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Abstract
Security in smart homes is becoming increasingly important as more and more de-
vices are becoming available on the market and the information that they handle
is of a sensitive nature. Historical attacks have shown that smart homes can con-
tribute to attacks that could have severe consequences both for their users and for
society. While much work is being done on finding security solutions for IoT and
smart homes, there has yet to be a consensus on what solutions are optimal. In this
thesis we present the state of research in the field and introduce a potential security
solution for the smart home. The security solution, called the security supervisor,
is a network-based solution located in a smart hub which detects malicious activ-
ity within a smart home network. Detection of two attacks are implemented as a
proof-of-concept, namely botnet device detection and Evil-Twin attack detection.
The results show that the security supervisor is able to detect the former but not
the latter, but the authors argue that a similar platform would be able to contribute
to increased security and mitigate many threats towards smart homes.
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1
Introduction

The growth of Internet of Things (IoT) and the spread of smart homes are steadily
increasing [6]. In recent years the market has boomed up with new devices, such as
smart locks, heating, ventilation and air conditioning (HVAC) systems, and commu-
nication protocols such as Zigbee and Z-Wave. Gartner has predicted the number
of IoT devices to reach as many as 25 billion in 2020 [7]. Many of these devices will
be inside the homes of everyday people [8], bringing technology closer than ever.

However, there have been many setbacks for smart homes regarding their security.
There have been several cases where actual devices have been compromised, display-
ing the importance of high security within this field. Fernandes et al. [9] exploited
several vulnerabilities in Samsung SmartThings with accompanying apps to e.g. dis-
able certain functionality and cause fake fire alarms. Schwartz et al. [10] performed
black-box testing on 16 smart home devices and recovered passwords from eight of
them. Furthermore, there have been additional reports of actual users and com-
panies being hacked. These attacks range from gaining access to baby monitors to
accessing casino backend servers through an aquarium thermometer [11, 12, 13].

While these reports make the need for security apparent, developing a smart home
product with security in mind can be difficult. The resource-constrained hardware
means that old conventional methods, such as computationally heavy encryption,
do not work effectively on these devices [14, 15, 16]. Even though there are several
initiatives around to provide security to resource-constrained IoT devices [16], much
remains to be done [17].

Intrusion detection systems (IDS) is a traditional field of security still in its incip-
iency for smart homes. Several new intrusion detection methodologies for resource
restricted devices have been proposed by researchers. However, their focus is mostly
on wireless sensor networks (WSN) or general IoT devices [18, 19, 20] and only a few
bring up the case of the smart home. As far as we know, none of these methodologies
take the smart hub, a central entity in many smart homes, into account. Exploring
detection of threats in the hub may contribute to the overall security situation in
smart homes since it increases awareness of threats among users.

1



1. Introduction

1.1 Purpose of the thesis

The purpose of this thesis work is twofold. Firstly, it summarizes the security
threats to current and future smart homes. Secondly, with this information as a
basis, it provides a contribution to manage the security overview of a smart home
environment. The contribution is in the form of a security module prototype which
focuses on detecting malicious behavior and reports it to the end-user. The thesis
will explore if the smart hub is a viable location for such a mechanism to reside in,
both concerning resource usage and detection rate.

1.2 Problem description

Security in smart homes is a new and complex field. This section brings up the main
problems and challenges with security in smart homes.

Heterogeneity: Smart homes comprises a large number of devices which differ in
multiple ways. Firstly, the communication protocols differ between devices, ranging
from WiFi and Bluetooth to Zigbee and Z-Wave and many more. Furthermore,
the data protocols used vary from device to device and include message queueing
telemetry transfer (MQTT) and constrained application protocol (CoAP) amongst
others. A general security solution would need to understand and adapt to every
protocol. Overall, heterogeneity makes it hard to find one solution that fits every
need - especially when numerous new products enter the market every year.

User awareness: The target audience of a smart home is the average person.
This target group generally have little awareness of the risks with technology and
how to ensure their devices remain uncompromised. Due to this lack of security
awareness, customers have little interest in paying more for a more secure product.
Consequently the market is not particularly motivated to increase the security in
smart home technology. From these arguments one could argue that if the awareness
of the end-user increased the entire chain is affected and security in smart home
devices will increase.

Position of defense: The positioning of defense mechanisms are troublesome in
smart homes since we want to secure the network not only from external threats
but internal threats as well. A network provider will never notice whether a device
sends malicious data locally on an internal network. A router can not detect if a Z-
Wave node abuses the multi-hop feature, in which a node can act as an intermediate
router, to alter or drop messages. A specific node does not have the capability to run
advanced detection due to its resource restricted properties. From these examples
we see that no obvious position for a strong defense mechanism that solves every
problem is apparent. We use a smart hub as the basis for our defense mechanism.
The smart hub provides a position within the local network, relatively close to the
end nodes, allowing for detailed knowledge of the network data flows. In addition,

2



1. Introduction

the smart hub can provide information on the devices’ states.

Resource restriction: Even though smart hubs are generally connected to wall
sockets, their computational power and memory usage are resource restricted. Con-
sequently, it is not possible to keep a large database over all known devices and
how they communicate. Neither is it possible to run computationally heavy algo-
rithms to detect every behavior of the device and find anomalies. To adapt to the
resource restriction and use our resources in the most effective way, we need to use
a combination of these two approaches.

Based on the presented issues in this section, the following research questions will
be treated:

• What are the threats against smart homes according to current research?

• Is it viable to detect security threats against the smart home in a smart hub?

• How can we detect these threats without negatively impacting the performance
of the hub noticeably?

1.3 Limitations

The following limitations apply to the project:

• Only research which concern smart homes published post 2010 are included in
our surveys in order to limit outdated information. There may be exceptions
in special cases, e.g. field defining publications or attack countermeasures that
are easily adapted to the smart home setting.

• We prioritize attacks based on e.g. severity, detectability, preventability and
implementation difficulty, as time only allow us to focus on a limited number
of attacks.

• Our prototype is integrated with only one smart hub, Home Assistant, due to
the time constraint on the project.

• We do not focus on which media to use for communication with the user, e.g.
logging, text-to-speech (TTS), smartphone notifications etc.

1.4 Disclosure of Vulnerabilities

All related parties were informed of discovered weaknesses in products or services
before this thesis was published. The aim of this thesis is not to demonstrate how
weaknesses in products or systems can be abused, but rather to investigate how they

3



1. Introduction

can be detected in a smart hub.

1.5 Thesis outline

This thesis is structured as follows: Chapter 1 introduces the background, purpose
and scope of the thesis. In Chapter 2 we bring up related work in the field. Chap-
ter 3 gives relevant background knowledge concerning smart homes and Chapter 4
presents security in traditional and smart home systems. In Chapter 5 we describe
the development of the security module, in Chapter 6 we present the experiments
in which we test the security module, and in Chapter 7 we present the results of the
tests performed on the system. We discuss the results and future research directions
in Chapter 8 before we summarize the thesis in Chapter 9.

4



2
Related work

Even though the security of smart homes is a rather young research area, many
studies on the subject exists. This chapter presents research relevant to this thesis
and explain how it relates to this work.

2.1 Risk analyses from other researchers

Risk analyses have long been used to evaluate risks and threats in a system and
several methods on how to perform these analyzes exist on the market. However,
Nurse et al. [21] claim there is a need for new approaches for conducting risk analyzes
within IoT systems as many of the traditional risk assessment methodologies were
developed prior to the pervasive cyber-physical networks currently deployed. Con-
sequently, these methodologies have weaknesses when assessing modern IoT envi-
ronments. Due to these factors we focused on risk analyses that specifically targeted
IoT or smart homes.

In 2016 Jacobsson et al. [1] conducted a smart home project for which they did a
rigorous risk analysis focused on IoT using the ISRA risk analysis method [1]. The
analysis resulted in a wide range of possible issues, several applicable to smart homes.
Furthermore, other studies investigating the security in smart home applications
and devices mainly present vulnerabilities in the systems and propose solutions on
how to mitigate these vulnerabilities [9, 19, 22, 23]. They sometimes touch on the
risks within the system, but this topic is not their primary focus. Our focus is
to understand a large variety of risks to provide an extendable platform on which
prevention for threats against smart homes can be implemented.

2.2 Security management in smart homes

Regarding security management in smart homes, Batalla et al. [23] published an
extensive paper on smart home security challenges in which they propose a solu-
tion where network providers implement a security layer between internet service

5



2. Related work

providers (ISP) and home networks. They propose to do this via a multi-functional
home gateway residing in the home of the end user, and with a home area network
management system. Sivaraman et al. [22] in turn propose a similar solution with a
security management provider. However, contrary to Batalla et al. they argue that
this device does not necessarily need to be operated by the network provider. Their
justification for the decoupling is that it opens up for more actors on the market
of security solutions which allows for competition within the security field, ideally
leading to more secure solutions. In our work we instead explore the viability of
placing a security mechanism in a smart hub since it has additional information on
the smart home state.

2.3 Intrusion detection in IoT devices

Multiple works on intrusion detection for IoT exists. However, the topic is still
in its incipiency and many problems need to be solved before the technology can
be considered mature [24]. Many of these works on intrusion detection focus on
distributed solutions in sensor networks, where each node in the network contains
an instance of or part of an IDS. Drawbacks of a distributed IDS in the smart
home environment include reluctance from manufacturers to agree on a common
system, and the heterogeneous nature of smart homes comprising several devices
using different technologies. Our solution instead investigates a centralized system
for detecting security breaches.

Sforzin et al. [25] developed a project called RPiDS in which they provided a portable
Raspberry Pi 2, a small single-board computer, running the well-known general
purpose intrusion detection system (IDS) Snort. The authors highlighted two main
features. Firstly, due to its portability and ease of use deploying the system on
any desired location would be easy. Secondly, the architecture allowed multiple
Raspberry Pis to work together to increase detection rates and reduce false positives.
However, they found that a single Raspberry Pi had issues with high network loads.

Kyaw et al. [26] made a comparative study between Snort and Bro, another general
purpose IDS. The study, run on a Raspberry Pi 2, focused on the performance impact
of each IDS in terms of processor (CPU) usage, random access memory (RAM)
usage and packet loss rate (PLR) amongst others. Snort used around 25% CPU
and 23% RAM whilst the same measurements for Bro was 80% CPU and 6% RAM.
Noticeably, PLR was as high as 4% and 19% for the two systems, respectively. The
authors argued this indicated that too high network loads might crash the system.

Our research differs from these studies in how our focus is on the smart hub and how
to use the data it provides. Using intelligent filters and data from the smart hub,
the amount of network traffic necessary to examine can be minimized. Furthermore,
smart hub data could help create more situationally adapted detection filters than
otherwise possible, leading to increased efficiency and decreased CPU/RAM load.

6



3
Definition of the smart home

In this chapter, we present relevant background theory about smart homes. In sec-
tion 3.1 we explore a high-level definition of smart homes, expected devices and
the restrictions these devices generally have. Section 3.2 presents common architec-
tures and Section 3.3 explores common communication protocols and technologies.
Finally, Section 3.4 gives an overview of the most likely user of smart homes and
Section 3.5 summarizes the information that has been presented.

3.1 Properties of the smart home

The idea of smart homes has existed for at least 70 years [27] and has been defined
by different authors multiple times ever since [28, 29, 30, 31]. However, three aspects
are almost always present among the definitions from the past 20 years. Firstly, the
devices in the home need to be connected, primarily to each other, but also to the
internet. Secondly, there needs to be an intelligent way to control the system, such
as a central gateway or intelligent smartphone apps. Finally, there needs to be some
degree of home automation within the system.

