
Designing Continuous Toolchains
Using Proposed Guidelines and Tool Capabilities

Master’s thesis in Software Engineering

ELSA MJÖLL BERGSTEINSDÓTTIR
HENRIK HELÉN EDHOLM

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2018

Master’s thesis 2018

Designing Continuous Toolchains
Using Proposed Guidelines and Tool Capabilities

ELSA MJÖLL BERGSTEINSDÓTTIR
HENRIK HELÉN EDHOLM

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2018

Designing Continuous Toolchains
Using Proposed Guidelines and Tool Capabilities
ELSA MJÖLL BERGSTEINSDÓTTIR
HENRIK HELÉN EDHOLM

© ELSA MJÖLL BERGSTEINSDÓTTIR, 2018.
© HENRIK HELÉN EDHOLM, 2018.

Supervisor: Eric Knauss, Computer Science and Engineering
Advisor: Rickard Nilsson, Cybercom Group AB
Examiner: Robert Feldt, Computer Science and Engineering

Master’s Thesis 2018
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Visualization of a continuous toolchain with common tools for each component.

Typeset in LATEX
Gothenburg, Sweden 2018

iv

Designing Continuous Toolchains
Using Proposed Guidelines and Tool Capabilities
ELSA MJÖLL BERGSTEINSDÓTTIR
HENRIK HELÉN EDHOLM
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Continuous delivery and deployment are both relatively new software practices that can
help to deliver software faster. A toolchain is typically constructed by integrating a set of
tools and practices to implement these continuous activities. The aim of this study is to
help software organizations design continuous toolchains. This is achieved by providing
guidelines that can ease the toolchain design as well as by both shedding light on what
tool capabilities are desired and which tools are currently available to best support these
capabilities.

We conducted a case study where 17 industry professionals provided insights on what
tools they use and how they design their continuous toolchains. A follow-up survey was
then used to quantify the case study results. The survey gathered insights both on which
tool capabilities are the most desired ones and moreover what current tools fulfill these
capabilities. The synthesized results from both the case study and survey identified the
toolchain structure, desired tool capabilities for each component of the toolchain and
ranked them by importance. Recommendations for tools were given based on the tool
capabilities importance. Guidelines for toolchain design were synthesized from the case
study and provide general suggestions on how to maintain an efficient toolchain.

Designing a continuous toolchain is no simple task. By mapping the capabilities presented
in this study with organizational needs software organizations can utilize our findings
when selecting suitable tools for their toolchain. To further strengthen the design of their
continuous toolchain and its maintenance, companies should incorporate the proposed
guidelines into their workflow.

Keywords: Best practices, Common challenges, Continuous software engineering, Contin-
uous toolchains, Guidelines, Software delivery, Tool capabilities, Tool selection.

v

Acknowledgements
First and foremost we want to thank Eric Knauss, our supervisor at Chalmers University
of Technology, for always making time to provide us with valuable feedback and support.

We also want to thank Cybercom Group AB for the opportunity to conduct our thesis
at their office and welcoming us with open arms. A special thank you to our industry
supervisor Rickard Nilsson for providing us with continuous support and putting us in
contact with software industry specialists.

Elsa Mjöll Bergsteinsdóttir & Henrik Helén Edholm, Gothenburg, May 2018

vii

Contents

1 Introduction 1
1.1 Purpose of the Study . 2
1.2 Research Questions . 2
1.3 Outline . 3

2 Background 5
2.1 Terminology . 5

2.1.1 Continuous Integration . 5
2.1.2 Continuous Delivery . 6
2.1.3 Continuous Deployment . 6
2.1.4 Toolchain . 6

2.2 Continuous Toolchain Structure . 6
2.2.1 Source Code Management . 7
2.2.2 Build . 7
2.2.3 Tests . 8
2.2.4 Deploy . 8

2.3 Common Challenges . 9
2.4 Best Practices . 9
2.5 Tool Selection Process . 10

3 Methods 13
3.1 Research Strategy . 13
3.2 Applied Methods . 14

3.2.1 Literature Review . 14
3.2.2 Case Study . 15
3.2.3 Survey . 16

3.3 Threats to Validity . 18
3.3.1 Construct Validity . 18
3.3.2 Internal Validity . 18
3.3.3 External Validity . 19
3.3.4 Reliability . 19

4 Results 21
4.1 Demographics . 21
4.2 Continuous Toolchain Structure . 22
4.3 Common Challenges . 23
4.4 Best Practices . 25
4.5 Tools, Capabilities & Motivations . 26
4.6 Importance of Tool Capabilities . 30

ix

Contents

4.7 Tool Selection . 31

5 Discussion 35
5.1 Designing a Toolchain (RQ1) . 35

5.1.1 Technical Components of a Toolchain (RQ1.1) 35
5.1.2 Selecting the Right Tools (RQ1.2, RQ1.3) 36

5.2 Guidelines Supporting Toolchain Design (RQ2) 38
5.2.1 Comparison of Common Challenges 38
5.2.2 Comparison of Best Practices . 39
5.2.3 General Guidelines . 41
5.2.4 Source Code Management Guidelines 43
5.2.5 Continuous Integration Guidelines 43
5.2.6 Test Guidelines . 44

6 Conclusion 45

Bibliography 47

A Abbreviations I

B Interview guide III

C Survey Questionnaire VII

D Xebialabs’ Periodic Table of DevOps Tools XI

x

1
Introduction

Software delivery refers to the process of getting software from the developer to the cus-
tomer or end-user, a process commonly known as release cycle [1]. In traditional software
development it is not uncommon that release cycles last for years at a time where all de-
veloped functionality is delivered at once. These long development cycles introduce risks
for the end product in an ever changing market, as it is nearly impossible to predict what
products competitors will release in e.g. two years from now [2].

To get a hold of this issue, Agile software development emerged in the mid-1990’s [3] and
has since taken the world by storm [4]. The idea is to deliver working software on a regular
basis with the help of frequent interactions and customer collaboration. An Agile release
cycle commonly takes between one and three months [5]. During one release cycle new
functionality is implemented and integrated into the end product which always should be
fully functional. These agile release cycles can impose delays on features and bug fixes
which are completed early in a cycle, unfinished features might however get delivered by the
end of the cycle [6]. Organizations can overcome these obstacles by adopting continuous
activities which will accelerate their time to market, improve the product quality and more
[7]. According to Olsson and Bosch [8] this is a move that software intensive companies
must make in order to stay competitive in today’s market.

Continuous delivery (CDel) and continuous deployment (CDep) are two of the continuous
activities [9] which have received a lot of attention in the past few years [6, 8, 10]. Their
popularity comes from their numerous benefits, such as accelerated time to market, im-
proved productivity and efficiency and reliable releases [7]. The two approaches stem from
agile development, in particular the practice continuous integration (CI) which commonly
constitutes of an “automatically triggered process comprising inter-connected steps such
as compiling code, running unit and acceptance tests, validating code coverage, checking
coding standard compliance and building deployment packages” [9]. The main advantage
of implementing CI as a practice is to detect problems in the code as early as possible
and thereby reduce risks [11]. CI further allows developers to feel confident when pushing
changes, knowing that a series of integration tests should detect any potential faults in
their code.

CDel is a software development practice achieved when software artifacts can be released to
production at any time. CDep differs from CDel by automating the actual deployment of
the software to the production environment, thus taking the automation one step further.
The challenges of adopting CDel and CDep have been widely reported [7, 8, 12, 13] and can
be both of an organizational and technical nature. These challenges are often encountered
when implementing a continuous toolchain, a term used in this study to refer to the set of

1

1. Introduction

tools and practices that all connect to achieve full automation of the continuous activities,
i.e. CI, CDel and CDep.

CDel and CDep are both relatively new practices with limited research attached to them
[9, 14]. Current research primarily focuses on common challenges faced when adopting the
practices but not much on what can be done to overcome these challenges [12]. Further-
more, guidelines for continuous toolchains and toolchain design, i.e. tool selection, has
not been researched or published [7, 13, 14, 15]. If continuous toolchains are mentioned in
literature their context and environment are usually missing [12], which greatly affects the
ability to reuse the toolchain design. Hence there does not seem to be any standardized
or organized way for how each software organization designs continuous toolchains. Thus,
in this study guidelines and desired tool capabilities are provided. The guidelines aims at
helping software organizations to design their continuous toolchains by pointing out im-
portant aspects which needs to be taken into consideration throughout the design process.
The desired tool capabilities and their importance help software organization to select the
right tools that fits the organizations use cases. Suitable tool capabilities complement the
guidelines by encouraging their usage.

Even though benefits of adopting continuous practices are well known and have a large
impact on organizations, little has been published on how to mitigate the challenges com-
monly faced when designing continuous toolchains. This study is of an exploratory and
improving nature and provides guidelines on continuous toolchain design as well as key
tool capabilities. The guidelines were derived through interviewing industry professionals
to get insights into their thought process when selecting tools for a continuous toolchain
and to get characteristics of desired capabilities in a tool. Additionally, a survey was con-
ducted to validate the acquisition of the interviewees collective view and generalize the
desired tool key capabilities from the case study.

1.1 Purpose of the Study

The purpose of this thesis is to provide guidelines for designing a continuous toolchain and
identify desired capabilities for tools used in such a toolchain. There are a great deal of
open source and commercial tools that can be used in a toolchain. As of now there does
not seem to be any standardized or organized way for how organizations select tools for
their toolchain. By studying literature and interviewing industry professionals this study
aims to help software organizations design and select suitable tools in a more structured
manner.

1.2 Research Questions

There are many aspects that need to be taken into consideration when designing continuous
toolchains. Previous literature has studied the organizational and process related aspects
[7, 13, 14], there are however less research that investigates the technical design decisions
for the toolchain itself. This study will therefore investigate these decisions in order to
provide both academics and practitioners with a more systematic tool selection approach.

2

1. Introduction

RQ1 and its sub-questions aim to present practitioners current approach for designing
continuous toolchains.

RQ1: How are continuous toolchains designed in the software industry?
RQ1.1: What are the key technical components that construct a continuous
toolchain in the software industry?
RQ1.2: What capabilities guide practitioners when selecting tools for the
technical components of a continuous toolchain?
RQ1.3: Which tools best support each technical component of a continuous
toolchain?

The main goal of RQ2 is to provide practitioners and academics with technical guidelines
which they should take into consideration when designing a continuous toolchain to ease
the tool selection process.

RQ2: What guidelines can support continuous toolchain design?

By answering these questions we will provide insights concerning the thought process of
toolchain design among practitioners and what tool capabilities the industry looks for
when designing their toolchain. We will give suggestions on tools and key tool capabilities
that we recommend when designing a toolchain. These suggestions will be presented in
the form of guidelines which will help mitigate common challenges and the designing of a
toolchains.

1.3 Outline

Chapter 2 primarily presents related work, but also defines key terminology used through-
out this study. This chapter also covers the structure of a continuous toolchain along
with a description for its respective technical components as defined by literature. The
research methodologies used and the study’s threats to validity can be found in Chapter
3. A representation of the gathered results are presented in Chapter 4. The results are
then discussed in relation to the research questions in Chapter 5. Lastly, this study is
concluded by a summary of the thesis work and suggested future work in Chapter 6.

3

1. Introduction

4

2
Background

In a fast-changing world beating time-to-market can be essential for software organizations
[8]. This requires them to work at a high pace to get their products out to their users as fast
as possible. To cope with the speed of the market, organizations have adopted continuous
activities in order to release software faster and more frequently [10]. By implementing
CDel as a practice in the organization the software is always ready to be released into
production and any build of that software that has passed all tests can be released. On
the other hand, implementing CDep as a practice aims to deploy software to customers
as soon as new code is developed. By releasing software often the risk of each release
is reduced [16]. Faster feedback from users is one of the key benefits of adopting CDel
and CDep as practices; shorter feedback loops give the ability to validate if the released
software is indeed what the user wanted. The practices furthermore provide developers
with quick and clear visibility of which software features that have been completed [10, 17].
In this chapter related studies and essential terminology will be introduced to establish a
foundation for this study.

2.1 Terminology

In this section terminology will be established to emphasize our definitions of common
terms used throughout this study. This is partly done due to the inconsistent definitions
of continuous delivery, continuous deployment and toolchain found in literature [9, 11].

2.1.1 Continuous Integration

Continuous Integration (CI) is a practice that originated from Agile software development
and Extreme Programming. The practice consists of developers integrating their code
into a centralized repository where the integration is verified by an automated build of the
software. CI is extensively used in the software industry to develop and release software
more rapidly [18], as well as to reduce risks [19]. The aim of CI is to detect problems
as early as possible so the software is always in a working state. Humble and Farley [10]
describes CI as an enormous step forward in productivity and quality for most projects
that adopt the CI practice.

5

2. Background

2.1.2 Continuous Delivery

Continuous Delivery (CDel) is a software development practice where a toolchain is built in
such a way that the software can be released to production at any time [10, 11]. According
to Humble and Farley [10] CDel provides both a faster and safer delivery process by giving
everyone involved an accessible and transparent process. The quick feedback provided
by CDel is aimed at giving developers a confirmation that their code fulfills the end-
users’ needs [20]. Where CI integrates and build’s the software, CDel deploys it to an
environment where it can be released to production at any time.

