CHALMERS |

UNIVERSITY OF TECHNOLOGY

Deep learning for post-OCR error cor-
rection on Swedish texts

Deep learning for post-OCR error correction on Swedish texts

Arvid Lundberg, Mattias Torstensson

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG

Gothenburg, Sweden 2021

MASTER’S THESIS 2021

Deep learning for post-OCR error correction on
Swedish texts

Arvid Lundberg, Mattias Torstensson

UNIVERSITY OF
GOTHENBURG

CHALMERS

UNIVERSITY OF TECHNOLOGY

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2021

Deep learning for post-OCR error correction on Swedish texts
Arvid Lundberg, Mattias Torstensson

© Arvid Lundberg, Mattias Torstensson, 2021.

Supervisor: Dana Dannélls, CSE
Examiner: Richard Johansson, CSE

Master’s Thesis 2021

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg

Telephone +46 31 772 1000

Typeset in KTEX
Gothenburg, Sweden 2021

v

Deep learning for post-OCR error correction on Swedish texts
Arvid Lundberg, Mattias Torstensson

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg

Abstract

As society becomes increasingly digital, the need to digitize physical documents
and texts also increases. The most common technology for this purpose is Optical
Character Recognition (OCR). Today’s OCR systems are unable to guarantee a
totally accurate scan. The quality of digitization varies and is often negatively
impacted by features of the source material. Post-OCR correction is often performed
on the text produced by the system with the aim of correcting any errors that are
present.To our knowledge, there is currently no neural machine learning based post-
OCR model available for Swedish. The purpose of this thesis is to develop and train a
neural machine learning post-OCR correction model on a set of digitized and OCRed
Swedish newspaper texts. When developing the model we took advantage of machine
translation techniques as we view the problem as translating incorrect text to correct
text. Several configurations of the model were tested, and the model managed
to improve the evaluation of all metrics on the withheld validation and test sets.
These improvements are, however, rather small and only manage to correct certain
errors while skipping many others. Additionally, the system sometimes introduces
new errors. While the results show improvement, they are not entirely satisfactory
and we believe that additional tuning of hyperparameters and further research into
synthetic data generation could lead to better results.

Keywords: Computer Science, Thesis, Machine Learning, Neural Networks, Deep
Learning, Natural Language Processing, OCR, Post-OCR, Swedish.

Acknowledgements

We would like to thank our supervisor Dana Dannélls for her help and input during
the project. A acknowledgement to Sprakbanken Text is also in order as without
their transcriptions of the newspaper materials, this project would not have hap-
pened. Lastly we thank our examiner Richard Johansson for the guidance he has
given during the project.

Arvid Lundberg, Mattias Torstensson, Gothenburg, June 2021

vii

Contents

List of Figures
List of Tables

1 Introduction

1.1 Aimof Thesis
1.2 Scope and Limitations L.
1.3 Ethical Considerations
1.4 Related Work And Contributions
2 Background
2.1 Optical Character Recognition
2.2 Artificial Neural Networks
2.2.1 Back-propagation L
2.2.2 Recurrent Neural Networks
2.3 Sequence to Sequence
2.3.1 Attention
2.3.2 Truncated Backpropagation Through Time
2.3.3 Teacher Forcing
234 Decoding
2.3.5 Beam Search
2.4 Ewvaluation Methods
3 Data
3.1 Data Analysis
3.1.1 Text Lengths
3.1.2 Character to Character Mapping
3.2 GigaWord Corpus
4 Method
4.1 Data processingo
4.1.1 Preprocessing the Newspaper Material
4.1.2 Preprocessing the GigaWord Corpus
4.2 Developing the Model
4.2.1 Model Walkthrough
4.2.2 Model Instances oL
4.3 Evaluation

xi

xiii

15
15
15
17
21

23
23
23
23
25
25
26
28

ix

Contents

5 Results
5.1 Quantitative Evaluation
5.2 Qualitative Evaluation
5.2.1 Intermittent Inspection

6 Discussion

6.1 Quantitative Evaluation
6.2 Qualitative Evaluation
6.3 Word and Character based metrics
6.4 LoSs

6.4.1 Lossasa Metric.
6.5 Teacher Forcing oo
6.6 Size of Validation and Test set

7 Conclusion and Future work

7.1 Conclusion .
7.2 Future Work

Bibliography

31
31
33
36

39
39
39
40
40
41
41
42

43
43
43

44

2.1

2.2
2.3

2.4

2.5

2.6

2.7

3.1

3.2

List of Figures

Figure of an example decision boundary, the boundary (shown in
grey) separates whether the points on the input plane are classified
as squares or circles.

An illustration of a small neural network

A simple recurrent neural network where the first neuron feeds back
into itself, thereby forwarding data from a previous timestep.

Figure showing the network from Figure 2.3 unrolled, removing the
feedback loop structure. Also shown is a simple translation of the
term “not tasty” from English to Japanese, where the Japanese word
for tasty, “oishii”, is negated by conjugating it to “oishikunai”, a
process requiring information from the preceding english word “not”
which is passed forward through the connection between timesteps.

A diagram of a sequence to sequence model where the encoder and
decoder are RNNs with hidden states h;. The final hidden state enc of
the encoder is used as initial hidden state in the decoder. The output
from the decoder RNN is passed through a softmax layer in order
to produce a probability distribution over the vocabulary from which
the output character is picked. The final token of the input sequence
x, and the final output from the decoder vy, is the <eos>token.

An illustration of the decoder step at time t. The hidden states from
the encoder gets fed into a feed forward ANN which calculates what
weighting these should get when generating token t. These weights
are then multiplied by their respective hidden state after which they
together with the hidden state s;_; used to calculate state t as well
as generate output y,—1.o

An unrolling of a beam over time. In this example k is three. In each
time step the softmax for each hypotheses is produced and the next
k hypotheses are selected from the combination of these.

Histograms of the amount of characters per text file in the datasets
in logarithmic scale.

Histograms of the difference in character count between each OCR

10

text file versus its corresponding ground truth file in logarithmic scale. 17

el

List of Figures

xii

3.3

3.4

5.1

Heatmap of confusion matrix containing probabilities of character to
character mappings for the Abbyy dataset. Rows represent the truth
character and columns represent the OCR character. The unicode
character ‘U+2591" (omitted from this document due to technical
reasons) represents a missing character, i.e. addition or deletion of
the character. oo
Heatmap of the difference between the original probability matrix and
the one created from generating artificial errors on the ground truth
data with the Abbyy-Tesseract combined OCR model’s character to
character mappings.

Loss graphed over epochs for the different instances. Note that In-
stances 5-8 include subsets from the GigaWord dataset and are not
directly comparable to Instance 1-4.

3.1
3.2

4.1
4.2

5.1

0.2

2.3

5.4

2.9

2.6

2.7

2.8

List of Tables

Metadata of the different text-sets
Table containing the three most common mapping probabilities from
a character to another in the Abbyy dataset for some characters.
‘DEL’ represents the character being missed, or deleted, by the OCR.

Hyperparameters used for the different instances.
Data used for different instances.

Evaluation metrics of the networks outputs on the validation set, as
well as a baseline acquired by calculating the metrics on the network’s
mput. e e e e
Evaluation metrics of the networks outputs on the test set, as well as
a baseline acquired by calculating the metrics on the network’s input.
Table containing the three most common mapping probabilities from
a character in the test set OCR the test set truth for some characters.
‘ADD’ represents the character not being in the truth and being added
by the OCR (i.e. it should be deleted).
Table containing the three most common mapping probabilities from
Instance 2’s output on the test set to the truth for some characters.
‘ADD’ represents the character not being in the truth and being added
by the model (i.e. it should be deleted).
Examples from the test set produced with corresponding output from
Instance 2 and its GT. Errors are highlighted in bold where possible.
Examples from the test set produced with corresponding output from
Instance 3 and its ground truth. Errors are highlighted in bold.

A sample input from the test set to the model at epoch 30 with its
output and GT. Errors are highlighted in bold
A sample from the test set input to the model at epoch 10 with its
output and GT. Errors are highlighted in bold

19

34

xiil

List of Tables

Xiv

1

Introduction

As the demand for digitalization of texts with the use of Optical Character Recog-
nition (OCR) increases, so does the demand on the quality of the produced digital
text [1]. Today, OCR scans are not perfect and aspects of the source text, such
as what font is used, can lead to errors being made in identifying characters. A
high quality of digitalized text is important as the text in many cases is processed
further where corrupt data could cause issues. For instance one can easily imagine
how errors in processed medical records could lead to unwanted consequences.

There are three ways to approach the task of reducing such errors [2]: Source mate-
rial refinement, improvements of OCR, and/or post-OCR correction. The latter is
most popularly applied since it does not require material to be re-processed in order
to improve results.

The task of post-OCR correction can be viewed as having two parallel sentences
such as these:

Wi 6nska ej i betraktelser af

denna art indraga person-

liga hénsyftningar.

Wi onfka ej i betrak-

telfer af denna art indraga

verfonliga hanf{yftningar.
Where the former is the sentence in its correct form while the latter is the sentence
reproduced by the OCR. In the reproduced sentence there are certain spelling errors
such as in the word “perosonliga” which has been interpreted as “verfonliga” by the
OCR. The issue is then: Can these errors be automatically corrected if we do not
have access to the correct sentence?

For English and French post-OCR methods using neural network based machine
learning techniques have been implemented which outperformed previous statistical
models for this task [3]. No such model has as of yet been implemented for Swedish,
which will be the focus of this project.

In order to train a model that is able to correct OCR errors automatically, these
models need error free data. Kungliga biblioteket (KB), the National Library of
Sweden and Sprakbanken Text, the Swedish Language bank at the University of
Gothenburg, have scanned 200 Swedish newspapers from the time span 1818 to 2018.
From each newspaper, two pages have been scanned which amount to 400 pages.
These pages have also been manually transcribed and constitute the foundation for
this project.

1. Introduction

1.1 Aim of Thesis

The aim of this thesis is to find out if a neural machine learning model can be
trained to learn how to correct errors from data based on the data collected from
the newspapers. If the model manages to learn this it should be able to correct errors
given the context in which they are given. For instance if there is a reproduced word
“doar”; which for this example would be a misspelling of the word “roar”. Without
context from the rest of the sentence you might be equally correct in saying that
this should be the word “boar”. The main question this thesis aims to answer is:
Can we develop a deep learning based system that improves the baseline quality of
the OCR of scanned Swedish newspapers?

1.2 Scope and Limitations

When working with neural machine learning models a common way of achieving
better results is by acquiring a large amount of data. In our case, the data is
somewhat limited and we have no way of obtaining more labeled data from the
source.