There are mainly three different types of devices present in smart homes - sensors,
actuators and mixed devices. Sensors, e.g. thermometers, light sensors or button
switches, provide information of the real world environment into the smart home
network. Actuators, e.g. light bulbs, smart locks or coffee machines, act upon this
environment information and perform actions according to some preset automation
rules or manual instructions. Finally, mixed devices are more powerful devices with
both sensors and actuators, such as entertainment systems or surveillance systems.
In addition to this, most types of smart homes has some central gateway that con-
nects the home and enables devices to communicate with each other. Personal
computers and smartphones are not generally considered to be smart home devices,
even though they may interact with other smart home devices.

7



3. Definition of the smart home

3.1.1 Resource restriction

Smart home devices often have restrictions in their resources. Some devices may be
battery operated, giving them a restriction on their power supply. Other devices
have restrictions in CPU, memory or bandwidth. These restrictions give way to chal-
lenges that are not present for less resource-restricted devices such as workstations
and laptops.

The main challenges can be divided into two categories: communication issues and
computational issues. A common communication challenge is that battery operated
devices may periodically go offline in order to save power. Furthermore, there might
be a need to combine data, since the data is transmitted less often. As these changes
affect the prerequisites for communication, it also creates a need for new or updated
communication protocols where transmission only happens during specific periods
of time with concatenated packets.

Computational challenges are affected both by CPU- and memory restrictions. Low
CPU resources may make traditional solutions for computation and security impos-
sible to implement [14]. For example, some cryptographic functions need a sub-
stantial amount of CPU resources to be fast enough to be practical. As such these
are currently not an alternative for CPU restricted devices. However, there ex-
ist projects to find low demanding cryptographic algorithms for resource restricted
environments [32].

3.2 Architectures and setups

There are several ways to set up smart homes in order to provide an interface for
the end user. This section presents four common architectures used for smart homes
and highlights their main advantages and disadvantages.

Figure 3.1: A WiFi based architecture. The user needs multiple apps for the smart home.

WiFi enabled consumer devices are often provided with an accompanying smart-
phone app to control them. The apps are usually focused around being easy to use
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in order to be accessible even for non-technical users. Smart devices from the same
manufacturer are often compatible with each other and can be controlled from the
same application. However, if users want to have devices from different manufac-
turers, they may end up with many apps to control all their different devices. This
easily becomes overwhelming when the number of devices grow larger as can be seen
in Figure 3.1.

Figure 3.2: An integrated architecture such as the one in Jacobsson et al. [1].

In modern houses there are sometimes integrated smart home systems built into the
building itself. Such a system could for example include components for heating,
ventilation and air-conditioning systems. In these cases the user interface is often
composed of physical devices located in the building, e.g. on a dedicated touch
screen or with hardware buttons and sensors. The control panels communicate with
a central entity within the building which carries out the requested changes. These
types of smart homes or building has an efficient structure and are usually easy to
use, however they can rarely be extended. Figure 3.2 illustrates a smart home with
this architecture.

Figure 3.3: A cloud based architecture such as Google Assistant.

Some players on the market, such as Amazon and Google, have cloud based support

9



3. Definition of the smart home

for smart homes. In these set-ups they provide an interface, such as Amazon Alexa
or Google Assistant, and allow the user to connect supported devices to the interface.
This allows for extendability of the home, with cross-compatibility between different
vendors, and a single interface for all the devices. In most of these cases the end-user
can use one smartphone app to control all the smart home devices. An example of
a smart home cloud architecture is depicted in Figure 3.3.

Figure 3.4: A hub-based architecture, such as Samsung SmartThings and HomeAssistant.

The final architecture we present is a hub-based system, such as Samsung Smart-
Things hub, or the Home Assistant hub. A hub is a central unit that, like the
cloud supported architecture, connects supported devices to one single interface. A
strength compared to the cloud based system is that the devices do not necessarily
need to communicate over the internet. However, since it requires a physical hub
to be installed and configured, this is more expensive and might be time consuming
for the end user.

3.3 Communication protocols

The IoT has brought with it many new communication technologies, the develop-
ment of which has often been driven by the challenges caused by resource restrictions
and new use cases. As an example, many smart home devices broadcast their wire-
less traffic on 433MHz or 900MHz since a lower frequency penetrates walls better.
Some technologies used in smart homes also utilize multi-hop routing in order to
reach even further with the help of other nodes. This section brings up some of the
most common protocols and communication technologies within smart home devices
and compares it to more traditional technology.

3.3.1 Common network protocols

In traditional networking and the Internet at large the layered structure of the
OSI model are mostly used [33]. Layers 3 and 4 are dominated by the TCP/IP
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communication stack, whilst either Ethernet or IEEE 802.11 (WiFi) usually inhabits
the two lowest layers. In layer 5 and 6 we find important encryption protocols such
as SSL and TSL. Layer 7, the application layer, contains a large variety of protocols
including well-known ones such as HTTP, domain name system (DNS) and SMTP.
Table 3.1 presents common protocols in terms of the OSI layers [3].

Table 3.1: Common protocols in traditional technology in terms of the OSI model [3].

Layer Name Protocols
1 Physical layer Ethernet, IEEE 802.11, USB, Bluetooth, DSL
2 Data link layer Ethernet, IEEE 802.11, PPP, ARP, NDP, USB
3 Network layer IPv4, IPv6, ICMP, OSPF, RIP, NAT
4 Transport layer TCP, UDP
5 Session layer SSL, TSL, RPC, SMB, SMPP
6 Presentation layer SSL, TSL
7 Application layer HTTP, DNS, SMTP, POP3, UPnP, SOAP

3.3.2 Network protocols in the smart some

In order to be easy to set up and use, smart home devices are almost always wire-
less and hence they almost exclusively use network protocols designed for wireless
transfers. Some of the most common network protocols used are described in this
section.

WiFi is frequently used in smart home devices since it makes the devices compatible
with smartphones and other already existing equipment, which in turn makes it
easy for the user to get started without any additional products. The introduction
of WiFi mesh networks means better coverage which in turns enables smart home
devices by weakening the demand on the power of their radios.

Bluetooth is another traditional technology which has made its way into the smart
home. Many users are already used to using Bluetooth headphones, speakers and
keyboards with smartphones and tablets. All this makes it easy for the user to
incorporate new devices that use the same technology. There also exists a more
energy efficient version of Bluetooth called Bluetooth Low Energy (BLE) which
makes battery driven devices last longer.

Z-Wave is a relatively young technology which broadcasts on frequencies around
900MHz. It is specifically designed to be used in smart homes and is therefore
energy efficient, uses multi-hop routing and focuses on low latency and reliability
instead of maximizing data throughput. Z-Wave is a proprietary protocol owned by
the Z-Wave Alliance, which means little open research has been done on its security
aspects. However, in 2016 a mandatory security standard, called the S2 standard,
was issued by the Z-Wave Alliance. All products incorporating Z-Wave must follow
this standard to receive a Z-Wave certificate.

Zigbee, on the other hand, is a non-proprietary protocol developed by the Zigbee
Alliance. It broadcasts either on 2.4GHz or 900MHz and is based on the IEEE
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802.15.4 standard. As with Z-Wave, it is energy efficient with multi-hop routing
and relatively low transmission rates. Aside from this, the hardware is designed to
be as cheap as possible in order to enable product owners to lower their costs and
bring consumers cheaper technology. Over the history of Zigbee there have been
multiple reports of breaches and security issues [34, 35, 36] but these have been
resolved and nowadays Zigbee has grown into a more secure protocol [37].

3.3.3 Application protocols in the smart home

CoAP, defined in RFC 7252, is a web transfer protocol on top of UDP which is
designed for constrained devices and low-power, lossy networks [38]. It is a machine-
to-machine protocol suitable for smart energy systems and building automation [38].
CoAP is similar to the HTTP protocol, which it is designed to integrate with, in
that it provides a request/response interaction model. However, it also provides
multicast support, very low overhead and simplicity [38].

MQTT is a messaging protocol based on the publish/subscribe pattern, a pattern
which is very suitable for a highly generic environment such as the smart home. The
protocol requires a central server, called message broker, through which all messages
are routed. One key feature of MQTT is its low network overhead which enables
resource-restricted devices such as low power sensors and actuators to use it [39].

3.4 The user

With the exception of smart home technology for elderly or disabled people, there are
few distinguishing characteristics of the smart home user to be found in research [40].
Instead, what can be found are inferred or assumed characteristics of prospective
users [40]. To find out who the smart home user is one has to look at marketing
surveys and statistics instead. In 2000, Pragnell et al. [41] identified the people
interested in smart home technologies as young people under 35 who were used
to multimedia devices and internet in their homes that also had a relatively high
income. This corresponds to current statistics, that shows that the most likely user
is male, between 25 and 34 years of age with a high income [42]. The spread of
smart home technology is still low, with USA topping the list with a penetration
rate of 32%; worldwide this number is only 7.5% [42].

The most distinctive user group of smart home technology in research are elderly or
disabled people [40]. There is much enthusiasm on how smart home technology can
help elderly and disabled people obtain a safer and more independent life. To date,
the diffusion of smart home technology among elderly or disabled people have been
very low. While many users have been happy with the technology they have used,
especially with such things as communicating with their physicians, there is a lot
of fear and reluctance towards the new technology from a large group of the target
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audience [43]. Most of the fear stems from distrust towards the technology, both
in the functionality, but also of hidden agendas from corporations or institutions in
society [43, 44].

Market research has found that smart home services need to have high availability
and to be easy to use in order to be attractive to the user [41, 31]. The research
presented a strong connection between users not being able to carry out the task
they originally set out to do and a decreasing trust for the system. User interest in
a system corresponds directly with the suers trust for said system [31].

An interesting aspect in research concerning smart home users’ is that there is a
disconnect between what technical researchers see as the users’ needs compared to
what the social science researcher see as the users’ needs [40]. In fact, this divide is
so big, that while the technical side pushes the vision that smart home technology is
the next revolution in electrification, some social science researchers question what
kind of needs smart home technology actually fulfills [40]. In product development
there have often been very little contact between the actual potential users and
the developers [45], and the same pattern can be observed in research about smart
homes. This has created research that is often not based on the true needs of the
users, but rather a push for the technology developed [46]. Wilson et al. [40] argue
that the lack of focus on who the user is and what they want is a contributing factor
to the relative slow uptake of smart home technology that has been seen historically.

3.5 Summary

This capter presented the main properties of smart homes. The smart home con-
sists of connected devices with a central intelligent gateway with ability to control
the devices and to automate behaviour. Devices are generally resource restricted
concerning CPU and/or RAM, and can be categorized into either sensors, actuators
or both.

Multiple architectures were presented: WiFi-based architectures, integrated archi-
tectures, cloud based architectures and hub-based architectures. These differ in
terms of device requirements, extendability and how the devices in the network are
controlled. Even though the WiFi-based architecture was very popular in the dawn
of smart homes, cloud based and hub-based architectures are increasing in interest.

Multiple protocols and communication technologies have been created to fit the need
of smart homes. These include Zigbee, Z-Wave, CoAP and MQTT. Traditional
technologies such as WiFi and Bluetooth are also used frequently in smart homes.

The chapter was concluded with the characteristics of a general smart home user.
Even though research claims that elderly and disabled people have much to gain
from smart homes, the technology has mostly been met with fear and reluctance.
Instead young males with a high income is currently the most frequent user of smart
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homes. Necessary features for a smart home product to succeed among users include
high availability and ease of use.
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4
Security in smart homes

This chapter brings up the subject of security in smart homes. Section 4.1 introduces
the most urgent risks within smart homes. In Section 4.2 we present proof-of-concept
and real-world attacks in order to concretize threats and vulnerabilities. Section 4.3
presents traditional ways of handling security, while Section 4.4 explains why these
traditional methods are not optimal for a smart home setting and proposes a different
set of techniques and approaches to secure smart home devices.

4.1 Security risks

In the literature for security in smart homes the terms risk, threat and vulnerability
are often used. Sometimes they are used interchangeably, and it can be difficult to
pinpoint what the words mean at a given moment. In this thesis report, we are
using the following definitions as defined in [47]:

• A threat is anything that has the potential to damage a system.

