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Abstract

The Constant Proportion Portfolio Insurance (CPPI) and Option Based Portfolio In-
surance (OBPI) strategies are examined and evaluated in an extended Black-Scholes
framework including jumps in asset prices, stochastic volatility, and stochastic interest
rate and bond prices. The Kou model (an exponential Lévy model) was used to model
the dynamics of the risky assets. Interest rate was modelled according to the Vasicek
model (an Ornstein-Uhlenbeck model). The method of empirical characteristic expo-
nent was applied in order to calibrate the Kou model towards real-world financial data.
By means of the Monte Carlo method, the portfolio strategies were analysed through
simulation.

If was found that in calmer market conditions, the OBPI strategy slightly outperforms
the CPPI. As the CPPI has negligible risk of default in those market conditions, it can
be used as a replacement for the OBPI in the absence of a liquid options market. In
highly volatile markets, on the other hand, the CPPI clearly outperforms the OBPI,
especially when the time to maturity is relatively short. However, as the intensity and
sizes of jumps in asset prices increase, the CPPI can reach important levels of risk of
default.

The risk of default as a function of the multiplier in the CPPI strategy is examined
in detail, using model parameters estimated from MSFT, BMW and AZN stocks as well
as SNP500, SX5E and NIKKEI225 indices.
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Henningson at Chalmers for helping me see the beauty and wonder of physics; and Prof.
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1
Introduction

I
n the light (or darkness) of the still recent financial crisis, the issue of portfo-
lio insurance has become increasingly important to many investors [2]. The term
portfolio insurance is understood as a trading strategy which allows for the guar-
antee of a certain minimal portfolio value at maturity, while keeping a fraction

of the wealth invested into risky assets. The purpose of such strategies is to provide
protection in falling markets while still preserving some exposure to potential positive
market moves. Two very popular such strategies are the Constant Proportion Portfolio
Insurance (CPPI) strategy, which revolves around dynamic rebalancing of the portfo-
lio contents according to a certain scheme, and the Option Based Portfolio Insurance
(OBPI) strategy, which revolves around the usage of put options to protect a fraction
of the risky investment: These two strategies are introduced in Section 1.1 and Section
1.2, respectively.

The literature includes various studies of the relative performance of these two strate-
gies, but most such work is of theoretical nature. For example, El Karoui, Jeanblanc
and Lacoste proved in 2005 the optimality of the OBPI strategy within the framework of
complete, arbitrage free, frictionless markets, when an expected CRRA utility function
is maximized [6]. Bertrand and Prigent, in turn, conducted their 2003 study within the
basic Heston model. They were able to show that by correcting the Black-Scholes as-
sumptions by introducing stochastic volatility, the expected return of the OBPI strategy
increases while the expected return of the CPPI strategy slightly decreases. All while
the standard deviation, skewness, and kurtosis of both strategies are affected [1].

However, such results often have limited practical applicability. For instance, it may
be shown that under the Black-Scholes assumptions, as soon as the drift of the risky
asset is higher than the risk-less interest rate, the expected return of the CPPI portfolio
can be increased indefinitely without any risk of the portfolio value dropping below the
guaranteed amount (see Section 1.1.1). Throughout this text it will become apparent
that such shortcomings stem from the negligence of some of the most important risks
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1.1. CONSTANT PROPORTION . . . CHAPTER 1. INTRODUCTION

that portfolio insurance strategies are subjected to, for example those related to jumps
in the price of the risky asset.

In this context, the focus and goal of the present text is to approach analysis of
the performance and behaviour of the portfolio insurance strategies in a way that is
more applicable to the real world. A first step in this direction is to extend the Black-
Scholes framework by introduction of jumps in asset prices, stochastic volatility, as well
as stochastic interest rates. Once a working set of models is established, the parameters
of the models may be estimated by calibration from real-world financial data.

1.1 Constant Proportion Portfolio Insurance

The Constant Proportion Portfolio Insurance (CPPI) strategy dates back to the late
1980:s when it was introduced by Perold in 1986 for fixed-income instruments and Black
and Jones in 1987 for equity instruments [see 3, 12]. It is a dynamic investment strategy,
as it requires the manager to readjust the portfolio over time. As a portfolio insurance
strategy, its purpose is to provide the investor with an exposure to the upside potential
of risky assets while providing a pre-determined capital guarantee against downward
market movements — in other words, guaranteeing that the portfolio value at maturity
will be greater than or equal to a certain lower bound (called the floor) while maintaining
the opportunity to profit from positive market movers.

The principle of the strategy revolves around the notion of a cushion, defined as
the difference between the current portfolio value and the floor. As the strategy is
implemented, first of all the floor is determined as a representation of the minimum
portfolio value that the investor can accept at maturity. Thereafter, an amount of
wealth equal to a predetermined multiple m > 1 of the cushion is allocated to the risky
asset, while the remainder is invested in the riskless asset, such as riskless bonds or
equivalent. Note that this means that as long as the portfolio value is greater than
the floor, a non-zero amount of wealth will be invested in the risky asset and the total
investment in the riskless asset will be less than than the floor, since m > 1. As the floor
and the multiplier are predetermined as functions of the investor’s risk tolerance, they
are exogenous to the model. The definition of the model implies, in particular, that as
the markets move down and the portfolio value approaches the floor, the exposure to
the risky asset is decreased and the exposure to the riskless asset increased (vice-versa
as the markets move up).

A higher multiple means that the investor will participate to a greater extent in
sustained increases in the risky asset, but also see the portfolio reach the floor faster
when the markets move down as well as be more vulnerable to very sudden downward
market movements. Multiplier values between 2 and 5 are common [5].

1.1.1 CPPI under continuous Black-Scholes model

As previously described, the CPPI strategy is a self-financing strategy whose goal is to
leverage the returns of a risky asset (typically a traded fund or index) through dynamic
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1.1. CONSTANT PROPORTION . . . CHAPTER 1. INTRODUCTION

trading, while guaranteeing a fixed amount at N maturity T . To achieve this, the
portfolio manager shifts his/her position between the risky asset St and a reserve asset
Bt which is typically a bond. For simplicity, the reserve asset will be modelled as a
zero-coupon bond with maturity T and nominal N . The exposure to the risky asset is
a function of the cusion Ct, defined as [5, p. 380]

Ct = Vt −Bt. (1.1)

At any date t

(1) if Vt > Bt, the exposure to the risky asset (wealth invested into the risky asset) is
given by mCt ≡ m(Vt −Bt), where m > 1 is a constant multiplier.

(2) if Vt ≤ Bt, the entire portfolio is invested in the zero-coupon bond.

For now, the interest rate r is assumed constant and the underlying asset to follow a
Black-Scholes model

dSt
St

= µdt+ σdWt.

