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c©CARLOS CHOVER LóPEZ, 2010
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Abstract

In the last century, new observational techniques and discoveries such as the Cosmic Mi-
crowave Background Radiation have brought a new dimension of knowledge about the
Universe. Therefore new theories and models have been proposed to explain the observed
Universe. Computer simulations are a very important tool because they lay a bridge be-
tween theory, often over-simplified, and observations, which reveal the complexity of our
Universe.

In this thesis, it is given a review of observations including the most important discover-
ies and results that help to describe the Universe and have been used to develop the models
considered nowadays. The cosmological theory behind the large-scale structure formation
is explained, from the basis of the Friedman model to the formation of structures through
the linear, quasi-linear and non-linear regime, including the Zeldovich approximation and
the spherical collapse model. Furthermore, the different types of codes used for cosmo-
logical simulations are introduced, focusing on the N-body codes and presenting the code
used in this thesis, developed by Klypin & Holtzman (1997). The tools used to analyse
the results: density plots, power spectrum and mass variance are described as well.

Three main sets of simulations have been performed: a basic simulation (RUN0) with
standard cosmological parameters, simulations of ΛCDM and simulations of Hot+Cold
Dark Matter (HCDM). All the simulations use 323 particles, while different cosmological
parameters have been changed e.g. σ8, Ωm, ΩΛ and n. Thus, it is observed that higher
values of Ωm and low values of ΩΛ lead to more clustering and hence more developed
structures. Moreover, the effect of σ8 appears to be critical, since it determines the am-
plitude of the density fluctuations at the initial redshift of the simulation. When studying
the presence of hot dark matter, the main difference comes from the cut-off in the power
spectrum due to the hot dark matter free-streaming, resulting in less developed structures.
Similarly to the previous case, the effects of the cosmological parameters are explained for
this model.

Finally, some additional simulations regarding dark halos populations and density pro-
files are included in the Appendix.
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Chapter 1

Introduction

1.1 Motivation

The formation of large-scale structures and how the Universe has developed until the
present state are issues discussed and studied since the beginning of the 20th century.
Since then, many theories have appeared trying to solve these problems, however it has
been in the second part of the century, and especially since the 80s when our knowledge of
the Universe has started to become more precise.

Thus, the presence of dark matter has needed a long time to be widely accepted by
the scientific community. This concept was firstly introduced by Fritz Zwicky in 1933
and states that there is a type of matter, which cannot be detected directly using the
actual technology, that interacts with the “normal” matter through gravitation. Zwicky
noticed that the velocity of galaxies in large clusters was too great to maintain gravitational
stability, hence there should be a mass contribution from an unknown source. Needless
to say dark matter was a very controversial issue when it was presented, and it required
many years to start to be accepted. Furthermore, the elements forming dark matter are
unknown, being possible to classify the candidates in two main groups: cold dark matter
and hot dark matter (e.g. Primack & Gross 2000). Each type has different origin and
characteristics, and since it is not exactly understood the proportion of each component in
the Universe, this field is still a hot topic in cosmology.

Another element considered nowadays to explain the observed Universe is the dark
energy, which can be understood as a negative force that enhances the expansion of the
Universe. Dark energy has been studied since some observations discovered that the ex-
pansion rate of the Universe is increasing, as seen by the Supernovae Ia observations (e.g.
Riess 2000). Again, many discussions and studies have been needed to reach an agreement
about this field, since the nature of dark energy, as well as dark matter, are still unknown.

These two concepts are examples of how the knowledge about the Universe has changed
in recent times, and how is still evolving. Nevertheless, the new theories and ideas that
are continuously being presented need observations to validate them. Fortunately, the
observational tools have been improving continuously, leading to what is known as the
actual “precision cosmology”, where the cosmological parameters defining the Universe are
being determined with a high degree of detail. This is due to the fact that new discoveries
and surveys have allowed to observe the current and the very young Universe. Thus, the

, Radio and Space Science, Master’s Thesis 2010:03



2 CHAPTER 1. INTRODUCTION

young Universe is studied using the Cosmic Microwave Background Radiation, detected by
e.g. the COBE and the WMAP satellites (Bennet et al. 1993; Jarosik et al. 2010), while
the current distribution of the Universe is observed with telescopes and radio-telescopes
in projects such as the new generation of galaxies surveys: the 2-degree Field Galaxy
Redshift Survey, or 2dFGRS (The 2dF Galaxy Redshift Survey: spectra and redshifts),
and the Sloan Digital Sky Survey, or SDSS (The Sloan Digital Sky Survey: Technical
summary)(e.g. Springle et al. 2006).

However, even though these observations can show the shape of the Universe at different
times, they are not able to explain the process that transformed the very old small density
perturbations in the structures seen today, this is the formation of large-scale structures.
New tools were required in order to solve those problems, and the answer came with the
computer technology. With this new tool, scientist could develop computer simulations that
calculated the processes between the well known linear regime to the non-linear regime,
being able to connect the early Universe with the current observations.

Figure 1.1.1: Galaxy distribution obtained from surveys vs simulations. The blue plots represent
the surveys observations, being the left part the 2dFGRS and the top the SDSS. Red plots present
the results obtained by the Milennium simulation (Springel et al. 2006)
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CHAPTER 1. INTRODUCTION 3

Using the data from surveys and results given by simulations, a standard model for
the Universe has been stated, which says that the Universe is composed mostly by dark
energy (73%), dark matter (23%) and baryonic matter (4%), while the Hubble constant has
been determined to be 71± 2.5 km/s/Mpc (Jarosik et al. 2010). Nevertheless, as history
has taught us, these results may not be definitive since new studies and simulations can
provide data that disagrees with this model, resulting in the need of newer theories or
modifications.

1.2 Aim of the Thesis

The aim of this thesis is to understand the effect of the cosmological parameters in ΛCDM
universe and in particular to study the implications due to the presence of hot dark matter.
The method used to achieve this goal is performing a variety of simulations using a N-body
code in order to test the different cosmologies, modifying the values of a certain range of
cosmological parameters e.g. Hubble constant and density parameters, in order to study
the results obtained. Using this data it will be possible to understand the effects of these
parameters in the formation of large-scale structures in the Universe, the relation between
each other and their nature. Especially the cases comparing cosmologies using hot dark
matter with others without this component will be tested.

The rest of the thesis is organized as follows. In Chap. 2, some observational back-
ground is provided, while in Chap. 3 the theory behind the structure formation and the
models that describe the evolution of the Universe are explained. Chap. 4 contains infor-
mation about simulation codes, as well as the presentation of the code used in this thesis.
In Chap.5, the analysis tools used to study the results are introduced. In Chap. 6, the
simulations and the results obtained from them are analyzed. In Chap. 7, we draw the
conclusions. Finally the Appendix is divided in two parts: firstly simulations of dark halos
run to complement the studies done previously, and secondly a list of equations located
in the simulation code that have been used to do some theoretical calculations, showing
where they can be found.

, Radio and Space Science, Master’s Thesis 2010:03
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Chapter 2

Observations

Before explaining the cosmological theory used in the thesis it is very important to have a
review of the observations and discoveries achieved during the last years, giving a picture
of what has been discovered since the modern cosmology started and how this process
has evolved. Obviously, the whole history of cosmology cannot be explained, hence the
efforts will be focused on the observations and surveys that have contributed to explain
the formation of large-scale structures, as well as the main actors implied in this process,
such as dark matter or the Cosmic Microwave Background Radiation.

Moreover, the cosmological parameters studied in the thesis will be presented, describ-
ing their meaning, origin and use in the simulations. Needless to say the aim of this chapter
is to introduce them, while their influence and effects on the formation of structures is an-
alyzed in more detail in Chap. 6.

2.1 Cosmological Principle

In the beginning of modern cosmology at the first part of the 20th century, there was
not too much experimental or observational data that could be used to compare with the
theories, therefore some assumptions were needed to develop them, especially assumptions
related to some kind of symmetry in the field studied, making possible to erase some
degrees of freedom in the system.

Thus, the Cosmological Principle, introduced by Eisntein and adopted by the other
cosmologist, says that at sufficient large scales the Universe is isotropic and homogeneous.
Isotropy is the property of looking the same in all directions, while homogeneity is being
identical in any location of the space (Coles & Lucchin 2002). Many observations and
surveys have shown that the Universe have these properties, even though they are not
completely fulfilled. One example is the study of the Cosmic Microwave Background Ra-
diation [see Sect. 2.2], which reveals that there is some degree of anisotropy in the density
distribution of the Universe, even if it is very small. Besides, in order to accept that the
Universe is homogeneous from the isotropy observed, the Copernican Principle has to be
assumed. The Copernican Principle states that humans are not privileged observers, hence
the Earth is not a special point in the space with some kind of spherical symmetry around
it (Peacock 1999). Therefore when isotropy is accepted together with the Copernican
Principle implies homogeneity, resulting in the validation of the Cosmological Principle.
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6 CHAPTER 2. OBSERVATIONS

2.2 Cosmic Microwave Background Radiation

At the very firsts moments, the Universe was an infinitesimal volume, having an enormous
energy density distributed homogeneously and isotropically. Few moments later, at approx-
imately 10−37s, the Universe started to expand exponentially, in a process known as cosmic
inflation (e.g. Roos 2008). When inflation stopped, elementary particles were relativistic
i.e. they travelled at speed close to the speed of light. After that, the Universe continued
to expand and cold down, allowing the formation of baryons (t = 10−6s) e.g. protons and
neutrons. Is before this period when some neutrinos could decouple still having relativistic
velocities and form what is called hot dark matter [see section Sect. 2.3.2].

As the expansion continued the Universe kept on cooling down, and when few minutes
had passed since the initial expansion the first nuclei of deuterium, hydrogen and helium
formed, in a process called nucleosynthesis (e.g. Jedamzik & Pospelov 2009). Around
400,000 years later, when the temperature of the Universe was lower than the ionization
temperature, the atoms nuclei and the free electrons could combine into atoms. Thus,
radiation could decouple from matter and travel through the space, creating the relic
radiation that can be detected now, the Cosmic Microwave Background Radiation. Finally,
after a long period, stars, galaxies and the others structures started to form, but the exact
process is still unknown. Some theories describe a top-down process, where the largest
structures are formed firstly and through fragmentation the smaller structures e.g. galaxies
and stars are created. On the other side, there is also the possibility that a bottom-up
process took place, creating first the stellar-size objects and by hierarchical clustering larger
structures such as galaxies and clusters are formed (Yoshida 2009). This second theory
of large-scale formation is the one mostly accepted today due to the agreement of the
existence of cold dark matter [Sect. 2.3.1].

The Cosmic Microwave Background Radiation (CMBR) was discovered by Arno Penzias
and Robert Wilson in 1964, when they detected a radiation in the microwave range of
frequency that was coming from all directions in the sky. Even thought the Big Bang
model describes an homogeneous and isotropical density dstribution in the early Universe,
observations of the CMBR have shown that there is some degree of anisotropies in the
temperature profile of the CMBR. Thanks to precise observations done in recent years, it
has been determined that the CMBR has a black body spectrum with a temperature of
2.725 K, being the anisotropies small fluctuations in the temperature distribution due to
small variations in the density profile of the early Universe.

Since the CMBR was detected, many surveys have been done in order to discover
its characteristics. Regarding these surveys, it is interesting to present two of them, the
observations done by the COBE and the WMAP satellites, especially the WMAP, which
is the tool used in the last years to do the measurements and is offering very precise data
of the relic radiation. Thus, the COBE (Cosmic Background Explorer) was a satellite
developed by the NASA and launched in 1989, used to confirm many of the predictions
done by the Big Bang model. Furthermore, it confirmed that the CMBR had a black body
radiation, and showed that its temperature was 2.73 K. It also detected the anisotropies
in the CMBR and discovered some early galaxies (Bennett et al. 1993).

On the other side, the WMAP (Wilkinson Microwave Anisotropy Probe) was developed
by the NASA as well, and was launched in 2001. The WMAP is used nowadays to study
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the CMBR, due to its high precision instruments, which allow the observation of the sky
with much more accuracy than before. The WMAP has been used to obtain a large amount
of results that have given a more detailed picture of how is the Universe, its formation and
its characteristics. Thus, with the observation done by WMAP, it has been determined
that the Hubble constant is 71±2.5 km/s/Mpc, the age of the Universe is 13.75±0.13 Gyr,
and the fact that the Universe is formed by 73% of dark energy, 4% of ordinary matter
and 23% of dark matter (Jarosik et al. 2010).

Figure 2.2.1: Map of the CMBR obtained from WMAP. The plot is done using a linear scale
from -200 to 200 µK (http://map.gsfc.nasa.gov/media/101080/index.html)

2.3 Dark Matter

As it has been said in the previous section, there are two types of matter in the Universe,
the ordinary or baryonic matter and the dark matter. The difference between ordinary and
dark matter is that dark matter does not emit, absorb or scatter radiation (e.g. Ostriker
& Steinhardt 2003). There are two main candidates for dark matter, hot dark matter and
cold dark matter, but throughout the years other elements and ideas have been studied as
well e.g. warm dark matter. Astronomers think that dark matter content in the Universe
is much larger than ordinary matter, representing the atomic matter less than 5% of the
mass content in the Universe (e.g. Bennett 2006; Jarosik 2010).