• A vulnerability is an existing weakness in a system, which can be exploited.

• A risk is the probability of a threat, coupled with the cost of the consequence
of said threat.

Jacobsson et al. [1] published an extensive risk analysis on IoT, where many of the
found risks fit into the profile of smart homes as well. We have highlighted some of
the most pressing security risks for smart homes from this report, namely those of
a mean risk value higher than 8, and present them in more detail in Table 4.1. In
summary, these risks fall into two categories, inadequate security mechanisms in all
levels of the system, and bad behaviour from users. These risks are often brought
up as pressing risks in the field.

The Open Web Application Security Project (OWASP) is a well-known foundation
which have compiled a list of the top 10 vulnerabilities for IoT devices in 2014 [4].
Even though the fields of IoT and smart homes do not entirely overlap, the main
security issues of IoT can be applied to a smart home setting as well. The top five
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Table 4.1: Risks of a mean risk value greater than 8, as identified by Jacobsson et al. [1].

Description of vulnerability Consequence

Threats originating in Software Components
Inadequate authentication in the gateway Unauthorized access to the system
Inadequate accountability in the gateway Unregistered system events
Inadequate software security in applications Unauthorized modification of functions
Software vulnerability in API Unauthorized modification of functions

Threats originating from the information/data process in the system
Inadequate authentication and access control
in the gateway

Manipulation, duplication, surveillance, and
deletion

Inadequate access control policy and configu-
ration in the gateway

Inadequate authentication and access control

Threats originating in the utilized communication channels
Inadequate authentication and confidentiality
in sensors

Manipulation, duplication, surveillance, and
deletion

Inadequate authentication and confidentiality
in cloud services

Manipulation, duplication, surveillance, and
deletion

Threats originating with the end users
Sloppy end-users, etc. Social engineering
Gullible users, etc. Privacy threats
Poor password selection by users Circumvention of authentication mechanisms
Bad systems configuration by users Hacking exploration attacks

vulnerabilities reported by OWASP are presented in Table 4.2.

Insecure control interfaces, whether it is a web-based architecture or a smartphone
app, are important attack surfaces to secure. If an attacker is able to gain access to
said interface, they can operate the device to send and retrieve data as the original
user. Furthermore, they might be able to reconfigure the device entirely, detaching
the original owners and leaving them with an uncontrollable device [36]. Hence,
securing both virtual and physical access to the device is of great importance.

Denning et al. [5] published a study which not only brings up risks with smart homes
but also the end consequences of a possible breach. Their reasoning describes the
process in three steps:

• Low-level mechanisms are exploitable security risks in the smart home.
Example: Hack a smart lock.

• Intermediary goals are the action(s) the attacker is trying to accomplish.
Example: Enable physical entry to the apartment. Viewing private data.

• High-level goals are the end-goal for the attacker. This step provides the actual
benefit of the entire process for the attacker.
Example: Blackmailing.

They argue that by recognizing possible end goals for attackers, new risks for smart
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Table 4.2: OWASP Top 5 IoT vulnerabilities [4].

Rank Vulnerability Examples of issues Impact

1 Insecure Web Interface
Use of default passwords
No lockout on multiple failed logins
Valid usernames can be determined

Severe

2 Insufficient Authentication
Insufficient Authorization

Insecure passwords are allowed
Credentials transmitted in clear text
No separation in levels of privilege

Severe

3 Insecure Network Services
Unused ports are open
Services vulnerable to buffer overflow
Abnormal traffic not filtered out

Moderate

4 Lack of Transport Encryption
Integrity Verification

Use of unencrypted protocols
Encryption protocols are out of date
Packet integrity is not checked

Severe

5 Privacy Concerns
Arbitrary data is collected
Personal data not properly secured
Not using a data retention policy

Severe

homes can be discovered that were not previously considered. The study published
a thorough list with examples of low-level mechanisms, intermediate goals and high-
level goals [5]. This list is presented in a compact format in Table 4.3

4.2 Attacks on smart homes

There have been a number of attacks against devices that can be found in smart
homes. Some have been documented in research as proof-of-concept attacks in an
attempt to motivate further development of security countermeasures, while others
are real-life breaches which can mostly be found in online articles, on news-sites,
and blogs. Some of the most recent academic papers on attacks against smart home
devices are presented in Table 4.4.

4.2.1 Proof-of-concept attacks in research

Ling et al. [48] published a paper in 2017 on the Edimax SP-2101W smart plug in
which they are able to retrieve full control of the smart plug with little or no access to
the network it is residing in. Even if the end-user tries to use a password to protect
the device, the infrastructure of the system allows an attacker to stealthily acquire
this password in multiple ways. Furthermore, the authors show the possibility to
upload malicious firmware to the device in order to gain total control of it.

Hernandez et al. [49] evaluated security in the Nest Thermostat and found lacking
hardware protection. They showed that an attacker with physical access can over-
write the firmware, using only a standard USB-cable, to gain root access on the
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Category Examples

Low-level Mechanism

Altering logs Altering/destroying data
DoS attacks Viewing/Altering traffic
Viewing sensors Viewing data
Using actuators

Intermediate Goals

Accessing financial data Causing environment damage
Causing device damage Causing physical harm
Enabling physical entry Gathering incriminating data
Misinformation Planting fake evidence
Viewing private data

High-level Goals

Physical Theft Blackmail Espionage
Resource Theft Exposure Extortion
Kidnapping Framing Fraud
Stalking Terrorism Vandalism
Voyeurism

Table 4.3: An overview of intermediary goals with an attack towards a smart home, as defined
by Denning et al. [5].

device. This technique only required 15 seconds alone with the device to perform
the attack.

In a paper by Lei et al. [50], the security properties of the voice assistant Alexa is
studied. The focus of the authors was specifically put on protection from acoustic
attacks, where the attacker plays a sound and tricks the voice assistant into believing
a human is issuing the command, e.g. purchasing products online. The authors
developed two proof-of-concept attacks which show that Alexa is susceptible to
these kinds of attacks.

Sivaraman et al. [22] explored security in a range of different smart home devices,
Philips Hue light bulb; Nest smoke alarm; Withings smart baby monitor; Withings
smart body analyzer and Belkin Wemo motion sensor & switch kit, and found flaws
or potential weaknesses in most of the devices. Four out of the five devices were
susceptible to attacks resulting in giving the attacker the ability to masquerade as a
legitimate user in order to send or retrieve data to control the device. Furthermore,
in the case of the Belkin Wemo switch the attacker was able to activate remote
controlling of the device.

Tang et al. [51] explored the Evil-Twin attack, where an adversary deploys a com-
promised access point (AP) close to the victim’s home in order to trick smart home
devices into connecting to the compromised AP instead of the real one. This attack
works because devices readily connect to any AP that looks like theirs, even if it in
actuality is an AP masquerading as the one the device usually connects to. Once a
device has connected to the attackers AP, the adversary can gain full control over
it. Tang et al. [51] developed an approach to detect the existence of such a fake
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Table 4.4: Summary of proof-of-concept papers.

Paper Devices Attack type Countermeasure
Ling [48] Edimax SP-2101W Evesdropping

Device scanning
Brute force
Device spoofing
Firmware

Various

Hernandez [49] Nest Thermostat Physical, firmware Hardware modification
and physical security

Lei [50] Amazon Alexa Auditorial Presence confirmation
by WiFi motion
detection

Sivaraman [22] Belkin WeMo
Nest smoke-alarm
Philips Hue
Withings baby-monitor
Withings body-analyzer

Various privacy issues
Masquerading
Evesdropping
Remote access

Security management
provider

Tang [51] Various Evil-Twin
masquerading

RSSI positioning
verification

Fernandes [9] Samsung SmartThings Abuse privilege model More fine-grained
permission policies

AP by using the received signal strength indicator (RSSI), as opposed to traditional
approaches which focus on properties such as MAC, SSID or network patterns -
which are possible to forge.

Fernandes et al. [9] performed an analysis of Samsung SmartThings, a smart home
platform consisting of a gateway, device apps to support a wide range of different
devices and support for third-party app development. The article included an in-
depth study of nearly 500 device apps and discovered two general flaws. Firstly,
device apps were able to access privileges not explicitly given to them due to an
over-privilege bug. For example, if an app were allowed to read the status of a
smart lock it was automatically also allowed to perform all other actions on the
lock, including locking and unlocking it. Secondly, the internal communication were
not sufficiently secured, which could expose keys and other confidential material to
an attacker. Based on these flaws Fernandes et al. [9] were able to perform four
proof-of-concept attacks to steal door codes, implant new door codes, induce a fake
fire alarm and deactivate vacation mode in a building.

4.2.2 Real-world attacks on smart homes

One attack type that can especially benefit from the increased number of devices
due to the growth of smart homes is distributed denial of service (DDoS) attacks.
This was clearly shown by the Mirai worm, a worm that has affected hundreds of
thousands of IoT devices, including many found in smart homes [52]. Mirai was
discovered in 2016 and has been the cause of several big DDoS attacks. One of these
attacks had a traffic peak at 1.1Tbps, magnitudes above what most sites on the
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internet can handle [52]. Mirai exploits naive vulnerabilities in IoT devices, mainly
the use of common default passwords, but has the potential to severely impact the
infrastructure of the internet. This was shown by the October 2016 attack against
the service provider Dyn which caused several large sites on the internet to become
unavailable [52].

There have been multiple news reports concerning a few minor single-target attacks
as well [11, 12, 13]. In 2014 a man hacked a connected baby monitor and screamed
"Wake up baby" multiple times at a sleeping baby [11]. In 2016, hackers attacked
the thermostats in two buildings in Finland which resulted in non-working heating
in the facilities [13]. At the time the outside temperature was around −5◦C. One
attack in 2018, which went rather viral, concerned not an attack against a private
home but against a casino [12]. The attackers managed to get their hands on the
high-roller database by entering the network through a smart fish tank thermostat.

4.3 Traditional security measures

Traditional network security consist of several techniques which are often bundled
together to provide a secure environment. This section brings up a few of the most
common techniques.

One of the most used techniques is encryption. Modern protocols, in multiple stages
of data transfer, use public-key cryptography and intricate hand-shaking protocols
to set up secure connections. Encryption is often seen as a base premise for confi-
dentiality.

Authorization is the process of deciding whether a certain entity is allowed to per-
form a certain action. This is a crucial concept in computer security as it validates
that only legitimate users and services can access protected data. A prerequisite for
authorization is authentication. Traditionally, authentication can be done in various
ways: passwords, passcodes, biometric validations and Near Field Communication
(NFC) amongst other. Two-factor-authentication (2FA), where users need to au-
thenticate themselves in two different ways, is becoming increasingly popular [53].

One of the oldest protective security measures is firewalls. Nowadays most homes are
equipped with a home WiFi router in order to supply a wireless internet connection
for portable devices such as smartphones, tablets and laptops. These routers usually
include a basic firewall. Modern operating systems for computers, such as Microsoft
Windows, Mac OS and various Linux distributions, provide a basic firewall by default
as well.

The existence of zero-day exploits means that not all attacks can be prevented
from entering a system. However, it is important to detect when such a breach
has occurred. Traditionally, intrusion detection systems and intrusion prevention
systems (IPS) have been used to fill this task. IDSs only monitor traffic passively
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while an IPS also has the possibility to take action against the threat.

Another way to improve the chance that attacks do not go undetected is extensive
logging of all activity on the device. These logs help system administrators analyze
system actions in order to find anomalies, understand the passage of events, and use
this data to improve the security.

Penetration testing is often used by companies to make sure their product or office
network is impregnable. These tests are run by security experts and quality of the
outcome relies heavily on the skill and experience of the testers.

Common Criteria (CC) is a certificate standard which reassures that a product
has undergone significant security review by an expert third-party certifier. It is
an international recognized standard which assesses security functions, performs
penetration tests and evaluates the development process of the product to assure
security compliance. Certificates need to be re-issued if any hardware of software
changes occur.