It then follows from the definition of the strategy that the cushion also satisfies the
Black-Scholes stochastic differential equation

dCt
Ct

= (mµ+ (1−m)r)dt+mσdWt,

which is solved explicitly by

CT = C0 exp

(
rT +m(µ− r)T +mσWT −

m2σ2T

2

)
,

and hence Equation (1.1) gives

VT = N + (V0 −Ne−rT ) exp

(
rT +m(µ− r)T +mσWT −

m2σ2T

2

)
. (1.2)

This means that in the context of the Black-Scholes model with continuous trading,
the CPPI strategy is equivalent to taking a long position in a zero-coupon bond with
nominal N to guarantee the capital at maturity and investing the remaining sum into a
(fictitious) risky asset which has m times the excess return and m times the volatility of
S and is perfectly correlated with S.

1.1.2 Price jumps and ”gap risk”

As seen in formula (1.2), in the Black-Scholes model with continuous trading there is
never any risk of going below the floor, regardless of the multiplier value. Even so, the
expected return of a CPPI-insured portfolio is

E[VT ] = N + (V0 −Ne−rT ) exp(rT +m(µ− r)T ),

3



1.2. OPTION BASED PORTFOLIO . . . CHAPTER 1. INTRODUCTION

which leads to the paradoxical conclusion that in the Black-Scholes model, whenever
µ > r, the expected return of a CPPI portfolio can be increased indefinitely and without
risk, simply by increasing the multiplier.

Yet there is a widely recognized risk of breaching the floor, known as ”gap risk”,
that has to be taken into account by CPPI managers: There is a non-zero risk that,
during a sudden downward market movement, the fund manager will not have the time
to rebalance the portfolio, which then crashes through the floor. When this happens the
issuer has to refund the difference, at maturity, between the actual portfolio value and
the guaranteed amount N . It is therefore important for the issuer of the CPPI note to
quantify and manage this so-called ”gap risk”.

Beyond the (widely documented) econometric issue of whether jumps in asset prices
occur or not, liquidity may have a fundamental impact on the gap risk: oftentimes CPPI
strategies are written on funds which may be thinly traded, leading to jumps in market
prices due to liquidity effects. Since the volatility of Vt is proportional to m, the risk
of such a losses increases with m. It is therefore clear why, in practice, the multiplier
should be fixed by relating it to an acceptance threshold of some risk measure, such as
probability of loss or maximum one-day loss [5].

1.2 Option Based Portfolio Insurance

The Option Based Portfolio Insurance (OBPI) strategy was first introduced by Leland
and Rubinstein in 1976 [see 11]. In it’s simplicity, it consists of buying a risky asset
S, such as stocks or a financial index, while simultaneously buying a put option on it.
In this way, the portfolio value at maturity T is guaranteed to be at least equal to the
strike K of the put, no matter what the value of S is at maturity. From this definition,
it may be obvious that the OBPI strategy fulfills the purpose of guaranteeing a certain
given amount at maturity. But it turns out that, due to its definition, the OBPI strategy
provides the possibility of portfolio insurance at every time up to maturity. However,
there may, for various reasons, not always always be a put option on the the asset
in question available on the market; in those cases either the put can be replicated
by various means, or other hedging strategies — such as the CPPI strategy — may
be chosen for implementation instead. More on this strategy is covered in the light
of portfolio simulations in Chapter 4, which in turn rest on the put price calculations
presented in Appendix B.

1.3 Stylized facts

Some of the imperfections of the Black-Scholes model have already been touched upon.
However, it is effort well spent to re-summarize and elaborate a little on a few relevant
phenomena of the real-world financial markets. So-called stylized facts are generally
accepted empirical observations which, from a general point of view, hold true within
the financial markets. A few such stylized facts are elaborated on in this section, as they
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1.3. STYLIZED FACTS CHAPTER 1. INTRODUCTION

are particularly relevant to the hedging portfolio strategies that will later come under
investigation.

1.3.1 Skewness and leptokurtosis of the distribution of returns

Overwhelming evidence shows that the skewness and kurtosis of stocks return differ,
often significantly, from the Gaussian distribution [15]. The Gaussian distribution pos-
sesses skewness and kurtosis values of 0 and 3, respectively. In most cases, real-world
returns display slightly negative skewness and are leptokurtic (kurtosis greater than 3)
[4]. The leptokurtic property, also known as “fat tails” property, implies that the tails
of the distribution of historical returns are thicker than those predicted by the Gaussian
distribution. In particular, this means that extreme market events occur more often
in the real world than is predicted within the Black-Scholes framework. This has has
important implications for, among other things, option pricing.

1.3.2 Volatility clustering

Another stylized fact of financial time series is the presence of volatility clustering. Simply
speaking, volatility clustering refers to the fact that there are periods of time when
volatility is relatively high and periods of time when volatility is relatively low. This
is another feature that is not taken into account by the Brownian motion of the Black-
Scholes model. To model volatility clustering, stochastic volatility must be used — i.e.
volatility must be modelled as a stochastic process.

1.3.3 Discontinuity of trajectories

In the Brownian motion model used within the Black-Scholes framework, trajectories
are continuous. However, as is widely observed in the financial markets, continuity is
not a very realistic assumption [15]. Even though stock quotes may appear continuous
on large time-scales, discontinuities will often become apparent on smaller ones, such
as intra-day time-scales. There are many reasons for why the stock market displays
discontinuities; a simple one could be discrepancies between the closing and opening
prices, especially if some important news (positive or averse) have become public during
the market’s closure.

5



1.3. STYLIZED FACTS CHAPTER 1. INTRODUCTION

6



2
Model Setup

T
he classical Black-Scholes framework has some serious limitations, as was
pointed out in Chapter 1. To circumvent these limitations, it is necessary to
change the assumptions made on the behaviour of the financial assets. A first
step in this direction is to introduce jumps into the model of the stock price

evolution. This first extension, as will become apparent, is the key to quantifying the
default risk of the CPPI strategy. Furthermore, in the light of the well-observed volatility
clustering phenomena, stochastic volatility modelling is pursued. Interest rate modelling
using the Vasicek model is investigated, which among other things, provides the bond
prices some dynamics.

For simplicity it is assumed, as in the Black-Scholes model, that the financial market
consists of only two assets: the risky (e.g. stocks/index) and the risk-less (e.g. bond/gilt)
asset.

2.1 Stock price dynamics and stochastic volatility

The dynamics of the risky asset (S)t≥0 is assumed to be described by the SDE

dSt
St−

= dZt, (2.1)

where (Z)t≥0, in the general case, is a possibly discontinuous driving process modelled as
a semimartingale. From here on, Zt will be the exponential Lévy process (see Equation
(2.3) below). Without loss of generality it can be assumed S0 = 1, as this can always
be achieved through normalization. The SDE (2.1) can be solved as a Doléans-Dade
exponential [13, pp. 159-160], and has the explicit solution

St = exp

(
Zt −

1

2

∫ t

0
σ2
sds

)
·

∏
0≤s≤t,∆Zs 6=0

(1 + ∆Zs)e
−∆Zs , (2.2)
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volatility as a function of time (years).
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(b) Trajectory of a stochastic volatility pro-
cess with parameters k = 20, θ = 0.15 and
δ = 0.9, as a function of time (years).