The first one to propose the existence of Dark Matter was Fritz Zwicky in 1933, who
observed that the speed of galaxies in large clusters were too large for being explained by the
visible matter. Since then, other studies about galactic rotation curves, structure of galaxy
groups and clusters, and large scale cosmic flows have pointed out the existence of dark
matter as well (e.g. Springel et al. 2006). One of those mismatch is the rotation velocity
of spiral galaxies, where gas and stars rotate around the galaxy center in nearly circular
orbits, hence these motions should obey Kepler’s law [Eq. 2.3.1]. However, observations
revealed that their velocities were larger than the expected, suggesting the presence of
more matter than the visible one.

v =

√
GM

r
(2.3.1)

, Radio and Space Science, Master’s Thesis 2010:03



8 CHAPTER 2. OBSERVATIONS

Furthermore, big fluctuations in the density of the Universe are needed to form the struc-
tures seen today. Nevertheless, the CMBR do not show fluctuations that important, hence
it is not possible for ordinary matter to cause them, since this matter would had printed
a signal in the CMBR much bigger than the one that can be observed. An accepted ex-
planation for this, is that this dark matter was the main contributor to the gravity fields,
enhancing the gravitational force without leaving any trace in the CMBR.

After this introduction to dark matter, it is possible to present the two main candidates
for this type of matter, the cold dark matter and the hot dark matter.

2.3.1 Cold Dark Matter

Cold dark matter (CDM) is composed by particles that decoupled when they were not
relativistic, hence their velocities were much less than the speed of light. Thus, their
free streaming is of no cosmological importance (e.g. Primack & Gross 2000), resulting
in their impossibility of diffusing small fluctuations in the early Universe. For this reason
perturbations in small scales would survive and could be the seeds for structures formation.

The true nature of cold dark matter is discussed, because since dark matter does not
emit or absorb radiation it is almost impossible to analyze with the present technology.
However, some possible candidates for this type of matter have been suggested, being two
of them the Weakly Interacting Massive Particles (WIMPs) and the Axions (e.g. Ostriker
& Steinhardt 2003; Agertz 2004).

Since the small fluctuations in density are not dumped out with the CDM, the formation
of structures is described as a bottom-up process, where small structures form first and
larger structures are created by the merge and addition of smaller structures through
what is called hierarchical clustering (Press & Schechter 1974). The hierarchical clustering
explains that separate particles collide and remain together forming larger units, and the
process is repeated several times creating big structures e.g. planets and galaxies. Hence a
picture using cold dark matter predicts that halos of dark matter form around the gaussian
fluctuations in density, and then, due to its gravitational potential baryonic matter is
attracted. When the baryonic material has been attracted, galaxies form at the centres of
these dark halos by the cooling and condensation of gas that fragments into stars. Groups
and clusters of galaxies form as halos aggregate into larger systems (e.g. Springel, et al.
2006).

During many years cold dark matter has been the most plausible explanation for dark
matter. Nowadays it is still the accepted option, even though scientist have realized that
a model using only cold dark matter do not work properly. When comparing simulations
with observations it is seen that they do not fit too well. One of the problems arising is
the missing of satellite galaxies. These models predicts that a lot of small satellite galaxies
would form around the galaxies like our Milky Way, but they are not observed. For these
reasons new models have been developed recently to be able to solve these problems e.g.
Λ Cold Dark Matter model or the Hot+Cold Dark Matter model.

, Radio and Space Science, Master’s Thesis 2010:03
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2.3.2 Hot Dark Matter

Hot dark matter (HDM) is supposed to be formed by light neutrinos with velocities close
to the speed of light, which were decoupled sometime after inflation, when particles were
still relativistic. The exact mass of these neutrinos is unknown, but in order to satisfy
different conditions regarding the Universe density and other considerations their masses
are expected to be about ∼eV (e.g. Primack 2001).

Using the Hot Dark Matter model, the first structures to form are the ones with densities
of the order of superclusters size, with masses∼ 1015M�, due to the main property of HDM,
the free-streaming of light neutrinos. Thus, one year after Big Bang, the temperature of
the Universe was about 100 million degrees, which means that particles had a thermal
energy of 104eV , much larger than the rest mass of light neutrinos. These neutrinos would
spread out, leading to the smooth and destruction of any fluctuation in densities smaller
than superclusters. Using this scenario, the formation of the smaller structures such as
galaxies is described by a top-down process, where the first objects to appear are the ones
of the size of superclusters, with galaxies and clusters forming after their initial collapse
by fragmentation (e.g. Primack & Gross 2000).

At the end of the 70’s and the beginning of the 80’s HDM seemed to be the answer
for the dark matter problem. Numerical simulations showed that regions of high density
formed filaments, with the highest densities in the intersections and void between them;
a picture that had great similarity with the observations. However, in the mid-80’s it
was realized that if galaxies formed sufficiently early to fit observations, they would had a
much more inhomogeneous distribution than what it could be seen. In addition, studies
and simulations showed that any structure would form later than what it can be deduced
from observations (e.g. Primack & Gross 2000).

Figure 2.3.1: HDM and CDM simullations compared with the observed galaxy distribution
(White 1986)

2.4 Dark Energy

As said in Sect. 2.2, the most part of the Universe is in form of what is called dark energy.
In order to explain this element, first it is necessary to introduce Eq. (2.4.1), which is the
acceleration equation coming from General Relativity when the Cosmological Principle is
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10 CHAPTER 2. OBSERVATIONS

considered. In this expression a(t) is the dimensionless scale factor as a function of time, ä
is its second time derivative, G is Newton’s gravitational constant, ρc is the energy density,
and p is the pressure.

ä

a
= −4πG

3c2
(ρc2 + 3p) (2.4.1)

From the previous equation when a negative pressure dominates, it is expected to have
expansion e.g. the inflation process predicted in the Big Bang Theory. On the other side,
if the energy was dominated by the gravity generated by the baryonic and dark matter
the expansion of the Universe should decelerate. However, observations of exploding white
dwarf stars, the Supernova type Ia, have shown that the Universe is not only expanding,
but accelerating. Thus, it seems that there is a contribution in the form of some kind of
negative pressure that is added in Eq. (2.4.1), the called dark energy (e.g. Bennett 2006).

Dark energy is a very hot topic in modern cosmology, due to the fact that its presence
was not widely accepted until recent times. Since surveys have given evidences of the faster
expansion of the Universe, dark energy has been accepted, and nowadays simulations and
observations seem to agree with that concept. Nevertheless, the nature of dark energy is
even more unknown than dark matter, leading to discussions about its origin and behavior,
hence it is a very active field of study.

2.5 Cosmological Parameters

2.5.1 Density Parameters

The density parameters represent the amount of a component in the Universe compared
with the critical density [Eq. (2.5.1)], therefore they tell how much a component of the Uni-
verse contributes to the density comparing with the case of a flat Universe. To be precise,
the density parameters studied in this thesis are the matter density, being its contributors
dark matter and baryonic matter, and the Λ density [see Eq. (2.5.2)]. Nevertheless, if these
concepts are not familiar, further explanation can be found in Chap. 3.

ρc =
3H2

8πG
, (2.5.1)

Ωm ≡
(

8πG

3H2
0

)
ρ0 ΩΛ ≡

Λ

3H2
0

(2.5.2)

Thus, since a flat Universe is considered, the summation of both densities must be equal 1

Ωm + ΩΛ = 1 (2.5.3)

meaning that the total density of the Universe is equal to the critical density [see Eq. (2.5.1)].
This condition implies that only one of the densities can be freely modified, since the other
value will be restricted by Eq. (2.5.3).

Changing the value of these densities affects the composition of the Universe, and
consequently, the structure formation occurred in it. Thus, large matter density will mean
that most of the Universe is in form of matter, baryonic and dark, resulting into the fact
that the gravity is the main actor in the play; while large values of dark energy density
will lead to a Universe where the gravity forces have less effect compared to the motion
due to Lambda.
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2.5.2 Amplitude of Galaxy Fluctuations: σ8

The mass variance is a tool that describes how the mass is distributed depending on the
scale considered. Usually, a specific value of this mass variance is used in the simulations in
order to define the initial state of the system studied, allowing to set the initial conditions
for a simulated universe. This especial value is known as σ8 or Amplitude of galaxy Fluctu-
ations, and it is defined as the linearly evolved root-mean-squared of the mass fluctuations
in a sphere with radius of 8h−1Mpc at the present time (e.g. Jing et al. 1995)

σ2
8(8h−1Mpc) =

1

2π2

∫ ∞
0

Plin(k)W 2(kr)k2 dk (2.5.4)

where W (x) is the top-hat function and Plin is the Linear Power Spectrum [see Sect. 5.2]

W (x) =
3

x3
(sinx− x cosx). (2.5.5)

This value gives information about the current state of the Universe if the system had
evolved in the linear regime, hence, it can be used to extrapolate information about the
amplitude of the initial density fluctuations of the Universe, helping to find the initial
conditions of the universe studied.

2.5.3 Scalar Spectral Index

As it will be seen in Sect. 3.2.1, the initial power spectrum calculated theoretically is
proportional to kn. The n exponent is known as the Primordial Tilt or Scalar Spectral Index,
and changing its value varies the shape of the initial power spectrum. Thus, increasing
the tilt leads to larger power at smaller scales than in the case with low n, and decreasing
it means that smaller scales have less power. Therefore the power, hence the amplitude
of the density perturbations, will be changing depending on the scales when this tilt is
modified.

2.5.4 Hubble Constant

In cosmology h and H0 represent the dimensionless Hubble parameter and the current
Hubble parameter i .e. the Hubble constant H0 = h ·100kms−1Mpc−1. The Hubble cosntant
is fundamental because it describes how the objects are separating in relation to each other,
in other words, it determines the expansion rate of the Universe. However, the Hubble
parameter is not constant, it changes with time, thus the Hubble parameter for a certain
time t varies [see Eq. (3.1.8)], and it depends on a, the expansion factor.

Hence a large h means faster expansion of the Universe, since the expansion factor
increase is larger. This does not affect the shape of the Universe and the structures formed,
but it modifies the velocity of this structure formation. Thus, large values of h will lead to
faster expansion and consequently to an earlier structure formation.

Mathematically the Hubble constant interacts with the expansion rate of the Universe
through the growth factor [see Eq. (3.2.15)] (Padmanabhan 2002). The growth factor shows
how the Hubble parameter, and hence the expansion parameter a, determine the growth
of the density perturbations in the Universe. Nevertheless, Eq. (3.2.15) can only be used
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in the linear regime since the equation is derived using linear and Newtonian theory and
does not take into account the non-linear effects that appear in the system at later times.

2.5.5 Quadrupole Moment

Taking into account the Cosmological Principle, the Universe is supposed to be homo-
geneous and isotropic. Thus, the Cosmic Microwave Background Radiation should be
isotropic as well, since it presents the remains of the ancient radiation generated at very
early times. However, some studies, many of them using data from the WMAP satellite,
have shown that there are some degrees of anisotropies in this radiation. It is possible to
find two main contributors to this anisotropy, the called dipole and quadrupole moment.
These anisotropies are given by

∆Td
T0

=
T (θ)− T0

T0

1

cos(θ)
(2.5.6)

where ∆Td/T0 is the anisotropy, T0 is the mean temperature, and T (θ) the temperature
for a certain angular position in the sky (Coles & Lucchin 2002). Depending on the value
of θ the dipole or the quadrupole moment can be calculated.

On one hand, the dipole anisotropy is expected to be caused by the motion of the
observer, this means us, and shows the anisotropy for a variation of 180o in the sky. On
the other hand, the quadrupole moment is defined as the level of anisotropy in the Cosmic
Microwave Background Radiation, but this time for a variation of 90o in the sky. Thus,
the anisotropy of the CMB can be estimate approximately without taking into account the
motions of the observer. The quadrupole moment has been determined using the COBE
and the WMAP satellites with a certain range of uncertainty, having in the last version
of WMAP results a value of 197+2972

−155 µ K2 (Jarosik et al. 2010). In order to avoid any
misunderstanding when using this parameter, it is very important to point out that the
values presented in the WMAP reports are the square of the quadrupole moment, as it can
be observed in the units they have. Thus, the real quadrupole value will be the square-root
of the value appeared in the WMAP results.
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Chapter 3

Theory

It is not the aim of this thesis to give a detailed explanation of the General Relativity
Theory, hence the very long maths behind all this theory and some of the concepts and the
processes needed to solve it will be avoid. Thus, it will be possible to focus in the meaning
of the equations obtained from the theory, the terms that form them and the use of each
one. However, this does not mean that all this mathematical background is not important,
since is the base that supports all this science, but it would take a very long time to try
to introduce all the theory. For that reason if it is the interest of the reader to know all
the concepts and solutions to the relativity equations and the different metrics used, very
detailed explanations can be found in many books (e.g. Peacock 1999; Padmanabhan 2002;
Coles & Lucchin 2002).