In addition to limitations of data there exists other challenges posed by the prop-
erties of existing data. Firstly, the data, collected from newspapers, contains large
amounts of named entities. These named entities are things such as locations, peo-
ple, numerical years etc. which might be difficult for a model to correct when limited
to the context of our training data. Secondly, the newspapers on which the dataset
is built were collected over a large time span during which the grammar and spelling
of the language has shifted. We therefore select only a subset of this data that orig-
inates from after 1907 as the main focus for this project. This should make the
dataset more uniform and make it easier to achieve greater results on other texts
from the same time span. However, by doing this we further limit the size of our
dataset and while a system trained on this uniform dataset might perform better
on similar texts it will likely perform worse on data from other time-periods.
Another data property which complicates the situation is that the OCR produced
text and the ground truth (GT) is only aligned at sentence level and not at word
level. This makes systems which would rely on a word to word translation unusable.

1.3 Ethical Considerations

Something to consider in regards to ethics is that depending on what data is used
to train these kinds of systems it is possible that certain stigmas from the training
data is propagated to the corrected text in unwanted ways. One example of this
could be that the model ‘corrects’ a sentence like “..the doctor, she...” to “..the
doctor, he...” due to the historical prevalence of doctors being separated by gender
combined with the similarity between the spelling of the two pronouns.

Another considerations is that while these systems are designed to increase overall
correctness, it is possible that new errors are incurred. If such errors are incurred
in the wrong places on sensitive data it could lead to unwanted consequences.

1. Introduction

Because of these risks one should consider what training data has been used in
relation to the material it is applied on. In a case where sensitive data is involved, one
should also consider manually inspecting the corrected text to ensure its integrity.

1.4 Related Work And Contributions

While similar projects have been performed for other languages there does not ap-
pear to be one for Swedish which primarily uses a neural network based approach.
Bazzo et al. [4] discuss how the topic of OCR errors is still an open one, referencing
a paper by Rigaud et al. [5], that covered 10 European languages, with Swedish not
being one of them. In 2019 there was a master’s thesis [6] on the topic of Swedish
OCR correction which used support vector machines and an algorithm based on
the Levenshtein distance for error detection and correction respectively. There has
also been a recent paper [7] which partially dealt with post-correcting Swedish OCR
results as it had Finnish texts which include both Finnish and Swedish versions.
However the system they used, which was based this upon a paper by Silfverberg et
al. [8], did not use deep learning. Furthermore they state that their algorithm can
not affect spaces, i.e. errors where the system misses a space or introduces a new
one would not be correctable, something which could potentially be solved with a
system that uses character embeddings.

Chantal et al. [3] mention how spelling error correction has been compared to
translation, a field where neural networks have surpassed older statistical methods.
In a master thesis by Sara Salimzadeh [9] the use of similar methods as Chantal
are successfully applied to the post-correction task. Aspects of these works lie as
inspiration for this project.

Since no published work using deep learning methods to do error correction on
Swedish text appear to be available, we believe that this project is a first of it’s kind
in this specific domain.

Because of this, there is also, to our knowledge, no data set available that can be
used as a point of direct comparison between this project and other projects of a
similar nature. As such, in this thesis we do not compare our results to these works.
An estimate of performance compared to other models might possible by manually
comparing the ‘baseline relative’ performance difference if desired. However, this
is not directly comparable as the error types and frequencies might vary between
the data sets. Instead the performance will be compared to the baseline of not
performing any post OCR corrections.

1. Introduction

2

Background

This section will outline some of the concepts which constitutes the base of the work
and components used in the implementation of the system.

2.1 Optical Character Recognition

Optical character recognition or OCR is a term used to describe technologies which
convert handwritten or otherwise analog text into digital text. The process of OCR
consists of many steps each of which has its own difficulties. The first of these is
optical scanning which creates a digital image of the source material and converts
it to gray scale. The digital image is then segmented into it’s constituent parts
such as images, text segments or isolated characters or words. Following this is a
pre-processing stage, here characters are normalized and repaired. After the pre-
processing, the characters are digitized through feature extraction. Lastly, a post-
processing step called grouping is applied in which characters which might have been
incorrectly separated are grouped.

All of these steps are prone to produce errors. If the contrast in the scanning stage
is wrong or a character is too damaged to be repaired in the pre-processing it could
all lead to errors.

An additional step, post-OCR, is therefore applied in order to attempt to correct
these. These post-corrections might be performed by rule based or context based
systems. While post-correction might lead to improvements, no system currently
exist which can guarantee totally accurate OCR as shown by the ICDAR competition
in 2019 where improvements but not solutions were achieved [10].

2.2 Artificial Neural Networks

Artificial neural networks (ANN) are a mathematical model which is inspired by the
naturally occurring neural networks in the human brain [11]. The main component
of the neural network is the neuron. The neuron receives a signal and depending on
different conditions it produces its own signal which is passed along the network to
other neurons whose signals are eventually interpreted as an output response to the
input.

A single neuron is usually modelled as a unit consisting of an activation function f,
a set of weights w, and a bias b. Using these in combination with the input vector

2. Background

Z, the neuron produces an output o:
o= f(Z W +0D)

In its simplest form the activation function is the Heaviside step function:

0, z<0
H(I):{l z >0

In this case the single neuron’s output can be interpreted as a simple binary classifier
with a linear decision boundary, where the neuron’s weights decide the slope of a
hyperplane decision boundary. In the case of a two-dimensional input this makes
the decision boundary a line perpendicular to @ that intercepts the xy axis at w%
[12]. An example of this can be seen in Figure 2.1.

Y
Fa

Xy

Figure 2.1: Figure of an example decision boundary, the boundary (shown in grey)
separates whether the points on the input plane are classified as squares or circles.

In practice functions other than the Heaviside step function are used, with two
examples of common choices being the Sigmoid function or the rectifier function
ReL U. Note that since these are not binary functions it creates decision boundaries
that are more ambiguous and makes a geometrical interpretation like Figure 2.1
significantly more difficult.

In modeling a neural network, neurons are commonly arranged as a feed forward
network (illustrated in Figure 2.2) where the neurons are grouped in layers with
acyclic connections in between them. These connections feed the output from a
previous layer to the next where they are used as the inputs for the neurons in that
layer. The signals are then propagated through the network until the final layer is
reached, whose signals are instead interpreted as the output of the network. It’s
common to have different activation functions for the different layers, in particular
the final output layer tends to be different from the rest. This allows a network to

6

2. Background

create more complex decision boundaries than a single neuron, as well as potentially
have more than one output value.
With multiple output values there is a commonly used activation function called
Softmax (shown in Equation 2.1) that normalizes the outputs so that they all form
a probability distribution together. For example, an ANN that tries to identify
whether a sentence is in Swedish or English could have two outputs, one for each
language, that then with the help of Softmax can be interpreted as the probability
of the input sentence being Swedish or English respectively.

Fimar(x); = < (2.1)

softmax(x); = ——— .
E;V:1 e

Finding the correct values for the weights and biases in a network is required in
order for it to deliver the desired outputs, and it is this process that is performed
during the training of an artificial neural network.

Hidden
layer

Input Qutput
. Weights Weights

Figure 2.2: An illustration of a small neural network

2.2.1 Back-propagation

Training feed forward neural networks is done via the back-propagation algorithm.
A function of the network’s weights and biases called the loss function is created,
which by construction has a global optimum where the network’s parameters yield
the correct outputs.

An example of such a function would be the mean squared error:

1 N

i
Here o; is the network’s output for the ¢’th training sample while y; is its corre-
sponding target output. It can be seen that if the outputs and targets are the same

then the sum becomes zero, while at the same time if the target and outputs aren’t
equal then the squared term strictly increases. Thus the sum can not achieve a value

7

2. Background

below 0 and has a global minimum when the outputs match the targets. In order to
optimize a loss function, training data is fed through the network, creating the N
outputs which are then used to calculate the loss. This gradient of the loss is then
calculated with respect to the parameters of the network by expanding the o; terms
and using the chain rule, these gradients are then used to adjust their respective
weights or biases in the direction of the optimum, generally through some variation
of gradient descent.

There are multiple options when it comes to the choice of loss function and opti-
mization method. The choice of loss function depends on what kind of output is
wanted from the network.

2.2.2 Recurrent Neural Networks

Recurrent neural networks (RNN) refer to ANNs that are not necessarily arranged
in the acyclic feed forward structure shown in Figure 2.2, but that instead have
connections in other directions too. There are many ways to configure these connec-
tions, but of particular interest within our problem area are networks that iterate
over a discrete input sequence while creating an output sequence, retaining informa-
tion from previous parts of the sequence. A simple example of this would be a two
neurons connected in sequence, where the first one takes its own previous output
as well as the next sample from a sequence as input, a visualization of this network
can be seen in Figure 2.3.

output;

T Feedback

-—-xfg\)m 1

>
1

in;;utt

Figure 2.3: A simple recurrent neural network where the first neuron feeds back
into itself, thereby forwarding data from a previous timestep.

This structure makes intuitive sense if for example one is trying to translate the sen-
tence “not tasty” into a language where negation is done through inflection. When
translating the word “tasty” one needs information from earlier in the sequence in
order to know whether to translate it into its negative form or not. Similarly, other
sequences such as games or movies (i.e. image sequences) rely on data from previous
parts of the sequence to convey information such as motion.

Adding connections that feed back into a network in this manner complicates the
learning process, a problem which can be solved by using Backpropagation Through
Time (BTT), albeit at the cost of creating a larger network [12]. In BTT one gets

8

2. Background

rid of the feedback connections by effectively copying the network for every part of
the input sequence (or time step, hence the name), and creating connections to the
next copy instead of feed back loops. An example of this can be seen in Figure 2.4.

outputy outputz outputs
=pad= oishikunai
stateg ——» info,, —3 e ——
not tasty
inputy inputz input;

Figure 2.4: Figure showing the network from Figure 2.3 unrolled, removing the
feedback loop structure. Also shown is a simple translation of the term “not tasty”
from English to Japanese, where the Japanese word for tasty, “oishii”, is negated
by conjugating it to “oishikunai”, a process requiring information from the preced-
ing english word “not” which is passed forward through the connection between
timesteps.

BTT in turn brings two new problems to light due to long sequences making the
network deeper.

The first problem is that when gradients are backpropagated to update weights or
biases in the network there tends to be a large amount of multiplications, and if
the factors are not equal to 1 then this leads to the product changing exponentially.
This leads to what is known as the wvanishing gradient problem (or the exploding
gradient problem if the factors are larger than 1), which slows down learning in the
case of vanishing gradients or leads to NaN values for exploding gradients, which in
turn breaks learning.

The second problem is that the memory required to train the network increases
with sequence length, causing out of memory errors. A solution to this is shown in
Section 2.3.2.

Long short term memory or LSTM is a recurrent neural network architecture which
was invented in order to solve the issue of the vanishing gradient problem [13]. In
this architecture the neurons consist of several gates and a cell state which regulates
how information is passed forward.

2. Background

2.3 Sequence to Sequence

One application of RNNs which is relevant to our objective is one that is used within
today’s state of the art translation systems, known as sequence to sequence (seq2seq).
Seq2seq models are described as having a encoder-decoder structure [14]. In this
structure an RNN acting as an encoder encodes the input sequence into a fixed-
sized vector representation of its contents. The decoder, another RNN, then uses
this representation to generate an output sequence [15]. In machine translation this
internal representation is often referred to as ‘interlingua’, an abstract representation
of the input sentence that is used by the decoder in order to generate the output
sentence [16].