Figure 2.1: Examples of trajectories of stock price (left) and stochastic volatility (right).

where ∆Zt are jump occurrences in Zt and σ2
t is the volatility of its Brownian component.

From Equation (2.2) it becomes obvious that the assumption ∆Zt ≥ −1 must be made
in order to prevent negative prices.

The process Zt is modelled as a jump-diffusion, and is described by

Zt = µt+ σtWt +

Nt∑
i=1

Yi, (2.3)

where µt represents the deterministic trend, σtWt is the Brownian part, and last term is
the jump part. Here, (Yi)i∈Nt is a family of i.i.d. random variables and Nt is a Poisson
process with intensity λ, meaning that the jump part is in fact a so-called compound
Poisson process. The so-called Kou model will be applied, by which (Yi)i∈Nt is distributed
according to the asymmetrical Laplace distribution (also known as the double exponential
distribution) with parameters (p, η+, η−): p being the probability that a given jump is
negative, and η+ and η− being the characteristic lengths of, respectively, positive and
negative jumps.

To account for volatility clustering, volatility is modelled stochastically according to
the SDE

dσt = k(θ − σt)dt+ δ
√
σtdWt.

This model is similar to the Vasicek model used for modelling bonds (see Section 2.2):
θ represents the long-run average and k the speed of adjustment. δ < 2kθ is assumed in
order to prevent negative values.

An example of the stochastic evolution of the stock price under the Kou-model and
of stochastic volatility may be seen in Figure 2.1
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2.2. DYNAMICS OF THE RISKLESS ASSET CHAPTER 2. MODEL SETUP

2.1.1 Numerical implementation

In order to implement the model numerically, time is discretized into a finite set of
times {ti}Ni=1 where ti < ti+1 for all 0 ≤ i < N , t0 = 0, and tN = T . These times are

interpreted as trading dates. By using an evenly spaced time-lattice ti =
iT

N
with N

sufficiently large, it is reasonable to approximate the stochastic volatility σt as constant
within each of the time intervals [ti, ti+1). Starting from the initial value σ0, the volatility
is then calculated as

σti = σti−1 + k(θ − σi−1)(ti − ti−1) + δ
√
σti−1

√
ti − ti−1N(0,1),

where N(0,1) is a standard normal random variable.
The process Zt is then computed as

Zti = Zti−1 + µ(ti − ti−1) + σti−1

√
ti − ti−1N(0,1) + ∆i, (2.4)

where ∆i represents the jump part ∆i(
Ni∑
i=1

Yi). As the jump part follows the Kou scheme,

∆i is calculated as follows:

(1) The jump count Ni ∼ Poi(λ(ti − ti−1)) is generated.

(2) If Ni = 0 then ∆i = 0, else {Yi}Ni
i=1 are generated according to the Laplace law

with parameters (p, η+, η−) and added to Zti .

2.2 Dynamics of the riskless asset

The riskless asset dynamics are modelled using the so-called Vasicek model: In this
framework, the short-term interest rate follows the Ornstein-Uhlenbeck process

drt = a(b− rt)dt+ σdWt,

where, for simplicity, the Brownian motion Wt is assumed independent of the Brownian
motion used in the Lévy process presented in Section 2.1. The parameters of this SDE
may be interpreted in the following way

b is the long-run interest rate

a is a factor characterizing the speed at which trajectories of the interest rate
regroup around the long-run value

σ is a (constant) volatility parameter

The SDE is of Langevin type and admits the closed-form solution [9, p. 128]

rt = r0e
−at + b(1− e−at) + σe−at

∫ t

0
easdWs.

9
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(a) Price dynamics of the zero coupon bond
under stochastic interest rate as a function of
time (years). Note how changes in interest rate
causes the price to drop even as time to matu-
rity decreases (indicated by the arrow).
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σ = 0.02.

Figure 2.2: Bond price (left) and interest rate (right) dynamics generated using the
Vasicek model.

The solution suggests that trajectories of rt will regroup around the mean value b and
variance σ2

2a , as t→∞.

Provided the dynamics of the interest rate rt, the price Bt(T ) at time t of the zero-
coupon bond with maturity T may be calculated as

Bt(T ) = E[exp

(
−
∫ T

t
rsds

)
| Ft]

= exp

(
−b(T − t) + (b− rt)

1− e−a(T−t)

a
− σ2

4a3
(1− e−a(T−t))2

+
σ2

2a2
(T − t− 1− e−a(T−t)

a
)

). (2.5)

Examples of the evolution of the bond price and stochastic interest rate may be seen
in Figure 2.2

2.2.1 Numerical implementation

Just as in Section 2.1.1, time is discretized into a finite set of times {ti}Ni=1 which are
interpreted as trading dates. In order to avoid discretization errors, the dynamic interest
rate rt is computed from the closed form solution

rt = rti−1e
−a(ti−ti−1) + b(1− e−a(ti−ti−1)) + σe−a(ti−ti−1)

∫ ti

ti−1

easdWs,

10
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where
∫ ti
ti−1

easdWs ∼
√∫ ti−ti−1

0 e2asds · N(0,1) [9, p. 110]. The set of bond prices

{Bti}Ni=1 is then calculated using formula (2.5).
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3
Model Calibration

T
he models presented in Chapter 2 hold the potential to represent the be-
haviour of their real-word counterparts. However, they need to be calibrated
before any practical applicability is obtained. “Calibration” refers to the pro-
cess of using real-world observations to give the various parameters in the

models specific values.
The Kou model, used to simulate stock price dynamics, turns out to be difficult to

calibrate using standard maximum likelihood estimations or least squares regression. So
instead, calibration of the model is approached using the empirical characteristic func-
tion; by minimizing, with respect to the model parameters, the “distance” (in the sense
of integration) between the characteristic exponent of the model, which can be found
explicitly, and the so-called empirical characteristic exponent, the calibrated parameters
are obtained.

The Vasicek model, on the other hand, is of simpler nature, and may be calibrated
using maximum likelihood estimates. This is done in detail in Section 3.2.

3.1 Calibrating the Kou model

As of Section 2.1, the price of the risky asset follows an exponential Lévy model or,
more specifically, the so-called Kou model. In this model the driving Lévy process has
a non-zero Gaussian component and a Lévy density of the form

v(x) =
λ(1− p)
η+

e−x/η+ 1x>0 +
λp

η−
e−|x|/η−1x<0.

Here, λ is the total intensity of positive and negative jumps, p is the probability that
a given jump is negative, and η−, and η+ are characteristic lengths of, respectively,
negative and positive jumps.

To determine the components of the parameter vector θ = (µ, σ, λ, p, η+, η−), the
method of empirical characteristic function is applied [see 16].
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Courtesy of this method, θ is obtained my minimizing the distance-integral∫ K

−K
|ψθ(u)− ψ̂(u)|2w(u) du,

where

ψ̂(u) =
1

t
log

1

N

N∑
k=1

eiuXk

is the so-called empirical characteristic exponent,

ψθ(u) = −σ
2u2

2
+ iµu+

λp

1 + iuη−
+
λ(1− p)
1− iuη+

− λ

is the characteristic exponent of the Kou model [see 10], and w(u) is a weight function.
Here, the set {Xk}Nk=1 is the dataset of log-returns used for calibration, and t is the
period of these returns (e.g. ∼ 1

252 for daily returns using the unit 1 year, etc.).