3.1 Friedmann Model

After this short introduction, it is time to give a general review about the models and
theories behind the study of large-scale structures formation and behaviour.

When the Universe is observed it can be seen that there are many inhomogeneities in
the matter distribution e.g. stars, galaxies and clusters of galaxies. But if the Universe is
studied at sufficient large scales the Cosmological Principle can be accepted, leading to a
homogeneous and isotropic 3D-space. From this starting point, let us consider a particle
or a region with mass m and radius r, and equal the kinetic and the gravitational potential
energy (v2/2 and −GM(r)/r)

1

2
ȧ2 − 4πGρ(t)

3
a2 = constant, (3.1.1)

resulting in
ȧ2

a2
+
k

a2
=

8πG

3
ρ(t). (3.1.2)

This is known as Friedmann equation, and a(t) represents the expansion factor, which
relates the proper and the commoving coordinates r = ax(t), defined as

1 + z(t) ≡ a(t0)

a(t)
. (3.1.3)
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From Einstein’s equations a second independent equation can be found

2ä

a

ȧ2

a2
+
k

a2
= −8πGp, (3.1.4)

being p = p(ρ) the equation of state. Combining Eqs (3.1.2) and (3.1.4) it is obtained:

k

a2
=

8πG

3
ρ− ȧ2

a2
=
ȧ2

a2

[
ρ

(3H2/8πG)
− 1

]
. (3.1.5)

In the previous equation appears for the first time a very important parameter, the critical
density,

ρc =
3H2

8πG
, (3.1.6)

which allows to define the density parameters [Eq. (3.1.7)], being them the proportion
of the density of one component of the Universe regarding the critical density. Thus, the
matter density Ωm, the dark energy density ΩΛ and the curvature density Ωk are introduced.

Ωi =
ρi
ρc
. (3.1.7)

Most of the researches and surveys point out that we live in a flat Universe without any
curvature, Ωk = 0, where the total density of the Universe is equal to the critical density.
Moreover, usual values accepted for the matter and dark energy densities are Ωm ≈ 0, 27
and ΩΛ ≈ 0, 73 respectively (Jarosik et al. 2010). In the case the Universe was not flat,
two possibilities have to be taken into account. On one side, it could be a closed Universe
where the density is larger than the critical density Ω > 1; and on the other side, an opened
Universe scenario appears with Ω < 1.

Another important element in Eq. (3.1.5) is the Hubble parameter

H(t) =
ȧ

a
, h =

H0

100km s−1Mpc−1
, (3.1.8)

that defines the expansion rate of the Universe. Finally, using this new definitions,
Eq. (3.1.2) becomes

H2 =
ȧ2

a2
= H2

0

[
Ωr(1 + z)4 + Ωm(1 + z)3 + Ωk(1 + z)2 + ΩΛ

]
, (3.1.9)

where it possible to define the Hubble radius

dH(z) = H−1
0

[
Ωr(1 + z)4 + Ωm(1 + z)3 + Ωk(1 + z)2 + ΩΛ

]−1/2

. (3.1.10)

With this a basic knowledge of the Friedmann model and the concepts involved in it has
been presented. Nevertheless, even if the ideas and procedures needed to obtain them have
been introduced here, the cosmological and mathematical background necessary to obtain
and understand them is much deeper. For that reason, if it is considered adequate, a more
detailed explanation of all the derivations and theory behind these concepts can be found
in Peacock Chap. 3 (1999) and Padmanabhan Chap. 3 (2002).
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3.2 Linear Regime

When a perturbation mode enters the Hubble radius, then the density perturbation can be
treated using Newtonian theory, which leads to the linear regime study. In this situation
the density perturbations have the form of a density background value ρ0, which is constant
for all the space, and a small density contribution δρ coming from the inhomogeneity of
the density field. The main condition in order to apply the linear regime theory is that the
adimensional density fluctuations must be much less than unity. Eq. (3.2.2) presents the
adimensional density fluctuations, where ρ(x) is the density value for a certain position
and ρ̄ is the density background.

ρ = ρ0 + δρ (3.2.1)

δ(x) =
ρ(x)− ρ̄

ρ̄
. (3.2.2)

Another approach to know if the fluctuations can be treated by the linear regime is to
study the mass variance. Since the mass variance is normalised using different functions
and tells information about the diversity of the fluctuations, it can be studied in the same
manner than the density fluctuations. Thus, values of σ2 much less than unity point out
that the linear regime governs these modes, while mass variances larger than one mean
that the fluctuations are not inside the linear regime.

|δ| � 1→ σ2 < 1 (3.2.3)

|δ| ≥ 1→ σ2 > 1. (3.2.4)

Once it is proved that the system evolves in the linear regime, commoving coordinates
can be chosen for particles positions and velocities expressing the position coordinate as
r(t) = a(t)x(t), which satisfies the condition

r̈ = −∇rΦ, (3.2.5)

being Φ the gravitational potential. Similarly as it has been done with the density, the
gravitational potential can be presented as a combination of a background and a pertur-
bation component

Φ = Φb + φ, (3.2.6)

and then expanding the position coordinate and operating with Eq. (3.2.5) it can be found

ẍi +
2ȧ

a
ẋi = − 1

a2
∇xφ ∇2

xφ = 4πGa2ρbδ. (3.2.7)

Now that the particle trajectories are related to the background density, it is interesting
to write a differential equation for δ(t,x), or what it will be easier, δk(t), which is the
adimensional density fluctuations in the k-space. Thus, the first step is to define ρ(x, t)
thinking that the density is caused by the summation of the points in that coordinate, each
one with mass m:

ρ(x, t) =
m

a3(t)

∑
i

δD [x− xi(t)] . (3.2.8)
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The density contrast δ(x, t) is then related to the density ρ(x, t) through

1 + δD(x, t) ≡ ρ(x, t)

ρb
=
V

N

∑
i

δD [x− xi(t)] =

∫
dqδD [x− xT (t,q)] , (3.2.9)

where N is the total number of particles inside the volume V , and q represents a set of
physical quantities that define a certain particle T. With this is possible to calculate the
Fourier transform of the density contrast

δk(t) ≡
∫
d3xeikxδ(x, t) =

∫
dq exp[−ik xT (t,q)]− (2π)3δD(k), (3.2.10)

and differentiating and using Eq. (3.2.7) the perturbation equation is obtained:

δ̈k + 2
ȧ

a
δ̇k = 4πGρ0δx + Ak −Bk, (3.2.11)

where Ak and Bk can be ignored since the linear regime is considered, resulting in:

δ̈k + 2
ȧ

a
δ̇k = 4πGρ0δx. (3.2.12)

Once the perturbation equation has been determined, it is of great interest to study how
the perturbations evolve in the Universe. Nevertheless, this is very difficult to do because
the solution to these equations needs of numerical methods to be done, hence it is a good
alternative to make some simplifications in order to get analytical results. First we can
assume that ρ(t) is a solution of the Friedmann equations, and also introduce the function
ρ1 ≡ ρ(t+ ε), beign ε a certain constant. With this, the density contrast can be written as

δ(t) =
ρ1(t)− ρ(t)

ρ(t)
=
ρ(t+ ε)− ρ(t)

ρ(t)
∼= ε

d ln ρ

dt
= −3εH(t), (3.2.13)

showing that H(t) ≡ (ȧ/a) is a solution to the perturbation equation. It is known that
H(t) is a decreasing function with mode δd; however, the interesting point is the increasing
mode δg, which is given by

δg = δd

∫
dt

a2δ2
d

= H(t)

∫
dt

a2H2(t)
= H(a)

∫
da

(Ha3)
. (3.2.14)

The increasing mode, or growth factor, can also be written as

δg(a) =
5Ωm

2
H(a)

∫ a

0

dx(
xH(x)

)3 , (3.2.15)

where δg is normalised with a = 1 and H = 1 at the present epoch, and H(a) is defined as
follows (see Padma Eq. (5.121)):

H(x) =
[
Ωmx

−3 + ΩΛ + (1− Ωm − ΩΛ)x−2
]1/2

. (3.2.16)

Fig. 3.2.1 shows how the growth factor varies with time and also with the mean densities
of matter and dark energy. This occurs because the current Hubble constant is dependant
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on the different mean densities [Eq. (3.2.16)]. It can be observed that the growth factor
increases as it approaches the present time, but the proportion of dark matter and dark
energy modifies it. Thus, at high redshifts (small values of a) the amount of dark matter
and dark energy does not affect very much, but as the time increase, different proportions
of dark energy and matter lead to different curves. The case with low dark energy density
and high proportion of matter density presents higher values of the growth factor, resulting
in more developed structures in the Universe than the opposite case, which has a growth
factor lower than the previous situation.
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Figure 3.2.1: Evolution of the Growth Factor at different epochs. The dashed red line corre-
sponds to an universe with Ωm = 0.1 ΩΛ = 0.9, the crossed blue line Ωm = 0.3 ΩΛ = 0.7 and the
solid black line Ωm = 0.9 ΩΛ = 0.1

Eq. (3.2.15) can be solved numerically using different methods, but it is also possible to
obtain an analytical approximation using elliptical functions (for a more detailed resolution
see Sect. 2.5.2 in Agertz (2004)). Considering the case of Ωm = 0.3 and ΩΛ = 0.7,
Eq. (3.2.15) can be expressed as Eq. (3.2.17), where it can be seen that for small values of
a the growth factor is almost proportional to the expansion parameter, hence the density
perturbations grow in proportion to that.

δg(a) = a− 2

11

ΩΛ

Ωm

a4 +©(a7) (3.2.17)

Further explanations and more information about the concepts and procedures pre-
sented in this section are available in Peacock Sect. 15.2 (1999) and Padmanabhan Sects
5.5 and 5.6 (2002).
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3.2.1 Linear Power Spectrum

Now the linear regime is explained, it is time to introduce a very important concept when
studying the statistical properties of the Universe, the Linear Power Spectrum. The power
spectrum studies the distribution of power when considering the different perturbation
modes present in the system δ(x, t), which are characterized by their initial state δ(x, ti).
Firstly, let us assume that each density perturbation mode δ(x, t) has a Fourier transform
δk(ti). Thus, for a very small ti, each Fourier mode can be considered as a Gaussian random
variable with

〈δk(ti)δ
∗
p(ti)〉 = (2π)3P (k, ti)δD(k− p), (3.2.18)

being P (k, ti) the Power Spectrum of δ(x, ti). This power spectrum for a certain time t
can be expressed as

P (k, t) = |Tk(t, ti)|2P (k, ti), (3.2.19)

where Tk(t, ti) represents the Transfer function, which relates the original power spectrum
with the power spectrum of the density perturbation mode for any time. Thus, the power
spectrum shows the amplitude, hence the power contained in each one of the perturbation
modes, and it reveals information about the power distribution depending on the wave-
lengths of the density perturbations. Studying the power spectrum it can be seen which
modes have more power, presenting the wavelengths where the density perturbations are
larger.

The power spectrum can also be calculated with a dimensionless form ∆2
k, given by

∆2
k ≡

k3P (k)

2π2
, (3.2.20)

where P (k) = |δk|2 is the power spectrum for an isotropic and homogeneous universe.
Moreover, it is widely assumed that

P (k) = δ2
k ∝ kn, (3.2.21)

which leads to the study of the effect of n, also known as the Scalar Spectral Index or
Primordial Tilt. In the ambit of this thesis, only the effects of n in the power spectrum are
considered, having a deeper explanation and analysis in Chap. 6. Nevertheless, a rough
review can be done in this part, since Eq. (3.2.21) shows that varying the value of n, the
slope of the power spectrum will change, resulting in different distribution of the power
depending on the scales considered.

More information about this section is available in Padmanabhan Sect. 5.8 (2002).

3.3 Quasi-Linear Regime: the Zeldovich Approxima-

tion

After the linear regime, perturbations grow enough to leave that regime and enter the non-
linear one, since δ > 1. In this regime, the expressions and theory presented previously
do not work, and often N-body methods are used in order to obtain results. However,
when using this kind of methods and simulations, the results obtained cannot be reason
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out completely. Trying to avoid these problems, some approaches to the non-linear regime
have been develop to simplify in some degree the equations involved and get analytical ex-
pressions that can describe this simplified model. One of those approaches is the Zeldovich
approximation, which leads to the study of the quasi non-linear regime.

In the Zeldovich approximation, the initial displacement of the particles is found, and
then it is assumed that they continue to travel in the same direction. Thus, their trajec-
tories can be written as

xT (a,q) = q + L(a,q), (3.3.1)

where q is the original position of the particle and L(a,q) is the displacement. From the
Fourier transform of the density contrast and using the fact that in the linear regime dis-
placements are very small, it can be deduced that trajectories are linear in a (Padmanabhan
2002), resulting in the expression:

xT (a,q) = q + au(q). (3.3.2)

Thus, the Zeldovich approximation applies these trajectories to the quasi-linear regime,
relating the Eulerian prosition r of a particle to the Lagragian position q by

r(t) ≡ a(t)x(t) = a(t) [q + a(t)u(q)] , (3.3.3)

being x(t) the commoving Eulerian coordinate. On the other side, the density can be
obtained using conservation of mass, given by

ρ(r, t)d3r = ρ̂d3q. (3.3.4)

Finding an expression for ρ(r, t) and using the Jacobian of its denominator the matrix
obtained can be dioganalized, resutilng the final expression

ρ(r, t) =
ρb(t)

[1− a(t)λ1(q)] [1− a(t)λ2(q)] [1− a(t)λ3(q)]
, (3.3.5)

where λi denotes the eigenvalues defining the principal directions in which the collapses of
the structures will occur. Moreover q can be expressed as a function of r using Eq. (3.3.3).