When working with sequences it is natural to use RNNs to model the encoder and
decoder. Figure 2.5 shows an illustration of a seq2seq model. The encoder RNN
sequentially receives the tokens in the input sequence while updating its hidden
state. A token is an element of a sequence. In the case of natural language these are
commonly characters or words. The hidden state that is produced after the encoder
receives the final token of the input, the end of sequence token (<eos>), will be the
vector representation of the input. This vector will then be set as the initial hidden
state of the decoder and together with a <start>token, the decoder will iteratively
produce the tokens of the output sequence. These tokens are used as inputs in the
next time-step unless an <eos>token is produced in which case the generation is

finished.

Decoder

Yo — Yio— ¥n
' Encoder : softmax softmax
. 4" " }_E‘C—{ > }‘4{ i }’ .
%o X1 ¥n =start= “—* V4 b SRR 3 N

Figure 2.5: A diagram of a sequence to sequence model where the encoder and
decoder are RNNs with hidden states h;. The final hidden state enc of the encoder
is used as initial hidden state in the decoder. The output from the decoder RNN is
passed through a softmax layer in order to produce a probability distribution over
the vocabulary from which the output character is picked. The final token of the
input sequence x,, and the final output from the decoder y,, is the <eos>token.

2.3.1 Attention

A mechanism known as attention can be added as an extension to the seq2seq model
[17]. The addition of this mechanism has shown to widely improve results in machine
translation systems [18, 19]. There are two primary points which are changed with
the inclusion of attention.

10

2. Background

First, instead of using the final hidden state of an RNN as the encoding, the encoder
RNN is replaced by a bidirectional RNN and each hidden state is used to encode
the input. This effectively gives each token in the input its own encoding that also
contains information about the rest of the input. To note here is that the hidden
state of the encoder as depicted in Figure 2.6 now consists of two parts, one part
for each direction. The arrows leading from h; to the feed forward ANN represents
the entire hidden state (h;, E)

Second, an attention mechanism is added at the start of the decoder in the form
of a feed forward ANN. This part of the network creates weights that represent the
relative importance of each individual encoded input with respect to the previous
state of the decoder. These weights are then multiplied by their respective encoded
values and summed to form a new representation which the RNN part of the decoder
uses in order to generate the next token, this is generally refered to as Bahdanau
attention (based on [17]) as there are other ways of implementing attention systems.
While weights are calculated for every character in the input, paying attention to
the padding tokens is not desired, so a large constant value is subtracted from their
weights before they are normalized with a Softmax layer.

Vi1 ———

softmax

St-1

Decorder
atstep t

Encoder

Figure 2.6: An illustration of the decoder step at time t. The hidden states from
the encoder gets fed into a feed forward ANN which calculates what weighting these
should get when generating token t. These weights are then multiplied by their
respective hidden state after which they together with the hidden state s;_; used to
calculate state t as well as generate output ;.

2.3.2 Truncated Backpropagation Through Time

Training RNNs with backpropagation through time comes with a caveat of having
to unroll the network [12], or when using Pytorch, storing all the computations that
have been done to reach a certain output [20]. This leads to storing every single
character’s attention weight calculation at every time step. This in turn causes
VRAM usage to rapidly increase as model sizes and sequence lengths increase. To

11

2. Background

alleviate this problem a method called Truncated Backpropagation Through Time
(TBPTT) was used.
The algorithm is described as follows by Sutskever in their thesis Training Recurrent
Neural Networks [21]:

“It processes the sequence one timestep at a time, and every k; timesteps,

it runs BPTT for ko timesteps, so a parameter update can be cheap if

ko is small.”
Instead of performing the weight update of the entire network at the end of the
sequence, it is instead performed periodically throughout the sequence. TBPTT
does however introduce bias to the gradients used during back propagation and
removes theoretical convergence guarantees [22].

2.3.3 Teacher Forcing

When training an RNN as described in Section 2.3 outputs are fed forward and used
as the input to the following step. An issue arises in this approach if the untrained
network outputs the wrong character during a time-step. This unexpected incorrect
token is then used in the next time step and can cause cascading errors leading
to an output that becomes nonsensical. While the training of the network should
eventually correct these errors, it can delay convergence.

Teacher forcing is a method that attempts to circumvent this issue. In this method
the input to the next step is instead set to be the expected output from the previous
step. Training in this manner allows each time-step to produce outputs as if all
previous outputs were correct, even though they might not have been.

While this method can help accelerate convergence, it might also cause an issue
known as exposure bias [23, 24]. This issue is due to the fact that the network has
only seen the correct inputs during training which cannot be guaranteed during test
stages. This would therefore cause the network to perform poorly in the case of an
incorrect output. The effect of this issue is, however, debated [25].

This issue can be mitigated by not always using teacher forcing during training,
instead randomly sampling from either the model’s previous output or the expected
previous output. This is often done in a manner where the probability starts of
favoring the expected and then transitions to favoring the model’s output [26].

2.3.4 Decoding

As mentioned in Section 2.3 the seq2seq model outputs a sequence, in our case of
characters. In order to choose a token the decoder outputs the likelihood of each
token in the vocabulary through the use of a softmax layer at each time step.
Given this likelihood, the decision of which token to output is to be made. During
training a simple and common method is to greedily select the character which
corresponds to the highest likelihood at the given time step. While this method
might not produce the most optimal outputs and has some characteristic problems,
the quality of the output is sufficient for training.

A problem with this greedy strategy originates from the overarching goal of the
system, which is to produce the sequence of outputs with the highest probability.

12

2. Background

More specifically, the greedy strategy runs the risk of selecting a token early in the
decoding which makes the completed sequence have a lower total probability than
if another token had been selected at that step [27]. One could consider keeping
track of all possible sequence permutations during decoding so that the one with
the highest likelihood can be selected. While this strategy is theoretically sound,
it is in practice infeasible because of the enormous amount of combinations and
the required computational resources required. Instead an approximation of this
method, called beam search, is employed during validation and testing since higher
decoding performance is preferred during these.

2.3.5 Beam Search

The beam search strategy is a strategy that approximates the method of keeping
track of every output permutations likelihood [15, 28, 29]. This is done via a beam.
The beam keeps track of the k most likely output sequences at each time step,
where k is a user defined parameter. The network is then ran for each of these k
hypotheses from which a new set of k softmax outputs are produced and this process
is repeated. This is illustrated in Figure 2.7 for a couple of time steps where k is
set to be three. Observe that the three selected sequences are the ones which have
the highest likelihood from all three softmaxes that result from the previous £ most
likely hypotheses combined. The decoding continues in this fashion until a sequence
ending with an end of sequence token has the highest probability or until a max
length has been reached.

select select
top 3 top 3
Po [a Po |a
P | b py (b
select :
top 3 p w Y
n P
Po [a B [a | O
pq b p1 | b <
2505F —— | . i...t.':fE'_z ++++++++++
F:;n Z F; Z ‘\\
: i &,
Po |2 o ‘~\‘
o[b
Pn | Z F:n Z

Figure 2.7: An unrolling of a beam over time. In this example £ is three. In each
time step the softmax for each hypotheses is produced and the next k hypotheses
are selected from the combination of these.

2.4 Evaluation Methods

To evaluate the performance of the model the dataset is split into three parts, a
training, a validation, and a test set. During training only the training set is used

13

2. Background

to actually train the network through backpropagation. The validation set is used
during training to gauge its performance on unseen data, in particular when selecting
hyperparameters. Lastly the test set is used to gauge the performance of the final
models, as its data has been withheld throughout the entire training process.

Since manual evaluation of our models would be far too time-consuming and expen-
sive, automatic methods are used. The methods employed here are ones that are
frequently used in related work [10], namely:

Word error rate (WER) is a measure of how many words have been inserted,
deleted or substituted in the produced text. WER is calculates as follows,

I+D+S

- (2.2)

where I is the number of incorrectly inserted words, D is the number of words missing
in the hypotheses, S is the number of words which have been substituted between
hypotheses and the reference and N is the total number of words in the reference
text [30].

Character error rate (CER) is a measure of how many characters have been in-
serted, deleted or substituted in the produced text. This metric is calculated using
the same equation as WER (2.1), but in this case, I is the number of incorrectly
inserted characters, D s the number of missing characters, S is the number of char-
acters which has been substituted and N is the total number of characters in the
reference [31].

Precision is the ratio of words in the output which is also present in the reference.
Precision is calculated as P = O/N where O is the how many of the words in the
output are also present in the reference text, and N is the number of words in the
output.

Recall is the ratio of words in the reference which is also present in the output.
Recall is calculated as R = T'/M where T is the number of words in the reference
which has also been accounted for in the output and M is the number of words in
the reference.

F-score is the harmonic mean between recall and precision. F-score is calculated

as
PxR

P+ R
where P and R is precision and recall respectively [16, 32].
Since the goal of our system is to reduce the number of errors in the final text we
naturally want to see a reduction in WER and CER, and an increase of the F-score
and its parts.

2 %

(2.3)

14

3

Data

Training data is needed in order to train neural networks for correcting text. For
this project, a set of OCR-produced texts together with its corresponding manu-
ally transcribed ground truth (GT) are used for this purpose. The OCR-produced
texts are scans of different frames in the newspapers which were used to create
this dataset. Unfortunately the source images are under copyright licence and can
therefore not be published. The scanned frames are of varying size. As such, the
scanned sequences are also of varying length. The scanning of the source material
was done three times, each time using different systems. The systems used were
Abbyy FineReader, version 11.1.16, and the open source system Tesseract, version
4, as well as a weighted combination of the two called AbbyyTesseract [33, 34].
Therefore each sample contains the OCR-produced text output from each of these
systems along with its GT. Errors produced by the different systems are different.
As such, a model trained on errors output from one system cannot necessarily be
expected to perform well in correcting errors from another system.

It is worth noting that factors relating to the quality of the source material such as
paper quality, ink or lighting might affect the output from the OCR, and that these
factors are not taken into consideration for in this project.

3.1 Data Analysis

3.1.1 Text Lengths

A brief analysis of the length in characters of each text in the dataset was performed,
both for the transcribed ground truths as well as the three OCR types. Histograms
of the amount of characters per text can be seen in Figure 3.1, note that the vertical
axis has a logarithmic scale. It can be seen that all four of the text sets have similar
distributions and that they all exhibit a rapid decline in frequency as the length of
the file increases.

15

3. Data

ABBYY TESS

10" 10
10 10
= =
5 5
8 10° 8 102
3 3
= =
10’ 10'
‘ ‘ll"l‘ |l o - ‘ |‘||||||| e

I m L[] 1

1000 000 4000 5000 1000 000 4000 000
Dharacter length haracter length
ABBYY+TESS Transcript

10 w0t
10° 10°
= =
5 5
S 10 8w’
3 3
= =
10’ 10'
‘lllll‘ || | “llllll || |l

I ni |

1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
Character length Character length

Figure 3.1: Histograms of the amount of characters per text file in the datasets in
logarithmic scale.

