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Estimate CPU Utilization for Data Processing with DPDK
Anton Rydén and Erik Näslund,
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
In a world where networking and network systems are becoming more and more
important, it is crucial that these systems are properly developed and monitored.
The purpose of the project and aim is to create an algorithm that estimates the CPU
workload during packet processing that is linear with respect to network traffic using
the Data Plane Development kit (DPDK). With such a tool, it becomes possible to
predict when a system might start dropping packets. An important part of the
project is the design flow, which mainly consists of a single machine with NUMA
design along with tools to gather and visualize the results. A challenge of this
project is a lack of prior attempts, making it difficult to find a reference point.
While a linear solution was found, it is not without its flaws. However, with further
testing, a practical implementation can be achieved. One conclusion to the project
is that it can serve as a baseline for future attempts and research.
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1
Introduction

This chapter serves as an introduction to the degree project. It mainly introduces
the problem, workflow, goal and challenges and the outline of the report.

When handling large volumes of network traffic in an application, it is possible to
use the Data Plane Development Kit (DPDK) instead of using the much slower IP
(internet protocol) stack that comes with the operating system. One reason is that
DPDK contains data plane libraries that accelerate packet processing workloads for
networking applications [1]. It can also increase packet processing performance by
up to 10 times over a built-in IP stack [2]. Finally, DPDK primarily uses a Poll Mode
Driver (PMD) which constantly polls a network interface waiting for new packets
[3]. This means that the Central Processing Unit (CPU) usage for the process that
polls the network card is continuously at 100% load. However, this number does not
actually say anything about how much work was done, or how much margin there
was before overloading the processor which causes the network application to lose
packets. DPDK has a lot of different types of users, one example being a telecom
operator. For a user, it is often very important to be able to supervise the “actual”
load on the system in order to plan the capacity and avoid overloading the network.
An easy estimation of the actual load would be, for example, measuring the amount
of bursts containing packets compared to empty bursts.

This project was carried out together with the company Sandvine, which works with
applications that handle large volumes of network traffic. They also provide applica-
tion and network intelligence that helps its customers deliver optimized experiences
to consumers and enterprises. Customers use Sandvines cloud-based solutions to
analyse, optimize, and monetize application experiences using contextual machine
learning-based insights and real-time actions. The office that provided supervision
to the project is located in Varberg, Sweden. However, the project was not done on-
site, but was instead worked on from a remote location. Supervision was primarily
performed by Daniel Romell and Robert Linder Blomberg, Sandvine.

1.1 Defining the problem
Measuring the amount of bursts containing packets compared to empty bursts pro-
vides a rough estimate of the actual load, while often being far away from linear
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1. Introduction

with respect to network traffic. Examples of errors are, among others, batch-effects,
which affect the load positively during high network traffic (receiving several pack-
ets in one batch during the same poll). Another example is non-linear effects on
memory latency that affects the estimation negatively during high network traffic
(high memory usage). A more accurate estimate for the load would need to take
these, and other factors, into consideration.

1.2 Workflow
The project was split into weeks. Each week had a set number of tasks that needed to
be executed. The weeks also consisted of one to two meetings per week, one to review
the current week, and plan the upcoming week, and one to review documentation.
The latter was optional, since each week had a varying amount of documentation.
These meetings will have at least one supervisor attending to help, review and
improve the process.

1.3 Goals, Challenges and Aim
The purpose of this project is to create an algorithm that estimates the CPU uti-
lization that is linear with respect to the amount of network traffic. There are many
benefits of a well-performing load estimation algorithm. One of the benefits is, that
it would be possible to easily see how much of the resources are being utilized. This
is important since the knowledge of how much overhead remains gives insight into
when the system needs to be upgraded. Another benefit is the possibility to predict
packet drops solely based on load estimation. The only delimitation of this project is
that the development of the CPU load approximation algorithm is only for DPDK.
Furthermore, the aim of this project is to:

• Investigate and account for factors that influence the precision of a simple load
estimate.