Thus, the Zeldovich approximation presents a scenario where the material contained
in a certain volume collapse due to gravity. This collapse is firstly produced in one direc-
tion defined by one of the eigenvalues of Eq. (3.3.5), compressing the material in a two
dimensional sheet shape known as pancake. Then the collapse continues in another direc-
tion, compressing the material in a filament-like shape and finally another contraction is
produced in this last direction. For that reason it can be said that the Zeldovich approxi-
mation describes an structure formation divided in many steps, each one characterized by
the contraction of material in one direction.

As it has been said in the previous section, additional information and deeper descrip-
tion of these processes can be found in Peacock Sect. 15.8 (1999) and Padmanabhan Sect.
5.9 (2002).
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3.4 Non-Linear Regime

Once the linear regime is completely abandoned, and the density perturbations grow more
than the linear limit, it is necessary to study the perturbations in the non-linear regime. In
this regime it is considered δ > 1, and since the linear and quasi-linear equations cannot be
used other approaches appear. One of them is the Sphercial Approximation, that satisfies

x(t,q) = f(t)q, (3.4.1)

which means that the particles trajectories are homogeneous, being f(t) a function to
determine.

Thus, the spherical model considers a spherical region with a certain overdensity. As
the Universe expands, the sphere grows as well; however this expansion is slowed by the
overdinsity. After some time, the sphere reaches a maximum radius and then the collapse
of the sphere begins. Nevertheless, the collapse will be stopped at some point due to
dissipative effects that will transforms kinetic energy due to the collapse into random
motion of particles. This last process is the virialization, where the equilibrium the sphere
will finally reach is given by

Ep = −2Ek, (3.4.2)

called virial theorem, which realtes potential energy Ep with kinetic energy Ek.
Even thought this approximation is useful for having some equations of the system

evolution in this regime and it gives a general picture of the structure formation, when
large systems want to be studied it is necessary to use numerical methods in order to solve
the equations. One of those methods, the one used in this thesis is the N-body simula-
tion, where a numerical program solve the potential gravity field equations reiteratively,
simulating the evolution of a system.
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Chapter 4

Simulation Codes

The study of large-scale structures in the Universe, how they form and interact between
each other is an extremely complicated field that requires the use of very complicated
maths. Thus, since computers appeared in the scene, it has become a common approach
to use computers to simulate that structure formation. Computers allow the calculation
of the non-linear regime equations using numerical methods that otherwise would require
extremely long time, making possible to study how the Universe evolves and developes at
very large scales. Nevertheless, these simulations have disadvantages, needing computa-
tional resources that are not always available and showing errors coming from the numerical
approximations. Furthermore, simulations sometimes act as a ”black box”, leading to a
very difficult understanding of the reasons behind the results obtained.

The codes that simulate the Universe can be divided in two main groups: N-body simu-
lations and hydrodynamic codes. The general characteristics, as well the basic information
about how those codes work will be provide, giving a general knowledge to understand the
processes and the computations those codes have to do in order to complete the simula-
tions. In addition, the code used in this thesis will be explained in more detail, including
the process to generate the initial conditions. The part of the code responsible for finding
the dark halos will be also explained, since those files have been utilized to perform some
test included in Appendix A.

4.1 N-body Codes

N-body codes represent the system with a discrete number of particles, characterizing those
particles with some properties e.g. mass. Thus, the particles interact between them due
to those properties and the system evolve. This type of codes are collisionless, therefore
these codes are a very good option when large-scales structures formed by dark matter are
considered, since this matter is assumed to be collisionless as well.

There are different manners to perform N-body codes, resulting in many types of codes
that can be classified as follows: Particle-Particle (PP) codes, Particle-Mesh (PM) codes,
Particle-Particle/Particle-Mesh (P3M) codes, and Tree codes.
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4.1.1 Particle-Particle (PP)

PP codes place the particles into the simulations box and then calculate the force acting
on each particle using summation. Once the force is computed, it is introduced into the
equations of motion, obtaining the accelerations and velocities of particles. With these
values the particles are moved to their new positions, the time in the simulation is increased
and the procedure is repeated again.

One of the biggest problems of these codes is that the force is calculated summing
the Newtonian gravity force, which for small interparticle distances can vary largely very
rapidly. Thus, PP codes are the easiest ones to implement, since the equations and methods
they use are rather simple, but at the same time the least efficient, since they need large
amount of computational resources in order to run the simulations.

4.1.2 Particle-Mesh (PM)

The main difference respect to PP codes is that PM codes use a mesh to distribute the
mass of the particles, calculating the density and the potentials in the mesh. Hence the
code divide the simulation box using a mesh (grid), where the particles are placed and the
mass is transfered from the particles to the grid. This can be done by several methods e.g.
Nearest Grid Point (NGP) or Cloud In Cell (CIC). Then the Poisson’s equation is solved
in the grid, and the force field is calculated. After that, the force field is interpolated in
order to obtain the force acting on each particle, which is used in the equations of motion
to compute the particle displacements. Finally, the time in the simulation is increased and
the process starts again.

PM codes have proved to be faster than other methods, and can use a large number of
particles to have better resolution. However, the mesh is placed regularly in all the box,
hence some locations can have too many grid resolution for the few particles placed there,
while in other parts smaller grid distance would be required. Many PM codes are available
and have been used regularly in simulations (e.g. Klypin & Holtzman 1997).

4.1.3 Particle-Particle/Particle-Mesh (P3M)

P3M codes are a combination of PM and PP codes, where the PM part is used to calculate
the large-scale forces, while the PP code solves the small-scale interactions. It could seem
that this is the perfect solution for the N-body codes, nevertheless P3M programs present
their own problems. It is common that the code results dominated by the PP part when too
many particles are taken into account, leading to the use of more computational resources
and needing more time to run the simulations.

Trying to solve the problems those codes showed, some variations have been developed.
Thus, adaptive codes (e.g. Couchman 1991) are able to subdivide the grid in a certain
zone if too many particles are found, making possible to continue the calculations.

4.1.4 Tree

The main idea in the Tree codes is to compute forces using direct summation when particles
are close to each other, while very separated particles are considered as ”pseudo-particles”.
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The denomination for these codes comes from the method used to implement the cells in
the simulation box. Firstly, the box is divided into 2D smaller cells, being D the dimension
of the simulation. If a cell contains more than one particle is divided again in more ”sub-
cells”. The process is repeated until each cell has only one particle inside. Thus, at the end
of this procedure, the cells present a distribution with a tree shape, where the box is the
root, which is divided into twigs and finally into leaves. Once this is done, the properties
e.g. mass and center of mass, are calculated for the leaves, the twigs and the root.

As said before, the calculation of the force depends on the distance between particles.
The criteria to decide when two particles are considered to be close to each other is defined
by a tolerance parameter, which can be modified for decreasing the number of calculations
or in the other side, obtaining more precision. Tree codes are available in many sources
and have proved their versatility (e.g. Barnes & Hut 1986; Springel et al. 2001).

Figure 4.1.1: Simulation using Tree code showing the tree shape for the cell distribution
(http://www.beltoforion.de/barnes hut/barnes hut de.html)
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4.2 Hydrodynamics Codes

In hydrodynamics codes the particles are not collisionless, hence they can interact directly
with each other. There are two approaches when treating hydrodynamics codes: the
Smooth Particle Hydrodynamics (SPH) that follow the Lagrangian motion of gas, and the
methods using Eulerian grids to study the gas (Agertz et al. 2007). These type of codes
are used to calculate physics that cannot be treated by N-body codes, which not include
the fluid consideration of the systems, e.g. hydrodynamics codes have been combined with
shock capturing methods in order to be able to calculate density and entropy jumps at
shocks (e.g. Ryu et al. 1993).

On one hand, in the SPH the mass elements are followed using classical dynamics but
assigning thermodynamic variables e.g pressure, to the particles. Therefore the motion of
the particles can be affected by pressure gradients being possible to study hydrodynamic
effects such as shocks and some dissipative effects (e.g. Kang et al. 1994). There are
different approaches applying the SPH principles due to the fact that many different codes
have been adapted: TSPH code uses the Tree method developed by Barned & Hut (1986)
and PSPH does the same with the P3M code (Efstathiou & Eastwood 1981).

On the other hand, codes based upon Eulerian grids simulate the fluid not considering
the particles but using a mesh. Thus, Eulerian codes solve the equations using the infor-
mation contained in the cells, while SPH calculate the properties of the gas considering the
closest particles and their interactions. Comparing the two approaches, Lagrangian codes
concentrate the resources in the zones with higher interest since they follow the fluid ele-
ments, while Eulerian codes have a fixed grid (e.g. Kang et al. 1994). However, in order to
solve this problem, adaptive mesh refinement (AMR) codes have appeared recently, which
can modify the refinement of the mesh in order to achieve better resolution (e.g. Zhang &
MacFadyen 2006).

4.3 The Code Used in This Thesis

In this section the code used for our simulations is going to be presented, showing a
picture of its parts and the purpose of each one of its programs. Needless to say the
complete presentation and explanation of the code is available in the original article of the
code, where all the necessary information to run the programs is explained (see Klypin &
Holtzman 1997).

4.3.1 Basic Information

The code used is a Particle-Mesh (PM) code developed by Anatoly Klypin and Jon Holtz-
man (1997). The advantages of using PM codes is that they are fast, since the number of
calculation is lower than other type of codes e.g. TREE codes, and they can use a very
large number of particles. This means that they can have rather good resolution of the
density and potential calculated, however, it can be a weakness as well, due to the fact
that if the number of particles is not large enough the resolution and the results computed
will be disturbed.
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For solving the equations, the code uses commoving coordinates x = x(t) related to
proper coordinates by r = a(t)x. Thus, dimensionless variables are defined as

x = x0x̃, t = t̃/H0, (4.3.1)

vpec = (x0H0) p̃/a, φ = φ̃ (x0H0)2 , (4.3.2)

ρ =
ρ̃

a3

3H2
0

8πG
Ωm, (4.3.3)

where the tilda indicates a dimensionless variable, x0 is the length of a cell in the grid, H0

is the current Hubble constant, p is the particle momenta and Ωm is the matter density.

The equations solved by the code to compute the potential and the motion of the
particles are given by

dp̃

da
= −F (a)∇̃φ̃, dx̃

da
= F (a)

p̃

a2
, (4.3.4)

∇̃2φ̃ =
3

2

Ωm

a
(ρ̃− 1) , (4.3.5)

being F (a)

F (a) ≡ H0/a =

(
Ωm + Ωcurva+ ΩΛa

3

a

)−1/2

. (4.3.6)

Eqs (4.3.4) and (4.3.5) are solved using a step in space ∆x = ∆y = ∆z = 1 and a
constant step in the expansion parameter ∆a. Thus, by defining the original and the final
redshift, and the desired step in the expansion parameter the number of steps the code
will run are determined, since a(t) = (1 + z)−1.

4.3.2 Initial Conditions

The code uses the Zeldovich approximation to set the initial conditions of the simulation.
In this approach the relation between the commoving and the lagrangian coordinates is
given by

x = q− α
∑
k

b|k|(t)S|k|(q), p = −αa2
∑
k

b|k|(t)

(
ḃ|k|
b|k|

)
S|k|(q), (4.3.7)

where S is the displacement vector related to the velocity potential Φ and the power
spectrum P (k) by

S|k|(q) = ∇qΦ|k|(q), Φ|k| =
∑
k

ak cos(kq) + bk sin(kq), (4.3.8)

being a and b gaussian random numbers with the mean zero and dispersion σ2 = P (k)/k4:

ak =
√
P (|k|)Gauss(0, 1)

|k|2
, bk =

√
P (|k|)Gauss(0, 1)

|k|2
. (4.3.9)
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As it can be seen from Eq. (4.3.9) the random numbers depend on the power spectrum,
hence P (k) is very important when calculating the initial conditions. The power spectrum
is computed by the code using the following expression:

P (k) =
kn exp(P1)

(1 + P2k1/2 + P3k + P4k3/2 + P5k2)2P6
, (4.3.10)

where Pi are numerical parameters obtained from a Boltzman code (Boltzman 1989). The
exact procedure the code calculates the power spectrum is explained in Chap. 5, hence it
will not be presented now.

Nevertheless, it is important to point out that in order to set the initial conditions, and
therefore run the simulations, those initial parameters coming from the Boltzman code are
needed. Thus, the package that provides the Klypin and Holtzman code includes a file
where those parameters appear for a range of different cosmological parameters e.g. the
density parameters and the Hubble constant. However, not all the cosmological parameters
are changed and even if they are modified, not always present the desired values, presenting
this problem the baryonic matter density and the Hubble constant. Thus, there are no
values in the file to generate the initial power spectrum, which will define the density
distribution at the initial redshift.

