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Efficient algorithms for temporal logic verification
A look into efficient reachability and tools for temporal logic verification of Petri
nets
OLOF OLIVECRONA
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Many real-world systems can be modelled as discrete event systems (DESs), which
have a number of events and discrete states. When an event occurs, the system
transits from one state to another. Two ways of representing such systems are tran-
sition systems and Petri nets. Finding the reachable states in transition systems is
a very central problem within DESs, and solving more complex problems often re-
quires finding them. This makes it very interesting to create an efficient reachability
algorithm, which this thesis contributes to by re-implementing a Matlab algorithm
in C++ and Python. Interesting differences between the implementations in terms
of efficiency are observed. Another important problem within DESs is to verify that
systems have certain desirable properties. These properties can be described using
temporal logic, where logical formulas can specify not only what should be true in
the present, but also what should become true in the future. These specifications
can then be verified using nuXmv, which is a symbolic model checker. While tran-
sition systems are easy to describe in nuXmv code, Petri nets are not. This thesis
presents a parser that translates a Petri net description into nuXmv code, which
is shown to greatly reduce the code that the user needs to write. This effectively
extends nuXmv such that it may be used for formal verification of Petri nets as well.

Keywords: Discrete event systems, Petri nets, Reachability, Temporal logic verifica-
tion, nuXmv, Incremental abstraction.
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1
Introduction

Many real-world systems can be described as discrete event systems, characterised
by having a discrete number of states and events. When an event occurs, the system
changes from one state to the next. One straightforward example of such a system
could be a light switch, which toggles between its two states (ON and OFF) whenever
a certain event occurs, namely whenever its button is pressed. More complicated
examples can contain millions of states [1]. As the world has grown increasingly
digitised, we find that more and more systems that we wish to model involve discrete
quantities. Consider modelling a factory, for example. It would likely be important
to know the number of items in buffers, the number of locked doors, and whether
industrial robots are busy, idle or in need of repair. These systems are all discrete,
and many of the processes inside the factory involve instantaneous changes between
states. One such process might be that if all doors are locked and the robot is idle,
then it picks an item from a buffer to process it. The number of items in the buffer
then instantly decreases by one as the robot changes from being idle to being busy.
Other examples include pushing a button, flipping a switch or waiting for the doors
of an elevator to open [2].

1.1 Purpose and motivation
The overall goal of this thesis is to contribute to creating more efficient implemen-
tations of certain algorithms on discrete event systems. These algorithms do things
such as finding all states that a system can reach, verifying that a system has certain
desirable properties and combining systems in a process known as synchronisation.
Because these systems often get very large, it is interesting to find the most efficient
way possible to implement these algorithms. Finding all reachable states is an al-
gorithm of particular importance. For one, it answers verification questions such as
”Does the system always manage to avoid this dangerous state?”. Furthermore, it is
used as a component in other, more complex algorithms such as Sigref, which is used
to shrink the number of states in a transition system. This is done in a way that
preserves desired properties via a process known as bisimulation minimisation [3].
This thesis will investigate alternative ways to find the reachable states of transition
systems with the hopes of creating a more efficient implementation. One promising
method, proposed by Bengt Lennartsson, is based on representing the reached states
using a boolean vector and finding the one-step-forward reachable states as another
such vector. A bitwise OR operation then produces the new reached states.
The algorithms discussed so far are based on a model called transition system.
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1. Introduction

Another model of interest is Petri nets. Petri nets express the same type of systems
and can be translated to and from transition systems. Nevertheless, Petri nets
have certain advantages over transition systems, such as synchronisation (where
two transition systems or Petri nets are joined together) being much more intuitive.
NuXmv is a symbolic model checker used for formal verification of transition systems
[4]. While it does not support Petri nets, it does support integer variables. By using
integers to represent places, it should be possible to model Petri nets. Thus, this
thesis intends to produce a parser, converting a simple Petri net description into its
equivalent nuXmv code. The parser would enable nuXmv to be used for temporal
logic verification on Petri nets, as it is already used for transition systems. Lastly,
using the parser together with nuXmv will be tested against another method for
temporal logic verification known as incremental abstraction. This other method
is based on bisimulation minimisation and the idea of applying it incrementally as
the system is synchronised. A detailed description of what this means is given in
Chapter 2.3.

1.2 Research questions and contributions

This thesis is concerned with answering the following three questions.
• How can a reachability algorithm be implemented efficiently?
• How can Petri nets be translated into nuXmv code?
• How efficient is nuXmv compared to incremental abstraction as a method for

temporal logic verification?
These questions are answered in Chapter 6, and the contribution of this thesis is
threefold. Firstly, potential ways to create an efficient way to implement a reachabil-
ity algorithm are evaluated, and the results are presented. These results show how
the choice of language and data structure choice affect performance and how the
various algorithms fare against one another. Basing such an algorithm on bitwise
boolean operations is shown to be faster in Matlab than in C++ or Python, while
an algorithm based on matrix multiplication is shown to be promising for small
transition systems. Secondly, this thesis contributes by providing a way to perform
temporal logic verification on Petri nets using nuXmv, which it does not currently
support in a user-friendly way. This is achieved by developing a parser called Pet-
Net, which translates a simple description of a Petri net into valid nuXmv code. The
parser is also shown to greatly reduce the amount of code one must write to model a
given Petri net, especially if it contains many places and events. Thirdly, this thesis
makes a comparison between two ways of performing temporal logic verification on
Petri nets. The first method is based on simplifying the model (while preserving
the validity of temporal logic expressions) to the point that the verification step be-
comes trivial. The second method is based on using PetNet and nuXmv to perform
the verification. The former approach is shown to be more efficient. Lastly, a third
method, based on simplifying the model by hand before using nuXmv, is shown to
reduce the difficulty of the verification significantly.
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1. Introduction

1.3 Outline
Chapter 2 goes over all theory necessary to understand the thesis. This includes
how discrete event systems are modelled as well as what temporal logic is and how
it can be used to specify properties that we want our models to have. Two ways of
validating such temporal logic specifications are then introduced. The first, known as
incremental abstraction, is based on simplifying models while preserving the validity
of any specifications. The second is the use of a model checker called nuXmv.
In Chapter 3, several algorithms that find the reachable states of a transition system
are described and compared to one another in terms of efficiency.
Chapter 4 goes over the syntax and features of a parser called PetNet. Its function
is to translate a simple description of a Petri net into code that the aforementioned
model checker nuXmv can understand. Additionally, the PetNet description of a
given Petri net is shown to be significantly shorter than its nuXmv code counterpart.
Chapter 5 compares the two methods for validating temporal logic specifications
that were presented in Chapter 2. A mix between the two is also presented and
evaluated, where the model is simplified by hand before being fed into nuXmv. The
tests were used to validate the fairness and non-blocking properties of a modular
Petri net.
Chapter 6 describes the conclusions drawn from the results that were found and
answers the research questions that were raised in Chapter 1.2.

3
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2
Theory

This chapter aims to introduce all theory necessary for understanding the rest of
the thesis. Firstly, one must understand what discrete event systems are and how
they are modelled. This includes how the models are defined and the important
concept of synchronisation, where two models are combined. Next, logic systems for
reasoning about time are introduced and used to specify desirable system properties.
Lastly, incremental abstraction and nuXmv are presented as methods for verifying
that such specifications hold.

2.1 Discrete event systems
Many real-world systems can be described as discrete event systems, characterised
by having discrete states and events. When an event occurs, the system changes
instantaneously from one state to the next. One straightforward example of such a
system could be a light switch, which toggles between its two states (ON and OFF)
whenever a particular event occurs, namely whenever its button is pressed. This
differs from a dynamic system, where the state changes continuously. Many systems
are so-called hybrid systems, which exhibit both continuous and discrete dynamics.
For example, the temperature inside a refrigerator has different dynamics depending
on whether the door is open or not. The opening and closing of the door could then
be modelled as discrete events. Exactly how such models are defined will be this
chapters first concern. Two models, namely transition systems and Petri nets, will
now be discussed.

2.1.1 Transition systems
A transition system consists of a set of distinct states that the system can be in
and transitions that describe how the system can move from one state to another
[1]. These transitions sometimes have so-called event labels such as openingDoor
and closingDoor. The set of all event labels is known as the alphabet. The states
can also have labels, but these serve a different purpose. A so-called state label is a
set of true propositions in that state, such as {doorIsOpen} or {doorIsClosed}. A
transition system must start in some state, namely one of its initial states. There
is usually only one possible initial state, but should there be multiple, then the
transition system may start in any of them. Having started from some initial state,
any state that the transition system can reach by following some sequence of events
is known as a reachable state. All other states are said to be unreachable.

5



2. Theory

A transition system G is defined as a 6 tuple

G =< X,Σ, T, I, AP, λ > , (2.1)

where

X is a set of states (also called state space)
Σ is a finite set of events (also called alphabet)
T ⊆ X × Σ×X is a transition relation
I ⊆ X is a set of initial states
AP is a set of atomic propositions
λ : X → 2AP is a state labeling function

and a transition (x, a, x′) ∈ T is denoted x
a−→ x′ [5]. For a transition x

a−→ x′

one refers to x, a and x′ as the source state, event label and target state, respec-
tively. Furthermore it is said that G is finite if X is finite. If Σ = ∅, meaning
that the transitions lack event labels, then G is sometimes referred to as a Kripke
structure.
If AP is defined as {m, f}, then G may be called an automaton. It is then said that
a given state x is marked if λ(x) = {m}, and forbidden if λ(x) = {f}. Marked states
are typically desirable, final states that one wants the automaton to be capable of
reaching. Forbidden states are the opposite. They are undesirable or dangerous
states that the automaton must avoid. Since a marked state should always be
reachable, it is interesting to know if that is possible from a given state. It is thus
said that a state is coreachable if there exists some sequence of events such that
the automaton can reach some marked state from it. Now consider a state that is
reachable but not coreachable. Such a state would function as a trap of sorts, as
the automaton could reach it and block itself from ever reaching a marked state. It
is said that such a state is a blocking state, and it is clear that one would prefer not
to have such states [1].
Examples of transition systems are given in Chapter 2.1.2, where they are both
defined and visualised.

2.1.2 Synchronization of Transition systems
Synchronising two transition systems is to impose the following rule: If an event
a exists in the alphabet of both systems, then that event can only fire in either
system if it can fire simultaneously in the other as well. The synchronisation of the
two is then a new transition system that captures their combined behaviour. The
two original systems are then sometimes referred to as subsystems, while the new,
combined system is sometimes said to be modular. Consider two transition systems
G1, G2; both defined as

Gi =< Xi,Σi, Ti, Ii, APi, λi > (2.2)

for i = 1, 2. The synchronization of G1 and G2 is then defined as

G1||G2 =< X1 ×X2,Σ1 ∪ Σ2, T, I1 × I2, AP1 ∪ AP2, λ > (2.3)

6



2. Theory

Figure 2.1: Two transition systems their synchronous composition.

where T is defined by
(x1, x2) a−→ (x′1, x′2) ∈ T | a ∈ (Σ1 ∩ Σ2), x1

a−→ x′1 ∈ T1, x2
a−→ x′2 ∈ T2

(x1, x2) a−→ (x′1, x2) ∈ T | a ∈ (Σ1 \ Σ2), x1
a−→ x′1 ∈ T1

(x1, x2) a−→ (x1, x
′
2) ∈ T | a ∈ (Σ2 \ Σ1), x2

a−→ x′2 ∈ T2

(2.4)

and
λ : X1 ×X2 → 2AP1∪AP2 (2.5)

[6]. It is worth mentioning that || is a reflexive, commutative and associative op-
eration [1]. Equation 2.4 requires some explanation. The first row states that if
the event a is present in both alphabets, and if there exists a pair of transitions
x1

a−→ x′1 ∈ T1 and x2
a−→ x′2 ∈ T2, then T has a transition (x1, x2) a−→ (x′1, x′2).