• Develop an algorithm or heuristic method for load estimate that is linear with
respect to network traffic.

One of the challenges of this project is the shortage of prior attempts or similar
projects, which means that a potential solution or guidance will be difficult to find.
Another challenge is determining the optimal parameters using DPDK such as, but
not limited to, size of memory buffer, number of memory buffers, queue length and
number of queues.

1.4 Outline
• Chapter 2 introduces the necessary theoretical material and the tools used.

• Chapter 3 clarifies the design flow, hardware and software setup.
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1. Introduction

• Chapter 4 encapsulates and evaluates the series of implementations resulting
from the design flow.

• Chapter 5 brings a conclusion to the report with some discussions about the
results.
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2
Background

This chapter explains the necessary theoretical material and tools that were used in
the project. It focuses mainly on the networking aspects, TRex and DPDK, along
with some information about technologies necessary for the physical and virtual
setup.

2.1 Networking
An essential part of networking are packets. They are units of data that are trans-
mitted over a network, mainly consisting of user data and control information. Using
packet switches, it is possible to send and receive packets across networks [5]. Usu-
ally, this can be done by sending bursts consisting of multiple packets. Moreover,
defining packets as either Rx packets when they are received or Tx packets when
they are transmitted makes it possible to count the amount that failed to reach its
destination, commonly known as packet drops [6]. Each packet dropped is a lost
piece of information. These packet drops can be calculated by taking the amount
of Tx packets minus the amount of Rx packets. However, in order to reduce drops
and ensure each packet is transmitted and received, it is possible to use a queue
that forces each packet to wait for its moment to be transmitted, guaranteeing that
packets are not transmitted simultaneously [5]. When the queue becomes full, it
is possible that packets start dropping. Subsequently, the queue length can vary
and be changed. Both long and short length have different advantages and disad-
vantages. The queue size has a significant effect on the system, since a large queue
means that the probability of dropping due to the queue being full decreases at
the cost of system performance, depending on the hardware. On the other hand, a
smaller queue increases the chance of dropping, but improves system performance
[7].

In order to enable computers and machines to partake in a network, it is necessary
to have some sort of Network Interface Controller (NIC) installed. A NIC is a
hardware unit with the sole purpose of enabling the machine to communicate to
other devices through either Ethernet or Wi-Fi [8]. This communication makes it
possible to transfer and receive data. When transferring data, it is moved to the
NIC from the memory and vice versa when receiving [8]. However, depending on
the NIC and system, this transfer of data can be done differently.
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2. Background

2.2 Computer Memory
Another factor that affects this project is computer memory. One of the relevant
concepts are memory buffers. They are a temporarily reserved area of the memory
with the main purpose of storing data when transferring it between two locations [8].
These locations can be either devices or applications. Also affecting the memory is
memory allocation, a process where programs and services are assigned a set amount
of virtual or physical memory space [9].

In order to achieve optimal performance with multiple processors in one system, it
can be useful to utilize Non-Uniform Memory Access (NUMA). NUMA on Linux
is a way to divide hardware resources into software abstractions known as “nodes”.
These nodes may contain zero or more CPUs. NUMA is also a design where the
time to access the memory depends on the location relative to the processor [10].
Meaning, NUMA can be applied in order to create multiple machines with inde-
pendent hardware out of a single system and make use of several CPUs to increase
performance.

Another way to increase the performance of a system is increasing the size of Mem-
ory pages, which by default are blocks of fixed-length virtual memory. However,
this length can be increased with HugePages, a feature integrated into the Linux
kernel. The system resources required to access page table entries can be reduced
by increasing the size of memory pages. Thereby improving system performance for
certain scenarios [11]. However, one disadvantage of HugePages is the increased risk
of internal fragmentation. Since the memory is reserved for the page, storing small
amounts of data in a large memory page will cause the remaining memory to be
wasted. Usually, memory pages have a default size of 4 KB, while HugePages can
achieve much larger depending on the system.

