
Power Estimation for DSP Components
for Fiber-Optic Communication Systems
Master’s thesis in Embedded Electronic System Design

Lorenzo Chelini

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY | UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2017

Master’s thesis 2017

LORENZO CHELINI

Department of Computer Science and Engineering
Chalmers University of Technology | University of Gothenburg

Gothenburg, Sweden 2017

Power Estimation for DSP Components for Fiber-Optic Communication Systems
LORENZO CHELINI

© LORENZO CHELINI, 2017.

Supervisor: Per Larsson-Edefors, Department of Computer Science and Engineering
Examiner: Lena Peterson, Department of Computer Science and Engineering

Master’s Thesis 2017
Department of Computer Science and Engineering
Chalmers University of Technology | University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2017

iv

Power Estimation for DSP Components for Fiber-Optic Communication Systems
LORENZO CHELINI
Department of Computer Science and Engineering
Chalmers University of Technology | University of Gothenburg

Abstract
In this thesis, we propose and examine a power estimation method for Finite Impulse
Response (FIR) filters used in short-reach fiber-optic communication systems, where
limitations on size and power consumption start to become a critical design metric.
We first implement a library of optimized FIR filter netlists that can satisfy the
high performance required for optical communication. Second, we analyze the FIR
filter implementations and we propose a new activity-based macromodeling strategy.
More precisely, the model makes use of the switching activity of the logic inputs to
estimate the power consumption at architectural level. Following the taxonomy
available in the literature, our estimator tool can be classified as a cycle-accurate
macromodel and it consists of two phases: characterization and power estimation.
The characterization is a fully automated procedure that takes as input a netlist
and generates power values using gate-level simulations. Those values are classified
accordingly to the Hamming distance of each input pair and tabulate in pre-defined
structures. Characterization needs to be done only once for each filter architecture at
a reasonably strict timing constraint. The power estimation takes as inputs the pre-
defined tables, input trace, and produces power values in a cycle-by-cycle manner.
The average power is computed summing up the per-cycle power values and divide
the sum by the duration of the input trace expressed in clock cycles. A key strength
of our proposed solution is that it provides results within seconds since we do not
need to perform additional simulations during power estimation. For the operand
word-lengths tested the error was below 15 percent for most of the circuits. The
only exception was for the 8-bit input and 6-bit coefficient and the 8-bit input and
10-bit coefficient where the error was above 15 percent. The results are promising
and demonstrate the practicability and validity of this approach.

v

The Authors grants to Chalmers University of Technology the non-exclusive right to
publish the Work electronically and in a non-commercial purpose make it accessible
on the Internet. The Authors warrants that he/she is the author to the Work,
and warrants that the Work does not contain text, pictures or other material that
violates copyright law. The Author shall, when transferring the rights of the Work
to a third party (for example a publisher or a company), acknowledge the third
party about this agreement. If the Authors has signed a copyright agreement with
a third party regarding the Work, the Authors warrants hereby that he/she has
obtained any necessary permission from this third party to let Chalmers University
of Technology store the Work electronically and make it accessible on the Internet.

vi

Acknowledgements
I would like to thank my supervisor Per Larsson-Edefors. He has always been
very present and he supported me with his valuable advice. A special thank to
Lars Lundberg for providing me the MATLAB script to test my model in real case
scenarios. Thanks to Christoffer Fougstedt for valuable discussions and the parallel
filter provided.

Lorenzo Chelini, Gothenburg, June 2017

vii

Contents

List of Figures xi

List of Tables xiii

Acronyms 1

1 Introduction 3
1.1 Context and Motivation . 3
1.2 Goals and Challenges . 4
1.3 Assumptions and Limitations . 4
1.4 Ethics . 5
1.5 Thesis Organization . 5

2 Background 7
2.1 Complexity of Electronic Devices . 7
2.2 Design Partitioning and Design Reuse 7
2.3 Design Abstraction . 8
2.4 Power Estimation in the Design Flow 9
2.5 RT level Power Estimation . 10

2.5.1 Top-down Approach . 10
2.5.2 Bottom-up Approach . 12

3 Power Dissipation in CMOS 19
3.1 Mechanisms of Power Dissipation in CMOS 19

3.1.1 Switching Power . 19
3.1.2 Short-circuit Power . 21
3.1.3 Subthreshold Leakage Power 22
3.1.4 Gate-Leakage Power . 23

3.2 Glitch Power . 24

4 Filter Design 25
4.1 FIR Filter . 25
4.2 Complex FIR Filter . 27

5 RT Level Power Estimation 29
5.1 Recommended Estimation Flow in RC-LP Engine 29
5.2 Mechanisms of Power Consumption in RC-LP Engine 30

ix

Contents

5.3 Proposed Macromodel . 31
5.3.1 Characterization . 32
5.3.2 Power Estimation . 36

6 Results and Discussion 37
6.1 Atomic Structure . 37
6.2 Results on FIR filter . 38

6.2.1 Statistics of Input Signal . 38
6.2.2 Clock Frequency . 40
6.2.3 Coefficient Word-length . 43
6.2.4 Coefficient Update . 47
6.2.5 Roll-off . 49

7 Conclusion 51
7.1 Achievement . 51
7.2 Future Work . 52

Bibliography 53

A Appendix 1 I
A.1 Suggested flow in RC-LP engine . I

x

List of Figures

2.1 Possible decomposition of a CPU design. 8
2.2 Gajski-Kuhn Y-chart. 9
2.3 Different abstraction levels. 10
2.4 Table construction. Four metrics m0, m1, m2 and m3 are extracted

form the input data. For each set of those selected metrics a power
value is assigned averaging the power values obtained from gate-level
simulations. 13

2.5 Table look-up. The metrics selected during characterization m0, m1,
m2 and m3 are extracted from the input data and used to index the
table. 14

2.6 Flow chart for the clustering algorithm. 17

3.1 Equivalent circuit during a low-to-high transition. 20
3.2 Large load capacitance. 22
3.3 Small load capacitance. 22
3.4 Short-circuit current for one low-to-high and one high-to-low transitions. 22
3.5 Increase in the subthreshold current for different technologies 23
3.6 Example of a circuit showing a glitch generation. 24

4.1 Schematic representation for a direct implementation of an FIR filter.
This architecture is also known as tapped delay line. 26

4.2 Schematic representation for a transposed form implementation of an
FIR filter. 26

4.3 Basic building block of an FIR filter. 27
4.4 Complex FIR filter built with three real FIR filters. 28

5.1 Mechanisms of power dissipation within an instance. 31
5.2 Q-Q plot for Hamming class three. 34

6.1 Average and instantaneous power values associated with the Ham-
ming distance computed on the input pins. For each Hamming class
the blue “*” represents the instantaneous power values, while the
orange “*” the average value. 38

6.2 Observed regions for the real signal. 39

xi

List of Figures

6.3 Circuit synthesized at 833.33 MHz. The simulations are performed
in a range from 833.33 MHz to 500 MHz. In this case the zero-delay
model is considered for the simulations. The input is 10 bit while the
coefficients are 8 bit. 41

6.4 Circuit synthesized at 833.33 MHz. The simulations are performed
in a range from 833.33 MHz to 500 MHz. In this case the zero-delay
model is considered for the simulations. The input is 6 bit while the
coefficients are 5 bit. 42

6.5 Circuit synthesized at 833.33 MHz. The simulations are performed
in a range from 833.33 MHz to 500 MHz. In this case the zero-delay
model is considered for the simulations. The input is 8 bit while the
coefficients are 6 bit. 42

6.6 Power surface considering different input-coefficient combinations in
a 19-tap transposed FIR filter. The input range from 5 to 10 bits
while the coefficients from 5 to 12. 44

6.7 Netlist synthesized and simulated at 833.33 MHz. We consider a 6-bit
input, while a range from 5 to 8 bits for the coefficients. 44

6.8 Netlist synthesized and simulated at 833.33 MHz. We consider a
10-bit input, while a range from 8 to 12 bits for the coefficients. . . . 45

6.9 Netlist synthesized and simulated at 833.33 MHz. We consider a 8-bit
input, while a range from 6 to 10 bits for the coefficients. 45

6.10 Netlist synthesized and simulated at 1 GHz. We consider a 6-bit
input, while a range from 5 to 8 bits for the coefficients. 46

6.11 Netlist synthesized and simulated at 1 GHz. We consider a 8-bit
input, while a range from 6 to 10 bits for the coefficients. 47

6.12 Power values considering different coefficients update frequencies for
a 10-bit input and 8-bit coefficients transposed FIR filter. 48

6.13 Power values considering different coefficients update frequencies for
a 6-bit input and 5-bit coefficients transposed FIR filter. 48

6.14 Power values considering different coefficients update frequencies for
a 8-bit input and 6-bit coefficients transposed FIR filter. 49

6.15 Power values for different roll-off values for a FIR filter with 8-bit
input and 6-bit coefficients. 50

A.1 Suggested flow for low power features I

xii

List of Tables

6.1 The table shows the results obtained from the toggle count format
file for an 8-bit input 6-bit coefficients FIR transposed filter. The left
columns show the results for a random trace. The right columns for
a real trace generated from a square-root-raised-cosine filter imple-
mented in MATLAB. 39

6.2 Power values for an 6-bit input and 5-bit coefficients FIR filter. The
first column shows the reference value. The second and the third
columns show power values obtained considering a characterization
based on typical and random coefficients. 40

xiii

List of Tables

xiv

Acronyms

ASIC Application specific integrated circuit
ALU arithmetic logic unit
CMOS Complementary metal oxide semiconductor
CPU Control processing unit
DSP Digital signal processor
EDA Electronic design automation
FIR Finite impulse response
FPGA Field-Programmable Gate Array
FPU Floating-point unit
IC Integrated circuit
LUT Look-up table
MAC Multiplier–accumulator
NMOS N-type metal-oxide-semiconductor
PMOS P-type metal-oxide-semiconductor
SoC System-on-a-Chip
RTL Register transfer level
SAIF Switching activity interchange format
SDF Standard delay format
STA Static timing analysis
TCF Toggle count format
VCD Value change dump
VLSI Very-large-scale integration

1

ACRONYMS

2

1
Introduction

Today more than ever, power consumption is one of the major metrics in the VLSI
design process, equaling area and performance [1]. In the deep-submicron era, the
power density of modern microprocessors has risen above 100 W/cm2 [2] leading
to elevated junctions temperatures that reduce reliability and performance of the
devices. Fans and heat sinks can be used to get rid of all this heat but they are
expensive and prone to malfunctions [3]. Therefore, nowadays having power esti-
mation in the early stage of the design is a critical issue, not only for the allocation
of the power budget but also for reducing the time to market; it is unfeasible to
synthesize different design architectures down to the gate level in a reasonable time
and then choose the one that meets our design constraints in terms of power, area
and performance. As a consequence power estimation tools are necessary today in
order to give the designers the possibility to widely explore the architectural design
space and to re-target architectural choices early on. This thesis will propose and ex-
amine a power estimation method for Finite Impulse Response (FIR) filters used in
fiber-optic communication receivers. Since limitations on size and power consump-
tion start to become a critical design metric for receivers that work in short-reach
systems [4], [5].

1.1 Context and Motivation

Although a broad body of research has been carried out on high-level power esti-
mation, to the best of our knowledge, it is not possible to extract accurate power
estimation directly from mathematical modeling tools like MATLAB. Cardarilli et
al. [6] developed an algorithm for power evaluation of digital filters implemented on
FPGA taking into account the current drawn by each filter architecture. Their so-
lution provides power evaluation considering random-generated input vectors. How-
ever, when dealing with applications for optical communications, properties of the
input signal can be exploited to obtain more accurate power estimations. In addi-
tion, methodologies that based their characterization on completely random vectors
give erroneous estimations when real traces are considered [7].

