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Abstract
A big opportunity within today’s society is the vast amounts of data generated each
day. Especially within the health-care sector where a lot of journals are written daily
and needs to be processed in some way to properly identify the content within. En-
ter the field of Named Entity Recognition (NER), where text is analyzed to locate
and classify entities into predefined classes; in our case Disorder & Finding, Phar-
maceutical Drug and Body Structure. With a model that can do this with a great
accuracy, analyzing medical texts could be automated and strain could be removed
from people having to read through them manually. Since journals and other med-
ical text often are very sensitive and should be handled with care due to privacy, a
method for constructing these models without the need for real annotated journals
would be a big step in the right direction.

During this thesis we have implemented two models for solving the problem of
NER for medical texts in Swedish. Both models were created from lists of seed-
terms, which consist of words and phrases found in medical taxonomies which we
assume belong to one of the three categories. Training data were extracted from
the health-care magazine Läkartidningen as well as a subset of Swedish Wikipedia.
The first model implemented is based on the work of Zhang and Elhadad [23] where
a vector representation is calculated for the possible words and compared against
vectors calculated the same way for the different categories. The results of our im-
plementation is on par with the results given by Zhang and Elhadad which suggests
that this method works as well for Swedish as it does for English.

The second model implemented is based on recurrent neural networks and is built
from the same seed-terms as the first model but instead of using only vector-
calculations for classification the network is trained to automatically classify words
on character-basis, reading the text both forwards and backwards at the same time.

Solving the problem of NER using only unsupervised methods is inherently hard
and techniques for solving the problem are not quite there yet. However, by just
improving them bit by bit will in the end lead to great results.

Keywords: named entity recognition, ner, unsupervised, semi-supervised, natural
language processing, nlp, swedish, medical.
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1
Introduction

In today’s society the use of digital information is increasing rapidly. According to
Statistiska centralbyrån (SCB), which is a Swedish administrative agency providing
various statistics, the number of people in Sweden who have access to a computer
in their household were 25.6% in 1994-95. In 2007, the number was 83.2%. As
businesses store their information digitally, it becomes easier to access and more
securely saved with backups stored remotely. The number of Internet users has
increased from over 35 million in 1995 to 2.8 billion users in 2014 [11]. This has
led to a great increase in accessibility of information retrieval, which in turn have
increased the amount of digital information. Information has increased to such ex-
tent that one person cannot go through all information, not even within their own
business or field. However, all information may not be useful for one person, but
some information is useful for everyone. It is important that there are efficient ways
to find the information that one searches for in order to keep up with the increasing
information flow.

Health care in Europe is facing a situation where the waiting time is steadily in-
creasing [20]. This is because they are short on staff and the number of patients
with complex diagnoses increases, but also because the daily tasks they are faced
with takes a long time to do. Such tasks could be to search for the right electronic
health care record, find similar cases of the same symptoms or to find related pub-
lished medical literature. If all data could be accessed from a single system and one
could search for multiple symptoms or illnesses at once, the health care providers
would be able to find the right information quickly and the probability to give a
correct diagnose may increase. In order to have all information in one system, there
must be a connection between the different kinds of information. Electronic health
care records and published medical literature consist of text, using medical terms.
Therefore, it is a good approach to enrich these words in the documents with in-
formation received from medical taxonomy. Natural Language Processing (NLP) is
a field within Computer Science in which natural language written by humans are
processed by a computer for data-extraction or other purposes. One task within the
field is called Named Entity Recognition (NER) which is to find the entities, in this
case the medical terms, in the documents and to categorize them into a predefined
category. The task of Named Entity Recognition is what we are going to tackle in
this thesis.

1



1. Introduction

1.1 Purpose
The aim of the thesis is to explore the capabilities of two different methods both
focusing on the same task, Named Entity Recognition for medical documents in
Swedish. This task will be to take medical documents in Swedish as input and
find and classify all entities within them into one of the predefined categories. The
categories that are used in this thesis are:

• Disorder & Finding
• Pharmaceutical Drug
• Body Structure

1.2 Research questions
Two models are going to be explored: a Word-Vector model and a Recurrent Neural
Network model (RNN model) which will both be explained in detail later on. The
first model was originally proposed by Zhang and Elhadad [23] for the medical
domain in English. The question that we asked was if an implementation in Swedish
for the medical domain has the same capabilities as the original implementation. The
second model aims to test if a supervised model could perform well by generating
the required training data from the same external source as the first model. The
scientific questions that we ask are thus:

• Is it possible to use a Word-Vector model for Named Entity Recognition of
medical entities in Swedish?

• How well does a supervised machine-learning method work with automatically
generated training data?

As mentioned above information flow is increasing and unlabeled and unstructured
data are abundant. Especially in the medical domain where large amounts text
are created every day some automatic way to make sense of all the data is needed.
Named Entity Recognition will not solve the problem in its entirety, but a big part
of the process.

1.3 Scope
Within the scope of this thesis we will investigate two different models, one built
upon word-vector calculations and one based on a bi-directional recurrent neural
network. Implement them, test them and tweak parameters as well as evaluate
them in the end.

1.4 Outline
The thesis aim to investigate two very different models to handle the task of Named
Entity Recognition. To be able to understand how the models work, prior knowledge
about the methods is required. Chapter 2 describes how the used methods work to
be able to understand how they are applied in the models. The chapter also touch

2



1. Introduction

on how previous work on Named Entity Recognition has been approached. The
thesis will go further on to describe in detail how the models work in Chapter 3.
Beginning by describing the Word-Vector model, continuing with the Recurrent
Neural Network model, then describing how measurement of the result is done and
lastly about what limitations are taken in the thesis. Chapter 4 is going into detail
about how the experiments are carried out. The chapter explains what kind of
technique is used to perform each step and what all hyper parameters were set
to. Chapter 5 presents the overall results of the models, individual steps and the
differences when adding certain features to the model. It also shows a comparison of
the results between the different models. Continuing to Chapter 6 with discussion
about the result and other thoughts that needed to be addressed. Chapter 7 wraps
up the thesis with a conclusion. Lastly we address what could be done in the future
to improve the models.
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2
Background

Named Entity Recognition is a task within the field of Natural Language Process-
ing. The task is to recognize entities in a given context and classifying them into
predefined classes. The context is often a document and entities consists of one
or multiple words that fall within the definitions of one of the predefined classes.
The most common categories used in NER-tasks are person, location and organiza-
tion. There are several approaches available for recognizing and classifying entities;
supervised, semi-supervised and unsupervised methods. Supervised methods rely
on input with the correct output attached to it in contrast to unsupervised meth-
ods which have no information of the underlying distribution of the input data.
Semi-supervised methods are somewhere in between, with the algorithm usually de-
pending on a small set of labeled data or other knowledge specific to the domain.
Supervised methods for the NER task takes words annotated with entity classes and
tries to classify new entities extrapolating from the information that it has learned
from the annotated data. Semi-supervised methods often use its limited resources
of data to deduce information from unlabeled data that could further be used to
solve the task.

2.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) is a set of models inspired by the anatomy of
the human brain with its neurons and synaptic connections. These networks are
used for computational tasks where each neuron or node in the network performs
very simple computations, but the network in its entirety can manage very complex
tasks. The exact computations differs depending on the implementation, but in the
simplest case each neuron only performs a weighted sum of all its inputs and puts it
through an activation function, for example the hyperbolic tangent function. One
important property of the first neural networks was that the neurons were arranged
in layers with no connections within a layer and only "forward" in the network, hence
they were called feed-forward neural networks.

2.1.1 Recurrent Neural Networks

The forward-propagating networks were later challenged by Jeff Elman in 1990 when
he laid the ground for Recurrent Neural Networks (RNNs). With RNNs, backward
connections are allowed which gives the network a sense of time and memory. The

5



2. Background

learning algorithms had to be modified slightly, but with modifications these net-
works could learn temporal information from the input.

2.1.2 Long Short-Term Memory
In 1997, Hochreiter and Schmidhuber revolutionized the field of Recurrent Neu-
ral Networks when they introduced a concept called Long Short-Term Memory
(LSTM) [7]. They added a sense of memory to the network which not only lasted
a few iterations but instead the network could remember information even further
back in the training cycle. They kept all the features of ordinary RNNs with recur-
rent connections, but added some additional features making the nodes able to just
pass along the old value unchanged and therefore increasing the memory-capacity of
the network. LSTM-networks are very powerful and are used for a large variety of
purposes today including; speech recognition, robot control, time-series predictions
and music composition just to name a few.

Furthermore, LSTM-networks has also proven to be useful within the field of NLP.
Words written in a text are often referred to much later in the text and for a net-
work to be able to remember that and make that prediction long-term memory is
required. A good example is a letter from Alice to Bob. In the beginning of the
letter Alice writes about her vacation in France and a lot further along she writes
that she also visited the capital city but does not mention France at all. For a
human this connection is obvious due to the context but for a computer to make
that connection it needs a good representation of the text in its entirety or memory
to be able to remember the very beginning of the message.

2.2 Related Work
There have been various attempts to solve the task of Named Entity Recognition,
using supervised and semi-supervised models, but also some unsupervised models.
The result of them have been varying, but generally the supervised implementations
are performing better as can be seen below.

2.2.1 Supervised Named Entity Recognition
Supervised NER has been thoroughly explored in the past and a lot of different
methods have been used. Conditional Random Fields has been proven very suc-
cessful. Finkel et al. used this concept together with Gibbs sampling and got good
results [5] on two NER corpora used in shared tasks, CoNLL and CMU Seminar
Announcements corpus. The predefined categories in CoNLL is person, location,
organization and miscellaneous and in CMU Seminar Announcements it is speaker,
location, start time and end time. State-of-the-art in the medical domain have been
achieved by Wang & Patrick [21]. They used a combination of CRF, Support Vec-
tor Machines (SVM) and Maximum Entropy (ME) to recognize and classify entities.
The state-of-the-art in Swedish for the medical domain also used CRF and is done
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2. Background

by Skeppstedt, Kvist, Nilsson and Dalianis. [16]. There is not much annotated data
for the NER task, especially in the medical domain. There is also the ethical and
privacy aspect regarding medical journals. In most countries it is regarded as classi-
fied information and can therefore not be obtained so easily. The journals must be
anonymized and even after that there are strict ethical rules to be followed about
how to handle them.

2.2.2 Semi-Supervised Named Entity Recognition
Semi-supervised methods often rely on a small set data to be able to infer from after
training. The data can, in the case of NER, for example be words that is known to
belong to one of the categories, assured by some expert within the field. Liao and
Veeramachaneni [10] start off with a small set of manually annotated examples and
in each iteration tries to enlarge this set with new entities which have high enough
confidence of being correctly classified. With sufficient amount of time, running the
algorithm the set would have become large enough to include most of the entities
wanted from the input text.