2.3 Data Plane Development Kit (DPDK)
To comprehend how DPDK works, it is important to understand what a data plane
is. Essentially, a data plane is the part of a network that handles and transmits user
packets [12]. This means that DPDK is a tool to develop and change how packets
are processed. Furthermore, DPDK is a collection of libraries aimed at speeding up
packet processing workloads on various CPU architectures [1]. Developed by Intel
in 2010, it is written in the programming language C and is open-source, and as
such, it can be downloaded and modified to fit any network application.

An essential part of DPDK is its Poll Mode Driver (PMD), which consists of APIs
that are provided by the Operating System’s (OS) drivers. Its purpose is to allow
uninterrupted access to the Rx and Tx descriptors in order to receive, process, and
send packets in the application. [3]. Hence, it is a vital component of this project,
since it enables packet processing.

In order to test the PMD, one can use the DPDK application TestPMD which en-
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2. Background

ables the user to test their PMD by forwarding packets across networks [4]. TestPMD
comes with a number of different forwarding modes, listed as follows:

• Input/output mode - default mode, both receives and transmits packets.

• Rx-only mode - only receives packets.

• Tx-only mode - only transmits packets.

While enabling users to try different scenarios for development, the modes also make
it possible to modify and add actions carried out during packet processing. However,
depending on the packet forwarding engine, the packets can be forwarded differently
[13]. For example, one forwarding engine could forward packets without processing
the packets, while another might scan each packet for various information. Thus,
the forwarding engine can affect the result and performance of a system.

In order to set up several instances of DPDK on one machine, it is possible to use a
Virtual Machine (VM). A VM is a machine built on code that uses the host hardware
in order to simulate a physical machine. Typically, creating a VM can be done by
assigning it restricted access to the physical machine hardware [14]. For example, it
is possible to only allow the VM to use 30% of the physical machine memory. From
a number of applications that make it possible to create a VM, the one relevant
for this project is Quick Emulator (QEMU), an open source emulator that aims to
allow users to run programs and applications built for one machine, on another [15].

This project mainly used DPDK for developing the algorithm that is used to estimate
the load and make sure that it is linear with respect to network traffic. Subsequently,
Python 3 was used to create various diagrams.

2.4 TRex
TRex is an open-source traffic generator based on DPDK created by Cisco and is
used to generate artificial traffic in a network [16]. Two of the main parameters that
affect how TRex generates traffic is the traffic mix and multiplier. A traffic mix is
essentially a model that describes the behaviour of traffic, while the multiplier can
amplify the volume of traffic [17].

Before releasing networking applications, it can be meaningful to test the hardware
and software using a traffic generator to see how the application performs during
high and low traffic. TRex is crucial for this project in order to generate traffic and
estimate load based on packets processed.
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3
Design

This chapter aims to clarify the design flow, hardware and software setup. The
design flow section explains how the problem was approached in order to explore
possible solutions. Hardware setup describes what hardware was used and what
problems occurred when using that hardware. Software setup clarifies what software
was used and in what configuration, and difficulties that occurred with this setup.

3.1 Design flow
Initially, the hardware along with an operating system and necessary drivers were set
up. Next, we continued by getting familiar with DPDK along with how to compile
and run a DPDK networking application. When this application was running, the
next step was to get TRex compiled and running. However, in order to have both
TRex and DPDK running on the same system, it was necessary to use a VM. This
and more about the setup is explained in further details in Sections 3.2 and 3.3.

After both applications were running, it was made sure that they were able to
send traffic between each other by starting a DPDK networking application that
forwards traffic. Subsequently, the TRex application was initiated to send traffic to
the DPDK application, which would return the traffic to TRex. This was performed
by starting TRex with a specified time. When this timer ends, it outputs a statistics
summary of the run. In this summary, the most important statistics are TX and
RX packets. More importantly, unless TRex has the same amount of TX and RX
packets, it implies that the applications are experiencing packet drops. Meaning,
it was possible to verify a successful setup by checking the TRex statistics. When
testing, low traffic was initially used to confirm that the volume of traffic was not
causing any problems. After the setup was working with low amount of traffic,
higher volume of traffic was tested.