Ideally, the weight function w(u) should answer to the precision of ψ̂(u) as an estimate
of ψθ(u) for every u, and therefore be chosen as the reciprocal of the variance of ψ̂(u):

w(u) =
1

E[(ψ̂(u)− E[ψ̂(u)])(ψ̂(u)− E[ψ̂(u)])]

≈ t2φθ∗(u)φθ∗(u)

E[(φ̂(u)− φθ∗(u))(φ̂(u)− φθ∗(u))]
,

where θ∗ is the true parameter [5, p. 394]. However, this expression is not fruitful to
deal with, as it depends on the unknown parameter vector θ and therefore cannot be
computed. Since the return distribution is relatively close to Gaussian, the characteristic
function of the weight w may be approximated with a Gaussian one

w(u) ≈ e−σ
2
∗u

2

1− e−σ2
∗u

2 ,

where σ2
∗ = Var({Xk}Nk=1) is the variance of the log returns data. The cut-off parameter

K should be chosen based on tests with simulated data. Previous results show that the
estimated parameter values are not very sensitive to this parameter for K > 50 [5, p.
394].

Examples of estimations of the parameters of the Kou model are displayed in Table
5.1. Figure 3.1 illustrates the goodness of fit achieved: The Kou model fits the smoothed
returns density quite well and, in particular, the exponential tail decay appears to be a
realistic assumption.

More comprehensive calibration results are presented in Chapter 5, which further
refers to Appendix C. In Section D.1 in Appendix D, a MATLAB implementation of the
calibration method can be found.
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Series µ σ λ p η+ η−

MSFT 0.1078 0.1129 133.0564 0.4594 0.0109 0.0112

BMW 0.3641 0.1582 374.7105 0.4428 0.0058 0.0086

NIKKEI225 0.1875 0.1664 94.7402 0.4473 0.0081 0.0091

Table 3.1: Kou model parameters estimated from MSFT and BMW stocks, and the
NIKKEI225 index. The data spans 3 years, from 2 December 2011 to 30 November 2014.
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Figure 3.1: Logarithm of the density for MSFT time series. Solid line: Kernel density
estimator applied directly on data. Dashed line: Kou model simulation with parameters
estimated via empirical characteristic exponent.

3.2 Calibrating the Vasicek model

Recalling the Vasicek model, it’s dynamic is of the form

dSt = a(b− St)dt+ σdWt (3.1)
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where a is the mean reversion rate, b the mean, and σ the volatility. If the difference
ti+1 − ti = δ, then the exact solution to (3.1) may be written on the form:

dSti+1 = Stie
−aδ + b(1− e−aδ) + σ

√
1− e−2aδ

2a
N0,1, (3.2)

where N0,1 is a standard normal random variable. If, as will be assumed, observed data
{Si}ni=0, evenly spaced in time with a period of δ, is available, then calibration using
maximum likelihood estimates is easily implemented.

3.2.1 Maximum likelihood function

The conditional density function is easily derived by combining Equation (3.2) with the
normal probability density function:

fN0,1 =
1√
2π
e
−

1

2
x2

.

The formula for the conditional probability density function of an observation Si+1 given
a previous observation Si (with time step δ between them), is given by

f(Si+1|Si; a, b, σ)

=
1√

2πσ̂2
exp

(
−(Si − Si−1e

−aδ − b(1− e−aδ))2

2σ̂2

)
, (3.3)

where

σ̂2 = σ2 1− e−2aδ

2a
.

From the conditional density function (3.3), the log-likelihood function of a set of obser-
vations {Si}ni=0 can be derived:

L(a,b,σ) =

n∑
i=1

log(fSi|Si−1; a, b, σ)

= −n
2

log(2π)− n log(σ̂)− 1

2σ̂2

n∑
i=1

(Si − Si−1e
−aδ − b(1− e−aδ))2. (3.4)

16



3.2. CALIBRATING THE VASICEK MODEL
CHAPTER 3. MODEL

CALIBRATION

3.2.2 Maximum likelihood conditions

The maximum of the log-likelihood function (3.4) can be found at the location where all
partial derivatives are zero, which leads to the following set of constraints:

∂L(a,b,σ)

∂a
= 0

= −δe
−aδ

σ̂2

n∑
i=1

((Si − b)(Si−1 − b)− e−aδ(Si−1 − b)2)

⇒ a =
1

δ
log

n∑
i=1

(Si − b)(Si−1 − b)
n∑
i=1

(Si−1 − b)2

, (3.5)

∂L(a,b,σ)

∂b
= 0

=
1

σ̂2

n∑
i=1

(Si − Si−1e
−aδ − b(1− e−aδ))

⇒ b =

n∑
i=1

(Si − Si−1e
−aδ)

n(1− e−aδ)
, (3.6)

∂L(a,b,σ)

∂σ̂
= 0

=
n

σ̂
− 1

σ̂3

n∑
i=1

(Si − b− e−aδ(Si−1 − b))2

⇒ σ̂2 =
1

n

n∑
i=1

(Si − b− e−aδ(Si−1 − b))2. (3.7)

3.2.3 Solution of the conditions

It is observed that conditions (3.5), (3.6) and (3.7) are dependent on each other. However,
both a and b are independent of σ, and knowledge of either a or b will directly grant
the value of the other. Once a and b are determined, the solution for σ can be found.
To solve these equations it is therefore sufficient to find either a or b: This is done by
substituting a into condition (3.6).
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In order to simplify algebraic manipulations, (3.5) and (3.6) are rewritten using

Sx =
n∑
i=1

Si−1,

Sy =
n∑
i=1

Si,

Sxx =
n∑
i=1

S2
i−1,

Sxy =
n∑
i=1

Si−1Si,

Syy =
n∑
i=1

S2
i ,

which yields

a =
1

δ
log

Sxy − bSx − bSy + nb2

Sxx − 2bSx + nb2
,

b =
Sy − e−aδSx
n(1− e−aδ)

.

Substituting a into b gives

nb =

Sy −
(
Sxy − bSx − bSy + nb2

Sxx − 2bSx + nb2

)
Sx

1−
(
Sxy − bSx − bSy + nb2

Sxx − 2bSx + nb2

) ,

removing denominators, collecting terms, and factoring out b, an explicit solution is
found.