3

1. Introduction

1.2 Goals and Challenges

Nowadays, with increasing system complexity, obtaining accurate power estimations
at micro-architectural level is becoming more and more complex. Power consump-
tion depends not only on different parameters such as switching activity and input
correlations, but it also widely depends on cell sizing. Thus it is more difficult to
estimate power consumption before the design has been refined down to gate level
by the synthesis tool. Moreover, due to technology scaling, delay and capacitance
introduced by wiring are becoming one of the main mechanisms of power consump-
tion in ASICs [8]. Another aspect that should be taken into account while dealing
with power estimation is that the average power is strongly related to the input
patterns, such as average probability and transition density probability. Moreover,
the relation between these two metrics (power and input patterns) has been proven
to be nonlinear [9]. Hence it is difficult, in most of the cases, to find a mathemati-
cal model, leading us to think that a method based on tables could be a practical
solution [9].
Table-based models have been extensively studied and proposed in recent years,
however when dealing with these methods, it is essential to understand which metrics
capture the features that are mainly responsible for the power consumption within
the design [10].
The aim of this master thesis is to develop a power estimation methodology target-
ing:

• Run-time efficiency in the evaluation, otherwise we could just rely on low-level
tools for power characterization.

• Relative accuracy, meaning that the algorithm should provide accurate estima-
tions even if the environment of the circuit is not completely defined. Notice
that with the word “accuracy” we address the relative accuracy that in high
level power estimation tools is considered to be more important than the ab-
solute accuracy, the main goal being the comparison among different design
choices [11]. We are targeting an accuracy of 25 percent from the power value
obtained at gate level.

• Automation, meaning that the estimation flow should be automated, with no
user intervention.

1.3 Assumptions and Limitations

We rely on the fact that the user explicitly indicates which filter is assumed, in terms
of e.g. taps and resolution, at the algorithmic level. We restrict ourselves to a set
of filter architectures; specifically we will focus on a transposed implementation of
an FIR filter.

4

1. Introduction

1.4 Ethics

The power values, gathered during the different synthesis, will be obtained in full
compliance with the aim of research such as clarity, validity and avoidance of errors.
The methodology used to collect these data will be clearly explained.

1.5 Thesis Organization

The report is organized as follows:
Chapter 2 Background: in chapter two we introduce the reader to different meth-
ods for power estimation at RT level. We mainly focus on top-down and bottom-up
approaches.
Chapter 3 Power Dissipation in CMOS: in chapter three we detail all the
mechanisms of power consumption in CMOS technology.
Chapter 4 Filter Design: in chapter four we describe how the filters have been
implemented in VHDL.
Chapter 5 RT Level Power Estimation: in chapter five the core of our work
is presented. We first briefly discuss the recommended flow for power estimation
suggested by the EDA vendor. Then, we propose our approach to power estimation.
Chapter 6 Results and discussion: in chapter six we present our results as well
as highlight the pros and cons of our approach.
Chapter 7 Conclusion: Finally, in chapter seven we summarize the achievements
of our work and we give recommendations for future work.

5

1. Introduction

6

2
Background

The purpose of this chapter is to introduce the readers to the concept of power
estimation and to present different methods that have recently been proposed in the
literature. First, a brief overview of the complexity of present day digital designs
will be presented. Subsequently, different flows for power estimation at different
architectural levels will be reviewed, comparing accuracy and computational com-
plexity. Finally, the concept of register transfer (RT) level power estimation will be
introduced in addition to different categories of macromodel techniques.

2.1 Complexity of Electronic Devices

The continuing decrease in feature size for very large integrated circuits (VLSI) has
resulted in an unprecedented level of integration. While the end user can benefit
from such a high level of integration, having more functionality embedded on the
same die, the systems designers have to face a growing design complexity. In order
to cope with that different techniques have been introduced: system partitioning
and design reuse.

2.2 Design Partitioning and Design Reuse

Design partitioning relies on the idea that a problem can be always decomposed
into smaller sub-parts until these sub-parts become manageable in term of size and
complexity [12]. Once these sub-systems have been identified, they are recursively
solved and their solutions combined to solve the original problem. When applied to
VLSI, this means that the design is broken down in a hierarchical way into smaller
sub-units that can be independently designed. For example, a complex system like a
CPU, can be seen as the interaction between two separate components: the datapath
and the control unit. The datapath can be further divided into ALU, FPU and so on.
Again the ALU, can be further split into different sub-modules like adder, multiplier,
divider and registers. This is depicted in Fig. 2.1.
In other words, design partitioning not only allows designers to speed up the design
process, but it also helps them to cope with the design complexity, spreading it
across different sub-designs. Another method to reduce design complexity leverages

7

2. Background

CPU

Datapath Control

ALU FPU

Adder Multiplier

Figure 2.1: Possible decomposition of a CPU design.

on the reuse of pre-designed circuits. The idea behind the use of silicon IP (or cores)
is to provide the system on a chip (SoC) designers with a suite of pre-verified blocks
that can be integrated onto the chip to realize complex functions [13].
Further steps to increase the design granularity and hence decreasing the overall
complexity led to the introduction of the platform-based design (PBD). Carloni
and coauthors [14] defined platform-based design as a “meet-in-the-middle process
where design specifications meet abstractions of potential design implementations”.
Conceptually, platform-based design aims to standardize buses or component archi-
tectures and reduce the custom interfaces design to contain development risks and
gain productivity [15].

2.3 Design Abstraction

The term abstraction refers to the degree of details we are concerned with at a given
stage during the design process, specifically, we can identify four main abstraction
levels, namely: algorithm, register transfer, gate and transistor [16]. At algorithm
level, the digital design is described using high-level programming languages like C,
System-C or MATLAB. Thus its functionalities are described as a flow of instructions
that is executed in sequence to perform a specific task [16]. At register transfer level,
the design is modeled as a flow of signals between physical registers. Finally, at gate
level and transistor level the design is specified as a set of geometrical entities, logic
gates and transistors respectively.
At each level of abstractions, we can describe the circuit according to different views,
in more detail: the behavioral or functional view specifies the circuit’s functionality
without considering its implementation. Behavioral descriptions are used when we
want to visualize abstractly the different interactions among the elements of the cir-
cuit. The architectural view describes a circuit as the interconnection of components
(e.g., registers, adders, multipliers, ALU). We are looking at the connectivity that
exists between the building blocks rather than focusing on the overall functionality.
Notice that, given a behavioral description we can always come up with different

8

2. Background

structural views for the same network. Finally, the physical view deals with the
geometry of a circuit and the physical objects (e.g. transistors).
The intersection between a level of abstraction and a view is the so called circuit
model [12]. The three design domains and the different levels of abstraction are
depicted in the well know Y-chart, shown in Fig. 2.2.

Behavioral Domain Structural Domain

Physical Domain

Systems
Algorithms

Register transfers
Logic

Transfer functions

Processors
ALUs, RAM, etc.

Gates, flip-flops, etc.
Transistors

Physical partitions

Floorplans

Module layout

Cell layout

Transistor layout

Figure 2.2: Gajski-Kuhn Y-chart [17].

2.4 Power Estimation in the Design Flow

Depending on the level of abstraction and availability of physical information, dif-
ferent estimation methodologies can be used, with corresponding variations in terms
of speed and accuracy. At higher level of abstractions such as algorithm level, only
spread-sheets are available to obtain coarse estimations. At this earliest stage, the
most power-hungry components within the design can be identified. At register
transfer level, more details about the design are specified, since it is described as a
set of primitives (or macros) such as adders, multipliers, dividers and registers [16].
Still, at this stage, it is not possible to provide accurate power predictions, unless
relying on specific primitives architectures. At gate level, not only the macro’s im-
plementations are known but also physical information about cells is provided by
the IC vendors and EDA tools offer methodologies for wiring estimation. Hence at
this stage, the accuracy can be greatly improved. However, even if it is possible to
increase the accuracy, due to the short time to market, it is not feasible for today’s
system designers to widely explore the design space. At even lower level, circuit
simulators, such as SPICE, can be used to estimate power; however, these simu-
lators are too slow and the simulation is only feasible for fairly small circuits [18].
Fig. 2.3 shows the different levels of abstraction. It should be clear that higher levels
of abstraction offer higher power saving opportunities but a lower accuracy in the
power estimation.

9

2. Background

Algorithm level

RT level

Gate level

Transistor level

Figure 2.3: Different abstraction levels.

2.5 RT level Power Estimation

RT level power estimation techniques have been extensively studied in the last
decade [19]. The main reason can be identified in the need to provide accurate
power evaluations (with accuracy comparable to gate level) while maintaining the
computational efficiency of the RT level simulations, notably faster than the ones
performed at lower levels. In other words, most of these techniques evaluate, based
on some metrics available at RT level, the power consumption of a given circuit’s
architecture and upon this information creates a model. Eventually, the model will
be used, later on, to provide fast and accurate power estimation at RT level while
evaluating different designs alternatives [10].
RT level power estimation techniques can be broadly classified in two categories:
top-down or bottom-up approaches.

2.5.1 Top-down Approach

Top-down methods attempt to estimate the power consumption when the circuit is
described only by Boolean equations, without having any information on its gate-
level implementation [9]. These methods are useful when an implementation is not
yet available to provide a rough measurement for power consumption. However, their
usage is quite limited due to lack of implementation details for the target circuit
that leads to a low accuracy in the estimation process [20]. Top-down approaches
can be further classified as complexity based and information based.

Information-based Macromodeling

Information-based macromodels are based on the concept of entropy. If x is a
random Boolean variable having probability P of being high, then the entropy is
defined as following:

10

2. Background

H(x) = Plog2
1
P + (1− P)log2

1
(1− P) . (2.1)

Intuitively, the entropy can be seen as the amount of information carried by a sig-
nal. Najm and Nemani [21], proposed a technique to estimate the average dynamic
power consumption in a combinational circuit, given only the Boolean representa-
tion. In the paper, they stated that the average power consumed by a circuit can
be approximated with:

Pavg = 1
2

N∑
i=1

CiD(Xi) (2.2)

where the unknowns are the node capacitance Ci and the transition density of node
Xi defined as D(Xi). By doing some approximations and simplifications, due to
the fact that the internal representation of the circuit is not known, 2.2 can be
approximated as:

Pavg ≈ D
N∑
i=1

Ci (2.3)

where
N∑
i=1

Ci is an estimation of the total circuit capacitance and D is the average
node transition density. The former can be evaluated directly from the complexity
of the Boolean function [22]. The latter can be estimated using the following formula
[21], under the assumption that the average transition density is proportional to the
average entropy

havg ≈
2

3(n+m)(hin + 2hout). (2.4)

hin and hout are the entropy values computed on the input and on the output re-
spectively; while n and m are the numbers of input and output bits respectively.
Recently Dhaou et al. [23] proposed a new technique for low-power characterization
still based on entropy as information measurement. However in contrast to previous
techniques, they relied also on gate level simulations to achieve better accuracy. The
authors claim to obtain an average error less than 16 percent compared to SPICE
simulations.

Complexity-based Macromodeling

Complexity-based macromodels bind the design power consumption with some met-
rics that approximate the circuit complexity. Example of such metrics are: the num-
ber of cubes or the cube’s complexity within the Boolean function, that describes
the circuit functionality. Nemani and Najm [24] address the problem of estimating

11

2. Background

the average area and, hence, the power consumption for single-output Boolean func-
tion, considering the average cube complexity. They stated that the average power
consumption is proportional to

Pavg ≈ DavgACavg (2.5)

where Davg is the average node switching activity, A is the area estimation and Cavg
the average node capacitance considering a specific gate library. The work has lately
been extended to include multiple-output Boolean functions [25]. Other methods
that fall within this category are based on the concept of equivalent gates. Following
this definition the power dissipated by a given block can be roughly approximated
as the number of equivalent gates multiplied by the power consumption of a single
instance, representing the reference gate.

