer beads will be required since quantum effects will

60

6. RESULTS

0 5 10 15 20 25 30
−141.9

−141.85

−141.8

−141.75

−141.7

−141.65

−141.6

Number of beads M

E
ne

rg
y

/ u
ni

t c
el

l (
eV

)

Energy as a function of the number of beads

T = 30 K

T = 150 K

Figure 6.9. Comparing the internal energy of a 2×2×2 BaZrO3 for several different values
of the number of beads M and at two different temperatures. For the lower temperature
T = 30 K at least 20 beads are required to get close to an asymptotic value while at a higher
temperature T = 150 K we could get away with using only M ≈ 5 beads.

not be as important. This is indeed the case looking at the T = 150 K measurements
where increasing the number of beads beyond M = 5 does not significantly change
the value of the internal energy. Hence, in this case we could get away with using a
smaller number of beads compared to the low temperature case. Since we are mostly
interested in qualitative behaviour, we will restrict ourselves to M = 20 beads when
calculating the pair correlation function and momentum distribution at T = 30 K in the
upcoming sections. It should also be noted that the convergence with respect to the
number of beads might look slightly different for the momentum distribution compared
to the energy. Ideally one would do a separate convergence study for the momentum
distribution but we shall take the number M = 20 on faith in order to save time.

6.4.2 The pair correlation function

The pair correlation function was defined in Section 4.5 and describes the distribution
of atomic pairs in the system. For systems that are not monatomic, rather than looking
at g(r) for the entire system one defines fractional pair correlations where each possible
type of two-atom combination that can be formed is described by a separate correlation
function. For a BaZrO3 system there are four possibilites: Ba-O, Zr-O, Ba-Zr and
O-O. Out of these four types of pairs we are only really interested in the distribution for
pairs of oxygen atoms since these are the atoms which are displaced in an AFD phase,
see Chapter 2. In this section we will look at pair correlation functions calculated for

61

6.4. BARIUM ZIRCONATE

the two different model systems described in Section 6.2 using the estimator Eq. (5.41)
defined in Section 5.6 . All calculations presented here were performed on a 4×4×4
BaZrO3 supercell using a radial cut-off rcut = 8 Å for the Buckingham potential and the
ewald error parameter ε = 1 × 10−7. Fig. 6.10 shows how the pair correlation function
for the cubic system using M = 20 and M = 1 beads respectively, included are also the
expected δ-function peaks for the T = 0 K structure.

0 2 4 6 8 10
0

2

4

6

8

10

12

14

16

18

r (Å)

g(
r)

 O−O Pair correlation function at T = 30 K, cubic system

PIMC
Classical MMC
T = 0 K Peaks

Figure 6.10. Oxygen-Oxygen pair correlation function for a BaZrO3 supercell system. Three
different sets of data are shown, the red curve corresponds to a PIMC simulation with M = 1
which equivalent to a classical MMC simulation while the blue curve shows the results from
a PIMC simulation with M = 20. Finally, the dotted grey lines shows the expected peaks
for the T = 0 K configuration. When quantum effects are taken into account we see that
the delocalisation in the system increases since the blue distribution is wider.

Note that since using M = 1 beads reduces the PIMC method to the classical MMC
method we can observe a purely thermal broadening of the peaks compared to the
T = 0 K case. When M 6= 1 however, there is an addition to the width of the peaks due
to quantum delocalisation. Note that in order for the quantum effects to appear the
temperature needs to be low enough and we have found that T = 30 K is sufficiently low
that quantum delocalisation can be observed as evidenced by Fig. 6.10. The situation
becomes more interesting looking at the tilt system, here we expect the oxygen ions to
find alternative configurations corresponding to tilted octahedra given that the temper-
ature is low enough that the difference between alternate sites for the oxygen ions are
not erased by thermal fluctuations. Fig. 6.11 shows the O-O pair correlation function
calculated for the tilt system with M = 1 and M = 20 respectively.

Comparing the classical M = 1 case here to the corresponding curve in Fig. 6.10 it is
clear that there exist additional peaks in the tilt system corresponding to the positions

62

6. RESULTS

0 2 4 6 8 10
0

5

10

15

r (Å)

g(
r)

 O−O Pair correlation function at T = 30 K, tilt system

PIMC

Classical MMC

Figure 6.11. Oxygen-Oxygen pair correlation function for a BaZrO3 supercell system with
AFD instabilities. We note the appearance of alternative peaks corresponding to rotated
octahedra in this figure. When quantum effects are taken into account the alternative peaks
are partly erased as seen by comparing the classical result (orange) to the PIMC result
(blue).

occupied by oxygen pairs in a system with rotated octahedra. When we take quantum
fluctuations into account however, delocalisation partly erases some of these additional
peaks or make them less distinguished as evident from the M = 20 correlation function
in Fig. 6.11. A crucial component in obtaining this figure was to do a warm start where
after running an initial simulation with M = 1 during which system was allowed to
thermalise and then find the alternate configurations corresponding to tilted octahedra,
the resulting configuration was saved and used to restart a simulation with M = 20
beads.

6.4.3 The momentum distribution

The pair correlation function gives information about the structure of the system but if
one is interested in the impact of nuclear quantum effects one needs to study the single
particle density matrix (or rather end-to-end distance distribution which is what one
actually calculates) and the momentum distribution. These were defined in Section 5.8
and we also provided algorithms for their calculation in Section 5.9. We have already
seen an example of a end-to-end distance distribution for the simple case of a harmonic
oscillator in Section 6.3. For a real system such as a BaZrO3 supercell, calculating the
momentum distribution is computationally more demanding and the situation is further
complicated by the long-range Coulomb interaction and the prescence of AFD phases. In
particular, during our calculations we were unable to obtain converged results for BaZrO3

using the trail method (see Section 7.2.2 for an expanded discussion of this result) and

63

6.4. BARIUM ZIRCONATE

hence all distributions displayed in this section have been calculated using the open chain
algorithm. Since only the oxygen atoms partake in an octahedral tilt it is for these atoms
we have calculated the momentum distribution. First we will look at the free particle
momentum distribution for the oxygen atoms i.e. the distribution obtained when the
potential interaction is ignored. But this is just the classical isothermal momentum
(Maxwell) distribution n(k) ∝ exp[−k2/(2mkBT)] and comparing the calculated free
particle distribution to the analytical expression gives us an additional way to check
that the algorithm is working properly. This comparison is displayed in Fig. 6.12 which
shows that the calculated free particle distribution is in excellent agreement with the
expected Maxwellian distribution.

Figure 6.12. The free particle momentum distribution for the oxygen atoms. The red curve
shows the predicted Maxwellian distribution and the squares are the values calculated using
the open chain algorithm. Clearly the two are in good agreement indicating that the open
chain algorithm implementation is working.

Turning to the actual BaZrO3 system with the potential interaction tuned on we
look at the end-to-end distance distribution for the two model potentials displayed in
Fig. 6.13. As a reference point we have also included the free particle end-to-end distance
distribution in this figure (this is the distribution we had to fourier transform in order
to obtain Fig. 6.12). According to the classical isomorphism this is just the end-to-end
distance distribution for a linear polmer without any potential interaction and hence we
get a gaussian distribution as in Fig. 6.13, indeed one can show analytically that the
fourier transform in this case is exactly the Maxwell distribution [2]. For the interacting
system Fig. 6.13 shows that the distance distributions are much more narrow compared

64

6. RESULTS

to the free particle distribution as expected. Furthermore we see that the distribution
sfor the tilt and cubic systems respectively are fairly similar although the tilt system
distribution is slightly wider.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

2

2.5

3

r (Å)

n(
r)

End−to−end distance distribution at T = 30 K, M = 20

Free particle
Tilt system
Cubic system

Figure 6.13. The end-to-end distance distribution n(R) for oxygen atoms in barium zirconate.
The plot shows a comparison between the distribution obtained for the cubic system and the
corresponding distribution for the tilt system. Evidently the two n(R) are very similar, the
tilt system distribution being slightly wider at larger separations. As a reference point the
free particle end-to-end distribution is also dsiplayed, this distribution is gaussian as one
would expect for a linear polymer.

Unlike the pair correlation function, the convergence is very slow here, roughly
150000 MC cycles were used to obtain Fig. 6.13, and in order to save time all cal-
culations were performed on a 2×2×2 BaZrO3 supercell 4 but otherwise using the same
settings, including M = 20 beads and T = 30 K.

A complementary picture is provided by the momentum distribution, given by the
fourier transform of n(R) as described in Section 5.8. Fig. 6.14 shows the momentum dis-
tributions corresponding to the end-to-end distance distributions displayed in Fig. 6.13
along with the free particle momentum distribution from Fig. 6.12. Compared to the free
particle (classical) momentum distribution we can see that when quantum mechanics is
taken into account the end result is a significantly wider distribution which, keeping the
Heisenberg uncertainty principle in mind, we could already have guessed from Fig. 6.13.

From Fig. 6.14 we also note that the momentum distribution for the tilt system is

4Preliminary results indicate that the shape of the distribution is not overly sensitive to the system
size but the purpose of this section is to provide a picture of the general behaviour rather than showing
the result of a long simulation with very small errors.

65

6.4. BARIUM ZIRCONATE

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

k (Å−1)

n(
k)

Momentum distribution at T = 30 K, M = 20

Tilt System

Free particle

Cubic system

Figure 6.14. The momentum distribution n(k) for oxygen atoms in barium zirconate. The
plot shows a comparison between the cubic and the tilt system. We note that the two distri-
butions are almost identical. As a reference point the free particle momentum distribution
is also included and comparing the different curves we find that including quantum effects
significantly alters the momentum distribution.

slightly more narrow than the corresponding distribution for the cubic system which also
makes sense given Fig. 6.13 and the uncertainity principle. As discussed in Section 5.8 we
should look at the tails of the momentum distribution for indicators of nuclear quantum
effects. In particular, we are interested to see if there is a node in the tail of the tilt
system momentum distribution. However, zooming in on the tails of the distributions in
Fig. 6.14 we end up with Fig. 6.15 from which it is evident that there are no observable
node in the tilt system distribution and indeed the two tails are almost identical.

66

6. RESULTS

18 20 22 24 26

−0.03

−0.02

−0.01

0

0.01

k (Å−1)

n(
k)

Momentum distribution tails at T = 30 K, M = 20

Tilt system
Cubic system

Figure 6.15. Zooming in on the momentum distribution tails from Fig. 6.14. Observe that
although there is a slight dip in the distributions there is no visible nodes and in particular
the two tails are almost identical.

67

CHAPTER 7

DISCUSSION

In this chapter we discuss the results presented in Chapter 6, the relative performance
of the different algorithms used and various other topics which have been touched upon.
As previously noted, the purpose of this thesis has been twofold. One part consisted
of showing how PIMC simulations can be used to calculate properties such as the mo-
mentum distribution and what algorithms to use. The second part was to apply these
simulation techniques to a BaZrO3 system for which we have established a simple model.
Here, an important point was to obtain results for the two different model systems, one
describing a cubic system and one describing a system with AFD instabilities, so that
the two can be compared in the light of simulations where nuclear quantum effects are
taken into account. The reader should be aware that the main aim has been to obtain
results indicating general behaviour rather than conducting precise measurements of
quantities like the momentum distribution. As such, certain liberties have been taken
in some cases, most notably the omission of proper error bars.