3.2.4 The maximum likelihood equations

The final result is the maximum likelihood equations for the, mean

b =
SySxx − SxSxy

n(Sxx − Sxy)− (S2
x − SxSy)

,

mean reversion rate

a = −1

δ
log

Sxy − bSx − bSy + nb2

Sxx − 2bSx + nb2
,
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and variance

σ̂2 =
1

n
(Syy − 2αSxy + α2Sxx − 2b(1− α)(Sy − αSx) + nb2(1− α2))

⇒ σ2 = σ̂2 2a

1− α2
,

where α = e−aδ.
In Section D.1 in Appendix D, a MATLAB implementation of these maximum likelihood

equations may be found.
As an example, the Vasicek parameters have been estimated using the 12-month

LIBOR rate and are presented in Table 3.2.

Series a b σ

12-M LIBOR 0.1021 0.5913% 0.2321%

Table 3.2: Vasicek model parameters estimated from the 12-M LIBOR rate. The data
spans 3 years, from 2 December 2011 to 30 November 2014.
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4
Portfolio Simulations

T
he two portfolio investment strategies that will be focused upon in this
chapter are the Constant Proportion Portfolio Insurance (CPPI) and Option
Based Portfolio Insurance (OBPI) strategies. Both strategies have already
been introduced in Chapter 1, but a quick re-cap of their basic principles will

likely not hurt: The CPPI strategy revolves around dynamic rebalancing of the contents
portfolio, moving funds between risky and risk-less assets according to a predetermined
scheme with an aim of guaranteeing that the portfolio value never drops below a certain
threshold; the OBPI strategy, on the other hand, simply entails splitting the available
funds between risky assets, risk-less assets and a put option on (part of) the risky assets,
in such way that the portfolio value at maturity is guaranteed to be at least equal to
some predetermined minimum.

Utilizing the underlying models presented in Chapter 2 with parameters obtained
from real-world data through the calibration methods presented in Chapter 3, the port-
folio strategies may be numerically simulated an arbitrary number of times for each set
of parameters (i.e. for each financial environment that the parameters represent). In
this way, the average performances of the different strategies under different financial
conditions may be estimated by means of the Monte Carlo method. From these results,
the strategies may be compared and conclusions on their performances may be made.
The compiled results are be presented in Chapter 5.

For the results to be useful for inter-strategy comparisons, it has in all cases been
assumed that the initial portfolio value is equal to one1. Furthermore, and for the same
reason, it is assumed that the initial proportion of risky assets is equal in either strategy.

The simulations were done in MATLAB: The code can be found in Section D.2 in
Appendix D.

1This may always be done without loss of generality.
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4.1 The CPPI strategy

In Section 1.1.1 the CPPI strategy was presented in the context of the continuous Black-
Scholes model. It was noted how that particular set-up, paradoxically, implied that if
the drift in the underlying was greater than the risk-free interest rate, then the expected
return could be increased indefinitely by increasing the multiplier, without any risk of
default. In this section it will be shown that in the presence of jumps in the price of the
risky asset this is no longer true, and the CPPI strategy may actually fail and breach the
floor. Precise analytical conclusions are drawn in Appendix A, even though numerical
simulations provide a very illustrative display of this phenomenon.

4.1.1 CPPI in the presence of jumps

As covered in Chapter 2, the dynamics of the risky asset S and the zero-coupon bond
Bt may be written as

dSt
St−s

= dZt and
dBt
Bt−

= dRt,

where Z and R are possibly discontinuous driving processes, modelled as semimartin-
gales. Using the Vasicek model where

drt = (α− βrt)dt+ σdWt,

the zero-coupon is given by

Bt = B(t,T ) = E[e−
∫ T
t rsds],

from which it follows that

dBt
Bt

= rtdt− σ
1− e−β(T−t)

β
dWt.

In the general case, the following assumptions may be made:

(1) ∆Zt > −1 almost surely.

(2) The zero-coupon price process B is continuous.

The first assumption guarantees positive risky asset prices, while the second allows to
focus on the impact on jumps in the underlying asset. In particular, this implies

Bt = B0 exp

(
Rt −

1

2
[R]t

)
> 0 a.s.

In reference to Equation (1.1), define τ = inf{t : Vt ≤ Bt}. Since the CPPI strategy is
self-financing, up to time τ the portfolio value satisfies

dVt = m(Vt− −Bt)
dSt
St

+ {Vt− −m(Vt− −Bt)}
dBt
Bt

,
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which may be rewritten in terms of the cushion Ct = Vt −Bt as

dCt
Ct−

= mdZt + (1−m)Rt.

By making a change of numeraire and introducing the discounted cushion C∗t =
Ct
Bt

,

a simple application of Itô’s formula yields

dC∗t
C∗t−

= m(dZt − d[Z,R]t − dRt + d[R]t). (4.1)

Defining

Lt ≡ Zt − [Z,R]t −Rt + [R]t, (4.2)

Equation (4.1) can be rewritten in a more compact form using the Doléans-Dade expo-
nential E

C∗t = C∗t E(mL)t,

where, by definition,
dE(mL)t
E(mL)t

= mdLt.

From the definition of the CPPI strategy it follows that after time τ the process C∗

remains constant. This means that the discounted cushion value for the strategy can be
written explicitly as

C∗t = C∗0E(mL)t∧τ , (4.3)

or alternatively
Vt
Bt

= 1 +

(
V0

B0
− 1

)
E(mL)t∧τ . (4.4)

Since the stochastic exponential can become negative, in the presence of large-enough
negative discontinuities in the stock price, Equation (4.4) shows that the capital N is no
longer guaranteed at maturity by this strategy.

Formulae for the probability of loss, expected loss and distribution of loss of a port-
folio under CPPI-management are derived in Appendix A.

4.1.2 Numerical implementation

The evolution of the CPPI portfolio value follows the SDE

dVt = m(Vt− −GBt)+dSt
St

+ (Vt− −m(Vt− −GBt)+)
dBt
Bt

=

= m(Vt− −GBt)+dZt + (Vt− −m(Vt− −GBt)+)
dBt
Bt

,

where m is the multiplier, G is the guaranteed amount, and Bt is the price at time t
of the zero-coupon bond with nominal one and maturity T (making GBt equal to the
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floor). m is assumed to be dynamic and to depend negatively on the current level of
volatility as suggested by Cont and Tankov in 2009 [5]:

mti = m0(
σti
σ0

)0.2.

Discretization of time provides the following algorithm for the portfolio value at dates
ti ∈ [0,T ]

Vti = Vti−1 +mti−1(Vti−1 −GBti−1)+(Zti − Zti−1)

+ (Vti−1 −mti−1(Vti−1 −GBti−1)+)

(
Bti −Bti−1

Bti−1

)
.

4.1.3 Simulation samples

Figure 4.2 shows two trajectories of the CPPI portfolio in a falling and rising market,
respectively. In the case of a falling market, it can be clearly seen how the portfolio’s
exposure to the risky asset is decreased as the portfolio value approaches the floor. This
allows it, in this particular case, to avoid default even though the stock plummets far
below the floor. In the case of a sustained rise in the market, on the other hand, the
portfolio’s exposure to the risky asset is instead increased. As a result, the portfolio
value follows, to a large extent, the positive development of the stock.
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(a) CPPI portfolio value trajectory in a falling
market as a function of time (years). Blue line:
Portfolio value. Red line: Stock price. Black
line: Floor.
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(b) CPPI portfolio value trajectory in a rising
market as a function of time (years). Blue line:
Portfolio value. Red line: Stock price. Black
line: Floor.