Zhang and Elhadad takes another approach in which they use lists of seed-terms for
each of the different categories and from those lists try to apply the information to
new examples. To be able to do that they use word-vectors and calculate a form
of average vector for each of the categories and use that to compare against with
vectors for the encountered words. The vectors are calculated from a bag-of-words
model. Since the medical domain was the target, seed-term lists for Disorder &
Finding, Pharmaceutical Drug and Body Structure were extracted from extensive
medical taxonomies using the fact that they have hierarchical structure and that
high level concepts for the categories exist.
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3
Methodology

This section describes our two approaches to the NER task for medical entities in
Swedish. The first method is heavily influenced by Zhang and Elhadad [23] and
uses word-vectors calculated by a bag-of-words model to compare each word-vector
to a generalized category vector. The second method is based on a bi-directional
implementation of a recurrent neural network and using the same lists of seed-terms
used by the first method to collect training examples, then trained to correctly
classify all entities in some input document.

3.1 Word-Vector Model

This model is inspired by a model originally implemented by Zhang and Elhadad [23].
They developed a system for semi-supervised NER with clinical and biological texts
in English as input documents. Since we want to annotate medical journals in
Swedish, clinical texts matches our domain best. The method consists of a number of
steps and a preprocessing stage. The preprocessing needed is tokenization, sentence
splitting, part-of-speech tagging followed by noun phrase chunking which all will be
described in more detail below. The idea behind the method is that noun phrases
are likely to be entities and chunking is a more efficient way of finding candidates of
entities than doing a full parsing on the input documents. After pre-processing, there
are three steps in the main algorithm: seed-term collection, boundary detection and
entity classification.

3.1.1 Tokenization and Sentence Splitting

The incoming documents are pre-processed with a tokenizer and sentence splitter,
which will first tag tokens and then the sentences. Tokens are anything from ordinary
words, special characters to spaces. This stage serves as input to the next stage,
which is part-of-speech tagging.

3.1.2 Part-Of-Speech Tagging

After sentence splitting and tokenization of the input documents, they are tagged
with Part-Of-Speech tags (POS-tags). POS-tagging is to let each token correspond
to a particular part-of-speech, which is a tagging of their grammatical meaning.
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3.1.3 Noun Phrase Chunking
Given the document with POS-tags, noun phrase chunking is required before the
main part of the algorithm can take place. Noun Phrase chunking (NP chunking)
is the task to divide the text into chunks and find noun-phrases amongst them. A
noun phrase is a noun in the text including all of its modifiers. In the sentence "This
is a blue car", the word car is a noun while blue is describing what the car is and
therefore "a blue car" is the noun phrase.

3.1.3.1 Inverse Document Frequency

For every noun phrase np, we calculate the average Inverse Document Frequency
(IDF) over each word w within it. If the resulting average is below a certain threshold
T, we then disregard it as a possible entity candidate. IDF is calculated as:

IDF(w, D) = log |sentences|
|{s : w ∈ s, w ∈ D}|

(3.1)

where |sentences| is the number of sentences in the input document and |{s : w
∈ s, w ∈ D}| is the number of sentences the given word is contained in in the input
document D. The IDF filter will filter out noun phrases that are common in the
document since they are mostly general phrases that does not belong to any of the
categories. A good example would for example be "the patient" which probably is
very common in the texts and therefore will have a very low value for its IDF and
thus will be filtered out.

IDF for a noun phrase is calculated as:

NP-IDF(np) =

|np|∑
i=1

IDF (np(i))

|np| (3.2)

and the filtering is done as following:

IDF-filter(np) =

included, if NP-IDF(np) > T

dicarded, otherwise
(3.3)

3.1.4 Seed Knowledge
The algorithm first collects seed knowledge which are terms assumed to belong to
one of the per-defined categories. This can be done in several different ways by
either consulting an expert in the domain or using lists of terms collected in some
way. The main concern is to be somewhat sure that the terms really do belong to
the specified category.

3.1.5 Entity Classification
Having a set of examples for each of the different categories, classifying the en-
countered entities in the document will be done with a measurement called Cosine
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similarity which measures how similar two vectors are. To be able to compute this,
every term needs to be represented as a vector. The categories will have a vector
representation calculated in the same way as the terms. If the vocabulary consists
of V words, all possible unigrams, each vector st will be V-dimensional, that is
st =< st

1, st
2, st

3, ..., st
V >. All the values in the vectors are calculated according to

this equation:
st

i = wi ∗ f(vi, t) ∗ IDF (vi, D), i = 1..V (3.4)
In the above equation wi is a weight parameter which is different depending on if the
word occurs in the context or as an internal word. A context word is a neighboring
word to the seed-term and an internal word is a word in the seed-term. The weight
parameter is different because it is assumed that internal words are more important
than context words. The functions f(t,d) and IDF(v,D) together is know as term
frequency-inverse document frequency which is a measure of how important a word
is to a document in a corpus. The more common a word is in the document, the
lower the IDF value will be. The value is then multiplied by how many times it oc-
curs in total in the context or internal words depending on which one is calculated.
The t refers to the internal words of the term which is important because terms can
consist of multiple words.

The cosine-similarity mentioned earlier is calculated by dividing the dot-product of
two vectors v and w by the product of both of their magnitudes as follows:

cosinesimilarity(v, w) = v ∗ w

||v|| ∗ ||w||
=

∑V
i=1 vi ∗ wi√∑V

i=1 v2
i ∗

√∑V
i=1 w2

i

(3.5)

This gives a value between 0 and 1 with 0 meaning completely different and 1 being
exactly the same. Worth noting here is that this calculation differs from the method
implemented by Zhang and Elhadad where they used a modified version of cosine
similarity.

The vectors for each category will just be the average of all vectors calculated from all
the seed-terms corresponding to that category. This means that the vector for each
of the different categories will be the middle-point of the entire cluster of seed-term
vectors. Classification will therefore consist of calculating the similarity between the
term in question and the different vectors for the categories and choosing the one
with the value closest to 1 with respect to the following thresholds:

• Classification Threshold
• Similarity Threshold

Classification Threshold will make sure that entities that have too similar similarity
values for each of the three categories are discarded. That is, given an entity vector
Ve, S is the set of similarity values between vector Ve and every category c ∈ C
where C is the set of all categories. The constraint is formulated as following:

∀c ∈ C, c 6= CMAX : Sc

SMAX

< T (3.6)

where SMAX is the maximum similarity value in S, CMAX is the category for SMAX ,
Sc is the similarity value for category c and T is the classification threshold. In
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Figure 3.1, the classification threshold between two categories in a 2D plane is
illustrated.

Figure 3.1: A visualization of the classification threshold between two categories
on a 2D plane. An entity in the grey area will remain unclassified.

Similarity Threshold will make sure that any entity e that have a maximum similarity
value lower than a certain threshold is discarded. This is to filter out entities that
in general are not similar to any of the categories.

3.2 Recurrent Neural Network Model

This method loosely base its information on the same concept as the Word-Vector
model, by using inherent knowledge already in taxonomies to solve the problem.
Using the knowledge, it will be able to train the model to recognize named entities
from the categories Disorder & Finding, Pharmaceutical Drug and Body Structure.
Instead of using vectors for terms and comparing them, a recurrent neural network
will be trained to read through text and will with the output predict the category
that the different words or phrase in the text-stream falls into. While it is a su-
pervised method, the training data will be generated with the information from the
taxonomies which will make it a semi-supervised approach.
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3.2.1 Preprocessing
To be able to train the network, a stream of characters with their respective label is
needed. Given a large set of documents in the domain, the documents are scanned
for occurrences of the seed-terms in the seed-term list to automatically generate an
annotated data set. Training examples will then be extracted from this annotated
text with examples of a predetermined sequence length.

3.2.2 Training
Neural networks are usually trained with an algorithm called backpropagation which
literally means backwards propagation of errors. It is often used together with gra-
dient decent to train a neural network in the most efficient way. Gradient decent
is a method to solve optimization problems with respect to an objective function.
What the algorithm does is to compute the gradient of the objective function with
respect to all of the weights in the network and updates them in the direction of
the steepest gradient. Two things makes this possible: With the chain-rule it is
possible to compute the derivatives with respect to the weights in the beginning of
the network and with help of the already computed derivatives in the later stages
of the network. The second important fact is that each neuron in the network uses
an activation-function that is differentiable to be able to calculate the derivatives.

The objective function is needed in order to know how much error the network
does. The most common one to use is cross-entropy error, sometimes referred to
as the negative log-likelihood, which essentially is a measure of how similar two
probability distributions are. With f(x) as the probability-distribution over classes
computed by the neural network, y as the correct class and summing over all possible
classes c, the objective function takes the form:

L(f(x), y) = −
∑

c

1(y=c) log f(x)c = − log f(x)y (3.7)

Optimizing the network is then to minimize the negative logarithm of the output of
the network corresponding to the correct label y. In distribution terms the similarity
between the distribution output by our network is compared with the distribution
of 1 for the correct label and 0 for the incorrect ones.

3.2.2.1 Backpropagation

Backpropagation is usually used for feed-forward neural networks. It will however
need to be modified when adding recurrent connections. Since the only major dif-
ference is the recurrent connections, the network can be unrolled and thought of
as a very deep feed-forward network with each time step represented as a layer.
The error-signal for a character in the sequence then propagates backwards through
all the previous unrolled steps to update the weights as you would with a normal
feed-forward neural network. This means that backpropagation through time is just
normal backpropagation but since connections are shared between layers, or in this
case unrolled networks, it needs to sum up the gradient for each previous time step.
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So when the weights are updated they are updated according to the sum of all
gradients in the previous steps.

3.2.2.2 Vanishing gradient

Vanishing gradient is occuring to very deep feed-forward neural networks, but is
primarily a problem for recurrent networks due to their depth. RNNs can be thought
of as a very deep feed-forward neural network with a layer corresponding to each
time-step. The weights in the network are updated proportional to the gradient
of the cost-function with respect to the weight in question. Also most activation
functions produce gradients within the range -1,1 or [0,1), meaning that they often
can be close to 0. Computing the update for a weight very early in the network
means compute a lot of gradients by applying the chain-rule. These n gradients will
then be multiplied, where n is the depth of a feed-forward neural network or the
amount of time-steps in a recurrent one. With deep networks, this can often result
in gradients very close to 0. The most common way to prevent this problem is to
use LSTM-modules in which the activation function simply is the identity function,
which always has a gradient of 1.0 and allows the error to propagate backwards
unchanged.

3.2.2.3 Exploding gradient

A problem closely related to the vanishing gradient problem is the exploding gradient
problem. This is the opposite to the vanishing gradient where the gradient instead
grows very large and the updates to the weights become enormous. There exists
several ways to solve this problem, but the most common one is to apply gradient
clipping. Gradient clipping can be performed in different ways but they all involve
reducing the gradient if it is above a certain clipping value.