7.1 Inter-atomic interactions and the Ewald summation

The model used in this work combining the Buckingham potential and Ewald summation
for the electrostatic potential (see Chapter 3) is a standard one and only a few remarks
are necessary. In defining the model potential we have used a rigid ion description in
which the electrons are replaced by atomic net charges, van der Waals interaction and
Pauli repulsion. It is evident that this type of model cannot accurately describe e.g.
polarisability. One way around this is to simulate the effects of having an electron cloud
by using a shell model. Here, an atom is considered as consisting of both a core and
a shell which are coupled by a harmonic spring [20]. Previous results have indicated
however that extending the model potential to include this interaction has very little
impact on the kind of stuctural properties we are interested in here and to keep the
model simple we have chosen not to include such a shell model interaction.

Regarding the Ewald summation, summarised in Section 3.5 and investigated more

68

7. DISCUSSION

thorougly in appendix A, we note the existence of equivalent techniques for calculating
the long-range interaction such as the particle-particle, particle mesh method (PPPM)
[19]. Here one takes a quite different, more complicated approach to compute the elec-
trostatic energy and is rewarded by a better overall scaling of O(N logN) rather than
O(N3/2) for the original Ewald summation 1 [19]. Generally speaking, there is a larger
prefactor for the scaling in the case of PPPM however and one therefore only sees an
increase in efficiency for systems with a large number of particles. This motivated us to
stick with the original Ewald summation method.

7.2 Simulation algorithms

We will now discuss the algorithms used in PIMC simulations. In particular, we are
interested in comparing the relative performance of the different options presented for
sampling new paths and for calculating the momentum distribution.

7.2.1 The sampling of new paths

In Section 5.5 we described thoroughly the basic PIMC algorithm with single slice sam-
pling i.e. where one bead is moved at a time akin to the classical MMC method. The
shortcomings of this method of sampling new paths were discussed in Section 5.7 where
we also introduced two new types of moves in order to improve the sampling. The cen-
tre of mass displacements (COM) described there have been used in practically all the
simulations performed to obtain the results presented in Chapter 6. It is important to
note that since this type of move consists of moving an atom as a whole, they have a
limited impact on the convergence since quantum effects require relative displacements
between beads. Thus, COM moves must be carefully managed in the simulation and
our strategy has been to perform one COM move every PIMC cycle (where one PIMC
cycle consists of sampling on average a new path for each atom in the system i.e. in
the case of single slice sampling one MC cycle consists of one COM move plus randomly
displacing NM beads). We have found that this gives a satisfactory convergence rate
for the properties of interest. However, when performing calculations on the tilt system
introduced in Section 6.2 it was also discovered that if we limit the number of COM
moves to one every cycle, configurations with tilted octahedra are not found. This is
not suprising since a tilted configurations involves a collective displacement of several
oxygen atoms, incredibly unlikely to be achieved using single slice sampling. Rather
than increasing the number of COM moves performed over the entire simulation, which
would be ineffective in the long run, a better solution is to run a long simulation with
M = 1 and then restarting the simulation with M = 20 from the resulting configuration.
Using M = 1 the PIMC method reduces to the classical MMC method and finding con-
figurations involving collective displacements of atoms is no longer a problem. This is a
useful technique in general, especially for larger systems where the thermalisation can be
accelerated considerably by restarting the main simulation from an M = 1 simulation.

1Note that this scaling is only achieved if the parameters are chosen properly, see appendix A

69

7.2. SIMULATION ALGORITHMS

The second part of Section 5.7 treated bisection moves which can be used to replace
the single slice moves as a means of sampling new paths. Several previous investiga-
tions have estblished the bisection method as superior [2] [3], a result that is echoed
in Section 6.3 where we compared bisection sampling to single slice sampling by calcu-
lating the internal energy for a harmonic oscillator and looking at the errorbars. This
is certainly not suprising, given the careful construction of the bisection move. One
of the main factors responsible for the increased convergence rate are that beads in a
path are sampled directly from the free particle distribution and for the coarser levels
this sampling is done at a higher temperature. This allows the beads to move larger
distances since the stiffness of the springs coupling neighbouring beads decreases with
temperautre. Another important point is that unlikely moves are rejected at the coarser
levels, removing the need to perform expensive calculations of the potential interaction
at the finer levels and as a result we explore phase space faster. One notable drawback
of the bisection method is that it is hard to combine with the open chain method. The
origin of the problem is in a sense technical, having an open chain severly limits the
number of ways in which we can bisect it. As a consequence, for a fixed chain length
and a fixed maxiumum bisection level, biases can arise where some beads are much more
likely to be sampled than others.

7.2.2 Calculating the momentum distribution

In Section 5.9 we described two different algorithms for calculating the momentum dis-
tribution (or rather the end-to-end distance distribution which then has to be fourier
transformed in order to obtain the momentum distribution). The most straightforward
algorithm is the open chain method which was derived by interpreting the defining equa-
tion of the single particle density matrix in the language of the classical isomorphism.
While the implementation is simple, we noted that one of the major disadvantages is
the fact that one cannot calculate diagonal properties in the same simulation. Another
option the trail method in which one performs an ordinary simulation with ring poly-
mers which is halted after each MC cycle. During this pause, paths (belonging to the
atom type for which we wish to calculate the momentum distribution) are cut open and
displaced one at a time. To obtain n(r) one calculates the ratio of the density matrix
of the now open chain to that of the previously closed chain. The occurences are added
to a histogram which then gives n(r) at the end of the simulation.

In Section 6.3 we verified both these methods by comparing the caculated n(R) for a
harmonic oscillator at a low temperature to the analytical expression for the ground state
single particle density matrix. Here it was found that both methods indeed yield the
correct result but that the convergence was significantly slower using the trail method.
While the open chain algorithm yielded a converged result within minutes the trail
method needed several hours. The situation deteriorated even further when we looked
at the momentum distribution for the BaZrO3 system in Section 6.4.3. In this case
the open chain algorithm yielded acceptable results within the span of a dozen hours
(corresponding to roughly 100000 MC cycles) while the trail method failed to converge
completely under the time span for which it was allowed to run (3 days on a desktop

70

7. DISCUSSION

computer, corresponding to roughly 200000 MC cycles). In the case of the QHO we
also observed that the convergence of n(R) at large distances seemed to be the most
troublesome. These result are in stark contrast to the performance reported by the
inventors of the trail method [3] who reported an increase in the rate of convergence
using the trail method with a reduced variance. Taking a closer look at their report it
appears most of their testing was done on a liquid neon system which only has short-
range interactions which are modelled by either a Lennard-Jones potential or the Aziz
HFD-C2 potential. Using the latter potential we were able to reproduce in a preliminary
study, coming to the same conclusion that the trail method converges significantly faster
in this case. A possible explanation2 lies in the magnitude of the interactions. Since
the ratio of density matrices required in the trail method varies exponentially with the
difference in action, large action differences may lead to an increased variance. This
is certainly the case for the BaZrO3 system where small displacements can lead to
large differences in action due to the coulomb interaction. For the QHO it depends on
the angular frequency ω, in our simulations we set ω = 1 which gives relatively large
actions. For either of the two systems, the difference is likely to be large at large R
which would explain the convergence difficulties encountered during the calculation of
n(R) in Section 6.3.

The recommended approach is thus to use the open chain method for systems which
include long-range interactions (ionic system) or strong external potential while the trail
method is preferable for systems with short-range or weak interactions (noble gases,
Lennard-Jones systems etc). The major drawback of using the open chain method
is that we can no longer use bisection sampling as explained in the previous section.
However, for ionic systems, the accelerated convergence compared to the trail method
more than compensates the use of a more crude sampling technique.

7.3 Properties of barium zirconate

Having dealt with the technical aspects of the PIMC algorithms we will now turn to
analysing the actual results obtained for the BaZrO3 system and presented in Section 6.2
and Section 6.4.

The pair correlation functions displayed in Section 6.4.2 do not require much com-
ment. The expected tendency of peaks to become broader as the temperature increases
is observed as well as a broadening due to quantum delocalisation when M 6= 1. Note
that these two different mechanisms for delocalisation are in a sense competeting, at
lower temperatures quantum delocalisation dominates and the quantum corrected pair
correlation is thus quite different from the classical one.

7.3.1 The momentum distribution

We explained in Section 6.2 the tilt system has AFD phases where the tilt can be de-
scribed as a−a−a− in glazer notation. Geometrically this corresponds to a rotation of

2Barring any subtle mistakes in the implementation that the author is not aware of.

71

7.4. OUTLOOK AND FUTURE PROSPECTS

the octahedra about an axis ω = (1, 1, 1) through the zirconium atom. This rotation
axis is only unique up to a sign however, and consequently there are eight degenerated
structures ω = (±1,±1,±1). There are thus different sites for the oxygen atoms sep-
arated by energy barriers, much like in the case of the double potential well that was
discussed in Section 5.8. It is observed that the oxygen atoms can move between these
configurations when they have enough energy to surmount the barrier but at lower tem-
peratures they tend to get stuck in one of the sites. This begs the question of whether
the oxygen atoms can simultaneously occupy two such sites which would be possible
if the energy barrier is so low that zero-point motion effectively erases it. To answer
this we compare the momentum distributions displayed in Fig. 6.14 since for the cubic
system there can be no tilt and the oxygen atoms are confined to vibrate around their
equilibrium position. Looking at the momentum distributions calculated in Section 6.4.3
there is indeed a slight narrowing of the momentum distribution in the tilt system which
could be indicative of tunneling as has been suggested by many others, see e.g. [7]. This
narrowing is typically followed by a node in the tail of the momentum distribution how-
ever, regardless of whether the lowest lying energy level is actually above or below the
barrier. Evidently from Fig. 6.15 no such node appears for the tilt system and indeed
the tails of the distributions for the two systems are more or less identical. A concern
here is that the error of the calculations could be quite large but as a preliminary con-
clusion it seems unlikely that two sites can be occupied simultaneously by an oxygen
atom. Given more time, an exhaustive investigation would preferably include a detailed
convergence study, momentum distributions for several temperatures both above and
below T = 30 K and a larger system size.

7.4 Outlook and future prospects

There are many exciting prospects and possible ways to extend the work done in this
thesis. Most pressing however is the need to do more thorough investigations of the
momentum distribution for a wide range of temperatures below and around the AFD
transition point. This would most likely require an MPI or OpenMP parallel implemen-
tation of the programs used here in order to speed up the calculations by moving them
onto a cluster. This would also include carefully checking that the erros are small enough
and that a sufficient number of beads are used. This would allow us to more conclusively
rule out or confirm the role of nuclear quantum effects in regards to the transition to
an antiferrodistortive state. Due to time limitations such a study could unfortunately
not be presented here. There is also the question of trying to improve the open chain
algorithm for calculating the momentum distribution since the results presented here
indicate that the trail method might be unsuitable for strongly-interacting systems.
Another possbility which has barely been mentioned in this thesis is to use path integral
molecular dynamics (PIMD) instead of the Monte Carlo approach described here. It
would be interesting to study the advantages and disadvantages of such an approach for
a strongly interacting real system such as barium zirconate.