Figure 4.1: Trajectories of the CPPI portfolio value in a falling (left) and rising market
(right). The floor is equal to 0.75 and the multiplier is equal to 2.5. The parameters used
in the simulation model were calibrated using three years of BMW stock price data.
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4.2 The OBPI strategy

As has already been described in Section 1.2 and the chapter preamble, the OBPI strat-
egy consists in guaranteeing a certain proportion of the initial portfolio value at maturity,
while still being exposed to possible market up-swings, by splitting the available funds
between riskless assets, risky assets and a put option on (part of) the risky assets. In
contrast to the CPPI strategy, the OBPI strategy can never default: Even if there are
jumps in the price of the underlying, or other complicating phenomena for that matter,
the definition of the put contract will always guarantee a fixed value at maturity. How-
ever, the profitability of the OBPI strategy will, of course, be subject to the dynamics
of the put price: For example, it is well-known that the price of the put generally drops
very quickly as it approaches maturity, which naturally affects the profitability of the
OBPI strategy when implemented on shorter time horizons.

4.2.1 Numerical implementation

Let (Vt)t∈[0,T ] denote the value of the OBPI portfolio at time t, St the stock price and Bt
the price of the zero-coupon bond. Furthermore, let θt denote the amount of shares of
the risky asset held at time t and p(θt,K, T − t) the price of the European put option for
θt shares with strike K and time to maturity T − t. In the strategy under investigation,
the number of shares held at any time does not chance during the lifetime of the strategy,
and θt may therefore simply be referred to as θ. Since the portfolio is self-financing, the
value of the portfolio between two dates ti and ti+1 must change according to

Vti+1 − Vti = θ(Sti+1 − Sti) + (Vti − θSti)
Bti+1 −Bti

Bti
+ p(θ,K, T − ti+1)− p(θ,K, T − ti).

The values of St and Bt are modelled according to the set-up of Chapter 2, and the price
of the put is estimated using formula (B.4) derived in Appendix B. Since the definition of
the OBPI strategy implies that the allocation of wealth remains unchanged throughout
the lifetime of the strategy, it is for most purposes sufficient to estimate the terminal
value of the portfolio

VT = V0 + θ(ST − S0) + (V0 − θS0)
1−B0

B0
+ (K − θST )+ − p(θ,K, T ).

Just as in the CPPI case, the initial value V0 is assumed to be equal to one. The capital
not invested in the risky asset is split between the put on the risky asset and the riskless
asset.

4.2.2 Simulation samples

Figure 4.2 shows two trajectories of the CPPI portfolio in a falling and rising market,
respectively. As the put is used to hedge the portfolio, it can never default. However,
before maturity it’s value may, under certain circumstances, be below the floor. In
upwards markets, obviously, the partial exposure to the risky asset allows the portfolio
value to grow. An illustration of the European put dynamics is shown in Figure 4.3.
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(a) OBPI portfolio value trajectory in a falling
market as a function of time (years). Blue line:
Portfolio value. Red line: Stock price. Black
line: Floor.
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(b) OBPI portfolio value trajectory in a rising
market as a function of time (years). Blue line:
Portfolio value. Red line: Stock price. Black
line: Floor.

Figure 4.2: Trajectories of the OBPI portfolio value in a falling (left) and rising market
(right). The floor is equal to 0.75 and initial amount of stocks equals to 0.7342. The
parameters used in the simulation model were calibrated using three years of BMW stock
price data.
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Figure 4.3: Dynamics of the European put option. Blue line: Put price. Red line: Stock
price. Black line: Strike.
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5

Results

C
alibration and simulation has been carried out as described in Chapter 3
and Chapter 4, respectively. The results are presented in this chapter, and
discussed and interpreted in Chapter 6. In terms of calibration, focus was set
on exploring the properties of the calibration of the Kou model. The properties

of the classical maximum likelihood method are therefore not explored in depth. In
terms of simulations, the CPPI and OBPI strategies have been simulated and tested
under various circumstances. In particular, the dependence on multiplier and time to
maturity is looked into. The portfolio performance levels in different market types are
also investigated.

5.1 Model calibration results

The parameters of the Kou model were determined through calibration towards real-
world financial data of three indices and three stocks. For each index or stock, data
corresponding to one, three, and ten years, spanning backwards from November 30 2014,
was used in order to find the parameters. Complete calibration results are presented in
Table 5.1. Illustrations of the goodness of fit achieved are presented for MSFT stock
and SX5E index data in Figure 5.1. Additional goodness of fit results are presented in
Appendix C, for the NIKKEI225 and SNP500 indices and BMW and AZN stocks.

The rather straight-forward use of the maximum likelihood method yielded the re-
sults found in Table 5.2 and Table 5.3 for the Vasicek model and stochastic volatility,
respectively, where the interest rate was calibrated towards the LIBOR rate and stochas-
tic volatility towards stock price volatility.
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(a) 10 years of MSFT stock data.
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(b) 10 years of SX5E index data.
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(c) Three years of MSFT stock data.
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(d) Three years of SX5E index data.
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(e) One year of MSFT stock data.

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
-8

-6

-4

-2

0

2

4

Kernel estimator
Kou model

(f) One year of SX5E index data.

Figure 5.1: Logarithm of the densities corresponding to ten, three and one years of MSFT
stock and SX5E index time series. Solid lines: Kernel density estimator applied directly
on data. Dashed lines: Kou model simulations with parameters estimated via empirical
characteristic exponent. All data used spans backwards from 30 November, 2014.
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Series µ σ λ p η+ η−

NIKKEI225 10yr 0.1575 0.1704 33.1174 0.5913 0.0172 0.0175

NIKKEI225 3yr 0.1875 0.1664 94.7402 0.4473 0.0081 0.0091

NIKKEI225 1yr 0.5744 0.1432 182.3641 0.8969 0.0120 0.0043

SNP500 10yr 0.2833 0.1240 50.8535 0.6689 0.0175 0.0154

SNP500 3yr 0.1806 0.0996 116.8213 0.3856 0.0032 0.0053

SNP500 yr 0.7587 0.0770 256.4353 0.7789 0.0018 0.0036

SX5E 10yr 0.5489 0.1360 110.7297 0.7867 0.0170 0.0109

SX5E 3yr 0.4942 0.1477 124.2325 0.8578 0.0104 0.0055

SX5E 1yr 0.0505 0.1198 231.7510 0.4328 0.0037 0.0052

BMW 10yr 0.0472 0.2438 55.7988 0.3991 0.0192 0.0262

BMW 3yr 0.3641 0.1582 374.7105 0.4428 0.0058 0.0086

BMW 1yr 2.6611 0.0721 679.7303 0.9180 0.0107 0.0051

MSFT 10yr 0.2153 0.1707 50.1890 0.6490 0.0217 0.0166

MSFT 3yr 0.1078 0.1129 133.0564 0.4594 0.0109 0.0112

MSFT 1yr 1.9153 0.0720 742.9403 0.8921 0.0104 0.0038

AZN 10yr 0.0480 0.1797 42.0319 0.4514 0.0174 0.0206

AZN 3yr 0.2550 0.1603 7.1010 0.8237 0.0685 0.0296

AZN 1yr 0.3445 0.1794 12.7312 0.6941 0.0664 0.0382

Table 5.1: Kou model parameters estimated from historical data of the NIKKEI225,
SNP500 and SX5E indeces, and BMW, MSFT and AZN stocks. As indicated in the table,
the historical data used in the calibration spans ten, three and one year backwards from
November 30, 2014.