When the setup was done and confirmed to be working, development of various tools
to help achieve the final results began. Primarily, two tools were developed, one for
visualizing the load and packet drops in a graph using Python and the other being
a bash script for running a series of TRex runs with increasing traffic to ensure
consistency and creating a complete run. A TRex run was one initiation of the
traffic generator, allowing it to run through a specified time frame.

9
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After the setup and tools were fully functional, it was a matter of testing different
solutions and testing what parameters affect performance. Whenever a test run was
completed, the graphing tool was used to compare previous runs to analyse what
difference the changes made. Depending on the results, appropriate changes were
made to make the results closer to reality. Reality being the point of time when the
applications start to continuously drop packets and the effective load is at 100%.

3.2 Hardware setup

All the hardware was facilitated by Sandvine, the company provided us free hands
to choose between their available hardware. In the end, the Dell PowerEdge R730
was selected due to its high performance. A high performing computer would allow
testing a wider range of volume in traffic, providing an opportunity for stress testing
of possible solutions to a greater extent. After choosing the base server hardware,
there were two setups that were considered. The first one was to have two inde-
pendent machines and send traffic between these. The second setup was to have
one machine with two NICs and send traffic between these. The latter setup was
chosen to minimize the hardware used, complexity, and was also recommended by
Sandvine. The hardware used during the project can be seen in Table 3.1 below
presenting the model, NIC, CPU and Random Access Memory (RAM).

Model Dell PowerEdge R730
NIC 2 x Mellanox CX-5 dual port 100 Gbps Ethernet
CPU 2 x Intel Xeon E5-2697 v3 (14 cores 28 threads

Max: 2.6 GHz Min 1.2 GHz)
RAM 2 x 128 GB (8 x 16 GB) DDR4 2133 MHz

Table 3.1: Hardware specification

As seen in Table 3.1 there are two sets of CPUs and RAM, since the motherboard
is designed with NUMA. This has the advantage of being able to replicate two
machines with independent hardware running on the same system. Two NICs were
used in order to send traffic between the machines. The two NICs used have 2 ports
each, which can be seen in Figure 3.1 below.
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3. Design

Figure 3.1: Hardware and software setup

There was one major discovery and challenge during the project with the NICs and
motherboard. When running a high amount of traffic, there were highly inconsistent
results. After some investigation, it was determined that the amount of transmitted
packets from TRex and received packets from DPDK differed at larger volumes of
traffic. None of the applications were actually responsible for the packet drops. The
source of the problem was congestion on the NICs which could not absorb the amount
of traffic coming from TRex. This type of drop is referred to as rx_discards_phy
by Mellanox [18].

3.3 Software setup
As described in Section 3.2, the project was using one system with two NUMA nodes.
These were utilized by running the DPDK applications on node 0 and the TRex
traffic generator on node 1. The advantage of this is preventing the two applications
from sharing resources. However, the setup proved to create some initial problems,
since there were difficulties with running both DPDK and TRex on the same OS.
These challenges appeared as a result of TRex being based on DPDK [16]. This
caused complications since both applications are trying to launch one instance of
DPDK each on the same OS. This was solved by running a VM with the help of
QEMU on node 1 as seen in Figure 3.1. On node 0 the DPDK application was
running and inside QEMU on node 1 the TRex was running, both the host OS and
the VM running Ubuntu 20.04 Long Term Version (LTS).

After recommendation from supervisors, the selected application to run was TestPMD.