Other prospects include exploring high-order action approximations such as the Li-

72

7. DISCUSSION

Broughton action which could help make the PIMC simulations more efficient. Again,
due to time limitations we did not explore the many options here, it should also be noted
that many higher-order schemes require the forces to be known. This is not necessarily a
problem since analytical derivatives can be obtained directly from the Ewald summation
and Buckingham potential. Moving forward one could also proceed, using the PIMC
toolbox, to look at different perovskites which exhibit not only AFD transitions but so-
called ferrodistortive transitions as well. One would then have a large set of competing
structures and the interplay between these could possibly be affected by nuclear quantum
effects.

73

CHAPTER 8

CONCLUSIONS

Below we summarise briefly the topics covered in this thesis along with the most im-
portant conclusions. To study the structure and dynamics of barium zirconate a rigid
ion model with a pair potential which is the sum of a Buckingham potential and the
Coulomb potential can be employed. Analysing the phonon spectrum with respect to
soft phonon modes appearing as imaginary frequencies provides a method of testing
whether a certain set of values for the potential parameters give rise to a system with
AFD instabilities. Using this strategy two model systems have been established one sta-
ble cubic system and one which exhibits AFD phases which can be described in glazer
notation as a−a−a−. The difference in energy between the configurations in the differ-
ent phases is small, on the scale of milielectronvolts, allowing for the possbility that the
structure is influenced by nuclear quantum effects.

Path integral Monte Carlo is an effective method for obtaining quantum corrected
properties for a solid or a liquid. In particular, the momentum distribution which is
of special interest since it works as a fingerprint for nuclear quantum effects can be
calculated during a PIMC simulation. The degree of accuracy with which quantum
effects are included in a PIMC simulation is determined by the number of beads M
used. To determine a suitable value for M the internal energy of a BaZrO3 system was
calculated for different values of M . For temperatures around T = 30 K a value M = 20
is sufficient to yield an approximately asymptotic value of the internal energy. If the
temperature is increased fewer beads are needed, indeed at T = 150 K five beads are
sufficient. An illustration of the effect of quantum delocalisation in the system is given by
the pair correlation function. Here our calculation reveal that a quantum treatment at
T = 30 K yields significantly wider peaks in the pair correlation function than expected
from corresponding classical calculations. This broadening of peaks due to quantum
delocalisation competes with thermal broadening where the latter dominates at higher
temperatures.

The main property of interest for the BaZrO3 system is the momentum distribution.
Here two distributions were calculated at T = 30 K, one for the cubic system and

74

8. CONCLUSIONS

one for the tilt system which has AFD instabilities. By comparing the momentum
distributions for these two systems we concluded that the distribution for the tilt system
is slightly more narrow. However, seeing as the difference was quite small and the tails
of the two distributions were otherwise identical i.e. no nodes were found in the tilt
system distribution, we make the preliminary conclusion that there is no simultaneous
occupation of several equivalent sites for the oxygen ions.

Regarding the algorithms used for calculating the momentum distribution during a
PIMC simulation we conclude that either the open chain algorithm or the trail method
may be used. The advantage of the trail method is that properties diagonal in positions
space can be calculated in the same simulation as the momentum distribution which
is not possible in the open chain algorithm where one polymer must be open during
the simulation. It is also possible to combine the trail method with more advanced
sampling methods such as the bisection algorithm which can dramatically increase the
rate with which phase space is explored. On the other hand, the convergence rate for
the trail method appears to be highly dependent on the strength of the interaction in
the system, the perfomance being significantly worse for strongly interacting systems
such as BaZrO3. The open chain algorithm on the other hand can be used to calculate
the momentum distribution for any system but converges slower than the trail metod
for weakly interacting system.

As mentioned above the convergence rate of a PIMC simulation can be improved by
introducing more advanced techniques for sampling new paths. For this purpose we also
implemented an alternative version of the main PIMC program making use of the bisec-
tion algorithm. By studying a simple harmonic oscillator model system the superiority
of the bisection algorithm over regular single slice sampling was established. In particu-
lar, when calculating the internal energy of the oscillator it was found that simulations
using the bisection based sampling converged approximately three times faster than the
corresponding single slice sampling simulations. The difference in performance was also
found to increase with the number of beads used. Another measure which can be taken
to explore phase space more efficiently is centre of mass displacements which turned
out to be a necessary component to discover configurations with rotated octahedra in
BaZrO3.

75

REFERENCES

[1] Allen, M. P. and Tildesley D. J. (1991) Computer Simulation of Liquids, Oxford
University Press.

[2] Ceperley, D. M. (1995) Path integrals in the theory of condensed helium, Rev. Mod.
Phys. vol. 67, no 2, pp. 279-356.

[3] Brualla, L. M. (2002) Path integral Monte Carlo: Algorithms and applications to
quantum liquids., http://www.tdx.cat/handle/10803/6577 (2014-05-03).

[4] Stokes, S. J. and Islam M. S. (2010) Defect chemistry and proton-dopant association
in BaZrO3 and BaPrO3 , Journal of Materials Chemistry, vol 20, no 30, pp. 6258-
6264.

[5] Chandler, D. P (1987) Introduction to modern statistical mechanics, Oxford Uni-
versity Press.

[6] Q. C. Johnson and D. H. Templeton (1961) Madelung Constants for Several Stuc-
tures, Journal of Chemical Physics, vol 34, no 6, pp. 2004-2007.

[7] Morrone, J. A. et al (2009) Tunneling and delocalization effects in hydrogen bonded
systems: A study in position and momentum space The Journal of Chemical
Physics, vol 130, no 20, 204511

[8] Engel, H. et al (2012) Momentum Distribution as a Fingerprint of Quantum Delo-
calization in Enzymatic Reactions: Open-Chain Path-Integral Simulations of Model
Systems and the Hydride Transfer in Dihydrofolate Reductase, Journal of Chemical
Theory and Computation, vol 8, no 4, pp. 1223-1234.

[9] Lebedev, A. I. and Sluchinskaya, I. A. (2013) Combined first-principles and EX-
AFS study of structural instability in BaZrO3, http://arxiv.org/abs/1304.6359
(2014-05-03)

77

REFERENCES

[10] Akbarzadeh, A. R. et al (2005) Combined theoretical and experimental study of the
low-temperature properties of BaZrO3, Physical Review B, vol 72, no 20, 205104

[11] Reiter, G. F. et al (2002) Direct Observation of Tunneling in KDP using Neutron
Compton Scattering, Physical Review Letters, vol 89, no 13, pp. 283-288.

[12] Momma, K. and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of
crystal, volumetric and morphology data, Journal of Applied Crystallography, vol
44, no 6, pp. 1272-1276.

[13] Matsumoto, M. and Nishimura, T. (1998) Mersenne Twister: A 623-dimensionally
equidistributed uniform pseudorandom number generator ACM Trans. on Modeling
and Computer Simulation, vol 8, no 1, pp. 3-30.

[14] Miller, A. (1999) Allan Millers Fortran Software,
http://jblevins.org/mirror/amiller/mt19937.f90 (2014-05-03).

[15] Trotter, H. F. (1959), On the product of semi-groups of operators Proceedings of
the American Mathematical Society, vol 10, no 4, pp. 545-551

[16] Fransson, E. Laurell H̊akansson, J. (2014) Local and Global Ordering in Barium
Zirconate, a Model Potential Study

[17] Jedvik, E. (2014) Chemical expansion in perovskite structured oxides

[18] Perram, J. W. et al (1988) An algorithm for the simulation of condensed matter
which grows as the N3/2 power of the number of particles Molecular Physics, vol
65, no 4, pp. 875-893

[19] Gibbon, P. and Sutmann, G. (2002) Long-Range Interactions in Many-Particle
Simulation NIC series, vol 10, pp. 467-506

[20] Kiang, C. and Goddard III, W. A. (1992) Effective Hamiltonians for motions with
disparate time scales: The quantum shell model and the classical statistical shell
model Journal of Chemical Physics, vol 98, no 2, pp. 1451-1457

78

Appendices

79

APPENDIX A

THE EWALD SUMMATION

In the following section we will present a formal derivation of the Ewald summation
method for computing the total electrostatic (or Coulombic) interaction of a charge-
neutral ionic system. We will also briefly discuss how to select appropriate values for
the various parameters. To keep things simple we will consider a cubic simulation box
with side L, volume V and containing N ions. If we further assume periodic boundary
conditions, we saw in Chapter 3 that the potential can be written as a sum over the
basic simulation cell and all its periodic images, defined by translation vectors of the form
n = L(nx,ny,nz) with ni ∈ Z. Thus, we may write (in atomic units) the electrostatic
potential at a point of observation x due to all the ions located at xj on the following
form

Φ(x) =
∑
n

N∑
j=1

qj
|x− xj + n|

(A.1)

where we implicitly assume that if x = xj for any j this term is excluded for n = 0.
Evaluating this expression might look straightforward but since the terms only decay
as 1/r we end up with a sum that is, in mathematical terms, conditionally convergent
meaning that the result will depend on the order in which the terms were added. To fix
this one can build up the sum in succesive shells surrounding the primary cell, forming
a spherical arrangement. This will solve the issue of the sum not being convergent but
the rate of convergence will still be slow due to the 1/r-dependence. To remedy this we
will rewrite the potential at an ionic site xi as

Φ(xi) = Φ(xi) + Φr(xi) + Φk(xi)− Φs (A.2)

Where the terms Φ(xi)+Φr(xi) and Φk(xi) correspond to sums in real- and reciprocal
space respectively which both converge very rapidly and Φs is a constant. This expansion
is easy to understand from a physical viewpoint, the term Φr comes from an imagined
set of smeared charges centered on the ionic sites, where the total charge of each of the

81

smeared charges is equal to the corresponding ionic charge but with the sign reversed.
The potential contribution from these smeared charges is then Φr. To compensate for
adding this to Φ in Eq. (A.2) we must then add the contribution from a new set of
smeared charges, this time with the same sign as their corresponding ions. Expanding
this contribution in reciprocal space and compensating for a self-interaction term yields
the last two terms Φk(x) and Φs. Clearly, the equality in Eq. (A.2) must then hold since
all we have done is add potential contributions from two sets of smeared charges with
opposite sign but otherwise identical.

To be more precise, consider first the smearing distribution given by a dimensionless
gaussian distribution

σ(x) =
α3

π3/2
e−α

2x2
. (A.3)

Note that this distribution is normalised to unity and that α controls the width of the
gaussian peak (α is often referred to as the splitting parameter for reasons that soon
will become apparent). First we will consider the real-space summation, to that end
imagine thus a set of charges, smeared according to σ and centered on the ionic sites xj ,
each with a total charge of −qj . To determine the potential contribution at an arbitrary
observation point x (rather than an ionic site x) we can begin by considering the simpler
problem of determining the potential Φg from a single gaussian charge distribution qσ
located at the origin. Since σ is spherically symmetric this potential is just the solution
to the radial Poisson equation1

1

r

∂2

∂r2
(rΦg(r)) = −4πqσ(r) (A.4)

which can be solved by integrating twice. We find that

Φg(r) = q
erf(αr)

r
(A.5)

where erf(r) = 2√
π

∫ r
0 dse

−s2 is known as the error function. The potential Φr from our

set of smeared, reversed charges located at xj + n can thus be written

Φr(x) = −
∑
n

N∑
j=1

qjerfc (α |x− xj + n|)
|x− xj + n|

. (A.6)

Adding this contribution to Eq. (A.1) we get

Φ(x) + Φr(x) =
∑
n

N∑
j=1

qj (1− erf (α |x− xj + n|))
|x− xj + n|

=
∑
n

N∑
j=1

qjerfc (α |x− xj + n|)
|x− xj + n|

(A.7)

1Note that in atomic units the usual SI 1/ε0 factor in the Poisson equation is replaced by a factor
4π.