A way for solving this problem would be to generate a new set of initial conditions
that contained the desired scenario e.g. different values of Ωb. For doing it, there are
different codes available to prepare the initial conditions that would be used as inputs
in the simulations. One of those codes is the called COSMIC package, developed by
Bertschinger (1995), which contains different FORTRAN programs that generate the initial
power spectrum. In order to obtain the initial power, firstly it is necessary to run the
LINGER code that calculates the linear evolution of fluctuations generated in the early
Universe. The results obtained are then introduced in the GRAFIC program (Gaussian
Random Field Initial Conditions), the one responsible to calculate the power spectrum
that later will be used as the initial power of the simulations.

However, running these codes needs a large amount of computational resources. More-
over, the outputs of these programmes are in a different format than the inputs of the
Klypin and Holztman’s code, hence it would be very difficult to import these results as the
initial conditions and would require too much time to match them. Taking into account
the limits of this thesis in terms of time, resources and objectives, finally was decided that
was preferable to quit this part and focus in other fields of the work. Nevertheless, it is
important to say that testing the influence of those parameters e.g. baryonic matter versus
dark matter, would be an interesting study, and even if it has not been made here it could
be done in future projects.

4.3.3 Halo Finder

The algorithm used to find the halos is a bound-density-maxima code (BDM) developed
by Klypin & Holtzman (1997), which tries to solve some problems appeared in previous
programs e.g problems with the satellite galaxies. The BDM code works in two main steps:
firstly it finds the center of the halos, and secondly it determines the particles forming those
halos.
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Explaining in more detail the procedure followed, in the first part the user chooses a
radius rsp of a sphere, for which the code will find the center of mass, and the number of
seeds Nseed, that determines the number of spheres with radius rsp that will be placed in
the simulation. Thus, every Nparticles/Nseed a sphere will be located and the center of mass
found. Then the center of the sphere is moved to the center of mass and the new center is
calculated. The process is repeated until the results converge. Besides, additional “seeds”
are added in the low-density zones. A characteristic of this part is that halos can have
radius larger or smaller that rsp, but distances between halos can never be smaller than
rsp. When two different initial spheres find the same halo one of them is the duplicate of
the other one, and it is removed in order to not have redundant halos.

Once the centers of halos are found, the code establishes which particles belong to each
halo. Spherical concentric shells are placed around its center, and the maximum circular
velocity a particle in each shell can have is calculated by

Vmax =

√
GM(r)

r

∣∣∣
max

. (4.3.11)

At the same time, the escape velocity for a particle at a given radius r is computed
using

V 2
escape(r) ≈ (2.15 · Vmax)2 ln (1 + 2r/rmax)

(r/rmax)
, (4.3.12)

where rmax is the radius of the maximum rotational velocity. Eq. (4.3.12) it is valid
when the Navarro-Frenk-White (1997) density profile for the halos is assumed. When a
velocity of a particle calculated by Eq. (4.3.11) is larger than Vescape the particle is unbound.
Nevertheless, as Vmax and Vescape are calculated before the particles are removed, the process
cannot be done in one step; hence a reiterative process is applied, where the velocities are
calculated many times until the results converge.

4.3.4 List of Files

The following list are the FORTRAN programs included in the Klypin and Holtzman’s
package, describing their function and utility:

• PM to ASCII.f: Convert PM format to ASCII.

• PMhalos.f: Contains the Bound Density Maxima code to find dark matter halos.

• PMmain.f: Run the simulations calculating the density and the potentials.

• PMmodelCHDM.f: Introduce the cosmological and the simulation parameters in the
code for the Hot+Cold Dark Matter model.

• PMmodels.f: Introduce the cosmological and the simulation parameters in the code
for the Lambda Cold Dark Matter model.

• PMpower.f: Computes the simulated matter power spectrum and the mass variance
using the density field values as inputs.
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• PMselect.f: Selects and scales Particle-Mesh particles.

• PMstartCDM.f: Sets the initial conditions for the Lambda Cold Dark Matter model
with the values introduced in PMmodels.f.

• PMstartCHDM.f: Sets the initial conditions for the Hot+Cold Dark Matter model
with the values introduced in PMmodelCHDM.f.
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Chapter 5

Analysis Tools

When studying any kind of data, it is very important to use the correct analysis meth-
ods and tools to treat the information. In cosmology, the techniques used to study the
formation of large structures in a simulated universe with N-body techniques are usually
statistical tools that give information about the simulation considering the variables as
signals. The ”modes” of the density field are analyzed with statistical procedures, as the
power spectrum or the variance. Nevertheless, other relevant information can be obtained
from more direct approaches e.g. density plots, which present the data directly obtained
from the simulations.

5.1 Density Plots

The most visual method to check the results obtained from the simulations and see how
the formation of structures evolve is the plotting of the density field. These plots can be
done in 2 or 3 dimensional spaces, and they show the values of the density fluctuations
using a colour scale.

In this thesis the density plots have been done in two dimensions, projecting the values
of the density field in one plane, hence obtaining a plot showing the structures formed.
Thus, it is easier to understand how the system evolves, and a more visual idea of the results
calculated by the code can be given. Moreover, the plots used in the thesis are normalized
for the largest value and scaled using a logarithmic scale, hence the density plots show the
adimensional density fluctuations with the given normalization and scale for each point
of the grid simulation, depending this density on the number of particles found in that
concrete point of the grid. Nevertheless, these plots do not represent the exact shape of
the structures created, since the projection of the density erases the information about the
exact position of the density value considered in each location.

Furthermore, the density fluctuations can be calculated for any desired redshifts, then
it is possible to compute the density plots for the initial, the final or any other redshift.
Therefore it is a good method to compare visually the evolution of the system for different
epochs, being able to study the first, the intermediates and the final steps of the simulations.
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5.2 Power Spectrum

5.2.1 Linear Power Spectrum

The power spectrum is usually calculated from the results obtained in the simulations, since
the evolution of the universe simulated involves non-linear processes that are extremely
difficult to describe by analytical expressions. However, it is possible to calculate the
power spectrum analytically when only the linear-regime is considered, using the equations
that define this region. Respectively, in this thesis the linear matter power spectrum is
calculated by the code using linear theory. Thus, the code calculates the linear growth and
the transfer function in order to obtain the linear power spectrum for a certain redshift.
Nevertheless, the code computes these functions using a special normalization, making not
obvious to understand the exact procedure followed. For this reason, the calculations are
going to be presented with more detail, taking into account that the ΛCDM model and
the HCDM model do not use the same exact equations.

For a more deeply understanding of how the code used in the thesis works, the list of
equations and the indications where they can be found in the code is presented in Appendix
B.

Lambda Cold Dark Matter Model

Firstly the power spectrum for the original redshift is obtained using

Pini(k) =
kn exp(P1)

(1 + P2k1/2 + P3k + P4k3/2 + P5k2)2P6
, (5.2.1)

being kn the primordial power spectrum from the Big Bang, and the rest of the expression
is the square of the Transfer function T(k), which is

T (k) =
exp(P1)

(1 + P2k1/2 + P3k + P4k3/2 + P5k2)2P6
; (5.2.2)

hence, the linear power can be expressed as

Pini(k) = knT 2(k), (5.2.3)

where the numerical parameters Pi appeared in T (k) are values obtained using a Boltzman
code (Holtzman 1989) that sets the value of the Transfer function and the linear power
spectrum for a certain initial conditions.

Once this part of the power spectrum is done, it is necessary to apply the modification
due to the growth rate [see Eq. (3.2.15)] of the density instabilities and the normalization
parameters. Thus,

Plin ΛCDM(k, a) =

(
δg(a)

δg(ainitial)

)2

Pini(k)Snh
3
(
2π2
)

(5.2.4)

is the final equation for the linear matter power spectrum, being Pini the power presented
above, Sn [see Eq. 5.2.5] is the normalization of the spectrum for the bias parameter using
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σ8 and a Tophat window function W (x), and h is the dimensionless hubble pararmeter.
Furthermore, additional constants are used to transform the power into the correct units.

Sn =
σ2

8∫ 20

10−5 W (x)dx
(5.2.5)

Hot+Cold Dark Matter Model

The process to compute the linear power spectrum when hot dark matter is included is
very similar to the previous case, with the difference that the power spectrum of the hot
component has to be calculated. Besides, the grow of the power will be influenced by the
quadrupole moment instead of σ8. Thus, Pinicold(k) and Pinihot(k) are given by

Pini cold(k) =
k

(1 + P2k1/2 + P3k + P4k3/2 + P5k2)2P6
(5.2.6)

Pini hot(k) = Pinicold(k)
k exp−PP1k

1 + PP2k1/3 + PP3k2/3 + PP4k + PP5k4/3 + PP6k5/3
(5.2.7)

respectively, where Pi and PPi are are parameters given in the code which sets the initial
conditions for a given cosmology. With these expressions is possible to obtain the equations
for the power spectrum of the cold and hot dark matter

PCOLD(k, a) = a2Ω2
CDMPinicold(k)Snh

32π2 (5.2.8)

PHOT (k, a) = a2Ω2
νPinihot(k)Snh

32π2, (5.2.9)

being a the expansion factor, ΩCDM the cold dark matter density, Ων the hot dark matter
density, Sn the normalization factor and h the dimensionless hubble parameter. In these
equations the variation due to the time dependance is given by the expansion factor, since
this value is time dependent. On the other side, the normalization factor Sn is calculated
in a different manner, being

Sn =
Q24π

2π25fact(ns, 2)R
(ns+3)
h

. (5.2.10)

Here, Rh is the horizon radius and ns the slope of the power spectrum, while Q is obtained
from

Q =
quadrupole

2.726K
, (5.2.11)

which is the quadrupole moment normalized to the main temperature of the Universe.
Finally, the final linear power spectrum is computed using the square sum of these two
components, with the final expression

Plin CHDM = PCOLD(k, a) + PHOT (k, a) + 2PCOLD(k, a)1/2PHOT (k, a)1/2. (5.2.12)
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5.2.2 Simulated Power Spectrum

The simulated power spectrum is obtained from the density field generated by the simula-
tion, calculated in the Klypin-Holtzman code as

P (k) =
1

L3

∑∣∣∣δ̂(k)
∣∣∣2

∆Nk

. (5.2.13)

This formula computes the average square amplitude of the density fluctuations simulated
by the code, where δ̂(k) is the fast Fourier trasnform of the density field δ(x), the sum is
over the wave-numbers found in a spherical shell of radius k and thickness 2π/L, L is the
size of the box simulation, and ∆Nk is the number of harmonics in the shell.

Nevertheless, when using these statistical tools, is important to know where the dis-
creteness effects can appear, in order to prevent the use of wrong data that could disturb
the correct results. In the case studied, the limit where the values obtained by the code
can be trusted is given by the Nyquist frequency. Any signal with higher frequency than
the Nyquist frequency is susceptible to not be reconstructed correctly, since there is not
enough sampling points to collect all the information. In a N-body simulation computed
with a particle-mesh code, the Nyquist frequency comes from the number of particles used
and the size of the box simulated, resulting in

kN =
πN

L
, (5.2.14)

where N is the number of particles in one row and L is the size of the box. Therefore
any mode with a frequency higher than Eq. (5.2.14) cannot be taken into account in the
results, since its values can be affected by the lack of particles when comparing with the
size of the universe simulated.

5.3 Mass Variance

The mass variance provides information about the range of values that mass can have when
a certain radius is considered. Thus, it shows how large is the uncertainty of the mass value
for a structure of a given scale. The mass variance is computed from the simulated power
spectrum presented previously using the following equation:

σ2
M(r) =

1

2π2

∫ ∞
0

P (k)W 2(kr)k2dk, (5.3.1)

being P (k) the simulated power spectrum andW (kr) the spherical top-hat window function

W (x) =
3

x3
(sinx− x cosx) . (5.3.2)

Since the mass variance is calculated using the power spectrum, the discreteness effects
that affect the power also produce problems in the mass variance values. However, the
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mass variance is a function of radius, which is in proper length scales, hence the Nyquist
frequency is transformed in length units by

λ =
2π

k
. (5.3.3)

Both, the power spectrum and the mass variance, are obtained after the simulation is
finished, and are computed by an additional file of the Klypin-Holtzman code, PMpower.f.
For further understanding of how the code works, the exact methods to calculate these
values can be found in that file.
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Chapter 6

Simulations

The dark matter simulations have been planned in three categories, which can be classified
as the Basic Simulation RUN0, the set of Lambda Cold Dark Matter simulations ΛCDM,
and finally the Hot+Cold Dark Matter simulations HCDM. The Basic Simulation uses
accepted values for the most important cosmological paramters, while ΛCDM simulations
are based in the same model of cosmology than RUN0 but changing the values of some of
those parameters. HCDM simulations, on the other side, include a certain proportion of
hot dark matter.