11



3. Design

Initially, the default forwarding engine IO forward was used. This, in conjunction
to the hardware, proved to be a bad setup for testing the algorithm. The reason
was that IO forward does not access packets data, which makes this forwarding
engine highly efficient [19]. So efficient in fact that testing the algorithm fully on
one core was not possible and as such, it was not possible to send enough traffic to
reach 100% utilization before the NICs were congested. This is explained in greater
details in Section 3.2. There were two actions taken to resolve the issue. Firstly,
underclocking NUMA node 0 to 1.2 GHz. This lead to worse performance of node 0
which resulted in being able to run full tests. However, it was still close to the limit
of congestion, so in order to have more headroom, a second action was taken. This
consisted of changing the forwarding engine to Checksum Only (CSUM), a forward-
ing engine that access the packet’s checksum field and adjusting it [19]. Accessing
and changing packet’s data is much less efficient, which allows testing the algorithm
fully.

Two tools were developed during the project, a graphing tool and a bash script. The
graphing tool draws the results of runs, displaying both load and packets dropped.
This tool proved to be very helpful when analysing results and comparing runs with
each other. See Figure 3.2 below, demonstrating the output of the graphing tool.

Figure 3.2: Example output for the graphing tool utilizing the bash script

The second tool developed was a bash script, which ensured there was consistency
between runs. This was a necessary tool since it is not possible to gradually increase
the amount of traffic during a run with TRex. Due to this, a bash script that con-
secutively started TRex processes with increased amount of traffic was constructed.
When starting TRex, it is necessary to specify the amount of traffic in terms of
multipliers, for example increasing the multiplier to 3 amplifies the amount of traffic
specified in the traffic mix thrice. For the traffic mix used in the project, the base
amount of traffic is roughly 1 Gigabits per second. This script took 4 arguments:
lower bound, upper bound, time to run each process and increment of multiplier.
For example, Figure 3.2 is displaying a run that make use of the tool. The spe-
cific arguments for this specific run were: 1 in lower bound, 51 in upper bound, 60
seconds per consecutive process and 5 multipliers increments.

12



4
Evaluation

This chapter encapsulates and evaluates the series of implementations resulting from
the design flow. Each of which was based on a model created by Intel that calculates
DPDKs Rx spin time [20]. See Equation 4.1 below, where i0 represents the number
of iterations that give zero packets, and ti the total number of iterations.

DPDK Rx Spin T ime ∝ i0
ti

(4.1)

Or in other words, the rate of packet receiving iterations that give zero packets out
of all iterations. By changing this model slightly, it is possible to calculate the load
of the CPU during packet processing. Since the iterations that receive packets are
going to be the ones where the processor does any work of interest, we can change
the model to focus on those iterations instead of those that give zero packets. See
Equation 4.2 below, showing the updated model, where i1 represents the number
of iterations that give any packets.

CPU Load ∝ i1
ti

(4.2)

While this model does not account for various factors that might affect each iteration,
it is used as a reference point for each implementation. Each description of the
implementations will also include a graph showing results and dropped packets.
The results display the performance and drops of each solution. Thereby, they show
how well it is possible to predict drops using the implementation. All results are
generated by the same test, being one run through of the bash script described in
Section 3.3 along with the parameters that provided the most reasonable results.
See Table 4.1 for the parameters used in the test.
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4. Evaluation

Packet Burst size 64
Rx queue size 4092
Tx queue size 4092
Number of Rx queues 1
Number of Tx queues 1
Number of CPU cores 1
Forwarding mode CSUM
Memory buffer size 1646
Total number of memory buffers 200 0000

Table 4.1: Parameters used in the test that gave the results for each implementation

The parameters queue size, memory buffer size, and total number of memory buffers
are a consequence of trial and error for finding the optimal DPDK performance.
In this case, optimal performance is defined as when the networking application
continuously drops packets at the largest possible traffic volume. It is reasonable to
test the estimation algorithm on the best parameters for DPDK, since there is no
real reason for having suboptimal performance in a real use case.