82

A. THE EWALD SUMMATION

where we have introduced the complementary error function erfc(r) = 1 − erf(r). We
have now replaced the 1/r decay by erfc(r)/r which falls off rapidly as r increases.
Consider now the second set of smeared charges, this time with the same total charges
as their corresponding ions i.e qj . The total charge distribution for the entire set of
smeared charges can be written

ρσ(x) =

N∑
j=1

qjσ(x− xj) (A.8)

while the total charge distribution for the initial set of point charges is

ρ(x) =
N∑
j=1

qjδ(x− xj). (A.9)

Combining Eq. (A.9) and Eq. (A.8) we can write ρσ(x) as a convolution

ρσ(x) =

∫
dx′ρ(x− x′)σ(x′). (A.10)

Now, because of the periodic boundary conditions, ρσ has the same periodicity as the
simulation box and can thus be expand in k-space. Recalling that the Fourier transform
of a convolution is just the product of the individual transforms we get

ρσ(x) =
1

V

∑
k

c(k)σ̂(k)e−ik·x (A.11)

where k = 2π
L (nkx ,nky ,nkz) with nki ∈ Z, c(k) is the Fourier coefficients of ρ and σ̂ is

the (continuous) fourier transform of σ given by

σ̂(k) =

∫
dxσ(x)eik·x = e

−|k|2
4α (A.12)

as can be confirmed by consulting any table of common Fourier transforms. Using
Eq. (A.11) gives the the following expression for the electrostatic potential corresponding
to ρσ

Φk(x) =

∫
dx′

ρσ(x′)

|x− x′|
=

1

V

∑
k

c(k)σ̂(k)

∫
dx′

e−ik·x
′

|x− x′|
. (A.13)

Since integral to the right is over all of space we can conveniently choose x as the origin
and evaluate the integral in spherical coordinates. The manipulations are standard and
the result is simply ∫

dx′
e−ik·x

′

|x′|
=

4π

|k|2
. (A.14)

Furthermore, the Fourier coefficients c(k) in Eq. (A.13) are

83

c(k) =

∫
dxρ(x)eik·x =

N∑
j=1

qje
ik·xj (A.15)

since ρ is a sum of Dirac δ-functions. Finally, substituting Eq. (A.12), Eq. (A.14) and
Eq. (A.15) into Eq. (A.13) yields a final expression for Φk

Φk(x) =
4π

V

∑
k6=0

N∑
j=1

qj
e
−|k|2
4α

|k|2
eik·(xj−x) (A.16)

Note that if x = xi for an ionic site this term contains the unphysical contribution
from a smeared charge located at xi which turns out as

Φs =

∫
dx′

qiσ(x′)

|x′|
=

2α√
π
qi. (A.17)

We have now obtained explicit expressions for the terms Φr, Φk and Φs in Eq. (A.2)
through Eqs. (A.7), (A.16) and (A.17). The total electrostatic potential at an ionic site
xi can thus be expanded as

Φ(xi) =
N∑
j=1

qjerfc (α |xi − xj + n|)
|xi − xj + n|

+
4π

V

∑
k 6=0

N∑
j=1

qj
e
−|k|2
4α

|k|2
eik·(xj−xi)

− 2α√
π
qi

(A.18)

and it follows immediately that the total electrostatic energy of the system is

Vcoul =
1

2

∑
n

N∑
i=1

N∑
j=1

qiqj
erfc(α |xij + n|)
|xij + n|

+
2π

V

∑
k 6=0

N∑
i=1

N∑
j=1

qiqj exp (ik · xij)
exp (−k

2

4α)

k2

− α√
π

∑
i

q2
i

(A.19)

which we recognise as the expression given in Eq. (3.9) in Chapter 3. Eqs. (A.18) and
(A.19) look quite daunting but are in fact simple to calculate on a computer. Indeed,
since both the sums over n and k respectively have a very high rate of convergence
we can truncate the sums by introducing two sperical cut-offs, one for the n-sum and
one for the k-sum (much like we did for the Buckingham potential in Section 3.3).

84

A. THE EWALD SUMMATION

Hence, using rcut and kcut to denote these two cut-offs we only include terms for which
r = |xij + n| < rcut and k = |k| < kcut in our summation. The question remaining
then is how to choose these cut-offs to get an optimal rate of convergence, this issue
turns out to be intimately related to the one free parameter in Eqs. (A.18) and (A.19),
namely the splitting parameter α. An analysis orginally made by [18] gives a simple
relation between the Ewald summation parameters (rcut,kcut,α) and a fourth parameter
ε = exp(−p) which represents the smallest value a term in the real space summation
can have and still be included:

α =

√
p

rcut
(A.20)

kcut =
2p

rcut
(A.21)

rcut =
√
πLN1/6 (A.22)

In a simulation one can regard ε as a measure of the truncation error and set this
equal to a small number, say 1 × 10−7, and then compute p = − log(ε) at which point
the ewald summation parameters can be directly determined from Eqs. (A.22), (A.21)
and (A.20). An implementation of the Ewald summation in the form of Eq. (A.18)
can be found in appendix B. To show the significance of the splitting parameter α we
have conducted a very limited convergence study. Here, a number of simulations were
performed on a BaZrO3 system where the total electrostatic energy for the T = 0 equi-
librium configuration was calculated for several different values of the Ewald summation
parameters. The results are displayed in Fig. A.1 where the total electrostatic energy
has been plotted as a function of the dimensionless combination αL for several different
cases where we have varied the number of terms included in the real- and reciprocal
space summations.

The values nmax and nk,max given in Fig. A.1 should be understood as the largest
n = |n| such that |xij + n| < rcut and the largest nk = (n2

kx
+ n2

ky
+ n2

kz
)1/2 such that

nk < kcut/(2π/L). From Fig. A.1 it is clear that values of αL in the range 3 − 8 yield
the best results. We can also infer since the calculated energy should be independent
of the value of α that a failure to converge at small values αL ≈ 1 occurs because not
enough terms have been included in the real space summation. Similarily, failure to
converge at larger values αL ≈ 10 is due to not enough terms having been included in
the reciprocal space summation. In conclusion, by adjusting the value of α one sets the
relative convergence rate of the two sums, hence the name splitting parameter. A good
reivew on the Ewald summation and related techniques can be found in [19].

85

2 4 6 8 10 12 14
−37.5

−37

−36.5

−36

−35.5

−35

−34.5

−34

−33.5

−33

−32.5

−32

αL

en
er

gy
 /

io
n

(e
V

)

Convergence of the ewald sum

n
max

 = 2, n
k,max

 = 10

n
max

 = 1, n
k,max

 = 10

n
max

 = 1, n
k,max

 = 6

n
max

 = 0, n
k,max

 = 6

Figure A.1. A small convergence study of the Ewald summation. The total electrostatic energy
for a BaZrO3 system is shown as a function of the dimensionless number αL. The different
markers represent simulations where the number of terms included in the real- and reciprocal
space summations have been varied. Note that for small αL runs with only a few terms
included in the real space sum fail to convergence while for larger αL the same holds true
for runs which included a smaller number of terms in the reciprocal space summation.

86

APPENDIX B

NOTES ON PROGRAMMING

This appendix includes the source code for the most important subroutines used to
perform the PIMC simulations as well as some brief general notes on the programming
aspect of the thesis. Fortran 90 (F90) has been our language of choice for implementing
the algorithms described throughout this report. The main reason behind this choice is
that Fortran is specifically designed for scientific computations and as such the compilers
are highly optimised in order to generate fast executing code. There are also excellent
array handling capabilities, dynamic memory allocation as well as a large collection of
useful intrinsic functions.

B.1 Programming in Fortran 90

As an example of how to code in Fortran 90 consider implementing the algorithm de-
scribed in Chapter 3 Section 3.4 for calculating the total short-range ı́nteraction of the
system given by the Buckingham pontential. As usual the basic simulation domain is a
cubic box with side L, defined so that the lower leftmost corner coincides with the origin
i.e. the box is entirely located in the positive octant. The positions of the particles are
stored in an 3×N array called x. If a particle with label i has moved outisde the box,
the following line of code will periodically translate the particle back into the box in
agreement with the periodic boundary conditions:

x(:,i) = x(:,i) - L * floor(x(:,i) / L)

Note here the use of the colon operator which, in almost all cases, has the same
meaning in Fortran as in Matlab. Thus whenever we move particles in the code we
should use the line of code above to make sure all paritcles are inside the simulation
box. Calculating the potential will require us to compute the minimum image distance
between two particles, this can be accomplished with the following lines of code:

xij = x(:,i) - x(:,j)

xij = xij - L * nint(xij / L)

87

B.1. PROGRAMMING IN FORTRAN 90

Here the nint function rounds the argument to the nearest integer. Keeping this
common contruction in mind we can now write the main loop which calculates the total
interaction energy for the system.

! A FORTRAN 90 loop for calculating the energy

! Assumes variables/array have been declared and

! initialised with appropriate values.

energy = 0.0

Linv = 1.0 / L

do i = 1, N - 1

xi = x(:,i)

do j = i + 1, N

xij = xi - x(:,j)

xij = xij - L * nint(xij * Linv)

rSq = xij (1)* xij(1) + xij (2)* xij(2) + xij (3)* xij(3)

if(rSq < rCutSq) then

r = sqrt(rSq)

energy = energy + A * exp(-r/rho) - C / rSq**3

end if

end do

end do

In this we have introduced a number of common optimisations that the reader should
be aware of. Firstly, to reduce the number of references into the matrix x, individual
particle coordinates are temporarily stored in xi already in the outermost loop. Sec-
ondly, we try to avoid any divisions that are not necessary since multiplications are
faster and hence we choose multiply with the inverse of the box length when calculating
the minimum image distance. Lastly, we calculate the squared minimum image distance
and compare the result to the squared cut-off radius to avoid calculating the square root
unless it is actually needed (in general, transcendental functions are relatively expen-
sive to calculate). On older workstations tricks like these were crucial for writing fast
executing code but nowadays one can, to a certain extent, approach the optimisation
procedure with a bit more leniency. Although this example was rather basic, it includes
many important features such as the computation of the minmum image distance which
are ubiquitous is the larger code found in Section B.3. Note also the similariy between
the snippet of code above and Matlab syntax. It is the author’s hope that most read-
ers are familiar with Matlab and are thus able to decipher the code above as well the
subroutines found in Section B.3 even if they have had little or no previous experience
with Fortran.

We also briefly note the coding convention used here which differs from many other
routines or libraries written in Fortran where the author has noticed a predisposition
towards cryptic naming of important variables, sparse commentary and other practices
which are not very helpful. To make the code more accessible for anyone that wishes
to reproduce the results found in this work, build on the results or use certain parts
of the code et cetera we have elected to use a coding convetion common to e.g. java
programmers. In this convention, a variable name always start with a small letter, has
no spaces or underscores and begins each new word after the first one with a captial
letter e.g. energyDifference. An important special case is variables used as indices
into arrays, these begin with the letter i, sometimes followed by a descriptive word e.g.
iAtom. Function or subroutines on the other hand always begin with a capital letter

88

B. SOURCE CODE

e.g. IntialiseLattice. The general rule of thumb is that variable names should be as
descriptive as possible without obfuscating the code although exceptions are frequently
made for temporary or auxiliary variables.