2.5.2 Bottom-up Approach

The idea behind the bottom-up approach is to construct a model based on existing
implementations. Power values for a given circuit are extracted using extensive
gate-level (or transistor-level) simulations. Subsequently, these values are used to
build up the macromodel that can later be used for high-level power estimations. A
macromodel can thus be defined as a function that binds the power consumed (the
dependent variable) to a set of metrics (the independent variables). More formally:

Pow = f(X1, X2, ..., Xn). (2.6)

It is worth to mention already at this point that one of most challenging aspects,
while constructing a macromodel, is the choice of the metrics Xi [26].
Bottom-up techniques consist of two main stages: characterization and estimation.
Characterization is the process by which the macromodel is trained to improve the
accuracy. The training process could be based on gate-level or transistor-level sim-
ulations repeated for a given number of input vectors. Since the characterization
process is done only once for each of the components within the library, the compu-
tational complexity and the execution time is allowed to be high. The tricky part
during this process is to find out which kind of metrics should be extracted from
each simulation and used for modeling the power consumption. Once the metrics
have been decided and the library components characterized, power estimation can
be performed. The power estimation algorithm reads the input trace, which the
users should provide, and performs power evaluations. In the estimation a trade-off
should be made between computational complexity and accuracy. To reduce the for-
mer, it is desirable to have a compact model; however, having few metrics reduces
the latter.

12

2. Background

Table-based Macromodeling

Power estimation in table-based macromodels consists of two main steps: table
construction (during characterization) and table look-up (during estimation). Table
construction can be further divided into two parts: metrics extraction and table
filling. The former tries to find out some input characteristics (or metrics) that are
mainly responsible for the power consumption within the design. The latter uses
gate-level or transistor-level simulations to map the power values with a given set
of input characteristics. An example of table construction is depicted in Fig. 2.4.
Once the table has been filled a look-up procedure can be used for accessing an entry
within the table. An example of table look-up with a given set of input metrics is
depicted in Fig. 2.5.

Sample input data Circuit Information

Parameterization

(m0, m1, m2, m3)

Power Calculation

m2_1

m2_2

m2_3

m3_1

m3_2

m3_3

m1_1

m1_2

m1_3

m0_1

m0_2

m0_3

Power_1

Power_2

Power_3

Figure 2.4: Table construction. Four metrics m0, m1, m2 and m3 are extracted
form the input data. For each set of those selected metrics a power value is assigned
averaging the power values obtained from gate-level simulations.

Table-based power macromodels have been around for quite long time; one of the
first method introduced, was the three-dimensional table [9]. The three-dimensional-
table takes into account the input switching activity in order to estimate the power
consumption in a combinational logic circuit. Specifically, let Pin be defined as the
average fraction of clock cycles when the signal is high [19]

Pin = 1
Nin

Nin∑
i=1

P(ini(t) = 1).1 (2.7)

Let Din be the average fraction of clock cycles where the signal commutes from high
to low or from low to high [19]

1Notice that ini in the above formula, is the pin with index i on the input port while Nin is
the primary input word-length

13

2. Background

m2_1

m2_2

m2_3

m3_1

m3_2

m3_3

m1_1

m1_2

m1_3

m0_1

m0_2

m0_3

Power_1

Power_2

Power_3

 Input data for
 estimation

 Parameterization
 (m0, m1, m2, m3)

 Estimated power

Figure 2.5: Table look-up. The metrics selected during characterization m0, m1,
m2 and m3 are extracted from the input data and used to index the table.

Din = 1
Nin

Nin∑
i=1

P(ini(t) 6= ini(t+).2 (2.8)

Finally, let Dout be defined as the average fraction of the clock cycles where the
output signal commutes from high to low or from low to high [19]

Dout = 1
Nout

Nout∑
i=1

P(outi(t) 6= outi(t+).3 (2.9)

Then, the model postulates the following:

Pavg = f(Pin, Din, Dout). (2.10)

The idea behind this method is to partition Pin and Din into a set of probability
intervals; for each of those intervals it generates a large number of input vectors with
the same average Pin and Din probabilities. The authors refer to these assignments
on the primary input as P and D vectors. For each given pair of P and D vectors the
power is computed using Monte Carlo simulations and Dout obtained considering
the switching activity on the output. The set Pin, Din and Dout will identify a
particular location in the three-dimensional table and the content of this location
will be populated averaging the power values associated with the set. Once the table

2see footnote one
3Notice that outi in the formula, is the pin with index i on the output port while Nout is the

output word-length.

14

2. Background

has been built the power estimation can be obtained using a simple table look up
procedure.
The aforementioned method has been the subject of different subsequent papers.
Barocci et al. [10], improved the method adding an adaptive algorithm for the gen-
eration of the P and D vectors in order to cope with statistical fluctuations that
may have led to erroneous storage in the table. In addition they provided a two-
step interpolation procedure that was only mentioned, as possible solution, in the
original paper.
Concurrently to the work of Barocci et al., Gupta and Najm, introduced a fourth
dimension, extending the three-dimensional table model, to account for spatial and
temporal correlation among the input vectors. This fourth dimension is called SCin
and is defined as the probability for both input to be high at the same moment:

SCij = P(xi ∧ xj). (2.11)

This additional variable has been proven to be effective for capturing the behavior
of circuits like adder; where spatial and temporal correlation should be taken into
account to record the carry rippling [3].

Equation-based Macromodeling

Table-based macromodels are generally quite accurate, but they require a long char-
acterization time and a huge memory resources for storing the entire table. The
research for faster methods to solve the problem of estimating the power consump-
tion led to the equation-base macromodels. As the name suggest those methods
approximate the average power consumption for a given circuit instance using a
general polynomial. For efficiency reasons the lowest order polynomial that gives
an acceptable result is used. One of the first approaches proposed by Gupta and
Najm [1] approximates the average power using a linear function, as follows:

Pavg = c0 + c1Pin + c2Din + c3SCin + c4Dout (2.12)

where the regression coefficients ci are computed generating different test patterns
for different values of Pin, Din and SCin trying to cover a wide range of input prob-
abilities. Subsequently, for each trace, Monte Carlo simulations are used to extract
the output transition probability Dout and to compute the average power consump-
tion. The accuracy was evaluated using the ISCAS-85 benchmark. Unfortunately,
large errors were obtained for most of the circuits. For this reason, in the same
paper, the authors proposed a quadratic and even a cubic function to improve the
accuracy. The quadratic equation is reported below:

15

2. Background

Pavg = c0 + c1Pin + c2Din + c3SCin + c4Dout + c5PinDin

+ c6PinSCinc7PinDout + c8DinSCin + c9DinDout + c10SCinDout + c11P
2
in

+ c12D
2
in + c13SC

2
in + c14D2

out.

(2.13)

The regression coefficients are computed in the same way as before both for the
quadratic and cubic form. The accuracy is greatly improved especially in the cubic
while in the quadratic still an average error above 15 percent is achieved in the c499
and c1355 circuits.

Cycle-accurate Macromodeling

Cycle-accurate power macromodeling can be utilized to obtain accurate average
power estimations while performing functional RT level simulations. Incidentally,
the same approach can be applied to compute instantaneous and peak current ab-
sorbed by a circuit that is known as “transient power analysis”. Transient power
analysis are useful to investigate IR-drop problems that lead to reduced performance
as a consequence of a reduced supply voltage [27]. Since our model is based on this
approach a more in-depth description of the idea behind these methodologies will
be presented.
Consider a combinational or sequential circuit with n inputs x = [x1, x2, .., xn] andm
output y = [y1, y2, .., ym]. Suppose a single transition on the primary input from xi to
xf occurs in a time interval t, an amount of power (hereafter referenced as e(xi,xf))
will be consumed by the circuit. The goal is to find a model of e(xi,xf) considering
only boundary information, such as Hamming distance. Said in other words, the
macromodeling task is to find a function that associates any input transitions (xi,xf)
with the power consumption e(xi,xf). The straightforward way to do so is to
associate to any transitions the respective value obtained from gate- or transistor-
level simulations. Unfortunately for a module with n-bit input, this requires to store
4n values, hence it is only possible for small circuits.
One of the first method introduced was the clustering algorithm [28]. Starting from
the observation that a fully characterized energy transition matrix is not feasible
to store due the exponential growth of the table with the number of inputs; the
clustering algorithm attempts to compress this matrix collapsing closely bit pat-
terns, thereby reducing the table’s size. In particular, a circuit with n-bit input is
simulated using m random test vectors with m � 2n, then clustering is performed
on the simulated vectors. If the coverage is sufficient the algorithm stops, otherwise
additional vectors are fed in input to the circuit. The flow is depicted in Fig. 2.6.
In the paper the author presents three different clustering algorithms along with a
mathematical proof for the coverage sufficiency based on probabilistic analysis and
confidence intervals. The first algorithm introduced (the exact algorithm) is similar
to the Quine-McCluskey method used for logic minimization; neighbor patterns are
merged together to form a cluster and the algorithm iterates until no further merging

16

2. Background

Run m sim-
ulations

Run clustering

Coverage
adequate ?

Done

generate m ad-
ditional inputs

yes

no

Figure 2.6: Flow chart for the clustering algorithm.

operations are possible. Nevertheless, the algorithm complexity grows exponentially
with the number of inputs, hence it is feasible only for fairly small circuits.
The other algorithms proposed (Cluster 2 and Cluster 3) run in polynomial time and
are based on heuristics such as the “expand” used in Espresso logic minimizer. Al-
though promising for their low computational complexity, the clustering algorithms
are based on an erroneous assumption. They assume that neighbor input patterns
have close power values, but for many circuit this is not always the case. Consider,
for instance the carry propagation within a ripple-carry adder. Here, vectors that
differ even for one bit may generate different power values due to the propagation
of the carry along the chain of full adders [29].
Benini et al. [29] proposed to represent the power consumption at each clock cycle
for a given circuit as a linear function of the activity on the primary input and on the
primary output. More precisely, considering a circuit with n input and m output,
they stated the model as follows:

P (j) = c0 + c1a1 + ..+ cnan + cn+1an+1 + ..+ cn+man+m (2.14)

where the index j represents the current iteration, c = [c0, c1, .., cn+m] is the co-
efficients vector and a = [a0, a1, ..an+m] is the variables vector. Each variable is
defined as the bitwise XOR operation between two consecutive input patterns. The
least mean square algorithm is used to iteratively update the coefficients trying to
minimize the least square error produced by the model, specifically:

cj+1 = cj + 2µεjaj (2.15)

where j is the current iteration, cj the coefficients vector, µ is a constant that
controls the convergence of the algorithm, aj the bitwise XOR between the current
and the previous input vectors and εk is the difference between the estimated power
and the actual one.

17

2. Background

18

3
Power Dissipation in CMOS

In this chapter we will briefly go through the main mechanisms of power consumption
in CMOS technology. This is done to introduce the reader with basic concepts that
will be used later on in chapter 5.