4.4 Smart home security measures

This section brings up issues with traditional security measures based on the envi-
ronment of smart homes and the current risk situation. Furthermore, it presents a
set of security techniques and approaches adapted to a smart home setting.

4.4.1 Issues with traditional security measures

One general issue with traditional security in smart homes is the expectations from
the user. In a research study by Sandström [31] about smart home users, he found
that users are less willing to use a smart home device if it is harder to access. This
means that if security measures of a smart home make it noticeably more difficult or
more time-consuming for a user to use services of the smart home, the user are less
likely to use them as much. As a consequence, it is important to provide security
solutions which does not affect the user productivity in the system. As an example,
new ways to authenticate a user might be needed to ease the process whilst still
keeping high security.

The non-technical nature of the user [31], or rather the lack of knowledgeable system
administrators, renders some security countermeasures unusable. This includes log-
ging, where the user generally neither has the knowledge nor the interest to assess
device actions via data logs. Furthermore, evaluation of penetration tests would not
be feasible either.

In addition to the above issues, the heterogeneous and resource restrained nature
of smart homes can make it difficult or impossible to apply traditional security
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measures. Hossain et al. [14] pinpointed a number of important constraints and
how they make applying traditional security measures difficult. The limitations on
resources in smart home devices mean that computationally heavy cryptographic
algorithms are not applicable, and security solutions that have not specifically been
designed with memory and storage limitations in mind may not work [14]. For
example, local firewalls or IDSs on smart home devices may not be possible due to
lack of processing power.

The heterogeneity of smart home networks also come with problems. Not only do
smart home networks contain a lot of devices, making scalability of the security
solution an issue, these devices may also be mobile, joining and leaving the network
at any time, something that existing security models may not be able to cope with.
In addition, the heterogeneity when it comes to communication protocols can also
leave traditional security measures lacking. Hossain et al. [14] also point out that
the slimmed, embedded operating systems on IoT devices often have a thin network
protocol stack that might lack the security measures of traditional systems. In
addition, the OS or protocol stack on the device may not be able to integrate new
code, making it very difficult to patch discovered vulnerabilities.

4.4.2 New proposed techniques and approaches

Even though the field of security in smart homes is relatively young, some new
techniques and approaches have been proposed. This section brings up a few of
them as a contrast and extension to the section on traditional approaches. All
approaches either address the problem of resource restriction or the lack of technical
experience among users.

One of the most used encryption layers, transport layer security (TLS), operates
on top of TCP in the TCP/IP stack. However, a similar protocol called data-
gram transport layer security (DTLS) has been developed to provide support for
encryption over UDP and can therefore be used with the resource efficient protocol
CoAP [54, 55]. This enables some nodes to introduce encryption into data trans-
missions, leading to higher security. However, the devices which are most resource
restricted will still be unable to use this feature due to the complexity of the en-
cryption algorithms themselves.

There is ongoing work to secure MQTT, a frequently used protocol within smart
homes. In a study from 2015 researchers used a lightweight attribute based encryp-
tion (ABE) algorithm to establish secure communications in an MQTT broadcast
domain and specified the protocol SMQTT [56]. The technique was also adapted
for MQTT-SN, MQTT for sensor nodes, in order to provide support for power con-
strained devices.

Several new ways to authenticate users have been explored. Voice authentication
has been a concept for a long time and patents dates back all the way to 2000 [57].
However, this technique was not commonly used until a few years ago and nowadays
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companies like Nuance [58], VoicePin [59] and Google [60] offer this service on a
large scale. Zhang et al. [61] extended this idea to involve both voice- and gesture
authentication, in order to prevent an attacker from carrying out a replay attack
by using a pre-recorded audio clip. Lei et al. [50] suggested that voice features only
should be available if that particular user is present at home.

IDSs can not stop vulnerabilities from being exploited but detection of an attack can
provide the end-user with information concerning potential breaches of particular
devices in their smart home setup. This information could help the users, even those
with little to no technological knowledge, to take action by either sending the device
to a service shop for repairs or by replacing it. When an infected device only gets a
small time window to transfer the virus which infected it, there is less chance it will
succeed and hence virus spread will be mitigated in that particular network. The
work in this thesis is focused on this approach.

4.5 Summary

This chapter presented security aspects within a smart home. First, the result of
multiple risk analyses were listed. Risks are generated both from hardware and
software components as well as from the user itself and can result in loss of privacy,
invalid data transmission or a device being controlled by a malicious user. A com-
promised smart home device can also be used as a stepping-stone to perform other
crimes, such as physical theft or blackmailing.

A few historical attacks on smart homes were brought up. These included both
proof-of-concept attacks, where researchers find security holes in products, and re-
ports about actual real-life breaches. The botnet Mirai was mentioned as an alarm-
ing consequence of inadequate smart home security.

The chapter continued with explanations of traditional security concepts such as
encryption, authorization, firewalls, IDS, IPS, penetration testing and logging. We
also presented issues with applying these techniques to smart homes, the two main
issues are the resource-restricted property of devices and the lack of technical knowl-
edge among users. Finally, a new set of techniques and approaches were presented
which take these shortcomings into consideration.
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5
Development of a prototype

Security Supervisor

In this chapter we present the development process of a security module for detecting
malicious activity in a smart home network. The module will be referred to as
the Security Supervisor and is integrated with the popular open source smart hub
platform Home Assistant. Section 5.1 specifies the design of the Security Supervisor
and how it interacts with Home Assistant on an abstract level whilst Section 5.2
provides details on the actual implementation.

5.1 Design

As previously stated, we use a smart hub as the location for the Security Supervisor.
We compared several smart hubs and chose Home Assistant due to its popularity,
availability, and openness. Thus we designed our Security Supervisor to fit into the
Home Assistant architecture even though the general principles of the software are
adaptable to any smart hub system. A key design feature was that the Security
Supervisor should be easily extendable.

5.1.1 Architecture

This section describes the architecture of both Home Assistant and the Security
Supervisor and shows how they interface with one another. The Security Supervisor
is designed to be able to integrate with any smart hub but the implementation
described in this thesis interfaces with Home Assistant.

5.1.1.1 Architecture of Home Assistant

Home Assistant has a straightforward and modular software architecture [62]. It
consists of a central core, a user interface, home automation, and components to
communicate with smart devices in the home. In Figure 5.1 the shaded parts are
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Figure 5.1: Architecture of Home Assistant [2].

part of the Home Assistant source code while the non-shaded parts are external
libraries and physical devices.

The core of Home Assistant consists of an EventBus and a StateMachine. The
EventBus allows other parts of Home Assistant to fire and listen to events in order
to communicate changes to each other. The StateMachine holds the current state
of the smart home, and changes to the states are facilitated through the events sent
over the EventBus.

Communication with smart home devices is handled through entity components and
platforms. The entity components are components which handle communication of
a type of device, i.e. lights or switches. They contain shared functionality common
to a type of device. The platforms expand the entity components so that they
are compatible with certain brands of devices. The actual communication with the
device is in the shape of external 3rd party libraries. The platforms communicate
commands, states and events with these libraries through API calls. The modularity
allowed by the entity components and platforms makes it easy for developers to add
support to more devices.

The final part of Home Assistant is the home automation. This is controlled by user
configurations and internal components that use triggers from events together with
information from the core to activate commands. An example of an automation
would be to turn on a light when the user comes home and it is dark outside.

5.1.1.2 Architecture of Security Supervisor

The threat detection is added to Home Assistant as an internal component. As a
component it has access to the event bus and internal knowledge of the hub, allowing
it to factor details of the smart home setup into its threat detection mechanisms.

The threat detection component in itself has a layered and modular structure with
three main layers: collection and pre-processing, threat analysis, and data presen-
tation. These layers are depicted in Figure 5.2 and are explained below. We focus
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Figure 5.2: The three layered architecture of the Security Supervisor.

on layer one and two in this thesis.

The first layer handles collection and pre-processing of data. This is not only network
data but also information about states of devices in the smart home. The data is
processed and categorized in order to match filters provided from analysis modules
in layer two. All data which matches a module filter is passed on to that specific
module for further processing. The first layer also provides utility functionality for
profiling.

The second layer is populated by security modules. Each module focuses on detect-
ing a particular threat and provides, as previously mentioned, a filter to match to
general characteristics of this threat. Once data enters the module, an internal al-
gorithm evaluates the data on a deeper level and alarms layer three if any malicious
activity is found.

The third layer acts as an aggregator and summarizes all information from security
modules in layer two in order to present the data to the end-user. Even though
the design of this layer might affect the outcome of the end product, since users
prioritize easy-to-use tools, this layer has not been the focus of the thesis and will
not be presented further.

The layered structure of the Security Supervisor not only fits in with the general
layered structure of Home Assistant, it also allows for easy extension of the Security
Supervisor. With the fast pace of the market and the always evolving cyber-attacks,
easy extendability is a key feature for software which focuses on detecting security
breaches.

5.1.2 Layer 1: Data collection and preprocessing

The main purpose of layer one is to act as a utility layer and provide easy and fast
access to data gathered from the device for the analysis modules in layer two. The
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layer itself can be divided into three separate parts: reading input data, commu-
nicating with the smart hub and profiling. These parts will be explained in detail
below.

In order to scan for threats, the Security Supervisor needs to be able to intercept
network traffic and process it. Since, as mentioned in Section 3.3, smart homes
consist of devices with multiple communication protocols it is important to provide
a generic interface for input data. This interface component is responsible to gather
data from multiple sources and merge it into one single data stream, a process
which is depicted in Figure 5.3. The concatenated data from the data merger will
be profiled and processed by each analysis module for which the data match the
announced filter of corresponding analysis module.

Figure 5.3: The traffic concatenation module provides a generic interface for multiple
technologies.

One big advantage with locating threat detection within a smart hub is that it gains
access to the data of the smart hub. Layer one is responsible for gathering updated
information about the state of the smart home and to communicate any changes to
the analysis modules. It also provides the network capture drivers with information
about smart device states in order to limit the amount of network traffic which need
to be processed. Instead of listening to all devices on the network, including PCs
streaming movie content or performing other high network load tasks, the Security
Supervisor needs only to process smart home device data. With less data to be
processed, the amount of dropped packets decrease. The packet drop rate was
mentioned both by Sforzin et al. [25] and Kyaw et al. [26] as a main issue with
threat detection on resource restricted devices.

The Security Supervisor uses profiling as a central concept. Layer one provides a
set of high-level functions to maintain profiles for each device. Once network data
has been captured and pre-processed, it is run through a set of profiling functions
provided by the analysis modules. By giving the responsibility of profiling functions
to the analysis modules, we assure that the data needed for the modules to work is
guaranteed to be profiled. However, a set of default profiling functions for common
protocols, such as IPv4, TCP and UDP, are provided by layer one by default in order
to reduce redundant profiling functions. The profiling process and how it affects the
other layers in the Security Supervisor is depicted in Figure 5.4. Especially notice
how layer two is separated into two sections to adhere to the profiling - one part to
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perform the profiling and one part to run the actual analysis.

Figure 5.4: Data flows through the profiling functionality.

5.1.3 Layer 2: Analysis modules

In the Security Supervisor, the analysis modules are the parts that are responsible
for detecting specific security issues. The selection of security issues to detect, and
thus what security issues to solve was based on the properties of risks in Section 4.1
and attacks presented in Section 4.2. The leading properties for the selection of
threats include the probability of the attack, the severity of the consequences, and
the feasibility of the attack.

The first analysis module analyses outgoing traffic to detect if any device in the
network has been compromised and joined a malicious botnet. Botnets can have
a potentially devastating effect on both large internet infrastructures and society.
With the number of devices predicted to be available in smart homes, the potential
pool of bots in a botnet is magnitudes larger than what have been possible histori-
cally. Thus, it is very important to detect if any device in the smart home has been
compromised in this manner.