B.2 Random number generation

Monte Carlo simulations in general require that one can generate random numbers. In
particular, in this thesis we have seen the need to generate real numbers and integers
which are uniformly distributed as well as normally-distributed real number. Of course,
a computer is fundamentally unable to generate true random numbers and the closest
one can get is an algorithm which generates a deterministic sequence of numbers which
resemble a random sequence. Such an algorithm is referred to as a pseudo random
number generator (PRNG). For Monte Carlo simulations and many other applications
the go-to choice of PRNG is the Mersenne Twister (MT) [13]. The hallmark of a good
PRNG is a long period i.e. the longest unrepreated sequence and a low correlation
between the numbers generated. The Mersenne Twister excels in both of these aspects
and has passed several difficult benchmarking tests for PRNGs, notably the Diehard
tests. For our PIMC simulations we have thus used a Fortran 90 version of the MT
based on a Fortran 77 version by the inventors of the algorithm, subsequently adapted
to F90 in [14].

B.3 Source code

Below we provide the source code for most of the programs inplemented in this thesis as
a reference for the curious reader. Things from the main code which are not included
here are some simple io-routines to write results and a module containing a long list of
variables for global use. Also note that for the bisection sampling version of the main
PIMC program some parts, where the code did not change much, have been omitted
for brevity. The main aim here is to illustrate how one goes about implementing the
concepts described in the thesis rather than providing a ready-to-use code for path
intregral calculations.

!***

! InitialiseLattice.f90

!***

! Initialises a nxCells*nyCells*nzCells supercell , constructed out of Barium

! zirconate unitcells , each of which contains 1 Ba atom , 1 Zr atom and 3 O atoms.

! Also create two arrays atomType and charge containing a number to identify the

! type of atom and charge , respectively.

!***

subroutine InitialiseLattice ()

use GlobalVariables

implicit none

!------------------- Local variables

integer :: k, i, j, m, ind

integer , parameter :: nBasis = 5

double precision , dimension(3,nBasis) :: xBasis

double precision , dimension (3) :: xTrans , xPrim1 , xPrim2 , xPrim3

89

B.3. SOURCE CODE

nAtoms = nxCells * nyCells * nzCells * nBasis

boxDim = latticeConst * (/dble(nxCells), dble(nyCells), dble(nzCells)/)

Lx = boxDim (1)

Ly = boxDim (2)

Lz = boxDim (3)

volume = Lx * Ly * Lz

Linv = 1.0d0 / Lx

!------------------- Define atoms in basis

xBasis (:,1) = (/0.5d0, 0.5d0, 0.5d0/) !Ba

xBasis (:,2) = (/0.0d0, 0.0d0, 0.0d0/) !Zr

xBasis (:,3) = (/0.5d0, 0.0d0, 0.0d0/) !O

xBasis (:,4) = (/0.0d0, 0.5d0, 0.0d0/) !O

xBasis (:,5) = (/0.0d0, 0.0d0, 0.5d0/) !O

xBasis = latticeConst * xBasis

!------------------- Define primitive lattice vectors

xPrim1 = latticeConst * (/1.0d0, 0.0d0, 0.0d0/)

xPrim2 = latticeConst * (/0.0d0, 1.0d0, 0.0d0/)

xPrim3 = latticeConst * (/0.0d0, 0.0d0, 1.0d0/)

!------------------- Construct the position vectors for the atoms

ind = 0

do k = 1, nzCells

do j = 1, nyCells

do i = 1, nxCells

xTrans = (i-1)* xPrim1 + (j-1)* xPrim2 + (k-1)* xPrim3

do m = 1, nBasis

x0(:,m + ind) = xTrans + xBasis(:,m)

end do

ind = ind + nBasis

end do

end do

end do

!------------------- Create vectors containing atom type , mass and charge

do i = 1, nAtoms

select case(mod(i,nBasis))

case (1)

charge(i) = 2

atomType(i) = 1

mass(i) = 137.327 d0 * massFac - 2.0d0

case (2)

charge(i) = 4

atomType(i) = 2

mass(i) = 91.224 d0 * massFac - 4.0d0

case (3)

charge(i) = -2

atomType(i) = 3

mass(i) = 15.9994 d0 * massFac + 2.0d0

case (4)

charge(i) = -2

atomType(i) = 3

mass(i) = 15.9994 d0 * massFac + 2.0d0

case (0)

charge(i) = -2

atomType(i) = 3

mass(i) = 15.9994 d0 * massFac + 2.0d0

end select

end do

90

B. SOURCE CODE

end subroutine InitialiseLattice

!***

! Potential.f90

!***

! Calculates the energy of atom iAtom in the configuration specified by x.

! Includes both the Buckingham potential and Ewald summation. Must not be called

! before an intial call to InitialiseLattice () and requires that the potential

! parameter rPairCut and ewaldError have been set.

!***

function Potential(x, iAtom) result(energy)

use GlobalVariables

implicit none

!------------------- Local variables

integer :: iAtom , j, chargei , chargej , nx, ny, nz, nMax , atomTypei , atomTypej

integer :: kMax , kx, ky, kz, nZeros

double precision , dimension (3) :: xi, xij

double precision :: energy , energyShift13 , energyShift23 , energyShift33

double precision :: r, rSq , rPairCutSq , rCoulCutSq

double precision , dimension(3, nAtoms) :: x

double precision :: alpha , timeFac , L, p

double precision :: ewaldReci , selfEnergy

double precision :: a, b, bSq , kCut , kSq , kCutSq , symmFac , cosFac

rPairCutSq = rPairCut **2

L = boxDim (1)

energyShift13 = A13 * exp(-rPairCut/rho13)

energyShift23 = A23 * exp(-rPairCut/rho23)

energyShift33 = A33 * exp(-rPairCut/rho33) - C33 / rPairCutSq **3

!------------------- Choose optimal Ewald parameter values

L = boxDim (1)

p = - log(ewaldError)

timeFac = 1.0d0

alpha = sqrt(pi) * (timeFac * nAtoms / volume **2)**(1.0 d0/6.0d0)

rCoulCut = sqrt(p) / alpha

rCoulCutSq = rCoulCut **2

kCut = 2.0d0 * alpha * sqrt(p)

nMax = floor(rCoulCut / L)

kMax = ceiling(kCut / (2.0d0 * pi / L))

xi = x(:,iAtom)

chargei = charge(iAtom)

atomTypei = atomType(iAtom)

!------------------- Compute the buckingham potential and real part of ewald sum

energy = 0.0d0

do nx = -nMax , nMax

do ny = -nMax , nMax

do nz = -nMax , nMax

do j = 1, nAtoms

if((abs(nx) + abs(ny) + abs(nz) /= 0) .OR. j /= iAtom) then

xij = xi - x(:,j)

xij = xij - L * nint(xij / L)

rSq = (xij(1) + L*nx)**2 + (xij(2) + L*ny)**2 + (xij(3) + L*nz)**2

chargej = charge(j)

atomTypej = atomType(j)

if(rSq < rPairCutSq) then

r = sqrt(rSq)

if(atomTypei == 3 .AND. atomTypej == 3) then

energy = energy + A33 * exp(-r/rho33) - C33 / rSq**3 - energyShift33 !O-O interactions

91

B.3. SOURCE CODE

endif

if((atomTypei == 1 .AND. atomTypej == 3) &

.OR. (atomTypei == 3 .AND. atomTypej == 1)) then

energy = energy + A13 * exp(-r/rho13) - energyShift13 !Ba-O interactions

endif

if((atomTypei == 2 .AND. atomTypej == 3) &

.OR. (atomTypei == 3 .AND. atomTypej == 2)) then

energy = energy + A23 * exp(-r/rho23) - energyShift23 !Zr-O interactions

endif

energy = energy + chargei*chargej * erfc(alpha*r) / r

elseif(rSq < rCoulCutSq) then

r = sqrt(rSq)

energy = energy + chargei*chargej * erfc(alpha*r) / r

else

endif

endif

end do

end do

end do

end do

!------------------- Compute the reciprocal part of the ewald sum

ewaldReci = 0.0d0

b = 2.0d0 * pi / L

bSq = b**2

kCutSq = kCut **2

cosFac = 0.0d0

a = 1.0d0 / (4.0d0*alpha **2)

nZeros = 0

symmFac = 0.0d0

do kx = 0, kMax

do ky = 0, kMax

do kz = 0, kMax

kSq = bSq * (kx**2 + ky**2 + kz**2)

if(kSq >= kCutSq .OR. (abs(kx) + abs(ky) + abs(kz)) == 0) then

cycle

endif

nZeros = 0

if(kx == 0) then

nZeros = nZeros + 1

endif

if(ky == 0) then

nZeros = nZeros + 1

endif

if(kz == 0) then

nZeros = nZeros + 1

endif

if(nZeros == 0) then

symmFac = 8.0d0

elseif(nZeros == 1) then

symmFac = 4.0d0

else

symmFac = 2.0d0

endif

do j = 1, nAtoms

xij = x(:,j) - xi

cosFac = cos(b*kx * xij (1)) * cos(b*ky * xij (2)) * cos(b*kz * xij (3))

ewaldReci = ewaldReci + symmFac / kSq * exp(-kSq*a) * chargei*charge(j)* cosFac

end do

end do

end do

end do

92

B. SOURCE CODE

ewaldReci = 4.0d0 * pi * ewaldReci / volume

!------------------- Compute self energy and add together

selfEnergy = -2.0d0 * alpha / sqrt(pi) * chargei **2

energy = energy + selfEnergy + ewaldReci

end function Potential

!***

! Metropolis.f90

!***

! Implements the PIMC method with single slice moves and COM displacements.

! Uses auxiliary subroutines InitialisePath () to initialise the path and SquaredDistance

! to compute the minimum image distance squared between two beads. There are also

! subroutines for initialising , updating and writing the averages and histograms

! for the various properties. An initial guess for the parameters controlling then

! ratio of accepted single bead/COM moves is required but are subsequently controlled

! automatically by the program.