2.1.3 Continuous Deployment

Continuous Deployment (CDep) is the practice of automatically deploying production
ready code into the production environment [9, 10]. The deployment into production
happens automatically once the software changes have passed a series of automated tests
[21]. By applying CDep as a practice there will rarely be large builds which integrate a vast
set of new functionality or changes to the existing functionality at once [22]. Instead there
will be multiple updates deployed every day [11]. CDep automatically deploys the software
to customers while CDel refers to the ability to deploy the software to an environment [9].

2.1.4 Toolchain

A toolchain is essentially a set of tools and practices which helps to achieve full automation
of the continuous activities. The continuous toolchain has many names in literature (e.g.
deployment pipeline [9, 23], delivery pipeline [14], build pipeline [20] and living build [10]),
but no matter the name it is essentially an automated software delivery process [10].

2.2 Continuous Toolchain Structure

When it comes to the structure of continuous toolchains there is no one-size-fits-all solution
to the complex problem of designing a toolchain [10]. The structure depends on the
environment and the context which the toolchain is supposed to reside in, e.g. if the
project is front-end facing or embedded. The front-end facing context refers to software
that interacts with the user, e.g. websites and mobile applications, whereas the embedded
context refers to software that is integrated into hardware of some kind, e.g. navigation
systems and digital watches.

Based on previous literature [1, 7, 10, 12, 16, 18, 20, 24, 25] our synthesis concluded that
the key technical components of a continuous toolchain are: Source Code Management
(SCM), build, test and deploy. Figure 2.1 presents a graphical representation of these
technical components, their flows and how the different continuous practices relate to
automation. Each component has a set of activities, practices and responsibilities which
serves as a quality gate, i.e. the software cannot move to the next component if it did not
fulfill the quality requirements of the previous component.

6

2. Background

This section contains an introduction to the continuous delivery toolchain structure by
introducing each component that make up a continuous toolchain. The purpose for each
component is described along with the key activities which are carried out in each com-
ponent.

Figure 2.1: Continuous toolchain components as derived from literature

2.2.1 Source Code Management

Source Code Management (SCM), known in practice as version control, refers to a system
which stores and manages all software artifacts that constitute a project [10]. These
systems provide a project team with a platform where they can collaborate on the same
source code and make incremental updates, i.e. commits, to the code base. Their strongest
capability is to provide access to all versions of all files ever stored [26], moreover the
version control system allows users to attach metadata to files [10]. It is common to
run Static Code Analysis (SCA) to enforce coding standards at this step in the toolchain
and fail any commits which do not adhere to predefined thresholds. Some useful SCA
metrics mentioned by Humble and Farley [10] are test coverage, code style and cyclomatic
complexity.

2.2.2 Build

The build component in the toolchain compiles the source code and provides the developers
with information on whether the software works as intended through a series of automated
tests, e.g. unit tests and integration tests. The build component is often called continuous
integration server or CI server [10]. The main purpose of a CI server is to detect the most
severe integration errors as quickly as possible and to always have the latest executable
code available [19]. This is done by compiling the source code in an executable environment
by running a build script whenever code has been added or changed in the repository. The
CI server compiles and executes the source code and verifies if the code works or if the
build failed. Using a CI server allows the team to see the build’s status, which increases the
project’s visibility. The CI server can also run a series of tests focused on SCA, e.g. coding

7

2. Background

standards, code duplication and cyclomatic complexity. One of the most important tasks
of the CI server is to provide immediate feedback to developers concerning the integration
build’s results.

2.2.3 Tests

A collection of tests that have a specified set of behaviors is called a test suite. In this
component of the toolchain there should be comprehensive and large test suites that cover
all of the software requirements for the whole application. The software needs to be tested
and built in a way where it can be automatically and safely deployed to production at
any time. Rigorous test automation is a key success factor for CDel [27]. The testing
component can be split into two general categories: acceptance tests and User Acceptance
Tests (UATs).

Acceptance tests are used to verify that the software requirements have been met. Well
written acceptance tests are crucial and determine the quality of the toolchain. These
tests should cover the entire application. Automated acceptance tests can be functional
or non-functional and should be tested by deploying the software to a production-like
environment [1, 10].

The UATs validate and verify whether the software meets the end users needs. The purpose
of the UATs is to detect faults in the software and to ensure that what the developers
developed is what the end-user actually wanted. When UATs are automated the problem
domain needs to be very narrow so it can be executed by a piece of software or a tool.
The customer involvement is required only when constructing the automated test case,
but not during execution [28]. Manual UATs are still very common in the industry and
are sometimes necessary because it is difficult to automate the User Interface (UI) of the
software [1].

The test suites in this component should cover all requirements of the software to help
reduce the time between faults in the software and their detection, with the aim of elimi-
nating root causes more effectively [13]. The automation of these test suites is seen as the
way to achieve more frequent delivery of software [8].

2.2.4 Deploy

The purpose of the deploy step is to transfer software artifacts from an environment or a
binary storage into the end-product. This transfer is traditionally done every one to six
months [16], this irregularity increases risks related to the deployment and furthermore
lengthens the feedback loop between customers and developers [16]. These risks can be
mitigated by adopting the practice of CDep where deployments are done on a daily basis.
In order to reach CDep this step needs to be automated, “without any interruptions all
the way from code to delivery” [28].

8

2. Background

2.3 Common Challenges

In a recent literature review by Laukkanen et al. [12] frequent challenges were found
regarding testing, integration, system design and human activities of software development
that emerge when CDel is adopted. The most reported challenge in the literature review
was testing. Ambiguous test results, tests that randomly fail and time-consuming testing
were frequently stated challenges. The testing challenges were caused by both system
design challenges and other testing challenges. System design challenges reported were
system modularization and unsuitable architecture, challenges caused by system design
decisions. That suggests that system design is one of the root causes for CDel adoption
challenges. Integration challenges reported were mostly issues that arise when the code is
integrated into the code base, i.e. large commits, merge conflicts, broken build and work
blockage.

If the above challenges are not taken into account while deriving guidelines it is likely
that said guidelines will become impractical. The challenges mentioned are summarized
in Table 2.1.

Common Challenges Description

Human activities
Refers to the challenges that relate to human aspects
in CDel and CDep, e.g. lack of discipline, experience
and motivation.

Integration
Refers to challenges that arise when software changes
are integrated to the repository mainline, e.g. broken
build, large commits and merge conflicts.

Testing

Refers to the challenges of testing software. The most
critical challenges are: time consuming tests, ambigu-
ous test result, flaky tests and multiple platform test-
ing.

System design

Refers to challenges that were caused by system design
decisions, e.g. that software architecture limits CDel
or that many dependencies between different parts of
the software.

Table 2.1: Common challenges for continuous delivery [12]

2.4 Best Practices

Over the years researchers have synthesized best practices used by practitioners of contin-
uous development [10, 21]. Some of the best practices are crucial for successful continuous
development, whereas others are mere extensions adding more capabilities to the project
at hand.

Rahman et al. [21] have identified 11 software practices used by practitioners of continuous
deployment, many of which are enabled by adopting continuous activities. In order for
the development to be continuous all the activities need to converge through automation.

9

2. Background

Thus, the practice of automated deployment is a must for CDep whereas automated testing
is a necessity for all continuous activities. It is the extent of the automated testing that
makes the difference between CI and CDel. Another practice which are used by all case
companies of Rahman et al. [21] is repository use, also known as source code management
(see Section 2.2.1). The other eight practices do not make up the bare necessities for
continuous development, but can make it easier to retain the practice (intercommunication
and shepherding changes) and extend it with new capabilities (staging).

The practices promoted by Humble and Farley [10] have a more technical aspect and are
largely based on the authors’ own experiences of what works and not. They do however
strongly recommend all adopters of continuous deployment to follow these practices “in
order to get the benefits of this approach” [10]. These practices are: only build your binaries
once, deploy the same way to every environment, smoke-test your deployments, deploy into
a copy of production, each change should propagate through the pipeline instantly and if
any part of the pipeline fails, stop the line.

Software processes in the context of CDel have been widely researched [6, 7, 8]. To
implement CDel as a practice in a software organization there are key factors that need to
be in place in the organization for continuous delivery to succeed. These factors have been
identified by many practitioners, e.g. well established organizational culture, adopting
agile principles, cross functional teams and customer involvement [7, 12, 16]. This study
will not be exploring software processes further or the key factors that have to be in place
for a organization to implement continuous activities. The scope of this study is about
providing guidelines for designing a continuous toolchain with a dedicated focus on the
technical aspects. Thus, software processes are out of scope for this study. The best
practices are summarized in Table 2.2.

2.5 Tool Selection Process

Selecting a new tool for software development can have a critical impact on a project [29].
It is therefore important that this task is taken seriously and thought through, rather than
done in an ad-hoc fashion. During the tool selection process it is necessary to take both
the adopted software process and context into consideration [30].

When looking into previous research on the topic it becomes apparent that there are many
ways for how to select the ideal tools. Pereira et al. [31] states that there are many studies
which aim to facilitate tool selection, although they commonly only look at very specific
tools or a smaller toolset. In their systematic literature review they instead look at a wider
range of tools and compare their main characteristics, which they find through the tools’
documentation. Another way to find tool characteristics is to use a theoretical framework
to evaluate how well a tool fulfills a certain practice, such as refactoring [32]. Tool selection
can also be done in a less formal manner by e.g. analyzing blogs and tutorials [33].

Once a new tool has been selected it is critical that organizational usability standards are
developed and agreed upon, since they will mitigate implementation problems [30]. It is
further suggested that the adoption of the new tool is done in a small pilot project to test
how well the tool integrates with the prior standards. Such an approach makes it possible
to get a greater perspective of the tool’s impact without harming any critical projects.

10

2. Background

Best Practices Description

Automated deployment Refers to the practice of making software available to
end-users automatically.

Automated testing Refers to the practice of automated techniques to per-
form various testing activities.

Deploy same way to ev-
ery environment

Refers to the practice to use the same setup and set-
tings when delivering software, irrespective of target
environment.

Intercommunication
Refers to the practice of sharing all necessary develop-
ment and delivery information among software team
members.

Repository use
Refers to the practice to use a repository that uses
branching strategies and can push code to the mainline
of the repository continuously.

Staging

Refers to the practice of executing a specific set of
techniques after software changes are written and be-
fore software changes are deployed to end-users, e.g.
deliver software in environments that are replica of the
production environment.

Stop the line

Refers to the practice that if a delivery to an envi-
ronment fails the whole team owns that failure. They
should stop and fix it before doing anything else; if
any part of the toolchain fails, stop the line.

Shepherding changes
Refers to the practice of developers making soft-
ware changes and being responsible for those software
changes throughout the entire delivery process.

Smoke test deployments
Refers to the practice of running smoke tests when
the application is deployed, which ensures that the
application is up and running.

Table 2.2: Best practices for continuous delivery [10, 21]

11

2. Background

12

3
Methods

This chapter provides a detailed description of the research methodologies used throughout
this study. It furthermore describes the motivation behind the selected methods and how
literature was found to lay a foundation for the study.

3.1 Research Strategy

In this study three research strategies were used: 1) literature review, 2) case study and 3)
survey. Figure 3.1 depicts the flow of these strategies by presenting the relation between
the process steps.

Figure 3.1: Overview of the study’s research process

A literature review was conducted in order to establish background on previous literature
that has been published on the topic of continuous software engineering.

The case study is of an exploratory and improving nature “finding out what is happening,
seeking new insights and generating ideas and hypotheses for new research” and “trying
to improve a certain aspect of the studied phenomenon” [34]. The case study approach
was chosen to increase the generalizability of the results. An investigation of how industry
professionals design their continuous toolchains in real life settings was performed and its
outcome served as a basis for the proposed design guidelines.

13

3. Methods

A survey is a “collection of standardized information from a specific population, or some
sample from one, usually, but not necessarily by means of a questionnaire or interview”
[34]. In this study a survey was conducted in the form of a questionnaire and sent out to
all case study participants in order to be able to validate the capabilities derived from the
case study.

3.2 Applied Methods

This section describes this study’s applied methods, i.e. literature review, case study and
survey. The methods are described in detail in their respective sections. Each subsection
starts with a description of the method, followed by an explanation of how it was used in
this study.

3.2.1 Literature Review

Literature review is an approach used to analyze literature in a specific area and as a
means of developing reasoning about the significance of intended research [35]. In order
to establish a baseline for this study a literature review was performed. By reviewing
literature about continuous activities an assessment of the current state of research on the
topic was attained. This eased identification of the current research gap of formulating
guidelines for continuous toolchains. The literature review was furthermore used to deter-
mine which methodology approach would be suitable for this study by identifying which
strategies were used in other studies on this topic.