The second analysis module handles so called Evil-Twin attacks, where an attacker-
controlled AP takes over the devices in the smart home. This has the potential to
leak huge amounts of personal data and facilitates easy access to the smart home or
network in question. The module uses the RSSI as described by Tang et al. [51] to
evaluate if an AP is an evil twin or not, as this is a metric that is harder to forge
for the adversary than network protocol data.

5.2 Implementation

The implementation of the threat detection was done in Python 3.6. This is the
language used in the rest of the Home Assistant project, which made it an attractive
choice for the Security Supervisor. Utilities to read network data was based on open
source projects written in C and C++.
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5.2.1 Data collection and pre-processing

In the process of network packet collection, network data is handled in multiple
stages in order to allow the use of various network protocols. Figure 5.5 illustrates
the stages of the process for both encrypted and unencrypted data.

Figure 5.5: Information flow in the network traffic collection process.

The actual capturing of data is handled in the first two stages as external ser-
vices outside of Home Assistant. The reason for this being done externally is
twofold. Firstly, libraries for capturing and decrypting data are not efficient enough
in Python. Secondly, capturing network traffic requires root privileges and since
Home Assistant runs as a non-root user, it is more convenient to capture the traffic
externally. These services are entirely separated as well; the decryption stage is
designed to be transparent, meaning the traffic capture in the second stage will be
carried out in the same way regardless of encryption or not. In order to capture
all network data on Ethernet networks a network card in monitor mode is required.
Other technologies may have additional hardware requirements.

Once the data is captured, it is written to files which are regularly scanned for
and read by the threat detection module in order to process data. Many smart
hubs use flash memories and it has been shown that an excessive amount of disk
writes decreases life expectancy of the memory cells [63]. However, even though this
architecture will increase the number of disk writes to permanent storage, it instead
decreases the load on the RAM on the device.

Two possible libraries were considered for reading data from network files into the
Security Supervisor. Scapy, a very well-known library focuses mostly on being
easy to use. Packets are fully parsed from network files which allows the pro-
grammer to access pre-formatted properties by name. The properties have been
formatted to an easily expected form, e.g. IPv4 addresses as strings of the form
XXX.XXX.XXX.XXX. Pypacker is an alternative network library which instead fo-
cuses on performance and low overhead. Properties of a packet can be retrieved by
name although their values are exposed as the original byte representations.

Profiling is implemented in a straightforward fashion based on the design presented
in Section 5.1.2. For each smart home device, an instance of the Python class Profile
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is created. This object keeps track of whether the device is in the initial profiling
phase, where all network activity are recorded and modelled in a simplified form, or
whether it should be matched against the profile in order to detect malicious activity.
The Profile object is also the data container for the modelled device behaviour. If
a smart home is extended with a new device where a modelled device behaviour
already exists, this device inherits the profile. However, it does not skip the profiling
phase since there might be communication between devices of the same type that
would not be considered unless a full profiling phase is carried out.

Access to Home Assistant data is implemented through internal state buffers which
are updated based on events from the EventBus. There exists functionality for
analysis modules to subscribe to updates which are triggered when a smart home
device state has changed. These are implemented as wrapper functions which pass
on data from event bus events.

5.2.2 Analysis module: Botnet detection

The botnet detection analysis module is responsible for detecting if devices in the
smart home are used as part of a botnet. Since DDoS attacks constructed with
botnets are generally performed towards internet services, we focus on devices using
WiFi technology and the TCP/IP stack. The module monitors the outgoing traffic
of devices and warns the user if a device is communicating with unsuitable targets.
In our implementation, unsuitable targets are all targets which the device did not
communicate with during the profiling phase.

Whilst this might seem like a straightforward solution, there are some issues with
name resolution in DNSs. The server IP address of a service may differ over time
which in turn may result in a smart device contacting an IP address which was
not encountered during the profiling phase. Consequently, unless DNS requests and
responses are monitored to update the profile accordingly, erroneous warnings may
be issued. The implementation solves this by not only keeping track of IP addresses,
but hostnames as well. Once a DNS response is found, profiles are updated accord-
ingly with both hostnames and IP addresses. However, trusting DNS records is not
without risk, as elaborated on in Section 8.2.2.

A simplified version of the used algorithm is shown in pseudo code in Listing 5.1. The
normal traffic is defined by fingerprinting traffic for a new device for a short period,
defaulting to 24 hours, when the device is connected to the network. Theoretically,
it can also be defined by the developers of the device platforms. This creates a
whitelist of addresses that the device is allowed to contact. If the device contacts
any other address after the training period is over, a warning will be issued.
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Code Listing 5.1: Algorithm for detecting if devices are used in a botnet.
1 # Catalouge normal outgoing traffic
2 normal_traffic = []
3

4 if profiling
5 for address in outgoing traffic
6 add address to normal_traffic
7 else
8 for address in outgoing traffic
9 if address not in normal_traffic

10 warn user
11 else
12 do nothing

5.2.3 Analysis module: Evil-Twin

The implementation of the Evil-Twin attack detection uses the algorithm for sin-
gle device single position (SDSP) presented by Tang et al. [51]. In the profiling
phase, RSSI between the smart hub and nearby APs are continuously measured and
compiled to a model for each device representing the variation of received signal
strength. This model is then used in order to make sure that no fake AP is trying
to compromise nearby devices.

Two different models are implemented and tested for the Security Supervisor. The
first one is a basic statistical model in which valid RSSI entries are to be in the
interval average ± variation, where average and variation are values found during
profiling phase. Furthermore, a number of detections outside this interval is accept-
able each minute if that number does not surpass the average number of detections
outside the interval per minute during the profiling phase.

The second model used is a min-max-model. The minimum and maximum signal
strength is recorded during the profiling phase and each recorded signal strength
entry which is not in the interval minimum ≤ signalstrength ≤ maximum is
marked as a threat.

We retrieve RSSI of an AP by observing the RadioTap header in received packets.
This header is added by most WiFi adapter drivers and includes properties such as
signal strength, signal attenuation and transmission power [64]. This data is safe to
use since RadioTap headers cannot be spoofed externally and we assume our WiFi
adapter has not been compromised.

The inner workings of the algorithm is as follows. The Evil-Twin module keeps a
list of devices and their positions relative to the hub. It regularly checks that these
devices are in the positions they should be, and will warn the user about a potential
attack if any device position is inconsistent with its previously recorded position.
However, if RSSI measurements for all devices change, the module assume that the
location of the smart hub itself has changed.
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Experiments

In Section 6.1 we describe the testbed and what devices it comprises. The chapter
continues in Section 6.2 by explaining what metrics and methods are used to evaluate
whether the Security Supervisor fulfills the goals set up in Chapter 1. We finish up
the chapter in Section 6.3 by presenting our conducted experiments in detail.

6.1 Testbed

Our testbed is composed out of various devices one can expect to find in a smart
home. Devices have not been chosen on any specific criteria and similar devices of
other brands will most likely work out of the box with the project as well. The
devices which were used are presented below.

The main component of the test bed is a Raspberry Pi 3 B+ on which Home As-
sistant is running. The Raspberry Pi 3 B+ has a quad-core Cortex-A53 processor
with a clock-rate of 1.4GHz and 1GB of RAM [65]. It supports 802.11b/g/n/ac
WiFi protocols, Bluetooth 4.2 LE and has an Ethernet RJ45 port [65]. We have
also supplied the Raspberry Pi 3 B+ with a 16GB memory card. We found this
to be relatively comparable to other hubs on the markets such as Samsung Smart-
Things hub that has a 1GHz ARM Cortex-A9 processor with 512MB RAM, and
4GB FLASH memory [66].

The Raspberry Pi has been extended with a wireless USB network card, Panda
PAU06, which supports monitor mode. Monitor mode makes it possible to listen to
all traffic on a network, not only the one transmitted and received from or to the
device itself. This allows Home Assistant to monitor all wireless communication as
if it was located in the router. Even if the network is protected by encryption, such
as WEP or WPA2-PSK, it is possible to decrypt this traffic with only the SSID
and pre-shared key as a prerequisite. The Panda PAU06 requires more power than
provided in standard USB ports and has therefore been connected to a USB hub
with external power in order to not damage the Raspberry Pi [67].

Furthermore, a Broadlink SP3 smart plug has been connected and configured to
the smart home. The Broadlink SP3 plug connects to the network via IEEE 802.11
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b/g/n and operates on the 2.4GHz frequency [68]. It has the basic functionality that
it can be turned on/off remotely, according to a schedule, or randomly. Furthermore,
it includes a nightlight that can be turned on or off as well.

The Raspberry Pi and the Broadlink SP3 smart plug are connected to an Asus Dual-
Band Wireless-AC1750 Gigabit Router. It communicates via network standards
IEEE 802.11 a/b/g/n/ac, IEEE 802.3b, IPv4 and IPv6 [69]. It operates on both
2.4GHz and 5GHz frequencies and can cover a large home [69]. The router supports
transfer speeds up to 450 Mbps over IEEE 802.11n and up to 1300 Mbps over
802.11ac [69]. This can be compared to the Panda PAU06 adapter which only
supports 300Mbps [67].

Figure 6.1: The testbed setup: 1. Panda PAU06, 2. LogiLink USB Hub, 3. ASUS AC1750,
4. Raspberry Pi 3B+, 5. Broadlink SP3 plug.

6.2 Test methodology

There are several goals the Security Supervisor needs to fulfill. To begin with, it
needs to detect threats without negatively impacting the performance of the hub.
In Section 6.2.1 we go into detail about what constitutes as negatively impacting
the performance of the hub and what tools and techniques we used to measure these
properties. Furthermore, the Security Supervisor needs to detect threats with a
high accuracy and a low rate of false positives. Section 5.1.3 introduced the threats
that are handled in detail in this thesis and in Section 6.2.2 we go into detail about
metrics that can be used to evaluate the efficiency of each of these analysis modules.

6.2.1 Resource use

This section brings up important resources and what tools are used to evaluate the
impact of the Security Supervisor on these resources. Resources which are mentioned
are CPU, RAM, energy usage, and permanent storage.
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6.2.1.1 Resources

One important resource to take into consideration is CPU usage. Home Assistant
and the Security Supervisor should never use 100% CPU more than momentarily.
As there is also an operating system on the hub, and applications do not use CPU
resources evenly, there needs to be a safety margin on how much CPU the Security
Supervisor can use without exhausting the system.

Many smart hubs are connected to mains power, meaning there are no direct re-
strictions to energy consumption. However, increased energy consumption could be
both an environmental and economical issue.

Another significant resource to take into consideration is long-term storage memory.
The Raspberry Pi 3b+ uses SD cards and can theoretically be supplied with any
amount of memory. Huge SD cards are still very expensive though, and it is unlikely
that a huge SD card will be used for Home Assistant. In addition, SD cards use flash
memory that are susceptible to being worn out by write operations. While the flash
memory in SD cards support a fair amount of write operations and many provide a
wear leveling mechanism that distribute the write operations over the entirety of the
memory to prolong the life of the memory card, it is important to keep the number
of write operations to a minimum. Abusing write operations would contribute to
expediting the deterioration of the SD card, which would be economically bad for
the user as well as a hit to the environment.

A final resource to observe is the amount of RAM used. This is especially important
to consider when dealing with network data buffers. The Security Supervisor will
handle network data for multiple devices, which in turn means data rates may grow
large and RAM usage with it. It is of utmost importance to keep RAM memory
from maxing out, or the amount of dropped packets will radically increase.

6.2.1.2 Measurement tools

We used the well-known performance monitoring software sysstat to measuring the
CPU usage on the Raspberry Pi B3+. Sysstat, first released in 1999, contains a
wide range of features to measure CPU and memory usage. CPU statistics can be
gathered for an entire system or each individual core, providing detailed views for
users. Furthermore, sysstat keeps track of multiple properties of the state of the
memory - buffer usages, amount of memory in cache and inactive memory amongst
others. This data gives a good view of how the system performs under a certain
load.