The means, medians, and total character counts were also calculated and can be
seen in Table 3.1. The median and mean for the transcript, i.e. the ground truth, is
slightly smaller than the OCR results, potentially indicating that the OCR is more
likely to generate characters than miss them.

Table 3.1: Metadata of the different text-sets

Text Mean | Median Total
Abbyy 158.20 67 6932505
Tess 158.85 67 6961102

Abbyy+Tess | 157.96 66 6922088
Transcript | 157.19 65 6888886

A similar analysis has been performed on the difference in length between the tran-
scribed and the scanned text, that is, the transcript’s count minus the OCR count.
These can be seen in Figure 3.2.

16

3. Data

ABBYY TESS
10" 10"
10° w0’
- u
[= c
=1 =1
8 o 8 1
o 5
= [
w0’ 10'
10:’ I ‘l“‘ ‘lllll I 100 I| I |‘|‘|‘ ‘ | | | I
nun mil i mii
~4000 2000 2000 4000 —4000 000 4000
Character length A Charader IengthA
ABBYY+TESS Transcript
10"
4
10
10°
- u
[= c
=1 2 =1
S 1w 5
o 5
= [
10’
10D | | |||“‘ ‘llll I 104
n mmnia
-4000 -2000 2000 4000 0.4 0.2 00 0z 04
Character length A Character length A

Figure 3.2: Histograms of the difference in character count between each OCR
text file versus its corresponding ground truth file in logarithmic scale.

The histograms show a similar behaviour to the character lengths, showing a rapid
decline in frequency as the absolute difference grows. As such most files have a
relatively small difference in length, but there exists extreme outliers. Manual in-
spection of some outliers show that either the OCR or the transcript is empty while
the other contains an entire paragraph of text, this appears to potentially be a case
of the OCR scanning a different section of the page than the transcript for some
reason rather than the OCR failing completely.

3.1.2 Character to Character Mapping

To gain further information on what kind of errors occur an investigation into which
characters are mapped to which has been performed. However, since the texts aren’t
aligned by character in the dataset it’s not possible to directly read which character
is mapped to which. Instead an approach described in a paper by Scott MacKenzie
et al.[35] was used.

First off the minimum string distance, otherwise known as the Levenshtein distance,
is calculated. This value represents the minimum possible amount of actions one
needs to perform to transform one string into the other, with actions being limited to

17

3. Data

substitution, removal, and addition of characters. The distance between two strings
was calculated with the algorithm described in a paper by R. William Soukoreff et
al. [36]:
function r(x,y)
if x==
return O
return 1

function MSD(A,B)
for i=0 to len(A)

D[i,0] = i
for j=0 to len(B)
D[0,j] =]

for i=1 to len(A)
for j=1 to len(B)
D[i,j] = min(D[i-1,j]1+1,
D[i,j-11+1,
D[i-1,j-1]1+r(A[i],B[j1))
return D

This yields a matrix which contains the minimum string distance as its bottom right
value.

Second, this matrix is then used by the algorithm described in the paper by Scott
MacKenzie et al. in order to create all possible optimal alignments between the two
sentences. An issue arises here as there are potentially multiple ways of converting
one string into the other with the same distance, and the amount of variants can
increase exponentially when one adds an additional character to one of the strings.
As such, we limited our Levenshtein distance to a maximum of 7. Any string pair
beyond this value was discarded and not used. As a result approximately a quarter
of the string pairs for each OCR type were discarded for this part of the analysis.
With alignments generated one can naively count how many times each character
is mapped to each character, however, it is not known which of the generated align-
ments is the ‘real’ one that the OCR performed. Because of this, the counts are
weighted by the amount of alignments that were generated for that specific text
pair [35]. For example if a string pair creates two possible alignments, and in one of
them a specific character is deleted and in the other alignment the same character is
instead substituted by second character, then the count would be increased by 0.5
for deleting that character and 0.5 for substituting it with the second character.
For each string pair and OCR method, all character to character mappings are
counted in this manner. This yields a confusion matrix representing how many
times each character is mapped to another. By dividing each row of the matrix with
that row’s sum we acquire the probabilities of each ground truth character being
mapped to each OCR character.

From these probabilities the common errors can then be directly read, one exam-
ple of such a confusion matrix can be seen in Figure 3.3, where the Abbyy dataset
was analysed. Note that this matrix is far too large to be easily read and is in-

18

3. Data

From | To & probability

a | a=0.99283 4=0.00391 4=0.00099

A | A=0.95425 A=0.01842 DEL=0.01033
A | A=0.86420 A=0.07407 A=0.04938

b | b=0.99289 h=0.00546 DEL=0.00029
B | B=0.98320 R=0.00336 D=0.00335

1 | 1=0.92887 i=0.02873 1=0.01305

2 | 2=0.98849 DEL=0.00528 3=0.00115

0 | 0=0.96848 9=0.01020 0=0.00657

o | 0=0.99609 6=0.00145 e=0.00050

O | 0=0.95603 0=0.01409 DEL=0.00668

Table 3.2: Table containing the three most common mapping probabilities from
a character to another in the Abbyy dataset for some characters. ‘DEL’ represents
the character being missed, or deleted, by the OCR.

stead intended to give an overview of how most characters tend to mostly map to
themselves, however if one wants to attempt to view the mappings more directly
there are character labels for each row and column that can be seen if one zooms
in significantly. Table 3.2 shows some probabilities from this confusion matrix in a
more readable format. Here it can be seen that for example ‘A’ is mapped to ‘A’
around 5% of the time. Note that the disconnected nature of the diagonal in the
matrix stems from some characters only showing up in either the ground truth or
the OCR, similarly some characters are missing from the font used by the plotting
library, presumably affecting the plot in some way.

These probabilities can be used directly to introduce errors with a similar distribu-
tion to another text. This is done by simply iterating over every character in a string
and replacing it with a new character sampled from the current character’s row in
the probability matrix, or removing the character if the sample maps to removal.
Note that this does not allow addition of new characters, but the distributions are
similar nonetheless.

Figure 3.4 shows a heatmap similar to that in Figure 3.3, but of the difference
between the character to character mappings of the Abbyy-Tesseract combined OCR
model, and a mapping derived from introducing errors with the Abbyy-Tesseract’s
mapping to the original ground truth. With the exception of pure white or black
pixels that should stem from characters not available in both matrices (and thus
being assigned a default value of 0 in the subtraction), it can be seen that both
matrices have quite similar values as the difference is close to 0 for the most part.
While we are interested in creating similar errors to those that the OCR performs,
it should not necessarily be detrimental to have some other errors introduced into
the text as well, so for the purposes of creating similar data this method of mapping
the characters seems sufficient.

19

3. Data

Figure 3.3: Heatmap of confusion matrix containing probabilities of character to
character mappings for the Abbyy dataset. Rows represent the truth character and
columns represent the OCR character. The unicode character ‘U+2591" (omitted
from this document due to technical reasons) represents a missing character, i.e.
addition or deletion of the character.

20

3. Data

Figure 3.4: Heatmap of the difference between the original probability matrix and
the one created from generating artificial errors on the ground truth data with the
Abbyy-Tesseract combined OCR model’s character to character mappings.

3.2 GigaWord Corpus

In addition to the dataset resulting from the OCR-scans another dataset called the
GigaWord Corpus will also be used [37]. This dataset, also hosted by the Swedish
Language Bank contains texts which together constitute a billion words. These texts
are collected from different sources from 1950 and onwards and come from a variety
of genres. These genres include fiction, governmental dealings, science, news and
social media. This dataset is made for the purpose of research and experimentation
on Swedish texts. Therefore texts are mostly Swedish with the exception of some
samples. These exceptions are likely due to the material it is collected from. For
instance movie and song titles or subtitles can be expected to appear in newspapers
occasionally. Although this dataset does not fully reflect the time span of the OCR

21

3. Data

data between 1907 and 2018, there aren’t any large spelling reforms within this time
period. Therefore the GigaWord dataset should be comparable at a spelling level,
even if the language as a whole might be used slightly differently.

22

4

Method

4.1 Data processing

4.1.1 Preprocessing the Newspaper Material

The preprocessing of the OCR-dataset consists of a number of steps.

o Removal of samples which have been deemed insufficient for training purposes.
Samples in this category are: Samples where the length difference between
the OCR-text and the GT is deemed too large. These are removed since
they appear to be faulty samples stemming from some mis-alignment during
annotation; Samples which are below three characters long. This category is
removed since we believe that these samples contain little to no context on
how it should be corrected. Here we also remove empty samples which exist
as a consequence of the OCR frame-based scans.

o Removal of tags added by the annotators. These tags were used to indicate
font types, italics, bold text among other characteristics of the text.

e On each sample a <sos> start of sequence and <eos> end of sequence token is
added in order to define sentence boundaries as well as enabling the generation
of variable length output from the system.

» Replacement of the newline character “\n” with a space.

e The data is split into batches in which each sample of a batch is padded with
a number of <pad> tokens. Each sample is padded to so that its length is the
same as the longest sample in the batch plus 15.

In addition, a character-based vocabulary is constructed. This vocabulary contains
a character to integer mapping which is used to translate all samples into their
integer representations which is used by the system.

The choice to use a character-based vocabulary instead of a word-based one is that
most corrections that are needed are on a character level. Using a character-based
vocabulary also brings some advantages when dealing with smaller datasets. In
particular the risk of running into unknown tokens in a new setting is far less since
the amount of unique character tokens are considerably fewer than the amount of
unique word tokens.

4.1.2 Preprocessing the GigaWord Corpus

The GigaWord Corpus, as described in Section 3.2, contains texts which originates
from a row of different sources such as government or the news. The use of this
additional dataset is intended to extend the OCR dataset. Since the OCR dataset

23

4. Method

originates from newspapers, it is natural to extract the parts from the GigaWord
Corpus which correspond to news sources.

The first instance of news material in the GigaWord Corpus is from 1965 with 53624
sentences. The news material is somewhat sparsely distributed over time up until
1994, with 89 175 sentences from 1976 and 364 226 sentences from 1987 being the
only occurrences other than the 1965 ones before 1994. After 1994 the material is
plentiful with millions of sentences.

In an effort to balance the data over time and make the size more manageable, 50000
sentences from each of the time periods 1960-1969, 1970-1979, 1980-1989, 1990-1994,
2000-2009 and 2010-2015 were collected and used further.

These sentences or samples are further processed with the addition of the addition
of <sos>,<eos> and <pad> tokens in the same way as it is done in Section 4.1.1.