The literature review was conducted in a semi-structured manner using Google Scholar as
the search engine. Both inclusion criteria and search queries were defined to find the most
relevant papers. The inclusion criteria for this study were threefold:

1. Reports must be written in English.

2. Reports must be focused on the software domain.

3. Reports should not be older than 5 years, i.e. 2013.

For the studies related to continuous activities we had three primary search queries, all of
which contained the word software to support inclusion criterion number two. Our search
queries included keywords such as: deliver*, toolchain and pipeline. The search queries
were furthermore extended by containing synonyms to the used keywords. As an example,
deploy* was expanded with release.

The literature review was extended via snowballing of papers found through the search
strategy. Snowballing was done by identifying research that had been referenced multiple
times in the literature found through the search strategy. For papers found through snow-
balling, inclusion criterion number three was removed as it would enforce well established
research in the field to be overlooked.

14

3. Methods

3.2.2 Case Study

A case study is a research methodology which provides a deeper understanding of contem-
porary phenomena by studying the phenomena in their natural context [36]. In this study
we interviewed a set of industry professionals to get a good grasp of continuous practices,
challenges and how tools are selected. The data collected through the interviews are qual-
itative and the resulting data set will work as a basis for the output of this method, i.e.
guidelines for tool selection in continuous toolchains.

Data Collection

The procedures of the data collection for the case study are of high importance to ensure
the study’s relevance. When sampling interviewees for this study the aim was to keep
maximum variation with regards to system context. Although there are multiple system
contexts within the software industry, this study focused on the front-end facing and em-
bedded contexts as these cover a majority of software projects and have a clear distinction.
The distinction between front-end facing and embedded is essential since the two contexts
face different challenges from one another. Regulations is a challenge that the embedded
domain faces, because of heavy regulations it is problematic to deploy software automat-
ically to hardware. A common challenge for front-end facing systems is that their UI’s
frequently change which makes it difficult to set up automated tests [12].

The initial participants were contacted through convenience, based on our industry super-
visor’s contacts. In addition all IT-related companies that were attending a local career
fair were contacted. Participants were furthermore reached out to via Microsoft Teams
and LinkedIn. In order to extend the sample each interview ended by asking the inter-
viewee if they knew anyone who might be able to provide more information. There was a
criterion in place to ensure that the interviewee’s organization has continuous integration
as an established practice. Since the study is targeted towards all continuous activities we
also used criterion-e sampling [37] in order to retrieve cases exceeding CI.

All of the interviews were held in a semi-structured fashion with both closed and open-
ended questions. This means that an interview guide (see Appendix B) was created and
worked as a reference for the researchers, but the order of the questions was dictated
by the conversation [36]. All interviews were audio recorded with permission from the
participants. In each interview both researchers were present, one held the interview
while the other took notes and chimed in wherever necessary to ensure that key aspects
were not missed. After an interview had been conducted a transcription of the interview
and verification was made by sending it back to the participant to enable correction of
raw data as Runeson and Höst suggest [36].

Data Analysis

The analysis of data was done in parallel with the data collection. This is a common prac-
tice within qualitative research as it allows new insights to be taken into consideration
when collecting upcoming data [36]. The interviews were all transcribed using intelligent
verbatim transcription that excludes all fillers, repetitions, laughter and pauses through-

15

3. Methods

out the interview. To ensure accuracy of the transcripts one researcher worked as the
transcriber and the other as the proof-reader for each interview. The proof-reader read
through the transcript while listening to the audio recording and took notes of any in-
consistencies. If inconsistencies were found in the transcript both researchers sat down
together and went over that segment of the recording.

Once a recording was transcribed the researchers coded it in an emergent fashion by at-
taching memos to each transcript independently, before sitting together to synthesize their
respective findings. During these synthesis sessions the two sets of codes (per interview)
were merged, categorized and finally tabulated in a spreadsheet. The tabulation provided
the researchers with a better overview of the data [36] and was organized as follows: the
rows were divided into code categories where each row represent a code, each column rep-
resent an interviewee and if any memo was attached to a code it was added as a comment
to the specific cell.

The data was then synthesized in relation to RQ1 and its three related sub-questions.
In all cases the synthesis was first conducted separately by the researchers before it was
merged. The merging was done by first grouping related statements into categories and
then group the categories that overlapped. Firstly, for RQ1.1 the primary focus point was
Question 2.2 in the interview guide (see Appendix B), when the codes were inadequate to
provide a full picture of the toolchain the researchers re-read the transcripts to get sufficient
detail. Secondly, in the case of RQ1.2 codes which were categorized in tool selection
process, desired tool capabilities and view on alternate tools were taken into consideration.
These codes were either related to why a specific tool was selected, what capabilities the
interviewees would want to see in a specific type of tool or how a tool relates to another
tool. Thirdly, when it comes toRQ1.3 codes related to all tools mentioned throughout the
interviews were synthesized. The tool codes were split into sub-categories, e.g. SCM, CI,
tests and delivery which have a direct one-to-one mapping with the toolchain components
(see Section 4.2).

Lastly, data related to best practices, common challenges and tool selection were syn-
thesized in relation to RQ2. The data was coded separately by the researchers into
sub-categories equivalent to each toolchain component, in addition general and other cat-
egories were created and then merged. The guidelines were generated by both researchers
from the synthesis depending on how many interviewees mentioned the code category.

3.2.3 Survey

Surveys are one of the most common methods for collecting data and is something that
people tend to meet in their daily lives. At first glance it might look like an effortless
task to create a survey, but there is more that needs to be done than just assembling the
instrument [38].

The survey used in this study (see Appendix C) aims to generalize tool capabilities men-
tioned in the case study interviews (see Section 3.2.2). Since the interviews were semi-
structured and the interview guide emerged throughout the case study, many insights
gathered in the latter interviews were impossible to bring up with the interviewees who
partook in the earlier interviews. Thus, in order to ensure the acquisition of the intervie-
wees collective views it was necessary to incorporate a method to evaluate the findings.

16

3. Methods

Survey was the ideal method to use since the main objective is to generalize findings [39],
without it recommendations regarding tool selection would be unfeasible.

Instrument Design

Various tool capabilities, desired or not, were mentioned throughout the case study. In
several interviews tool capabilities were partly mentioned and in some cases not at all.
The tool capabilities were furthermore never ranked against one another. Without such a
ranking it is difficult to generate good recommendations on tool selection for practitioners
if each toolchain component’s key capabilities have not been generalized.

The selection of the sample population was driven by the research questions. The sample
selected as survey respondents were the previous case study participants. All of the par-
ticipants had prior experience with tools in the domain of continuous activities and had
at least implemented or used CI as an established practice. They were therefore suited at
defining what capabilities exist in the tools they have used and rank them.

The survey instrument was designed from scratch since it is based on the output of the
case study. As the survey targeted prior study participants that work close to the topic at
hand, limited effort was put into simplifying terms and questions related to the continuous
activities. Focus was instead put into making the survey more valuable by clarifying the
goals of the survey to the respondents in addition to formulating the response alternatives
to enhance comprehensibility and thereby reduce misinterpretation by the respondents.
The seven-scaled level of importance Likert scale by Vagias [40] was used to keep the
response alternatives standardized and straightforward. By keeping the survey standard-
ized, short and to the point it is less likely that the survey felt intimidating or unclear to
the respondents. Anonymity of the survey aimed at making participants feel comfortable
to avoid evaluation apprehension, because people are often not comfortable with being
evaluated and that can influence the outcome of any study.

Kitchenham and Pfleeger’s checklist [38] was used when specifying the information and
instructions of the survey. To reduce researcher bias and question order effect the ques-
tions were automatically shuffled by the survey tool, i.e. Google Forms1. As proposed by
Ghazi et al. [39], the survey instrument should be evaluated once designed. The evalu-
ation was performed by expert reviews where academics with past experience in survey
research provided feedback on the instrument. The feedback enabled improvements on
both language and response options.

Data Collection and Analysis

The survey was sent out to all participants at noon, since respondents tend to answer
emails right after their lunch [39]. The survey was open for receiving responses for a
week and a reminder was sent out three days before the survey closed to mitigate the risk
of a low response rate. The analysis of the survey data was based on Kitchenham and
Pfleeger’s process [38] and thus included data validation, partitioning the responses and
coding of the data.

1https://www.google.com/forms/

17

3. Methods

The means of validating the data was done by reviewing the answers for consistency and
completeness. The answered questions were inspected for characteristics of outliers to
mitigate the risk of introducing systematic bias. Every question in the survey required an
answer and the response rate was 83%, thus not needing to handle incomplete questions.
Every question was furthermore evaluated for validity and consistency. Partitioning the
responses into subgroups was not required since the survey did not ask any demographic
questions because such information had already been obtained through the case study. The
data was coded and ordinal scales were converted to its numerical equivalent to analyze
the data as if it were simple numerical data. The data coding was done during the design
of the instrument rather than the data analysis because the survey was split into clear
categories, as suggested by Kitchenham and Pfleeger [38].

3.3 Threats to Validity

When conducting research there are internal and external factors which impact the work
in such a way that the research’s validity is questioned. Runeson and Höst [36], as well as
Easterbrook et al. [41], divide these factors into four distinct categories, namely construct
validity, internal validity, external validity and reliability.

3.3.1 Construct Validity

Construct validity is a threat if the research design is vague and therefore possible to both
measure and interpret in multiple ways [41]. This can for example refer to ambiguous
interview questions which lead to too diverse responses that hinder coherent synthesis.

By having continuous discussions concerning the methodology with both the academic
and industrial supervisors we feel confident about where the research design landed. One
of the biggest construct threats has been ending up with a weak interview guide. This
was mitigated by 1) creating an outline, 2) discussing it with the respective supervisors,
3) re-iterating and making a mapping from research questions to interview questions, 4)
removing ambiguity and ensuring that questions are formulated open- or closed-ended as
intended, 5) pilot testing the interview guide and lastly 6) reordering the questions to
increase the interviews flow.

Unsuitable survey design was a threat when the survey was constructed. Such a threat
could lead to incorrect measurements and thereby false conclusions. This risk was miti-
gated by making the goals of the survey clear. The instrument was furthermore validated
through expert reviews to raise the confidence and completeness of the survey.

3.3.2 Internal Validity

Internal validity relates to the design of the study with a main focus on whether the results
really reflect the data [41]. A common mistake is to misuse statistical data and e.g. make
causations out of correlations.

18

3. Methods

As mentioned in Section 3.2.2 the data analysis of the case study was done independently
by the two researchers to minimize the risk of influencing each other’s perceptions of the
interview, thus strengthening the data set as all data have been analyzed at least twice.
The internal validity is furthermore increased by assuring anonymity to the interviewees, as
well as encouraging them to scrutinize the transcription for any factual errors, as it allows
the interviewees to talk more freely. Lastly, we are fully aware that there are factors which
have an impact on continuous toolchains which we intentionally overlook (e.g. software
processes). By constantly keeping it in consideration, especially during data analysis, the
risk of finding false positive causal relationships is severely reduced.

To mitigate internal validity threats for the survey method Kitchenham and Pfleeger’s
process [38] was followed during the data analysis. Incomplete questions did not need to
be handled and there were no outliers, furthermore the respondents were assured of their
anonymity. Since the survey sample were past case study participants with experience of
practicing continuous activities all answers were deemed relevant and valid.

Overall the study results relating to tool recommendations might be conserving as a large
focus is on what tools the participants already know, rather than what they might need.
This could cause this study to only suggest tool capabilities and tools which the partic-
ipants currently know about. A reduction of this risk was done by deriving generic tool
capabilities desired by the interviewees which identifies the software organizations real
needs relating to the toolchain, rather than what tool can solve this need.

3.3.3 External Validity

External validity correlates with the generalizability of the results [41]. A common way to
increase the external validity is by increasing the sample size. By deepening the sample,
i.e. looking at more similar cases, the relevance within the specific context increases. If
the research instead broadens it will be generalizable to more contexts.

Since the study’s data is based on interviewees working in northern Europe the synthesis
of the results will give a good representation of local practitioners outlook on e.g. how
to select tools for their toolchains. This does however raise a concern since practitioners
in e.g. Silicon Valley, Hong Kong or Tel Aviv might have a completely different thought
process when they select their tools.

Insufficient sample size is a validity threat for any survey, Kitchenham and Pfleeger de-
scribe that inadequate sample size negatively impacts a survey [38]. The sample population
for the survey were the participants of the case study. This introduces a threat of how
generalizable the findings would be for a larger population.

3.3.4 Reliability

When it comes to the study’s reliability the concern is whether other researchers would
end up with the same results if the study was replicated [41].

Through the transparency of the research methodology, founded in a systematic approach,

19

3. Methods

the study’s reliability should be considered rather high. The primary concern is that the
study is heavily rooted in west Sweden and might therefore differ from a replicated study
in e.g. North America or Asia.

20

4
Results

In this chapter results gathered from both the conducted case study and the survey are
presented. These results are of both qualitative and quantitative nature and are later
used in Chapter 5 to answer the research questions. Section 4.1 introduces the study’s
participants and the characteristics of their case companies. The continuous toolchain
structure derived from the case study is described in Section 4.2. Common challenges and
best practices of continuous activities are detailed in Sections 4.3 and 4.4. Tools, their
desired capabilities and motivations are presented in Section 4.5. In Section 4.6 desired
tool capabilities are ranked by importance and Section 4.7 presents the results of tools
supporting these desired capabilities.