As the results are showed, it will be clear the effect of the different components in the
Universe e.g. dark matter and dark energy, as well the different constants and parameters
that define it e.g. the Hubble constant. Moreover, the consequences of changing those
values will be explained, making possible to see how different the Universe would be if
these parameters did not have the current values we know.

6.1 The Basic Simulation: RUN0

In this part of the simulations, the cosmological parameters that have been used are the
matter density Ωm, the Λ density ΩΛ, σ8 and the Scalar Spectral Index n. However, for all
the simulations the curvature density Ωk has been considered zero.

RUN0 starts at redshift z = 15 and finishes at z = 0, performing the simulations in 469
steps, this is a step length ∆a = 0.002. The number of particles considered is N = 323, the
number of cells Ncell = 1283, and density parameters of Ωm = 0.3 and ΩΛ = 0.7, coming
the cosmological parameters from the WMAP studies (Jarosik et al. 2010). The complete
list of parameters used in this simulations is found in Table 6.1.

6.1.1 Density Plots

Fig. 6.1.1 shows the density plots of the simulation for the initial and the final redshift,
z = 15 and z = 0 respectively. In the initial state the particles are distributed using the
Zeldovich approximation, starting then the simulation through the non-linear regime. At
z = 0 it can be seen that many structures have form, creating clusters of particles, which
represents the clusters of dark matter. Even though the formation of structures is clearly
observed, the formation of filaments is not completely defined, being the clusters placed
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Parameter Symbol Value
Λ Density ΩΛ 0.7
Matter Density Ωm 0.3
Baryonic Density Ωb 0.026
Amplitude Galaxy Fluctuations σ8 1
Scalar Spectral Index n 1
Hubble parameter h 0.7

Number of particles N 323

Number of cells Ncell 1283

Number of steps Nsteps 469

Table 6.1.1: Parameters used in RUN0

in some groups but still with certain degree of homogeneity. Thus, one can notice some
pattern in the plot, but not a real shape of filaments to be recognized, probably due to the
lack of particles.

RUN0 z=15                                          RUN0  z=0

Figure 6.1.1: Density plots for RUN0. The density plots presents the density perturbations
projected in one plane, scaled using logarithmic scale and normalized to the largest value

6.1.2 Power Spectrum

In Fig. 6.1.2 the power spectrum obtained from the simulated density field is presented.
The solid blue line represents the power spectrum for z = 15, while the upper red line is the
power spectrum at the present time z = 0. Fig. 6.1.2 also includes the Nyquist frequency
in order to show the limit where the results of the simulation can be trusted. This is rather
obvious for z = 15, where once the Nyquist frequency (in this case wavelength) is crossed,
there is a very large increase of the power and then a smoother decrease. Moreover, in this
part of the curve some peaks and fluctuations can be observed. At z = 0 these behaviour
is not seen, but as in the previous case the results cannot be taken into account due to the
discreteness effects.

Thus, for both redshifts the power spectrum has a similar shape, with more power at
large scales (low values of k) than at smaller scales. At z = 0 the power spectrum is way
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larger than at z = 15, since after all the time the simulation has been evolving and the
density fluctuations have been increasing, hence many structures have formed in this time.
However, the power has not increase at the same rate for all the scales, presenting a lightly
higher increase for the small scales than for the larger ones.

On the other side, Fig. 6.1.3 shows the matter power spectrum for the simulation
compared with the calculated linear power spectrum. At z = 15 the simulated spectrum
and the linear one agree very well for all the scales considered, but at z = 0 this agreement
is much worse. This happens because at z = 15 the particles distribution follows the
Zeldovich approximation, which belongs to the quasi-linear regime, while at z = 0 the
system has evolved through the non-linear regime, where the linear-regime equations do
not work. Thus, at z = 0 the simulated power spectrum is larger than the calculated one,
and only at sufficient large scales some match between them can be found. This occurs
because at those scales, the modes of the density fluctuations are inside the linear regime,
hence they can be predicted by the linear theory. An evidence that the linear theory can
be used at that range of wavelengths can be found in the mass variance plot [see Fig. 6.1.4],
where it can be seen that at those scales σ2 is less than one [see Eq. (3.2.4)].
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Figure 6.1.2: Matter Power Spetrum for RUN0. Solid blue line represent z = 15, while upper
red line is z = 0

6.1.3 Mass Variance

Fig. 6.1.4 shows the mass variance as a function of radius for z = 15 and z = 0. In this
figure the scales are represented in normal length scales, hence the Nyquist frequency is
found at r=1.25. Thus, values at radius smaller than this value may be wrong and cannot
be taken into account. Moreover, as the radius increase, the slope of the function varies,
approaching the r−4 behaviour expected from a grid distribution (Hansen et al. 2007).
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Figure 6.1.3: Matter Power Spetrum for RUN0 vs Linear Power Spectrum. Dashed lines repre-
sents the power spectrum calculated using linear theoy, while solid lines are the power spectrum
obtained in the simulation. Blue lines show z = 15 and red lines z = 0

Besides, the mass variance decreases for larger radius, since the distribution of matter
is more homogeneous as the scale considered increase. When comparing both redshifths,
the variance at z = 0 is larger, due to the formation of structures that leads to more
inhomogeneity in the matter distribution.
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Figure 6.1.4: Mass Variance for RUN0. Solid blue line represent z = 15, while upper red line is
z = 0

6.2 Lambda Cold Dark Matter Simulations ΛCDM

The Lambda Cold Dark Matter simulations (ΛCDM) are a set formed by seven different
simulations, RUN1 to RUN7, based in the same cosmology model than RUN0. However,
some of the cosmological parameters have been changed in order to test their influence
and effects in the results. Thus, RUN1 and RUN2 vary the proportion of dark energy and
dark matter, RUN3 and RUN4 change σ8, and RUN5 and RUN6 modify the value of n.
Finally, RUN7 is a simulation with the same cosmological parameters than the ones used
in the Hot+Cold Dark Matter simulations, except for the fact that does not include any
hot dark matter component.

As done in the Basic Simulaion RUN0, these simulation go from z = 15 to z = 0 in 469
steps. The number of particles and cells considered are the same, N = 323 and Ncell = 1283

respectively. The rest of the parameters change depending on the simulation, having the
complete list in Table 6.2.

6.2.1 Density Plots

Fig. 6.2.1 shows the density plots for RUN1 to RUN7, being the plots in the left the density
distribution at z = 15 and the ones in the right at z = 0. Firstly let us analyze RUN1 and
RUN2. RUN1 has larger matter density than RUN0 and RUN2, hence the density plots
show higher density values for this simulation. This effect is easily observed at z = 15,
where the particles are initially distributed and Lambda had no time to act. At z = 0,
the clustering observed is larger than in RUN0, since the process of hierarchical clustering
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Simulation ΩΛ Ωm Ωb σ8 n h
RUN1 0.1 0.9 0.026 1 1 0.7
RUN2 0.9 0.1 0.026 1 1 0.7
RUN3 0.7 0.3 0.026 0.5 1 0.7
RUN4 0.7 0.3 0.026 2 1 0.7
RUN5 0.7 0.3 0.026 1 0.5 0.7
RUN6 0.7 0.3 0.026 1 2 0.7
RUN7 0 1 0.075 1 1 0.5

Number of particles 323

Number of cells 1283

Number of steps 469

Table 6.2.1: Parameters used in the ΛCDM simulations

acts faster due to the gravity potential generated by this higher amount of matter. On the
other side, RUN2 presents the opposite behaviour than RUN1. This is expected when it
is remembered that RUN2 has a much higher Lambda contribution than RUN1. In this
case, the clustering appears weaker than before, even though the shape of the structures
formed is still the same. This points out that the role of the Lambda component is more
a modification of the evolution rate than an element that completely changes the final
shape of the system. Furthermore, the new value for the Lambda density in RUN2 it is
not as large compared to the one used in RUN0, leading to smaller differences than in the
previous case.

RUN3 and RUN4 use the same density parameters than RUN0, while they change σ8.
The value of σ8 in RUN3 is half of the one set in RUN0, which means the initial density
fluctuations are much lower and the matter is more uniformly distributed in space. As a
result of it, the density fluctuations in posterior stages are lower as well, and the clustering
appeared at z = 0 is less important. Moreover, in RUN4 is possible to see how larger
values of σ8 lead to a much stronger structure formation, as it can be observed at z = 0.
The effect of varying σ8 can be explained by the fact that the evolution of the system is
strongly influenced by this parameter, since the initial density fluctuations given by σ8 will
grow with time creating gravity potentials that will cause the hierarchical clustering. Thus,
higher initial fluctuations will result in a more important clustering and more developed
structures at the end of the period studied.

In order to understand the nature of σ8, an extra density plot is presented in Fig. 6.2.2,
which shows the density distribution of RUN4 at z = 6 compared to RUN0 at z = 0.
Thus, it can be observed that they are very similar; hence it is possible to conclude that
the variation of σ8 can be understood as an advance in the initial conditions, resulting in
the fact that the initial situation for a system with a high σ8 is a more advanced stage of a
simulation that uses a lower value. Thus, high values of σ8 lead to a more developed final
stage for the same period of time simulated. Needless to say this only have consequences
in the time development of the system, which will arrive at a more clustered state earlier,
but does not have any effect in the shape of the structures formed.

In RUN5 and RUN6 the factor modified is the Spectral Index n. RUN5 has n = 0.5,
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half of the original one, hence the power spectrum at redshift 15 is less flat, resulting into
a less uniform distribution of the power at different scales. Thus, there is much less power
at smaller scales and the density fluctuations at those small scales produce lower gravity
potentials for creating the large structures. Completely the opposite is the situation of
RUN6 with n = 2, where the initial density fluctuations at small scales are larger and the
clustering can develop more easily to form structures.

Finally, Fig. 6.2.1 shows that RUN7 produce more clustering at z = 0 than RUN0.
This is due to the fact that the matter density is larger in this last simulation, hence the
gravity helps the formation of large structures. At z = 15 it can be seen that the density
distribution has larger values than the basic simulation. Moreover, the lower value of the
hubble parameter used in RUN7 produce less expansion in the Universe; however, this
difference with h = 0.7 is rather small, so the effect cannot be completely observed.

6.2.2 Power Spectrum

Fig. 6.2.3 shows the matter power spectrum obtained from the simulated density profiles,
where the solid blue line represents z = 15 and the upper red line z = 0. In all the
simulations it can be seen that the power increase as density perturbations grow with
time, although this increase has not the same rate for all the scales. Thus, as occurred
in RUN0 the increase at small scales is smaller than at large scales. Furthermore, the
discreteness effects of the simulations can be observed in Fig. 6.2.3, where simulations with
higher random motion of particles present less discreteness perturbations, due to the fact
that these random fluctuations partially eliminate the discreteness effects thanks to the
white contribution they give to the existing noise. This effect appears in RUN1, RUN4
and RUN6.

Analyzing RUN1 and RUN2, firstly it can be seen that at z = 0 the power obtained
from RUN1 is lightly larger than RUN2 and RUN0, specially at large scales, since RUN1
presents higher clustering in the density plots. On the other hand, at z = 15 RUN0,
RUN1 and RUN2 have very similar power at large scales, while at smaller distances RUN1
shows more power. Secondly, when considering RUN2, its power spectrum is very similar
to RUN0, since ΩΛ and Ωm are changed in a small proportion, therefore it is reasonable to
assume that RUN2 presents a scenario very similar to RUN0. At both redshifts, the larger
value of ΩΛ results in a lightly lower power in all scales, since Lambda behaves as a “void”
pressure that affects the expansion rate of the Universe, but not the small density details.
This especial behaviour of Lambda has been explained in Sect. 3.2, where it is shown how
larger values of dark energy reduce the growth rate of density inhomogeneities, especially
at later times.

For the next simulations, RUN3 and RUN4, RUN3 shows a lower power spectrum than
RUN0 for both redshifts, approximately four times lower, while RUN4 presents a power
spectrum four times larger than RUN0 does, being these values exactly the square of the
variation of σ8 respect to the value used in RUN0. This can be deduced from

P (k) ∝ σ2
8 (6.2.1)

that describes the relation between the power spectrum and σ8 (Peacock 1999; Romeo et
al. 2008). Besides, higher values of σ8 lead to larger density perturbations, hence more
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RUN7 z=15                                          RUN7  z=0

RUN3 z=15                                          RUN3  z=0 RUN4 z=15                                          RUN4  z=0

RUN1 z=15                                          RUN1  z=0 RUN2 z=15                                          RUN2  z=0

RUN6 z=15                                          RUN6  z=0RUN5 z=15                                          RUN5  z=0

Figure 6.2.1: Density plots for RUN1 to RUN7. The density plots presents the density per-
turbations projected in one plane, scaled using logarithmic scale and normalized to the largest
value

power at z = 15. This effect will produce more clustering and structure formation at z = 0,
which leads to the larger power observed in RUN4 compared to RUN0. The discreteness
effects will be reduced as σ8 increases, due to the higher random motion of the particles,
being RUN3 a clear example of how the discreteness effects are very important when σ8 is
rather small.