3.1 Mechanisms of Power Dissipation in CMOS

The power consumption of CMOS technology consists of four main components:
switching power, short-circuit power, subthreshold leakage power and gate-leakage
power. Of the four, the first two constitute the dynamic power, while the last two
form the static power. Thus the total power dissipated by a CMOS implementation
can be written as the sum of two terms:

Ptotal = Pstatic + Pdynamic. (3.1)

Until very recently, dynamic power, which arises from the charging and discharging
of the internal capacitance, has been the subject for almost all the power estimation
techniques. This is because it has been the main mechanism of power consumption,
even if Moore’s law has helped to limit it. Nevertheless, for today’s technology
this is no longer true. Static power due to off-state current that leaks through the
transistors starts to dominate the power consumption. Andrew Grove, chairman
and CEO of Intel, in 2002, during the International Electron Devices Meeting stated
that off-state current will become one of the limiting factor in future integration of
modern microprocessors [30]. In the following sections we will briefly describe and
will reason about the four main components that constitute the dynamic and static
power. Glitching power will also be described in a separate section.

3.1.1 Switching Power

Switching power is the power dissipated by the circuit due to charging and discharg-
ing of the internal nodes capacitance. An expression for the switching power can
be easily derived considering a simple CMOS inverter driving a load with a capac-
itance that equals C. Specifically, suppose the circuit is in a steady state with a
logic one as input and a logic zero as output. Initially the capacitor is discharged

19

3. Power Dissipation in CMOS

to zero. If an instantaneous high-to-low transition occurs on the inverter input, the
load capacitance will be charged by the PMOS transistor and its voltage will rise
from 0 to VDD. The equivalent circuit is depicted in Fig. 3.1

V

Vout

C

IVDD

DD

Figure 3.1: Equivalent circuit during a low-to-high transition.

Subsequently, if an instantaneous low-to-high transition occurs the NMOS transistor
will discharge the capacitor and a logic zero will appear again on the inverter output.
A precise expression for the energy consumption can be obtained. Let us first
consider a one-to-zero transition on the input; the total energy drawn by the supply
voltage, VDD, can be computed integrating the instantaneous power over the period,
leading to:

EV DD =
∫ ∞

0
iV DD(t)VDD dt = VDD

∫ ∞
0

CL
dvout
dt

dt = CLVDD

∫ VDD

0
dvout = CLV

2
DD.

(3.2)
The energy stored in the capacitor is simply:

EC = CLV
2
DD

2 . (3.3)

Notice from 3.2 and 3.3 that part of the energy drawn by the supply voltage to charge
the capacitor is dissipated on the PMOS device. During a zero-to-one transition
the energy dissipated on the NMOS transistor is equal to the energy stored in the
capacitor, hence equals to:

EC = CLV
2
DD

2 . (3.4)

In summary during an entire cycle, consisting of one high-to-low and one low-to-high
transition the overall energy consumption is:

EC = CLV
2
DD. (3.5)

The power being the energy per unit time, can be written as:

Pcp = CLV
2
DDf (3.6)

20

3. Power Dissipation in CMOS

where f is the switching frequency. The formula just derived can be extended to
all nodes within a circuit yielding the following, with α the activity factor, fclk the
clock frequency, C the capacitance of the circuit, and VDD the voltage

Psw = αfclkCV
2
DD. (3.7)

Notice that α has been introduced in order to account for the fact that not all
nodes switch with the same frequency of the clock signal. It is also important to
point out that the above formula has been obtained considering complete and non
partial transitions. In other words the voltage swing, at each node, is considered
to be equal to VDD. Another important aspect that should be noticed is that all
the terms, except for α, are known at gate level. Thus, not only, at this level of
abstraction great accuracy can be achieved but, the power estimation is also pattern
dependent due to the strong relationship between the input activity and α.

3.1.2 Short-circuit Power

Short-circuit power is the power consumed while both the p-network and the n-
network are conducting simultaneously during switching. Consider, for example, a
rising transition for a simple inverter; there will be a current flow in a timing frame,
where the input voltage on the gate is higher than the threshold voltage for the
NMOS but lower to completely switch-off the PMOS. As a consequence, within this
timing window exists a path from VDD to ground for the current to flow.
Let’s now derive a simple formula for the short-circuit current considering an entire
cycle of charging and discharging of the load capacitance. We reasonably assume to
shape the current spikes with triangle waveforms. In addition, we consider to have
symmetric rising and falling time for the input signal. We can write the energy lost
during a cycle as follow:

Esc = VDD
Ipeaktsc

2 + VDD
Ipeaktsc

2 (3.8)

where tsc represents the time interval where both the PMOS and NMOS are conduc-
tive simultaneously, while Ipeak is the maximum value measured for the short-circuit
current. Fig. 3.4 clarify what just said.
Ipeak heavily depends on the input and output slopes. While tsc is strongly dependent
on the signal slope and the driving strength, as well as, the load driven by the
network. This last concept can be explained considering, without loss of generality,
a simple CMOS inverter. Assume that the circuit is driving a huge load capacitance
and a low-to-high transition happens on the input. During the input transient the
voltage drops across the drain and source of the PMOS device is approximately
zero, thus incurring in a small short-circuit current. On the contrary, if we consider
the reverse situation, where the driving capacitance is really small. The voltage
drops, during the transient, across the drain and the source of the PMOS device
remains equal to VDD most of the time, thus incurring in a high short-circuit current.

21

3. Power Dissipation in CMOS

V

VoutVin

C

I ~ 0

DD

Figure 3.2: Large load capacitance.

V

VoutVin

C

I >> 0

DD

Figure 3.3: Small load capacitance.

Fig. 3.3 and Fig. 3.2 show the two different situations. The right picture illustrates
the inverter driving a huge load capacitance; the left picture illustrates the opposite
situation.

ishort
vin

VDD - VT

VT

I peak

t

t

Figure 3.4: Short-circuit current for one low-to-high and one high-to-low transi-
tions.

From the energy we can derive the average power, obtaining:

Psc = tscVDDIpeakf. (3.9)

From the above discussion it is clear that short-circuit current can be greatly reduced
using careful design and proper transistor sizing. Nevertheless, today Psc plays a
marginal role in the overall power consumption since VDDS are low and rise/fall
times are short [31].

3.1.3 Subthreshold Leakage Power

Subthreshold leakage power is due to a weak current that flows between the drain
and the source when the device is supposed to be in the off state. Historically,
this current has been considered to be very small, early models for MOS transistors
implemented in SPICE even consider this current equals to zero. In today state-of-
the-art technology however, with down-scaling in the devices and a lowered supply
voltage, it starts to account for more than half of the total power dissipation [3].
Hence, it could not be ignored any longer. Chandrakasan et al. in their paper [32]
proposed the following formula for modeling the subthreshold current

Isub = K1We
−Vth
nVθ (1− e

V
Vθ) (3.10)

22

3. Power Dissipation in CMOS

where K1 and n are constants experimentally determined; while W and Vθ are the
channel width and the thermal voltage respectively. The above formula suggests that
a possible way to reduce Isub is to increase the threshold voltage. Notice that even
a small increment in the threshold voltage results in huge decrease in the current
due to their exponential dependency. Unfortunately increasing the threshold voltage
keeping the supply voltage constant results in a performance loss. In addition, in
today process technology the trend is to decrease the supply voltage, to quadratically
decrease the dynamic power; hence the threshold voltage is forced to reduce. Fig. 3.5
compares the subthreshold power consumption for different technologies.

0.18 0.13 0.10 0.07 0.05
10.0

20.0

30.0

40.0

50.0

Technology µm

η
le
a
k
[%

]

Figure 3.5: Increase in the subthreshold current for different technologies [3].

The Stacking effect helps to mitigate this phenomenon.

3.1.4 Gate-Leakage Power

Gate-leakage power is the direct consequence of the aggressive CMOS technology
scaling that requires a decreased oxide thickness. Thinner oxide gives rise to high-
electrical fields, that results in tunneling effects through the gate or the oxide bands.
The following simplified formula from Chandrakasan et al. [32], clearly shows the
exponential dependency between the gate-leakage current and the oxide thickness

Iox = K2W (V
Tox

2
)e

−αTox
V (3.11)

where K2 and α are constants experimentally determined. Accordingly to the upper
mentioned formula a naive approach that one may think to reduce the leakage is
to increase Tox due to their exponential dependency. However, the thickness oxide
should linearly decrease with the technology scaling to avoid short-channel effects.
Today, the problem has partly been solved by using high-K gate oxide.

23

3. Power Dissipation in CMOS

3.2 Glitch Power

When the input of a node changes, it is likely that the node will make several tran-
sitions before settling into a stable value. These spurious transitions are referred
to as glitches and can, for some circuits, contribute to a significant portion of the
overall power consumption. Glitches occur due to circuit topology and unbalance
delay path within the circuit. Furthermore, once a glitch has been generated it can
be propagated to the downstream logic, causing additional switching activity, and
ultimately an increase in the power consumption. In the FIR-circuits that we will
consider later on this phenomenon is mitigated by having registers at regular inter-
vals (every tap). Still, it is important to consider glitching activity while designing
a macromodel. Ignoring this aspect may lead to a loss in the absolute accuracy as
well as in the relative. Fig. 3.6 depicts the generation of a glitch at the output of a
NAND gate, due to the delay introduced by the inverter.

Figure 3.6: Example of a circuit showing a glitch generation.

24

4
Filter Design

In this chapter we will briefly describe how the filters for which we want to provide
power estimates have been implemented in VHDL.

4.1 FIR Filter

In this section we take a more in-depth look at a special case of finite-impulse-
response (FIR) filter. In addition, we introduce the basic terminologies used in
digital filtering. A digital filter is considered to be an FIR filter if its impulse
response h[n] is finite in time and given by

h[n] =

0, if n < 0
bn, 0 ≤ n ≤M

0, n > M

where M is the filter order and bn are the filter coefficients. A filter of order M has
clearly length N = M+1. The output of an FIR filter of order M is given by the
convolution between the input x[n] and the filter response, precisely

y[n] =
M∑
i=0

bi ∗ x[n] (4.1)

where “*” is the convolution operator. In the z-domain 4.1 can also be expressed as

Y (z) = H(z)X(z) (4.2)

where H(z) is the transfer function, defined by

H(z) =
M∑
i=0

h[i]z−i. (4.3)

The hardware interpretation of 4.1 leads to the following signal flow graph or system
diagram, known as direct form.

25

4. Filter Design

+++

h[0] h[1] h[2] h[L-1]

X[n]

Y[n]

z-1 z-1 z-1

. . .

. . .

Figure 4.1: Schematic representation for a direct implementation of an FIR filter.
This architecture is also known as tapped delay line.

However, a variation of the direct form, known as transposed architecture, is pre-
ferred. This is especially true for long filters, since the direct form would require
extra pipeline registers to reduce the delay between the adders and achieve the
same performance of the transposed architecture. Further gain in performance can
be achieved in the transposed form if the coefficients are all power of two or values
close to the power of two and fixed values for coefficients are considered. In this
case multiplication operations can be transformed in simpler shifting and adding
operations.
The transposed form can be obtained reversing or transposing the flow graph of
Fig. 4.1 and make necessary modifications, in more detail:

• Exchange the input with the output
• Inverting the direction for each signal
• Substituting each adder with a node

This can be derived as a consequence of Mason’s gain formula for signal flow graph
or Tellegen’s theorem [33] and leads to the circuit depicted in Fig 4.2

+ + +

X[n]

Y[n]

h[L-1] h[L-2] h[L-3] h[0]

Z-1 Z-1

.

. . .

Figure 4.2: Schematic representation for a transposed form implementation of an
FIR filter.

It is clear from Fig 4.1 and Fig 4.2 that an FIR filter simply consists of a collection of
delay elements, multipliers and adders. In addition, we can also notice a regularity
in the FIR filter structure given by the repetition of a basic building block (or atomic
component). This basic building block is shown in Fig. 4.3 and we will refer hereafter
to this as MAC.

26

4. Filter Design

Figure 4.3: Basic building block of an FIR filter.