!***

subroutine Metropolis ()

use GlobalVariables

use MersenneTwister

implicit none

!------------------- Local variables

integer :: iRandAtom , iRandSlice , iAtom , iRight , iLeft , iSlice , moveType , iDum , nSpUpdates

integer :: seed , iCycle , ind , nAcceptCOM , nAcceptBead , nTotalCOM , nTotalBead , iHist

integer :: nMovesCOM , nMovesBead , nTotalAcceptCOM , nTotalAcceptBead , nCheck , nCheckCOM

double precision , dimension(3,nAtoms) :: x

double precision , dimension (3) :: xNew , xOld , xRight , xLeft , displaceCOM

double precision , dimension(3, nSlices) :: xSave

double precision :: Potential , potActionOld , potActionNew , kinActionOld , kinActionNew

double precision :: potActionDiff , kinActionDiff , actionDiff , weightRatio , SquaredDistance

double precision :: currentEnergy , lambda , targetRatio , acceptRatioCOM , acceptRatioBead

double precision :: totalEnergy

beta = 1.0d0 / (kBoltz * temperature)

timeStep = beta / nSlices

!------------------- Initialise the Mersenne Twister PRNG

call system_clock(seed)

call init_genrand(seed)

!------------------- Initialise a random path

call InitialisePath ()

!------------------- Main loops

nAcceptBead = 0

nAcceptCOM = 0

nMovesCOM = 0

nMovesBead = 0

nTotalAcceptCOM = 0

nTotalAcceptBead = 0

nTotalBead = 0

nTotalCOM = 0

nCheck = 1

nCheckCOM = 50

targetRatio = 0.50d0

acceptRatioCOM = 0.0d0

acceptRatioBead = 0.0d0

ind = 1

totalEnergy = 0.0d0

93

B.3. SOURCE CODE

call InitialiseProperties ()

do iCycle = 1, nCycles

!----- COM move once per cycle

nTotalCOM = nTotalCOM + 1

nMovesCOM = nMovesCOM + 1

iRandAtom = grndi(nAtoms)

displaceCOM (1) = deltaCOM * (2.0d0 * grnd() - 1.0d0)

displaceCOM (2) = deltaCOM * (2.0d0 * grnd() - 1.0d0)

displaceCOM (3) = deltaCOM * (2.0d0 * grnd() - 1.0d0)

potActionDiff = 0.0d0

do iSlice = 1, nSlices

x = path (:,1:nAtoms ,iSlice)

potActionOld = Potential(x, iRandAtom)

xNew = path(:,iRandAtom ,iSlice) + displaceCOM

xNew = xNew - boxDim * floor(xNew / boxDim)

x(:,iRandAtom) = xNew

xSave(:,iSlice) = xNew

potActionNew = Potential(x,iRandAtom)

potActionDiff = potActionDiff + potActionNew - potActionOld

end do

!----- Metropolis rejection step

actionDiff = timeStep * potActionDiff

if(actionDiff < 0.0d0) then

do iSlice = 1, nSlices

path(:,iRandAtom ,iSlice) = xSave(:,iSlice)

end do

nAcceptCOM = nAcceptCOM + 1

nTotalAcceptCOM = nTotalAcceptCOM + 1

elseif(actionDiff > 75.0d0) then

!if the exponent is too big automatically reject

else

weightRatio = exp(-actionDiff)

if(grnd() <= weightRatio) then

do iSlice = 1, nSlices

path(:,iRandAtom ,iSlice) = xSave(:,iSlice)

end do

nAcceptCOM = nAcceptCOM + 1

nTotalAcceptCOM = nTotalAcceptCOM + 1

else

!reject

endif

endif

do iAtom = 1, nAtoms

!------- Single bead moves

do iDum = 1, nSlices

nTotalBead = nTotalBead + 1

nMovesBead = nMovesBead + 1

iRandSlice = grndi(nSlices)

x = path (:,1:nAtoms ,iRandSlice)

iRandAtom = grndi(nAtoms)

xOld = x(:,iRandAtom)

potActionOld = Potential(x, iRandAtom)

!----- Generate a trial state

xNew (1) = xOld (1) + deltaBead * (2.0d0 * grnd() - 1.0d0)

xNew (2) = xOld (2) + deltaBead * (2.0d0 * grnd() - 1.0d0)

94

B. SOURCE CODE

xNew (3) = xOld (3) + deltaBead * (2.0d0 * grnd() - 1.0d0)

xNew = xNew - boxDim * floor(xNew / boxDim) !translate back into box

x(:,iRandAtom) = xNew

potActionNew = Potential(x, iRandAtom)

potActionDiff = timeStep *(potActionNew - potActionOld)

!----- Ring polymer condition

if(iRandSlice == nSlices) then

iLeft = nSlices - 1

iRight = 1

elseif(iRandSlice == 1) then

iLeft = nSlices

iRight = 2

else

iRight = iRandSlice + 1

iLeft = iRandSlice - 1

endif

xRight = path(:, iRandAtom , iRight)

xLeft = path(:, iRandAtom , iLeft)

!----- Compute the kinetic (spring) energy difference

kinActionOld = SquaredDistance(xOld ,xLeft) + SquaredDistance(xRight ,xOld)

kinActionNew = SquaredDistance(xNew ,xLeft) + SquaredDistance(xRight ,xNew)

kinActionDiff = kinActionNew - kinActionOld

lambda = 0.5d0 / mass(iRandAtom)

kinActionDiff = kinActionDiff / (4 * lambda * timeStep)

actionDiff = potActionDiff + kinActionDiff

!----- Metropolis rejection step

if(actionDiff < 0.0d0) then

!always accept downhill moves

path(:,iRandAtom , iRandSlice) = xNew

nAcceptBead = nAcceptBead + 1

nTotalAcceptBead = nTotalAcceptBead + 1

elseif(actionDiff > 75.0d0) then

!if the exponent is too big automatically reject

else

weightRatio = exp(-actionDiff)

if(grnd() <= weightRatio) then

path(:,iRandAtom , iRandSlice) = xNew

nAcceptBead = nAcceptBead + 1

nTotalAcceptBead = nTotalAcceptBead + 1

else

!reject

endif

endif

end do !------ end do idum

end do !---- end loop over atoms

!------------------- Adjust to get a 50 percent acceptance ratio

if(mod(iCycle , nCheck) == 0) then

acceptRatioBead = dble(nAcceptBead) / dble(nMovesBead)

if(acceptRatioBead < targetRatio) then

deltaBead = deltaBead * 0.98d0

else

deltaBead = deltaBead * 1.02d0

endif

nAcceptBead = 0

nMovesBead = 0

endif

95

B.3. SOURCE CODE

if(mod(iCycle , nCheckCOM) == 0) then

acceptRatioCOM = dble(nAcceptCOM) / dble(nMovesCOM)

if(acceptRatioCOM < targetRatio) then

deltaCOM = deltaCOM * 0.98d0

else

deltaCOM = deltaCOM * 1.02d0

endif

nAcceptCOM = 0

nMovesCOM = 0

endif

!--------- Start updating averages after equilibration

if(iCycle > nBurnIn .AND. pflagSpDensity == 1) then

call TrailMethod ()

endif

if(pflagPairCorr == 1) then

do iSlice = 1, nSlices

call PairCorrelation(path(:,:,iSlice), 1)

nPCorrUpdates = nPCorrUpdates + 1

end do

endif

if(iCycle > nBurnIn .AND. pflagEnergy == 1) then

call EnergyEstimator(currentEnergy)

totalEnergy = totalEnergy + currentEnergy

energyVec(ind) = totalEnergy / dble(iCycle - nBurnIn)

ind = ind + 1

endif

end do !---- end loop over cycles

call AverageProperties ()

call WriteProperties ()

end subroutine Metropolis

!***

! SquaredDistance.f90

!***

! Returns the minimum image distance squared between two beads with

! coordinates x1, x2

!***

function SquaredDistance(x1, x2) result(rSq)

use GlobalVariables

implicit none

double precision :: rSq , xDist , yDist , zDist

double precision , dimension (3) :: x1, x2

xDist = x1(1) - x2(1)

yDist = x1(2) - x2(2)

zDist = x1(3) - x2(3)

xDist = xDist - Lx * nint(xDist / Lx)

yDist = yDist - Ly * nint(yDist / Ly)

zDist = zDist - Lz * nint(zDist / Lz)

rSq = xDist*xDist + yDist*yDist + zDist*zDist

end function SquaredDistance

!***

! InitialisePath.f90

96

B. SOURCE CODE

!***

! Initialises a path to be used in the main PIMC simulation

! using the T = 0 equilibrium lattice configuration , requires that

! InitialiseLattice () has already been called.

!***

subroutine InitialisePath ()

use GlobalVariables

use MersenneTwister

implicit none

!------------------- Local variables

integer :: iSlice , iFirst , iLast , i

double precision , dimension(3, nAtoms) :: x

double precision :: dx

!------------------- Initialise a path

path = 0.0d0

dx = 0.5 * lengthFac

do iSlice = 1,nSlices

x = path (:,1:nAtoms ,iSlice)

do i = 1, nAtoms

x(1,i) = x0(1,i)

x(2,i) = x0(2,i)

x(3,i) = x0(3,i)

end do

path (:,1:nAtoms ,iSlice) = x

end do

path (:,1:nAtoms ,nSlices +1) = 0.0d0

end subroutine InitialisePath

!***

! EnergyEstimator.f90

!***

! Implements the direct (Hamiltonian) estimator for the internal energy

!***

subroutine EnergyEstimator(energy)

use GlobalVariables

implicit none

!------------------- Local variables

double precision :: energy , kinEnergy , potEnergy , constEnergy , lambda , Potential , SquaredDistance

double precision :: kinTmp

integer :: iSlice , iAtom , idm , iRight

double precision , dimension(3,nAtoms) :: x

double precision , dimension (3) :: xRight , xCurr

!------------------- Calculate the total spring energy

kinEnergy = 0.0d0

kinTmp = 0.0d0

do iAtom = 1,nAtoms

kinTmp = 0.0d0

lambda = 0.5d0 / mass(iAtom)

do iSlice = 1, nSlices

iRight = iSlice + 1

if(iRight == nSlices + 1) then

iRight = 1

endif

xRight = path(:,iAtom ,iRight)

xCurr = path(:,iAtom ,iSlice)

kinTmp = kinTmp + SquaredDistance(xCurr , xRight)

97

B.3. SOURCE CODE

end do

kinTmp = kinTmp / lambda

kinEnergy = kinEnergy + kinTmp

end do

kinEnergy = kinEnergy / (4.0d0 * timeStep **2) / dble(nSlices) / dble(nAtoms)

!------------------- Calculate the total potential energy

potEnergy = 0.0d0

do iSlice = 1, nSlices

x = path(:, 1:nAtoms , iSlice)

do iAtom = 1, nAtoms

potEnergy = potEnergy + Potential(x, iAtom)

end do

end do

potEnergy = potEnergy / nSlices

if(nAtoms > 1) then

potEnergy = 0.5d0 * potEnergy

endif

constEnergy = 3.0d0 / timeStep / 2.0d0

energy = constEnergy + potEnergy - kinEnergy

end subroutine EnergyEstimator

!***

! TrailMethod.f90

!***

! Computes the single -particle density matrix using the Trail metod

! Adapted to F90 (and slightly modified) from the F77 version found in Brualla (2002).

! The dispFac parameter must be set manually , as an intial

! guess start with a number on the order of the thermal wavelength and then tune

! by hand.