The power spectrum of RUN5 has lower values than RUN0, because its Spectral Index
n is half the original value. Thus, as k increases, the power decreases more comparing with
RUN0, meaning less power at smaller scales. RUN6 shows the opposite behaviour, with the
power increasing more as higher values of k are considered. Again, the discreteness effects
appeared in RUN5 are larger than the ones observed in RUN0 due to the low value of n,
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RUN0 z=0 RUN4 z=6

Figure 6.2.2: Density plots for RUN0 at z = 0 and RUN4 at z = 6. The density plots presents
the density perturbations projected in one plane, scaled using logarithmic scale and normalized
to the largest value

because the initial density fluctuations at small scales are lower and cannot compensate
discreteness problems. However, RUN6 almost eliminate these discreteness fluctuations
since the initial density fluctuations at small scales are much larger.

RUN7 presents a power spectrum similar to RUN0 at z = 15 and z = 0. This may not
be expected since RUN7 has no Lambda contribution and changes the hubble parameter
compared to RUN0, resulting in the larger clustering observed in the density profiles.
Nevertheless, with a more detailed analysis some differences can be found. Thus, at small
scales, RUN7 has more power due to the larger Ωm, being more easily observed at z = 15,
and it also shows a power with a less stepped profile. At z = 0 this is translated in a lightly
larger power, especially at small scales, and hence more developed structures.

6.2.3 Mass Variance

Fig. 6.2.4 shows the mass variance for z = 0 and z = 15. In all the simulations the mass
variance decrease as the radius considered increase, pointing out that the Universe becomes
more homogeneous at larger scales, agreeing the Cosmological Principle. Thus, RUN1 and
RUN2 present a mass variance very similar to RUN0, having RUN1 higher values at small
radius. RUN2 is even more similar to RUN0 than the previous case, since both simulations
have almost the same cosmological parameters.

Considering RUN3 and RUN4, the mass variance varies with the same proportion than
σ8

σM ∝ σ8 (6.2.2)

due to the fact that both values represent the variation of mass for a certain dimension, σ2
8

extrapolated from the linear theory and σ2
M in the current studied moment. Thus, RUN3

has a mass variance half of RUN0 and RUN4 two times larger. Furthermore, as it has
seen before, lower σ8 leads to larger discreteness effects, and hence more irregularities in
the middle part of the mass variance in RUN3 than in RUN0. Oppositely, in RUN4 these
disturbances are minimum.

RUN5 shows lower values of mass variance than RUN0, being this difference larger at
small scales, while the variance of RUN6 is larger than RUN0, again more obvious at small
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Figure 6.2.3: Matter Power Spetrum for RUN1 to RUN7. Blue solid lines represent initial
redshift z = 15, upper red lines final redshift z = 0
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radius. The parameter modified in these simulations is the responsible of this behaviour,
since n changes the slope of the power spectrum, and therefore the mass variance changes
are not the same depending on the scale considered. The discreteness effects can be seen
easily in RUN5; however in RUN6 are very reduced, as it has been seen in the power
spectrum analysis.

The last of the ΛCDM simulations, RUN7, has higher values of mass variance than
RUN0, being possible to observe the difference at z = 0 and z = 15 as well. Moreover,
the mass variance of RUN7 decreases at a slower rate than RUN0, meaning that the
inhomogeneities survive in higher grade at large radius. Thus, all these factors agree with
the more developed clustering seen in the density plots for z = 0, and the larger density
perturbations at z = 15.

6.3 Hot+Cold Dark Matter Simulations

The last group of simulations performed are based in a cosmology including hot and cold
dark matter. Thus, the Hot+Cold Dark Matter model (HCDM) considers the presence of
two different types of dark matter, the cold component and the hot one. Moreover, new
cosmological parameters are introduced in these simulations, since the hot dark matter
model needs new information in order to set its characteristics. The new parameters
required by the code when doing these simulations are the Hot Dark Matter density Ων ,
the Quadrupole moment, the Number of netrino species and the Overdensity δc. In all
the simulations the amount of hot dark matter has been assumed the same, in this case
20% of the total density of the Universe. The overdensity δc is defined as the overdensity
of a uniform spherical overdense region at the point at which the exact non-linear model
predicts that it should collapse to a singularity, and its value is assumed to be 1.686 (e.g.
Eke et al. 1996). Similarly, the number of species remain constant, being its value 2
(Kyplin & Holtzman 1997). On the other side, the quadrupole moment has been the only
value modified in these simulations.

Thus, the main difference when comparing these simulations with the ΛCDM models
is the presence of hot dark matter. Hot dark matter affects the matter power distribution,
since hot dark matter presents a cut-off in its power spectrum at small scales caused by the
free-streaming effect. The free-streaming is a process when a particle can propagate without
scattering. In the hot dark matter case, this occurred when the neutrinos became non-
relativistic at very early times, traveling then without scattering with matter. However,
before that happened, neutrinos where interacting with matter, erasing all the density
fluctuations that had entered the horizon at those time. Since this was at a very young
age in the Universe, the only density perturbations inside the horizon radius were those
with small scales. Thus, hot dark matter erased small fluctuations that otherwise would
have generated density perturbations at later times. Fig. 6.3.1 shows this cut-off of the
hot dark matter density in its power spectrum at small scales, while cold dark matter has
a much more constant profile.

Besides, this part of the code calculates σ8 in a different manner than the previous
case i.e. in the ΛCDM simulations σ8 is introduced manually by the user while in the
HCDM is calculated by the code. Hence, the effect of varying the quadrupole moment is
the modification of σ8, and as it has been seen previously, this parameter affects in large
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Figure 6.2.4: Mass Variance for RUN1 to RUN7. Blue solid lines represent initial redshift z = 15,
upper red lines final redshift z = 0
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Figure 6.3.1: Matter power spectrum for Hot and Cold Dark Matter calculated using linear
theory [Eqs (5.2.8) and (5.2.9)]. Solid blue line represents the Cold Dark Matter and the dashed
red line Hot Dark Matter

proportion the results obtained.
The final parameters used in the simulations are presented in Table 6.3, where the

values for the quadrupoles are restricted by different reasons. Thus, RUNH1 takes it from
the study of the Cosmic Microwave Background Radiation (Jarosik et al. 2010), RUNH2
and RUNH3 have values to test the effect of the quadrupole moment, and RUNH4 has a
quadrupole moment that through the equations used by the code will obtain the same σ8

than RUN0, this is equals 1. In these simulations, the initial redshift is z = 30, and the
simulations stop at z = 0. This is done in 484 steps, being the step length ∆a = 0.002.
The number of particles and the number of cells remain constant, being N = 323 and
Ncells = 1283.

Simulation ΩΛ Ων Ωm Ωb n h Quadrupole δc nospecies
RUNH1 0 0.20 1 0.075 1 0.5 14.04 1.686 2
RUNH2 0 0.20 1 0.075 1 0.5 5 1.686 2
RUNH3 0 0.20 1 0.075 1 0.5 100 1.686 2
RUNH4 0 0.20 1 0.075 1 0.5 25.7 1.686 2

Number of particles 323

Number of cells 1283

Number of steps 484

Table 6.3.1: Cosmological parameters used in HCDM simulations
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6.3.1 Density Plots

Fig. 6.3.2 shows the density plots for the HCDM simulations, being the left plots the density
distribution at z = 30 and the right plots at z = 0. At z = 30 the density fluctuations are
very small for RUNH1 and RUNH2, while for RUNH3 are much larger. This is translated
to less or more developed structures at z = 0, depending on how large were the fluctuations
at the oldest redshift. Thus, RUNH2 presents the less evolved scenario, RUNH1 a more
clustered one and RUNH3 the most developed structures of all the HCDM simulations.
In RUNH1 some structures in the form of clusters can be observed, however is in RUNH3
where this clustering is extremely developed.

On the other side, in RUNH2 the evolution of structures is almost imperceptible. As
pointed out before, this is due to the quadrupole moment value. Thus, RUNH3, which
has the largest quadrupole moment, has a very large σ8, while RUNH2 presents a σ8 much
lower.

Finally RUNH4 shows a density similar to RUN7, since both simulations have the same
cosmological parameters, being the only difference the small proportion of hot dark matter
in RUNH4 compared to RUN7. However, it can be observed that the hot dark matter
component decreases the final clustering appeared in the simulation, since the density
fluctuations at small scales were erased in some degree, not allowing the creation of larger
gravity fields to enhance the hierarchical clustering.

RUNH4 z=30                                       RUNH4  z=0RUNH3 z=30                                       RUNH3  z=0

RUNH1 z=30                                       RUNH1  z=0 RUNH2 z=30                                       RUNH2  z=0

Figure 6.3.2: Density plots for RUNH1 to RUNH4. The density plots presents the density
perturbations projected in one plane, scaled using logarithmic scale and normalized to the largest
value

6.3.2 Power Spectrum

Fig. 6.3.3 shows the matter power spectrum of the HCDM simulations for the initial redshift
z = 30, the intermediate redshift z = 15 and the final epoch z = 0. As it can be expected
from the density plots, RUNH2 presents the lowest power spectrum for all the redhsifts,
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being RUNH3 the simulation with largest values. On the other side, RUNH1 and RUNH4
have values inside the range formed by RUNH2 and RUNH3. These differences in the
power spectrum are related to the quadrupole moment of each simulation, since this value
directly affects the σ8 used by the code. Moreover, in all the simulations there is an obvious
decrease in the power spectrum at small scales, approximately at k = 6, due to the cut-off
in the hot dark matter power spectrum, which produces lower density perturbations at
small scales.

Furthermore, it can be seen that larger values of power reduce the discreteness effects
that come from the number of particles and the grid resolution, which appear as peaks and
irregularities at large values of k. Thus, RUNH2 has very large peaks and perturbations,
due to its low quadrupole value, while RUNH3 presents almost no discreteness effects.

Fig. 6.3.4 shows the comparison of the power spectrum between RUNH4 and RUN7,
where the dashed lines represents RUNH4, the solid lines RUN7, being the lower blue set
at z = 15 and the upper red z = 0. Important to remember that these two simulations
use the same cosmological parameters, being the only difference the proportion of hot dark
matter introduced in RUNH4, hence both simulations have the same σ8 value, even if
it is calculated with different methods. Thus, it can be observed that RUNH4 presents
lower power spectrum than RUN7. At z = 0 the difference seems approximately constant
for all the scales. However, at z = 15 the power spectrum of RUNH4 is clearly lower at
small scales, being more similar to RUN7 at large scales. This is due to the free-streaming
process explained previously, which erases the density perturbations at small scales.

6.3.3 Mass Variance

Fig. 6.3.5 shows the mass variance for the four HCDM simulations at three redshifts,
z = 30, z = 15 and z = 0. Similarly to the power spectrum study, RUNH3 has the largest
mass variance values for the all HCDM simulations, while RUNH2 has the lowest ones.
RUNH1 and RUNH4 present the intermediate situations, with σ8 values of 0.547 and 1
respectively.

It is precisely with RUNH1 and RUNH4 where the effect of σ8, hence the quadrupole
moment can be seen more easily. RUNH4 has σ8 almost double than RUNH1, showing at
the same time a mass variance approximately double than RUNH1. This can be explained
remembering that σ8 is proportional to the mass variance [see Eq. (6.2.2)]. Moreover, it is
seen again that larger values of σ8, which is translated in more important random motion
of the particles, reduce the discreteness effects.

Fig. 6.3.6 shows the mass variance of RUNH4 compared to RUN7, being the dashed
lines RUNH4 and the solid lines RUN7. RUN7 has lightly larger values of mass variance,
specially at small scales, since the density perturbation, and hence the power spectrum
of RUNH4, are less important at those radius. However, when large scales are taken into
account, these differences almost disappear.
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Figure 6.3.3: Matter Power Spetrum for RUNH1 to RUNH4. Dark dotted lines represent initial
redshift z = 30, blue solid lines z = 15 and upper red lines final redshift z = 0

1 10

0.001

0.01

0.1

1

10

100

1000

10000

k [h Mpc−1]

P 
[h
−1

 M
pc

)3 ]

 

 

RUN7
RUNH4
z=15
z=0

Figure 6.3.4: Matter Power Spetrum for RUN7 vs RUNH4. Solid lines represent RUN7 and
dashed lines RUNH4, while the lower blue color is for z = 15 and upper red for z = 0
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Figure 6.3.5: Mass Variance for RUNH1 to RUNH4. Dark dotted lines represent initial redshift
z = 30, blue solid lines z = 15 and upper red lines final redshift z = 0
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Figure 6.3.6: Mass Variance for RUN7 vs RUNH4. Solid lines represent RUN7 and dashed lines
RUNH4, while the lower blue color is for z = 15 and upper red for z = 0
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Chapter 7

Conclusions

In this thesis the effect of the different cosmological parameters have been studied using
N-body simulations to represent the formation and evolution of structures in the Universe.
After the basic simulation RUN0, two sets of simulations have been performed, testing the
effects of the cosmological parameters for the ΛCDM and the HCDM model. This has
allowed not only the study of paramaters such as Ωm, ΩΛ or σ8, it has made possible to
compare cosmologies with and without hot dark matter as well. Thus, the conclusions
achieved with the thesis can be classified as the effects of the cosmological parameters and
the effects due to the presence of hot dark matter.