This data is further modified by introducing errors to its (mostly) error-free text us-
ing the probabilities calculated in Section 3.1.2. Psuedocode where indexing details
have been omitted for the character error generation can be seen below. Note that
this function does not introduce any new characters, it only substitutes or deletes
them.

for char in string:
if char in prob_matrix:
char_probs = prob_matrix[char]
string[char] = sample_char(char_probs)
if string[char] == 'DEL':
string[char] = "'

return string
Three modifications to the probability matrix were also implemented:

First, a small constant (5.0) was added to the confusion matrix containing the counts
of each character mapping, this was done so that there is a nonzero chance of some
completely new error occuring during generation, albeit a very small one as for
example the character ‘a’ was mapped to itself approximately 39250 times in the
Abbyy data it was generated from.

Second, the newline character ‘\n’s row and column in character mapping matrix
were set to 0, with the exception of the ‘\n’ to ‘\n’ mapping which was set to 1.
Doing this ensures that the probability of newline being mapped to something or
vice versa is 0, preventing newline from being added or removed. This was done due
to new lines relying on external information not available in a raw text format, i.e.
the column width of a given newspaper.

Third, an option to multiply the counts where a character was mapped to itself by
a factor was added. This factor adds a way to increase the amount of errors that
occur for all characters without changing the ratio between the incorrect characters.
Looking at only the probability to get the correct mapping or any incorrect mapping
we have that the probability of an error pe.. = Cepr/(Cor + Cerrr) Where ¢ is the count
for correct or error mappings. Using this we can see that the multiplication factor
f increases the ratio of errors, r, by a factor between 1 and f~! depending on how

24

4. Method

many more correct samples there are compared to error samples:

_ Cerr/(cok: + Cerr) _ Cerr + Cok — lim r = 1 (41)
Cerr/(cokf + Cerr) Cerr T Cok’f Cok—0
.. . 1
similarly for large c,y : lim r=— (4.2)
Cor—>inf f

Thus by setting f = 1/x we can increase the amount of errors generated by a factor
up to x.

4.2 Developing the Model

Our model is a character level sequence to sequence model as described throughout
Section 2.3. It was implemented in Python [38] using the PyTorch [39] framework.
Some modifications and limitations have been made to the model in order to speed
up implementation.

First, truncated backpropagation through time described in Section 2.3.2 is used
in order to reduce memory usage during training for long sequences. Instead of
implementing TBTT for arbitrary ki, ko it was restricted to k; = ko, as implemen-
tation becomes significantly easier, effectively boiling down to a single function call
to detach PyTorch’s computation graph every k; time steps.

The second limitation is that the model only supports single layer LSTMs.

Lastly, the attention implementation is limited to Bahdanau attention, there are
other ways to implement attention, but they have not been tested as they require
creating a different network structure.

4.2.1 Model Walkthrough

This section will walk through the model as a whole to give an overview of the
system, from just having the preprocessed OCR data to training and evaluating the
model.

Starting off, the OCR data and its corresponding transcript were briefly analysed
as shown in Section 3.1.1, while this analysis is barely used directly it does confirm
some assumptions on the dataset, such as a rapid frequency decrease with respect to
character count (Figure 3.1), as well as the OCR being relatively balanced around
adding or removing characters (Figure 3.2). After this the character to character
mapping described in Section 3.1.2 was performed, generating confusion matrices
containing the amount of times single characters were mapped to each other by the
OCR systems, and by extension the frequencies of their mappings. These in turn
are used to expand the dataset by generating new errors in new texts as described in
Section 4.1.2, choice of error factor was left as a hyperparameter and as such varies
across different training attempts, and are therefore shown along with the rest of
the hyperparameters in the different models in Section 4.2.2.

With the data generation finished the training the model is next. First, most of
the OCR data, subject to restrictions such as minimum and maximum length and
length difference between OCR and transcription, is loaded into the training set with

25

4. Method

the remainder being put into the validation and test sets. This split is fixed and
does not change between model iterations. The generated data from the GigaWord
corpus is also loaded into the respective datasets subject to the length constraints.
Note that the GigaWord data has been preemptively split into the three datasets
and the validation and test parts use errors that have been generated once with a
factor of 1, i.e. with a distribution similar to the original OCR data. In contrast
the training part of the corpus is freely re-generated with a freely chosen factor.
Second, this data is used to build a ‘vocabulary’, creating a mapping each unique
character to an integer. This mapping also includes special characters for padding,
unknown characters, start and end of sentence tokens.

Third, the network model is instantiated according to chosen hyperparameters and
training begins. Throughout training the network iterates over the training dataset
in batches and uses backpropagation to update its weights. For each minibatch the
length of every input is padded to have the same total length, potentially adding
extra pad tokens beyond the longest sentence’s max length to allow for generating
extra characters. These sentences are then fed through the encoder, followed by the
decoder iterating over the sentence as described in Section 2.3.1. Every ki steps
of the decoder (or upon reaching the final character), truncated backpropagation
through time (Section 2.3.2) is performed using NLLLoss (Negative Log Likelihood
loss), implemented with Pytorch [39]. Here gradient clipping is used, potentially
setting the gradient to a maximum value if it is exceeded in order to prevent ex-
ploding gradients. Between each full iteration over the training data the loss of the
validation set is calculated as well. Training continues until either the loss stagnates
or the validation loss begins to increase instead of decreasing.

Once training is finished the entire validation and test datasets are fed through the
network, whose outputs are then used to calculate performance metrics. Note that
unlike the loss calculation these calculations use the beam search method described
in Section 2.3.5

The validation set’s metrics are viewed and used to gauge how well the network
performs. New hyperparameters are then chosen manually, primarily based upon
viewing the training and validation loss of the network in an attempt to identify
whether the network for example requires more or less complexity, larger or smaller
learning rates, or potentially further augmented data. The test set’s metrics are
ignored until all training is finished, and are then used to compare the models on
completely unseen data during training. This process is then repeated in an attempt
to find a network that successfully generalizes when shown the validation data.

4.2.2 Model Instances

Since results of neural network models are dependent on hyper-parameter choices
and data selection, some different instances of the model have been trained. These
instances differ to each other by different choices of these parameters. Some pa-
rameters, however, are shared across instances. These are that all instances have
an encoder and decoder which contain one layer each and the TBPTT length is
k1 = k2 = 100. Additionally the beam size used for decoding is set to 10.

The instances we have worked with have used OCR-data originating between 1907

26

4. Method

and 2018. This cutoff is made because of the spelling reform during this time,
allowing data from the GigaWord Corpus be used as an extension with similar data.
The samples used in each instance are limited to be between 5 and 200 characters
and have a maximum length difference between input and GT for the OCR-data i
is set to 3 4+ 0.1 = L, where L is the input string’s length.

For all shown instances the Abbyy OCR-data was used in combination with the
extracted GigaWord Corpus news sentences, with the latter having synthetically
generated errors. Tesseract and the mixed Abbyy-Tesseract model are therefore
unused for all shown models. Similarly, all shown models use the Adam optimizer.

We have trained many more instances than the ones reported here, however due to
a mishap with Python’s pickle function when storing them their training parameter
data was lost with the exception of neuron count and embedding dimensionality.
Although the networks themselves are still available we have chosen to omit them as
none of them performed better than our best model on any metric, it is impossible to
comment on their parameter choices, and because it would require manually testing
which data was used during training in order to reconstruct the same vocabulary. As
a side effect of this the exact batch sizes for instances 6 through 8 are also missing,
they used a batch size in the 10-15 range due to the larger network requiring more
VRAM, preventing larger batch sizes.

The different hyperparameter settings and which data was used for each instance is
shown in Tables 4.1 and 4.2. In Table 4.1 the parameters are as follows:

e hid size: Number of features of the hidden state of the LSTM.

« emb size: Number of features of the embedded characters. This is significantly
smaller than a word level implementation due to there being far fewer unique
characters than words.

e Ir: The learning rate.

o weight decay: The weight decay used by the optimizer, in this case PyTorch’s
Adam implementation which uses L2 normalization.

o batch size: How many data samples are processed simultaneously.

o drop rate: Chance for a value of the embedded characters to be set to 0 during
training.

o tf ratio: Chance of using teacher forcing during training per character.

Table 4.1: Hyperparameters used for the different instances.

Instance | hid size | emb size Ir weight decay | batch size | drop rate | tf ratio
Instance 1 128 4 0.001 0.00001 50 0.2 1
Instance 2 128 4 0.001 0.00001 50 0 1
Instance 3 128 4 0.001 0.00001 50 0 0.5
Instance 4 128 4 0.001 0.00001 50 0 0
Instance 5 128 4 0.001 0.00001 50 0.2 1
Instance 6 400 3 0.001 0 10 — 15 0 0.5
Instance 7 450 3 0.001 0 10 —-15 0 0.5
Instance 8 384 3 0.001 0 10 — 15 0 0.5

27

4. Method

Table 4.2: Data used for different instances.

Instance Data
OCR-data Abbyy
Instance 1 | Gigaword Corpus factor 0.5

Instance 2 OCR-data Abbyy
Instance 3 OCR-data Abbyy
Instance 4 OCR-data Abbyy

OCR-data Abbyy

Gigaword Corpus factor 1
Gigaword Corpus factor 0.5
Instance 5 | Gigaword Corpus factor 0.3

OCR-data Abbyy

Gigaword Corpus factor 1
Gigaword Corpus factor 0.5
Instance 6 | Gigaword Corpus factor 0.3

OCR-data Abbyy

Gigaword Corpus factor 1
Gigaword Corpus factor 0.5
Instance 7 | Gigaword Corpus factor 0.3
OCR-data Abbyy

Instance 8 | Gigaword Corpus factor 1 x4

4.3 Evaluation

Evaluation of the model is done in two stages. The first stage is during training and
the second during post-training.

To observe the progress of the training and and to relatively quickly be able to tell
if an experiment has promise or not is done through the loss function. As the model
trains, it constantly computes the loss function for each sample. The loss, which
is a measure of how close the output is to the target is averaged over the batch,
and further averaged over the epoch. The epoch average therefore shows how close
on average the batches during the epoch were to their targets. By observing the
change of the epoch average through epochs, one would expect its value to decrease
and approach zero as training proceeds. In instances where the loss average over
epochs is increasing over several epochs it is clear that something is wrong. This
could occur due to mis-configuration of hyperparameters and experiments were this
happens are discarded. At the end of each epoch, the average loss over the validation
set is also calculated. This step gives an indication of how well the system is able
to adapt to data it has not seen before. The expectation is that this loss would also
decrease over epochs but might at some point start increasing as the system learns
the data in the training set too well and forgets how to generalize, also known as
overfitting. In this case the training should be stopped at the lowest point where
the validation loss were the lowest. Note that for Instances 5-8 the validation and
test sets include parts of the original GigaWord dataset and their loss is therefore
not directly comparable to Instances 1-4.

After training is completed the system produces outputs for the samples contained

28

4. Method

in the validation and test set. On these produced outputs, the word error rate,
f-score, recall and precision (described in Section 2.4) as it relates to the ground
truth is calculated and compared to their values in their original form.

29

4. Method

30

O

Results

In this chapter the results produced by the different instances of our model are
presented.