3.2.2.4 Validation

The goal with training a network is to get as low training loss as possible. The loss
measures the amount of error made by the network. After training the model for
a given amount of time, the training loss will become very small. It will however
perform worse than before. This is called overfitting and occurs when the model
learns the training data "by heart" and performs well on the training data, but
poorly on text not seen before in the training data. It is therefore good to have
a validation set which is hidden from the model when performing the training.
Between certain intervals in the training, the loss of the validation set is calculated
without performing any training. Keeping track of the validation loss during training
is crucial to know when overfitting happens. Therefore, if keeping track of the
validation loss as it changes from decreasing to increasing, one will know when it
is time to stop training. Further training will only make the model perform worse.
Figure 3.2 shows an example of how the loss of training and validation can change
over time.
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Figure 3.2: Example of a graph of training and validation loss over time.

3.2.3 Character-by-Character
The network will process the input-stream one character at the time. For each of
the characters, it will output whether it belongs to a category or not and if so,
which category. Another approach which may seem more intuitive at first would be
to input one word at a time instead, we have however chosen to go with character
by character because this would probably mean that the grammatical version of
the word will not matter and also that lower and uppercase will contribute as well.
Furthermore, the algorithm might be able to generalize to character-patterns instead
of just learning the words. As an example, most diseases and pharmaceutical drugs
often have names with an uppercase letter in the beginning which is a feature that
the network should pick up on after sufficient training. Analyzing the text, character-
by-character, has other benefits as well, for example doing it one word at a time
needs a large vocabulary, containing all the words, whilst characters only need a
very small vocabulary which should improve the speed of the training.

3.2.4 Bi-Directionality
Recurrent neural networks are very good when the task at hand includes some
temporal information in the input. Language is a good application since one often
needs context from the beginning of the sentence to deduce what the latter part
is really about. However, only having knowledge about what has been written
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previously is not always enough and that is why bi-directionality should improve
the performance. Bi-directionality in the context of RNNs is that we essentially
have two identical networks, one processing the text from start to end and the other
one in reversed order. When classification occurs not only do we have information
up to the current character but also every character after the current one. This
should give us more information for the classification step and thus give us a better
chance of classifying correctly.

3.2.5 Long Short-Term Memory
Long Short-Term Memory is an RNN model that enables learning of long-term
dependencies [7]. LSTMs are based on a concept called cell state. By having a
stream of data feeding information from one time-step in the network to the next,
information from the past can be preserved. The cell state will be modified in various
ways depending on what the input is. In the horizontal line with an x and a plus-
sign in Figure 3.3 there are several gates that decides whether the network wants
to add or remove information. The first gate is called Forget Gate Layer which will

Figure 3.3: The inner workings of an LSTM model.

decide how much of the previous state to keep. Colah comes with an example in
his blog [13] that if the text was talking about a woman and later on talking about
another person who is a man, then the network needs to forget information about
the gender of the person since the focus has shifted from a female to a male. The
forget gate layer output a value between 0 or 1 for each number in the cell state,
where 0 is to completely forget and 1 is to keep it as is. The second state is called the
Input Gate Layer which decides what kind of and how much new information to add
to the cell state. This is done by first having a sigmoid layer which decides which
values in the cell state that should be updated followed by a hyperbolic tangent
function to generate the new values for the cell state. The sigmoid layer and the
hyperbolic tangent are then multiplied to only update the values that it decided
to update. In the third and the final step, the decision of what to output is done.
This will depend on the cell state, but filtered with the help of a sigmoid function in
order to only output some of the values form the cell state. It is finally put through
a hyperbolic tangent function to produce the output to the next step.
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3.3 Evaluation
The most common way to measure the performance of a model created for Named
Entity Recognition is to use a measurement called F1 score. It is widely used in
statistical analysis of binary classification and can easily be extended to a multi-class
classification to suite this problem better. F1 score is based on two concepts called
precision and recall. On a class basis, precision is the number of entities correctly
classified as belonging to the class divided by the total number of entities classified
to the class. Recall is the number of entities correctly classified as belonging to the
class divided by the total number of entities that actually belong to the class. The
F1 score is then the harmonic mean of precision and recall:

precision = |true positives|
|true positives + false positives|

(3.8)

recall = |true positives|
|true positives + false negatives|

(3.9)

F1 = 2 ∗ precision ∗ recall

precision + recall
(3.10)

The idea behind F1 score is to measure the performance by balancing the number
of correctly classified entities with the number of wrongly classified entities.

3.4 Limitations
With the fact that we are implementing two different models in mind, the time was
already very limited. This means that a lot of aspects for both of the models had to
be omitted. There was just enough time to create the models, run the experiments
and observe the results. Below is a collection of things that we wanted to try out
and experiment with but due to time-constraints was not included in this thesis.

3.4.1 Lemmatization & Stemming
Both of the models could possibly benefit from using lemmatization and/or stem-
ming. Lemmatization is a way of turning any word into its lemma or base-form
while stemming is just cutting away the ending of a word. Both of these techniques
would make it easier to distinguish between words of different grammatical form
since they will probably be turned into the same lemma or stemmed to the same
word. Lemmatization could help with the fact that the seed-terms most often only
contain one version of a word and we want to find it in the text regardless of what
tense or form the word has. However, since both models should be able to infer from
the seed-terms the models should be able to capture the entities even if they have
some form that does not exist in the seed-term list. This is due to the fact that the
goal from the start is for the models to be able to extrapolate from that data and
draw conclusions about entities that it has never seen before.
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3.4.2 Hyperparameter Search
The Word-Vector model has a lot of parameters that affect different parts of the
model. Finding the best set of parameters is an extensive task and is nearly impos-
sible to do in a reasonable time frame. As can be seen in Section 5.2.6, a search
for the best parameter value for each individual parameter was done by changing
the value for each parameter and let the other parameters be a default value. With
enough time, there would be other search strategies that would be better at finding
the best parameter values.

3.4.2.1 Grid Search

In a perfect scenario, grid search would be used to determine what parameter values
works best. Grid search would run the model through all possible combinations of
the hyperparameters within predetermined intervals in order to find the parameter
values that will maximize the result of the model. It is however time-consuming,
considering that adding more parameters to evaluate would increase the number of
evaluations exponentially.

3.4.2.2 Random Search

Another way to approach hyperparameter searching is to use random search. It is
done by determining a distribution for each parameter so that they have a maximum
and a minimum value. In each run, a random parameter is chosen that will change
its value randomly within the given distribution. Since new category vectors or
vocabulary need to be generated depending on the parameters, random search would
be time-consuming as well and therefore discarded as a choice of finding the best
parameter values.

3.4.3 Sequence length
Running the experiments for the RNN model, a sequence length is set. The sequence
length needs to be long enough to include the surrounding context of the seed-terms,
but a too long sequence length would include category-words that are not in the seed-
term lists. It is therefore important to have a sequence length that is balanced. The
parameter should be chosen carefully, but due to the fact that the model needs to
be retrained every time it is changed there was not enough time.
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Experiments

In this section we will talk about the experimental setup for each of the two models
we have implemented. The first part will be about the data sets that were used to
evaluate the model. Next section is about the Word-Vector model, followed by the
RNN model which we developed ourselves.

4.1 Data sets

To be able to compare the performance of our model to other existing solution it is
important to have a good data set to evaluate the model on to make the comparison
as fair as possible. The best way would naturally be to use the exact same data but
that is not possible to do when working with a smaller language. Furthermore, since
journals contain sensitive information getting access to some of those data set could
possibly be very hard or impossible. During the evaluation of our models we have
used two very different data sets: one where text from 1177.se was annotated by
ourselves as well as Stockholm EPR Corpus which contain real-world anonymized
patient journals.

4.1.1 1177 Vårdguiden

This data set was created from the list of documents from 1177.se that can be found
in Appendix A. It is a Swedish site containing information, counseling and services
regarding health-care. We got a total of 15 annotated documents and 2740 annota-
tions to measure the results with. The documents were carefully chosen to not favor
any of the three categories, but contains about an equal number of entities from all
of them. Since we do not consider ourselves medical professionals in any sense the
quality of the annotations can be questioned. On the other hand 1177.se’s target
audience is not only people within the medical field but anyone should be able to
read and understand the text. This should make it easier to annotate correctly and
anything that were unclear was researched in order to find the correct meaning.

The reason we created this data set was because during the course of this thesis
we did not know that we would be able to evaluate our models on Stockholm EPR
and needed something that we could test our models on by ourselves. Therefore
several of the evaluations, especially for the Word-Vector model, has only been done
using this data set and not Stockholm EPR.
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4.1.2 Stockholm EPR Clinical Entity Corpus
Stockholm EPR (Electronic Patient Record) Corpus [3] is a set of 512 clinical units
from Karolinska University Hospital in Stockholm encompassing the years 2006 -
2014 and over two million patients. It consists of 7946 documents containing real-
world anonymized patient journals with annotations in the 4 categories: Disorder,
Finding, Drug and Body structure. Since we have a category where Disorder and
Finding are bundled together we merge them into one. Due to the fact that the
goal was to perform NER on patients journals from the beginning, evaluation on
this data-set should give a better representation of its performance than evaluation
on text from 1177 Vårdguiden.

4.1.3 Seed-terms
The seed-terms are collected from the medical taxonomies SweMeSH [8] and Snomed
CT [17]. Due to their hierarchical structure, one can extract all children from a
category. After extracting terms for all the categories, most of the terms will be
used as an input-seed to the algorithm. Some of the terms were left out because
of ambiguities in the Swedish language. An example is the Swedish word "hand"
(hand) which was under the category body structure. The word hand is also used
as in other contexts in Swedish. For instance, "på egen hand" means "at your own"
in Swedish. This means that "hand" may occur in other contexts and will cause a
too much noise in our model. The seed-term lists were also compared against a list
of common grammatical words in order to filter out the more ambiguous words that
would cause noise. This filtering were done manually by us just going though the
list of seed-terms.

4.2 Word-Vector Model
The experiment was performed on documents manually annotated by us. Since we
did not have any annotated data at the time when the evaluation was done on the
model, we decided to annotate a number of documents ourselves. The documents
were taken from 1177 Vårdguiden [1]. In order to pick the best hyperparameter
values, experiment where the model was run with different hyperparameter values
was performed. The values were picked based on the values that yielded the best
result when running the model. The experiment and its results can be read in detail
in Section 5.2.6.

4.2.1 Sentence Splitting & Tokenization
The input documents are first preprocessed by doing sentence splitting. It is done
with GATE Embedded [12] which is a language processing framework in Java
which can connect different processing tasks into a pipeline and output the en-
riched documents in XML-format. We use a Swedish sentence splitting module
from OpenNLP [6] to be able to split the sentences. Similarly we use a Swedish
tokenizer from OpenNLP afterwards to be able to tag all tokens.
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4.2.2 Part-Of-Speech Tagging
Part-Of-Speech tagging is the next step in the GATE pipeline. There is a POS-
module from OpenNLP which is trained on the Stockholm Umeå Corpus [19] (SUC)
which is a corpus annotated with POS-tags. There exist several different standards
for POS-tags. The POS plugin from OpenNLP uses SUC-tags, which is a standard
based on Stockholm Umeå Corpus [19]. These tags are then converted with a simple
one-to-one mapping to a format called Parole-tags which is required in the next step,
Noun Phrase chunking.