In order to measure the amount of energy used by the hub we used the hardware
sensor Charger Doctor [70]. This hardware acts as middleware between the energy
source and the device and displays real-time current usage with a resolution of
10mA. By documenting the displayed data over a period of time an estimate for
energy usage can be presented.
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To measure how many write operations are made in the system and how big these
write operations are, we use the tool iostat [71]. This tool gives a detailed overview
of the input/output operations to different parts of the system. It shows properties
such as the number of reads/writes, size of reads/writes, and time the system spends
waiting on I/O operations [71].

6.2.2 Analysis modules

The two security modules for botnet and Evil-Twin detection require different eval-
uation criteria and testing methodologies. This section presents these properties for
each of the cases.

6.2.2.1 Botnet

The goal of the functionality tests for the botnet module is to find out how much
malicious traffic the Security Supervisor is able to detect. We implement this in
three steps. First, we collect real data from the network data stream into a file.
Second, we append packets which indicate malicious use into this file. Finally, this
file is injected into the network packet stream in order to simulate malicious activity
and the number of detections from the module can be recorded.

The architecture of the Security Supervisor as described in Section 5.2.1 allows us
to inject the malicious traffic directly into the internal packet stream of the Security
Supervisor, which means we do not need to broadcast this traffic onto the actual
physical network. Even though this might seem like a security issue that may open
up the system to further attacks, this injection is only possible to perform with root
privileges. It can be assumed the attacker does not have root access since if they
do the device is already compromised and we can not defend ourselves against any
internal attacks.

6.2.2.2 Evil-Twin

The goal for the functionality tests for the Evil-Twin analysis module was to find out
weather the module was able to detect a difference between an attackre-controlled
AP or not. Furthermore, it was important to evaluate whether there are any variabil-
ity in the perceived signal strength that could interfere with the solution. Finally,
we needed to take into account if inhabitants or obstructions in the home could
cause significant interference to the results. The tests were performed without any
obstructions and with minimal interference from inhabitants in order to increase
comparability.
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6.3 Experiments

This section presents specifics on experiments which were run to evaluate the perfor-
mance of the Security Supervisor. We begin by presenting the experiments concern-
ing resource use followed by details on experiments concerning individual analysis
modules.

6.3.1 Resources

We began the resource tests by finding baseline values for all measurable properties
when only Home Assistant was running in order to have something to compare the
performance of our entire setup with. All baseline tests were performed in three
sessions with periods of two hours each. The sessions were distributed over different
times of the day and scheduled to run when the network was most active, ranging
from 8am to 8pm.

We measured I/O statistics, CPU usage, and RAM usage including average values
as well as maximum usage spikes. Data was retrieved in intervals of 10 seconds.
Energy consumption, as shown on the display of the Charger Doctor, was noted
every other second. Specifics of each test category are summarized in Table 6.1.

Resource Test interval Test period Sessions Total test entries
CPU 10 sec 2 hours 3 sessions 2160
RAM 10 sec 2 hours 3 sessions 2160
Storage 10 sec 2 hours 3 sessions 720
Energy 2 sec 30 min 3 sessions 2700

Table 6.1: Intervals for performing baseline tests on the system.

When all baseline tests were done, we conducted two more rounds of resource us-
age tests: one with only the botnet module running and one where the Security
Supervisor ran with all analysis modules active. These tests were carried out in
exactly the same way as the baseline tests. The results from the baseline tests were
then compared to the Security Supervisor tests in order to form an opinion on the
performance impact of the Security Supervisor on the system.

6.3.2 Threat detection

This section presents details on the experiments performed to validate the imple-
mentation of the analysis modules of the Security Supervisor.
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6.3.2.1 Botnet module

Testing the detection of suspicious communication from devices in the smart home
was done in two stages. First, valid data was used to make sure that the evaluation
module did not produce false positives. Second, forged messages which could have
been part of a DDoS attack was fed into the packet stream. The evaluation of the
test was a comparison between the number of malicious messages and the number
of reports of malicious activity from the evaluation module.

The malicious data sets were collected pcap files that were modified using WireEdit
to match the devices in the testbed. Some files were obtained from pcaper.net [72,
73, 74, 75, 76] while some were crafted from a sample packet. In most test data sets,
the source IP address and source MAC address are the same as those of a device in
the smart home. In one data set the source IP address is simulated to be spoofed
to some random address, and in another both IP address and MAC address are
simulated to be spoofed.

The test that were carried out simulated a number of different DDoS attack types
to find out if the system could handle different make-ups of packets. The following
attacks were tested:

• IP fragment overlap

• Ping flood

• TCP SYN/FIN flood

• UDP DNS flood

• Smurf attack

• Smurf attack (spoofed MAC address)

• IPv6 flood

6.3.2.2 Evil-Twin module

The test of the Evil-Twin analysis module was carried out in the following way.
A mobile device, in this case an Android smartphone in hotspot mode, was used
to simulate a rogue AP. It used the same SSID and network password as our test
network but did not spoof its MAC-address and behaviour as could be expected by
a rogue AP. However, since our solution to the Evil-Twin attack does not focus on
these properties, that factor is negligible. The rogue device was activated in different
locations of the room and the result of the test was based on a compilation of how
many times the analysis module detected the presence of the rogue device.

Three different cases where used for placement of the evil twin device. These are
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(a) Case where the evil twin is placed between the real AP and the Security Supervisor.

(b) Case where the Security Supervisor is placed between the evil twin and the real AP.

(c) Case where the real AP is placed between the evil twin and the Security Supervisor.

Figure 6.2: Positioning of each device in test scenarios for the Evil-Twin detection module.

depicted in Figure 6.2. In case A, the router was placed 5m, 7m and 10m from the
smart hub with 3 subcases each where the evil twin device was positioned either 1m
from the router, 1m from the smart hub or in the middle between the two devices.
For case B distances of 1m, 5m, 7m and 10m were used for the router with 3 subcases
each where the evil twin device was placed on half the smart hub distance, equal
distance and 1.5 times the distance away. For case C the distance between devices
were combinations of the distances 1m, 5m, 7m and 10m. Some subcases have been
ignored due to low likelihood of them ever happening in a realistic environment. A
summary of all these test cases are presented in Tables 6.2a to 6.2c, where the above
mentioned subcases are denoted SC1, SC2 and SC3.
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Router Evil-Twin SC1 Evil-Twin SC2 Evil-Twin SC3
5m - 2m 4m
7m 1m 3m 6m
10m 1m 5m 9m

(a) Positions of devices relative to the Raspberry Pi for case A.

Router Evil-Twin SC1 Evil-Twin SC2 Evil-Twin SC3
1m - 1m 5m
5m 2m 5m 7m
7m 3m 7m 10m
10m 5m 10m -

(b) Positions of devices relative to the Raspberry Pi for case B.

Router Evil-Twin +1m Evil-Twin +5m Evil-Twin +7m Evil-Twin +10m
1m 1m 6m 8m 11m
5m 6m 10m 12m 15m
7m 8m 12m 14m 17m
10m 11m 15m 17m 20m

(c) Positions of devices relative to the Raspberry Pi for case C.

Table 6.2: The positioning of devices relative to each other in three test cases for the Evil-Twin
module.

40



7
Results

This chapter presents results from the experiments on the Security Supervisor. Sec-
tion 7.1 brings up results concerning resource usage whilst Section 7.2 focuses on
what level of detection rate the analysis modules provide.

7.1 Resources

This section presents results from resource tests for CPU and RAM usage, perma-
nent storage usage, and power consumption.

7.1.1 CPU and RAM usage

As mentioned in Section 5.2.1, two different network libraries were considered -
Scapy and Pypacker. Performance in terms of CPU and RAM usage differed a lot
between these two libraries. A comparison between the amount of packets each of
them are able to process per second is presented in Table 7.1.

Library
Packets per second

Pypacker test [77] Our testbed
Scapy 726 57

Pypacker 17 938 15 941

Table 7.1: Comparison between Scapy and Pypacker performance-wise.

Results from running the Security Supervisor with Scapy are presented in Figure 7.1.
When exposed to a low network load with normal traffic from smart devices and a
single AP, CPU usage averaged 14% and RAM usage did not differ from the baseline.
However, when exposed to a higher network load with 6-8 nearby APs, Scapy was
too slow to process data which led to a constant increase in RAM and a system
crash within 29 minutes. APs generally send 10 beacon frames per second resulting
in 60-80 frames per second for 6-8 APs, which exceeds the processing capacity of 57
packets per second for Scapy.

41



7. Results

(a) CPU usage (%), high network load.

(b) RAM usage (KB), high network load.

Figure 7.1: CPU and RAM usage over time when using Security Supervisor with Scapy, each
with low and high network traffic load.

Pypacker was able to handle a high load without any noticeable issues. When
exposed to the higher network load, CPU usage averaged at 4% and RAM usage
did not differ from the baseline. No tests were carried out for the easier case with
lower network load due to the high performance of the library. Results from the
Pypacker tests are presented in Figure 7.2. Note that these tests were carried out
in periods of only 30 minutes instead of two hours due to two main reasons - the
large expenditure of time to carry out tests and the fact that resource impacts are
noticeable already early in the process.
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(a) CPU usage (%), high network load.

(b) RAM usage (KB), high network load.

Figure 7.2: CPU and RAM usage over time when using the Security Supervisor with Pypacker.

7.1.2 Permanent storage

Figure 7.3 shows an average of the results of the iostat runs for the tests. Both
7.3a and 7.3b show a comparison between the three cases of tests, namely the base
version with only Home Assistant running, the botnet version where only the botnet
detection module is running, and the full instance of the Security Supervisor. While
all data sets show some significant variance in their values, it is clear from the charts
that both the number of writes and the data written to the memory cards is the
lowest in the base case and the highest in the full version.

From the values collected during the tests, we can make a rough estimate of the
expected lifetime of the memory card in the different versions tested. To make this
estimate, we need to establish some values.
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(a) Memory writes over time.

(b) Data written to memory over time.

Figure 7.3: The amount of writes to memory over time, as well as the amount of data written
to memory over time, for three different cases.

We use a 16GiB memory card. Out of these 16 GiB, 4GiB is taken up by the card’s
internal functionality, as well as the operative system of the Rasberry Pi. As such,
there are 12GiB available for Home Assistant and the Security Supervisor. The file
system write block size (wbs) of our operating system is 4KiB, and our memory
card has an erase block size (ebs) of 4MiB. This gives us 3146 sectors (ws) available
to use in the card. Assuming up to 3000 write cycles (wc) [78] per sector we can
theoretically do 9.4 ∗ 106 4Kib writes in total to our memory card.

From the iostat data, we discovered the average number of writes per second (wps),
as well as the average size of these writes (s). Using this data we can construct a
formula that gives us the lifetime of the card in years. The results of this formula
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for each test case can be found in Table 7.2. The derivation of this formula can be
seen below.

Find the amount of write blocks per average write:

(
wb

w

)
=



s

wbs
if s mod wbs = 0

s

wbs
+ 1 otherwise

(7.1)

Find the amount of writes per write sector:

wpws =

wb

w
ebs

wbs ×
wb

w

=
wbs ×

(
wb

w

)2

ebs
(7.2)

Find the amount of total available writes to the memory card:

tw = wpws × ws (7.3)

Find expected lifetime for the memory card (in years):

years =
tw

wps
× (60 × 60 × 24 × 365)−1 (7.4)

As the results show in the year column of Table 7.2 the theoretical lifetime of the
card decreases with 49 years due to the additional load of the Security Supervisor.

Version w/s KiB/w wb/w w/sector w y
Only Home Assistant 1.1 9.8 3 333 3.1e9 91
Only botnet module 1.2 11.4 3 333 3.1e9 81
Full Security Supervisor 1.8 14.0 4 250 2.4e9 42

Table 7.2: Estimated lifetime for the memory card given the three test cases. The average
writes per second from our test data can be found in the w/s column, while the KiB/w denotes

the measured average size per write.