Effects of the Cosmological Parameters

Regarding the cosmological parameters, it has been seen that high values of Ωm lead to
more structure formation, since the larger matter density produce larger gravity fields,
which through hierarchical clustering show more developed structures at the end of the
simulations. On the other side, ΩΛ enhances the expansion of the Universe, erasing the
density fluctuations at small scales, and reduces the formation of structures. The primordial
tilt n has a rather appreciable effect, with higher clustering and more structures as n
increases, due to the fact that more power is distributed at small scales.

However, the studied parameter that presents a more important effect is σ8, which
determines the amplitude of the density fluctuations at the initial redshift. The results
obtained when varying this parameter are very different from each other, showing its large
effect in the formation of structures. Thus, large values of σ8 results in a very developed
clustering, and low σ8 in almost no observed structures. Nevertheless, the shape of the
structures formed does not change, only the time rate at which the simulation evolve, hence
the universe simulated varies. Therefore it is possible to conclude that σ8 changes the initial
state of the simulation, making the simulation to start in a more or less developed state
depending its value. This is easily seen in Fig. 6.2.2.

It is also important to point out the consequences of modifying the value of the
quadrupole moment. It has been seen that this value, which comes from the CMBR
anisotropy, affects widely the results, due to the fact that the code used for the simula-
tions uses the quadrupole to calculate the σ8, implying the consequences discussed in the
previous paragraph.
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Effects of the Hot Dark Matter

Even if the proportion of hot dark matter in the simulations has not been able to be
modified as it was desired, it has been enough to test the effects of its presence and study
its implications.

HDM has the characteristic of presenting a cut-off in the power spectrum at small scales,
meaning the erasing of density fluctuations at those scales. This leads to less structure
formation after the Universe evolves, since the small-scale density fluctuations that would
be the seeds for later clustering are not present. As a result, the structure formation in
the HCDM model is less developed than in the ΛCDM, showing clear differences when
the power spectrum is analyzed. Thus, due to the cut-off of HDM, HCDM has lightly
less power at small scales than ΛCDM [see Fig. 6.3.4], which leads to the lower clustering
observed in the density plots. Nevertheless, since the HCDM model used has a proportion
of HDM rather small, the differences observed in the results are not very large.

Future Work

As it has been explained previously, this thesis has been limited in terms of time and
resources, hence it has not been possible to do all the analysis and work that could be
desired. For that reason it is important to point out some fields that would be interesting
to be studied in future projects to complete the work presented here.

Firstly, the limitations due to computational resources could be solved using more
advanced computers, making possible to perform simulations with much larger number of
particles. This would reduce the discreteness effect appeared in the results, avoiding the
disturbances they produce.

Secondly, it will be interesting to test some cosmological parameters that have not been
modified in our simulations, especially the proportion of baryonic matter and the amount
of HDM compared to CDM, which has been constant in this project. Thus, the effect of
other parameters could be studied, and the behavior of the Universe in the presence of
purely HDM could be analyzed, leading to better comparisons with ΛCDM models, and
therefore better understanding of HDM.
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Appendix A

Dark Halos

In this section of the Appendix the results of the dark halos study is presented. They are
placed here since this part of the thesis does not belong to the main set of simulations
planned at the beginning, hence they do not try to respond the questions presented in the
Introduction.

Thus, why the dark halos analysis has been done? The purpose of this study is to
use the programs in the code responsible of the dark halos detection, and test the results
obtained when different situations are considered. Dark halos have been searched using
the Bound Density Maxima (BDM) code included in the package released by Klypin &
Holtzman (1997), and with the data obtained the number density of halos and the density
profile of the biggest halo have been calculated.

The parameter modified when searching the halos has been the number of seeds placed
by the code in the simulation box in order to begin the process. These seeds are the center
of spheres that are used to determine the mass and the center of mass of a certain region,
repeating the procedure until the results converge and the halos are found. The complete
explanation of how the BDM code works can be found in Sect. 4.3.3. Trying to understand
the effect of the number of seeds e.g. changes in the values or the resolution of the results,
three different values for the number of seeds have been used, being them 500, 1000 and
2000.

The search of dark halos has been done using the results obtained from RUN0. More-
over, many other parameters have been set in the code to have a reasonable scenario when
searching the halos. Thus, the minimum radius of halos, their minimum mass as well as ve-
locity limits and other parameters are introduced in the program. One of those parameters
is the overdensity of the halos, which is the needed overdensity to have collapse (Navarro
et al. 1997), hence the code requires the minimum value of overdensity that will assure
the formation of the structure. The complete list of parameters is presented in Table A.

The method used to test the results is to compare the number density predicted theo-
retically versus the simulations data, as well as the density profile of the biggest halo found
in each simulation.
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Parameter Value
Minimum center overdensity for halos 340
Overdensity threshold for halos 340
Minimum halo mass 5 · 109h−1M�
Comoving search radius 0.050h−1Mpc
Smaller radius of final halos 0.030h−1Mpc
Minimum radius for halos 0.030h−1Mpc
Fraction of DM particles 1
Rejection velocity limit 1.0 (V/Vescape)
Distance to check for velocity duplicate 0.030h−1Mpc
Define duplicate if (V1 − V2)/Vrms < 0.10
Comoving box size 20h−1Mpc

Shell factor 5
Number of seeds 500 - 1000 - 2000
Number of neighbors 100

Table A.0.1: Parameters used in dark halos

A.1 Number Density of Halos

The number density of halos can be calculated theoretically using

n(M, z)dM =
ρ0

M

dν(M, z)

dM
f(ν)dM,

where f(ν) is a mass function, ρ0 is the mean density of the Universe at z = 0, and ν is
given by

ν(M, z) =
δc(z)

σ(M, z)
.

In the previous equation σ(M, z) is the mass variance [Eq. (5.3.1)], which can be related
to the mass of the halo by

M =
4

3
πR3ρ.

On the other side, δc is the critical overdensity of an uniform spherical overdense region at
the point at which the exact non-linear model predicts that it should collapse (e.g. Eke et
al. 1996), being its value δc = 1.686.

The mass function has been approximated using two methods: the Press-Schechter
(PS) approximation and the Sheth-Tormen (ST) mass function. The PS approximation
was proposed by Press & Schechter (1974) and presents the mass function as

f(ν) =

√
2

π
exp (−ν2/2),

while the mass function developed by Sheth & Tormen (1999) is given by

f(ν) =

√
2

π
0.2709(1− 1.1096ν0.6) exp (−0.707ν2/2).
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Figs A.1.1, A.1.2 and A.1.3 show the number of halos with mass larger than M. For the
three number of seeds, all the curves present larger number of halos at large masses than
the number expected by the PS and ST approximations. Nevertheless, when Nseed = 2000
the number of halos found by BDM is higher than the predicted for almost the whole
range of masses, only being lower than ST approximation at low masses. This is due to
the fact that as the number of seeds increase, the number of halos found, especially with
low masses, increase as well. Hence a high Nseed gives more accuracy to found small halos
that otherwise would be not found and ignored by the BDM code. Furthermore, as the
mass considered increases, the number of halos discovered is lower and discreteness effects
appear, showing peaks and irregularities in the curves.

It is also interesting to point out the differences between PS and ST approximations.
Thus, ST predicts larger number of halos than PS, being this difference bigger for large
masses, and reducing it as the masses taken into account decrease.
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Figure A.1.1: Number density of halos with mass larger than M for Nseed = 500. The solid blue
line are the halos found by BDM code, while the upper dashed line is the ST approximation and
the lower dotted black line is the PS approximation
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Figure A.1.2: Number density of halos with mass larger than M for Nseed = 1000. The solid
blue line are the halos found by BDM code, while the upper dashed line is the ST approximation
and the lower dotted black line is the PS approximation
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Figure A.1.3: Number density of halos with mass larger than M for Nseed = 2000. The solid
blue line are the halos found by BDM code, while the upper dashed line is the ST approximation
and the lower dotted black line is the PS approximation
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A.2 Density Profiles

As done in the previous section, the data from the simulation is compared with the theory
predictions. Thus, the density profile for the halos is calculated using the model presented
by Navarro et al. (1997) (NFW), which is

ρ(r) =
δcρc

x (1 + x)2 ,

where x = r/rs, rs is a scaling radius, ρc is the critical density [Eq. (3.1.6)] and δc is the
critical overdensity defined in the previous section. The value of rs is given by

d log ρ(r)

d log r

∣∣∣
r=rs

= −2.

The parameter rs is determined using the relation

Mvir ≡
4π

3
∆virρur

3
vir,

where Mvir is the virial mass of the halo, ρu is the mean density of the Universe and ∆vir

is the relation of the density in the halo over the main density ρu. In the case of these
simulations ∆vir ∼ 337. On the other side, the scaling radius comes from c ≡ rvir/rs, being
c the concentration, in this case c = 7 (Klypin 2000).

The density profile study has been applied for the largest halo found in the results of
the BDM code, hence the halo with largest number of particles. The reason of choosing
this special case is to avoid as much as possible the discreteness effects due to the lack of
particles.

Figs A.2.2, A.2.3 and A.2.4 show the density profile for the three different number of
seeds, being the solid blue line the simulated profile and the dashed red line the NFW
approximation. It can be seen that the simulated profiles do not agree very well the
predictions of NFW, presenting always lower values. Moreover, due to the reduced number
of particles, the precision of the profile is very low and discreteness effects appear in form
of irregularities and sharp changes of inclination. Thus, even if the general behavior is
decreasing, at small radius the profile increase. However, this effect is somehow reduced
when higher number of seeds are placed. Furthermore, as the radius increases, therefore
more number of particles are included, the difference between the simulation and the values
predicted by NFW decrease.
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Figure A.2.1: Position of the analyzed halo in the density plot
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Figure A.2.2: Density profile for the biggest halo for Nseed = 500. The solid blue represent the
simulated profile, while the dashed red line is the NFW approximation

, Radio and Space Science, Master’s Thesis 2010:03



APPENDIX A. DARK HALOS 65

0.1

1014

1015

1016

! 
[h
−1

M
Su

n/(h
−1

M
pc

)3 ]

r [h−1 Mpc]

 

 
Simulation
NFW

Figure A.2.3: Density profile for the biggest halo for Nseed = 1000. The solid blue represent the
simulated profile, while the dashed red line is the NFW approximation
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Figure A.2.4: Density profile for the biggest halo for Nseed = 2000. The solid blue represent the
simulated profile, while the dashed red line is the NFW approximation
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Appendix B

Quantities of Special Interest in the
Code

In this part of the Appendix the equations used for doing the calculations in the thesis
are presented, as well as where they can be found inside the simulation code used, the
PM code by Klypin & Holtzman (1997). Thus, the FORTRAN program and their exact
location is provided in the following list.

B.1 Growth Rate ΛCDM

δg(a) = 5Ωm

2
H(a)

∫ a
0

dx
(x·H(x))3

PMmodels.f : line183, functionAGE

H(x) = [Ωmx
−3 + ΩDE + (1− Ωm − ΩDE)x−2]

1/2
PMmodels.f : line403

B.2 ΛCDM Linear Power Spectrum

Pini(k) = kn exp(P1)

(1+P2k1/2+P3k+P4k3/2+P5k2)2P6
PMmodels.f : line137, functionP(w)

(*)Parameters Pi can be found in the cdm.fit file for a range of different cosmologies.

Sn =
σ2
8R 20

10−5 W (x)dx
PMmodels.f : line44

P (k, a) =
(
Growthfactor(a)
Growthfactor(a0)

)2

Pini(k) · Sn · h3(2π2) PMmodels.f : line86

B.3 HCDM Linear Power Spectrum

σ8 =
√

SnR 10−2

10−4 TopHat+
R 2·10−1

10−2 TopHat+
R 2·10
2·10−1 TopHat

PMmodelCHDM.f : line49
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TopHat =
(

3(sinx−x·cosx)
x3

)2

PMmodelCHDM.f : line245

Sn = Q2(4π)

2π25·fact(ns,2)·R(ns+3)
h

PMmodelCHDM.f : line33

Q = quadrupole
2.276K

PMmodelCHDM.f : line32

Rh = 6·103

h
PMmodelCHDM.f : line29

Pini cold(k) = k
(1+P2k1/2+P3k+P4k3/2+P5k2)2P6

PMmodelCHDM.f : line299

Pini hot(k) = Pinicold(k) k exp−PP1k
1+PP2k1/3+PP3k2/3+PP4k+PP5k4/3+PP6k5/3 PMmodelCHDM.f : line324

(**)Parameters Pi and PPi are found in PMmodelCHDM.fit in lines 286 and 312.

PCOLD(k, a) = a2Ω2
CDMPinicold(k)Snh

32π2 PMmodelCHDM.f : line277&74

PHOT (k, a) = a2Ω2
νPinihot(k)Snh

32π2 PMmodelCHDM.f : line277&74

Plin CHDM = PCOLD(k, a) + PHOT (k, a) + 2PCOLD(k, a)1/2PHOT (k, a)1/2
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