4.2.3 Noun Phrase Chunking
This step is performed with Swe-SPARK [2], which is an implementation of a NP
chunker trained on the Swedish language. Swe-SPARK uses POS-tags to identify
the noun phrases. Swe-SPARK uses the given POS-tags to chunk the input text
into different chunks where the NP-chunks are the ones important to us. The noun
phrases are then filtered based on an IDF-threshold. Phrases that got an IDF value
lower than the threshold will be filtered out. An IDF-threshold of 5 was chosen since
that gave the best results in the experiments with parameters in Section 5.2.6.

4.2.4 Seed-Term Collection
Seed-terms are collected from two taxonomies, SweMeSH [8] and Snomed CT [17].
SweMeSH is a taxonomy of Swedish medical terms and Snomed CT consists of
Swedish medical concept terms. Since they have a hierarchical structure, we were
able to extract all the subordinate terms for each of our predefined categories by
traversing the tree downwards.

We use the following predefined categories to classify the entities into: Disorder &
Finding (Swedish: sjukdom & symtom), Pharmaceutical drug (Swedish: läkemedel)
and Body structure (Swedish: kroppsdel). There have been previous work done
on NER for the medical domain which uses these mentioned categories [16] which
means comparing our results with them will become much easier for us and for
future research of NER in the medical domain.

4.2.5 Signature Calculation
The vocabulary takes words from all available releases of Läkartidningen (1996-
2005) [18]. To keep the vocabulary from being too large, only words with a term
frequency greater than a certain threshold are added to vocabulary. This threshold
is called Frequency Threshold. The results from the experiment in Section 5.2.6
shows that 40 is a good threshold value. When the vocabulary is created, it also
filters out words beginning with a number or any special characters since they are
most often words that are not relevant and since every year and every combination
of numbers would result in a word in the vocabulary they were removed to leave
space for more impactful words. Signature generation of the category vectors are
done by looking for the seed-terms in Läkartidningen and using the average vector
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for each seed-term list. When calculating the signature for each word, weights for
the context words as well as the internal words are needed. From hyper-parameter
searching we found that internal weight of 20 and context weight of 1 worked best for
this task. The weight for a word in the context will be 1/k where k is the distance in
number of words that the word is from the term and 1 is the chosen context weight.
This means that the two words right next to the noun phrase will have weight 1/1
and the next two will have 1/2 and so on.

Zhang and Elhadad used different vectors for internal words and context words
and then concatenated them together resulting in a vector which is twice the size of
their vocabulary [23]. Since the vectors already are sparse to begin with, we added
them together instead and made it possible to increase the size of our vocabulary
even further.

For each possible entity from the input document, a signature vector is generated
and compared with all category vectors using standard cosine-similarity introduced
in Section 3.

4.2.6 Entity Classification
Entity classification can be done in several different ways. The idea, following Zhang
and Elhadad [23], is to compare the vector for each NP with the three different
category vectors and choose one of them depending on the results. Note that a
threshold is needed. In case the word-vector is far away from all category vectors, it
should not be classified to the category of the closest vector. This threshold is named
Similarity Threshold and was set to be 0.005, which gave the best results in the
experiments in Section 5.2.6. Furthermore, an additional threshold was introduced.
The magnitude of the similarity compared against the other two similarities is needed
as well so that entities where the algorithm is not sure will not be classified as one
of the categories. This threshold is called Classification Threshold and was set to
0.7 based on the results from the experiment mentioned earlier.

4.2.7 Evaluation
Result is measured with F1 score, which was explained in Section 3.3. The model
has several steps that depends on each other. F1 score is measured on three parts
to be able to measure all parts separately:

• Boundary Detection
• Entity Classification
• Total

Boundary Detection is the part of the model where it finds the entities in the input
document. Measuring the F1 score of the Boundary Detection gives a figure of how
many of the entities it finds. For Word-Vector model, the entities that it should
classify is directly dependent on the detection of the boundaries, this will determine
how many entities that it will even have potential to classify right. It will also show
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how good the detection is. One important thing to note is that boundary detection
is not only dependent on the preprocessing for the Word-Vector model, but Classi-
fication Threshold as well as Similarity Threshold will influence it.
Entity Classification is the part of the model where the entity candidates are classi-
fied into one of the predefined categories.. For the Word-Vector model, the entities
are determined before hand while the RNN model recognizes and classifies them as
it traverses the document. To measure the F1 score for Entity Classification, the
right entities are given to the algorithms and only classification is performed. This
will give back a measure of how well it classifies.
Total is the whole model. The F1 score is measured after doing both Boundary
Detection and Entity Classification.

4.3 Recurrent Neural Network Model
The second implemented model is based on a recurrent neural network. This is
a supervised model and acts accordingly. However, the data is not annotated by
humans, but rather generated from the seed-terms. Comparing with the Word-
Vector model, instead of vector calculations, a recurrent neural network is trained
to correctly classify the entities on a character-by-character basis. The network is
implemented with the framework TensorFlow, which is a framework used to create
various machine-learning related models. It provides a lot of already implemented
functionality with small amounts of coding.

4.3.1 Preprocessing
The network need training and validation data in form of list of sequences. To
be able to get a good spread between the training set and the validation set, we
generate the sequences from different sources.

4.3.1.1 Training

Since all of Läkartidningen 1996 - 2005 was used to train the Word-Vector model
described in Section 4.2, we wanted to use the same data to train the RNN model.
In the preprocessing, all of Läkartidningen is scanned to find occurrences of all seed-
terms in the lists. For each occurrence, a sequence of 60 characters containing the
seed-term positioned randomly in the span are used as an input. Since the seed-terms
are known, the targets can be automatically generated. The targets also consists of
a 60 character sequences, containing zeroes, ones, twos and threes representing each
category and zero for unclassified. The window need to be small enough in order to
minimize the risk of including words that are not in the seed-term list, but belongs
to a category. On the other hand it should be large enough to contain a context
for the seed-term for the algorithm to take advantage of. The sequence length of
60 characters was chosen by intuition after inspecting examples of different lengths.
There was unfortunately not enough time to try out different sequence lengths. The
inputs and targets together makes up the training set and will be fed to the network
during the training steps with all characters from the seed-term classified correctly
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and the rest of the characters without any class. A problem with this strategy is
that there is a possibility that other medical terms which is not in our seed-term list
will be caught within the span and incorrect examples will make their way into the
training data. This can be managed roughly by keeping the span small enough. In
addition, negative training examples are generated in order to prevent the network
from learning that classified entities always occur in every sequence. They contain
only non-classified characters and this should improve the performance since in real
world examples there is not always an entity in every 60-character span. Including
negative examples mimics the real world in a more accurate way. To have a large
amount of training data is good. To increase the number of training data, each
occurrence of seed-term that was found were generated together with three variant
where the window was shifted a little bit into one direction. This would increase
the training set by four times with sequences that are slightly different.

4.3.1.2 Validation

A validation set is generated from the Swedish Wikipedia. Wikipedia was chosen
since it is a large free resource and contains many relevant articles about the medical
domain. By crawling selected articles within the medical domain, we collect links to
other articles. The articles from the links are then used to generate the validation
set in the same way that we generated the training set. Counting the number of
seed-terms that occurred in the validation set, but not the training set, we saw that
it was fewer than 5% that were unique to the validation set. One kind of overfitting
for Named Entity Recognition could be that it finds the seed-terms only. Since this
would be bad, we had to increase the number of articles we crawled from. While
increasing the number of articles would find more unique seed-terms, it would also
find more non-unique seed-terms as well. To be able to increase the ratio of sequences
containing unique seed-terms, we generated 5 variants of each sequence containing
unique seed-terms and no variants for the sequences containing non-unique seed-
terms. This generated 48720 sequences of which 62192 occurrences of seed-terms
were found and 11022 occurrences of seed-terms that are not in the training set.
This means that almost 18% of the occurrences of the seed-terms are unique to the
validation set, which gives us a better validation. The articles we crawled from are
listed in Appendix B. They have been chosen manually to be balanced between the
categories.

4.3.2 Network Setup
The network is built with Google’s machine learning framework TensorFlow. The
framework has out-of-the-box implemented models for the most common types of
neural networks from which we use their LSTM-cells to build our network. In order
to get bi-directionality, we take two LSTM-models, one that reads the input from
left-to-right and another from right-to-left. Both these models are connected to the
output layer which takes both of them into account when making the classification.
The model is implemented with 3 hidden layers and 128 neurons in each layer and
the vocabulary is built up from all characters encountered in the training examples.
We chose the size of the network by trail and error as well as some guidance from
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our supervisors. All characters in the input is mapped to an entry in the vocabulary.
Characters that are not in the vocabulary will be mapped to the last entry in the
vocabulary, called the misc ID, so that they are covered as well. The network will
output a probability distribution over the different classes, which sums to 1. In
our case, the we have 4 probabilities, one for each class and one for unclassified.
From this distribution the maximum value is chosen and the character is classified
accordingly. With a classification of each character, a word is classified to the class
which the majority of characters has been classified to. Furthermore, if the token
between two words belonging to some specific class is classified to that class as well,
the two words are combined into one classified term.

4.3.3 Training

The training data is a total of 775,000 of sequences with 60 characters each. 10%
of the data is negative data, containing only unclassified characters. We have cho-
sen a learning rate of 0.002 and a decay rate of 0.975. These numbers were chosen
carefully after extensive testing and running the models with different parameters.
Usually with RNN or LSTM models, it can be a good idea to pre-train the model
as a language model. A language model is, given an input character, predicting
the next character in the sequence. This could help the model to understand the
fundamental features of the language which would reduce the training time. Since
our model contains bi-directionality, it is hard to pre-train the model as a language
model since the layers goes in opposite direction to each other. Furthermore, since
this only speeds up the convergence of the model and would not affect the perfor-
mance, we did not traing a language model.

In each iteration, the input to each hidden layer is subject to dropout. This is a
concept regularly used when training neural networks to reduce over-fitting and to
make the network converge faster [14]. Dropout essentially depends on a single
parameter p which is a probability to keep each value in the input vector. The
probability p is set to 0.5 which means that each input to a certain layer has a
50% probability of being set to 0. This is universally known to be the best setting
for the parameter and should only be increased slightly if one has a huge network,
1000+ units in each layer [22]. Since our network has 128 neurons in each layer,
on average only 64 of these values are kept and used for training. The reason why
this does works is that having dropout keeps the network from relying heavily on
some parameters and teaches it to classify correctly with any subset of inputs. On
the other hand the expressively of the network decreases since on average only half
of the signals in the network are being used which can be counteracted by simply
increasing the number of neurons.