4.1 Demographics

During the case study there have been 16 conducted interviews with a total of 17 inter-
viewees. Based on the demographic questions asked during the case study interviews we
can see that the interviewees were rather diverse in certain aspects, while similar in oth-
ers. The four aspects we have payed the closest attention to are: company size, context,
experience and level of continuous.

When it comes to context (see Section 2.2), 29% out of the 17 interviewees worked in the
front-end facing context while 71% worked in the embedded context, as can be seen in
Figure 4.1. The interviewees had a very diverse work life experience ranging from nine
months to 38 years, as presented in Figure 4.2. A vast minority (12%) of the interviewees
had a work experience of less than two years. 29% had between three and five years
experience, whereas 24% of the interviewees had six to nine years of experience. The
largest block (35%) were interviewees with more than ten years of experience. This means
that the majority of the case study sample have vast experience of working with software.

EU’s standardized subdivision of SMEs distinguishes between small (10-49), medium (50-
249) and large companies [42]. Our interviewees cover all of these types with a majority
(81%) working at large companies, as can be seen in Figure 4.3.

Level of continuous refers to the degree of which the case companies have implemented
the continuous activities, i.e. CI, CDel and CDep. Out of the 16 case companies there
was one which did not implement any of the continuous activities, six that implemented
CI and nine which implemented CDel, as presented in Figure 4.4. There was however no
case company that implemented CDep.

21

4. Results

Figure 4.1: Context of participants
case companies

Figure 4.2: Participants work expe-
rience

Figure 4.3: Participants case com-
pany size

Figure 4.4: Case company imple-
mentation of continuous activities

4.2 Continuous Toolchain Structure

In the case study interviews, participants were asked: "draw a picture while describing
your current process from when you write code until it is released" (see Question 2.2 in
Appendix B). While drawing, the participants often mentioned tools that they use in each
stage of their process and furthermore provided a thorough elaboration of their toolchain’s
structure.

The similarity between the different toolchains illustrated an evident pattern; 15 of the
interviewees described an SCM component followed by a build component. The same
15 interviewees described a test component thereafter. 13 out of these 15 interviewees
mentioned some sort of delivery component subsequent to the tests. Although there were
some other, primarily test, components described by the interviewees there were not a
majority which described them. Thus, the general outline of the toolchain is as depicted
in Figure 4.5.

22

4. Results

Figure 4.5: Continuous toolchain components as derived from case study
interviews

4.3 Common Challenges

When conducting the interviews, participants frequently discussed challenges that they
commonly face when implementing continuous activities and designing a toolchain. A
challenge was considered relevant and common if it was mentioned by more than two
interviewees, as this indicates a pattern [43].

The challenge of excessive manual testing related to the test component of the toolchain
was frequently discussed. This was done in terms of both time consumption and difficulty
when requirements are changing throughout development. One of the interviewees said
that it is “hard to have manual tests if everything changes all the time”. Furthermore,
excessive manual UI testing does not provide constant steady feedback on quality and
performance.

Integration challenges concerning both the SCM and theBuild component of the toolchain
were considered unanimously to be the most difficult hurdle to overcome in a continuous
toolchain. Integration issues regarding open source software were also mentioned; “Open
source projects are lagging behind, so often we find defects and integration issues”.

A general challenge that was brought up multiple times concerned the mindset of the
employees as well as the organization as a whole. One of the interviewees stated that:
“A big part of the organization is thinking Waterfall and puts fixed deadlines on the agile
teams”. Another went so far as to say that: “... the organization is not prepared to be
a modern software organization”. Generally it is difficult to “change the way of working
for people who have grown accustomed” to other ways. Often the interviewees felt that
the organizations were not focusing enough on educating their employees and thereby not
managing to establish a continuous mindset.

Another commonly faced challenge is platform issues. The interviewees mentioned that
it is “really frustrating sometimes when you move files from one operating system to an-
other”. One of them stated that they commonly face “license issues with Windows build
environments”, while one said that “if you are working on Windows you have big prob-
lems”.

Regulations refers to the challenge of having software fulfill regulations and standards
before deployment of software is carried out. This challenge was frequently discussed by
the interviewees, mostly in terms of safety critical software. As stated by an interviewee:
“A lot of regulations need to be fulfilled, so this is really another toolchain, just for the
tests”. One interviewee explained that it was not plausible for them to have CDep because
they were under regulations and would always need a manual step for sign-offs: “we are

23

4. Results

under regulations and cannot get around some verification’s and document sign-offs.”

Overall toolchain complexity is a challenge that developers face when implementing con-
tinuous activities. Many sets of tools and practices need to be integrated, configured and
maintained that all add to the toolchain complexity. As expressed by our interviewees:
“Quite difficult to figure out how to run CI, CDel things” and “Big problems are presented
when you try to scale the toolchain”. There are however many other activities that can
contribute to the toolchain complexity.

Visualization is a challenge for many organizations. It becomes really problematic to
visualize the overall flow when there are a lot of pipelines flowing through the chain. If
the developers cannot follow their changes they will have a tougher time seeing the whole
picture, according to our interviewees. As explained by one of the interviewees: “When
changing code that is affecting a lot of things, if you can’t visualize that it’s a huge problem.”

The challenges mentioned above are summarized in Table 4.1 and are primarily related to
the toolchain and its components. These challenges are further discussed in Section 5.2.1
where a comparison to challenges found in the literature is made.

Common Challenges Description

Excessive manual test-
ing

Refers to the challenge to have too many man-
ual tests in the software. With ever changing
requirements manual testing does not provide
consistent feedback on quality and performance
of the software.

Integration Refers to the challenge of continuously integrat-
ing software changes.

Mindset

Refers to the challenge to establish a continuous
mindset for software organizations and employ-
ees as well as lack of experience practicing CDel
and CDep.

Platform issues
Refers to the shortcomings of using certain plat-
forms for continuous activities, but can also re-
late to e.g. licensing.

Regulations Refers to the challenge when software needs to
fulfill certain regulations.

Toolchain complexity
Refers to the challenge of overall toolchain com-
plexity, commonly introduced when scaling the
toolchain.

Visualization
Refers to the challenge to visualize the overall
flow of the toolchain from when a developer com-
mits until the code is deployed.

Table 4.1: Common challenges from interviews

24

4. Results

4.4 Best Practices

From the case study interviews, interviewees frequently described best practices on efficient
and effective ways to accomplish continuous activities. A best practice was considered rel-
evant if it was expressed by two or more interviewees, as this indicates a pattern [43]. The
tools that make up a toolchain need to follow these best practices to a degree and more
importantly not hinder them. Best practices mentioned during the case study are sum-
marized in Table 4.2 and further discussed in relation to best practices found in literature
in Section 5.2.2.

Merge often and mainline should always be in a working state are two best practices that
relate to the SCM component of the toolchain. The former refers to the practice of
integrating software changes often, as stated by interviewee: “You want to fail fast, merge
often”. The latter refers to the practice that the mainline in an SCM system must be
buildable and should furthermore always be in a working state.

The test component of the toolchain usesmultiple environments as a practice that refers to
testing the software in different environments that test several different capabilities of the
software. Furthermore, the practice manual testing is required for safety critical software
refers to always manually test safety critical software before deploying it to users. One
interviewee stated that: “The product is not finished before manual tests have it approved”.

Best practices that relate to the general aspect of the toolchain were also identified. The
practice to accept that some changes will fail was brought up by several interviewees: “One
important thing is to let things fail. You need to be able to trust the toolchain”, “Commits
will often fail” and “You have to be okay with commits always failing”. This practice
acknowledges that software changes that go through the toolchain will fail occasionally
and that both developers as well as stakeholders need to accept this reality.

Automate as much as possible refers to the practice to automate as many components of
the toolchain as possible. This practice was mentioned by several interviewees: “Build
for full automation”, “Automate as much as possible” and “The overall chain needs to be
automated”. Most interviewees recognized the need for toolchain automation to be able
to implement continuous activities.

Rollback support refers to the practice of automatically reverting the toolchain to a previ-
ous working state if the toolchain fails. According to an interviewee: “Every good software
project should have the ability to revert the code”. By having the chain automatically re-
verted to a previously working state the downtime of the toolchain is reduced compared
to having manual interventions when the toolchain fails.

Lastly visualizing the flow of the toolchain refers to the practice of being able to visually
observe the flow of the toolchain, from when a developer commits until the code is deployed.
This was mentioned frequently as a challenge (see Section 4.3), but it was also prescribed
by several interviewees as a best practice. One interviewee described the practice as:
“Visualize the flow for each change so that you can follow in real-time what happens to
your change and everybody else’s”.

25

4. Results

Best Practices Description

Mainline should always
be in a working state

Refers to the practice that the mainline of a
repository should always be in a working state
and must be buildable.

Merge often Refers to the practice of integrating software
changes frequently.

Test in multiple envi-
ronments

Refers to the practice of testing software in dif-
ferent environments that test several different
capabilities of the software.

Manual testing required
for safety critical soft-
ware

Refers to the practice to always manually test
safety critical software before deploying it to
users.

Accept that some
changes will fail

Refers to the practice that developers and
stakeholders need to acknowledge that software
changes that go through the toolchain will fail
occasionally and accept it.

Automate as much as
possible

Refers to the practice to automate as many com-
ponents of the toolchain as possible.

Rollback support Refers to the practice of reverting the toolchain
to a previous state in case of failure.

Visualizing the flow of
the toolchain

Refers to the practice of being able to visually
observe the flow of the toolchain, originating
from when a developer commits until the code
is deployed in the end-product.

Table 4.2: Best practices from interviews

4.5 Tools, Capabilities & Motivations

In this section tools and their desired capabilities are presented in Table 4.3. The desired
capabilities are explained in Tables 4.4 to 4.7. This section furthermore mentions common
motivations for selecting tools, provided by the case study participants. The tools men-
tioned in this section were selected based on commonality. A tool were deemed common
if it was mentioned by more than 30% of the interviewees, irrespective of context.

Component Tool Capabilities

SCM
Actively maintained, Big user base, Easy to work with, Powerful branch-
ing strategies, Powerful integration with a CI, Powerful merging system

CI
Actively maintained, Different configuration options, Minimum setup,
Modern UI, Plugin support, Scalable, Platform independent, Visualize
the flow

Test Keyword-driven, Low complexity

Delivery Rollback support, Support customer deliveries

Table 4.3: Capabilities mentioned in the case study

26

4. Results

SCM Tool
Capabilities Description

Actively maintained
For an SCM tool to be actively maintained there needs
to be regular compatibility and feature updates, bug
fixes and patches being released.

Big user base
For an SCM tool to have a big user base there needs
to be a great amount of users using the tool on a daily
basis.

Ease of use
An SCM tool that is easy to work with in many dif-
ferent aspects subjectively or not, e.g. simple learning
curve and easy configurations.

Powerful branching
strategies

Branching strategies is a feature where two or more
parallel versions of the same software is being devel-
oped at the same time on different branches. These
separate versions have the same repository, but their
development are kept separate until they are merged.

Powerful CI integration A feature of an SCM tool is that it can integrate well
with different CI systems.

Powerful merging sys-
tem

Merging system is a system that is very powerful when
integrating software changes.

Table 4.4: Description of SCM tool capabilities

CI Tool Capabilities Description

Actively maintained
For a CI tool to be actively maintained there needs
to be regular compatibility and feature updates, bug
fixes and patches being released.

Different configuration
options

A CI server should have various configuration options,
e.g. managing the communication between integrated
tools and configure jobs.

Minimum setup A CI server has minimum setup if it is easy to get it
up and running rapidly.

Modern UI The user interface of a CI tool should have a modern
design.

Platform independent The CI server is platform independent if it works with
different operating systems.

Plugin support The CI server should support plugins and be extend-
able.

Scalable A CI server is scalable if it can scale up and down in
the amount of jobs it handles.

Visualize the flow The CI server should visualize the flow (build jobs) of
the delivery.

Table 4.5: Description of CI tool capabilities

When selecting SCM tools it is common to go for legacy tools already in use by the orga-
nization. The main motivation seems to be that it is hard to make the move to something
modern and potentially better. When referring to Subversion one of the interviews said
that: “It’s legacy and hard to get rid of ”. The decision can sometimes be based on that

27

4. Results

Test Tool
Capabilities Description

Keyword-driven
A testing tool is keyword-driven if a tool abstracts
the way test cases are written and executed by using
action word based testing.

Low complexity
A testing tool has low complexity if conducting activ-
ities that concerns both the setup and user interface
are perceived as simple to carry out.

Table 4.6: Description of test tool capabilities

Deployment Tool
Capabilities Description

Rollback support
Rollback is an operation in a deployment tool that
returns it to a previous working state if the current
deployment fails.

Support customer deliv-
eries

Deployment tool supports customer deliveries if it can
deploy software to customers automatically.