7.1.3 Power consumption

Power consumption in the setup is affected by two factors: current draw by the
wireless USB network card and the current draw by the Raspberry Pi itself. Figures
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7.4 and 7.5 present how the energy consumption of these two devices varied over
time. The energy consumption of the wireless network card was not affected by the
Security Supervisor at all, whilst the Raspberry Pi experienced a small increase in
power consumption. The Raspberry Pi used slightly more energy with the Security
Supervisor running than when only Home Assistant core modules were active.

Figure 7.4: Energy usage over time of wireless network card Panda PAU06 in terms of current,
measured in ampere.

Figure 7.5: Energy usage over time of Raspberry Pi running Home Assistant in terms of
current, measured in ampere.

Device Baseline With Sec. Sup. Increased usage
Current Cost/month* CO2/month

Raspberry Pi 0.43A 0.48A 0.05A 0.12SEK 0.133kg
Panda PAU06 0A 0.14A 0.14A 0.36SEK 0.385kg
Total 0.43A 0.62A 0.19A 0.60SEK 0.518kg

* Cost is based on 0.70SEK/kWh according to statistics from Vattenfall [79] and a voltage of 5V.

Table 7.3: Energy usage without and with the Security Supervisor running.

Since the voltage for both the Raspberry Pi as well as the wireless network card
was 5V at all times, we can compare energy usage based on the amount of current
used. Average current usage for the Raspberry Pi increased from 0.43A to 0.48A
when using the Security Supervisor. The wireless network card averaged at 0.14A.
Table 7.3 summarizes the energy usage measurements for both of these devices.
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7.2 Analysis modules

This section presents results from the tests for the implemented security modules of
the Security Supervisor and their detection rates.

7.2.1 Botnet module

Table 7.4 shows the results from the tests on the botnet detection module. As can
be seen in the first two rows of the table, the module did not give any false positives.
In the case where the source IP and MAC addresses were that of the legit device,
the module caught all instances of packets where the outgoing address was one not
already profiled. In the row for Smurf-type attacks, we can see that the module can
even catch the cases where the IP address of the source is spoofed to not be that
of the legit devices. However, as seen for the entry Smurf (with spoofed MAC), the
module cannot detect attacks where both IP address and MAC address are spoofed.

DDoS attack Total Normal Malicious Detected
Legit traffic 300 300 0 0
UDP flood 29 16 13 13
IP fragment overlap 9 0 9 9
Ping flood 10 0 10 10
Smurf 7 0 7 7
Smurf (spoofed MAC) 7 0 7 0
TCP SYN/FIN flood 9 0 9 9
UDP DNS flood 8 0 8 8
IPv6 UDP flood 8 0 8 8
Sum 387 71 316 64

Table 7.4: Results from running the botnet analysis tests.

7.2.2 Evil-Twin module

For the Evil-Twin module, we performed base case tests to measure the amount of
false positives and to use for comparisons with attack data. Figure 7.6 presents the
variation among base cases for distances of one, five, seven and ten meters. There
are two samples for each represented distance with the exception of one meter which
features three samples.

Attack tests for the module comprised different combinations of positions of the
router and evil twin device in relation to the Raspberry Pi. Test cases were split
into three parts: one where the router was in the middle, one where the Raspberry
Pi was in the middle and one where the evil twin device was in the middle. Each
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Figure 7.6: Comparison of base test signal strengths for the Evil-Twin module.

of these cases are presented in Table 7.5, 7.6 and 7.7 where the statistical model
described in Section 5.2.2 is used.

Router Basecase 2* Basecase 3* Evil-Twin 1 Evil-Twin 2 Evil-Twin 3
Dist. Result Dist. Result Dist. Result

5 meters 210 75 - 2m 14 4m 742
7 meters 135 0 1m 14 3m 14 6m 2
10 meters 1605 2130 1m 182 5m 127 9m 5

* Calculated off runtime with an algorithm without timing data of packets.

Table 7.5: Detections reported from Evil-Twin analysis tests with the statistical model for
case A, where the evil twin device is between the router and the Raspberry Pi. Numbers in

comparison to basecase 1.

Table 7.8, 7.9 and 7.10 present the number of detections for the three cases when an
alternative detection model for the Evil-Twin module was evaluated as a comparison.
This model uses a simple max-min approach to regulate accepted signal strength
levels, where values outside the maximum and minimum recorded values during the
profiling phase is considered potential threats.
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Router Basecase 2* Basecase 3* Evil-Twin 1 Evil-Twin 2 Evil-Twin 3
Dist. Result Dist. Result Dist. Result

1 meters 165 150 - 1m 0 5m 9
5 meters 210 75 2m 595 5m 1400 7m 602
7 meters 135 0 3m 65 7m 1136 10m 973
10 meters 1605 2130 5m 289 10m 1002 -

* Calculated off runtime with an algorithm without timing data of packets.

Table 7.6: Detections reported from the Evil-Twin analysis tests with the statistical model for
case B, where the Raspberry Pi is between the router and the evil twin device. Numbers in

comparison to basecase 1.

Router Basecase 2* Basecase 3* ET 1m ET 5m ET 7m ET 10m
1 meters 165 150 6 1 3 7
5 meters 75 30 115 755 865 678
7 meters 45 1110 3 8 7 2
10 meters 3555 4920 9 14 8 12

* Calculated off runtime with an algorithm without timing data of packets.

Table 7.7: Detections reported from the Evil-Twin analysis tests with the statistical model for
case C, where the router is between the Raspberry Pi and the evil twin device. Numbers in

comparison to basecase 1.

Router Basecase 2 Basecase 3 Evil-Twin 1 Evil-Twin 2 Evil-Twin 3
Dist. Result Dist. Result Dist. Result

5 meters 4 6 - 2m 13 4m 22
7 meters 0 0 1m 2 3m 2 6m 0
10 meters 1 5 1m 3 5m 0 9m 1

Table 7.8: Detections reported from the Evil-Twin analysis tests with the max-min-model for
case A, where the evil twin device is between the router and the Raspberry Pi. Numbers in

comparison to basecase 1.

Router Basecase 2 Basecase 3 Evil-Twin 1 Evil-Twin 2 Evil-Twin 3
Dist. Result Dist. Result Dist. Result

1 meters 8033 7732 - 1m 1 5m 0
5 meters 4 6 2m 6 5m 11 7m 17
7 meters 0 0 3m 7 7m 1 10m 6
10 meters 1 5 5m 6 10m 6 -

Table 7.9: Detections reported from the Evil-Twin analysis tests with the max-min-model for
case B, where the Raspberry Pi is between the router and the evil twin device. Numbers in

comparison to basecase 1.
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Router Basecase 2 Basecase 3 ET 1m ET 5m ET 7m ET 10m
1 meters 8033 7732 0 3 0 1
5 meters 0 0 0 0 1 0
7 meters 3 5 0 1 0 0
10 meters 0 0 0 0 0 0

Table 7.10: Detections reported from the Evil-Twin analysis tests with the max-min-model for
case C, where the router is between the Raspberry Pi and the evil twin device. Numbers in

comparison to basecase 1.
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In this chapter we will discuss both the results from our tests and some points
pertinent to this work. We begin the chapter with Section 8.1 in which we discuss
the results presented in Chapter 7. Section 8.2 discusses the viability to run an IDS
on a smart hub based on performance tests as well as internal security concerns,
followed by Section 8.3 which brings up the subject of sustainability and ethics.
The chapter is concluded in Section 8.4 where we propose some directions for further
research on the topic of detecting threats within smart homes.

8.1 Evaluation of test results

In this section we evaluate the test results from Chapter 7. Section 8.1.1 evaluates
and discusses tests on resources whilst Section 8.1.2 discusses how well the analysis
modules detect threats.

8.1.1 Resource usage

In this subsection we discuss the results from the resource usage test and how they
affect the viability of the Security Supervisor. We begin with the CPU usage,
continue with RAM usage and finish with permanent storage memory usage.

8.1.1.1 CPU usage

As can be seen in Figure 7.1 and Figure 7.2, Home Assistant only uses very little
of the Raspberry Pi 3B+’s CPU resources, spanning between 0.1% - 2.6% and
averaging at 0.4%. As such, more than 90% of the CPU is not utilized while running
Home Assistant. The Home Assistant running on the test setup is fairly minimal,
and as such it is likely that some more CPU resources may be needed for Home
Assistant to function properly in a less minimal setup, e.g. with an active voice
assistant or security camera. To allow for some additional CPU resources to be
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assigned to Home Assistant, as well as allow for some unexpected usage spikes, the
CPU usage limit of the Security Supervisor is set to 30%.

The scaling potential of the Security Supervisor is affected by two factors - number
of security modules which are supposed to process the data and amount of network
traffic going in to the system. Based on our test results performance in terms
of security modules are promising, as required processing power is not noticeably
affected by turning on or off any existing modules. However, network traffic has
a bigger impact on the system. When an increased amount of network traffic is
encountered, the CPU usage can be seen to increase as well. This is especially
significant when using the Scapy network library as shown in Figure 7.1, where
the entire Home Assistant process crashes when too much data is encountered.
Pypacker, the other network library used in this thesis, is able to handle much
more traffic and our data suggests it will be powerful enough for a regular smart
home. Figure 7.2 shows that our limit of maximum 30% CPU usage is easily met
by Pypacker, even in a scenario with high network traffic load.

8.1.1.2 RAM usage

RAM usage of the Security Supervisor is rather low compared to the capacity of the
entire system. In both of the cases in Figure 7.1 and 7.2 where it is able to process
all data before new data is received, the increase of RAM maxes out at 20MB.
However, when the Security Supervisor is unable to process packets sufficiently fast
the RAM usage becomes a large concern. Packets which has not been processed
stacks in memory and will in time force the module to shut down.

An alternative solution to keep an excessive amount of unprocessed packets in mem-
ory would be to drop packets the Security Supervisor can not process. Dropping
packets can be done in two ways, either silently, or with notifying the user of the
event. However, neither way is without fault. Silently dropping packets has a major
downside in that the user is not aware that it has occurred, which could mean that
the user is unaware of a security issue. On the other hand, notifying the user of
dropped packets may overwhelm the user with notifications if the network is often
overloaded. Given that the performance with Pypacker has been satisfactory, and
that neither method is obviously superior to the other we have decided to not drop
packets at all, and have not explored these ideas further.

8.1.1.3 Memory usage

The increase in writes to memory and the data written to memory significantly
lowers the lifetime of the memory card from 91 years to 42 years. The largest
decrease in lifetime is due to the Evil-Twin module, most likely due to the large
increase in traffic that needs to be evaluated. As such, we can conclude that a large
increase in network traffic has an adverse result on the lifetime expectancy of the
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memory card.

A way to decrease the load on the memory card could be to read network traffic in a
RAM buffer instead of to and from a file. This would increase the load on RAM, but
decrease the load of the memory card. Which option for network traffic handling
to use can in this instance be seen as a trade-off between RAM and memory card
lifetime. While the decrease in lifetime is significant, it is also worth noting that
expected lifetime of the card is over 40 years, much longer than the expected lifetime
of most home electronics on the market today. In fact, it is likely that the memory
card would fail for some other reason well before this. One could thus argue that as
long as the expected lifetime is long enough, the decrease as such is less important.

8.1.2 Threat detection

In this section we discuss the functionality tests of the security modules in the
Security Supervisor. We begin by discussing the results from the botnet module
and finish with a discussion on the Evil-Twin module.

8.1.2.1 Botnet

Performance of the botnet module is good and it is able to detect most of the
malicious cases. The simplicity of the module itself makes it a good showcase of the
capabilities of the Security Supervisor framework - common DoS attacks without
spoofed MAC addresses that originate from devices in smart homes can be detected
with 100% detection rate by adding less than 100 lines of code.