During the training a readily available optimizer was used called Adamoptimizer [9].
Adamoptimizer implements the Adam algorithm for solving gradient-based opti-
mization problems on stochastic objective functions. What algorithm to use de-
pends on the problem at hand, but Adam combines two optimizer that works well
on machine-learning related problems [9], RMSprop and AdaGrad. RMSprop deals
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well with a moving objectives and AdaGrad deals with very sparse gradients in a
good way.

Below the different settings we tried are explained in greater detail:

Deeper For this model we left most of the settings to default but
increased the depth of the network to check what impact
that had on the performance. A network with 128 neurons
in each layer with a depth of 4 layers were trained with a
learning rate of 0.05 as well as a decay rate of 0.975.

Low learning rate This model also set most settings to default. A network
with 128 neurons in each layer, 3 layers deep but this time
with a learning rate of 0.002. The decay rate was set to
0.975. Lowering the learning rate proved useful and 0.002
became the default setting for learning rate.

Smaller network This model had default settings, but a smaller network
with 64 neurons in each layer, 3 layers deep. Learning
rate set to 0.002 and decay rate to 0.975.

No dropout This model left all the settings as default but removed
dropout entirely. This means a network with 128 neurons
in each layer, 3 layers deep and a learning rate of 0.002 as
well as a decay rate of 0.975. This setting proved to be the
best, which meant that the default settings subsequently
never used dropout.

Even lower learning rate Here we checked if lowering the learning rate even more
would further improve the result. All settings to default
apart from lowering the learning rate to 0.0002. Default
settings was 128 neurons per layer and 3 layers deep. De-
cay rate set to 0.975 and no dropout used.

4.3.4 Evaluation
Result is measured with F1 score, which is explained in Section 3.3. Classification
with a character-based network is classifying entities one character at a time. This
means that it will determine the boundary as it classifies. There is however a point
in measuring the performance of both boundary detection and the overall run. If
the boundary detection has poor performance, that would suggest that any system
that uses this information will also do poorly. F1 score is measured on two parts:

• Entity Classification
• Total

Measuring the Entity Classification and the Total will be done the same way as
described in Section 4.2.7.
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Below is the result for both the Word-Vector model and the Recurrent Neural Net-
work model as well as a simple baseline.

5.1 Baseline
The baseline simply consist of dictionary look-ups of the encountered words in the
list of seed-terms.

Table 5.1 shows the results of running the baseline model on Stockholm EPR Corpus
[3]. The baseline model achieves a precision of over 70% on Disorder & Finding and
Body Structure, but is significantly lower for Pharmaceutical Drug. It has a higher
precision than recall in general due to the fact that if a match is found it is probably
correct. The algorithm got a precision of 0.6693, a recall of 0.1177 and an F1 score
of 0.2001 in total.

Table 5.1: Result of the run on baseline algorithm on Stockholm EPR Corpus.

Category Precision Recall F1 Score
Disorder & Finding 0.7648 0.1152 0.2002
Pharmaceutical Drug 0.2465 0.0380 0.0659
Body Structure 0.7041 0.2924 0.4132
Total 0.6693 0.1177 0.2001

5.2 Word-Vector Model
In this section the results of the Word-Vector model are presented. Each part and
kind of experiment that we have conducted are divided into separate sub sections.
All parts have been measured on the manually annotated documents based on arti-
cles from 1177.se.

5.2.1 Model Result
In Table 5.2 we can see the F1 score and the parameter settings for the two best
runs, two runs in the middle and the two worst runs. The best run gave an F1 score

27



5. Result

of 21.84%. This could be compared to the run with the parameter settings that
yielded the worst result which got an F1 score of 17.02%.

Table 5.2: Result of F1 score for different runs. # notes on what position the score
was amongs all runs, CW is the context weight, IW is the internal weight, FT is
frequency threshold, CT is classification threshold, ST is similarity threshold, IDF-
T is IDF threshold, #C is context windows size and F1 Score is the performance
score.

# CW IW FT CT ST IDF-T #C F1 Score
1 1 20 10 0.7 0.005 5 5 0.2184
2 1 20 40 0.7 0.005 2 5 0.2146
12 1 20 10 0.75 0.005 2 5 0.2029
13 1 20 10 0.85 0.005 2 5 0.2027
25 1 20 10 0.7 0.01 2 5 0.1780
26 5 20 10 0.7 0.005 2 5 0.1702

Table 5.3: Precision score for different runs. # notes on what position the score
was amongs all runs, CW is the context weight, IW is the internal weight, FT
is frequency threshold, CT is classification threshold, ST is similarity threshold,
IDF-T is IDF threshold, #C is context windows size and Precision is precision
score.

# CW IW FT CT ST IDF-T #C Precision
2 1 20 10 0.7 0.005 5 5 0.3204
15 1 20 40 0.7 0.005 2 5 0.2376
12 1 20 10 0.75 0.005 2 5 0.2424
13 1 20 10 0.85 0.005 2 5 0.2406
8 1 20 10 0.7 0.01 2 5 0.2711
26 5 20 10 0.7 0.005 2 5 0.1303

5.2.2 Boundary Detection Result
In Table 5.5 below, results for evaluating only the boundary detection are presented.
This only depends on one parameter, the IDF-threshold, and is essentially just an
evaluation of Swe-SPARK when capturing medical entities. The best F1 score is
0.2727 with a precision of 0.2060 and a recall of 0.4033.

5.2.3 Entity Classification Result
Classification is the second part that the algorithm is relying on. In order to measure
the performance of the entity classification in a proper way, the algorithm was given
the right entity boundaries and set to always classify the entities into one of three
categories. In Table 5.6 we see the best run got an F1 score of 62.51%. The range of
scores are spanning from 60.47% to 62.51%. Precision and recall are well-balanced
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Table 5.4: Recall score for different runs. # notes on what position the score
was amongs all runs, CW is the context weight, IW is the internal weight, FT
is frequency threshold, CT is classification threshold, ST is similarity threshold,
IDF-T is IDF threshold, #C is context windows size and Recall is recall score.

# CW IW FT CT ST IDF-T #C Recall
23 1 20 10 0.7 0.005 5 5 0.1657
8 1 20 40 0.7 0.005 2 5 0.1956
15 1 20 10 0.75 0.005 2 5 0.1745
14 1 20 10 0.85 0.005 2 5 0.1752
26 1 20 10 0.7 0.01 2 5 0.1325
4 5 20 10 0.7 0.005 2 5 0.2453

Table 5.5: Results for only boundary-detection using Swe-SPARK

IDF Threshold Precision Recall F1 score
2 0.1228 0.4960 0.1969
3 0.1407 0.4869 0.2183
4 0.1488 0.4763 0.2267
5 0.1689 0.4460 0.2450
6 0.2060 0.4033 0.2727

and matching the placement of the runs very well. The run with best F1 score has
the best precision and recall as well. A random classifier would statistically get 33%
correct since we have three categories which means that our model almost classifies
almost twice as many.

Table 5.6: Entity classification results of the Word-Vector model. All runs were
made on the manually annotated data with different parameter values in each runs.

CW FT C Precision Recall F1 score
5 10 5 0.6258 0.6245 0.6251
1 10 3 0.6236 0.6223 0.6229
1 10 2 0.6206 0.6190 0.6198
10 10 5 0.6167 0.6153 0.6160
1 10 5 0.6163 0.6150 0.6156
1 10 7 0.6152 0.6139 0.6145
1 20 5 0.6145 0.6131 0.6138
2 10 5 0.6127 0.6113 0.6120
1 10 10 0.6090 0.6077 0.6083
1 40 5 0.6061 0.6047 0.6054
1 50 5 0.6053 0.6040 0.6047
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5.2.4 Part-of-speech performance

We wanted to assure that the POS-tagger worked properly, so we used Läkartidnin-
gen [18] corpus that is annotated with POS tags in order to compare how well GATE
Embedded [12] manages to do POS-tagging. Part-of-speech tagging was done on a
subset of Läkartidningen 2003 with the 163,731 first words. Tokenization and sen-
tence splitting is proven to work almost perfectly. It only failed at very few special
cases. Mail addresses can in particular be hard if it contains dot, which is a stop
word. It also fails at words ending with an apostrophe, for instance Jovanovic‘.
These words were discarded when comparing POS tags. Out of the 163,656 that
were compared, 11,083 words were different from the manually annotated POS-tags.
With the corpus as a reference, it managed to have 93.2% similarity with the man-
ually annotated POS-tags. One of the more frequent errors were due to special
characters such as double left/right pointing angle ». Other errors were that it did
not manage to differentiate if a noun is of singular article or plural article. This is
often hard to see without knowledge about the word. With the result of the compar-
ison, we can conclude that the POS-tagger is working well. It would be interesting
to see if the NP chunker did a similarly good job, but since we do not have a corpus
tagged with noun phrases, we were not able to measure the performance of the NP
chunker.

5.2.5 Global Inverse Document Frequency

Inverse Document Frequency is a measure of how common a word is on a document
basis. The more common, the lower value it gets. In our implementation of the
Semi-Supervised Word-Vector model, we count words on a sentence basis instead.
We do the assumption that users are inputting one document at the time and it is
therefore more suitable to do it on sentence basis. IDF is used to filter out common
noun phrases, when considering entity candidates. We had a theory that the filter-
ing, based on IDF, could affect the results negatively. The reason behind this is that
IDF, based on the input document, is simply not enough to make an assumption
on irrelevant candidates. A document usually consist of a topic, which means that
the subject of the topic will have a high frequency and have a high risk of being
filtered out. We propose to use a global IDF. By including Läkartidningen 1996-
2005, the text we use to create our category vectors, we hope to be able to reduce
the number positive candidates that are filtered out. To see if that is the case, we
have run the algorithm with the parameters that worked well in the experiments
with different hyperparamater values in Section 5.2.6 and with global IDF. Then
we run with the same parameters, but without global IDF. Since the number of
noun phrases that are filtered out is different with global IDF, we run with different
IDF threshold values in order to see that the hypothesis is true for most of the cases.

Table 5.7 shows the result of boundary detection with global IDF and local IDF
with different values for IDF-threshold. Furthermore, Table 5.8 show the same runs
but instead shows F1 score for both boundary detection as well as the score running
the entire model.
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Table 5.7: Runs of the Word-Vector model with global IDF (G-IDF) and local IDF
(L-IDF). Local IDF was run with different IDF threshold values (denoted with t).
Result shows true positives, false positives and false negatives for each run.

True Positive False Positive False Negative
G-IDF t=5 1223 6014 1517
L-IDF t=5 631 3056 2109
L-IDF t=4 743 4356 1997
L-IDF t=3 833 5405 1907
L-IDF t=2 936 6329 1804
L-IDF t=1 993 9274 1747

Table 5.8: Runs of the Word-Vector model with global IDF (G-IDF) and local IDF
(L-IDF). Local IDF was run with different IDF threshold values (denoted with t).
Result shows F1 score of boundary detection and on the whole model for each run.