4.1 First implementation
Following the Equation 4.2 above, the project’s first attempt was the direct imple-
mentation of that model. However, what exactly one iteration does, is not entirely
elaborated. Therefore, this solution assumes that one iteration was one call of
DPDKs forwarding engine function. Furthermore, since that function runs more
than a hundred thousand times each second, the load was calculated one hundred
thousand iterations apart to improve the time complexity and accuracy. See Figure
4.1 below, showing results of this implementation.

Figure 4.1: Load estimation and packet drops of first implementation

The implementation results in an exponential CPU load growth, which makes it
difficult to predict drops. However, it starts dropping at around 100% efficient load.

14



4. Evaluation

4.2 Second implementation

In an attempt to improve the first implementation, a factor that could be affecting
the result was removed. This factor was the fact that calculation of the load was
made a set amount of iterations apart. Meaning that the efficient load was incon-
sistently calculated, since it depended on the time the CPU spent on each iteration.
In order to prevent this, the second implementation made use of timestamps, to
perform each calculation a set time apart. Hence, for the second implementation,
the efficient load was calculated once every second. See Figure 4.2 below for the
results and drops of the second implementation.

Figure 4.2: Load estimation and packet drops of second implementation

While possibly being more linear with respect to network traffic, the second im-
plementation show some inconsistency and its CPU load still grows exponentially.
However, it is possible to somewhat predict drops using the implementation.

4.3 Final implementation

While the use of timestamps improved the result slightly, it could be utilized to
further develop the implementation. By replacing the inconsistent iteration factor
completely and only focusing on the actual time spent on each calculation, the
accuracy would improve significantly. This was achieved by removing the counting
of each burst with any packets, and replacing it with counting the time spent on
each burst. Thus, it would become possible to calculate the CPU load solely based
on actual packet processing labour. However, this also means that the model was
reworked. See Equation 4.3 showing the updated model, where tb1 represents the
total time spent on bursts with any packets and tba the total time spent on all
bursts. Furthermore, see Figure 4.3 for the results of the final implementation.

CPU Load ∝ tb1
tba

(4.3)
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Figure 4.3: Load estimation and packet drops of final implementation

The results of the final implementation are evaluated in Section 4.4 by comparing
it to a baseline and highlighting gathered observations.

4.4 Comparing final implementation with base-
line

Since there are few prior attempts trying to solve this problem, it becomes difficult
to find a reference point. Hence, the first implementation will be used as a baseline.
Comparing the results from the first to the final implementation, there are a few
obvious differences. See Figure 4.4, showing a vertically stacked comparison.

Figure 4.4: CPU Load, vertically stacked comparison, first implementation (above)
vs final implementation (below)

Most prominent being the first implementation producing an exponential growth
of load with respect to network traffic, while the final implementation is linear.
Being linear, it becomes much easier to predict packet drops since each increase in
multiplier provides a predictable outcome in load. Another observation is that the
first implementation starts dropping at a lower CPU load. See Figure 4.5, showing
a vertically stacked comparison of the performance in regard to packet drops.
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4. Evaluation

Figure 4.5: Vertically stacked Packet Drops comparison, first implementation
(above) vs final implementation (below)

This indicates that the first implementation might require more processing power
compared to the final implementation. However, we can also see the final imple-
mentation start to continuously drop packets at multiplier 45. Subsequently, it is
difficult to further analyse and evaluate the drop comparison since the first solu-
tion is based on number of iterations, while the final implementation relies on time.
Hence, below is an explanation that brings additional statistics of each solution, to
clearly demonstrate the variance in performance.

Considering the aim was to create an estimation algorithm that is linear in respect to
the networking traffic, a metric to use besides the graphs is necessary. Therefore, we
created an equation that we call theoretical load, which calculates the expected load
at a certain network volume in order for a solution to be linear. Thus, it is possible
to build a table of statistics that shows how each implementation compares to a
perfectly linear solution. This can be done by taking the traffic volume of the desired
point, and dividing it with the measurement where the networking applications start
to continuously drop packets. See Equation 4.4 below showing the created model,
where tvp represents the traffic volume at the desired point in time and tvd the
traffic volume when packets continuously drops.