Table 4.7: Description of deployment tool capabilities

the company already has invested resources in learning the tool and has thereby gained
a lot of experience, which is another reason for selecting an SCM tool. Nonetheless, the
most common reason for selecting an SCM tool is that it is superior to its competition.
It is however important to recognize the aspects in which a tool is superior. Based on the
interview data it is apparent that there are two SCM tools which stand out as the most
common ones, i.e. Git and Subversion as can be seen in Figure 4.6. Git was mentioned
in nine out of the twelve embedded interviews and all of the four front-end interviews,
Subversion on the other hand was also mentioned in nine out of the twelve embedded in-
terviews but only in one of the four front-end interviews. According to most interviewees,
Git outperforms Subversion since it has a better merging system and a stable user base
growth. As described by an interviewee: “Git, many people know it. We used SVN for a
long time but that is going down in popularity, because it wasn’t as powerful”. Concerning
the ease of use there is conflicting views where some people deem Subversion easier to use
than Git and vice versa.

Figure 4.6: Mention frequency of SCM tools

Looking at CI tools there were two tools which clearly stood out from the rest in popular-
ity, presented in Figure 4.7. The by far most mentioned was Jenkins, which was mentioned
in all embedded interviews and in three out of the four front-end interviews. The inter-
viewees see Jenkins as the current industry standard, in both contexts. The second most
mentioned tool for CI was GoCD, mentioned in five embedded interviews and three front-

28

4. Results

end facing. The interviewees seem to consider GoCD superior to Jenkins in regard to
having better visualization capability. Regardless of context, experience seems to be a big
motivational factor for choosing a CI tool, two interviewees stated, “The decision was en-
tirely based on the fact that I have a lot of experience with it”and “Tools that we are using
currently depends on if we have used it before and have knowledge”. Another important
motivational factor for selecting CI tool is that it needs to be open source.

Figure 4.7: Mention frequency of CI tools

Test tools mentioned throughout the interviews have almost all been context specific, i.e.
the tools have solely been mentioned by cases in either the embedded context or the front-
end facing context. As presented in Figure 4.8, the two most common test tools in the
embedded context are Robot Framework and Google Test, whereas Selenium is the most
common tool in the front-end facing context. In an embedded context it seems common to
select test tools based on the knowledge base, whereas front-end test tools are selected due
to their general popularity. It is however not uncommon that certain test tools provide
very context specific capabilities and is therefore the go-to option.

Figure 4.8: Mention frequency of test tools

Tools used during CDel are often intertwined with CI and deployment tools, their only
purpose is not only to move software from one place to another. Tools mentioned in the
interviews regarding delivery were tools used for all kinds of purposes, e.g. containeriza-
tion, CI, storing binaries or deploying software. It is therefore impractical to generate
dedicated tool capabilities for the delivery component.

When it comes to tools for deploying software there has been no tool which has emerged
as the common ground. The interviewees have mentioned tools but none of them have
been mentioned by more than one interviewee.

Within the front-end context the general viewpoint is partly that a tool should be popular
and have an open source community surrounding it. For embedded projects the selection
process seems to be more difficult and one of the first decisions is whether to use freeware
or pay for the software. The embedded teams must furthermore create their own tools
in order to attain desired capabilities, not because they want to but because there are no
alternatives readily available.

29

4. Results

When it comes to who decides on the tools to use there is a difference between the com-
panies, irrespective of context. In six cases the organization or IT department decides on
the tools, in some of these cases it is however possible for the teams to request what tools
they would want to have. The decision for what tools to use is taken on a team level in
four of the cases.

4.6 Importance of Tool Capabilities

This section presents the results from the survey that validates capabilities from the case
study (see Section 4.5) that are desired for a tool in each component of the toolchain.
Each capability was rated using a Likert scale of importance [40] mentioned in Section
3.2.3.

Important SCM capabilities according to the survey results can be seen in Figure 4.9.
SCM capability that is of highest importance is powerful merging system, with 64% of
respondents considering it to be extremely important. Actively maintained is deemed
very important, whereas powerful branching strategies and powerful CI integration are
more spread out. The last two capabilities big user base and ease of use are of moderate
importance according to the respondents.

Figure 4.9: Importance of SCM capabilities

CI tool capabilities importance according to the survey results can be seen in Figure
4.10. The majority of the respondents think actively maintained to be the most important
capability of an CI tool. Plugin support was rated the second most with scalable and
different configuration options was of equal importance thereafter. A capability that is of
high importance is visualize the flow, ranging from extreme importance to moderate. The
responses were more scattered for platform independent capability, ranging from neutral
to extremely important. Most respondents considered modern UI and minimum setup
to be of moderate to slight importance, these two capabilities were distributed mostly
throughout the lower level of the importance scale.

Figure 4.11 details the responses on test tools capability importance. Overall respon-
dents selected low complexity to be of moderate importance and keyword-driven testing
had respondents being mostly neutral and there were fair amount of respondents not
understanding the meaning of this test tool capability.

For deployment tools, 43% of the respondents selected rollback support (see Figure 4.12)
as extremely important capability in a deployment tool. That a tool support customer

30

4. Results

Figure 4.10: Importance of CI capabilities

Figure 4.11: Importance of test tools capabilities

deliveries is of lesser importance, although half of the respondents consider it to be either
extremely or very important.

Figure 4.12: Importance of deployment tools capabilities

4.7 Tool Selection

This section presents tools that support the desired capabilities according to the survey
results, these capabilities were ranked by importance (see Section 4.6). Tools that could
be selected with supporting a capability in the survey were tools previously mentioned
in the case study interviews as well as tools taken from XebiaLabs Periodic Table of
DevOps Tools (see Appendix D). XebiaLabs published a table containing a list of tools
that support continuous activities and more. The tools were chosen by individuals in the
software industry as well as XebiaLabs employees and then ranked by popularity. By
presenting tools from XebiaLabs and the case study interviews, the respondents would
have an opportunity to prioritize and match desired capabilities with tools that they did
not mention in the interviews but might have knowledge about. Thus, widening the tool
selection that can be used when designing a toolchain.

For the SCM component of the toolchain respondents were almost unanimous that Git
supported all the desired capabilities of an SCM tool as can be seen in Figure 4.13. The
capabilities are ordered by importance, the most importance capability first and the least
important one last. Subversion does not support a powerful merging system, the most
important capability of an SCM tool, according to respondents. Subversion is believed
to be actively maintained and half of respondents think that it supports powerful CI
integration. Powerful branching strategies is not considered to be supported, however a
big user base Subversion supports. Mercurial only seems to be actively maintained and

31

4. Results

respondents do not agree that it supports strongly any other capabilities. ClearCase does
not support the most important capabilities but it does support the two least important
ones, i.e. powerful branching strategies and big user base, according to the survey results.
Unfortunately, there was no data collected for the ease of use capability in relation to the
SCM tools, due to a human error during the instrument design.

Figure 4.13: SCM tools capability support (capabilities ordered by importance)

According to the respondents, Jenkins seems to support all desired capabilities of a CI
tool, except for modern UI and minimum setup. Travis CI also supports nearly all of the
desired capabilities, except for plugin support which was rated the second most important
capability of a CI tool. In addition platform independent and modern UI respondents did
not agree that Travis CI supported those capabilities. GoCD supported capabilities were
rather distributed through the importance ranking, respondents agreed that GoCD is ac-
tively maintained and supports visualize the flow. It does however not support important
capabilities such as plugin support and scalable according to the survey results. TeamCity
was quite consistent with 67% of respondents believing it supports all the important ca-
pabilites, however nobody though TeamCity had a modern UI. Bamboo mostly supported
capabilities that were ranked less important, rather than the other ones.

Figure 4.14: CI tools capability support (capabilities ordered by importance)

For test tools Selenium and JUnit support both capabilities, according to the survey
results. Respondents believe Google Test, PyTest and TestNG to support low complexity
as a capability, however they do not support keyword-driven testing. On the other hand
Cucumber and Robot Framework support keyword-driven testing but do not have low
complexity according to survey results. There are several respondents who that the tools
mentioned above do not support any of these capabilities.

32

4. Results

When it comes to tools that support deployment, respondents did not have knowledge
about most of the tools listed in the survey. That result did not come as a surprise since
no case company implemented CDep.

Figure 4.15: Test tools capability support (capabilities ordered by importance)

33

4. Results

34

5
Discussion

This chapter discusses the results in relation to the research questions. Section 5.1 provides
answers to RQ1 and its sub-questions through a discussion on how to design continuous
toolchains. Section 5.2 answers RQ2 by presenting guidelines which aims at strengthening
the overall toolchain structure.

5.1 Designing a Toolchain (RQ1)

The aim of RQ1 and its sub-questions is to present the current approach for designing
continuous toolchains in the software industry. Before designing a toolchain the structure
needs to be decided, based on various aspects of the software project. Furthermore, there
are capabilities and motivational factors that need to be decided on along with how im-
portant they are to the software project. Both the structure, capabilities and deciding
factors will drive and help the design of the toolchain.

5.1.1 Technical Components of a Toolchain (RQ1.1)

According to industry professionals the key technical components that construct a contin-
uous toolchain are SCM, build, test and delivery, as illustrated by Figure 4.5 in Section
4.2. It is however not uncommon to incorporate more components. These added com-
ponents are primarily extra testing components, e.g. code reviews, SCA and pre-commit
procedures. Although these components are necessary in software development to achieve
high code quality, they were not evident enough during the case study to be considered as
separate components in the continuous toolchain.

The assumption made in Section 3.2.2 that context would be the focal point to affect a
project’s level of continuous and that it is essential to make a distinction between the two
contexts seems to be without merit. Based on the case study results it is unreasonable
to draw such conclusions since the majority (71%) of our interviewees were within the
embedded context (see Figure 4.1). The results do however indicate that the project type,
i.e. if the project revolves around safety-critical software or not, directly impacts the level
of continuous that a project can be. Such projects tend to operate under regulations that
require manual testing, making full automation unattainable.

The toolchain structure derived from industry is very similar to the structure in literature,

35

5. Discussion

illustrated by Figure 2.1 in Section 2.2, which indicates that both academia and industry
have similar views for how continuous toolchains are structured. This result is expected,
especially since the literature used to derive Figure 2.1 is both industry-oriented and
relatively new. The major difference between the two component structures lies in the
final component. The academic toolchain structure ends with deployment, whereas the
industry ends with delivery. This outcome is primarily due to the fact that no case
company implemented CDep as a practice. It is likely that the outcome would have been
different if a larger subset of the case companies were in the front-end facing context,
rather than the embedded context, since embedded software tends to be more challenging
to automatically deploy [14].

5.1.2 Selecting the Right Tools (RQ1.2, RQ1.3)

Tool selection needs to be dependent on the tool capabilities that are important to maxi-
mize the efficiency of each toolchain component. If tools are not complementing important
capabilities then each component is not being maximized in efficiency, leading to a reduced
overall toolchain quality. To little surprise many of the case study participants mentioned
that the price of tools is an important motivational factor. Some promoted paid enter-
prise tools since they commonly include maintenance which reduces some of the workload
from the project. The desire for open source was however larger. The interviewees argued
that by choosing an open source tool the developers would receive complete visibility of
the tool’s internals as well as becoming able to make modifications to the tool. This self
maintenance would allow alterations of the tool to make it better suit their needs. The
developers could furthermore resolve bugs themselves rather than being dependant on
vendors.

As presented in Figure 4.9 the most desired tool capabilities for SCM tools is powerful
merging system and the tool needs to be actively maintained. These results were somewhat
expected since one of the prescribed best practices for SCM tools is to frequently integrate
committed code with the existing code base. The two tools that best conforms with these
capabilities are Git and Mercurial, presented in Figure 4.13. The fact that they both are
open source makes them even more desirable. Git was most commonly mentioned in the
interviews for both contexts (see Figure 4.6), but Mercurial was only mentioned once for
both contexts. This urges developers to look into both Git and Mercurial when selecting
SCM tools.

The most desired capabilities for build tools is that they are actively maintained, support
plugins, has different configuration options and is scalable, as can be seen in Figure 4.10.
By supporting plugins, especially while being open source, the tool can be customized
by the team to fulfill their needs. This customization is further enhanced by tools which
have various configuration options. Scalability issues are common for CI servers and it is
therefore important to select a tool which is scalable in order to postpone potential break
downs for as long as possible. As shown in Figure 4.14, the build tools which best support
these capabilities are Jenkins, Travis CI and TeamCity where both Jenkins and Travis
CI are open source tools while TeamCity has a freemium licensing scheme. Travis CI
and TeamCity are both cloud based meanwhile Jenkins needs a dedicated server. It is
interesting to notice that most common build tools mentioned by interviewees were GoCD
and Jenkins (see Figure 4.7). TeamCity and Travis CI were only mentioned once but both

36

5. Discussion

support build capabilities that are of more importance than GoCD.