F1 Score Boundary Detection F1 Score Total
G-IDF t=5 0.2452 0.2160
L-IDF t=5 0.1964 0.1318
L-IDF t=4 0.1896 0.1314
L-IDF t=3 0.1856 0.1445
L-IDF t=2 0.1871 0.1634
L-IDF t=1 0.1527 0.1628

5.2.6 Behaviour of Model Depending on Parameters
The Word-Vector model has a set of hyperparameters that can be adjusted in var-
ious grades. The parameters are explained throughout the methodology in Section
3. Parameters with adjustable values are the following:

• Context Weight
• Context Window Size
• Frequency Threshold
• Classification Threshold
• Similarity Threshold
• IDF Threshold

To be able to evaluate how the model is behaving depending on the parameters,
a hyperparameter search was performed. By choosing one parameter at the time
and adjusting its value between each run, it gives a result on how the model will
behave depending on the value of each specific parameter. The experiment is done
on the documents from 1177.se [1] that were annotated by us. The articles that
were annotated can be found in Appendix A. For each parameter, a number of suit-
able values have been chosen to be tested with. The parameter values were chosen
by doing number of observations by manually adjusting parameters. While adjust-
ing one parameter, the other parameters are set to default values that have been
chosen on intuition after observing some runs. When the runs are done, one can
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see how different parameter values affects precision, recall and F1 score. Not all
of the parameters affects the entire model. Some only affects the boundary detec-
tion, other parameters affects the entity classification and other affects both. The
F1 score measurement is done in three ways: only on boundary detection, only on
entity classification and on the whole model. Boundary detection is the part where
the model finds the boundaries of the entities. Entity classification is giving the
model the right boundaries and letting the model classify them. The whole model is
measured from boundary detection to the entity classification. In the results below,
only overall performance as well as performance on entity classification are shown.
For a complete list of runs and the settings used, see Appendix C. A complete list
of results with Precision, Recall and F1 Score can be read in Appendix D.
Default values for the parameters were set to following:

• Context Weight: 1
• Context Window Size: 5
• Frequency Threshold: 10
• Classification Threshold: 0.7
• Similarity Threshold: 0.005
• IDF Threshold: 2

5.2.6.1 Context Weight

Context Weight determines how important context words are set in relation to the
internal words. Internal weights are always 20 which means that the value v for
context weight will be in ratio v:20 against internal weights. The best result for

Table 5.9: Result of runs with different parameter values for context weight on
Word-Vector model. Result is measured using F1 score. It is measured on classifi-
cation of entities with given boundaries and also on the whole model.

Context Weight F1-Classification F1-Total
1 0.6156 0.2033
2 0.6120 0.1954
5 0.6251 0.1702
10 0.6160 0.1796

entity classification was given when context weight was set to 5, which can be seen
in Table 5.9. With context weight set to 5, the ratio between context and internal
weight is 1 : 4. This results in an improvement of 0.009 over the second best run.
Overall result gave the best score when context weight was set to 1, which gives
a ratio of 1 : 20. It has only an increase of 0.005 over the second best, due to
the generally low score. It has however an improvement of 0.03 over the run with
lowest F1 score. The improvement is hardly noticeable for classification, while the
performance of the whole model is over a large span. It is hard to draw an absolute
conclusion about why the parameter behave differently between classification and
the whole model. One possible explanation is that if the context is more important
to the model, the better it is able to classify the given entities. On the whole run, a
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high context weight can cause candidates that are not entities to be classified since
the context words might occur often in the category vectors.

5.2.6.2 Context Window Size

Context Window Size sets the window of the context words. It is the number of
neighbouring words on each side of the internal words. Result in Table 5.10 is

Table 5.10: Result of runs with different parameter values for context window
size on Word-Vector model. Result is measured using F1 score. It is measured on
classification of entities with given boundaries and also on the whole model.

Context Window Size F1-Classification F1-Total
2 0.6198 0.2131
3 0.6229 0.2102
5 0.6156 0.2033
7 0.6145 0.2006
10 0.6083 0.1978

showing that it is generally bad to have a too large context window. Even with a
weighted context, where a word gets less value the further away from the internal
words. Classification result is better with a size of 3, suggesting that having a
context is relevant in some aspect. The performance of the whole model is better
with a size of 2.

5.2.6.3 Frequency Threshold

Frequency Threshold is a threshold that decides how large the vocabulary is going
to be. The vocabulary is built by counting all the words in Läkartidningen. Words
that occur less times than a certain threshold value will be filtered out from the
vocabulary. This would naturally mean that the lower the frequency threshold is,
the larger the vocabulary. For classification of entities, we see in Table 5.11 that it

Table 5.11: Result of runs with different parameter values for frequency threshold
on Word-Vector model. Result is measured using F1 score. It is measured on
classification of entities with given boundaries and also on the whole model.

Frequency Threshold F1-Classification F1-Total
10 0.6156 0.2033
20 0.6138 0.2088
40 0.6054 0.2146
50 0.6047 0.2124

is generally better to have as low frequency threshold as possible. With frequency
threshold of 10, the F1 score is 61.56% and with a value of 20 it decreases to 61.38%.
This suggests that the more details that can be captured in the model, the better it
gets. The same reasoning does not apply when running on the whole model however.
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It is better with a higher frequency threshold of 40. Running the whole model also
means that it has to be able to discard candidates that are not correct. To be
able to do that, it discards entities that are not similar enough to a category. A
larger vocabulary will make the vector more sparse and could potentially increase
the possibility of discarding an entity. That could be a possible reason why it works
better with higher frequency threshold.

5.2.6.4 Classification Threshold

Classification Threshold is based around the idea that if a candidate is almost equally
similar to all categories, it does not make sense to classify it into any of them. The
threshold value determines how many times more similar the candidate must be
to the most similar category than the other categories. The parameter do not
affect the result of entity classification, since it will always classify the entities.
There is no consistent behavior of how the model’s performance changes as the

Table 5.12: Result of runs with different parameter values for classification thresh-
old on Word-Vector model. Result is measured using F1 score. It is measured on
the whole model.

Classification Threshold F1-Total
0.5 0.2098
0.7 0.2033
0.75 0.2029
0.8 0.2022
0.85 0.2027
0.9 0.2024
1.0 0.2025

value is changing. Threshold values between 0.7 and 1.0 gives different F1 score
between 20.22% to 20.32%. The one exception is for classification threshold of 0.5,
which works particularly well with an F1 score of 20.98%. A threshold value of
0.5 means that the maximum similarity must be more than two times greater than
the similarity of the other categories. This suggests that a more strict classification
manage to filter out false candidates better while keeping the true candidates. Since
the best result is given on the smallest given parameter value in our span, we see
that we misjudged the span of parameter values to test. An even lower value would
be interesting to examine, but nothing we were able to test because of the time
constraint.

5.2.6.5 Similarity Threshold

Similarity Threshold is a constraint to only classify entities if they have a similarity
larger than the threshold value. In Table 5.13 it is clear where it performs best.
When similarity threshold is set to 0.003 it is better than both lower and higher
values. The higher the value is, the more similar the entity must be to the category.
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Table 5.13: Result of runs with different parameter values for similarity threshold
on Word-Vector model. Result is measured using F1 score. It is measured on the
whole model.

Similarity Threshold F1-Total
0.01 0.1780
0.008 0.1983
0.005 0.2033
0.003 0.2070
0.001 0.1880
0.0009 0.1881

In other words, 0.003 must be the point where it filters out most false positives while
keeping the true positives.

5.2.6.6 IDF Threshold

IDF Threshold is a threshold that determines which of the noun phrases found by
Swe-Spark that are filtered out. Noun phrases with an IDF lower than the threshold
value will be discarded. A threshold value of 5 gives the best F1-score as one can see

Table 5.14: Result of runs with different parameter values for IDF threshold on
Word-Vector model. Result is measured using F1 score. It is measured on the whole
model.

IDF Threshold F1-Total
2 0.2033
3 0.2086
4 0.2117
5 0.2184
6 0.2024

in Table 5.14. In comparison, it is about 0.007 higher than 4 and 0.016% higher than
6. A low value could make the model keep many false candidates that are classified
in a later stage while a high value could potentially filter out true candidates.

5.3 Recurrent Neural Network Model

Below are the results from the evaluation of the RNN-based model. The evaluation
was performed on 733 real-world examples of medical journals from Stockholm EPR
Corpus [3]. Since the data is very sensitive the evaluation was not performed by
ourselves but instead let the holder of the data perform the evaluations.
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5.3.1 Model Result
The results in Table 5.15 shows the run of the Recurrent Neural Network model
with No dropout-settings. Both Disorder & Finding and Body Structure have a
much higher precision than recall, while Pharmaceutical Drug is better balanced.
In total, the Recurrent Neural Network model got 0.6709 in precision, 0.2359 in
recall and 0.3491 in F1 score.

Table 5.15: Results of run on Recurrent Neural Network model on Stockholm EPR
Corpus.

Category Precision Recall F1 Score
Disorder & Findings 0.7241 0.1817 0.2905
Pharmaceutical Drugs 0.6922 0.4321 0.5321
Body Structure 0.4564 0.2775 0.3452
Total 0.6709 0.2359 0.3491

5.3.2 Classification Result
Given the boundaries for the entities in Stockholm EPR Corpus, the Recurrent Neu-
ral Network model performed according to Table 5.16. The table shows promising
results for both the category Disorder & Finding and Pharmaceutical Drug which
has an F1 score of 0.814 and 0.736 respectively. Body Structure shows a weaker
score of 0.471 in F1 score. In total the model got an F1 score of 0.751.

Table 5.16: Entity classification results of run on Recurrent Neural Network model
on Stockholm EPR Corpus.

Category Precision Recall F1 Score
Disorder & Findings 0.917 0.732 0.814
Pharmaceutical Drugs 0.639 0.866 0.736
Body Structure 0.361 0.678 0.471
Total 0.751 0.751 0.751

5.4 Comparison
Since there are two models and a baseline that tries to solve the same task, a compar-
ison between the Baseline model, Word-Vector model and Recurrent Neural Network
model will show how they compare against each other. Since we did not have the
opportunity to run the Word-Vector model on Stockholm EPR Corpus due to time
constraints, the comparison was made on the results from the manually annotated
data set which all were run on. Since the Word-Vector model has a boundary detec-
tion where it annotates a wider span, a run on the manually annotated data with
an adjusted, wider boundary was added.
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Comparing the results of the models in Table 5.17, we see that the Word-Vector
model do not perform well due to the wider boundaries that it detects. This can
clearly be seen in the adjusted run, where it performs around 47% better. All mod-
els have around 50% in precision, except for the adjusted Word-Vector model which
comes in at 32%. Recall is much lower where they are in the span of 8.5% to 16.7%,
except for the Recurrent Neural Network model which has a recall value of 20.7%.
This is mostly the reason why the Recurrent Neural Network model has the highest
F1 score with 28.9%. At the second place comes the adjusted Word-Vector model
at 21.84%, followed by the Baseline model at 21.80% and lastly the Word-Vector
model with 14.8%. Even though the Baseline model and the adjusted Word-Vector
model have a similar performance scores, we can see that their precision and recall
are vastly different. Baseline model has a high precision and a low recall, while the
adjusted Word-Vector is more balanced between precision and recall.