!***

subroutine TrailMethod ()

use MersenneTwister

use GlobalVariables

implicit none

!------------------- Local variables

integer :: iCut , iSlice , iAtom , typeSelected , iIter , iTmp

integer :: iLeft , iHist , nTypeSelected

double precision :: typeMass , thermalWavel , potActionOld , kinActionOld , Potential

double precision :: kinFac , lambda , mu, dispFac , dx, dy, dz, SquaredDistance

double precision :: kinActionNew , potActionNew , actionDiff , rMax , dr, rMaxSq , r, rSq , L2Sq

double precision , dimension(3, nAtoms) :: x

double precision , dimension(3,nSlices + 1) :: xNew

double precision , dimension (3) :: xLeft , xCurr , xEndDist

double precision :: kinActionDiff , potActionDiff

!------------------- Initialise

typeSelected = 3

if(typeSelected == 3) then

nTypeSelected = nxCells * nyCells * nzCells * 3

elseif(typeSelected < 3) then

nTypeSelected = nxCells * nyCells * nzCells

endif

typeMass = mass(typeSelected)

lambda = 0.5d0 / typeMass

kinFac = 1.0d0 / (4.0d0 * lambda * timeStep)

dispFac = 0.075d0 * lengthFac

rMax = dispFac * 2.0d0

98

B. SOURCE CODE

dr = rMax / nHist

rMaxSq = rMax * rMax

!------------------- Begin main iteration loop

do iIter = 1, nTypeSelected

iCut = grndi(nSlices)

iAtom = grndi(nAtoms)

do while(atomType(iAtom) /= typeSelected)

iAtom = grndi(nAtoms)

end do

xNew = 0.0d0

!------------------- Compute old potential action

potActionOld = 0.0d0

iSlice = iCut

do iTmp = nSlices+1, 1, -1 !note contribution from extra bead

x = path (:,1:nAtoms ,iSlice)

potActionOld = potActionOld + Potential(x, iAtom)

iSlice = iSlice - 1

if(iSlice == 0) then

iSlice = nSlices

endif

end do

potActionOld = timeStep * potActionOld

!------------------- Compute old kinetic action

kinActionOld = 0.0d0

iSlice = iCut

do iTmp = nSlices , 1, -1

iLeft = iSlice - 1

if(iLeft == 0) then

iLeft = nSlices

endif

xLeft = path(:,iAtom ,iLeft)

xCurr = path(:,iAtom ,iSlice)

rSq = SquaredDistance(xLeft ,xCurr)

kinActionOld = kinActionOld + rSq

iSlice = iSlice - 1

if(iSlice == 0) then

iSlice = nSlices

endif

end do

kinActionOld = kinActionOld * kinFac

!------------------- Trail displacement

dx = dispFac * 2.0d0 * (grnd() - 0.5d0)

dy = dispFac * 2.0d0 * (grnd() - 0.5d0)

dz = dispFac * 2.0d0 * (grnd() - 0.5d0)

xNew(:,nSlices + 1) = path(:,iAtom ,iCut) !new bead , doesn ’t move

iSlice = iCut

do iTmp = nSlices , 1, -1

xNew(1,iSlice) = path(1,iAtom ,iSlice) + dx * dble(iTmp) / nSlices

xNew(2,iSlice) = path(2,iAtom ,iSlice) + dy * dble(iTmp) / nSlices

xNew(3,iSlice) = path(3,iAtom ,iSlice) + dz * dble(iTmp) / nSlices

xNew(:,iSlice) = xNew(:,iSlice) - boxDim * floor(xNew(:,iSlice) / boxDim)

iSlice = iSlice - 1

if(iSlice == 0) then

iSlice = nSlices

endif

end do

!------------------- Compute new kinetic action

99

B.3. SOURCE CODE

iSlice = iCut

kinActionNew = 0.0d0

do iTmp = nSlices , 1, -1

iLeft = iSlice - 1

if(iLeft == 0) then

iLeft = nSlices

endif

if(iTmp == 1) then

iLeft = nSlices + 1

endif

xLeft = xNew(:,iLeft)

xCurr = xNew(:,iSlice)

rSq = SquaredDistance(xLeft ,xCurr)

kinActionNew = kinActionNew + rSq

iSlice = iSlice - 1

if(iSlice == 0) then

iSlice = nSlices

endif

end do

kinActionNew = kinActionNew * kinFac

!------------------- Compute new potential action & action difference

potActionNew = 0.0d0

iSlice = iCut

do iTmp = nSlices , 1, -1

x = path (:,1:nAtoms ,iSlice)

x(:,iAtom) = xNew(:,iSlice)

potActionNew = potActionNew + Potential(x, iAtom)

iSlice = iSlice - 1

if(iSlice == 0) then

iSlice = nSlices

endif

end do

x = path (:,1:nAtoms ,iCut)!contribution from extra bead

x(:,iAtom) = xNew(:,nSlices + 1)

potActionNew = potActionNew + Potential(x, iAtom)

potActionNew = timeStep * potActionNew

actionDiff = potActionNew + kinActionNew - &

potActionOld - kinActionOld

!------------------- Compute end -to-end distance & add to histogram

xEndDist = path(:,iAtom ,iCut) - xNew(:,iCut)

xEndDist = xEndDist - boxDim * nint(xEndDist / boxDim)

rSq = xEndDist (1)**2 + xEndDist (2)**2 + xEndDist (3)**2

if(rSq <= rMaxSq) then

r = sqrt(rSq)

iHist = int(r / dr) + 1

if(iHist < nHist) then

actionDiff = exp(-actionDiff)

if(actionDiff > tmpMax) then

tmpMax = actionDiff

endif

endHist(iHist) = endHist(iHist) + 1

actionHist(iHist) = actionHist(iHist) + actionDiff

endif

endif

end do !end main iteration loop

end subroutine TrailMethod

!***

100

B. SOURCE CODE

! MetropolisBisection.f90

!***

! Same as the Metropolis.f90 program but with bisection moves instead of single

! slice moves.

!***

subroutine MetropolisBisection ()

use GlobalVariables

use MersenneTwister

implicit none

!------------------- Local variables

integer , parameter :: intKind = selected_int_kind (11)

integer(kind = intKind) :: nTotalAcceptCOM , nTotalCOM , nAcceptBisect , nTotalBisect

integer :: iRandAtom , iRandSlice , iAtom , iLeft , iSlice , moveType , iDum , nSpUpdates

integer :: seed , iCycle , ind , nAcceptCOM , iHist

integer :: nMovesCOM , nCheck

double precision , dimension(3,nAtoms) :: x

double precision , dimension (3) :: xNew , xOld , xLeft , displaceCOM

double precision , dimension(3, nSlices) :: xSave

double precision :: Potential , potActionOld , potActionNew , kinActionOld , kinActionNew

double precision :: potActionDiff , kinActionDiff , actionDiff , weightRatio , SquaredDistance

double precision :: currentEnergy , lambda , targetRatio , acceptRatioCOM , acceptRatioBead , totalEnergy

integer , parameter :: nLevels = 2

integer , parameter :: nClip = 2** nLevels + 1

integer :: iLevel , iClipFirst , iTmp , iBead , iStep , iFirst , iLast , iLow , iHigh , iRight , iClip

integer :: flagProceed , nCurrLevel , nMoved

double precision , dimension(3, nClip) :: xClip , xClipSave

double precision , dimension (3) :: xLow , xBead , xHigh , xRight , xCurr

double precision :: rnorm , variance , timeDiff , kinFac , potActionDiffPrev

beta = 1.0d0 / (kBoltz * temperature)

timeStep = beta / nSlices

!------------------- Initialise the Mersenne Twister PRNG

call system_clock(seed)

call init_genrand(seed)

!------------------- Initialise a random path

call InitialisePath ()

!------------------- Main loops

nAcceptCOM = 0

nMovesCOM = 0

nTotalAcceptCOM = 0

nTotalCOM = 0

nCheck = 100

targetRatio = 0.50d0

acceptRatioCOM = 0.0d0

nAcceptBisect = 0

nTotalBisect = 0

ind = 1

totalEnergy = 0.0d0

nPCorrUpdates = 0

call InitialiseProperties ()

do iCycle = 1, nCycles

!--------------------------

!Do COM moves

!--------------------------

101

B.3. SOURCE CODE

if(nSlices /= 1) then

!----------- Bisection moves

do iAtom = 1, nAtoms

nTotalBisect = nTotalBisect + 1

!iRandAtom = grndi(nAtoms) !polymer to bisect

iRandAtom = iAtom

lambda = 0.5d0 / mass(iRandAtom)

iClipFirst = grndi(nSlices) !starting bead of the clip

iSlice = iClipFirst

do iClip = 1, nClip !map the clip from path to xClip

xClip(:,iClip) = path(:, iRandAtom , iSlice)

xClipSave(:,iClip) = xClip(:,iClip)

iSlice = iSlice + 1

if(iSlice == nSlices + 1) then

iSlice = 1

endif

end do

!------ Loop over levels , starting at the coarsest level

potActionDiffPrev = 0.0d0

flagProceed = 0

do iLevel = nLevels , 1, -1

iStep = 2**(iLevel -1)

timeDiff = timeStep * dble(iStep)

variance = sqrt(lambda * timeDiff)

nMoved = 2**(nLevels - iLevel) !#beads sampled in current level

!--- Sample new beads in current level

iClip = 1 + iStep !index of first bead to be sampled in current level

do iTmp = 1, nMoved

iLow = iClip - iStep

iHigh = iClip + iStep

xCurr = xClip(:,iClip)

xLow = xCurr - xClip(:,iLow) !sample new bead

xHigh = xClip(:,iHigh) - xCurr

xLow = xLow - Lx * nint(xLow / Lx)

xHigh = xHigh - Lx * nint(xHigh / Lx)

xLow = xCurr - xLow

xHigh = xCurr + xHigh

xClip(1,iClip) = 0.5d0 * (xLow (1) + xHigh (1)) + variance * rnorm()

xClip(2,iClip) = 0.5d0 * (xLow (2) + xHigh (2)) + variance * rnorm()

xClip(3,iClip) = 0.5d0 * (xLow (3) + xHigh (3)) + variance * rnorm()

xClip(:,iClip) = xClip(:,iClip) - Lx * floor(xClip(:,iClip) / Lx)

iClip = iClip + 2 * iStep !proceed to next bead in current level

end do

!--- Calculate potential action difference

nCurrLevel = 2**(nLevels - iLevel + 1) - 1 !beads in current level

potActionOld = 0.0d0

potActionNew = 0.0d0

iClip = 1 + iStep

iSlice = iClipFirst + iStep

if(iSlice > nSlices) then

iSlice = iSlice - nSlices

endif

do iTmp = 1, nCurrLevel

x = path (:,1:nAtoms ,iSlice)

potActionOld = potActionOld + Potential(x, iRandAtom)

x(:,iRandAtom) = xClip(:,iClip)

potActionNew = potActionNew + Potential(x, iRandAtom)

iClip = iClip + iStep

102

B. SOURCE CODE

iSlice = iSlice + iStep

if(iSlice > nSlices) then

iSlice = iSlice - nSlices

endif

end do

potActionDiff = timeDiff * (potActionNew - potActionOld)

!--- Metropolis rejection step

actionDiff = potActionDiff - potActionDiffPrev

potActionDiffPrev = potActionDiff

if(actionDiff < 0.0d0) then

flagProceed = 1 !proceed to next level

elseif(actionDiff > 75.0d0) then

flagProceed = 0 !reject entire move

exit

else

weightRatio = exp(-actionDiff)

if(grnd() <= weightRatio) then

flagProceed = 1 !proceed to next level

else

flagProceed = 0

exit

endif

endif

end do !---- end loop over levels

if(flagProceed == 1) then !bisection move was accepted

nAcceptBisect = nAcceptBisect + 1

iSlice = iClipFirst

do iClip = 1, nClip

path(:,iRandAtom ,iSlice) = xClip(:,iClip)

iSlice = iSlice + 1

if(iSlice == nSlices + 1) then

iSlice = 1

endif

enddo

else !else revert to old positions

iSlice = iClipFirst

do iClip = 1, nClip

path(:,iRandAtom ,iSlice) = xClipSave(:,iClip)

iSlice = iSlice + 1

if(iSlice == nSlices + 1) then

iSlice = 1

endif

enddo

endif

end do !---- end loop over atoms

endif !--- end if nSlices /= 1

!--

!Adjust to get a 50 percent acceptance ratio for COM moves

!---------------------------------------

!--

! Calculate and update properties

!---------------------------------------

103

B.3. SOURCE CODE

end do !---- end loop over cycles

call AverageProperties ()

call WriteProperties ()

end subroutine MetropolisBisection

!***

! OpenChain.f90

!***

! The open chain algortihm for calculating the end -to-end distance distribution.