4.2 Complex FIR Filter

Let be x and c two complex numbers, i.e, x = xr+jxi and c = cr+jci. Multiplication
between x and c can be performed as four real multiplications as can be seen in 4.4

(xr + jxi) · (cr + jci) = xr · cr − (xi · ci) + j(xr · ci + xi · cr) (4.4)

this operation requires one addition, one subtraction and four multiplications. Hence,
if we consider a 20-tap filter, this would require 80 multipliers, 20 adders and 20 sub-
tractors. Notice that additional adders are required to sum up the results generated
by each tap. Saving in hardware logic and power consumption can be achieved if a
modify version of equation 4.4 is considered [34]. This form in known as canonical
implementation and is reported below

(xr+jxi) ·(cr+jci) = (cr−ci) ·xr+(xr−xi) ·ci+j[(cr+ci) ·xi+(xr−xi) ·ci]. (4.5)

In this case the number of multipliers is reduced to three units, while the number of
adders increased by one unit. Assuming that a multiplier is wider and more power
hungry then an adder, on-chip area and power consumption are reduced. The entire
20-tap filter, now requires 60 multiplications, 60 additions and 40 subtractions. If
we substitute 4.5 in 4.1 we obtain the entire filter expression

y =
M∑
n=0

xr,(t−n)(cr,n − ci,n) +
M∑
n=0

(xr,(t−n) − xi,(t−n))ci,n+

= j[
M∑
n=0

xi,(t−n)(cr,n + ci,n) +
M∑
n=0

(xr,(t−n) − xi,(t−n))ci,n]
(4.6)

Notice that each term in 4.6 represents a real FIR filter. Therefore a complex
structure can be simply implemented using three real FIR filter, being the second
and the fourth summation identical. Fig. 4.4 shows the overall structure.

27

4. Filter Design

Xr

iX

coeff. differences

Imaginary coeff.

coeff. sums

-

+

+ Y

Yr

i

cr0-ci0

ci0

..

..

cr0 ci0+ ..

Figure 4.4: Complex FIR filter built with three real FIR filters.

28

5
RT Level Power Estimation

In this chapter we will describe our flow after a brief overview on tool used for our
work in addition to the recommended flow for power estimation suggested by the
EDA vendors. With our macromodel the system designer will be able to obtain
power estimation directly at functional level, in MATLAB, where no circuit infor-
mation is available. Our method can be classified as a cycle-accurate macromodeling
and exploits the high correlation between power consumption and input activities.

5.1 Recommended Estimation Flow in RC-LP En-
gine

The tool used in our work is Encounter RC-LP engine [35]. Depending on the level
of details that are available at the current level of abstraction different flows can be
implemented. The simplest estimation flow we can think of at gate-level consists
of a logic netlist and a technology library containing pre-characterized gates. If
these are the two only items of information available, the tool will automatically
assign default switching probabilities on the input pins, and let those probabilities
propagate in the downstream logic.
RC-LP engine models the probability at each node in terms of signal probability and
toggle rate. The former is the probability of a signal being in the high logic value,
while the latter is the toggle count per unit time. For example, a net with a signal
probability that equals to 0.5 and a toggle rate of 1 will be in the high state fifty
percent of the time and will make one transition from one to zero or from zero to
one per unit time. By default RC-LP engine uses a signal probability that is equal
to 0.5 and a default toggle rate of 0.02 unit per nanoseconds [35].
A significant improvement in the accuracy can be achieved if real toggle rates are
provided as the internal engine may use probabilities that do not reflect realistic
values. In this respect, RC-LP engine allows the user to specify the actual probability
at each node up to four different ways. Only two of them, that are interesting for our
work will be explained, for the others we refer the readers to the manual. The first
of them is to manually assert the switching activity, using the following commands:

• set_attributelp_asserted_probabilityfloat/designs/design/ ∗ /nets/net
• set_attributelp_asserted_toggle_ratefloat/designs/design/ ∗ /nets/net

29

5. RT Level Power Estimation

Notice that if a node does not have any user-asserted probability but it is in the fanin
cone of a node that contains an asserted value, the tool will automatically propagate
the switching activity. If it is not possible to find a fanin cone that contains the
node with asserted probability the tool will use the default values. The second way,
highly recommended by the vendor, is to provide the switching activity in the form
of a toggle count format (TCF), a switching activity interchange format (SAIF) or a
value change dump (VCD). Since we are extracting the power consumption at each
clock cycle, to the best of our knowledge, the VCD file is the only solution. Hence,
the VCD file will be used during the characterization phase.
In section 3.2 we also mention the importance in recording spurious activities at
the output of a node to correctly estimate the power consumption. Glitches can
be taken into account, using realistic gate delays during the dumping of the VCD
file. One way to accomplish this is to use the static timing analysis (STA) function
within the RC-LP engine to generate the standard delay format (SDF). The entire
flow recommended by the vendor is depicted in Fig. A.1.

5.2 Mechanisms of Power Consumption in RC-LP
Engine

Finally, it is important to briefly discuss how RC-LP engine models power dissipa-
tion. The tool classifies the power dissipated by each instance as the sum of two
major components: leakage power and internal power. Leakage power is caused by
an unwanted current that flows between the drain and the source when the tran-
sistor is supposed to be in the off state. As stated in previous chapter, it depends
on several factors such as threshold voltage, sizing and so on. It used to be mod-
eled within the library provided by the foundry as a constant. However, as the
technology scaling advances, the importance that leakage plays in the overall power
consumption increases. Hence, most libraries specify different power profiles for the
same instance depending on the operating conditions.
Internal power is the power consumed within the boundaries of an instance, it con-
sists of short-circuit and switching power. An instance’s internal power is modeled
as a function of the input slew rate and the output load capacitance using LUT
tables. Extrapolation methods take place if the exact index is not stored in the
tables.
Net power accounts for the switching power dissipated by the charging and dis-
charging of the capacitance of each pin driven by the instance. Fig. 5.1 shows all
the power mechanisms considered by RC-LP engine.

30

5. RT Level Power Estimation

Instance

leakage and
internal power

net power

C pin

C pin

C pin

Figure 5.1: Mechanisms of power dissipation within an instance.

5.3 Proposed Macromodel

We start from the trivial observation that in CMOS logic inputs have to toggle in
order to dissipate dynamic power. In general higher activity on the input pins results
in higher power consumption. Hence, the basic idea in our model is to capture
this behavior using the Hamming distance. The Hamming distance between two
consecutive vectors can be defined as follows: let u and v be two inputs of length
m; the Hamming distance is the number of bits that toggle between two consecutive
words u and v, more precisely it can be defined as:

H =
m∑
i=1

vi XOR ui. (5.1)

In general, if we consider vectors of length m, we can identify up to m+1 different
classes of Hamming distance based on the definition given above. To every class we
can associate two different parameters ci and αi. The former represents the average
power consumption for class i, while the latter is an activity factor that assumes
value ’1’ if class i occurs in the current cycle, otherwise ’0’. Therefore, in each clock
period j the power consumption can be estimated using the following equation:

Q[j] = [c1c2..cm+1][α1α2..αm+1]T (5.2)

where c is the coefficients vector and α is the activity vector. The methodology is
fairly simple but its resolution, accuracy and robustness can be increased considering
additional bit-level information [36]. For example, we can think of enhanced the
model observing the number of stable ones or stable zeros among two consecutive
input vectors. For instance, if we apply the first criterion, so we consider the number
of bits that remain stuck to one between successive clock cycles, the class with
Hamming distance one can be additional sub-divided in m sub-classes:

H11 , H12 ,H13 , ..., H1m . (5.3)

The first index refers to the Hamming distance while the second refers to the number

31

5. RT Level Power Estimation

of stable ones. This splitting criteria can be applied, in turn, for all the remaining
classes.
We are now ready to present the two main steps that constitute our macromodel:
characterization and power estimation.

5.3.1 Characterization

The first step in any RT level power macromodel is the characterization. As pre-
viously introduced in section 2.5.2, characterization is the process by which the
macromodel is trained. Generally, a characterization flow consists of two main
steps: macromodel tuning and metrics extraction. The former entails simulating,
at gate level, the circuit under observation with a set of input stimuli in order to
obtain the power values. The latter is the process to extract from the input stimuli
a set of metrics and binds those metrics with the power values.
One of the key features during the macromodel tuning that is usually neglected in
the analysis of performance for a macromodel technique is the stopping criteria. In
section 2.5.2 we stated that the characterization is allowed to be quite expensive in
term of computational complexity. However, if on one hand, it is acceptable to have
long characterization time to achieve high accuracy, on the other hand, there are
some situations in which we can trade-off precision in the estimation with speed-up
in the macromodel tuning. In this work we present two stopping criteria. One is
based on the full simulations of an entire trace, the other is based on a sequential
stopping rule.

Proposed Stopping Criteria

The first method is based on the full simulation of an entire trace, we tune the
macromodel by generating a trace of n uniformly distributed test vectors, where n
is specified by the user. Then for each pair of input the instantaneous power value
is collected and classified in the proper Hamming class. The hope is that generating
a huge number of test vectors will allow us to cover most of the transitions that
may happen within the circuit. However, when this method achieves the maximum
precision for the average over the entire trace, it becomes far too slow. It becomes
impractical to use on large circuit or when different runs are needed to estimate the
average power. Moreover, when dealing with random test vectors it is likely that
the sample average approximates the population average after few iterations [37].
As a consequence of this observation, we introduce the second method based on
confidence intervals and a sequential stopping rule.
Before presenting the algorithm it is crucially important to give some mathematical
definitions as well as introducing some theorems that are behind statistical infer-
ence. We start by defining the typical way of approximating the mean values for m
independent and identically distributed random variables X1, X2 .. Xm as

32

5. RT Level Power Estimation

XM =
M∑
i=1

Xi

M
. (5.4)

The idea is to chose the sample size large enough to satisfy the following inequality:

P(| XM − µ |≤ ε) ≥ (1− α) (5.5)

where µ is the population mean, ε is half-width of the confidence interval (also known
as tolerance error) and α is the uncertainty that can be decided in advance. It is
clear that | µ−XM | decreases as the number of samples increases. In the extreme
case where the sample size equals the population size, XM converges to µ. However,
it is also clear that as the sample size increases also the cost of computing XM in-
creases. Hence, we would like to approximate µ using a limited number of samples.
When information about the population distribution is known, a theoretical upper
bound for the population mean can be computed using Hoeffding inequalities. Un-
fortunately, in the general case, such information is not available and the only way
to estimate µ is to use sequential stopping rules. Usually, a sequential stopping rule
consists of the following steps:

• Generate up to M samples, where M should be decided in advance.
• Infer population properties (variance or mean) from sample moments.
• Estimate the error probability on the basis of the sample moments. If the

error is larger than a given threshold then generate additional samples, else
stop.

The pseudo-code for our stopping rule is reported below. Notice that tα,k−1 is the
(1 + α)/2 quantile of the t-distribution with k − 1 degrees of freedom.

Algorithm 1: stopping rule
Result: XM

1 generate a batch of samples k = M0;
2 choose a value for the confidence coefficient α;
3 choose a value for the half-width of the confidence interval;
4 compute the sample mean XM ;
5 compute the sample variance as: S2 = 1

k−1
∑k
i=1(Xi −XM)2;

6 while (tα,k−1

√
S2

k
) ≤ ε do

7 generate additional samples M ;
8 k = k + M ;
9 compute the sample variance;

10 end

We should highlight that the basic assumption in the previous algorithm is that the
distribution of (XM−µ)√

S2
k

is the Student’s t distribution with k− 1 degrees of freedom.