5.2 Portfolio simulation results

By performing very large numbers of simulations1, the Monte Carlo method was applied
to measure the performances of the portfolio strategies. Portfolio performances over a
5-year investment period, for varying CPPI multipliers, are presented in Table 5.4 in the
case of an index underlying. The dependence on time to maturity was also investigated,
and the results are presented in Table 5.5 in the case of a high-volatility stock underlying.

In Figure 5.2, the dependence of loss probability (from the point of view of the issuer
of the portfolio) on the multiplier for a CPPI portfolio containing MSFT, BMW and
AZN stocks or SNP500, NIKKEI225, and SX5E indices, is shown.

1100 000 simulations were done to obtain each data point.
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Series a b σ

12-M LIBOR 0.1021 0.5913% 0.2321%

6-M LIBOR 0.0912 0.6136% 0.2419%

Table 5.2: Vasicek model parameters estimated from the 12-M and 6-M LIBOR rate. The
data spans 3 years, from 2 December 2011 to 30 November 2014.

Series k θ δ

NIKKEI225 3.721 0.1453 0.3376

SNP500 3.221 0.1288 0.2704

SX5E 2.289 0.1012 0.1789

BMW 4.422 0.1843 0.3954

MSFT 4.162 0.1707 0.3678

AZN 3.332 0.1612 0.3419

Table 5.3: Stochastic volatility parameters estimated from historical data of the
NIKKEI225, SNP500 and SX5E indeces, and BMW, MSFT and AZN stocks. The data
spans 3 years, from 2 December 2011 to 30 November 2014.

The graphs in Figure 5.2 were obtained through the following process:

(1) The multiplier is set equal to a pre-determined initial value for the parameter
sweep.

(2) For each stock or index, 100 000 CPPI portfolio trajectories are calculated.

(3) For each trajectory, the final value is compared to the floor.

(4) The proportion of defaulting portfolios is calculated.

(5) The multiplier is increased by a predetermined step length.

(6) Steps (2) to (5) are repeated until the final multiplier value has been covered.

It may be observed, for example from Table 5.4, that in the case of more regular
market conditions, the CPPI strategy is generally slightly outperformed by the OBPI
strategy, both in terms of returns and portfolio volatility. This results hold true even as
the lifetime of the strategy or volatility is varied slightly. However, as may be observed in
Table 5.5, the performances in very changing markets, as exemplified by the very volatile
MSFT stock, the OBPI performs much worse. Especially on shorter time horizons, the
OBPI is outperformed by the CPPI strategy.
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Figure 5.2: Simulated probability of loss as a function of the multiplier for a 5-year
investment period.

Multiplier value 2 2.5 3.5 5

CPPI annual return 4.893% 6.121% 8.781% 15.452%

CPPI annual volatility 0.0912 0.1252 0.1524 0.2321

OBPI annual return 4.992% 6.213% 8.911% 16.114%

OBPI annual volatility 0.08991 0.1233 0.1457 0.2231

Table 5.4: Simulated CPPI and OBPI performance over an investment period of 5 years
based on NIKKEI225 index, for different multiplier values. The floor of the CPPI portfolio
was set to 85%, and the OBPI portfolio had the same initial risky asset investment proportion
as the CPPI portfolio.
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Time to maturity 1.5 yr 3 yr 5 yr 10 yr

CPPI annual return 6.128% 7.134% 9.589% 13.513%

CPPI annual volatility 0.1244 0.1341 0.1524 0.1922

CPPI default probability 0.623% 1.242% 1.811% 2.512%

OBPI annual return 2.223% 5.234% 8.891% 12.514%

OBPI annual volatility 0.1141 0.1289 0.1461 0.1821

Table 5.5: Simulated CPPI and OBPI performance over various lengths of investment
periods based on MSFT stock, with the multiplier set equal to 3.5. The floor of the CPPI
portfolio was set to 85%, and the OBPI portfolio had the same initial risky asset investment
proportion as the CPPI portfolio.
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6
Discussion and Conclusions

I
n the introduction in Chapter 1, the importance of a proper theoretical frame-
work when analysing portfolio insurance strategies was pointed out. Having this
in mind, a model that would reflect the empirical behaviour of asset prices was set
up in Chapter 2. Lévy processes were used to model stock price dynamics, while

stochastic volatility was implemented to account for volatility clustering phenomena and
the Vasicek model was used to describe fluctuations in the bond market. The various
models were calibrated using the methods presented in Chapter 3. By means of the
Monte Carlo method, results on the performance of the CPPI and OBPI strategies were
obtained.

The results of both the calibration and simulations are discussed. Concerning the
calibration, the focus of the discussion is on the Kou model and its behaviour. The max-
imum likelihood method, that was also applied, is extensively covered in the literature.
Concerning the simulations, the results are discussed and some explanations are given.

6.1 Concerning calibration

The calibrated parameters of the Kou model show dependence on the length of the
time-span over which the data stretches: In the case of shorter time spans, as opposed
to longer time spans, the following is generally observed

(1) Volatility, σ, is calibrated to a lower value.

(2) Jump intensity, λ, is calibrated to a higher value.

(3) The probability of negative jumps, p, is calibrated to a higher value.

(4) The sizes of occurring positive and negative jumps, η+ and η−, are calibrated to
lower values.
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One may wonder what’s behind these generally observed changes in calibration results?
In fact, they may be considered quite natural: As the observed time-span becomes
smaller, each intra-day jump becomes more important in relation to the over-all move-
ments of the asset price over the time-span in question. The calibration method will
then, in a sloppy sense of speaking, “interpret” a larger part of the intra-day changes as
jumps, rather than as part of the process’s volatility, thereby yielding a smaller volatility
parameter by a larger jump intensity parameter. However, as most intra-day changes
are relatively small, the characteristic lengths of the jumps are decreased. It turns out
the it is negative, to a larger extent than positive, intra-day movements that are now in-
terpreted as jumps, and therefore the probability of negative jumps is calibrated higher,
while the characteristic length of negative jumps is decreased to a larger extent than
that of positive jumps.