The second and third rows cover the cases where a is only present in Σ1 and Σ2,
respectively.
In order to give a better understanding for how transition systems are defined, the
two example automata G1 and G2 are shown in Figure 2.1 and defined in (2.6) and
(2.7), respectively. Their synchronous composition G1||G2 is shown in Figure 2.1
and defined in (2.8). Also, the marked states are drawn with double rings, where an
alternative would be to write outm next to those states to show that the proposition
m holds there. The states (1, 1) and (1, 2) are unreachable and have therefore been
drawn in grey to show that they are unimportant and could safely be removed from
the model. For a state to be marked in a modular system, all subsystems must be
in a marked state. This is why only (0, 2) ∈ X1||2 is marked in G1||2. For all other
state labels, it is sufficient that one subsystem is in such a state. This means that
if state 0 was forbidden instead of marked in G1 and G2, the states (0, 0), (0, 1),
(0, 2) and (1, 0) would all be forbidden in G1||G2. Lastly, one should note that the
transitions (2, 0) ∈ T2 and ((0, 2), (0, 0)) ∈ T do not have event labels.

7



2. Theory

X1 = {0, 1}
Σ1 = {a, b}
T1 = {(0, a, 1), (1, b, 0)}
I1 = {0}

AP1 = {m, f}

λ1(x) =

{m} if x = 0
∅ otherwise

(2.6)

X2 = {0, 1, 2}
Σ2 = {b, c}
T2 = {(0, b, 1), (1, c, 2), (2, 0)}
I2 = {0}

AP2 = {m, f}

λ2(x) =

{m} if x = 2
∅ otherwise

(2.7)

X1||2 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), }
Σ1||2 = {a, b, c}
T1||2 = {((0, 0), a, (1, 0)), ((1, 0), b, (0, 1)), ((0, 1), c, (0, 2)), ((0, 2), (0, 0))}
I1||2 = {(0, 0)}

AP1||2 = {m, f}

λ1||2(x) =

{m} if x = (0, 2)
∅ otherwise

(2.8)

2.1.3 Petri nets

A Petri net consists of a set of places containing tokens, as well as a set of transitions
that move the tokens around the net. A place and a transition may be connected by
a weighted, directional arc. Two places or two transitions can never be connected.
For a transition to fire, the incoming arcs’ places must have as many tokens as the
weight of that arc. When the event fires, those tokens are removed, and new ones
are distributed according to the weights of the outgoing arcs. The decadence and
incidence matrices keep track of how many tokens the transitions remove from and
add to the places. Just like with transition systems, the transitions may have event
labels. The Petri net’s state can be said to be the number of tokens currently present
in each place. Thus, rather than having an initial state, a Petri net has a so-called
initial marking vector that describes each place’s initial number of tokens. In fact,
by keeping track of the number of tokens in each place as the various transitions
fire, one can generate an equivalent transition system. Such a transition system is
then known as the Petri net’s reachability graph. A Petri net N is defined as a 6
tuple

N =< P, T, I,D,M,E > (2.9)

where
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Figure 2.2: Two Petri nets and their synchronous composition.

P is a set of places
T is a set of transitions
I is a n×m incidence matrix
D is a n×m decadence matrix
M is an initial marking vector
E is a set of event labels

[1]. A bounded Petri net is then defined as

NB =< PB, TB, IB, IB,MB, EB, L > (2.10)

where < PB, TB, IB, DB,MB, EB > is a Petri net, and L is a set of limits that place
upper bounds on the number of tokens that each place may have. In such a net,
transitions cannot fire if that would cause the number of tokens in a place to exceed
its limit. Example Petri nets are defined and visualized in Chapter 2.1.4.

2.1.4 Synchronisation of Petri nets
An advantage of Petri nets is that the synchronisation of two nets is very easy to
show visually. Figure 2.2 shows two Petri nets N1, N2, as well as N1||N2. Now
consider two arbitrary bounded Petri nets N1 and N2, both defined by

Ni =< Pi, Ti, Ii, Di,Mi, Ei, Li > (2.11)

where i = 1, 2. The synchronization of N1 and N2 is then defined as

N1||N2 =< P1 ∪ P2, T, I,D,
[
MT

1 MT
1

]T
, E1 ∪ E2, L1 ∪ L2 > (2.12)

where T is defined as follows. For each transition with an event only present in either
E1 or E2 there is a corresponding transition in T with the same label and weighted
arcs. For each transition with an event label present in both E1 and E2, there is a
corresponding transition in T with the same label and all corresponding weighted
arcs from both T1 and T2. The new I and D matrices hold the corresponding weights
for the new net [1].
To clarify how Petri nets and their synchronous compositions are defined and visual-
ized, two example Petri nets N1 and N2 are presented. These Petri nets are defined
in (2.13) and (2.14), respectively, and visualized in Figure 2.2. Their synchronous
composition N1||N2 is defined in (2.15) and is also visualized in Figure 2.2.
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P1 = {p1, p2}
T1 = {t1, t2}

I1 =

 p1 p2
t1 0 1
t2 1 0



D1 =

 p1 p2
t1 1 0
t2 0 1


M1 =

[
p1 p2
1 0

]

E1 =
[
t1 t2
a b

]

L1 =
[
p1 p2
1 1

]
(2.13)

P2 = {p3, p4}
T2 = {t3, t4}

I2 =

 p3 p4
t3 0 1
t4 1 0



D2 =

 p3 p4
t3 1 0
t4 0 1


M2 =

[
p3 p4
2 0

]

E2 =
[
t3 t4
b c

]

L2 =
[
p3 p4
2 2

]
(2.14)

P1||2 = {p1, p2, p3, p4}
T1||2 = {t1, t2,3, t4}

I1||2 =


p1 p2 p3 p4

t1 1 0 0 0
t2,3 0 1 0 1
t4 0 0 1 0



D1||2 =


p1 p2 p3 p4

t1 0 1 0 0
t2,3 1 0 1 0
t4 0 0 0 1


M1||2 =

[
p1 p2 p3 p4
1 0 2 0

]

E1||2 =
[
t1 t2,3 t4
a b c

]

L1||2 =
[
p1 p2 p3 p4
1 1 2 2

]
(2.15)

2.1.5 Translation from Petri net to Transition System

A bounded Petri net can always be translated into a transition system by finding its
so-called reachability graph. This is based on the observation that a Petri net’s state
is defined by the number of tokens in each place. If the Petri net has N places, the
current state can be represented by the so-called marking vector m, consisting of N
non-negative integers. By systematically firing all possible sequences of transitions
and using m to keep track of where the tokens are, a transition system can be
generated [1].
An alternative approach is to replace each place with a buffer. Consider a single
place with a limit of m, with an event a that adds one token and another event b
that removes one. This behaves identically to a buffer transition system with m+ 1
states, where the event a results in a transition from state n to state n + 1 and b
results in a transition from state n + 1 to state n for n ∈ [0,m− 1] [7]. The initial
number of tokens in the place gives the initial state of the transition system, which
would usually be zero. This example is shown in Figure 2.3.
Should the place only have a transition a that adds a token, then the input Petri
net Ni can be used instead. Similarly, if a place only has a transition b that removes
a token, then the final Petri net Nf may be used. These are also shown in Figure
2.3. In general, any transition that adds tokens could be modelled as increasing
the buffer’s state, while a transition that removes tokens decreases it instead [7].
However, this method will primarily be used for the three simple cases that have
been presented.
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Figure 2.3: Three very simple Petri nets and their equivalent transition systems.

2.1.6 Summary

Transition systems and Petri nets have been introduced as models for discrete event
systems. The transition system is based on a set of discrete states and a set of
transitions that describe how the system can move between them. The initial state
is given. A state may have a label, which is a set of true propositions in that state.
An event may also have a label, but such a label is only a symbol and not a set
of propositions. Petri nets work differently. A Petri net consists of a set of places
that contain tokens and a set of transitions that describe how these tokens can move
around the net. A place may have an upper limit on the number of tokens it can hold,
and if all places have such limits, then the net is said to be bounded. Transitions
may have labels, just like in transition systems. Both models describe the same
types of behaviour, and it is possible to translate from one to another. Translating
Petri nets to transition systems has been described as that is of importance to this
thesis. The concept of synchronisation has also been described for both models,
where two systems are combined. This is done by restricting shared events to only
fire if they can fire in both systems simultaneously.

2.2 Temporal Logic

A critical tool when working with any system is the ability to verify that it works
as it should. In the context of discrete event systems, this means guaranteeing that
certain things will or will not become true in the future. A traffic light should always
eventually turn green, for example, and two industrial robots should never enter
the same space simultaneously (because they would then crash into one another).
Temporal logic allows us to express such properties. There are several versions of
temporal logic, but only the most common are of interest, namely linear temporal
logic (LTL) and computational tree logic (CTL). The former shall be considered
first.
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Figure 2.4: A sequence of time points that specifies when the propositions p and
q are true.

2.2.1 Linear Temporal Logic
In linear temporal logic (LTL), time is represented by a set T = t0, t1, t2, ... and a
total order <. The comparison ta < tb then means that ta occurs before tb. For
simplicity it is assumed that t0 is the first time point, t1 the second and so on.
This gives us an ordered sequence of time points where t0 < t1 < t2 < ... [8]. This
discrete representation of time must now be able to specify when things are true.
This is simple. For a set AP of atomic propositions, it is specified at which time
points those propositions are true. Say for example that one has T = {t0, t1, t2, t3},
AP = {p, q, r}. It can then be specified that p is true in t0, t1, that q is true in t1, t2
and that r is true at every time point in T . This example is visualised in Figure 2.4.
If one imagines starting in the initial time point t0, one could say things such as

”p is true in the next time point”
”At some point in the future, q is true”
”r is always true”
”p is true until q becomes true”

and indeed, the ability to make these kinds of statements was the whole point.
Operators for them are thus introduced as such [9].

©p ”next p”
♦q ”eventually q”
�r ”always r”
pUq ”p until q”

To further clarify what these operators mean, Figure 2.5 shows four sequences of
time points while Table 2.1 shows the validity of the most common LTL formulas.
The sequences T3 and T4 are both infinite so some explanation of when p holds is
needed. p holds in every odd-numbered time point in T3, and in every time point
occurring after t2 in T4.
The formal syntax of an LTL formula is now defined as

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | ©ϕ | ϕ1Uϕ2 (2.16)

For those unfamiliar with the notation, this definition should be interpreted as:
”An LTL formula ϕ is defined as an atomic proposition p, or as the negation of
some formula, or as the conjunction between two formulas, or as the next operator
applied to some formula or as the until operator applied to two formulas”. One might
notice that some statements are missing from this definition, such as the disjunction
between two formulas. However, these can be defined in terms of what has already
been defined. For example, disjunction, eventually and always may respectively be
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Figure 2.5: Two finite and two in-
finite sequences of time points that
specifies when the propositions p and
q are true.