33

5. RT Level Power Estimation

This happens to be true if the population is normally distributed. Therefore, we
checked the normal distribution hypothesis plotting the Q-Q plot for each Hamming
class. Below we report the results obtained for the class with Hamming distance
equals to three, considering 70 samples.

Figure 5.2: Q-Q plot for Hamming class three.

Figure 5.2 shows that our data are approximately normally distributed, as a con-
sequence, the previous assumption hold. Extensively tests have been done also for
the other Hamming classes leading to similar results.

34

5. RT Level Power Estimation

Characterization: Overview of Methodology

In the following a brief overview of our characterization flow is presented. This is
only a general overview, hence not all details are here reported. Notice also that
some of the steps below might be skipped to speed-up the characterization time,
or iterate for the entire trace if the user selects the flow based on the complete
simulation.

1. Read parameters provided by the user

2. Create working directory

3. Generate coefficients values

4. Generate input trace

5. Read RTL component

6. Map design to cells

7. Read each pair of input vectors

8. Compute Hamming distance

9. Extract power if it is not converged (see section 5.3.1)

10. Repeat from 7 until no more vectors are available

11. Write on a file the coefficients for each Hamming class

12. Clean working directory

35

5. RT Level Power Estimation

5.3.2 Power Estimation

Our estimation methodology relies on the characterization of an atomic component.
For atomic component we intend any combinational logic in between registers. The
reason why we restrict ourselves to such structure is that our characterization process
registers the power dissipated as a function of the Hamming distance between two
vectors. Hence, at most one transition on the primary inputs may happen per clock
cycle.
Once the atomic components have been modelled and the macromodels stored in a
library, the estimation process can take place. The average power consumption for
a circuit is estimated evaluating the macromodel for each transition on the primary
input of an atomic component. This returns an instantaneous power value. The
instantaneous power values of each atomic component are summed up to obtain the
power consumption for the current clock cycle. In turn, all the power estimates at
each clock cycle are summed together over the entire simulation to obtain the total
value. Finally, the average value is simply computed dividing the total value by the
duration of the simulation expressed as numbers of clock cycles.

36

6
Results and Discussion

In this chapter, we will consider various parameters that influence the power con-
sumption in the 65nm technology and we will evaluate how those parameters affect
our estimation. In particular, we will focus on clock frequency, coefficient word-
length, coefficient update frequency and roll-off. All the results have been obtained
using the flow based on the stopping criterion, presented in section 5.3.1.

6.1 Atomic Structure

In order to provide power estimation for a complex circuit, atomic components
should be identified and characterized. In the case of a transposed architecture this
choice is straightforward and matches with the MAC structure previously intro-
duced. However, one question still needs to be addressed: is it possible to estimate
the power registering only the activity on the primary input of the atomic structure?
To answer this question, we set up the following experiment. We considered a MAC
structure with 8-bit input and 6-bit coefficient synthesized at 833.33 MHz. Subse-
quently, we performed a simulation feeding the circuit with uniformly distributed
pseudo-random integers for coefficient and input and we updated the coefficient ev-
ery 1000 clock cycles. It is reasonable to assume that the coefficients are updated
less frequently than the input in DSP designs. The results are shown in Fig. 6.1.
Fig. 6.1 shows a clear relation between the average power consumption and the
Hamming distance on the primary input pins. Notice that even if we register a
Hamming distance that is equal to zero we still have power dissipation within the
basic component. This is the consequence of having sequential logic in the MAC
structure that introduces temporal correlation between the input vectors. Upon first
consideration, it seems that registering the activity on the only primary input is not
enough to model the power consumption for the MAC structure and information on
the state registers is required. Though, if we run the simulation for a long period of
time the states of the registers become independent of the initial one. This leads to
a huge simplification of the problem when the main goal is to provide the average
power [1]. From Fig. 6.1 it is also evident that if the coefficients are updated less
frequently than the input pins modeling the power as a function of the Hamming
distance on the primary input is enough to provide good power estimations.

37

6. Results and Discussion

Figure 6.1: Average and instantaneous power values associated with the Ham-
ming distance computed on the input pins. For each Hamming class the blue “*”
represents the instantaneous power values, while the orange “*” the average value.

6.2 Results on FIR filter

In the next sections we will mainly focus on a 19-tap FIR filter since for this filter
we have available a script in MATLAB to obtain a real trace. In addition, 19 taps
is a reasonable length for a DSP design and it is enough to check the validity of our
approach. We will observe how the model behaves for different input and coefficient
word-lengths, as well as, clock and coefficient update frequencies. We will also carry
out studies on the input trace to justify why we provide a characterization based on
random-generated input signals. Unfortunately, due to lack of time only the results
for the 19-tap transposed FIR filter are presented in the next sections and we have
to postpone to future works the ones on the 19-tap complex design.

6.2.1 Statistics of Input Signal

In this section we will analyze the input trace and we will reason about our choice to
characterize our basic building block with random-generated input signals. Signals
in DSP components may be encoded using different representations such as one’s
complement, magnitude plus sign bit and two’s complement. Nonetheless two’s

38

6. Results and Discussion

complement representation is the most commonly used. Hence, we will limit our ob-
servations to this particular encoding. We considered a 19-tap transposed FIR filter
and we simulated it using a random and a real trace. The latter is generated from
a square-root-raised-cosine filter implemented in MATLAB. The results obtained
dumping the toggle count format files are tabulated below.

Table 6.1: The table shows the results obtained from the toggle count format file
for an 8-bit input 6-bit coefficients FIR transposed filter. The left columns show
the results for a random trace. The right columns for a real trace generated from a
square-root-raised-cosine filter implemented in MATLAB.

Output TCF file
Pin
name

Prob. to be high
(random trace)

Toggles
(random trace)

Prob. to be high
(real trace)

Toggles
(real trace)

clock 0.50 1.66 ·109 0.50 1.66 ·109

reset 0.00060 1.67 ·105 0.00060 1.67 ·105

Xin[0] 0.51 4.08 ·108 0.50 4.13 ·108

Xin[1] 0.49 4.15·108 0.49 4.10 ·108

Xin[2] 0.50 4.19 ·108 0.50 4.22 ·108

Xin[3] 0.49 4.21 ·108 0.51 4.08 ·108

Xin[4] 0.48 4.26 ·108 0.50 4.06 ·108

Xin[5] 0.49 4.07 ·108 0.49 4.34 ·108

Xin[6] 0.49 4.13 ·108 0.51 3.68 ·108

Xin[7] 0.49 4.23 ·108 0.49 2.17 ·108

As shown in Table 6.1 the differences for the signal probability are negligible between
the two traces. Instead, we can identify some dissimilarities for the toggling activity
in the most significant bits. In particular, we can notice that the real trace can be
divided into two regions. The first goes from the LSB to the MSB-2 and behaves
as a random signal. The second goes from the MSB-1 to the MSB and has a lower
toggle activity. The two regions are shown in Fig. 6.2.

Xin[7] Xin[0]

MSB LSB

first regionsecond region

Figure 6.2: Observed regions for the real signal.

We observed the same behavior considering different input and coefficient word-
length for our 19-tap transposed architecture.
Despite these differences we decided to perform characterization using random-
generated input signals mainly for two reasons:

• simplicity. The choice of using random-generated input vectors simplify con-
siderably the characterization phase.

39

6. Results and Discussion

• loss in accuracy is negligible.
To give an explanation to the last bullet point we set up the following experiment.
We considered an 8-bit input and 6-bit coefficients transposed FIR filter and we
performed two different simulations using the same set of coefficients. In the first
simulation we used real inputs obtaining a power value of 1476.03 µW while in
the second simulation we used random inputs obtaining a power value equal to
1581.74 µW1. The error made is only 6 percent.
While it is possible to provide a characterization based on random input vectors
with a negligible loss in accuracy, it is not possible if we consider the coefficients.
Performing a characterization based on random values for the coefficients will result
in having large errors during the power estimation phase. As a consequence, care is
required from the system designer to provide typical or expected coefficients for the
target system. This can be explained if we consider Table 6.2.

Table 6.2: Power values for an 6-bit input and 5-bit coefficients FIR filter. The
first column shows the reference value. The second and the third columns show
power values obtained considering a characterization based on typical and random
coefficients.

Reference value Typical coeff. Random coeff.
916.27µW 965.10µW 1067.59µW

The first column of Table 6.2 shows the reference power value for a 6-bit input and
5-bit coefficients FIR filter synthesized at 833.33 MHz. This power value2 has been
obtained from RC-LP engine considering a real trace generated as in previous case.
The second and the third columns refer to power values obtained for the same trace
with our macromodel considering two different training situations. In the second
column typical (or expected) coefficients have been used for the characterization
while in the third column random coefficients. As can be seen, a characterization
with random coefficients leads to a larger error.

6.2.2 Clock Frequency

In this section we evaluate how variations in clock frequency affect the power con-
sumption in our transposed implementations, as well as, how our model reacts to
those variations. In particular, we should distinguish between two different cases.
In the first case the circuit is synthesized at the maximum operating frequency and
simulated at lower frequencies, while in the second case synthesis and simulation
frequency coincide. We decided to narrow down our observations only to the first
case, due to the linear dependency between power consumption and simulation fre-
quency. We considered a confidence level of 95 percent and an error tolerance of
+/- 5 around the mean. The size of the trace used for the characterization consists
of 30000 random generated test vectors. The power estimation trace consists of 5000

1Both power values refer to a 65nm CMOS technology.
2See footnote 1.

40

6. Results and Discussion

test vectors generated from a square-root-raised-cosine filter implemented in MAT-
LAB. The coefficients are the same for both characterization and power estimation,
and are considered to be fixed over the entire simulations. It is worth explaining at
this point what we mean with the words “fixed coefficients”. This does not indicate
that we synthesize the design with fixed values for the coefficients. Instead, it means
that we are synthesizing using full multipliers but we keep as input to those multi-
pliers the same set of coefficients for the entire simulation. The zero-delay model is
used in our simulation, hence, glitches are here not taken into account. The results
have been obtained running our model on netlists synthesized at 833.33 MHz. The
outcomes for different combinations of input word-length and coefficient word-length
are shown in Figs. 6.3, 6.4 and 6.5.

800700600500

2400
2300
2200
2100
2000
1900
1800
1700
1600
1500
1400
1300
1200
1100
1000
900

Frequency MHz

Po
we

r
µ
W

Reference value (obtained from RTL)
Predicted by the model

Figure 6.3: Circuit synthesized at 833.33 MHz. The simulations are performed in a
range from 833.33 MHz to 500 MHz. In this case the zero-delay model is considered
for the simulations. The input is 10 bit while the coefficients are 8 bit.

Figs. 6.3 and 6.4 show that our model follows the trend of our golden reference,
depicted as a red line. We remind our readers that our golden reference is the power
values provided by the RC-LP engine, which we assume to be correct. It is equally
clear that in both cases we do not have a perfect overlap, even if we use the same set
of coefficients for both characterization and power estimation. On the other hand,
Fig. 6.5 shows a large underestimation in the power estimates. The root cause of
this error can be identified in our characterization methodology. Specifically, we are
performing an off-line characterization, hence, it is likely that the synthesis tool will
map arithmetic operations with different logic for the MAC structure and the entire
filter. This leads to considering two different netlists for the characterization and the
power estimation phase. Therefore, on one hand an off-line characterization allows
us to have a more general model since we are not binding it to one given netlist. On
the other hand, there is an accuracy penalty during the power estimation. However
the error made is acceptable in all the cases and below the requested targeting

41

6. Results and Discussion

800700600500

1600

1500

1400

1300

1200

1100

1000

900

800

700

600

400

500

300

Frequency MHz

Po
we

r
µ
W

Reference value (obtained from RTL)
Predicted by the model

Figure 6.4: Circuit synthesized at 833.33 MHz. The simulations are performed in a
range from 833.33 MHz to 500 MHz. In this case the zero-delay model is considered
for the simulations. The input is 6 bit while the coefficients are 5 bit.