The training was done in varying lengths for the different instances. The smaller
instances (Instances 1-4) were trained for 30 epochs each. The larger instances
(Instances 5-8) were trained varying number of epochs. The shortening of training
in regards to epochs is due to each epoch taking significantly longer because of
either; a larger network size, or using significantly more data. These instances were
therefore trained until further training seemed fruitless with regards to the training
and validation loss.

5.1 Quantitative Evaluation

The training and validation loss over epochs of the different instances can be seen
in Figure 5.1. The training loss of all instances have a rapid decline during the first
few epochs of training, with the exception of Instance 3 and 4 which take slightly
longer. After this rapid decline, the loss of all instances seem to plateau and remain
somewhat stationary for the remainder of the training.

Tables 5.1 and 5.2 show the performance metrics of the model instances on the
validation and test sets respectively. The tables also show the baseline metrics for
the input data, before it was sent through the network. The colored arrows indicate
whether the values are larger or smaller than the baseline with up and down arrows
respectively, as well as whether they are better or worse with blue and red colors
respectively. From these tables it can be seen that most instances, with the exception
of Instance 2, were unable to produce outputs which resulted in an improvement
of the word based metrics (F-score,recall, precision, WER) and instead made them
worse. Despite this most instances performed better on the character based metric
CER with the exception of Instance 3 and 8, with Instance 3 performing the worst
on all metrics.

31

5. Results

—— Taning loss
Validation loss

20 25 E]
25
—— Taning loss
\ Validation loss
20 A
15
n
i
5
10
05
0.0 T T T T T T
0 5 10 15 20 5 E]
Epoch

(c) Instance 3

—— Taning loss
Validation loss

15

Loss

10

05

0.0 T ——— T T T

25
—— Taning loss
Validation loss
20
15
n
i
5
10
05 ¥
00 T T T
1 2 3
Epoch

(g) Instance 7

Figure 5.1: Loss graphed over epochs for the different instances. Note that In-
stances 5-8 include subsets from the GigaWord dataset and are not directly compa-

rable to Instance 1-4.
32

—— Taning loss
Validation loss

15

Loss

10

05

—— Taning loss
Validation loss

00 T
0

15

Loss

10

05

0.0 T

—— Taning loss
Validation loss

Epoch

15

Loss

10

05

—— Taning loss
Validation loss

0.0 T T T

(h) Instance 8

5. Results

Table 5.1: Evaluation metrics of the networks outputs on the validation set, as
well as a baseline acquired by calculating the metrics on the network’s input.

Instance F-score Recall | Precision | WER CER
Baseline 0.8508 - | 0.8526 - | 0.8507 - | 0.1755 - | 0.0830 -
Instance 1 (30)* | 0.8462 | | 0.8488 | | 0.8454 | | 0.1806 1 | 0.0475 |
Instance 1 (10)* | 0.8457 | | 0.8464 | | 0.8467 | | 0.1793 1 | 0.0476 |
Instance 2 0.8547 1 | 0.8552 1 | 0.8566 1 | 0.1677 | | 0.0462 |
Instance 3 0.2906 | | 0.2923 | | 0.2955 | | 0.7638 1 | 0.6565 T
Instance 4 0.8462 | | 0.8488 | | 0.8454 | | 0.1806 T | 0.0475 |
Instance 5 0.7621 | | 0.7637 | | 0.7620 | | 0.2634 1 | 0.0734 |
Instance 6 0.8026 | | 0.8040 | | 0.8035 | | 0.2277 1 | 0.0595 |
Instance 7 0.8319 | | 0.8334 | | 0.8319 | | 0.1919 1 | 0.0534 |
Instance 8 0.7097 | | 0.7123 | | 0.7096 | | 0.3235 T | 0.0852 1

Table 5.2: Evaluation metrics of the networks outputs on the test set, as well as a
baseline acquired by calculating the metrics on the network’s input.

Instance F-score Recall | Precision | WER CER

Baseline 0.8566 - | 0.8591 - | 0.8555 - | 0.1647 - | 0.0844 -
Instance 1 (30)* | 0.8516 | | 0.8541 | | 0.8507 | | 0.1711 1 | 0.0487 |
Instance 1 (10)* | 0.8499 | | 0.8521 | | 0.8491 | | 0.1737 1 | 0.0485 |
Instance 2 0.8606 1 | 0.8622 1 | 0.8604 1T | 0.1585 | | 0.0477 |
Instance 3 0.2358 | | 0.2352 | | 0.2421 | | 0.8140 1 | 0.6704 1
Instance 4 0.8516 | | 0.8541 | | 0.8507 | | 0.1711 T | 0.0487 |
Instance 5 0.7670 | | 0.7692 | | 0.7660 | | 0.2581 1 | 0.0700 |
Instance 6 0.8063 | | 0.8087 | | 0.8053 | | 0.2168 1 | 0.0615 |
Instance 7 0.8286 | | 0.8306 | | 0.8280 | | 0.1961 1 | 0.0544 |
Instance 8 0.6892 | | 0.6918 | | 0.6885 | | 0.3490 1 | 0.0939 1

5.2 Qualitative Evaluation

With Instance 2 showing itself to be clearly superior to the other instances on all
metrics, a more thorough inspection will focus on this instance.

Tables 5.3 and 5.4 show the character to character mappings (as in Section 3.1.2)
between the input and target text, and the output and target text respectively.

33

5. Results

Table 5.3: Table containing the three most common mapping probabilities from
a character in the test set OCR the test set truth for some characters. ‘ADD’
represents the character not being in the truth and being added by the OCR (i.e.
it should be deleted).

From | To & probability
a | a=0.97439 4=0.00751 s=0.00626
A | A=0.96188 A=0.02354 A=0.00673
A | A=0.89583 A=0.06250 A=0.04167
b | b=0.97349 h=0.00241 k=0.00241
B | B=0.97378 C=0.00375 E=0.00375
1 | 1=0.94466 ADD=0.01444 1=0.00758
2 | 2=1.0 N/A N/A
0 | 0=0.98734 0=0.00633 0=0.00317
o | 0=0.98207 6=0.00279 ¢=0.00239
O | 0=0.96109 0=0.01816 G=0.00778
space | space=0.87273 ADD=0.11298 tab=0.00697

Table 5.4: Table containing the three most common mapping probabilities from
Instance 2’s output on the test set to the truth for some characters. ‘ADD’ represents
the character not being in the truth and being added by the model (i.e. it should

be deleted).

From | To & probability
a | a=0.97254 s=0.00606 4=0.00597
A | A=0.96825 A=0.01474 A=0.00680
A | A=0.81356 A=0.08475 A=0.08475
b | b=0.97934 h=0.00729 ADD=0.00497
B | B=0.96259 s=0.00420 M=0.003717
1 | 1=0.95976 1=0.00805 ADD=0.00771
2 | 2=0.98800 ADD=0.00749 C=0.00400
0 | 0=0.97806 0=0.00627 .=0.00314
o | 0=0.98008 ADD=0.00391 6=0.00279
O | 0=0.94981 0=0.02317 G=0.00772
space | space=0.97966 ADD=0.01054 tab=0.00697

Table 5.5 shows some manually selected samples from the test set using the model.
The samples have been chosen to display some different behaviours of the model for
different types of input and target data. Note that for a large majority (1007 out of
1327) of the input to the network and its output are identical, and from those 688
out of 1007 have an identical target output.

34

5. Results

Table 5.5: Examples from the test set produced with corresponding output from
Instance 2 and its GT. Errors are highlighted in bold where possible.

Input
Output
Truth

Brannvlnatlllvarknlngen i riket.
Brannvinstillvirkningen i riket.
Brannvinstillvarkningen i riket.

Input
Output
Truth

i Malmberget i dsg Tisdag den 13 Juni kl. 8,15 e. m.
i Malmberget i dsg Tisdag den 13 Juni kl. 8,15 e. m.
i Malmberget i dag Tisdag den 13 Juni kl. 8,15 e. m.

Input

Output

Truth

Pa tal om arbetsavtalslagarna sade han sig ha tagit deras
fall med jamn- mod. Man har namligen en kénsla av

att tiden annu ej dr mogen for en sa- dan lagstiftning.

Pa tal om arbetsavtalslagarna sade han sig ha tagit deras
fall med jémn- mod. Man har namligen en kénsla av

att tiden dn kinsla av att tiden dnnu ej dr mogen
for en sa- dan lagstif

Pa tal om arbetsavtalslagarna sade han sig ha tagit deras
fall med jaémn- mod. Man har namligen en kénsla av

att tiden &nnu ej dr mogen for en sa- dan lagstiftning.

Input

Output

Truth

Sommarsésongens modérnaste Damhattar och

Monte- r/ngaartlklar. Enkla oklidda Hattar fran 1,25 st.,
som monteras efter bestillning, samt monterade Hattar och
Mo- dellhattar upp till 75 & 100 kr st.

Sommarsésongens modérnaste Damhattar och

Monte- ringaartikar. Enkla okladda Hattar fran 1,25

som monteras efter bestallning, samt monterade Hattar och
Mo- dellhattar upp till 75 & 100 kr st.

Sommarsésongens modérnaste Damhattar och

Monte- ringsartiklar. Enkla oklddda Hattar fran 1,25 st.,
som monteras efter bestallning, samt monterade Hattar och
Mo- dellhattar upp till 75 a 100 kr. st.

Input

Output

Truth

Illa kdnner man de svenska bonderna ooh svenska bonders
tdnkesatt, om man ej forstar oeh vet att d o t brodet skulls
for dem bli alltfér hardsmaélt.

Illa kédnner man de svenska bonderna och svenska bonders
tankesatt, om man ej forstar och vet att der drodet skulls
for dem bli alltfér hardsmaélt.

Illa kdnner man de svenska bonderna och svenska bonders
tédnkesédtt, om man ej forstar och vet, att det brodet skulle

for dem bli alltfor hardsmalt.

Table 5.6 shows examples produced by Instance 3, the instance which has the poorest
metric scoring of any instance. In these examples it can be seen that the model does
not appear to have a proper response to the input and mostly produce nonsense.

35

5. Results

Table 5.6: Examples from the test set produced with corresponding output from
Instance 3 and its ground truth. Errors are highlighted in bold.

Input Aftonbladets * KLICHEANSTALT]

Output | ATADbT.

Truth AFTONBLADETS KLICHEANSTALT.

Sista sidan i Sthlroa- o. KvialUupplagorna 2t Sre,

Input alla dagl upplagorna 30 ore.
Output Sista sidan i Sthla dagl upplagorna db.

spplagorna db. spplagorna db. spplagorna d. bpplagorna
Truth Slsta sidan: Sthlms- o. Kvallsupplagorna 26 ore,

alla dagl upplagorna 30 ore.