T1 T2 T3 T4
p true true false false
©p true true true false
♦p true true true true
♦q true false false true
�p false true false false
pUq true false false true
�♦p false true true true
♦�p false true false true

Table 2.1: Validity of some exam-
ple statements for the four sequences
shown in Figure 2.5.

defined as
ϕ1 ∨ ϕ2 := ¬(¬ϕ1 ∧ ¬ϕ2) (2.17)

♦ϕ := >Uϕ (2.18)

�ϕ := ¬♦¬ϕ (2.19)

As Figure 2.4 hints at, the idea is to apply LTL to transition systems, where time
moves forward as the system transitions from one state to the next. A statement
such as ”a marked state is always reachable” could then be rephrased as ”It is
always true that, eventually m will be true” and written in LTL as �♦m. However,
transition systems usually have many possible sequences of events, motivating the
need for specifications such as ”There exists a sequence of events where p is always
true”. To handle these types of statements, one must stop thinking of time as linear
and start thinking about it as a tree.

2.2.2 Computational Tree Logic
In computational tree logic (CTL), timepoints are not ordered as a straight sequence
but as a tree. While it can be strange to think of time as anything but linear, one
can imagine the tree describing many possible linear paths that the future could
take. A time branch is one such possible path, and one could write an LTL formula
to specify something along it. Consider the tree shown in Figure 2.6. There exists
a time branch (namely {t0, t1, t4}) where the LTL formula �p holds. Also, for
every time branch, the LTL formula ♦q holds. Essentially, the following two new
statements must be expressable.

1. ”In all time branches, this LTL formula holds”
2. ”There exists a time branch where this LTL formula holds”

For this purpose, two additional operators are introduced [9].

∀ϕ for each time branch, ϕ holds
∃ϕ there exists a time branch such that ϕ holds

13



2. Theory

Figure 2.6: A tree of time points that specifies when the propositions p and q are
true.

ϕ T1 T2
∃♦p true true
∃♦q true true
∃�p true true
∃�q false false
∀♦p true false
∀♦q true false
∀�p true false
∀�q false false

Table 2.2: CTL formulas
and their validity for T1 and
T2, shown in Figure 2.7.

Figure 2.7: Two trees T1 and T2. The propo-
sition p holds for all time points following t3
in T2. Neither p nor q holds in a time point
following t6.

As before, the formal syntax a CTL formula can be defined as follows:

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | ∃�ϕ | ∃(ϕ1Uϕ2) | ∃©ϕ (2.20)

Table 2.2 shows the validity of the most common CTL formulas for the two trees
displayed in Figure 2.7. One may notice that T2 contains some infinite sequences.
In the left sequence, p holds for all time points occurring after t3. In the right
sequences, neither p nor q are true at any time point after t6. Now that the tools to
express when statements are true have been acquired, the next goal is to formulate
LTL and CTL specifications and understand how those may be verified.

2.2.3 Temporal Logic Verification
Once the desirable behaviour of a transition system has been specified, one would
like to verify that the specification holds. More specifically, the specification must
hold in the initial state(s). This can be done using µ calculus [10], but exactly how
that works is beyond the scope of this thesis. Instead, the focus lies on understanding
how to write specifications in temporal logic. Later, two verification methods will
be introduced, namely incremental abstraction and the nuXmv model checker.
The two most important properties that are to be verified are the non-blocking
property and the fairness property. Non-blocking means that the transition system
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Figure 2.8: The unfair transition
system Guf .

Figure 2.9: The fair transition sys-
tem Gf .

is free from blocking states and can be written as the following CTL formula

ϕnb = ∀�∃♦m , (2.21)

where the atomic proposition m holds in the marked states.
The concept of fairness requires a little more explanation. Consider the simple
transition system Guf shown in Figure 2.8. Consider the possible sequence of states
0, 1, 0, 1, ..., where p is always eventually true but q never becomes true. This is
unfair in the sense that state 1 steals all the attention while state 2 starves. The
fairness condition can be written formally as the following LTL formula

ϕf = �♦p ∧�♦q . (2.22)

The problem may be resolved by adding another state to obtain the fair transi-
tion system Gf shown in Figure 2.9. Here the only possible sequence of states is
0, 1, 3, 2, 0... where p and q are both always eventually true [9].
It is important to note that proof of fairness is an infinite sequence of states. In the
example above, the proof was the infinite loop 0, 1, 3, 2, 0, ... where p and q become
true. Sometimes, a finite sequence is sufficient. If one wants to prove that ∃♦p holds,
for example, the sequence 0, 1 is sufficient. An expression such as ∀♦p is proven
differently. Instead of proving it directly, one would try to find a counterexample
that disproves it. If no counterexample exists, then the statement must be true. For
large transition systems, finding these proofs can be very computationally intensive.
This problem is dealt with in the next section, where it is shown how one can avoid
verifying properties on large systems. The method is based on the observation
that two different transition systems can have the same validity of temporal logic
formulas. The goal is then to create a simpler system, equivalent to the large one in
the sense that temporal logic formulas hold on the large system if and only if they
also hold on the simple one.

2.2.4 Summary
The ability to verify that systems have certain desirable properties (such as non-
blocking and fairness) is essential. These properties are specified using two types
of temporal logic, namely linear temporal logic (LTL) and computational tree logic
(CTL). In LTL, time is represented by a sequence of time points, ordered from first
to last. Instead of propositions simply being true or false, they may now be true
at only some time points. One can then write formulas that specify what should
be true at the first time point and what should become true in the future. The
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next, eventually, always and until operators are used for this. CTL represents time
as a tree instead, which can be imagined as many possible (linear time) sequences
that could happen. The for all and there exists operators are introduced to specify
whether something should hold in all or at least one of these possible futures. It
has also been shown that proof of a temporal logic specification is given as a finite
or infinite sequence of states or the lack thereof.

2.3 Incremental abstraction
Verifying temporal logic specifications can take a lot of time for large transition
systems. Unfortunately, many transition systems are enormous, usually consisting
of many smaller transition systems (called subsystems) that have been synchronised.
This issue shall be dealt with by abstracting (simplifying) the subsystems before and
after they are synchronised without affecting the validity of important temporal logic
specifications in a process called incremental abstraction. The final, synchronised
system will then be much simpler, and the specifications may be validated on it
instead of on the original system, saving a lot of computation time.

2.3.1 Equivalent states and partitions
The idea is to simplify transition systems by grouping states that are considered
equivalent. Thus, notation for describing that two states are equivalent will now be
introduced. Consider a transition system G =< X,Σ, T, I, AP, λ >. If two states
x, y ∈ X are considered equivalent, then that is denoted as x ∼ y. By dividing X
into groups of equivalent states, a partition Π of X is created. Formally, Π is a set of
nonempty subsets of X where each element x ∈ X is in exactly one of these subsets.
These subsets (or groups) are then known as block states, and Π(x) refers to the
block state that x ∈ X is part of. Given two partitions Π1,Π2 it is said that Π1 is
finer than Π2 and that Π2 is courser than Π1 if Π1(x) ⊆ Π2(x) for all x ∈ Π and
this is denoted as Π1 � Π2. The finest possible partition would then be obtained
by grouping the states individually, while the coarsest possible would group every
state into one. Thus, a courser partition translates to a greater simplification [9].
Given a transition system G and a partition Π, a simplified transition system
G/∼ =< Π,Σ, TΠ, IΠ, AP, λΠ > is known as a quotient transition system. Such
a system may be created in the following way. The states X are replaced with the
partition Π, while the alphabet Σ remains the same. For each transition x a−→ y ∈ T
in G there is then a corresponding block transition Π(x) a−→ Π(y) ∈ TΠ in GΠ. The
blocks that contain initial states become the initial block states. The atomic propo-
sitions remain the same. The block labeling function λΠ = λ(x) assumes that the
states in each block share label, i.e. that Π(x) = Π(y) =⇒ λ(x) = λ(y) [9].

2.3.2 Invisible transitions and divergence
Consider the example transition system shown in Figure 2.10, as well as the parti-
tions Π1 = {{0, 1}, {2, 3}, {4, 5, 6}},Π2 = {{0, 1}, {2}, {3}, {4}, {5, 6}}. This allows
for the creation of two quotient transision systems, also shown in Figure 2.10. An

16



2. Theory

Figure 2.10: A transition system G and two quotient transition systems G1
and G2 obtained through the partitions Π1 = {{0, 1}, {2, 3}, {4, 5, 6}} and Π2 =
{{0, 1}, {2}, {3}, {4}, {5, 6}}, respectively.

issue with G1 is that some temporal logic specifications that hold for G (such as ♦q)
do not hold for G1. On the other hand, G2 preserves all CTL expressions (and thus
implicitly also all LTL expressions) except for those including the next operator
©. This operator cannot be accommodated, but fortunately, that does not reduce
expressiveness.
The overall goal of simplifying transition systems can now be stated more precisely.
The idea is to create a partition Π that is as coarse as possible while not affecting
the validity of temporal logic specifications. However, only doing that would not
be enough. Consider, for example, a system consisting of the synchronisation of
two subsystems. The plan is to first abstract, then synchronise. It is then vital
that the abstraction does not remove events that are present in other subsystems.
Only events that are not shared with other subsystems, called local events, may be
removed. These events are hidden by replacing the event labels of local events with
the special τ label. This τ label will then help us to know which transitions that
can be abstracted [5].
For a given transition system G and partition Π, consider a transition in G with a
τ label that does not move the transition system from one block to another. Such a
transition is said to be invisible. A transition that is not invisible is said to be visible.
If a series of invisible transitions end in a single visible one x0

τ−→ x1
τ−→ ...

τ−→ xn
a−→ x′,

then it is said to be a stuttering transition, denoted as x→→
a
x′.

An issue known as divergence will now be introduced. Consider a block state that
contains a loop of invisible transitions. The transition system could then effectively
halt in that state, stuck in an infinite loop. Even though these transitions are
invisible, they should not be abstracted since doing so would change the model’s
behaviour. To protect the states involved in the loop from being removed, a special
atomic proposition ↪→ is added to mark them divergent. Since all states inside
a block should have the same label, this creates a divergent block. The invisible
transitions can now be removed. Finally, a simple self-loop B τ−→ B is added to any
block B which has the ↪→ label. This makes the abstraction divergence sensitive
since it preserves divergent behaviour [11].
Consider the transition systems H0, . . . , H8 shown in Figure 2.11. Consider further
wanting to synchronise H0 with H1. One can then notice that since a is only present
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Figure 2.11: Several transition systems H0, . . . , H8, used to explain what invisible
transitions, stuttering transitions and divergent blocks are.

in H1, it is a local event and may be replaced with τ , thus turning the transition
system into H2. Now there is a local event between two states with the same label
(no label at all). This means that τ is an invisible transition and we can group state
0 and 1 together to form H3. Note that H4 contains no invisible transitions and
cannot be made simpler. Consider now wanting to synchronise H0 with H5. Again,
a is local, giving us H6. Both (0, τ, 1) and (1, τ, 0) are invisible, but since they form
a loop the resulting block state is divergent, as shown in H7. Similarly to H4, H8
cannot be made simpler as it contains no invisible transitions. Lastly, one can note
that H2 has a stuttering transition 0→→

b
2.