The botnet module also showcase the shortcomings of the Security Supervisor. Base
premises of the infrastructure makes it immensely vulnerable to spoofing attacks
since only traffic to and from smart home devices are being processed. Attacks that
spoof the source addresses are thus impossible as the traffic they produce would
not be considered to be within the smart home. It would be possible to change the
infrastructure in such a way that unexpected network traffic on the network as a
whole is also included in the analysis, however it would come with additional issues
for suitable user interfaces and might also increase the amount of network traffic
the Security Supervisor has to handle. As mentioned in Section 8.1 this is very
undesirable.

Furthermore, the botnet module is particularly vulnerable to DNS spoofing attacks.
As mentioned in Section 5.2.2, this module depends on registered DNS responses
to make correct judgements on whether a device talks to a known entity or not.
Consequently, the module needs to be able to trust any received DNS data to be
able to make correct decisions for all cases. It is therefore important to extend the
Security Supervisor to be able to detect DNS spoofing attacks to guarantee that the
botnet module functions correctly.
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8.1.2.2 Evil-Twin

Results from the Evil-Twin tests show a lack of success for both of the detection
models used. Figure 7.6, where a comparison between base tests are shown, may
contain an explanation to this matter. Recorded values for 5 meters and 7 meters
show a large overlap. Even though there is a significant difference between signal
strengths for 7 meters and 10 meters, entries for 1 meters displays a large disunion
where two samples overlap almost identically whilst the third does not overlap at
all. This data suggests that while signal strength do change over distance, it is not
a reliable measurement and cannot be expected to be precise.

Tests for the statistical model show both success and failure. For case A, the number
of false positives are similar or even worse than the number of true positives, and
hence an attack is not detectable. In case B there is a large difference in magnitude
between the number of false positives and true positives for distances of 5 and 7
meters, which suggests indications of a working detection process. However, samples
for one and ten meters show a lack of precision. Finally, case C shows both significant
detection of malicious data and significant detection of data which in fact is not
malicious. Conclusively, as can be seen from these cases, a detection in the model
cannot be trusted to be correct.

The max-min-model gives detections of an entirely different magnitude than the
statistical model. Even though the analysis was active for 15 minutes with an evil
twin constantly broadcasting beacon frames, the maximum amount of malicious
reports were 22. This represents less than 0.3% of the received beacon frames.
Furthermore, none of the cases show any significant difference between false positives
and true positives. Additionally, a flat profiling phase can cause the number of
detections to increase rapidly as shown for reports on one meter. Therefore, this
model is not a well-functioning solution either.

Ultimately, our test data indicates that detection of an Evil-Twin attack with the
help of signal strength is not possible with our current models. However, some result
entries look promising and might be useful if a different model or different hardware
is used. More antennas would allow for triangulation and hence a more accurate
detection. If a sufficient model is provided, the Security Supervisor will be able to
support detection of Evil-Twin attacks.

8.2 Evaluation of the Security Supervisor

In this section we evaluate the viability of the Security Supervisor and discuss it
on a detailed level. Section 8.2.1 discusses if the smart hub is a viable placement
for an IDS, followed by Section 8.2.2 which states current security concerns within
the Security Supervisor implementation. Section 8.2.3 completes the section with a
discussion on the current state of the Security Supervisor in relation to a potential
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full production-ready solution.

8.2.1 Placement of the Security Supervisor

One of the key questions for this thesis was to find out if a smart hub is a viable
placement for threat detection. An initial issue was how to get access to the network
data to be processed. We needed to introduce an external network card with moni-
toring capabilities to be able to retrieve this network data. This network card is not
equipped by default on a Raspberry Pi 3B+ and such capabilities are not generally
available. However, our solution shows that it is not outside the capabilities of a
hub of similar performance to handle such functionality.

Results in Chapter 7 and the discussion in Section 8.1.1 show that the hub can handle
the load performance-wise. However, CPU and RAM usages increases substantially
when network traffic increases which might indicate, as mentioned above, that the
solution does not scale well in traffic heavy networks. One reason behind this could
be the amount of steps taken to process a single data packet as all data is captured,
written to a file, read from the file, parsed and then processed. If data were to be
transferred immediately to the Security Supervisor, two of these intermediate steps
could be eliminated and performance might increase at the cost of modularity and
ease-of-use.

It could be argued that the threat detection should be placed in the router or another
peripheral as Batalla et al. do in [23]. However, in these cases there is a risk for
system lock in where information about the devices and their automatons cannot
be retrieved. Our model takes advantage of the positioning and uses information
from the smart hub configuration to filter out network traffic to and from smart
home devices and hence ignores irrelevant data for the threat detection mechanism.
Furthermore, it is possible to take advantage of knowledge of states to check whether
a device performs as expected, e.g. if your light reports an active ’on’ state and the
light sensor reports darkness there might be an issue in the system. Currently no
security module in our implementation checks these states but the overall framework
support interaction with smart hub data.

An additional issue with placing threat detection for smart homes in the router is
that while smart homes may use a variety of network technologies, such as Zigbee or
Z-Wave, home routers usually only support Wi-Fi and Ethernet technologies. With
threat detection placed in the smart hub, raw data from devices using smart home
network technologies can be monitored and analyzed to find more threats.

8.2.2 Security concerns within the Security Supervisor

There are a few security issues in the current implementation of the Security Super-
visor. These comprise both internal vulnerabilities and threats towards detection

55



8. Discussion

algorithms.

Firstly, the reading of network data is something that requires root access on the
Raspberry Pi. Home Assistant does not have root access to the system for security
reasons. In the presented solution network data collection is handled by a stand-
alone script outside of Home Assistant in order to get around this issue, but it could
have been solved with an SUID binary as well. When well designed, none of the
above mentioned solutions lets a malicious intruder access root privileges in case
of intrusion into Home Assistant. However, they do allow an intruder to observe
network data.

Secondly, the profiling phase opens up the Security Supervisor to security breaches.
During the profiling, the Security Supervisor is vulnerable to profiling incorrect
behaviour. An attacker could potentially time their attack to coincide with the pro-
filing and thus have attack behaviour be considered legit behaviour by the Security
Supervisor.

Finally, as the current solution stands, one of the details of the Evil-Twin detection
process is open to being tricked. In the cross-referencing phase, where movement of
the hub is to be detected, there is a potential for an attacker simulate a smart hub
movement. If the attacker introduces numerous new APs and waits for the profiling
end, they can then move these APs in order to trick the Evil-Twin detection module
that the hub itself has moved.

8.2.3 The Security Supervisor in a larger picture

It is our opinion that it is viable to run a small-scale IDS on a smart hub resource
wise. However, much work is needed to transform this prototype into a system ready
for production.

In its current form, the Security Supervisor lacks coverage for adequate intrusion
detection. Only two analysis modules covering select attacks are available. To get
a satisfactory coverage more analysis modules that handle additional threats are
needed. From the data that we have, we believe that the Security Supervisor could
support many modules, as the majority of the resource expenditure currently comes
from collecting network traffic and not the detection process itself.

The current setup is portable enough to be implemented in other systems with
moderate modification. Care would have to be taken to not tie the system too
hard to the platform in further development. Portability is key to allow widespread
adoption and thus benefiting as many users as possible.

56



8. Discussion

8.3 Sustainability and ethics

The risks of security breaches in smart homes can be very high for the individual.
An insecure smart home can thus be considered a danger to the user. The Security
Supervisor is an attempt at mitigating the risks to the user, making the smart home
a safer environment. However, these security benefits have to be weighted against
the environmental impacts caused by the Security Supervisor.

The Security Supervisor definitively increases the energy usage compared to only
running Home Assistant, as we can see in Table 7.3. Much of this increase comes
from the network card in monitoring mode, a device that is unfortunately needed for
the Security Supervisor to function. This might be an additional reason for placing
intrusion detection in the router, as discussed earlier in section 8.2.1. Reducing the
number of high-energy consuming antennas would have a positive effect on energy
usage. While the energy increase is definitive, it is not particularly big - energy
usage of the Security Supervisor during an entire month is equal to driving a car
2km in terms of CO2 emissions [80]. It is our opinion that this energy expenditure
could be justifiable if it can provide a solution to mitigate security risks for smart
homes.

Furthermore, it is apparent from Table 7.2 that the lifetime of the memory card is
significantly shortened by the implementation of the Security Supervisor. A decrease
in memory card lifetime could mean an increase in demand on memory cards as well
as more waste in the form of run out memory cards. However, the lifetime of
the memory card with the Security Supervisor is still significantly long, especially
considering the field of electronics. One can even say that the lifetime is long enough
that it will probably outlive its use-case by several years. It is our opinion that
while the amount of writes to the card is higher than desired, and work should be
done to rectify this, the current lifetime of the card is not a major environmental or
economical issue for the Security Supervisor. This is due to the fact that the current
lifetime is long enough that the memory card will probably be replaced due to other
reasons than being worn out due to the amounts of writes it has had to sustain.

8.4 Future work

This section presents several possible directions on how to extend this work, covering
both continuation of the Security Supervisor and alternative approaches to intrusion
detection in smart homes based on our experiences during the thesis work.
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8.4.1 Improve user interaction

In this work we have only described methods to detect issues inside the smart home
and not how this information is best presented to the user. This is an important step
in threat detection and there has been a lot of research going into this [81, 82, 83].
Further work in how to present the data to the user is needed in order to achieve
trust and understanding from end users.

8.4.2 Adapt a conventional IDS

One issue with the approach used to build the Security Supervisor is that it is
implemented from scratch. Consequently, a multitude of modules need to be imple-
mented to reach a satisfactory level of detection. A more time-effective approach
could instead be to re-purpose a conventional IDS.

A conventional IDS comes with the advantages that it is well-tested, has models
for handling known attacks and already has a wide user-base. However, a full-
fledged IDS is not suitable for the smart hub, as devices with comparable resources
to a smart hub lacks the resources to run a full IDS [25, 26]. These performance
issues would likely be exacerbated with the added functionality needed to be able to
handle the new protocols and communication techniques unique to the smart home
environment.

While a conventional IDS is not suitable for the smart hub as is, it could be worth-
while to investigate if it could be used as a base to develop a solution for a smart
hub.

8.4.3 Extend the current solution

The Security Supervisor needs to be extended with more functionality before it
can be viewed as a full-fledged IDS. This work is twofold. States of smart home
devices need to be incorporated into detection solutions to take full advantage of
the positioning of the detection mechanism. Furthermore, several more security
modules need to be added in order to support more attacks. Implementation for
additional technologies is needed as well.
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It is very clear that smart homes are, and will continue to be an appealing target
in cybercrime. Security breaches in smart homes can be used as steppingstones for
cybercrime that can have far-reaching and severe consequences for both society and
individuals. As shown in Chapter 4 smart homes with their multitude of devices
are an appealing target for obtaining DDoS slaves. These DDoS attacks could
potentially target important societal infrastructures, causing severe damage. Smart
homes also makes it possible for attackers to collect sensitive information about
individuals, which could cause severe economical damage or even physical harm to
the individual.

In this thesis work we have focused on developing and evaluating a security solution
for the smart home that can mitigate security threats against individuals and society.
Solutions to mitigate two specific attacks have been implemented. The attacks in
question are the use of smart home devices in botnets, and the Evil-Twin attack,
where an adversary tries to steal devices from an access point to steal information.

The current Security Supervisor is not able to be deployed at this time. Further
improvement is necessary. This is because there are significant weaknesses in the
functionality of the security modules. A large amount of additional security modules
needs to be developed as well to offer a wider security solution.

From a resource usage perspective we believe that it is possible to place an IDS for
the smart home on a smart hub. It is our opinion that a smart hub of a similar
capacity to the Raspberry Pi has enough hardware and processing capability to
handle a limited IDS while still being able to perform its function as a smart hub.
We encourage further research in the area and look forward to find out where this
research field may evolve.
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