5.2.1 Intermittent Inspection

An intermittent inspection of Instance 1 was made. By comparing the output at
epoch 10 and epoch 30 (a period over which the loss hardly changes) some specific
changes in the output can be seen. Table 5.7 shows the input, output and ground
truth of a sample after training for 30 epochs. From this table one can see that while
some errors remain in the output such as the failure to correct “langt” to “lungt”
and “Janl” to “Jan”, the correction of “oeh” and “osh” to “och” is done. The same
sample was inspected for the checkpoint created at epoch 10. At this checkpoint the
model produces the output presented in Table 5.8. Here it can be seen that, while
the correction of “oeh” is still present the correction of “osh” is not.

Table 5.7: A sample input from the test set to the model at epoch 30 with its
output and GT. Errors are highlighted in bold

lagnt oeh stilla avled i Kiruna dea 12 Janl kl. 3.4B f. m.,
Input djupt sorjd och sak-nad av oss, 5 syskon,

varder harmed slaktingar osh vannar tillkdnnagivst.

lagnt och stilla avled i Kiruna dea 12 Janl kl. 3.48 f. m.,
Output | djupt sorjd och sak-nad av oss, 5 syskon,

varder harmed slaktingar och vinnar tillkinnagivst.

lugnt och stilla avled i Kiruna den 12 Jan kl. 3.48 f. m.,
Truth djupt sorjd och sak-nad av oss, 5 syskon,

varder harmed slaktingar och vannar tillkannagivst.

36

5. Results

Table 5.8: A sample from the test set input to the model at epoch 10 with its
output and GT. Errors are highlighted in bold

Input

Output

Truth

lagnt oeh stilla avled i Kiruna dea 12 Janl kl. 3.4B f. m.,
djupt sorjd och sak-nad av oss, 5 syskon,

varder harmed slaktingar osh vannar tillkdnnagivst.

lagnt och stilla avled i Kiruna dea 12 Janl kl. 3.48 f. m.,
djupt sorjd och sak-nad av oss, 5 syskon,

varder harmed slaktingar osh vannar tillkdnnagivst.

lugnt och stilla avled i Kiruna den 12 Jan kl. 3.48 f. m.,
djupt sorjd och sak-nad av oss, 5 syskon,

varder harmed sldktingar och vannar tillkdnnagivst.

37

5. Results

38

O

Discussion

6.1 Quantitative Evaluation

It can be clearly seen in Tables 5.1 and 5.2 that every instance but Instance 2
performs worse than the untouched OCR texts on word level metrics, with that
instance just barely surpassing the baseline. All instances but the third however
do see an improvement at a character level. Outside of Instance 2, Instance 5 is
particularly interesting, in Figure 5.1 it can be seen that this model achieves the
lowest validation loss. However, this model had an extended validation set compared
to Instances 1-4, which when combined with its overall poor performance on the
metrics indicate that it is likely that the generated data does not represent the
original data, as this loss reduction must stem from performing better on generated
data and not the original.

In Tables 5.3 and 5.4 it can be seen that the Instance 2 model generally has similar
probabilities of correctly mapping a character to itself, but there are variations in
both directions. Of particular interest is the mapping of space which shows a drastic
increase in correct mappings and by extension a decrease in instances where the space
wasn’t in the target text. This indicates that a lot of the networks performance
appears to come from removing extra faulty spaces added by the OCR.

6.2 Qualitative Evaluation

Most outputs of Instance 2 simply mimic the input, because of this the model does
not appear to have any issues with rarer words such as named entities or numbers.
An example of this can be seen in the second example sentence in Table 5.5 where
the model simply reproduces the sentence, replicating the names and the numbers,
as well as the time formatting at the end of the sentence. At the same time however
it fails to correct the error in the word “dag”.

The third sentence shows an example of the model repeating previous words without
that being a part of the input. This is a common issue in text generation where
language models often get stuck repeating some part of a sentence over and over
[40, 41], although in our case it managed to break out of the loop.

Sentence four showcases multiple changes to the input text, it fixes one character
error, skips over another. This is then followed by deleting the entire “st.,” structure
(used to indicate how many of a thing there are, effectively translated to “pieces”
in English) in the sentence.

The fifth sentence shows an almost successful correction of “d ¢ t” into “det”, which

39

6. Discussion

at a glance looks like two substitutions, but in reality the source sentence includes
two spaces around the bullet character which the model has successfully deleted,
this falls in line with the observations seen in Tables 5.3 and 5.4. Unfortunately the
model did also incorrectly change the final character into an ‘r’.

Finally, the first sentence showcases a completely successful correction, substituting
three characters in order to form the correct spelling.

From the examples shown for Instance 3 in table 5.6. It is clear why this instance
scored so poorly on the metrics as its output has little to no resemblance to the
input let alone the GT.

Although most outputs of Instance 2’s are a mirroring of the input, it does show
promise. This implies that the system has managed to encode the information in the
input to such a degree that is was interpretable for the encoder which in turn could
decode it. In addition to the mirroring we also see some corrections. Observing the
outputs of Instance 3, seen in Table 5.6, we see that this instance mostly produced
nonsense and is completely useless. In comparison to Instance 3, we can see a large
quality difference and conclude that Instance 2 shows some success.

6.3 Word and Character based metrics

In Tables 5.1 and 5.2 a general trend can be seen where all models worse on word level
corrections than character level ones. This is somewhat expected as the network is
optimized at a character level. One can imagine a sentence with two words, where
one has many incorrect characters and the other word has none. If the network were
to correct all but one character in the first word and then introduce a single error
into the second both words would be incorrect while the overall character error rate
would be significantly reduced.

A possible explanation as to why the instances which are trained on larger amounts
of data did not perform above the baseline for most metrics could be that the
generation of errors simply is not good enough. It might be that the assumption
that errors exist in a unigram fashion, that is, that the errors are made independently
of surrounding characters, is incorrect. Errors might instead exist in n-gram fashion,
depending on n sequential characters. If this is the case then instances trained on
the errors introduced on the Gigaword corpus were trained on errors that do not
occur naturally in the original data.

6.4 Loss

As seen from the results in the previous chapter, the loss of all instances seemed
to plateau. Although the plateau was present during significant portions of some
instances training time, they showed no sign of overfittining. There are, however,
some signs that especially the instances operating on larger datasets experience some
underfitting as the loss plateaus at a value much higher than their counterparts as
well as the validation set. It is not surprising that underfitting makes results worse
for the networks operating on larger datasets as an increase in dataset size often
makes this issue worse [42, 43].

40

6. Discussion

To solve the issue of underfitting, it is common to increase the dimensionality of the
network. Unfortunately this is something we were unable to do in this project as the
training of larger networks simply took too long with the computational resources we
had readily available. For reference the larger networks took upwards of a 10 hours
per epoch on an RTX 2070 Super due to their small batch size and large datasets.
In hindsight TBTT should have been tested further to see how low k1, k2 could have
been set without a significant performance impact as smaller values would decrease
memory usage and thereby allow for larger batches and faster training.

6.4.1 Loss as a Metric

The results produced by Instance 1 were promising, with a very low training loss and
relatively low validation loss. The instance does not show any signs of overfitting
even though the loss has plateaued. In spite of the plateauing of the loss of Instance
1 shown in Figure 5.1, the output is changing slightly as shown by the correction to
the word “och” which cannot be observed during the evaluation after 10 epochs.

That the apparent change in the output which corresponds to a correction does not
appear until later in training and displays a negligible change in the loss function
is of note. This suggests that the difference in loss from a nearly correct sequence
and one which has been corrected is rather small. This is due to the fact that most
corrections consists of a change to a small amount of characters, and the change
of one or two characters in a string of up to 200 constitutes only a small change.
This means that although the loss gives an indication of how close to the target the
output is, it might not give a clear indication of when the network learns to make
corrections.

Furthermore, the network generates the entire output from scratch based on the
encoder’s interlingua, so a significant chunk of the loss graphs could portray the
network learning how to replicate the input as output. In other words, the baseline
loss lies close to 0 when compared to the starting point of the network’s training,
once again indicating that the loss at a glance does not indicate good performance
until it has reached the baseline loss one would get from simply copying the input.

6.5 Teacher Forcing

The effect of teacher forcing for this problem was explored over Instances 2-4. Here
Instance 2 had teacher forcing of 1 while Instances 3 and 4 had 0.5 and 0 respectively.
The change of the ratio from 1 to 0.5, as in Instance 3, seem to have made our most
successful instance settings perform extremely poorly. The change to a ratio of 0,
as in Instance 4, performed similarly to most of the instances with being slightly
worse than baseline in all metrics except the CER.

Linearly decreasing the TF ratio between each epoch was initially tested but this
was removed in favor of a constant value as the amount of epochs required to reach a
stable loss seemed to change pretty drastically depending on other hyperparameters,
either causing TF to not reach 0 or to reach it early in training.

41

6. Discussion

6.6 Size of Validation and Test set

With the small size of the original OCR dataset it follows that the corresponding
validation and test sets are small as well. Because of their small size it is possible
that what is contained in the validation and test set is not fully representative of
the dataset. This is further emphasized by the validation and test sets being made
out of specific pages’ samples instead of randomly picked samples from any page.
One can imagine that if, for example a page has a rare font it would when combined
with the small dataset skew the validation and test set errors.

42

/

Conclusion and Future work

7.1 Conclusion

The aim of this project has been to develop a neural network model and train it to do
post-correction on the OCR-data collected from the newspapers with the purpose of
improving it’s quality. The implemented model was a seq2seq model with attention,
which has shown promising results on similar tasks in other languages. Quality is
measured through a number of evaluation metrics, which are applied before and
after the model was tested. As the model Instance 2 shows an improvement in all
metrics, we conclude that an increased quality has been achieved. Additionally we
conclude that for the question of whether or not a deep learning model could improve
the OCR accuracy for Swedish texts, the answer is yes. There is however reasons to
believe that conclusions relating to the full dataset cannot be made with confidence
due to reasons such as the small size of the validation- and test-set. The fact that
the number of actual corrections made by the system is relatively small as well as
the generation of some new errors suggests that there is still a lot of improvements
that could be made.

7.2 Future Work

We do not believe we achieved the best results on the task of post-OCR with deep
learning methods. Rather, we believe that with additional effort and with perhaps
slightly different approaches one could achieve success. As we have discussed, we do
believe that with different hyperparameter settings better results could be achieved.
In particular instances with larger amounts of neurons and layers are of particular
interest to examine. In addition to an extended parameter search it would also be of
interest to observe how other metrics than the loss change over epochs, as suggested
in Section 6.4.1 this choice of loss might not show the entire picture.

In a continuation of this project it would also be advisable to examine n-gram errors
in the data and potentially adapt the way errors are introduced to additional data.
Ideally you would want more data from the source but as it is very expensive to
create transcriptions, this might not be feasible.

Another continuation is that since we only worked with data from the Abbyy sys-
tem, attempts at correction of data from the systems other than Abbyy should be
examined. Additionally if sufficient data originating from the 19th century is avail-
able, training and correction attempts on that part of the dataset is also of interest.
Slightly different approaches could also be used while training the model, such as

43

7. Conclusion and Future work

using transfer learning with a pre-trained model of the Swedish language as a base.
Alternatively one could use it with a model trained to simply copy every input to the
output, which could potentially reduce the chance of the model generating repeated
outputs as shown in one example of Table 5.5.