For test tools the most desired capabilities and their importance are presented in Figure
4.11. Low complexity is a capability that is of high importance when selecting test tools,
whereas keyword-driven testing was deemed rather neutral as a capability when it came
to importance. Although keyword-driven testing is of lesser importance than having low
complexity it could stem from that all of our interviewees have technical backgrounds.
Keyword-driven testing overall could be of more importance to a person that does not
have technical background because the test cases are abstracted by keywords. By having
test cases abstracted with keywords it may become easier to show that the software fulfills
the requirements because they are written in similar fashion. The tools that support these
desired capabilities can be seen in Figure 4.15. These test tools do however all serve
different purpose and are often language specific, which is likely the reason why there only
were two desired test tool capabilities. This makes it futile to provide a ‘one tool fits all’
recommendations for test tools.

Based on our case study and survey results general test tool suggestions are not plausible
but suggestions can be made for specific test purpose and context. For front-end facing
projects our study results suggest Selenium which is a browser testing tool that has low
complexity and Cucumber (acceptance testing tool) which has keyword-driven testing as
a capability. Robot Framework can be used for acceptance testing in embedded software
projects. It can test both Java and Python code and strongly supports keyword-driven
testing, it furthermore integrates well with Selenium. Google Test was commonly
mentioned in interviews (see Figure 4.8) as a unit testing tool for the C++ programming
language but surprisingly it did not support either of the desired test capabilitis strongly.

For the deploy component, a desired capability was rollback support which was of great
importance. This did not come as a surprise since it is prescribed as a best practice in both
literature (Stop the Line) and in the case study (Rollback Support). Support customer
deliveries was however not deemed to be of much importance (see Figure 4.12). These
two capabilities for deploy tools were the only ones derived from the case study. There
was no interviewee which had implemented CDep and that is likely the reason that only
two capabilities were synthesized. Since the respondents were not familiar enough with
deployment tools that supported these two capabilities, no recommendation is provided
for this toolchain component. The tool suggestions above are based on the capabilities
which relates to a tool, but does not necessarily take motivators into account. Throughout
the case study experience was one of the most frequently mentioned motivational factors
for tool selection. Having past experience of a tool tends to speed up the initial toolchain
setup and can also provide the team with a comforting feeling, since they already know
how to utilize the tool. It is furthermore common to select a new tool based on an existing
brand deal, e.g. a company might select Bamboo as their CI server if they already use
JIRA and BitBucket which are all part of the Atlassian suite.

When it comes to tools there is rarely a tool which is the best candidate for all use cases
and recommendations should therefore always be taken with a grain of salt. Tools have
the potential to make software development easier if it is both used right and fits the
user’s needs [28]. But to fit those needs the user must first invest time investigating what
is most important for them and then select tools based on that result. Without such an
investigation it is easy to fall for tools which are trending at the time, but might not
support the needs of the organization.

37

5. Discussion

The goal of the discussion above is to raise awareness of both commonly important capa-
bilities and tools which can improve your future software deliveries. It should be taken
into consideration that the tools recommended are based on the case study and are just
a subset of tools available on today’s market. These tools do however seem to be among
the forefront of the market when it comes to continuous activities (see Appendix D).

5.2 Guidelines Supporting Toolchain Design (RQ2)

This section presents guidelines which are likely to help industry and academia to design
their continuous toolchains. Not only are holistic guidelines provided but each toolchain
component also has its own dedicated guidelines to further strengthen the component.
The guidelines are partly based on common challenges and best practices found during
both the conducted literature review and case study. A comparison between the findings
of these two methodologies are presented in Sections 5.2.1 and 5.2.2. The guidelines are
furthermore based on case study results relating to the tool selection process (see Section
4.7) and can be found in Sections 5.2.3 to 5.2.6.

5.2.1 Comparison of Common Challenges

This section presents a comparison between the common challenges found in both case
study interviews and literature. An overview is visualized in Table 5.1, followed by a
discussion of the presented challenges.

Common Challenges Comparison
Interviews Literature
Platform Issues
Regulations
Visualization
Mindset Human activities
Integration Integration
Excessive manual testing Testing
Toolchain complexity System design

Table 5.1: Comparing common challenges from interviews and literature [12]

Platform Issues. A challenge frequently mentioned by interviewees, but not in any
literature, was the shortcomings of using certain platforms in the toolchain. We had
not come across this issue in any literature during our literature review. It might stem
from that CDel and CDep are relatively new software practices and continuous toolchain
platforms have not been focused on as research topic.

Regulations. Only interviews mentioned that it is a challenge to implement a continuous
toolchain while fulfilling all software regulations. It is interesting to note that literature
has brought little to no attention to the challenge of constructing continuous toolchain

38

5. Discussion

while complying with regulations. We think that it might be because literature is not
focused towards embedded software in terms of continuous activities, where the challenge
is more apparent than in front-end software.

Visualization. Only the interviewees mentioned that it is a challenge to visualize the
flow of the toolchain and it becomes really problematic to visualize the overall flow when
there are a lot of build jobs flowing through the chain simultaneously. The literature only
prescribes developers to shepherd their software changes [21] but not to visualize it in any
way. Several interviewees did refer to the resolution of this challenge as a best practice
(see Section 5.2.2).

Mindset vs Human activities. In interviews mindset was frequently mentioned as a
challenge, especially when developers still apply traditional software development practices
instead of focusing on the continuous practices. Lack of experience practicing CDel and
CDep was also described as a challenge in the interviews. Lack of motivation, discipline
and experience were some of the most critical challenges mentioned in literature [12].

Integration. Mentioned in literature and in interviews that integration is a substantial
challenge for all continuous activities [8, 9, 12]. In the interviews integration of software
changes and integration between tools were discussed as great challenges. Literature how-
ever was more specific when it came to integration challenges, e.g. large commits, merge
conflicts, broken build, long-running branches and broken development flow.

Excessive manual testing vs Testing. Both literature and interviews mentioned that
testing is likely the most critical challenge for continuous software development. According
to the interviews the main challenge is that there are too many manual tests in the software
and it becomes even more problematic when there are dependencies on other parties,
e.g. subcontractors. With ever changing requirements manual testing does not provide
consistent feedback on quality and performance of the software. In literature testing is
described as quite the challenge. The most critical testing problems described are: time
consuming testing, tests that are not explicit pass or fail or that it is not clear what broke
the build, tests that randomly fail as well as multiple platform testing [12].

Toolchain complexity vs System design. According to both interviewees and liter-
ature toolchain complexity is a challenge. In interviews many activities that contribute
to the toolchain complexity were discussed. From integrating different tools together that
make up the toolchain to scaling it were all thought to be a major contributors to the
toolchain complexity. In literature system modularization, unsuitable architecture, scal-
ing and dependencies all contribute to the toolchain complexity. The challenge is to make
the correct system design decisions in order to keep the toolchain complexity low [12].

5.2.2 Comparison of Best Practices

This section compares best practices found in both case study interviews and literature.
An overview of these practices is presented in Table 5.2, followed by a discussion.

Manual testing as a precondition for safety critical software. Only mentioned
by interviewees is the practice to conduct manual tests before deploying safety-critical
software. This most likely stems from the challenge of fulfilling software regulations.

39

5. Discussion

Little to no research has mentioned the implications that regulations pose on both CDel
and CDep and is therefore something that future research should investigate.

Best Practices Comparison
Interviews Literature
Manual testing as a precondi-
tion for safety critical software
Accept that some changes will
fail

Automate as much as possible Automated deployment and
testing

Mainline should always be in
a working state & Merge often Repository Use

Test in multiple environments Staging
Rollback support Stop the line
Visualizing the flow of the
toolchain Shepherding changes

Deploy same way to every en-
vironment
Intercommunication
Smoke test deliveries

Table 5.2: Comparing best practices from interviews and literature [10, 21]

Accept that some changes will fail. The practice to recognize and accept that some
software changes that go through the toolchain will fail was only mentioned by intervie-
wees. The purpose of this practice is to motivate developers to use the toolchain by pushing
software changes more frequently, if developers are using the toolchain conservatively its
purpose becomes irrelevant.

Automate as much as possible vs Automated deployment & testing. Both
literature and interviewees prescribed the practice to automate the toolchain [7, 10] and
focused on rigorous test automation as a key success factor for continuous delivery [13, 27].
Interviewees also frequently stated that the toolchain should be automated as much as
possible with emphasis on various test activities.

Mainline should always be in a working state & Merge often vs Repository
use. Mentioned by both literature [10, 21] and in interviews, it is the practice of keeping
the mainline in a working state by using a repository to merge software changes. This
practice becomes even stronger if merging is done at regular intervals since the committed
code then will deviate less from what is currently merged into the mainline. It came as
no surprise that there were frequent discussions relating to this practice throughout the
interviews, since repository use relates to the toolchain’s SCM component.

Test in multiple environments vs Staging. Mentioned in both literature [21] and in
interviews is the practice to test software in multiple environments. These environments
have varying capabilities, so if there are multiple target environments all must be tested
to ensure that the deployment to the real environment will work as intended.

Rollback support vs Stop the line. Both literature [10, 12] and interviews mentioned
the practice to either stop the toolchain and fix the problem immediately or automatically

40

5. Discussion

revert the delivery to a previous state if the toolchain fails. In every case this is a re-
dundancy mechanism that should be integrated to minimize the probability of deploying
bugs.

Visualizing the flow of the toolchain vs Shepherding changes. Mentioned in
both literature [21] and interviews is the practice of being able to follow software changes
throughout the toolchain. In interviews this practice is directed at the developers as a
means to help them follow their own software changes visually, which is not mentioned in
literature. By visualizing the changes, external stakeholders could see the project’s status
as well.

Deploy same way to every environment. Only literature mentioned the practice of
using the same setup and settings when delivering software, irrespective of target envi-
ronment. This should be done to ensure that the build and deployment process is tested
effectively and is consistent [10]. Interestingly this was not brought up in the interviews.
Several interviewees did however recognize the importance of utilizing containerization so
software can be identically rebuilt after several years from now.

Intercommunication. A practice only mentioned in literature is intercommunication
which refers to sharing all necessary development information among team members [21].
This practice was not brought up in the interviews, but could relate to the best practice
of visualizing the toolchains flow to a certain extent since it allows the entire team to see
the project’s status.

Smoke test deliveries. Only mentioned in literature [10] is the practice to ensure that
the delivery was successful and to investigate that is is working as it should. Smoke
tests came up frequently in the interviews when discussing activities conducted in the test
component, but never as a prescribed practice.

5.2.3 General Guidelines

Drive tool selection with design. Before selecting tools for the toolchain there needs to
be a design composed which drives the tool selection. The design of the toolchain depends
foremost on what capabilities and motivational factors are important to the software
project. Desired capabilities for each toolchain component can be seen in Table 4.3. The
motivational factors to keep in mind when selecting tools, in no particular order are:
experience, open source, budget, time and how well does the tool integrate with other
tools.

Automate as much as possible. Imperative to CDel and CDep is the automation
of as many components and activities of the toolchain as possible, to save resources and
reduce risk of faults in the software. Both prescribed as a best practices in literature and
interviews, the toolchain should be automated as much as possible.

Use extendable tools. Tools that are integrated together in a toolchain should both be
extendable and handle integration with each other very well. The open-closed principle
describes that tools should be closed for modification but should be open for extension,
meaning that a tool can allow its behavior to be extended without modifying its source
code. This principle should be considered to apply to every tools behaviour, which enables

41

5. Discussion

the users to customize it for their needs. Furthermore, the ability to extend tools takes
future growth of the tool into consideration.

Educate and prepare for a continuous mindset. It is important to spend resources
educating and preparing the employees on how to deliver quality software continuously.
Employees often need to alter their mindsets from traditional software development to
accommodate this new continuous mindset. If the organization is prepared before devel-
opment starts the employees will have grown accustomed to the concept before software
starts flowing through the toolchain. It however takes a great effort and mindset changes
happen over a long period of time, but helps the organizational and team dynamics when
delivering software [7, 12].

Make developers shepherd their changes. Each developer is responsible for their
code changes throughout every component of the toolchain. The aim of shepherding code
changes is to get the developer involved in all activities of the toolchain. Shepherding
enhances the developers responsibility and ensures software quality in the end product
without a dedicated quality assurance team [21]. Shepherding changes can be incorpo-
rated by visualizing the toolchain’s flow, therefore choosing a tool that strongly supports
visualization of changes can help shepherding changes.

Visualize the toolchain’s flow. The main goal of visualizing the flow of the toolchain
is to be able to show the status of every software change. Visualization of the overall flow,
from when a developer commits until the code is deployed in the end-product. Visualizing
the flow was a desired build tool capability and a common challenge in the software
industry. Choosing a tool that strongly supports visualization of changes can help the
developer to think about the end product and be aware and take responsibility of their
own commit all the way through the chain.

Trust that the toolchain works. It is important that developers have confidence in
the toolchain. They need to be able to trust that the series of tests will successfully catch
faults and deliver working software that is reliable and robust. Otherwise the developers
are likely to use it more conservatively which beats the purpose of having a toolchain.

Incorporate rollback support. To have an efficient toolchain, rollback support is re-
quired. It was a desired capability for deploy tools and was mentioned both in literature
and interviews. This feature is of high importance, since the toolchain should always be
up and running. Tools that support rollback should drive tool selection.