900800700600500

1900
1800
1700
1600
1500
1400
1300
1200
1100
1000
900
800
700
600

400
500

300

Frequency MHz

Po
we

r
µ
W

Reference value (obtained from RTL)
Predicted by the model

Figure 6.5: Circuit synthesized at 833.33 MHz. The simulations are performed in a
range from 833.33 MHz to 500 MHz. In this case the zero-delay model is considered
for the simulations. The input is 8 bit while the coefficients are 6 bit.

42

6. Results and Discussion

accuracy of 25 percent. In the first case it is lower than 3 percent, reaching a value
up to 22 percent in the third case.
In order to compensate for variations in the clock frequency the following equation
has been integrated in our model

Psw = f

f0
Psw0 (6.1)

where f0 is the maximum operating frequency and Psw0 is the estimated power value
at f0.

6.2.3 Coefficient Word-length

Another aspect considered in this work is how power changes with respect to the
coefficient word-length in a transposed architecture. We also evaluate how our model
reacts to those changes. Again, we considered a confidence level of 95 percent
and an error tolerance of +/- 5 around the mean for the characterization phase.
Characterization and estimation trace have been generated as in section 6.2.2.
We can notice, from Fig. 6.6, that the power scales approximately linearly with
the coefficient word-length. Therefore, we decided to run the characterization only
for the two boundary netlists. Eventually, linear interpolation is used to extract
power values for intermediate word-lengths. Consider, for example, a transposed
architecture with a 6-bit input; its coefficients will be in a range from 5 up to 8 bit.
Characterization is performed only for the sets (6,5) and (6,8) where the first number
refers to the number of bits for the input, while the second refers to the number of
bits for the coefficients. Subsequently, if the user requires another configuration (i.e,
(6,7) or (6,6)) linear interpolation is used to extract power values. The results are
shown in Figs. 6.7, 6.8 and 6.9. Once more Fig. 6.7 and Fig. 6.8 show that our power
estimations are not far from the reference value. However, this is not the case if we
consider Fig. 6.9, where the error ranges from an underestimation of 20 percent to
an overestimation of 20 percent.

43

6. Results and Discussion

Figure 6.6: Power surface considering different input-coefficient combinations in a
19-tap transposed FIR filter. The input range from 5 to 10 bits while the coefficients
from 5 to 12.

5 6 7 8

1800

1700

1600

1500

1400

1300

1200

1100

1000

900

800

Coefficient word-length

Po
we

r
µ
W

Reference value (obtained from RTL)
Predicted by the model

Figure 6.7: Netlist synthesized and simulated at 833.33 MHz. We consider a 6-bit
input, while a range from 5 to 8 bits for the coefficients.

44

6. Results and Discussion

8 9 10 11 12

3100

3000

2900

2800

2700

2600

2500

2400

2300

2200

2100

2000

1900

Coefficient word-length

Po
we

r
µ
W

Reference value (obtained from RTL)
Predicted by the model

Figure 6.8: Netlist synthesized and simulated at 833.33 MHz. We consider a 10-bit
input, while a range from 8 to 12 bits for the coefficients.

6 7 8 9 10

2500
2400
2300
2200
2100
2000
1900
1800
1700
1600
1500
1400
1300
1200
1100
1000

Coefficient word-length

Po
we

r
µ
W

Reference value (obtained from RTL)
Predicted by the model

Figure 6.9: Netlist synthesized and simulated at 833.33 MHz. We consider a 8-bit
input, while a range from 6 to 10 bits for the coefficients.

45

6. Results and Discussion

All the previous results are based on netlists synthesized at 833.33 MHz; however, the
system designers may require higher throughput. If this is the case, there are two
possible scenarios: use parallel architectures or increase the operating frequency.
Focusing on the second option we decided to carry out some experiments to see if
our assumption of linear dependency still holds at higher frequency. We considered a
clock rate of 1 GHz; that is in a practical scenario, the maximum operating frequency
for a DSP design. Hence, we first synthesized our FIR filters at 1 GHz and on top
of those netlists we ran our characterization flow.
The results are reported in Fig. 6.10 and Fig. 6.11. It can be seen that at high
frequency the assumption on linear dependency between power consumption and
coefficient word-length does not hold anymore. This result is reasonable since the
synthesis tool uses more complex heuristics to meet the stricter timing constraint; as
a consequence, there is more variability in the power values. From the model point
of view, the error made is still acceptable and below the precision requested, but in
this case linear interpolation may not be a good solution to extract power values for
intermediate word-lengths. In this case we propose a LUT-based approach. Char-
acterization is performed for each input-coefficient combination and the obtained
power values tabulate into a pre-defined structure. During power estimation the
proper power values will be fetched from the table.

5 6 7 8

2000

1900

1800

1700

1600

1500

1400

1300

1200

1100

1000

900

Coefficient word-length

Po
we

r
µ
W

Reference value (obtained from RTL)
Predicted by the model

Figure 6.10: Netlist synthesized and simulated at 1 GHz. We consider a 6-bit
input, while a range from 5 to 8 bits for the coefficients.

46

6. Results and Discussion

6 7 8 9 10

2800

2700

2600

2500

2400

2300

2200

2100

2000

1900

1800

1700

Coefficient word-length

Po
we

r
µ
W

Reference value (obtained from RTL)
Predicted by the model

Figure 6.11: Netlist synthesized and simulated at 1 GHz. We consider a 8-bit
input, while a range from 6 to 10 bits for the coefficients.

6.2.4 Coefficient Update

Until now we have considered only fixed coefficients for the entire simulation trace.
Nevertheless, it is likely that the user may want to update them at run-time during
simulations. We set up this experiment considering a simple but still common sit-
uation. We generated a set of coefficients using the square-root-raised-cosine filter
implemented in MATLAB. Eventually, we scaled those coefficients using a factor
between 0 and 1 to model the behavior that could happen if the filter was part
of a multi-input multi-output filter (MIMO-filter) for tracking polarization rota-
tion. Then for each set of input-coefficient word-length we ran multiple simulations
changing the update frequency. The results are reported in Figs. 6.12, 6.13 and 6.14.
It is evident that the increase in power consumption is negligible in all cases if
we consider infrequent updates. Nevertheless the power behavior changes as it
approaches the maximum update of one clock cycle. We can observe that close to
that value the power consumption increases faster for wider coefficient word-length.
Since in filters for fiber-optic communication systems the coefficients are not updated
that often, we decided to rely on a characterization considering fixed coefficients.
One more time, it is worth mentioning that with the words “fixed coefficients” we
intend that we keep the same set of coefficients as input to our circuit synthesized
using full multipliers, instead of synthesizing our design with fixed values for the
coefficients.

47

6. Results and Discussion

500 450 400 350 300 250 200 150 100 50 12000

2050

2100

2150

2200

2250

2300

Number of clock cycles

Po
we

r
µ
W

Power values obtained with RTL

Figure 6.12: Power values considering different coefficients update frequencies for
a 10-bit input and 8-bit coefficients transposed FIR filter.

500 450 400 350 300 250 200 150 100 50 1900

950

1000

1050

Coefficients update frequency (clock cycles)

po
we

r
µ
W

Power values obtained with RTL

Figure 6.13: Power values considering different coefficients update frequencies for
a 6-bit input and 5-bit coefficients transposed FIR filter.

48

6. Results and Discussion

500 450 400 350 300 250 200 150 100 50 11450

1500

1550

1600

Coefficients update frequency (clock cycles)

Po
we

r
µ
W

Power values obtained with RTL

Figure 6.14: Power values considering different coefficients update frequencies for
a 8-bit input and 6-bit coefficients transposed FIR filter.

6.2.5 Roll-off

When designing a filter, there are frequencies outside the desired pass-band range
that are not completely rejected but only attenuated. The attenuation of these
unwanted frequencies is known as roll-off. We performed different simulations con-
sidering different word-lengths for input and coefficients to understand how roll-off
affects power consumption. Here we report the case only for an 19-tap transposed
FIR filter with 8-bit input, considering a coefficient word-length of 6 and 10 bits
respectively. The range for the roll-off spans from 0 to 1, where 0 corresponds to to
a brick-wall filter while 1 to a pure raised cosine. For our simulation we considered
a reasonable interval from 0.1 to 0.5. As shown in Fig. 6.15 relaxing the constraint
on the roll-off usually tends to give lower power values. Interestingly, we can also
notice that smaller word-length for the coefficients give more spread power values.

49

6. Results and Discussion

6 7 8 9 10

1600

1500

1400

1300

1200

1100

1000

Coefficient word-length

N
or
m
al
iz
ed

po
we

r
µ
W

roll-off = 0.1
roll-off = 0.2
roll-off = 0.3
roll-off = 0.4
roll-off = 0.5

Figure 6.15: Power values for different roll-off values for a FIR filter with 8-bit
input and 6-bit coefficients.

50

7
Conclusion

In this chapter we outline the achievements of our work and we provide some direc-
tions for future studies.

7.1 Achievement

The main reason behind this work was to provide an estimation methodology, to be
used at system level, for DSP components in fiber-optic communication systems. We
developed a new solution that attempts to provide power estimation for an entire
filter starting from the power consumption of a basic (or atomic) component. In the
case of a transposed architecture the choice of this basic component is straightfor-
ward and matches with the MAC structure. Our estimator tool can be classified as
a cycle-accurate macromodel and consists of two main steps: characterization and
power estimation.
Characterization models the power consumption of the basic component considering
the transitions on the primary inputs pins. It is a fully automated procedure and
has to be performed only once at a reasonably strict timing constraint. For this
phase we devised a stopping criterion based on confidence intervals and a sequential
stopping rule. The stopping criterion allows us to achieve a good trade-off between
accuracy and run-time efficiency. Routines have been directly integrated in RTL
Compiler using the Tcl language.
Power estimation uses an input trace, which the user should provide, and the output
produced by the characterization to deliver power estimates for an entire filter.
Routines have been implemented both in C++ and MATLAB.
In the model clock frequency, number of taps and operand word-lengths can be
parameterized by the user. Nevertheless, at this stage the power estimation phase
assumes:

• A maximum operating frequency for the filters that equals 833.33 MHz.
• A number of tap that equals 19.
• An input word-length in a range from 5 up to 10 bits.
• A coefficient word-length in a range from 5 up to 12 bits.

51

7. Conclusion

7.2 Future Work

The results are promising but further studies are require to obtain a complete model.
In the following are reported some recommendations that the author believes may
improve the model.

1. The current characterization does not take into account glitches. In section
3.2 we said that it is important to consider these spurious transitions and that
ignoring this aspect may lead to loss in the relative accuracy. Nevertheless, no
studies have been carried out to understand and evaluate the effect of glitches
in a transposed architecture. Future works should evaluate and quantify the
loss in accuracy due to glitching activity.

2. In section 6.2.3 we observed that with strict timing constrains the assumption
on linear dependency between coefficient word-lengths and power does not
hold anymore. In this case we proposed a LUT-based approach. However this
solution has only been mentioned and not yet implemented.

3. In section 6.2.1 we reasoned about our choice to perform a characterization
based on random-generated input signals. Nevertheless, we also observed that
the real signal does not behave as a complete random one, but has a lower
switching activity on the upper bits. As a consequence, the accuracy of the
overall methodology can be improved by changing the model for the input
signal during characterization.