When two subsystems are synchronised, shared events are synchronised while local
events are not. However, since the event labels of local events have been replaced
with τ , they will be treated as if they were shared. This is not intended. Clearly,
any events with the τ label should be treated as local during the synchronisation.
Thus synchronisation is now redefined to take this into account. For two transition
systems

Gi =< Xi,Σi, Ti, Ii, APi, λi > (2.23)
where i = 1, 2, the synchronization of G1 and G2 is now redefined as

G1||G2 =< X1 ×X2,Σ1 ∪ Σ2, T, I1 × I2, AP1 ∪ AP2, λ > (2.24)

where T is defined by
(x1, x2) a−→ (x′1, x′2) ∈ T | a ∈ (Σ1 ∩ Σ2) \ {τ}, x1

a−→ x′1 ∈ T1, x2
a−→ x′2 ∈ T2

(x1, x2) a−→ (x′1, x2) ∈ T | a ∈ (Σ1 \ Σ2) ∪ {τ}, x1
a−→ x′1 ∈ T1

(x1, x2) a−→ (x1, x
′
2) ∈ T | a ∈ (Σ2 \ Σ1) ∪ {τ}, x2

a−→ x′2 ∈ T2
(2.25)

2.3.3 Bisimulation and abstraction
The term bisimulation implies the existence of the term simulation. This term indeed
exists, but since the focus lies in bisimulations, only a conceptual explanation will
be given.
Consider wanting to flip a coin but only having a six-sided die available. Flipping
a coin would cause it to enter one of two possible states, say SC = {sheads, stails}.
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The dice on the other hand, enters one of six possible states, SD = {s1, s2, ..., s6}.
In order to use the dice as if it were a coin, one could decide that a roll of 1-3
counts as heads, and 4-6 counts as tails. In more formal terms, one could create a
partition Π = {{s1, s2, s3}, {s4, s5, s6}} and an equivalence relation ∼ between the
blocks states in Π and the states in SD such that sheads ∼ si for i = 1, 2, 3 and
sheads ∼ sj for j = 4, 5, 6. The key here is that while a die is certainly not the same
as a coin, it can simulate a coin.
Obviously, the partition Π and relation ∼ cannot be used to allow a coin to simulate
a die. The simulation is one-directional. If the simulation is bidirectional, meaning
that both simulate each other, then it is a bisimulation instead. At last, a divergent
sensitive visible bisimulation can be defined.
Given two transition systems

Gi =< Xi,Σi, Ti, Ii, APi, λi > (2.26)

where i = 1, 2, and a set of block transitions

TΠ(x) = {B a−→ B′|B,B′ ∈ Π ∧ x ∈ B ∧ (∃x′ ∈ B′)|x→→
a
x′} (2.27)

a partition Π that satisfies

Π(x) = {y ∈ X|λ(x) = λ(y) ∧ TΠ(x) = TΠ(y)} (2.28)

is a visible bisimulation equivalence and the states x, y ∈ Π(x) are said to be visibly
bisimilar, denoted x ∼v y. If it is assumed that the special ↪→ label has been
used to mark divergent states, then the equivalence is divergent-sensitive, giving us
divergent-sensitive visible bisimulation equivalence (DSVB) [5].
Finally, what it means to simplify a transition system shall now be defined. Consider
a transition system G and a partition Π. If x ∼ Π(x) for all x ∈ X, then G ∼ G/∼.
By hiding the local events in G and generating the quotient transition system, an
abstracted transition system is obtained. If the transition system consists of several
subsystems, they should be abstracted before they are synchronised. After synchro-
nising two abstracted subsystems, the resulting system is also abstracted. As some
systems are synchronised, more transitions become local and further abstractions
are made. The process of abstracting and synchronising then continues until all
subsystems have been included.
Figure 2.12 shows incremental abstraction applied to the three subsystems G1, G2
and G3. The alphabets for the three systems are Σ1 = {a1, a2}, Σ2 = {a2, a3} and
Σ3 = {a3, a4}. Thus, a1 is local to G1 and is abstracted in step A1. G2 has no local
events so step A2 has no effect. When these two systems are synchronised in step
S1, the event a2 becomes local to H1||H2 and is subsequently abstracted in step A3.
Step A4 abstracts a4, local to G3. After the final synchronisation, all events become
local and a final abstraction results in the transition system L.
One might point out that it would be simpler to first synchronise all subsystems
together and then abstract the result only once. Indeed, this would be simpler and
also generate the exact same final result. The issue with this is that the synchro-
nised system could be enormous, even for a moderate number of relatively small
subsystems. By abstracting incrementally, the model is kept small, which allows
work to continue much faster.
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Figure 2.12: Incremental abstraction of G1, G2 and G3.
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The whole point of this was to simplify in such a way that temporal logic is preserved,
which it does if the equivalence used when abstracting is a DSVB equivalence ∼d.
Then, any temporal logic specification holds on G/∼d

if and only if it also holds on
G. This means that specifications may be verified on G/∼d

instead of on G, which
is much easier. Often, G/∼d

only contains a few states, making the verification step
trivial. This is seen in Figure 2.12, where the abstracted model L only contains two
states and is clearly non-blocking. Importantly, this implies that G1||G2||G3 is also
non-blocking.

2.3.4 Summary

The idea of equivalent states has been introduced and used to generate quotient
transition systems, where equivalent states are grouped into blocks. An equivalence
that generates the smallest possible quotient transition system that still preserves
the validity of temporal logic specifications was sought. Local transitions were intro-
duced, characterised by not being shared by other subsystems. Furthermore, local
transitions that do not move the transition system from one block to another have
been introduced as invisible transitions. These are often safe to remove, but if a
block contains a loop of such transitions, then that block is divergent. In theory,
the system could halt in such a block as it loops indefinitely and never leaves. It has
been shown how a system could simulate another, and this concept has been used
to define a divergent sensitive visible bisimulation equivalence (DSVB equivalence),
which preserves temporal logic. Abstraction has been defined and used to form in-
cremental abstraction, where subsystems are abstracted before and after they are
synchronised. This reduction then results in a quotient transition system that can
be used to verify temporal logic specifications very easily.

2.4 The nuXmv model checker

Given a transition system G and a temporal logic specification ϕ, proving that
ϕ holds on G is a tedious process best left to computers. As shown in Chapter
2.2.3, such a proof consists of a sequence of states. Sometimes, a finite sequence is
sufficient, such as proving that ∃♦p holds by showing a sequence ending in a state
where p is true. Other times, the sequence needs to be infinitely long. One example
would be a proof of �p by showing an infinite loop of states where p is true. In any
case, the model checker nuXmv can perform the verification for us. This section is
intended to explain what nuXmv is, how it is used, and highlight why the software
tool is not suitable for Petri nets. One should note that nuXmv is an extension of
the nuSMV model checker and that most of what is discussed in this chapter also
applies to nuSMV [12]. However, since only nuXmv was used, only nuXmv will be
referred to. One should also keep in mind that nuXmv has many more features than
those described in this chapter. The information presented here is only intended to
give a sufficient understanding for reading the rest of the thesis.
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2. Theory

Figure 2.13: The example transition
system Gmain.

Figure 2.14: The CTL tree equiva-
lent to the transition system Gmain.

2.4.1 The nuXmv input language
NuXmv is a model checker used to verify LTL and CTL specifications on transition
systems with a finite number of states and transitions [13]. The transition systems
and specifications must be written in the nuXmv input language, which will now
be described. Consider the transition system Gmain shown in Figure 2.13. The
transition system consists of two possible paths, one where p becomes true and
another where q first becomes true. Both paths end in the final state 4, which has
a self-loop with an ω label. The purpose of this transition is to model that 4 is
a terminal state while still letting Gmain be free from deadlocks, which can cause
issues for nuXmv. Consider now that one wishes to verify the specification ϕ1 = ♦p
as well as ϕ2 = ∃♦q. The equivalent CTL tree of Gmain is shown in Figure 2.14.
One can notice that ϕ2 is a CTL expression and that it holds. However, ϕ1 is an
LTL expression even though time is not linear here. NuXmv interprets this as the
CTL expression ∀ϕ1, which is also true since both sequences eventually reach a p
state. G, ϕ1 and ϕ2 can be described with the following nuXmv input code.
MODULE main
VAR

x : 0..3;
DEFINE

p := x=1 | x=3;
q := x=2;

IVAR
event : {a, b, tau , omega };

INIT
x=0;

TRANS
(event=a & x=0 & next(x)=1) |
(event=tau & x=0 & next(x)=2) |
(event=tau & x=1 & next(x)=3) |
(event=b & x=2 & next(x)=3) |
(event=omega & x=3 & next(x)=3);

LTLSPEC F p
SPEC EF q
INVARSPEC !(p & q)

Listing 2.1: PetNet code for Gmain shown in Figure 2.13.

The description of the transition system begins with the MODULE keyword, followed by
the transition systems name. To describe a transition system consisting of multiple
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2. Theory

Mathematical symbol ¬ ∧ ∨ © ♦ � U ∀ ∃
nuXmv symbol ! & | X F G U A E

Table 2.3: Common mathematical symbols and the corresponding symbols in the
nuXmv input language.

subsystems, one could write several modules. Under the VAR (variables) keyword,
the state space is defined. In this example, the integer variable x can assume the
values 0, 1, 2 and 3. The DEFINE keyword allows for the definition of symbols in
order to make the code easier to read. In this example, it is used to implement
the labelling function. Since p should be true when x=2, for example, it is defined
as such. If p would be true for multiple states, say 2 and 4, one could write that
as p := x=2 | x=4. Under the IVAR (input variables) keyword, the alphabet is
defined. The initial state is defined under the INIT (initial) keyword as a boolean
expression that is true initially. Should there be more than one initial state, one
would need some boolean expression that is true in all initial states. If, for example
2 was also an initial state, one could write x=1 | x=2. The transitions are defined
under the TRANS (transitions) statements as a boolean expression, which will be
written to follow an and-or structure. In order to make a transition, nuXmv will
try to satisfy the expression. Because of the structure, it is then sufficient to satisfy
any single row. If x=2 for example, then only row three could be satisfied, which
would require the event tau as well as letting the next value of x be 4. Note
that the next value of all variables must be specified, or they will be considered
unconstrained and be able to assume any value inside their domain. This fact will
be important to remember in Chapter 4, as it presents a problem for the modelling of
Petri nets. Specifications are typically written using either LTL or CTL, under the
LTLSPEC (LTL specification) and SPEC (CTL specification) keywords respectively. A
third alternative is to write invariant specifications under the INVARSPEC keyword.
Invariants are simply propositions that must always hold. The most common logical
symbols and the syntax for them in the nuXmv input language are shown in Table
2.3 [14].