Table 5.17: Comparison of the results between each model on the manually anno-
tated data set.

Model Precision Recall F1 Score
Baseline 0.5406 0.1365 0.2180
Word-Vector 0.5538 0.0856 0.1482
Word Vector (adj.) 0.3204 0.1657 0.2184
Recurrent Neural Network 0.4788 0.2072 0.2892
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6
Discussion

In this chapter discussion about the results as well as other relevant observations
will be presented.

6.1 Language
The structure of the Swedish language is different from English in a numerous ways
from a grammatical perspective. These differences can affect the performance of the
model and must be taken into account when designing it.

6.1.1 Compound Words
The Swedish language consists of a lot of compound words. A compound word is
when two or more words are joined together to form a longer word. An example is
the phrase "a very strong medication" would be "en jättestark medicinering", where
jätte and stark is translated to very strong. The Word-Vector model relies on the
vocabulary that consists of words. This would likely lead to losing some context
since there are many compound words and not all are included in the vocabulary
if it is of resonable size. The RNN model has a character based vocabulary, which
means that it has the possibility to learn compound words. One way to tackle
compound words is to implement a compound splitter that splits the compound
word into the original words. However, this practise may affect the context of the
text. For instance if we take the phrase "rökfritt på stationen" which translates to
"no smoking allowed at the station", we have the compound word rökfritt. It means
no smoking allowed or free of smoke and consists of the words smoke (rök) and free
(fritt). If compound splitting were to be performed, the phrase would now be "rök
fritt på stationen" and translates to "smoke freely on the station". The phrase has
now completely changed its meaning because the compound words is now split up
into two separate words. Whether compound splitting is performed or not, context
may be lost in either way.

6.1.2 Ambiguous Words
Ambiguity is occurring in many languages. We could however conclude that many
of the seed-terms, especially in the Body Structure category, were ambiguous. They
often have a second meaning that is part of Swedish sayings, which makes them occur
frequently in another context. The Swedish word huvud (head) often occurs as "över
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huvud taget", which is translated to "at all". Another example is hand (hand), which
occurs as "på egen hand" and translates to "on your own". The Swedish language
also has words such as vad (calf ) which also means what, led (joint) which also means
to have suffered, lever (liver) which also means is alive and so on. This is a flaw in
the semi-supervised approach. A supervised approach would learn from manually
annotated data where the terms with correct context being annotated while the
terms in another context would be left out. This is however impossible to do with
a semi-supervised approach with seed-term lists, since one cannot distinguish same
terms with different contexts in the learning process. One cannot simply go through
all the text and find the terms with wrong context. Removing ambiguous words or
terms would very likely reduce the number of wrongly classified entities, but also
decrease the number of correctly classified entities. In other words: it would increase
the precision, but would decrease the recall.

6.2 Named Entity Recognition
The problem of Named Entity Recognition for the medical domain is inherently
hard. One big problem is the similarity between body structures and disorders
where they often are closely connected. Many disorders contain body structures
within them which leads to ambiguity.

6.3 Word-Vector Model
The first major flaw with the Word-Vector models was that we had little to no
control over two of the main parts of the model. Since we used external frameworks
for both NP-chunking and POS-tagging the end-results could not possibly be better
than the NP-chunker due to the errors it was making. Furthermore, since the NP-
chunker depends on the POS-tagger even more errors were introduced since the
POS-tagger also cannot be perfect.

6.3.1 Results
The best result got an F1 score of 21.84%, which is measured on both boundary
detection and entity classification together. It is run with IDF threshold of 5 and
the other parameters have pre-determined default values based on earlier runs with
manual tweaking of parameters. The difference between the best performed run and
worst performing run is roughly 4%.

In Table 5.3, we see the precision score for the runs from Table 5.2. Here we see that
they differ widely in how well they performed. The run that had best F1 score is
the second best performing on precision. The run with second best F1 score has the
15th best precision, putting it in the second half of the list over precision. Looking
at the bottom, the run that got second worse F1 score has the 8th best precision.
The difference between the best and worst precision is also a little bit wider than
the F1 score, ranging from 13.03% to 33.17%.
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Table 5.4 shows the recall score for the same runs. The performance of the runs
are mostly the opposite of how they performed on the precision, meaning that the
runs are in general unbalanced between precision and recall. The first run that got
the second best precision have the 23rd, or the third worst recall value. The overall
worst run that had the worst precision has the fourth best recall value. The span of
recall values are between 13.25% to 27.04%.

The results presented in Section 5 suggest an in-balance in precision and recall
for the different runs. It is generally good if precision and recall are balanced. How-
ever there are cases where one is more preferred over the other. If it is important for
the use-case that there are not any wrong classifications or false positives, it may
be a better idea to aim for a higher precision rather than good recall. Especially in
the medical domain.

6.3.2 Boundary detection

Performance of the algorithm is highly dependent on two parts: to be able to detect
the boundaries of the entities and to correctly classify them. Classification cannot
be done unless the boundaries have been found. Boundary detection is done with
external frameworks, combining POS-tagging, noun phrase chunking as well as an
IDF-threshold. After running the experiment with different parameters, we realized
that the boundary detection is not doing particularly well. In Table 5.5 we see
that F1 score ranges from 19.69% to 27.27%. The precision and recall are very
unbalanced here where precision ranges from 12.28% to 20.60% and recall ranges
from 40.32% to 49.60%. For the run where F1 score is highest, it manages to find
1105 boundaries of 2740. It is not even half of the entities and on top of that, it
finds 4258 false positives. Regardless of how the value of IDF Threshold changes,
the precision will decrease when recall increases and vice versa. One problem with
the boundary detection step is that we have not implemented it ourselves. This
makes it hard to steer the way that it detects the boundaries. One way to annotate
entities is to have the boundaries to be the least descriptive phrase. For instance in
the phrase "en svår tropisk sjukdom" ("a severe tropical disease"), tropisk sjukdom
is the least descriptive phrase. In comparison, the noun phrase chunker we use
detects noun phrases so in this case it could be the whole phrase "en svår tropisk
sjukdom". It is hard to predict exactly how much details the noun phrase chunker
will include. An example of this could be seen when the article is mentioning an
example. When an article contains "Till exempel morfin" ("For example morphine")
it will misstakenly detect "exempel morfin" instead of "morfin". Another example
is for the phrase "ont i magen" ("pain in the stomach") where it detects "ont" and
"magen". It might be how one prefers to have the boundaries of the entities, but it
could as well be that one prefer the whole phrase as the boundary instead. It is hard
to modify the current boundary detection step without adding rule based layer on
top. Another approach would be to build our own boundary detection model, but
since that is a whole new subject in and of itself we did not have time to do that.
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6.3.3 Comparison with Zhang and Elhadad
The results in the Zhang and Elhadad [23] paper are slightly higher than our results.
They got a score of 69.5% compared to our 62.5%. On the overall performance, they
got a score of 26.5% while our got 21.8%. They have no score available for boundary
detection, which makes it hard to fully compare the performance. Since they got a
higher overall performance, it suggests that the boundary detection is better than
ours. They however got a better score on entity classification as well, which might
suggest that their model is better on parts besides the boundary detection. Another
factor might be the larger amount of data that they have. We extracted seed-terms
from Snomed CT and SweMeSH, which gave us roughly 50,000 Swedish seed-terms
in total. They had a total of over 610,000 which is more than 10 times the seed-
terms we have. Given that they are able to cover so many more terms, it might not
be so strange that their algorithm performs better.

6.3.4 Inverse Document Frequency
Based on the results in Section 5.2.5, local IDF never manages to find as many true
candidates even after adjusting the IDF threshold. With the different values of IDF
threshold, it finds at most 993 true candidates with threshold value 1. In the case
where it finds 993 true candidates, it also find 3260 false candidates. For lower IDF
thresholds, the filter will start to let false candidates pass through as well. The
best case is to find a trade-off between increasing true positives and decreasing false
positives if the use-case for the task is not sensitive for false positives. In Table 5.8
we see that so is the case. The performance of boundary detection with global IDF
is 24.52% while the highest one with local IDF is achieved when IDF threshold is
set to 5 with a score of 19.64%. Looking at F1, we see that the best F1-score for
local IDF is achieved when IDF threshold is set to 2. The reason behind this is
that while IDF threshold set to 5 performed better on boundary detection because
it had fewer false positives as well as true positives. Lower IDF thresholds have
more true positives and false positives, but will filter out some of them in the entity
classification step. So there is a trade-off between how many true positives that is
worth to have versus how many extra false positives that will be added. Regardless
of the value of local IDF, global IDF has a better performance in all aspects.

6.4 RNN Model
When training the network we calculate a loss for each batch and backpropagate
through the network. At first we thought that since most of the input data do
not belong to any class, the network would play it safe and always yield good loss
if everything was classified as the unclassified category. To counteract this, we
implemented a different type of loss weights. When calculating the loss, we did not
only count the miss-classifications but weighted them higher if the miss-classification
was of an entity that belonged to any of the three categories. We later realized that
this approach did not have an impact on the model since the network was weighting
those classifications and only made the network use more classifications instead.
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6.4.1 Network setup

How large and how deep a network is is directly correlated to how well it performs
and therefore having a well-suited size of the network is very important. If it is
too small, it will not have enough capacity to learn from the data and the network
will never learn. On the other hand if it is too large, it has room to fit even
more information than intended from the beginning and it will start to learn other
correlations in the data which will lead to overfitting. In each layer we used 128
neurons but we also tried decreasing the amount but this only made the network
perform worse. Regarding the depth of the network we used three hidden layers in
addition to the inherent depth of the RNN structure.

6.4.2 Training

The results of all the training done are presented in Figure 6.1. As can be seen the
error drops very fast and remain on that stage during the remaining time. Another
observation is that most of the settings produced somewhat similar results with only
slight variation in the end. However, the model with no dropout and learning rate
set to 0.002 seemed to perform best and was the model we later used during the
evaluation.

Figure 6.1: Training loss for RNN-models with different settings.
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6.4.3 Classification & Boundary detection
Since the model essentially performs two tasks bundled up into one we also per-
formed evaluation where the boundaries of the entities were known and only tried
to classify them into the correct category. As can be seen from the results in Ta-
ble 5.15, the model got an F1 score of 0.3491 on both of the tasks combined. For
only the classification part the model has an F1 score of 0.751. This suggests that
the task of boundary detection is inherently harder or not reflected well enough in
the training data for the model to learn from it. It has however higher F1 score
than the Word-Vector model in both classification and the model as a whole. Since
both models are basing their knowledge about the domain from the same source,
this suggests that the Recurrent Neural Network model manages to learn features
that the Word-Vector model did not learn.