! Note that this basically includes the entire PIMC main code since using an

! open chain requires a specific simulaton and no other diagonal properties

! can be calculated at the same time.

!***

subroutine MetropolisOpen ()

use GlobalVariables

use MersenneTwister

implicit none

!------------------- Local variables

integer :: iRandAtom , iRandSlice , iAtom , iRight , iLeft , iSlice

integer :: moveType , iDum , nSpUpdates , nLast , iOpenAtom

integer :: nPCorrUpdates , seed , iCycle , ind , nAcceptCOM

integer :: nAcceptBead , nTotalCOM , nTotalBead , iHist , iCut

integer :: flagCase , iCutNext

double precision , dimension(3,nAtoms) :: x

double precision , dimension (3) :: xNew , xOld , xRight , xLeft , displaceCOM , xEndDist

double precision , dimension(3, nSlices +1) :: xSave

double precision :: Potential , potActionOld , potActionNew , kinActionOld , kinActionNew

double precision :: potActionDiff , kinActionDiff , actionDiff , weightRatio

double precision :: currentEnergy , lambda , r, rMax , rSq , rMaxSq , dr, SquaredDistance

beta = 1.0d0 / (kBoltz * temperature)

timeStep = beta / nSlices

!------------------- Initialise the Mersenne Twister PRNG

call system_clock(seed)

call init_genrand(seed)

!------------------- Initialise a random path

call InitialisePath ()

!------------------- Main loops

nAcceptBead = 0

nAcceptCOM = 0

nTotalBead = 0

nTotalCOM = 0

flagCase = 0

!open chain

iOpenAtom = 34

iCut = grndi(nSlices)

iCutNext = iCut + 1

if(iCutNext == nSlices + 1) then

iCutNext = 1

endif

path(:,iOpenAtom ,nSlices + 1) = path(:,iOpenAtom ,iCut)

!rMax = boxDim (1) / 2.0d0 !for the histogram

rMax = 0.6d0 * lengthFac

dr = rMax / dble(nHist)

104

B. SOURCE CODE

rMaxSq = rMax * rMax

do iCycle = 1, nCycles

!------------------- Centre of mass displacement

nTotalCOM = nTotalCOM + 1

iRandAtom = grndi(nAtoms)

displaceCOM (1) = deltaCOM * (2.0d0 * grnd() - 1.0d0)

displaceCOM (2) = deltaCOM * (2.0d0 * grnd() - 1.0d0)

displaceCOM (3) = deltaCOM * (2.0d0 * grnd() - 1.0d0)

if(iRandAtom == iOpenAtom) then

nLast = nSlices + 1

else

nLast = nSlices

endif

potActionDiff = 0.0d0

do iSlice = 1, nLast

x = path(:,:,iSlice)

potActionOld = Potential(x, iRandAtom)

xNew = path(:,iRandAtom ,iSlice) + displaceCOM

xNew = xNew - boxDim * floor(xNew / boxDim)

x(:,iRandAtom) = xNew

xSave(:,iSlice) = xNew

potActionNew = Potential(x,iRandAtom)

potActionDiff = potActionDiff + potActionNew - potActionOld

end do

!----- Metropolis rejection step

actionDiff = timeStep * potActionDiff

if(actionDiff < 0.0d0) then

do iSlice = 1, nLast

path(:,iRandAtom ,iSlice) = xSave(:,iSlice)

end do

nAcceptCOM = nAcceptCOM + 1

elseif(actionDiff > 75.0d0) then

!if the exponent is too big automatically reject

else

weightRatio = exp(-actionDiff)

if(grnd() <= weightRatio) then

do iSlice = 1, nLast

path(:,iRandAtom ,iSlice) = xSave(:,iSlice)

end do

nAcceptCOM = nAcceptCOM + 1

else

!reject

endif

endif

do iAtom = 1, nAtoms

!------------------- Single bead moves

do iDum = 1, nSlices

nTotalBead = nTotalBead + 1

iRandAtom = grndi(nAtoms)

if(iRandAtom == iOpenAtom) then

nLast = nSlices + 1

else

nLast = nSlices

endif

iRandSlice = grndi(nLast)

x = path(:,:, iRandSlice)

105

B.3. SOURCE CODE

xOld = x(:,iRandAtom)

potActionOld = Potential(x, iRandAtom)

!----- Generate a trial state

xNew (1) = xOld (1) + deltaBead * (2.0d0 * grnd() - 1.0d0)

xNew (2) = xOld (2) + deltaBead * (2.0d0 * grnd() - 1.0d0)

xNew (3) = xOld (3) + deltaBead * (2.0d0 * grnd() - 1.0d0)

xNew = xNew - boxDim * floor(xNew / boxDim) !translate back into box

x(:,iRandAtom) = xNew

potActionNew = Potential(x, iRandAtom)

potActionDiff = timeStep *(potActionNew - potActionOld)

if(iRandAtom /= iOpenAtom) then

!----- closed chain (ring polymer condition)

if(iRandSlice == nSlices) then

iLeft = nSlices - 1

iRight = 1

elseif(iRandSlice == 1) then

iLeft = nSlices

iRight = 2

else

iRight = iRandSlice + 1

iLeft = iRandSlice - 1

endif

xRight = path(:, iRandAtom , iRight)

xLeft = path(:, iRandAtom , iLeft)

!----- Compute the kinetic (spring) energy difference

kinActionOld = SquaredDistance(xOld ,xLeft) + SquaredDistance(xRight ,xOld)

kinActionNew = SquaredDistance(xNew ,xLeft) + SquaredDistance(xRight ,xNew)

kinActionDiff = kinActionNew - kinActionOld

lambda = 0.5d0 / mass(iRandAtom)

kinActionDiff = kinActionDiff / (4 * lambda * timeStep)

!actionDiff = potActionDiff + kinActionDiff

else

!----- Open chain

if(iRandSlice == iCut) then !no bead to the right

iLeft = iCut - 1

if(iLeft == 0) then

iLeft = nSlices

endif

xLeft = path(:,iOpenAtom ,iLeft)

kinActionOld = SquaredDistance(xOld ,xLeft)

kinActionNew = SquaredDistance(xNew ,xLeft)

elseif(iRandSlice == nSlices + 1) then !no bead to the left

iRight = iCutNext

xRight = path(:,iOpenAtom ,iRight)

kinActionOld = SquaredDistance(xOld ,xRight)

kinActionNew = SquaredDistance(xNew ,xRight)

elseif(iRandSlice == iCutNext) then !nSlices + 1 to the left , iCut + 2 to the right

iLeft = nSlices + 1

iRight = iCutNext + 1

xLeft = path(:,iOpenAtom ,iLeft)

xRight = path(:,iOpenAtom ,iRight)

kinActionOld = SquaredDistance(xOld ,xLeft) + SquaredDistance(xRight ,xOld)

kinActionNew = SquaredDistance(xNew ,xLeft) + SquaredDistance(xRight ,xNew)

106

B. SOURCE CODE

else !beads in both directions

iRight = iRandSlice + 1

iLeft = iRandSlice - 1

if(iRight == nSlices + 1) then

iRight = 1

endif

if(iLeft == 0) then

iLeft = nSlices

endif

xLeft = path(:,iOpenAtom ,iLeft)

xRight = path(:,iOpenAtom ,iRight)

kinActionOld = SquaredDistance(xOld ,xLeft) + SquaredDistance(xRight ,xOld)

kinActionNew = SquaredDistance(xNew ,xLeft) + SquaredDistance(xRight ,xNew)

endif

lambda = 0.5d0 / mass(iRandAtom)

kinActionDiff = kinActionNew - kinActionOld

kinActionDiff = kinActionDiff / (4 * lambda * timeStep)

endif !----- End open / closed chain

actionDiff = potActionDiff + kinActionDiff

!----- Metropolis rejection step (regardless of open/closed chain)

if(actionDiff < 0.0d0) then

!always accept downhill moves

path(:,iRandAtom , iRandSlice) = xNew

nAcceptBead = nAcceptBead + 1

elseif(actionDiff > 75.0d0) then

!if the exponent is too big automatically reject

else

weightRatio = exp(-actionDiff)

if(grnd() <= weightRatio) then

path(:,iRandAtom , iRandSlice) = xNew

nAcceptBead = nAcceptBead + 1

else

!reject

endif

endif

end do !---- end do idum

end do !---- end loop over atoms

if(iCycle > nBurnIn) then

!end to end distance histogram

xEndDist = path(:,iOpenAtom ,iCut) - path(:,iOpenAtom ,nSlices + 1)

xEndDist = xEndDist - boxDim * nint(xEndDist / boxDim)

rSq = xEndDist (1)**2 + xEndDist (2)**2 + xEndDist (3)**2

if(rSq <= rMaxSq) then

r = sqrt(rSq)

iHist = int(r / dr) + 1

if(iHist < nHist) then

endHist(iHist) = endHist(iHist) + 1

endif

endif

endif

end do !---- end loop over cycles

end subroutine MetropolisOpen

107

	Introduction
	Purpose and scope of the thesis
	Reading guide

	Barium zirconate
	The cubic perovskite structure
	Antiferrodistortive instabilities and octahedral tilting
	A quick note on unit systems

	Inter-atomic interactions
	Potentials
	The model potential part I: Short-range interactions
	Computer simulations and periodic boundary conditions
	An algorithm for calculating the potential
	The model potential part II: Long-range interactions and the Ewald summation

	The Monte-Carlo method
	Ensemble averages
	Monte-Carlo integration
	The Metropolis-Hastings algorithm
	The complete Metropolis Monte Carlo algorithm
	The pair correlation function

	Quantum statistical mechanics and path integrals
	The density operator
	The thermal density matrix
	Path integrals
	The classical isomorphism
	The path integral Monte Carlo method
	Estimators
	Improving the sampling
	Centre of mass displacements
	The Bisection Algorithm

	The momentum distribution
	Algorithms for computing for the momentum distribution
	The open chain method
	The trail method

	Results
	Verification part I: The potential
	Model potentials and antiferrodistortive instabilities
	Verification part II: The Path Integral Monte-Carlo method
	Barium Zirconate
	Internal energy
	The pair correlation function
	The momentum distribution

	Discussion
	Inter-atomic interactions and the Ewald summation
	Simulation algorithms
	The sampling of new paths
	Calculating the momentum distribution

	Properties of barium zirconate
	The momentum distribution

	Outlook and future prospects

	Conclusions
	References
	The Ewald Summation
	Notes on programming
	Programming in Fortran 90
	Random number generation
	Source code