Keep the toolchain infrastructure stable. It is of great importance that the toolchain’s
infrastructure is stable, developers need to be able trust that the toolchain is up and run-
ning all the time. If developers need to fix their software changes on a regular basis because
of toolchain instability, a lot of resources are going to be wasted. Try to keep the toolchain
infrastructure stable at all times.

Setup the toolchain before starting development. A toolchain should be up and
running with all the tools integrated before software development starts. Resources thereby
can be spent on the actual development, instead of adding components and integrating
tools to the chain in middle of development.

Limit usage of UI to configure tools. Using the UI to configure tools should be limited
as much as possible. Ideally there should be no execution or configurations done through

42

5. Discussion

a UI of a tool since they rely on consistency. The toolchain should not be dependant on
a UI that could easily break the chain. Configuration of tools should be done through
scripts that makes it more flexible, easier to maintain and migrate than using a tools UI.

Have specialists manage the toolchain. In large organizations it is recommended
to use a dedicated team for toolchain management. This may however not be feasible
in a smaller organization. In such cases there should always be at least one developer
responsible for managing the toolchain. This task of maintaining the toolchain should
remain top priority for the dedicated developer(s), even if the stakeholders might think
differently.

Limit usage of Windows as a toolchain platform. Throughout our interviews it
became apparent that Windows as a operating system is not ideal and is losing ground as
a platform for continuous toolchains. Thread issues, Windows tasks and licensing issues
were frequently mentioned as disadvantages of Windows. There is believed to be more
growth and diversity in Linux environments which seems to be serving well as toolchain
platforms. Limiting the usage of Windows as a toolchain platform should therefore be
considered.

5.2.4 Source Code Management Guidelines

Keep mainline in a working state. In order to have a stable SCM component it is
important to never let the mainline fail. It is therefore good to use branching strategies
and ensure that the development branch builds before it merges with the mainline.

Merge changes often. By frequently merging and integrating software changes there is
a decreased risk of ending up in what many interviewees refer to as “merge hell”, since
the software will not have deviated too much from the mainline of the repository.

Test before you commit. The fastest way for a developer to get feedback on whether
or not the newly developed code works as intended is by running tests locally before
committing. This way the developer will reduce the potential of affecting the toolchain
negatively while also avoiding to waste resources on committing flawed software.

Tool capabilities supporting these guidelines: powerful merging system, powerful branching
strategies and powerful CI integration.
Tool recommendation: Git.

5.2.5 Continuous Integration Guidelines

Use a CI server with powerful SCM tool integration. Some of the key responsi-
bilities of a CI server is to merge and build code received via the attached SCM tool. It
is therefore of paramount importance that the integration between the SCM tool and the
potential CI server is immaculate.

Use a CI server with powerful SCA tool integration. Although static code analysis
(SCA) tools are an optional addition to a continuous toolchain, it is a good aid to maintain
good coding practices and thereby reducing technical debt. Common features are checking

43

5. Discussion

code style and cyclomatic complexity.

Aim for only one CI server. In an ideal situation there shall only be one CI server
in the toolchain. When migrating from one server to another it is an unavoidable fact
that two will be in use at the same time. Since e.g. Jenkins and GoCD have different
resource-allocators it would be preferable to make a full migration to the new system.

Tool capabilities supporting these guidelines: plugin support and have different configura-
tion options.
Tool recommendation: Jenkins.

5.2.6 Test Guidelines

Try to automate all tests. Tests are an integral part of any continuous toolchain and
the level of automation is to a large extent what separates the continuous activities. If
the amount of manual intervention is reduced there will be both shorter feedback cycles
and faster software deliveries [16]. The reduction of manual intervention will furthermore
minimize the risk of human errors.

Maintain a high test coverage. In order to allow full trust in the toolchain it is
important that there is a high test coverage. This will not in itself ensure a good end-
product as the test themselves may be poorly written, but it is a step in the right direction.

Test in different environments. Many software products are intended for more than
one environment, it is therefore essential that there are a vast set of test environments
in order to ensure that the software behaves according to specification. Furthermore,
different test environments test different capabilities of the software.

Adopt trust levels. By having different test levels and thereby scaling the test coverage,
increasing trust in the code at hand, resource waste will be limited. The idea is that the
easier and less resource heavy tests are run at first so that highly problematic code will
not lock test components which take longer to compute.

Enable testers to focus on new tests. Making testers continuously update old tests
is a waste of valuable resources. To avoid this the project must define clear requirements
so that a good regression test suite can be attained early on, thereby enabling the testers
to focus on upcoming test cases.

Only test affected code. By only testing affected code, resources are saved at the same
time as the new changes moved to the mainline are ensured to not having introduced any
new faults into the end-product.

Manually test safety critical software. Safety critical software revolves around laws
and regulations which often pose requirements that the acceptance testing should be done
manually. It is therefore important that organizations working close to safety critical
software takes this into consideration.

Tool capability supporting these guidelines: low complexity.
Since each test tool has such a different purpose, e.g. acceptance testing or UI testing,
there is not any one tool that can be recommended over the others (see Section 5.1.2).

44

6
Conclusion

Continuous activities such as CDel and CDep are becoming more prevalent in software
organizations that strive for faster software deliveries. When adopting these continuous
activities into software projects, challenges are frequently encountered while constructing
continuous toolchain [7]. The purpose of this study was to provide guidelines for software
organizations on how to design continuous toolchains and identify important capabilities
for tools used in such a toolchain. The motivation for the study was acquired when
a research gap that guidelines for continuous toolchains and toolchain design, i.e. tool
selection, had not been widely researched or published was identified in literature [7, 13, 14,
15]. If continuous toolchains were mentioned in literature their context and environment
was usually missing [12], which greatly affects the ability to reuse the toolchain design.
We wanted to contribute to closing this research gap by conducting a case study where
industry professionals were interviewed to gain a good grasp of the perceived challenges
and best practices as well as how tool selection is conducted in software organizations so
we could generate design guidelines for toolchains. To generalize the the tool capabilities
derived from the case study and rank their importance a survey was conducted. It was
necessary to incorporate a survey to evaluate the findings in order to ensure the acquisition
of the interviewees collective views.

This study contributes to both industry and academia by shedding light on the difference of
how the two fields perceive continuous toolchains. It further present tool capabilities which
the industry desires for the tools used in their toolchains as well as the actual tools which
support these desired capabilities. Moreover it points out integral motivational factors
for tool selection which should not be omitted. The key contribution is nevertheless a set
of guidelines which gives suggestions that are necessary to keep in mind while designing
continuous toolchains. Software organizations and researchers can thereby use this study
as guidance for selecting tools for their continuous toolchains, saving resources by searching
and investing in less efficient tools and furthermore advise software organizations on how
to maintain an efficient continuous toolchain. The general guidelines can be incorporated
into workflows and tool selection activities which are not related to the toolchain to a
certain degree, as they are centered around improvements of software development.

In order to better understand the usefulness of the proposed guidelines (see Section 5.2)
future research should first and foremost design and implement continuous toolchains while
taking the guidelines into consideration. A synthesis of several cases of implementation
would provide a good overview of which guidelines are the most useful in what contexts.
This is a critical next step since the guidelines have not been thoroughly verified and
furthermore the desired tool capabilities might be too conservative as they are only based
on what the case study participants already know, rather than what they might need.

45

6. Conclusion

Previous literature have reported that projects face distinct challenges depending on con-
text [14, 28] and this study therefore proposed that context is likely to affect the structure
of a continuous toolchain. Based on the results of this study no such conclusion could
be drawn. Nonetheless future research should not discourage taking context into consid-
eration, especially not if investigating projects implementing the practice of CDep. It is
likely that the distinction will become more apparent when more cases of CDep have been
studied in both the front-end facing and the embedded context.

More research is required on tools for both CDel and CDep. Due to the absence of case
study participants working with CDep this study lack concrete tool proposals for the
toolchains final component. Such tools should however have rollback support and support
customer deliveries, two important capabilities which can function as a starting point for
future research on the topic.

A clear research gap noted throughout the course of this thesis is that little to no re-
search have mentioned the implications that regulations pose on both CDel and CDep. A
common challenge mentioned by several interviewees, especially for development of safety
critical software. Future research should investigate to what extent these regulations affect
delivery and deployment as well as how companies must adapt their delivery process to
accommodate for this.

46

Bibliography

[1] L. Chen, “Continuous delivery: Huge benefits, but challenges too,” IEEE Software,
vol. 32, no. 2, pp. 50–54, 2015.

[2] F. Khomh, T. Dhaliwal, Y. Zou, and B. Adams, “Do faster releases improve software
quality?: an empirical case study of mozilla firefox,” in Proceedings of the 9th IEEE
Working Conference on Mining Software Repositories, pp. 179–188, IEEE Press, 2012.

[3] B. Katumba and E. Knauss, “Agile development in automotive software development:
challenges and opportunities,” in International Conference on Product-Focused Soft-
ware Process Improvement, pp. 33–47, Springer, 2014.

[4] T. Dingsøyr and N. B. Moe, “Towards principles of large-scale agile development,” in
International Conference on Agile Software Development, pp. 1–8, Springer, 2014.

[5] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, “Agile software development
methods: Review and analysis,” VTT Publications 478, 2002.

[6] S. Neely and S. Stolt, “Continuous delivery? easy! just change everything (well,
maybe it is not that easy),” in Agile Conference (AGILE), 2013, pp. 121–128, IEEE,
2013.

[7] L. Chen, “Continuous delivery: Overcoming adoption challenges,” Journal of Systems
and Software, vol. 128, pp. 72–86, 2017.

[8] H. H. Olsson and J. Bosch, “Climbing the “stairway to heaven”: evolving from agile
development to continuous deployment of software,” in Continuous software engi-
neering, pp. 15–27, Springer, 2014.

[9] B. Fitzgerald and K.-J. Stol, “Continuous software engineering: A roadmap and
agenda,” Journal of Systems and Software, vol. 123, pp. 176–189, 2017.

[10] J. Humble and D. Farley, Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation (Adobe Reader). Pearson Education, 2010.

[11] M. Fowler, “Continuous delivery,” May 2013. Available at martinfowler.com/bliki/
ContinuousDelivery.html.

[12] E. Laukkanen, J. Itkonen, and C. Lassenius, “Problems, causes and solutions when
adopting continuous delivery—a systematic literature review,” Information and Soft-
ware Technology, vol. 82, no. Supplement C, pp. 55 – 79, 2017.

47

martinfowler.com/bliki/ContinuousDelivery.html
martinfowler.com/bliki/ContinuousDelivery.html

Bibliography

[13] B. Fitzgerald and K.-J. Stol, “Continuous software engineering and beyond: Trends
and challenges,” in Proceedings of the 1st International Workshop on Rapid Con-
tinuous Software Engineering, RCoSE 2014, (New York, NY, USA), pp. 1–9, ACM,
2014.

[14] P. Rodríguez, A. Haghighatkhah, L. E. Lwakatare, S. Teppola, T. Suomalainen, J. Es-
keli, T. Karvonen, P. Kuvaja, J. M. Verner, and M. Oivo, “Continuous deployment
of software intensive products and services: A systematic mapping study,” Journal
of Systems and Software, vol. 123, pp. 263–291, 2017.

[15] M. Shahin, M. A. Babar, M. Zahedi, and L. Zhu, “Beyond continuous delivery: An
empirical investigation of continuous deployment challenges,” in Empirical Software
Engineering and Measurement (ESEM), 2017 ACM/IEEE International Symposium
on, pp. 111–120, IEEE, 2017.

[16] A. A. Gerry Gerard Claps, Richard Berntsson Svensson, “On the journey to contin-
uous deployment: Technical and social challenges along the way,” Information and
Software Technology, vol. 57, pp. 21 – 31, 2015.

[17] M. Leppänen, S. Mäkinen, M. Pagels, V.-P. Eloranta, J. Itkonen, M. V. Mäntylä, and
T. Männistö, “The highways and country roads to continuous deployment,” IEEE
Software, vol. 32, no. 2, pp. 64–72, 2015.

[18] N. Rathod and A. Surve, “Test orchestration a framework for continuous integration
and continuous deployment,” in Pervasive Computing (ICPC), 2015 International
Conference on, pp. 1–5, IEEE, 2015.

[19] M. Fowler, “Continuous integration,” May 2006. Available at martinfowler.com/
articles/continuousIntegration.html.

[20] M. Soni, “End to end automation on cloud with build pipeline: the case for devops in
insurance industry, continuous integration, continuous testing, and continuous deliv-
ery,” in Cloud Computing in Emerging Markets (CCEM), 2015 IEEE International
Conference on, pp. 85–89, IEEE, 2015.

[21] A. A. U. Rahman, E. Helms, L. Williams, and C. Parnin, “Synthesizing continuous
deployment practices used in software development,” in Agile Conference (AGILE),
2015, pp. 1–10, IEEE, 2015.