2.4.2 Running nuXmv
The code may be written as a simple text and saved as a .smv file, for example,
Gmain.smv. Running the code is then very simple. Once nuXmv has been installed,
it can be run from the command line by navigating to the folder where the file is
stored and using the simple command nuXmv Gmain.smv. nuXmv will then print
whether the specifications are true or false and provide counterexamples for false
specifications [4]. Running the Gmain example produces the output shown in Figure
2.15. All specifications are found to be true, so no counterexamples exits.

2.4.3 Summary
The nuXmv model checker is used for the verification of temporal logic specifications
on transition systems. To use it, one must describe the transition system and the
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2. Theory

Figure 2.15: Output from nuXmv showing the validity of the two specifications,
obtained by running the command nuXmv Gmain.smv.

specifications in the nuXmv input language. The state space and alphabet are
declared first as variables, followed by a boolean statement that holds in the initial
condition. The transitions are then described using a boolean expression that, for
each event, describes both what the current state is and what the next state should
be. If an event does not specify what the next value should be for a given variable,
then it may assume any value within its domain when that event occurs. NuXmv
can be run from the command line and will then try to find counterexamples that
disprove the specifications. If counterexamples are found, then they will be printed.
If a specification holds, no such proof is given.

24



3
Efficient reachability analysis

Finding the reachable states of a transition system is a central problem within dis-
crete event systems for two main reasons. Firstly, it is often interesting to know
which states are reachable. Secondly, solving more complex problems often requires
finding the reachable states, sometimes several times over [3]. Because of this, it is
very interesting to evaluate ways to implement a reachability algorithm that is as ef-
ficient as possible. One promising implementation, proposed by Bengt Lennartsson,
exploits Matlabs efficiency on performing vectorial operations. This implementa-
tion shall be used as a starting point. Then, we shall compare the algorithm against
modifications of itself and implementations in C++ and Python. However, we must
first describe how we choose to represent transition systems.

3.1 Representations of Transition Systems
Consider a transition system G =< X,Σ, T, I, AP, λ >. Since the goal is just to find
the reachable states, the alphabet Σ, the propositions AP and the labeling function
λ can be omitted. Only the states X, the initial states I as well as the transitions
T must be taken into account. The transitions can be considered unlabelled. For
simplicity, it is assumed that the states are ordered from 1 to N , where N is the
number of states. The state space is thus X = {1, 2, . . . , N}. The initial states can
then be represented by a binary vector xI =

[
xI,1 xI,2 . . . xI,N

]
where

xI,k =

1 if x = k is an initial state
0 otherwise

(3.1)

Any reachability algorithm necessarily has to keep track of the states that have been
reached. The reached states will be represented in the same way as the initial states,
namely using a binary vector x of length N . N is then the number of states and
if xi = 1 that means that xi has been reached. Furthermore, x = xI initially, thus
marking the initial states as having been reached from the start. All algorithms in
this thesis use these representations of the states, the initial states and the reached
states. However, they differ in their representations of the transitions, which will be
described now.
Consider the simple transition system G shown in Figure 3.1. A possible represen-
tation of the transitions is shown in (3.2) as a 2× 4 matrix.

δ =
[
2 4 4 0
3 0 0 0

]
(3.2)
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3. Efficient reachability analysis

Figure 3.1: A simple transition system, represented by the matrix in (3.2).

Each column in δ corresponds to a state and if there exists a transition xi → xj then
column i in δ contains j. Since G contains the transitions x1 → x2 and x1 → x3,
column 1 in δ contains both 2 and 3. Essentially, each column is a list of the target
states from all the outgoing transitions of the state corresponding to it. However,
since not all states have the same number of outgoing transitions, the columns will
not have the same number of elements. This is solved by filling out any remaining
places with zeros. In order to create a more efficient implementation, the number of
nonzero elements in the columns of δ are stored in δn, as

δn =
[
2 1 1 0

]
. (3.3)

Since a matrix is used to store target states, this representation is called target-
matrix representation. An alternative representation, called source-matrix repre-
sentation, is shown in (3.4), where the matrix γ contains source states rather than
target states. To be specific, column i in the matrix contains the source states of all
the incoming transitions to state i. A transitions xi → xj then means that column
j contains i. Again, a zero denotes the absence of transitions, and the number of
nonzero elements are stored in γn.

γ =
[
0 1 1 2
0 0 0 3

]
(3.4)

γn =
[
0 1 1 2

]
(3.5)

A third possible representation, called full-matrix representation, consists of a binary
N ×N matrix and is shown in (3.6). A transition xi → xj then means that there is
a 1 on row i, column j in the matrix.

ε =


0 1 1 0
0 0 0 1
0 0 0 1
0 0 0 0

 (3.6)

3.2 Reachablility algorithms
The first algorithm, which was proposed by Bengt Lennartsson, uses the target-
matrix representation. It is based on the following steps. x represents the states
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that have already been reached, d represents newly reached states and o represents
states that can be reached from d in one step.

1. Let x = xI and d = xI

2. Let o be the one-step reachable states from d, by taking the following steps
(a) Let J be the set containing the indices of all ones in d
(b) For j ∈ J , for i ∈ I, where I = {1, 2, . . . , δn,j}
(c) let oδi,j

= 1
3. Let d = o ∧ ¬x
4. Let x = x ∨ d
5. If d contains any ones, repeat from step 2.

This algorithm will be called target-reach. Note how it uses vectorial operations
between binary vectors in steps 3 and 4.
The second algorithm uses the source-matrix representation, so it shall be called
source-reach. Here, b is used to save the old value of x, so that it keeps looping
until the value of x stops changing. The basic idea here is that a particular state
xj is considered reached if it has already been reached or if any of its source states
γi,j|i = [1, γn,j] have been.

1. Let x = xI and b = xI

2. Let J = 1, 2, . . . , N
3. For j ∈ J , for i ∈ I, where I = {1, 2, . . . , γn,j}
4. Let xj = xj ∨ xγi,j

5. If x 6= b then let b = x and repeat from step 2
One main difference between this algorithm and target-reach is that this does not
use any vectorial or operation. Instead, it loops through the states one by one.
The third and simplest algorithm uses the full-matrix representation and will be
called full-reach. It takes advantage of the fact that a vector matrix multiplication
between x and ε produces the one-step-forward reachable states from x.

1. Let x = xI and b = xI

2. Let x = x ∨ x · ε
3. If x 6= b then let b = x and repeat from step 2

The idea here is to exploit the fact that matrix multiplication is very efficient.

3.3 Testing and performance

The algorithms were compared against each other using the transition system GSB

shown in Figure 3.2 for different values of N. For a given number N , the transition
system has N2 states and 2N(N − 1) transitions, and always uses state 1 as its
initial state. From the initial state, all states are reachable in 2(N − 1) steps or less.
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N states target-reach source-reach full-reach source-reach-irn
100 10 000 113 19 18 281
200 40 000 216 52 119 3 600
300 90 000 426 92 540 12 400
400 160 000 893 137 2 190
500 250 000 1 195 260 4 243
600 360 000 1 757 391
700 490 000 2 633 463
800 640 000 4 635 651
900 810 000 6 484 798
1000 1 000 000 9 037 880

Table 3.1: Execution times in milliseconds from tests in Matlab comparing the
three algorithms, as well as a version of source-reach that iterates over states in a
random order rather than in acending order.

Figure 3.2: A transition system representing two synchronized buffers. In this
figure, M is defined as N2 −N .

3.3.1 Testing in Matlab

The tests were run in Matlab using the built in profiler. The results are presented
in Table 3.1 and visualized in Figure 3.3. As the results show, source-reach showed
great promise initially. Unfortunately, this was due to the specific test example that
was used. Consider the two simple transition systems shown in Figure 3.4.

28
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Figure 3.3: Visualization of the test results presented in Table 3.1.

Figure 3.4: Two linear transition systems with states in opposite order.

Since source-reach iterates over the states in ascending order, A1 is a best-case
scenario where all states are found in a single iteration. A2, however, is a worst-case
scenario where N − 1 iterations are required. The example used for the testing,
shown in Figure 3.2, is clearly a very favourable case. Because of this, source-reach
was modified to iterate over the states in random order. This is what is called source-
reach-in-random-order in Table 3.1 and Figure 3.4. The time spent randomizing the
order was deducted from the algorithm’s run-time. Nevertheless, the modification
slowed the algorithm to a crawl.
Interestingly, full-reach proved to be fast for small examples, beating target-reach by
a factor of 5 for 104 states and almost twice as fast for 4·104 states. Unfortunately, it
slows down considerably for larger examples as the number of multiplications grows
cubically. Additionally, the elements in ε grow quadratically with the number of
states in the transition system, which could consume considerable memory. However,
there is no data on this since memory use was not measured. Nevertheless, the
approach of exploiting the efficiency of matrix multiplication remains attractive for

29



3. Efficient reachability analysis

N states target-reach C++ target-reach Matlab
500 250 000 6 600 1 200
1000 1 000 000 46 500 8 600
2000 4 000 000 372 000 73 500

Table 3.2: Execution times in milliseconds from tests comparing target reach in
C++ and Matlab.

small examples.
Having produced results in Matlab, target-reach and source-reach were re-implemented
in C++. C++ is well known for being a fast language, so it was the natural choice.

3.3.2 Testing in C++
For development in C++, the Visual Studio IDE was used. Measurements of perfor-
mance were taken using the built-in profiler. Firstly, target-reach and source-reach
were implemented so that they followed the Matlab implementation as closely as
possible. Code was also written to generate the δ and γ matrices and the corre-
sponding δn and γn vectors for different values of N . Initial testing of target-reach
showed that steps 3 and 4 took about 61% and 21% of the total execution time,
respectively. These steps involve vectorial operations ∧,¬ and ∨ on binary vectors.
To improve computation time, the datatype used to store vectors was changed from
std::vector<bool> [15] to boost::dynamic_bitset<> [16]. This massively im-
proved performance, allowing the code to handle approximately 106 states, whereas
it could previously only handle 102 whilst still completing in under a minute. More
specifically, the test case where N = 1000 now took about thirty-five seconds on
average. Using the profiler to highlight what areas of the code took the most time,
the algorithm was modified several times to improve its execution time. Eventually,
it had changed so much that it became equivalent to a breadth-first search (BFS),
which I shall call BFS-reach. BFS-reach took only about six seconds to run the test
case where N = 1000, clearly far superior to reach-target. Three tests were run
to compare the differences between implementing target-reach in Matlab and C++.
The results are shown in Table 3.2. Target-reach proved to not be very efficient in
C++. However, the tests do show a considerable difference between the execution
time depending on what language is used. Thus, it was interesting to see if Python
(a very popular language) would yield an efficient implementation.

3.3.3 Testing in Python
The development in Python was done using the Pycharm IDE, and the built-in
profiler was used for measurements. Target-reach was implemented first and initially
used the List [17] data structure to store vectors, but this was quickly changed to
numpy.array [18] to speed up the execution time. Since BFS-reach performed so
well in C++, it was implemented next and compared to target-reach. An initial test
showed the results presented in Table 3.3.
Once again, we find that BFS-reach is very efficient. Table 3.4 includes the results
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N states target-reach (List) target-reach (numpy.array) BFS-reach
300 90 000 18 000 11 000 200

Table 3.3: Execution times in milliseconds from a test in Python comparing target-
reach based on list, target-reach based on numpy.array, as well as BFS-reach.