4. The current power estimation works for a 19-tap FIR filter only. However, we
should mention that the topology of the basic (or atomic) structure remains
the same within continuous range of taps. Hence, it should be possible with
a single characterization to cover for more tap configurations. For example,
the characterization of a 19-tap FIR filter, in principle, will be enough to
provide power estimation also for an FIR filter with number of taps that ranges
between 17 up to 32. Unfortunately, no studies have been performed to prove
this concept.

5. The power estimation phase should be extended to take into account parallel
and complex FIR filters.

52

Bibliography

[1] S. Gupta and F. N. Najm, “Analytical model for high level power modeling of
combinational and sequential circuits,” in Proceedings IEEE Alessandro Volta
Memorial Workshop on Low-Power Design, Mar 1999, pp. 164–172.

[2] S. Heo, K. Barr, and K. Asanovic, “Reducing power density through activity
migration,” in Low Power Electronics and Design, 2003. ISLPED ’03. Proceed-
ings of the 2003 International Symposium on, Aug 2003, pp. 217–222.

[3] D. Eckerbert, “Power estimation and multi-phase clock generation for the deep
submicron era,” Ph.D. dissertation, Chalmers University of Technology, 2003.

[4] L. Lundberg, C. Fougstedt, P. Larsson-Edefors, P. A. Andrekson, and M. Karls-
son, “Power consumption of a minimal-dsp coherent link with a polarization
multiplexed pilot-tone,” in ECOC 2016; 42nd European Conference on Optical
Communication, Sept 2016, pp. 1–3.

[5] C. Fougstedt, P. Johannisson, L. Svensson, and P. Larsson-Edefors, “Dynamic
equalizer power dissipation optimization,” in 2016 Optical Fiber Communica-
tions Conference and Exhibition (OFC), March 2016, pp. 1–3.

[6] G. C. Cardarilli, A. D. Re, A. Nannarelli, and M. Re, “Power characterization
of digital filters implemented on fpga,” in 2002 IEEE International Symposium
on Circuits and Systems. Proceedings (Cat. No.02CH37353), vol. 5, 2002, pp.
V–801–V–804 vol.5.

[7] Y. A. Durrani, “Accurate power estimation technique for dsp architectures,” in
2009 IEEE International Symposium on Industrial Electronics, July 2009, pp.
1123–1128.

[8] M. J. Flynn, P. Hung, and K. W. Rudd, “Deep submicron microprocessor design
issues,” IEEE Micro, vol. 19, no. 4, pp. 11–22, Jul 1999.

[9] S. Gupta and F. N. Najm, “Power macromodeling for high level power esti-
mation,” in Proceedings of the 34th Design Automation Conference, June 1997,
pp. 365–370.

[10] M. Barocci, L. Benini, A. Bogliolo, B. Ricco, and G. D. Micheli, “Lookup table
power macro-models for behavioral library components,” in Proceedings IEEE
Alessandro Volta Memorial Workshop on Low-Power Design, Mar 1999, pp.
173–181.

[11] M. Pedram, Power Simulation and Estimation in VLSI Circuits, ser. Electrical

53

Bibliography

Engineering Handbook. CRC Press, Dec 1999, ch. 18, 0. [Online]. Available:
http://dx.doi.org/10.1201/9781420049671.ch18

[12] D. Das and K. (e-book collection), VLSI Design, 2nd ed. Oxford University
Press India, 2016.

[13] S. J. E. Wilton and R. Saleh, “Programmable logic ip cores in soc design: op-
portunities and challenges,” in Proceedings of the IEEE 2001 Custom Integrated
Circuits Conference (Cat. No.01CH37169), 2001, pp. 63–66.

[14] M. Sgroi, A. Sangiovanni-Vincentelli, F. De Bernardinis, C. Pinello, and
L. Carloni, Platform-Based Design for Embedded Systems, ser. Industrial
Information Technology. CRC Press, Aug 2005, ch. 22, pp. 22–1–22–26, 0.
[Online]. Available: http://dx.doi.org/10.1201/9781420038163.ch22

[15] H. Chang, L. Cooke, M. Hunt, G. Martin, A. J. McNelly, and L. Todd, Surviving
the SOC Revolution: A Guide to Platform-based Design. Norwell, MA, USA:
Kluwer Academic Publishers, 1999.

[16] G. D. Micheli, Synthesis and Optimization of Digital Circuits, 1st ed. McGraw-
Hill Higher Education, 1994.

[17] I. Griffin, “Gajski-kuhn y-chart,” Online, 12 2009, available athttp://texample.
net/tikz/examples/gajski-kuhn-y-chart/.

[18] V. Tiwari, J. Monteiro, and R. Patel, Power Analysis and Optimization from
Circuit to Register-Transfer Levels, ser. Industrial Information Technology.
CRC Press, Mar 2006, ch. 3, pp. 3–1–3–16, 2. [Online]. Available:
http://dx.doi.org/10.1201/9781420007954.ch3

[19] F. N. Najm, “A survey of power estimation techniques in vlsi circuits,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 2, no. 4, pp.
446–455, Dec 1994.

[20] H. Kawauchi, M. Tsuzuki, I. Taniguchi, and M. Fukui, “An accurate rtl power
estimation considering power library unevenness,” in Proceedings of 2010 IEEE
International Symposium on Circuits and Systems, May 2010, pp. 2618–2621.

[21] F. N. Najm, “Towards a high-level power estimation capability,” in Proceedings
of the 1995 International Symposium on Low Power Design, ser. ISLPED
’95. New York, NY, USA: ACM, 1995, pp. 87–92. [Online]. Available:
http://doi.acm.org/10.1145/224081.224097

[22] K.-T. Cheng and V. D. Agrawal, “An entropy measure for the complexity of
multi-output boolean functions,” in Proceedings of the 27th ACM/IEEE Design
Automation Conference, ser. DAC ’90. New York, NY, USA: ACM, 1990, pp.
302–305. [Online]. Available: http://doi.acm.org/10.1145/123186.123282

[23] I. B. Dhaou, N. Money, and H. Tenhunen, “Fast low-power characterization of
arithmetic units in DSM CMOS,” in ISCAS 2001. The 2001 IEEE International
Symposium on Circuits and Systems (Cat. No.01CH37196), vol. 5, 2001, pp.
531–534 vol. 5.

[24] M. Nemani and F. N. Najm, “High-level power estimation and the area com-

54

http://dx.doi.org/10.1201/9781420049671.ch18
http://dx.doi.org/10.1201/9781420038163.ch22
http://texample.net/tikz/examples/gajski-kuhn-y-chart/
http://texample.net/tikz/examples/gajski-kuhn-y-chart/
http://dx.doi.org/10.1201/9781420007954.ch3
http://doi.acm.org/10.1145/224081.224097
http://doi.acm.org/10.1145/123186.123282

Bibliography

plexity of boolean functions,” in Proceedings of 1996 International Symposium
on Low Power Electronics and Design, Aug 1996, pp. 329–334.

[25] ——, “High-level area and power estimation for vlsi circuits,” in 1997 Proceed-
ings of IEEE International Conference on Computer Aided Design (ICCAD),
Nov 1997, pp. 114–119.

[26] Y. A. Durrani and T. Riesgo, “Power estimation for intellectual property-based
digital systems at the architectural level,” J. King Saud Univ. Comput.
Inf. Sci., vol. 26, no. 3, pp. 287–295, Sep. 2014. [Online]. Available:
http://dx.doi.org/10.1016/j.jksuci.2014.03.005

[27] S. Gupta and F. N. Najm, “Energy and peak-current per-cycle estimation
at rtl,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 11, no. 4, pp. 525–537, Aug 2003.

[28] H. Mehta, R. M. Owens, and M. J. Irwin, “Energy characterization based
on clustering,” in 33rd Design Automation Conference Proceedings, 1996, Jun
1996, pp. 702–707.

[29] A. Bogliolo, L. Benini, and G. De Micheli, “Regression-based rtl power
modeling,” ACM Trans. Des. Autom. Electron. Syst., vol. 5, no. 3, pp. 337–372,
Jul. 2000. [Online]. Available: http://doi.acm.org/10.1145/348019.348081

[30] N. S. Kim, T. Austin, D. Blaauw, T. Mudge, K. Flautner, J. S. Hu, M. J.
Irwin, M. Kandemir, and V. Narayanan, “Leakage current: Moore’s law meets
static power,” Computer, vol. 36, no. 12, pp. 68–75, Dec. 2003. [Online].
Available: http://dx.doi.org/10.1109/MC.2003.1250885

[31] H. J.M. Veendrick, Very Large Scale Integration (VLSI) and ASICs. Cham:
Springer International Publishing, 2017, pp. 321–380. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-47597-4_7

[32] A. P. Chandrakasan, W. J. Bowhill, and F. Fox, Design of High-Performance
Microprocessor Circuits, 1st ed. Wiley-IEEE Press, 2000.

[33] J. Smith, Introduction to Digital Filters: With Audio Applications,
ser. Music signal processing series. W3K, 2008. [Online]. Available:
https://books.google.se/books?id=pC1iCQUAsHEC

[34] V. Mauer, “Designing filters for high performance,” Online, 12 2015, availabe
athttps://www.altera.com/content/dam/altera-www/global/en_US/pdfs/
literature/wp/wp-01260-stratix10-designing-filters-for-high-performance.pdf.

[35] Cadence® Encounter® RTL Compiler, v. 14.11.000, Cadence Design Systems,
Inc., 2013.

[36] G. Jochens, L. Kruse, E. Schmidt, and W. Nebel, “A new parameterizable
power macro-model for datapath components,” in Design, Automation and Test
in Europe Conference and Exhibition, 1999. Proceedings (Cat. No. PR00078),
March 1999, pp. 29–36.

[37] X. Liu and M. C. Papaefthymiou, “A markov chain sequence generator for
power macromodeling,” in IEEE/ACM International Conference on Computer

55

http://dx.doi.org/10.1016/j.jksuci.2014.03.005
http://doi.acm.org/10.1145/348019.348081
http://dx.doi.org/10.1109/MC.2003.1250885
http://dx.doi.org/10.1007/978-3-319-47597-4_7
https://books.google.se/books?id=pC1iCQUAsHEC
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01260-stratix10-designing-filters-for-high-performance.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01260-stratix10-designing-filters-for-high-performance.pdf

Bibliography

Aided Design, 2002. ICCAD 2002., Nov 2002, pp. 404–411.

56

A
Appendix 1

A.1 Suggested flow in RC-LP engine

General setup

Read target library

Read HDL files and
elaborate design

Set timing and de-
sign constraints

Apply optimization directives

Annotate switching activities

Set power constraints

Synthesize the design

Annotate switching activities

Analyze power

Figure A.1: Suggested flow for low power features

I

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Context and Motivation
	Goals and Challenges
	Assumptions and Limitations
	Ethics
	Thesis Organization

	Background
	Complexity of Electronic Devices
	Design Partitioning and Design Reuse
	Design Abstraction
	Power Estimation in the Design Flow
	RT level Power Estimation
	Top-down Approach
	Bottom-up Approach

	Power Dissipation in CMOS
	Mechanisms of Power Dissipation in CMOS
	Switching Power
	Short-circuit Power
	Subthreshold Leakage Power
	Gate-Leakage Power

	Glitch Power

	Filter Design
	FIR Filter
	Complex FIR Filter

	RT Level Power Estimation
	Recommended Estimation Flow in RC-LP Engine
	Mechanisms of Power Consumption in RC-LP Engine
	Proposed Macromodel
	Characterization
	Power Estimation

	Results and Discussion
	Atomic Structure
	Results on FIR filter
	Statistics of Input Signal
	Clock Frequency
	Coefficient Word-length
	Coefficient Update
	Roll-off

	Conclusion
	Achievement
	Future Work

	Bibliography
	Appendix 1
	Suggested flow in RC-LP engine