[22] H. H. Olsson, J. Bosch, and H. Alahyari, “Towards r&d as innovation experiment
systems: A framework for moving beyond agile software development,” in Proceedings
of the IASTED, pp. 798–805, 2013.

[23] N. Wilde, B. Eddy, K. Patel, N. Cooper, V. Gamboa, B. Mishra, and K. Shah,
“Security for devops deployment processes: Defenses, risks, research directions,” In-
ternational Journal of Software Engineering & Applications (IJSEA), vol. 7, no. 6,
2016.

[24] J. Sandobalin, E. Insfran, and S. Abrahao, “End-to-end automation in cloud infras-
tructure provisioning,” in Proceedings - 26th International Conference on Information
Systems Development, ISD, 2017.

[25] F. Oliveira, T. Eilam, P. Nagpurkar, C. Isci, M. Kalantar, W. Segmuller, and
E. Snible, “Delivering software with agility and quality in a cloud environment,”
IBM Journal of Research and Development, vol. 60, no. 2-3, pp. 10–1, 2016.

48

martinfowler.com/articles/continuousIntegration.html
martinfowler.com/articles/continuousIntegration.html

Bibliography

[26] C. Brindescu, M. Codoban, S. Shmarkatiuk, and D. Dig, “How do centralized and
distributed version control systems impact software changes?,” in Proceedings of the
36th International Conference on Software Engineering, pp. 322–333, ACM, 2014.

[27] J. Gmeiner, R. Ramler, and J. Haslinger, “Automated testing in the continuous de-
livery pipeline: A case study of an online company,” in Software Testing, Verification
and Validation Workshops (ICSTW), 2015 IEEE Eighth International Conference on,
pp. 1–6, IEEE, 2015.

[28] S. Mäkinen, M. Leppänen, T. Kilamo, A.-L. Mattila, E. Laukkanen, M. Pagels, and
T. Männistö, “Improving the delivery cycle: A multiple-case study of the toolchains in
finnish software intensive enterprises,” Information and Software Technology, vol. 80,
pp. 175–194, 2016.

[29] T. Bruckhaus, N. Madhavii, I. Janssen, and J. Henshaw, “The impact of tools on
software productivity,” IEEE Software, vol. 13, no. 5, pp. 29–38, 1996.

[30] D. B. Smith and P. W. Oman, “Software tools in context,” IEEE software, vol. 7,
no. 3, pp. 15–19, 1990.

[31] J. A. Pereira, K. Constantino, and E. Figueiredo, “A systematic literature review of
software product line management tools,” in International Conference on Software
Reuse, pp. 73–89, Springer, 2015.

[32] E. Glynn and P. Strooper, “Evaluating software refactoring tool support,” in Software
Engineering Conference, 2006. Australian, pp. 10–pp, IEEE, 2006.

[33] M. Taheri and S. M. Sadjadi, “A feature-based tool-selection classification for agile
software development.,” in SEKE, pp. 700–704, 2015.

[34] C. Robson, “Real world research. 2nd,” Edition. Blackwell Publishing. Malden, 2002.

[35] A. Bryman and E. Bell, Business research methods. Oxford University Press, USA,
2015.

[36] P. Runeson and M. Höst, “Guidelines for conducting and reporting case study research
in software engineering,” Empirical Software Engineering, vol. 14, p. 131, Dec 2008.

[37] L. A. Palinkas, S. M. Horwitz, C. A. Green, J. P. Wisdom, N. Duan, and K. Hoag-
wood, “Purposeful sampling for qualitative data collection and analysis in mixed
method implementation research,” Administration and Policy in Mental Health and
Mental Health Services Research, vol. 42, no. 5, pp. 533–544, 2015.

[38] B. Kitchenham and S. L. Pfleeger, “Principles of survey research: parts 1-6,” ACM
SIGSOFT Software Engineering Notes, Nov 2001 to Mar 2003.

[39] A. N. Ghazi, K. Petersen, S. S. V. R. Reddy, and H. Nekkanti, “Survey research
in software engineering: problems and strategies,” arXiv preprint arXiv:1704.01090,
2017.

[40] W. M. Vagias, “Likert-type scale response anchors. clemson international institute
for tourism,” Recreation and Tourism Management, Department of Parks, Clemson
International Institute for Tourism & Research Development, Clemson University,
2006.

49

Bibliography

[41] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting empirical methods
for software engineering research,” in Guide to advanced empirical software engineer-
ing, pp. 285–311, Springer, 2008.

[42] U. Loecher, “Small and medium-sized enterprises–delimitation and the european def-
inition in the area of industrial business,” European Business Review, vol. 12, no. 5,
pp. 261–264, 2000.

[43] J. Saldaña, The coding manual for qualitative researchers. Sage, 2016.

50

A
Abbreviations

Abbreviations Description
CDel Continous Delivery
CDep Continous Deployment
CI Continous Integration
SCA Static Code Analysis
SCM Source Code Management
UAT User Acceptance Test
UI User Interface

I

A. Abbreviations

II

B
Interview guide

III

0 Prior to interview start
0.1(What)​We want to ask you some questions about your background and your experiences
with continuous integration, delivery or deployment.
0.2(Purpose) ​The purpose of this interview is to get insights of how industry professionals
select tools for their continuous toolchain and to get opinion on key tool capabilities.
0.3​ Show the consent form. ​Stress​ that it's entirely optional to comment on the transcript.
0.4​ Ask if they have any questions before we start

ID Related RQ Questions

1 Background

1.1 - Could you shortly describe your role at your current company?

1.2 - How large is the organization/company you work for?

1.3 - How long have you worked at this company?

1.4 - How long have you worked in the industry?

1.5 - What is the domain of your current project?

2 Toolchain

2.1

- Does your current project implement Continuous Deployment OR
Continuous Delivery OR Continuous Integration?

2.2 RQ1.3

Can you draw a picture while describing your current process
from when you write code until it is released?

If ​yes​ draw and go to question ​3

If ​no:
Show the printed out picture

2.2.2 RQ 1.3 Can you describe if this picture is in any way
similar to what you are using ?

2.2.2.1 RQ1.3 Which
components
from the
picture are
automated?

If​ no:​ go to question​ 3

3 Tool selection

B. Interview guide

IV

3.1 For each component X drawn by interviewee:

3.1.1 RQ2.1 What tools are currently being
used for this component X?

3.1.2 RQ2.2,
RQ 2.3

How was the decision made for
selecting these tools?

3.1.3 RQ2.2,
RQ 2.3

What do you think are the pros and
cons of these tools?

- Follow up question:
Is this the capabilities that you
would look for in this tool:
summarizing pros and cons

3.1.4 RQ2.2 Was any alternatives explored?
If ​yes​:

3.1.3.1 RQ2.1 Which?

If ​no​ go to question ​3.2

3.2 RQ1.2 Which components from the picture are automated?

3.3 RQ2.2 What tool in the toolchain are you the most satisfied with?

3.2.1 RQ2.2 Why?

3.4 RQ2.2 Would you want to change any of the tools in the toolchain?

 If ​Yes​:

3.3.1 RQ2.2 Why?

3.3.2 RQ2.2 How?

If ​no​ go to question ​3​.​5

3.5 RQ 2.3 How would you decide on tools if you would extend your current
toolchain to CDel/CDep?

3.6 What do you think are the main obstacles in moving from
Continuous integration/CDel to CDel or CDep?

B. Interview guide

V

4 Feedback

4.1 - Anything important that you want to add which we forgot to ask
about?

4.2 - We appreciate the time you took for this interview​. ​Could you
recommend anyone else that could provide us with more
information?

B. Interview guide

VI

C
Survey Questionnaire

VII

Continuous Delivery Toolchains
This survey is part of a thesis which aims to provide guidelines for designing continuous delivery
toolchains. There are a great deal of open source and commercial tools that can be used in a toolchain. As
of now it does not seem to be any standardized or organized way for how each organization uses tools in
continuous delivery.

The survey works as an instrument to validate key capabilities of tools used in a toolchain. You as a
participant was selected for this survey based on previous activities in this thesis.

The survey is anonymous and is expected to take approximately 6 - 8 minutes.

Thanks in advance for your participation.

*Required

Source Code Management (SCM)

Importance of SCM Capabilities *

How important do you think that the capabilities below are for a Source Code Management (SCM) tool?
Mark only one oval per row.

Not at all
important

Low
importance

Slightly
important

Neutral
Moderately
important

Very
important

Extremely
important

I don't
understand

this
capability

Actively
maintained
Powerful
branching
strategies
Big user base
Powerful
merging system
Powerful
integration with a
CI
Easy to work
with

1.

Capabilities of SCM Tools *

For each SCM tool mark what capability you think each tool has. You can choose more than one
capability for each tool.
Tick all that apply.

Actively
maintained

Big
user
base

Powerful
branching
strategies

Powerful
merging
system

Powerful
integration
with a CI

This tool
has none of

the
capabilities
mentioned

I
don't
know
this
tool

Subversion
Git
ClearCase
Mercurial

2.

Continuous Integration (CI)

1

C. Survey Questionnaire

VIII

Importance of CI Capabilities *

How important do you think that the capabilities below are for a Continuous Integration (CI) tool?
Mark only one oval per row.

Not at all
important

Low
importance

Slightly
important

Neutral
Moderately
important

Very
important

Extremely
important

I don't
understand

this
capability

Platform
independent
Minimum setup
Plugin Support
Scaleable
Visualize the
flow
Actively
maintained
Modern UI
Have different
configuration
options

3.

Capabilities of CI Tools *

For each CI tool mark what capability you think each tool has. You can choose more than one capability
for each tool.
Tick all that apply.

Have
different

configuration
options

Actively
maintained

Modern
UI

Minimum
setup

Scaleable
Platform

independent
Visualize
the flow

Plugin
Support

This tool
has none

of the
capabilities
mentioned

I
don't
know
this
tool

Circle CI
Continuum
CruiseControl
GoCD
Continua CI
Shippable
Travis CI
Solano CI
Bamboo
Jenkins
Codeship
TeamCity

4.

Testing

Importance of Testing Capabilities *

How important do you think that the capabilities below are for a test tool?
Mark only one oval per row.

Not at all
important

Low
importance

Slightly
important

Neutral
Moderately
important

Very
important

Extremely
important

I don't
understand

this
capability

Keyword-driven
Low complexity

5.

2

C. Survey Questionnaire

IX

Powered by

Capabilities of Test Tools *

For each test tool mark what capability you think each tool has. You can choose more than one
capability for each tool.
Tick all that apply.

Low
complexity

Keyword-
driven

This tool has none of the
capabilities mentioned

I don't know
this tool

JMeter
JUnit
Karma
Polyspace
Google Test
Cucumber
Jasmine
Robot
Framework
Gatling
Selenium
PyTest
TestNG
Mocha
QUnit
FitNesse

6.

Deployment

Importance of Deployment Capabilities *

How important do you think that the capabilities below are for a deployment tool?
Mark only one oval per row.

Not at all
important

Low
importance

Slightly
important

Neutral
Moderately
important

Very
important

Extremely
important

I don't
understand

this
capability

Support
customer
deliveries
Rollback support

7.

Capabilities of Deployment Tools *

For each deployment tool mark what capability you think each tool has. You can choose more than one
capability for each tool.
Tick all that apply.

Support
customer
deliveries

Rollback
support

This tool has none of the
capabilities mentioned

I don't
know this

tool

ElasticBox
XL Deploy
Capistrano
Otto
CA Release Automation
RapidDeploy
Google Cloud
Deployment Manager
Urbancode Deploy
CodeDeploy
SmartFrog
Deploybot
OctopusDeploy
JuJu

8.

3

C. Survey Questionnaire

X

D
Xebialabs’ Periodic Table of

DevOps Tools

XI

D. Xebialabs’ Periodic Table of DevOps Tools

F
igure

D
.1:

Periodic
Table

ofD
evO

ps
Tools

(V
2)

by
X

ebiaLabs a

ahttps://xebialabs.com
/

XII

	Introduction
	Purpose of the Study
	Research Questions
	Outline

	Background
	Terminology
	Continuous Integration
	Continuous Delivery
	Continuous Deployment
	Toolchain

	Continuous Toolchain Structure
	Source Code Management
	Build
	Tests
	Deploy

	Common Challenges
	Best Practices
	Tool Selection Process

	Methods
	Research Strategy
	Applied Methods
	Literature Review
	Case Study
	Survey

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Reliability

	Results
	Demographics
	Continuous Toolchain Structure
	Common Challenges
	Best Practices
	Tools, Capabilities & Motivations
	Importance of Tool Capabilities
	Tool Selection

	Discussion
	Designing a Toolchain (RQ1)
	Technical Components of a Toolchain (RQ1.1)
	Selecting the Right Tools (RQ1.2, RQ1.3)

	Guidelines Supporting Toolchain Design (RQ2)
	Comparison of Common Challenges
	Comparison of Best Practices
	General Guidelines
	Source Code Management Guidelines
	Continuous Integration Guidelines
	Test Guidelines

	Conclusion
	Bibliography
	Abbreviations
	Interview guide
	Survey Questionnaire
	Xebialabs' Periodic Table of DevOps Tools