N states BFS-reach
500 250 000 800
1000 1 000 000 3 000
2000 4 000 000 13 200

Table 3.4: Execution times in milliseconds from a test of BFS-reach in python.

from further tests of BFS-reach in python.

3.3.4 Summary

Binary vectors
[
x1 x2 . . . xN

]
have been used to represent which states in a state

space X = {x1, x2, . . . , xN} that have been reached. Transitions have been repre-
sented in three ways. In the target-matrix δ, a transition xi → xj ∈ T implies that
column i in δ contains j. In the source-matrix γ, it implies that column j con-
tains i and in the full-matrix ε, it implies that there is a 1 in position (i, j). Three
algorithms, target-reach, source-reach and full-reach, use these representations, re-
spectively. Importantly, target-reach relies heavily on vectorial operations on binary
vectors, whereas source-reach relies on element-wise operations, and full-reach relies
on matrix multiplication. The execution times are based on how fast these under-
lying operations can be made. A fourth algorithm, BFS-reach, was shown to be
superior in C++ and Python. Target reach performed best in Matlab for larger
examples, surpassed by full-reach for smaller ones.
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4
Translation from Petri net to

nuXmv

The model checker nuXmv is used for verifying temporal logic specifications on tran-
sition systems. It is not intended to be used for Petri nets. Fortunately, bounded
Petri nets can be described in the nuXmv input language, but sadly such a descrip-
tion may require a considerable amount of code. This chapter presents a parser,
hereby known as PetNet, which solves this issue by translating a compact, user-
friendly description of a bounded Petri net into valid nuXmv code. PetNet is im-
plemented as a Matlab script and accepts a text file describing a bounded Petri net
that follows a specific format. The text file should be located in the same folder as
the script, and running it produces a .smv file, which can, in turn, be run by nuXmv
as described in Chapter 2.4.2. The input format is based on the nuXmv input lan-
guage, as the intended user is likely to be familiar with it. Similarities between the
input format and nuXmv code also allowed for a simpler implementation since the
script’s purpose is to translate from one to another.

4.1 Features
PetNet has four main features, which are outlined here.

1. Any places not initialized by the user will by default be initialized to zero
instead of random values.

2. Any places not affected by a transition will by default keep their current values
instead of assuming random values.

3. Guards are added, ensuring that the number of tokens in a place cannot be
increased beyond its limit, decreased below 0 or set to a value outside this
range.

4. Shorthand syntax for common actions.
Out of these, the second is by far the most important as it massively reduces the
amount of code the user must write. When writing in nuXmv code, every place must
be assigned a new value at every event. Any place that is not assigned a new value
will be considered unconstrained and may assume any value inside its domain [4].
In PetNet, however, it is assumed that any place that is not assigned a new value
by a given event should keep its current value. Since any given event typically only
adds or subtracts tokens from a few places while the majority remains unaffected,
this assumption saves the user much time. Much like the second feature assumes
that places should keep their number of tokens by default, the first assumes that
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the default number of initial tokens is zero.

4.2 Syntax
Four keywords are expected to be found in the text, with four more being optional.
The necessary keywords are CONST, PLACES, INIT, TRANS and the optional ones
are SPEC, LTLSPEC, INVARSPEC, NUXMV. Each keyword marks the beginning of a
section of the code and ends when the next keyword appears, except for NUXMV which
continues until the end of the file. The reason for this exception will be made clear
later on. Comments begin with -- and continue until the end of the line. Under the
CONST keyword, a list of declaration of constants is expected, separated by commas
and ending with a semicolon. These constants can be used later in the code. Under
PLACES, a list of places is expected, again separated by commas and ending with a
semicolon. Each place is to be directly followed by a colon and an upper limit on
the number of tokens that place may contain. The lower limit is always zero. Under
INIT, the initial number of tokens for each place is declared, comma-separated and
ended with a colon. Finally, under TRANS, the bounded Petri nets events are written,
separated by colons. Each event starts with an event label, followed by a comma
and a number of statements. These statements can either be guards that restrict
when the event may fire or actions that affect the tokens in the bounded Petri net.
The optional keywords SPEC, LTLSPEC, INVARSPEC keywords are used for writing
specifications, which follows the same syntax as nuXmv, described in Chapter 2.4.1.
Finally, any text between the NUXMV keyword and the end of the file is not affected
by PetNet. This allows the user to directly write nuXmv code to be included in the
output file. The following code segment shows the syntax for the input language of
PetNet.
-- this is a comment
CONST

<constant >=< numerical >,<constant >=< numerical > ... ;
PLACES

<place >:< numerical >,<place >:< numerical > ... ;
INIT

<place >=< numerical >,<place >=< numerical > ... ;
TRANS

<label >:< statement ><separator > ... <statement >;
...
<label >:< statement ><separator > ... <statement >;

SPEC
<spec >

LTLSPEC
<ltlspec >

INVARSPEC
<invarspec >

NUXMV
<nuxmv >

Listing 4.1: Code segment showing the PetNet syntax.
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Syntax tag Description of valid text Example
<constant> alphanumeric string beginning with a letter m1
<place> alphanumeric string beginning with a letter p1
<label> alphanumeric string beginning with a letter a1

<numerical> anything that evaluates to a number 2*(m1+3)
<statement> A <guard> or an <action> tag p1>2 or p1+

<guard> <expression><comparator><expression> p1>2
<action> <place><operator><numerical> p1+

<separator> One of the symbols & | ˆ -> <-> &
<comparator> One of the symbols < > = <= >= != <
<operator> One of the symbols + - * / % ’= +

<spec> A CTL specification written in the nuXmv EF p1=0
<ltlspec> An LTL specification written in the nuXmv G p1!=0
<invarspec> An invariant specification written in the nuXmv p

<nuxmv> Any valid nuXmv code SPEC EF p1>1

Table 4.1: Valid text for the syntax tags.

Figure 4.1: A bounded Petri net where two processes share a mutual resource r.

Valid text for the syntax tags (enclosed by < and >) are shown in in Table 4.1.
Most of the symbols for the <separator>, <comparator> and <operator> tags are
intuitive. The operator + obviously means addition, for example. The non-trivial
ones are ˆ, meaning xor, %, meaning modulus, and ’=, meaning next. The next
operator ’= is used to directly assign a specific value to the next value of a place.
Assuming p is a place with the limit m and N is a numerical, Table 4.2 shows how
the shorthand syntax for actions, constants and places are translated into nuXmv
code. The so-called next action p’=N has one small exception that differs from what
is shown in the Table, namely that the guard 0<=N & N<=m is skipped if the value
of the numerical N is independent of the number of tokens in the places. So if N is a
constant number such as 5 or 2*m1, then it is the users responsibility to make sure
that this lies within the domain of p. If, however, N is something like p2+1, then
the guards are added. The reasoning behind this is that trying to assign a number
of tokens to a place that is always outside of its domain would be a model error,
which is easier to debug without the guards as they prevent nuXmv from generating
errors.
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Meaning PetNet nuXmv
increment p+ next(p)=p+1 & p+1<=m
decrement p- next(p)=p-1 & p-1>=0
increase by N p+N next(p)=p+N & p+N<=m
decrease by N p-N next(p)=p-N & p-N>=0
multiply by N p*N next(p)=p*N & p*N<=m
divide by N p/N next(p)=p/N & p/N>=0
modulus N p%N next(p)=p%N & p%N>=0
next is N p’=N next(p)=N & 0<=N & N<=m
constant def. m=N m:=N
place def. p:m p:0..m

Table 4.2: Shorthand syntax for actions and definitions of constants and places.
Here, p is a place with the limit m and N is a numerical.

To clarify the syntax, the bounded Petri net Nr, shown in Figure 4.1, along with
two specifications, is described in PetNet code in Listing 4.2. The nuXmv code that
PetNet generates from this is shown as Listing 4.3.
Examples are all well and good but do not prove that any bounded Petri net as
defined in Chapter 2.1.3 may be expressed. Thus it is now shown how such a
definition may be translated into PetNet code.
CONST

m=2;
PLACES

p1:m, p2:m, q1:m, q2:m, r:2;
INIT

p1=m, q1=m, r=1;
TRANS

a1: p1 - & r- & p2+;
a2: p1+ & r+ & p2 -;
b1: q1 - & r- & q2+;
b2: q1+ & r+ & q2 -;

SPEC -- The resource r always returned eventually
AG EF (r=1)

LTLSPEC -- Mutual exclusion between p2 and q2
G !(p2=1 & q2 =1)

Listing 4.2: PetNet code describing the bounded Petri net Nr shown in Figure 4.1
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MODULE main

DEFINE
m=2;

VAR
p1 :0..m; p2 :0..m; q1 :0..m; q2 :0..m; r :0..2;

IVAR
event :{a1 , a2 , b1 , b2};

INIT
p1=m & q1=m & r=1 & p2=0 & q2 =0;

TRANS
(event=a1 & next(p1)=p1 -1 & p1 -1>=0 & next(r)=r -1 & r

-1>=0 & next(p2)=p2+1 & p2+1<=m & next(q1)=q1 & next(q2)=q2) |
(event=a2 & next(p1)=p1+1 & p1+1<=m & next(r)=r+1 & r+1 <=2 &

next(p2)=p2 -1 & p2 -1>=0 & next(q1)=q1 & next(q2)=q2) |
(event=b1 & next(q1)=q1 -1 & q1 -1>=0 & next(r)=r -1 & r

-1>=0 & next(q2)=q2+1 & q2+1<=m & next(p1)=p1 & next(p2)=p2) |
(event=b2 & next(q1)=q1+1 & q1+1<=m & next(r)=r+1 & r+1 <=2 &

next(q2)=q2 -1 & q2 -1>=0 & next(p1)=p1 & next(p2)=p2) ;

SPEC AG EF (r=1)
LTLSPEC G !(p2=1 & q2 =1)

Listing 4.3: nuXmv code describing the bounded Petri net Nr shown in Figure 4.1

4.3 Definition to PetNet code
Consider a bounded Petri net

NB =< P, T, I,D,M,E, L > (4.1)

with n places pi for i ∈ [1, n] and k events ej for j ∈ [1, k]. Each place pi ∈ P has
the initial number of tokens mi ∈M and upper limit li ∈ L. Each transition tj ∈ T
corresponds to row j in the incedence matrix I and decadence matrix D, which are
both of dimension n × k. Each transition tj ∈ T , corresponds to an event label
ej ∈ E. If the condition

(Ii,j = 0 ∨Di,j = 0)∀i ∈ {1, 2, ..., n}, j ∈ {1, 2, ...,m} (4.2)

holds, then there is no event that both takes and gives tokens to the same place and
the Petri net is translated into PetNet code as follows, where A = I −D
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Figure 4.2: Petri net example where i ∈ [0, 9].

CONST

PLACES
p1:l1 , p2:l2 , ... pn:ln;

INIT
p1=m1 , p2=m2 , ... pn=mn

TRANS
e1:p1+A11 & p2+A21 & ... & pn+An1;
e2:p1+A12 & p2+A22 & ... & pn+An2;
...
ek:p1+A1k & p2+A2k & ... & pn+Amk;

Listing 4.4: PetNet code for the bounded Petri net defined in (4.1).