44

1]

[10]

[11]

Bibliography

G. V. Research, “Optical Character Recognition Market Size, Share & Trends
Analysis Report By Type (Software, Services), By Vertical (Retail, BFSI, Gov-
ernment, Education, Healthcare), By Region, And Segment Forecasts, 2019 -
2025 Summary,” 2019.

M. Volk, L. Furrer, and R. Sennrich, “Strategies for reducing and correcting ocr
errors,” in Language Technology for Cultural Heritage (C. Sporleder, A. van den
Bosch, and K. Zervanou, eds.), (Berlin, Heidelberg), pp. 3-22, Springer Berlin
Heidelberg, 2011.

C. Amrhein and S. Clematide, “Supervised OCR Error Detection and Cor-
rection Using Statistical and Neural Machine Translation Methods,” J. Lang.
Technol. Comput. Linguistics, vol. 33, pp. 49-76, 2018.

G. T. Bazzo, G. A. Lorentz, D. Suarez Vargas, and V. P. Moreira, “Assessing the
Impact of OCR Errors in Information Retrieval,” in Advances in Information
Retrieval (J. M. Jose, E. Yilmaz, J. Magalhaes, P. Castells, N. Ferro, M. J. Silva,
and F. Martins, eds.), (Cham), pp. 102-109, Springer International Publishing,
2020.

C. Rigaud, A. Doucet, M. Coustaty, and J. Moreux, “Icdar 2019 competition
on post-ocr text correction,” in 2019 International Conference on Document
Analysis and Recognition (ICDAR), pp. 1588-1593, 2019.

P. Simon, “OCR post-processing of historical Swedish text using machine learn-
ing techniques,” 2019.

S. Drobac and K. Lindén, “Optical character recognition with neural networks
and post-correction with finite state methods,” International Journal on Doc-
ument Analysis and Recognition (IJDAR), vol. 23, pp. 279-295, Dec 2020.

M. Silfverberg, P. Kauppinen, and K. Lindén, “Data-driven spelling correction
using weighted finite-state methods,” in Proceedings of the SIGFSM Workshop
on Statistical NLP and Weighted Automata, (Berlin, Germany), pp. 51-59, As-
sociation for Computational Linguistics, Aug. 2016.

S. Salimzadeh, Improving OCR Quality by Post-Correction. PhD thesis, Uni-
versiteit van Amsterdam, 2019.

C. Rigaud, A. Doucet, M. Coustaty, and J.-P. Moreux, “ICDAR 2019 com-
petition on post-OCR text correction,” in Proceedings of the 15th Interna-
tional Conference on Document Analysis and Recognition, (Sydney, Australia),
pp. 1588-1593, 2019.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

45

http://www.deeplearningbook.org

Bibliography

[12]
[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]
[25]

[26]

[27]

28]

46

B. Mehlig, Machine Learning with Neural Networks: An Introduction for Sci-
entists and Engineers. Cambridge University Press, 2021.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural compu-
tation, vol. 9, no. 8, pp. 1735-1780, 1997.

K. Cho, B. van Merriénboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using RNN
encoder—decoder for statistical machine translation,” in Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing (EMNLP),
(Doha, Qatar), pp. 1724-1734, Association for Computational Linguistics, Oct.
2014.

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with
neural networks,” NIPS’14, (Cambridge, MA, USA), p. 3104-3112, MIT Press,
2014.

J. Eisenstein, Introduction to Natural Language Processing. Adaptive Compu-
tation and Machine Learning series, MIT Press, 2019.

D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly
learning to align and translate,” ArXiv, vol. 1409, 09 2014.

T. Luong, H. Pham, and C. D. Manning, “Effective Approaches to Attention-
based Neural Machine Translation,” in Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing, (Lisbon, Portugal),
pp. 1412-1421, Association for Computational Linguistics, Sept. 2015.

S. Chaudhari, V. Mithal, G. Polatkan, and R. Ramanath, “An Attentive Survey
of Attention Models,” 2020.

“A Gentle Introduction to torch.autograd.” https://pytorch.org/tutori
als/beginner/blitz/autograd_tutorial.html#computational-graph.
Accessed: 2021-04-09.

I. Sutskever, Training Recurrent Neural Networks. PhD thesis, CAN, 2013.
AAINS22066.

C. Tallec and Y. Ollivier, “Unbiasing truncated backpropagation through time,”
p. arXiv:1705.08209, 2017.

M. Ranzato, S. Chopra, M. Auli, and W. Zaremba, “Sequence level training
with recurrent neural networks,” in 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Confer-
ence Track Proceedings (Y. Bengio and Y. LeCun, eds.), 2016.

F. Schmidt, “Generalization in generation: A closer look at exposure bias,”
pp. 157-167, 01 2019.

T. He, J. Zhang, Z. Zhou, and J. Glass, “Quantifying Exposure Bias for Open-
ended Language Generation,” arXiv e-prints, p. arXiv:1905.10617, May 2019.

S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer, “Scheduled sampling for se-
quence prediction with recurrent neural networks,” in Proceedings of the 28th
International Conference on Neural Information Processing Systems - Volume
1, NIPS’15, (Cambridge, MA, USA), p. 1171-1179, MIT Press, 2015.

Prakhar Mishra, “Word Sequence Decoding in Seq2Seq Architectures,” 2019.
Available at https://towardsdatascience.com/word-sequence-decoding-
in-seq2seq-architectures-d102000344ad, Accessed: 2021-06-03.

Renu Khandelwal, “An intuitive explanation of Beam Search,” 2021.

https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html#computational-graph
https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html#computational-graph
https://towardsdatascience.com/word-sequence-decoding-in-seq2seq-architectures-d102000344ad
https://towardsdatascience.com/word-sequence-decoding-in-seq2seq-architectures-d102000344ad

Bibliography

[29]
[30]

[31]

32]

Wikipedia, “Beam search.” https://en.wikipedia.org/wiki/Beam_search.
Accessed: 2021-06-03.

Wikipedia, “Word error rate.” Available at: https://en.wikipedia.org/wik
i/Word_error_rate, Accessed: 2021-06-03.

Rafael.C.Carrasco, “Text digitisation.” Available at: https://sites.google
.com/site/textdigitisation/qualitymeasures/computingerrorrates,
Accessed: 2021-06-17.

Wikipedia, “F-score.” https://en.wikipedia.org/wiki/F-score. Accessed:
2021-06-03.

ABBYY, “Abbyy finereader.” http://finereader.abbyy.com. Accessed:
2021-06-03.

Google, “Tesseract OCR.” https://github.com/tesseract-ocr/. Accessed:
2021-06-03.

I. S. MacKenzie and R. W. Soukoreff, “A Character-Level Error Analysis Tech-
nique for Evaluating Text Entry Methods,” NordiCHI 02, (New York, NY,
USA), p. 243-246, Association for Computing Machinery, 2002.

R. W. Soukoreff and I. S. MacKenzie, “Measuring Errors in Text Entry Tasks:
An Application of the Levenshtein String Distance Statistic,” in CHI 01 Ex-
tended Abstracts on Human Factors in Computing Systems, CHI EA "01, (New
York, NY, USA), p. 319-320, Association for Computing Machinery, 2001.

S. R. Eide, N. Tahmasebi, and L. Borin, “The Swedish Culturomics Gigaword
Corpus: A One Billion Word Swedish Reference Dataset for NLP,” in Linkdping
Electronic Conference Proceedings. Digital Humanities 2016. From Digitization
to Knowledge 2016: Resources and Methods for Semantic Processing of Digital
Works/Texts, July 11, 2016, Krakow, Poland, (Linképing), Link6ping Univer-
sity Electronic Press, 2016.

P. S. Foundation, “python.” https://www.python.org/. Accessed: 2021-06-03.
PyTorch, “Pytorch.” https://pytorch.org/. Accessed: 2021-06-03.

A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi, “The Curious Case of
Neural Text Degeneration,” 2020.

Z.Fu, W. Lam, A. M.-C. So, and B. Shi, “A theoretical analysis of the repetition
problem in text generation,” ArXiv, vol. abs/2012.14660, 2020.

S. N. Kasturi, “Underfitting and Overfitting in machine learning and how to
deal with it!,” 2019. Available at https://towardsdatascience.com/under
fitting-and-overfitting-in-machine-learning-and-how-to-deal-with
-it-6fed4a8ad9dbf, Accessed: 2021-06-03.

V. Silaparasetty, “How to Handle Overfitting and Underfitting in Machine
Learning,” 2019. Available at https://medium.datadriveninvestor.com/
how-to-handle-overfitting-and-underfitting-470a1f7389fe, Accessed:
2021-06-03.

47

https://en.wikipedia.org/wiki/Beam_search
https://en.wikipedia.org/wiki/Word_error_rate
https://en.wikipedia.org/wiki/Word_error_rate
https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates
https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates
https://en.wikipedia.org/wiki/F-score
http://finereader.abbyy.com
https://github.com/tesseract-ocr/
https://www.python.org/
https://pytorch.org/
https://towardsdatascience.com/underfitting-and-overfitting-in-machine-learning-and-how-to-deal-with-it-6fe4a8a49dbf
https://towardsdatascience.com/underfitting-and-overfitting-in-machine-learning-and-how-to-deal-with-it-6fe4a8a49dbf
https://towardsdatascience.com/underfitting-and-overfitting-in-machine-learning-and-how-to-deal-with-it-6fe4a8a49dbf
https://medium.datadriveninvestor.com/how-to-handle-overfitting-and-underfitting-470a1f7389fe
https://medium.datadriveninvestor.com/how-to-handle-overfitting-and-underfitting-470a1f7389fe

Bibliography

48

	List of Figures
	List of Tables
	Introduction
	Aim of Thesis
	Scope and Limitations
	Ethical Considerations
	Related Work And Contributions

	Background
	Optical Character Recognition
	Artificial Neural Networks
	Back-propagation
	Recurrent Neural Networks

	Sequence to Sequence
	Attention
	Truncated Backpropagation Through Time
	Teacher Forcing
	Decoding
	Beam Search

	Evaluation Methods

	Data
	Data Analysis
	Text Lengths
	Character to Character Mapping

	GigaWord Corpus

	Method
	Data processing
	Preprocessing the Newspaper Material
	Preprocessing the GigaWord Corpus

	Developing the Model
	Model Walkthrough
	Model Instances

	Evaluation

	Results
	Quantitative Evaluation
	Qualitative Evaluation
	Intermittent Inspection

	Discussion
	Quantitative Evaluation
	Qualitative Evaluation
	Word and Character based metrics
	Loss
	Loss as a Metric

	Teacher Forcing
	Size of Validation and Test set

	Conclusion and Future work
	Conclusion
	Future Work

	Bibliography