6.5 Ethical Aspect
In the medical domain there are a lot of regulations on how to handle information
and data about the employees, their work and most of all their patients. Patient
journals contains private information and only a few people with authority have
access right to it. There is a great privacy concern in the health care industry re-
garding handling and using sensitive information digitally. This is something we
have witnessed in this thesis project as we were only allowed to use anonymized
patient journals to train a supervised model if we were on site. There is a question
about how well the anonymization is done. Anonymizing the names of the patient
might not be enough. Given the context of the patient journal, one might figure out
who the journal is about. Feeding anonymized patient journal to a Named Entity
Recognition model will give the model a knowledge about the context of the journals
and also the patients in some way. It is hard to predict exactly how it could affect
the privacy, but there certainly is some risk involved. While there are several papers
about anonymizing medical journals [4] [15], there is still much work left to be done.
There needs to be a better relation between the governments, health care and the
scientists so that these kinds of data could be used for purpose of improving our lives.
However we, as scientists, need to be able to assure that the data is handled properly.

While the data needs to be handled properly, it is also important to be accurate
in the medical field. If medical equipment is not accurate or information is incor-
rect somewhere, it could possibly lead to disastrous consequences. Named entity
recognition will most certainly not be used in the same way as patient monitoring
equipments, but there are still risks with a NER model with a poor performance.
For instance, the model might have missed to detect a patient’s symptom in the
journal that could have been the determining factor of figuring out what kind of
treatment the patient should have gotten in order to become healthy. It could be
that other patients have had the same symptoms and the connections between the
patient could not be found because of the annotations were missing. Another issue is
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if some entity is wrongly classified and end up in another category. This could cause
confusion for the people who read the journals. It could also be time consuming to
fix, which is not good in a field where there already is too little time.
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7
Conclusion

Starting off with the Word-Vector model, we implemented the model with inspira-
tion from Zhang and Elhadad which also is reflected in the result. This suggests
that the method works almost equally well for Swedish as it does for English, al-
though comparison is not entirely justified since we evaluated on different data sets.
Furthermore, we realized how dependent the model is on boundary detection which
is a straight-forward way to improve upon our results.

The RNN-model performs better than the Word-Vector model which is probably
due to the fact that it is able to capture more features and can make better deci-
sions based on those. With an F1 score of almost 0.35 it is about 60% better than
the Word-Vector model which is a huge improvement. Although the improvement
is great the model is still has a long way to go before it can make accurate predic-
tions. Cleaning up of the seed-term lists would probably increase the performance.
Furthermore, counteracting the slicing of the words in the beginning and end of the
sequences would also be very interesting to see how it would affect the results. Hy-
perparameter searching is very hard when dealing with machine learning methods
which need to be trained for long periods of time before one can know how well they
perform.

In general, two models for NER was implemented, trained using Läkartidningen
and finally evaluated on real medical journals. Since we have not found any similar
unsupervised approach we cannot compare our results with any other NER-attempt
on medical entities in Swedish. Therefore, we are happy with our results and hope
others can stand on our shoulders to develop this method even further and get even
better results.
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8
Future work

There are several options that we did not have time for or discovered to late in the
process to be able to try but we think could have improved our result.

8.1 Seed-terms
Both of the algorithms depend heavily on the seed-terms. The quality of them are
translated into the quality of the models. As the quality of our seed-terms turned
out to be not that good, a better way of generating the seed-term lists would poten-
tially increase the accuracy of the models. After running the models for some time,
we discovered that the entity depression is classified as a Body Structure rather than
a Disorder & Finding. Therefore our model has learned to almost always classify
depression into Body Structure which is behaviour that we most definitely do not
want. Other terms that belonged to another category were found as well.

For future work, it is better to put a much greater emphasis on making the seed-term
lists of a much higher quality, with fewer errors. The total number of seed-terms in
the lists are over 53,000 and takes a lot of time to go through manually. Another way
to take control over the quality of the seed-term lists is to get a deeper knowledge
of the structure of Snomed CT and SweMeSH, the taxonomies that we collect the
seed-terms from, and be more restrictive on what entities to extract.

8.2 Word-Vector Model
In this section future work related to the Word-Vector model are presented.

8.2.1 Noun-phrase chunking
Where this model performed the poorest was clearly the boundary detection. It
could be improved by either using a different method for finding the boundaries or
by developing a better NP chunker more suited for this task.

8.2.2 Lemmatization and Stemming
Regarding mostly the first model lemmatization and stemming of the words would
make it a lot easier to distinguish between the different grammatical forms of the
words. Since most of the time only one form of each word is found in the seed-term
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lists this approach would increase the effectiveness of each seed-term by making
them capture all forms and tenses of the incoming words.

8.3 Recurrent Neural Network Model
In this section future work and opportunities to improve the RNN model are pre-
sented.

8.3.1 Traininig
The more obvious one is just more training for the RNN-based model. Since training
is directly related to the performance of the model and due to the fact that we never
got to a stage where the validation-loss, see Section 3.2.2.4, went up suggests that
the model was not "saturated" with training and did not reach the best possible
value.

8.3.2 Sequence length
In the experiments performed within the borders of this thesis, a sequence length
of 60 characters was used. This could be explored further and different lengths of
sequences could be tried until the best length for the task is found.
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A
Appendix for: Annotation of 1177

To measure the accuracy of the Semi-Supervised Named Entity Recognition model,
text from 1177.se were manually annotated. Paragraphs with irrelevant information
such as contact information were left out in some of the text. The annotated data
contains 14 articles and 1 short question answer. There is a total of 2740 annotations
with Disorder & Finding having 1574 annotations, Pharmaceutical Drug 546 and
Body Structure 620. The annotations is done by surrounding the entities with
different characters depending on the category. Parenthesis is mapped to Disorder
Finding, hard-bracket [ ] is Pharmaceutical Drug and curly braces { } is Body
Structure. For instance, the phrase "Motion minskar också risken för (övervikt)
och..." has the word övervikt annotated as Disorder & Finding. The following articles
were annotated:

• Demens - Alzheimers sjukdom
• Bedövning och smärtlindring vid tandvård
• Receptfria läkemedel vid tillfällig smärta
• Så åldras kroppen
• Läkemedel vid pollenallergi
• Vaccinationsprogram för barn
• Stroke – slaganfall
• Behöver jag testa mig för zikaviruset?
• Denguefeber
• KOL – kroniskt obstruktiv lungsjukdom
• Knöl i bröstet
• Läkemedel som tas upp genom huden
• Drick sundare
• Myggbett och knottbett
• Ibumetin
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B
Appendix for: Validation Set from

Wikipedia

Validation set for the machine learning model is generated by crawling Wikipedia.
It is done by gathering the links from relevant articles to the domain and take the
content from the articles in the links. The links were collected from the following
articles:

• Infektionssjukdom
• Cancer
• Patogen
• Sjukdomar i blodet och blodbildande organ
• Endokrina sjukdomar
• Autoimmunitet
• Reumatism
• Medicinsk diagnostik
• Förkylning
• Depression
• Sjukdomar i nervsystemet
• Hjärntumör
• Allergi
• Astma
• Smitta
• Stress
• Människans anatomi
• Kroppsdel
• Muskel
• Anatomi
• Anatomisk variation
• Nervsystemet
• Skelett
• Perifera nervsystemet
• Ansikte
• Magsäck
• Ryggrad
• Tarm
• Hormon
• Läkemedel
• Antibiotikum

III



B. Appendix for: Validation Set from Wikipedia

• Medicinalväxt
• Kirurgi
• Selektiva serontinåterupptagshämmare
• Ibuprofen
• Enzym
• Aminosyror
• Vitamin
• Näringsämne
• Fettvävnad
• Vaccination
• Farmakokinetik
• Insulin
• Pencillin
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C
Appendix for: Settings of Runs on

Word-Vector Model

Table C.1: List of runs on Word-Vector Model and their settings. Run No. shows
the name of the run, CW is Context Weight, IW is Internal Weight, FT is Frequency
Threshold, CT is Classification Threshold, ST is Similarity Threshold, IDF-T is IDF
Threshold, #C is Context Window Size

Run No. CW IW FT CT ST IDF-T #C
R1 1 20 10 0.7 0.005 5 5
R2 1 20 40 0.7 0.005 2 5
R3 1 20 10 0.7 0.005 2 2
R4 1 20 50 0.7 0.005 2 5
R5 1 20 10 0.7 0.005 4 5
R6 1 20 10 0.7 0.005 2 3
R7 1 20 10 0.5 0.005 2 5
R8 1 20 20 0.7 0.005 2 5
R9 1 20 10 0.7 0.005 3 5
R10 1 20 10 0.7 0.003 2 5
R11 1 20 10 0.7 0.005 2 5
R12 1 20 10 0.75 0.005 2 5
R13 1 20 10 0.85 0.005 2 5
R14 1 20 10 1.0 0.005 2 5
R15 1 20 10 0.7 0.005 6 5
R16 1 20 10 0.9 0.005 2 5
R17 1 20 10 0.8 0.005 2 5
R18 1 20 10 0.7 0.005 2 7
R19 1 20 10 0.7 0.008 2 5
R20 1 20 10 0.7 0.005 2 10
R21 2 20 10 0.7 0.005 2 5
R22 1 20 10 0.7 0.0009 2 5
R23 1 20 10 0.7 0.001 2 5
R24 10 20 10 0.7 0.005 2 5
R25 1 20 10 0.7 0.01 2 5
R26 5 20 10 0.7 0.005 2 5
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Appendix for: Result of Runs on

Word-Vector Model

Table D.1: List of runs on Word-Vector Model with results measured in Precision,
Recall and F1 Score.

Run No. Precision Recall F1 Score
R1 0.3204 0.1657 0.2184
R2 0.2376 0.1956 0.2146
R3 0.2929 0.1675 0.2131
R4 0.2307 0.1967 0.2124
R5 0.2822 0.1693 0.2117
R6 0.2742 0.1704 0.2102
R7 0.2766 0.1690 0.2098
R8 0.2446 0.1821 0.2088
R9 0.2602 0.1741 0.2086
R10 0.2100 0.2040 0.2070
R11 0.2442 0.1741 0.2033
R12 0.2424 0.1745 0.2029
R13 0.2406 0.1752 0.2027
R14 0.2365 0.1770 0.2025
R15 0.3317 0.1456 0.2024
R16 0.2369 0.1766 0.2024
R17 0.2406 0.1745 0.2022
R18 0.2320 0.1766 0.2006
R19 0.2809 0.1533 0.1983
R20 0.2202 0.1796 0.1978
R21 0.1878 0.2036 0.1954
R22 0.1453 0.2668 0.1881
R23 0.1476 0.2588 0.1880
R24 0.1345 0.2704 0.1796
R25 0.2711 0.1325 0.1780
R26 0.1303 0.2453 0.1702
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