Now consider that (4.2) does not hold for some (i, j). Then the following code must
be appended to the line in the TRANS block that corresponds to ei.

pj -Dij >=0

Listing 4.5: PetNet guard statement ensuring that an event only fires if there are
sufficient tokens available.

This will ensure that the event only fires if pj contains a sufficient number of tokens.
This concludes how a bounded Petri net is described as PetNet code. However, one
can note that the full syntax of PetNet also allows for other behaviour, such as an
event setting the number of tokens in a place to a specific value or multiplying the
number of tokens in a place with some number. Of course, none of this is interesting
if the syntax for PetNet is not more convenient than that of nuXmv. Therefore, the
translator’s performance shall now be considered. The performance will be measured
in terms of the number of characters necessary to describe a given Petri net. The
fewer the characters, the better. Of course, this must be compared to the number
of characters that the user would have had to write if they were not using PetNet.
Thus, we will use the relative difference between the number of characters needed
to describe Petri nets as our performance measure.

4.4 Performance
Consider the Petri net N10, shown in Figure 4.2, where i ∈ [0, 9]. It consists of 20
places, each with two corresponding transitions that increment and decrement the
number of tokens in them. Each place initially has zero tokens, with an upper limit
of ten. This example has been chosen since it has many simple transitions spread
across a large number of places. The PetNet code describing N10 is shown below in
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Figure 4.3: nuXmv description of the Petri net example from Listing 4.6.

Listing 4.6. It is 530 characters long and gives a compact and readable description
of the Petri net. More importantly, it can be written quickly.
CONST

m=10;
PLACES

p0:m, p1:m, p2:m, p3:m, p4:m,
p5:m, p6:m, p7:m, p8:m, p9:m,

q0:m, q1:m, q2:m, q3:m, q4:m,
q5:m, q6:m, q7:m, q8:m, q9:m;

INIT

TRANS
a0:p0+; a1:p1+; a2:p2+; a3:p3+; a4:p4+;
a5:p5+; a6:p6+; a7:p7+; a8:p8+; a9:p9+;

b0:p0 -; b1:p1 -; b2:p2 -; b3:p3 -; b4:p4 -;
b5:p5 -; b6:p6 -; b7:p7 -; b8:p8 -; b9:p9 -;

c0:q0+; c1:q1+; c2:q2+; c3:q3+; c4:q4+;
c5:q5+; c6:q6+; c7:q7+; c8:q8+; c9:q9+;

d0:q0 -; d1:q1 -; d2:q2 -; d3:q3 -; d4:q4 -;
d5:q5 -; d6:q6 -; d7:q7 -; d8:q8 -; d9:q9 -;

Listing 4.6: PetNet code representing the Petri net shown in figure 4.2.

The equivalent description of N10 in nuXmv code has 12 806 characters and is shown
in Figure 4.3. This gives us a relative difference in characters of 12806−530

12806 ≈ 96%. Of
course, this example is designed to highlight the strengths of PetNet. As one can see
in Figure 4.3, most characters lie under the TRANS keyword. Let us thus consider an
arbitrary Petri net, containing N places and M transitions. Each of the N places
must be assigned some value in each of the M transitions. Thus, there must be
N ·M assignments in total. N10 contains 20 places and 40 transitions, creating 800
assignments. In PetNet, however, there is no need to write these assignments.

39



4. Translation from Petri net to nuXmv

4.5 Summary
While bounded Petri nets can be described in the nuXmv input language, it often
requires much code. A parser, known as PetNet and implemented as a Matlab
script, accepts a brief description of a Petri net as a text file and translates it into
valid nuXmv code. The relative difference between the number of characters needed
for the PetNet description and the nuXmv description has been shown to be large,
especially for Petri nets with many states and transitions. If most transitions do
not affect most places, as is often the case, this difference widens. PetNet effectively
extends nuXmv to be used not only for transition systems but also for Petri nets.
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5
Comparing nuXmv based model

checking with incremental
abstraction

Incremental abstraction and nuXmv have been introduced as tools for temporal
logic verification. However, both of these apply only to transition systems, not Petri
nets. Fortunately, a Petri net may be translated into a transition system, either
by generating its reachability graph or by replacing places with buffer transition
systems as shown in Chapter 2.1.5. Thus, incremental abstraction may be applied
if a transition system is generated from the Petri net. As for nuXmv, Chapter 4.3
shows how PetNet can be used to convert a description of a Petri net into valid
nuXmv code, representing a transition system with the same behaviour. These two
methods have been compared against each other in [7], and that comparison will
now be explained and discussed in the context of this thesis. The test example is a
bounded, modular Petri net.

5.1 Model used for testing
The temporal logic verification methods will be compared against each other on
the bounded, modular Petri net shown in Figure 5.1. It consists of several straight
sequences of places of finite capacity and three shared resources R1, R2 and R3.
This models a classic dual production line. The tokens then model products, and
the places model machines that process them individually separated by buffers of
size m. The synchronisation of these Petri nets is shown in Figure 5.2. Since
PN is bounded, it has a finite state space. It does not, however, have finite paths
lengths, meaning that execution could continue infinitely. The a transitions could,
for example, repeatedly fire in ascending order infinitely, first a0, then a1 and so on
up until a13, after which a0 fires again and the sequence repeats itself. One may
remark that this behaviour is not fair since the b transitions then never fire. One
simple way to achieve fairness here is by synchronizing with the transition system
F , which forces the events a2 and b2 to alternate. F is shown in Figure 5.3 and the
fair Petri net PNf is defined as PNf = PN ||F .
Infinite path lengths are desirable when testing fairness, but a final state can also
be of interest. This can be achieved by limiting the number of tokens that can enter
and exit the Petri net. For PN , the entering tokens can be limited by restricting the
number of times a0 and b0 can fire. Similarly, the exiting tokens can be limited where
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Figure 5.1: The modular Petri net PN , before synchronisation.

Figure 5.2: The modular Petri net PN , after synchronisation.

Figure 5.3: The Petri net NB and F . They are synchronised with PN to create
PNnb and PNf , respectively.

Figure 5.4: A Petri net consisting of a straight sequence of places as well as the
single place Petri net it may be abstracted to if all events but a0 and an are local.
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the number of times a13 and b13 can fire is restricted. This gives initial and final
states. The initial state is when there are m tokens in the places before a0 and b0, as
shown in NB in figure 5.3. The final state is when there arem tokens the places after
a13 and a14, also shown in NB [7]. However, nuXmv expects infinite path lengths
[14], so the ω self-loop is added to the final state. The ω event, may only fire in the
final state and does not change the state. The only effect it has is that it changes
the final state from a deadlock to a livelock and thus allows nuXmv to handle our
model. Thus, the non-blocking Petri net PNnb is obtained as PNnb = PN ||NB,
where NB is shown in Figure 5.3.

So there are now two versions of the original Petri net, namely PNf and PNnb, which
are used to test fairness and non-blocking, respectively. These will be used to com-
pare incremental abstraction and nuXmv as methods for temporal logic verification.
However, another method, known as analytical abstraction, will first be introduced.
The goal of this method will not be to perform verification but to abstract PN by
hand before applying any verification method.

5.2 Analytical abstraction

Consider the Petri net Ns comprising a sequence of places, as seen in Figure 5.4.
If it is assumed that the events a1, ..., an−1 are local, then Ns can be abstracted to
Ne, also shown in Figure 5.4. The abstracted Petri net consists of a single place
with a capacity equal to the sum of all capacities in Ns. Suppose now that either
a0 or an is also a local transition and that the temporal logic specification that is to
be validated does not depend on the number of tokens in the place between them.
Then, the Petri net can be abstracted completely and removed from the model
[7]. To understand this, consider the unsynchronized PN model shown in Figure
5.1. If the idea of abstracting sequences of places into a single place with extended
capacity is applied, the abstracted Petri net shown in Figure 5.5 is obtained. As one
can see, six sequences were replaced by single places. Note that when doing this,
the specifications that one wishes to validate must be respected. If a specification
depends on a certain transition or the number of tokens in a certain place, then
that transition or place cannot be abstracted away. In the case of PNnb, no further
abstractions are possible, and one ends up with the Petri net shown in Figure 5.6.
However, the fairness condition ϕf = � � xa ∧ � � xb on PNf does not depend on
the number of tokens in the first two places or the final place. Thus, the model PNf

may be abstracted further, resulting in the Petri net shown in Figure 5.7.

Further abstractions are possible for both PNA
nb and PNA

f , but more difficult to
make. However, a significant abstraction has already been made, saving computa-
tion time when more sophisticated methods are applied later. This is the point of
analytical abstraction. By making simple yet powerful abstractions by hand, the
time needed to run temporal verification methods such as incremental abstraction
and nuXmv is greatly reduced.
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Figure 5.5: The abstracted Petri net PNA.

Figure 5.6: The abstracted nonblocking Petri net PNA
nb.

Figure 5.7: The abstracted fair Petri net PNA
f .
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Figure 5.8: The fully abstracted
nonblocking Petri net PNFA

nb . Figure 5.9: The fully abstracted fair
Petri net PNFA

f .

5.3 Incremental abstraction
Incremental abstraction is now applied on PNnb, PNA

nb, PNf and PNA
f . Applying

it on PNnb or PNA
nb results in the simple transition system PNFA

nb shown in Figure
5.8, which one can see is trivially non-blocking since it only has a single transition
that immediately takes the transition system into the marked state with the state
label m.
Applying incremental abstraction to PNf or PNA

f also results in a very simple
transition system, namely PNFA

f , shown in Figure 5.9. Again, it is trivial to evaluate
fairness on this reduced transition system, as the propositions xa and xb obviously
become true infinitely often. The beauty here is that there is no need to verify
that PNf is fair or that PNnb non-blocking. It is not even necessary to generate
PNf (by synchronizing its subsystems) because PNf is fair if and only if PNFA

f is.
Similarly, PNnb is non-blocking if and only if PNFA

nb is. Since the verification of the
abstracted models is so easy, the concern now lies only with how quickly a model
can be abstracted. The results for this are shown in Chapter 5.5.