Theoretical Load ∝ tvp

tvd
(4.4)

An important fact about using this equation for our setup is that the used traffic mix
increase the volume with increments of 1 Gbps for each multiplier. Thus, there is a
chance that a multiplier lower than 45 causes consistent packet drops while having
a load of 100%. However, we will use 45 as a reference point since it is the first
multiplier that generated continuous drops in the tests. Furthermore, this means
that the theoretical load is not an entirely perfect representation of a linear solution.
Nonetheless, the theoretical load in this case, represents what load a linear solution
would provide, given the fact that a traffic volume of 45 Gbps is the lowest volume
that causes the implementation to reach 100% load and start dropping packets
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consistently. See Table 4.2 for a comparison between the theoretical load and the
estimated load of each implementation, and Table 4.3 showing packet drops for each
implementation during the selected interval.

Metrics Estimated load for each implementation

Traffic
volume

Theoretical
load

First Second Final

1 Gbps 2.2% 0.4 % 0.4 % 5.0 %

9 Gbps 20% 1.4 % 1.4 % 30.2 %

18 Gbps 40% 3.0 % 2.9 % 54.8 %

27 Gbps 60% 6.0 % 5.8 % 75.3 %

36 Gbps 80% 13.0 % 12.7 % 91.5 %

45 Gbps 100% 98.3 % 97.1 % 100 %

Table 4.2: Theoretical load compared to the estimated load of the implementations

Metrics Total amount of packet drops for each implementation

Traffic
volume

Theoretical
load

First Second Final

1 Gbps 2.2% 0 0 0

9 Gbps 20% 0 0 0

18 Gbps 40% 2404 1818 1842

27 Gbps 60% 18842 14271 15761

36 Gbps 80% 50908 43925 45181

45 Gbps 100% 2894060 3300460 3531246

Table 4.3: Amount of packets dropped by each implementation

The results seen in Table 4.2 and 4.3 show that the final implementation have a
greater performance in almost all aspects compared to the first and second solution,
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having less packet drops before 100% load and being much more linear. However, it
also demonstrates that improvements made from the first to the second implemen-
tation did not have a large impact with regard to linearity.

While the final implementation achieves better results than the first, it is not without
flaws. Figures 4.4 and 4.5, and Table 4.2, show the inconsistencies of the solution.
One being the visible spikes in each bar, as can be seen in Figure 4.3. Suggesting
that there might be something that affects the load calculation. We believe that the
spikes could be the result of batch effects, where a batch of packets is larger than
the normal size. Since there are more calculations required during the processing
of such a batch, the load becomes higher. However, it is difficult to prevent these
effects in a real-world scenario since the traffic is not completely controlled. It is
also not something that should be scheduled differently, since if the packets are not
dealt with as fast as possible, they might be dropped, making it a difficult problem.

Another deviation is the sporadic drops, which are noticeable before the imple-
mentation starts dropping consistently. It is also apparent that the solution is not
entirely linear in respect to networking traffic, looking at the results from Table 4.2
showing that the estimations are roughly 10% off. However, running the same test,
we found that, compared to a non-modified instance of DPDK, the final implemen-
tation starts dropping about one multiplier earlier, negatively affecting the amount
of dropped packets. Consequently, in order to create an authentic comparison, it
is impossible to add all modifications that gather those results to visualize them in
a graph. However, we believe that the cause of the early drops is most likely due
to the time complexity of the algorithm. Reducing the processing power needed to
run the algorithm should allow the processor to focus more on dealing with packets.
This in itself would not only prevent how many packets drop, but also when the
implementation starts dropping.