5.4 Modelling in PetNet and nuXmv analysis
In order for us to use nuXmv to verify our temporal logic specifications, PNnb,
PNA

nb, PNf and PNA
f must first be modelled in PetNet. These models are shown

in code-listing 5.1, 5.2, 5.3 and 5.4, respectively. The number of characters these
models consist of, as well as the number of characters in the corresponding nuXmv
models and the relative difference in characters are all shown in Table ??. Note that
all of these models are using m = 2, but the difference in characters when changing
m is completely negligible. m determines the difficulty of the verification step, not
the modelling.
Running the generated nuXmv code while measuring the time it takes to validate
gives the absolute computation times. Of course, the absolute computation times
do not say much since they heavily depend on the machine the code runs on. What
is interesting is the relative difference in computation time between different models
and between this approach and incremental abstraction. For this reason, the results
are presented in Chapter 5.5.
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CONST
m:=2;

PLACES
p0:m, p1:1, p2:m, p3:1, p4:m, p5:1, p6:m, p7:1, p8:m, p9:1,
p10:m, p11 :1, p12:m, p13 :1, p14:m,

q0:m, q1:1, q2:m, q3:1, q4:m, q5:1, q6:m, q7:1, q8:m, q9:1,
q10:m, q11 :1, q12:m, q13 :1, q14:m,

R1:1, R2:1, R3 :1;
INIT

p0=m, q0=m, R1=1, R2=1, R3 =1;
TRANS

a0: p0 - & p1+; b0: q0 - & q1+;
a1: p1 - & p2+; b1: q1 - & q2+;
a2: p2 - & p3+ & R1 -; b2: q2 - & q3+ & R1 -;
a3: p3 - & p4+ & R1+; b3: q3 - & q4+ & R1+;
a4: p4 - & p5+; b4: q4 - & q5+;
a5: p5 - & p6+; b5: q5 - & q6+;
a6: p6 - & p7+ & R2 - & R3 >0; b6: q6 - & q7+ & R3 - & R2 >0;
a7: p7 - & p8+ & R3 -; b7: q7 - & q8+ & R2 -;
a8: p8 - & p9+ & R2+; b8: q8 - & q9+ & R3+;
a9: p9 - & p10+ & R3+; b9: q9 - & q10+ & R2+;
a10: p10 - & p11 +; b10: q10 - & q11 +;
a11: p11 - & p12 +; b11: q11 - & q12 +;
a12: p12 - & p13 +; b12: q12 - & q13 +;
a13: p13 - & p14 +; b13: q13 - & q14 +;
w: p14=m & q14=m;

SPEC
AG EF (p14 = m & q14 = m);

Listing 5.1: PetNet model of PNnb.

CONST
m:=2;

PLACES
p0:m, p2:m, p3:1, p6:m, p7:1, p8:m, p9:1, p13 :1, p14:m,
q0:m, q2:m, q3:1, q6:m, q7:1, q8:m, q9:1, q13 :1, q14:m,
R1:1, R2:1, R3 :1;

INIT
p0=m, q0=m, R1=1, R2=1, R3 =1;

TRANS
a0: p0 - & p2+; b0: q0 - & q2+;
a2: p2 - & p3+ & R1 -; b2: q2 - & q3+ & R1 -;
a3: p3 - & p6+ & R1+; b3: q3 - & q6+ & R1+;
a6: p6 - & p7+ & R2 - & R3 >0; b6: q6 - & q7+ & R3 - & R2 >0;
a7: p7 - & p8+ & R3 -; b7: q7 - & q8+ & R2 -;
a8: p8 - & p9+ & R2+; b8: q8 - & q9+ & R3+;
a9: p9 - & p13+ & R3+; b9: q9 - & q13+ & R2+;
a13: p13 - & p14 +; b13: q13 - & q14 +;
w: p14=m & q14=m;

SPEC
AG EF (p14 = m & q14 = m);

Listing 5.2: PetNet model of the analytically abstracted PNA
nb.
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CONST
m:=2;

PLACES
p1:1, p2:m, p3:1, p4:m, p5:1, p6:m, p7:1, p8:m, p9:1,
p10:m, p11 :1, p12:m, p13 :1,

q1:1, q2:m, q3:1, q4:m, q5:1, q6:m, q7:1, q8:m, q9:1,
q10:m, q11 :1, q12:m, q13 :1,

R1:1, R2:1, R3:1, R4 :1;
INIT

R1=1, R2=1, R3 =1;
TRANS

a0: p1+; b0: q1+;
a1: p1 - & p2+; b1: q1 - & q2+;
a2: p2 - & p3+ & R1 - & R4+; b2: q2 - & q3+ & R1 - & R4 -;
a3: p3 - & p4+ & R1+; b3: q3 - & q4+ & R1+;
a4: p4 - & p5+; b4: q4 - & q5+;
a5: p5 - & p6+; b5: q5 - & q6+;
a6: p6 - & p7+ & R2 - & R3 >0; b6: q6 - & q7+ & R3 - & R2 >0;
a7: p7 - & p8+ & R3 -; b7: q7 - & q8+ & R2 -;
a8: p8 - & p9+ & R2+; b8: q8 - & q9+ & R3+;
a9: p9 - & p10+ & R3+; b9: q9 - & q10+ & R2+;
a10: p10 - & p11 +; b10: q10 - & q11 +;
a11: p11 - & p12 +; b11: q11 - & q12 +;
a12: p12 - & p13 +; b12: q12 - & q13 +;
a13: p13 -; b13: q13 -;

LTLSPEC
(G F p3 =1) & (G F q3 =1);

Listing 5.3: PetNet model of PNf .

CONST
m:=2;

PLACES
p3:1, p6:m, p7:1, p8:m, p9:1,
q3:1, q6:m, q7:1, q8:m, q9:1,
R1:1, R2:1, R3:1, R4 :1;

INIT
R1=1, R2=1, R3 =1;

TRANS
a2: p3+ & R1 - & R4+; b2: q3+ & R1 - & R4 -;
a3: p3 - & p6+ & R1+; b3: q3 - & q6+ & R1+;
a6: p6 - & p7+ & R2 - & R3 >0; b6: q6 - & q7+ & R3 - & R2 >0;
a7: p7 - & p8+ & R3 -; b7: q7 - & q8+ & R2 -;
a8: p8 - & p9+ & R2+; b8: q8 - & q9+ & R3+;
a9: p9 - & R3+; b9: q9 - & R2+;

LTLSPEC
(G F p3 =1) & (G F q3 =1);

Listing 5.4: PetNet model of the analytically abstracted PNA
f .
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Model Characters (PetNet) Characters (nuXmv) Reduction
PNnb 976 16070 94%
PNA

nb 923 6470 86%
PNf 626 14189 96%
PNA

f 456 3325 86%

Table 5.1: Number of characters used to represent various models in PetNet and
nuXmv.

m 2 6 10
PNf T.O. T.O. T.O.
PNA

f 0.21 1.43 4.95
PNnb 0.23 41.5 575
PNA

nb 0.05 1.28 7.66

Table 5.2: Test data for using
nuXmv to validate the nonblocking
and fairness properties.

m 2 6 10
PNf 0.8 0.9 1.0
PNnb 0.8 1.5 2.9

Table 5.3: Test data for using in-
cremental abstraction to validate the
nonblocking and fairness properties.

5.5 Results
The results from using nuXmv and incremental abstractions to verify the nonblock-
ing and fairness properties are presented in Table 5.2 and 5.3, respectively, and taken
from [7]. Here, T.O. stands for time out, which means that it had not finished within
the 600-second limit. The analytically abstracted models PNA

f and PNA
nb are only

verified using nuXmv. There are no issues with applying incremental abstraction to
an already abstracted model, but that has not been done in this case. As the data
shows, incremental abstraction outperforms nuXmv, even when nuXmv is given the
substantial benefits of analytical abstraction. When nuXmv must work with the
unabstracted models PNf and PNnb, it takes considerably longer for verifying non-
blocking and fails altogether on verifying fairness.

5.6 Summary
This chapter compares nuXmv and incremental abstraction as methods for temporal
logic verification. A bounded modular Petri net PN , shown in Figure 5.2 is used as
a test example, where fairness and non-blocking are to be verified. Fairness requires
that certain places receive tokens infinitely often, meaning that execution must be
able to continue infinitely. However, it is also interesting to study models that have a
final state and for such a model non-blocking is tested. Thus the non-blocking model
PNnb and the fair model PNf are created. Analytical abstraction is introduced,
which involves making simple yet significant abstractions to the models before more
involved methods are applied. The results of applying incremental abstraction are
presented. The models as written in PetNet are shown. Finally, the computation
times between the different methods with and without analytical abstraction are
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presented, showing that incremental abstraction is a powerful tool, both when used
by itself and as the base for analytical abstraction.
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6
Conclusion

This chapter summarises the conclusions that can be drawn from this thesis with
respect to the research questions presented in Chapter 1.2. Because the questions
touch on separate topics, this chapter is structured to answer the questions sepa-
rately.

6.1 Efficient reachability
One main goal of this thesis has been to investigate ways to implement a reacha-
bility algorithm efficiently. For this, a Matlab implementation based on repeatedly
performing bitwise operations between boolean vectors was used as a starting point.
Two alternative algorithms were developed, and the algorithms were tested against
each other. Implementations were also made in both C++ and Python where com-
parisons were also made against a breadth-first search. Based on this work, the
following conclusions were made.

• Matlabs efficient matrix multiplication may be exploited to achieve a very
efficient way to find the reachable states of transition systems with around
104 states or less. However, this method slows down considerably for larger
transition systems and has poor memory complexity.

• In C++, the boost::dynamic_bitset<> data-structure is significantly faster
than std::vector<bool> at performing bitwise boolean operations. However,
such operations are still significantly faster in Matlab.

• In Python, the numpy.array data structure is significantly faster than list
comprehension at performing bitwise boolean operations. However, such op-
erations are still faster in Matlab.

• Because bitwise boolean operations can be made faster in Matlab than in C++
or Python, an algorithm based on such operations (such as target-reach) will
be more efficient in Matlab than in C++ or Python.

• In C++ and Python, a breadth-first search is an efficient way of implementing
a reachability algorithm.

6.2 PetNet
This thesis has presented a parser that converts a brief description of a bounded Petri
net into nuXmv code. The parser, known as PetNet, accepts definitions of constants
as well as places, their limits and an initial number of tokens. Furthermore, the user
must describe the transitions and their event labels, guards and actions, and any LTL
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and CTL specifications that are to be validated. The primary differences between
the PetNet input code and the nuXmv code generated are given by the following
four main features.

1. Any places not initialized by the user will by default be initialized to zero
instead of random values.

2. Any places not affected by a transition will by default keep their current values
instead of assuming random values.

3. Guards are added, ensuring that the number of tokens in a place cannot be
increased beyond its limit, decreased below 0 or set to a value outside this
range.

4. Shorthand syntax for common actions.
Of these, the second feature is responsible for the bulk of the reduction. This is
because, in nuXmv, one must specify the new number of tokens in each place for
each transition. If the new number of tokens in a certain place is left unspecified
for a certain transition, that transition may assign any number of tokens to that
place. Most transitions do not affect most places, so a great deal of assignments
that state that the new number is the same as the old one must be included in
nuXmv. Removing the need to write these assignments thus eliminates a large part
of the code one has to write. The result is that the parsers performance (measured
as the relative difference between the number of characters in the PetNet code and
equivalent nuXmv code) is very high, especially for Petri nets with many places and
transitions.

6.3 Incremental abstraction and nuXmv
This thesis has been concerned with efficient temporal logic verification. It has com-
pared two methods for this, namely incremental abstraction and nuXmv. Fairness
and non-blocking properties were verified on a test example consisting of a bounded
modular Petri net. Fairness requires that a certain condition is repeated indefi-
nitely while non-blocking requires that a marked state is reached. One fair and one
non-blocking version of the Petri net was created to test these properties separately.
The results showed incremental abstraction to be the superior method. Additionally,
Analytical abstraction is introduced. Based on the same principles as incremental
abstraction, it is a way of making simple yet powerful abstractions to a model be-
fore we apply more comprehensive methods. Test results showed that analytical
abstraction significantly reduced the computation time needed for validation.
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