Parameters for DPDK make a substantial difference in performance and for the
load estimation. In order to grasp what affects the performance of the networking
application and the load estimation algorithm, we ran multiple tests with slight
differences in parameters compared to 4.1. The results of decreasing queue size to
2048 shows roughly the same amount of drops per second during peak load, while
beginning to drop small amounts earlier, which we believe is the cause of a worse
ability of handling batch effects. See Figure 4.6 displaying the effects of decreasing
queue size to 2048.

Moreover, when increasing the queue size to 8192, the solution generates earlier
consistent drops and the amount of drops is significantly increased during peak
load, as presented in Figure 4.7 below.
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Figure 4.6: Results of final implementation with queue size 2048

Figure 4.7: Results of final implementation with queue size 8192

This trend seems to continue when increasing the queue size further, as shown in
Figure A.4 found in Appendix A, which we believe might be the result of an increased
work load. However, when changing the total number of memory buffers, the results
in Figure A.1 and A.2 shows no notable difference in performance. Furthermore,
no remarkable changes in performance were observed when increasing the size of
memory buffers, as visualized in Figure A.3. Figures A.1, A.2, and A.3 located in
Appendix A.
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5
Conclusion

This chapter brings a conclusion to the report. It also discusses the results, how
they could potentially be improved, and what the next step in the project would be.

This project has been an attempt to create an algorithm that estimates the CPU
load during packet processing that is linear with respect to network traffic based on
DPDK. While successfully developing a substantially linear implementation, only
the majority of factors that influence the precision in a simple load estimate were
accounted for.

The results gathered were based on the design flow, which mainly consisted of a hard-
ware and software setup. By using a single machine with NUMA design provided
by Sandvine, it was possible to create a setup that had TRex and DPDK simulate
a network system. However, before the setup was functioning, it was necessary to
underclock the CPU and change the forwarding engine in order to be able to gather
packet drops. Furthermore, creating tools to both test and present results was re-
quired to have an optimal setup. With a working setup that could gather results,
where TRex was generating traffic and DPDK receiving and forwarding packets, nu-
merous implementations that could estimate the CPU load during packet processing
were created. This eventually led to a final solution that was based on calculation
time.

An important note is that the results of the final implementation rely heavily on
parameters. The parameters used to achieve the results were gathered through a
trial and error process, by seeing how each individual setting affected the end result.
Changing any of the parameters can cause a change in the end result. Altering the
stability of the network application and therefore, load estimation, when packets
start dropping and how many packets drop. On the other hand, results with unstable
estimation were only found when the performance of DPDK was poor. In this
case, we consider poor performance being when DPDK is only able to forward a
substantially lower amount of traffic compared to optimal performance. Out of all
the DPDK parameters that we tested during the trial error process, it appears that
only the queue size drastically affect the result.
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5.1 Future Work
Due to a lack of time, this project managed to create an incomplete solution and as
such, there are more tests, investigations and research required to create a finalized
implementation. Stress-testing the solution to see how it performs when the CPU
is under additional pressure would be the next step. Using the algorithm in a real
environment would most likely mean different applications and pieces of software
running in the background. In addition, to further simulate how it would perform
in such a setting, it would be beneficial to have two separate systems instead of
having both TRex and DPDK on one machine. With the results from such tests,
it would be possible to develop the algorithm to work for practical use. With more
time, it would also be possible to further research how each previously mentioned
parameter affects the end result and follow a more theoretical way of optimizing the
test. This could potentially lead to better results and more insight in to what can
improve the solution. However, since there were few prior attempts at solving this
problem, we hope that this project will help further development of the issue and
create a baseline.
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A
Appendix

The figures below are the result of test runs with small modifications to the param-
eters found in Table 4.1. Each alteration is described in the figure label.

Figure A.1: Results of final implementation with total num mbufs 150000

Figure A.2: Results of final implementation with total num mbufs 250000
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Figure A.3: Results of final implementation with mbuf size 2000

Figure A.4: Results of final implementation with queue size 16384
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