6.2 Concerning simulation

Figure 5.2 shows the dependence of the simulated loss probability (from the point of
view of the issuer of the portfolio) on the multiplier for a CPPI portfolio containing
MSFT, BMW and AZN stocks or SNP500, NIKKEI225, and SX5E indices. The loss
probabilities for MSFT and BMW are quite similar, exhibiting 5% loss probabilities at
multiplier values of about 5.5. AZN is significantly less risky: only at a multiplier value of
7 does the stock reach a 5% probability of loss. Portfolios written on the indices behave
quite similarly to each other as far as probability of loss is concerned, with significant
loss probabilities only for very high multipliers.

The probability of breaching the floor of a CPPI managed portfolio is given by
Equation (A.1). In the case when the (discounted) risky asset price process follows the
Kou model, this means

P [∃t ∈ [0,T ] : Vt ≤ Bt] = 1− exp(−Tpλ(1− 1/m)η−). (6.1)

The obtained results of Figure 5.2 coincide very well with the graphs predicted by Equa-
tion (6.1). This is a satisfactory result from a stimulatory point of view, as it supports
that the model has been correctly implemented.

Since, in the case of a less erratic underlying, the CPPI only has a negligible risk of
breaching the floor, it is a very good alternative to the OBPI portfolio when the options
market is not liquid. Under these conditions, CPPI is only slightly outperformed by the
OBPI strategy.

However, when the market is very volatile OBPI performs poorly. This is especially
true with shorter times to maturity, as the put option loses much of its value in the last
months before maturity, while it may still be quite expensive to by at initiation due to
the high market volatility. On the other hand, under these conditions the CPPI strategy
has a non-negligible risk of default. This risk, naturally, grows with the length of the
time-horizon over which the strategy is applied. It may further be observed that the
higher the volatility, the more does the CPPI outperform the OBPI portfolio, whereas
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higher intensity or sizes of jumps favours the OBPI strategy. Furthermore, the difference
between the two portfolios decreases as the floor increases.

6.3 Further research

With only one year of data, the calibrations start to sway slightly as the starting point
for the search algorithm is altered. More research could go into investigating how the
stability of the short-span calibrations can be improved, and how their stability can
best be quantified. Furthermore, more advanced methods can be used to calibrate and
incorporate the stochastic volatility together with the Kou model. This is actually a
rather vast subject to look into, and could well be the topic of future master’s theses.

On the simulation side, if would be interesting to look into the behaviour of the
investment strategies under more specific market conditions, such as purely falling or
rising markets. It would also be interesting to look at more advanced portfolio insurance
strategies where, for example, the guaranteed amount can be more complex and depend
on the trajectory taken by the portfolio. An example, taken from the real world, of
this is when the value at maturity is guaranteed to be equal to the maximum of a
pre-determined floor and a certain percentage of the maximum portfolio value attained
during the lifetime of the portfolio: E.g. at maturity the portfolio pay-off is equal to the
maximum of 90% of the initial value and 70 % of the maximum portfolio value achieved
during the life of the portfolio. Furthermore, research into the pricing of so-called crash
bonds could provide useful insights into the possibilities to protect the CPPI portfolio
from default.
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[15] M Tisserand. Exponential of Lévy processes as a stock price - Arbitrage opportuni-
ties, completeness and derivatives valuation. Master’s thesis, 2006. URL http://

edoc.hu-berlin.de/master/tisserand-marc-2006-07-25/PDF/tisserand.pdf.

[16] Jun Yu. Empirical Characteristic Function Estimation and Its Applications. Eco-
nomic Reviews, 23(2):93–123, May 2004. ISSN 1532-4168 (Online). doi: 10.1081/
ETC-120039605. URL http://ideas.repec.org/a/taf/emetrv/v23y2004i2p93-

123.html.

38

http://www.math.tu-dresden.de/sto/schilling/sources/pa/schilling10.pdf
http://www.math.tu-dresden.de/sto/schilling/sources/pa/schilling10.pdf
http://dx.doi.org/10.1287/mnsc.48.8.1086.166
http://www.hbs.edu/faculty/Pages/item.aspx?num=4800
http://link.springer.com/article/10.1007%2Fs00780-005-0153-z
http://link.springer.com/article/10.1007%2Fs00780-005-0153-z
http://edoc.hu-berlin.de/master/tisserand-marc-2006-07-25/PDF/tisserand.pdf
http://edoc.hu-berlin.de/master/tisserand-marc-2006-07-25/PDF/tisserand.pdf
http://ideas.repec.org/a/taf/emetrv/v23y2004i2p93-123.html
http://ideas.repec.org/a/taf/emetrv/v23y2004i2p93-123.html


A
More on CPPI in the presence of

jumps

S
tochastic calculus provides the required tools for deeper analysis of the
CPPI portfolio strategy, when the risky asset is modelled as the solution to
a jump-diffusion type stochastic differential equation. The analysis of Section
4.1.1 demonstrates that in the presence of jumps in the risky asset, there is a

non-zero risk of default to the CPPI portfolio. This section elaborates on this matter
by finding formulae for the probability of default, expected loss-size, and distribution of
losses. From the point of view of a professional (or amateur for that matter) portfolio
manager, this is fundamental in judging and sizing the risks that the portfolio under
management is subjected to at any point in time.

A.1 Probability of loss

A CPPI portfolio incurs a loss (breaks through the floor) if, for some T ∈ [0,T ], Vt ≤ Bt.
The event Vt ≤ Bt is equivalent to C∗t ≤ 0 and since R is continuous and E(X)t =
E(X)t−(1 + ∆Xt), C

∗
t ≤ 0 for some T ∈ [0,T ] if and only if m∆Lt ≤ −1 for some

T ∈ [0,T ], as follows from Equation (4.3). This leads to the following result [5, p. 384].

Proposition A.1. Let L be of the from L = Lc + Lj, where Lc is a continuous process
and Lj is an independent Lévy process with Lévy measure ν. Then the probability of
going below the floor is given by

P [∃t ∈ [0,T ] : Vt ≤ Bt] = 1− exp

(
−T

∫ −1/m

−∞
ν(dx)

)
. (A.1)

Proof. This result follows from the fact that the number of jumps of the Lévy process Lj

in the interval [0,T ] whose sizes fall in (−∞,−1/m] is a Poisson random variable with
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intensity Tν((−∞,−1/m]).

Corollary A.1. Assume that S follows an exponential Lévy model of the form

St = S0e
Nt ,

where N is a Lévy process with Lévy measure ν. Then the probability of going below
floor is given by

P [∃t ∈ [0,T ] : Vt ≤ Bt] = 1− exp

(
−T

∫ log(1−1/m)

−∞
ν(dx)

)
. (A.2)

Proof. If follows from Proposition A.1 that there exists another Lévy processes L satis-
fying

dSt
St−

= dLt.

The Lévy measure of L is given by

ν̃L(A) =

∫
1A(ex − 1)ν(dx).

Applying Proposition A.1 concludes the proof.

A.2 Expected loss

With an aim of calculating the expectation of loss, and possibly various other functionals
(risk measures), a closer look is taken at the distribution of loss of a CCPI-managed
portfolio given that a loss occurs.

In order to obtain explicit formulae, it is assumed that the process L appearing in
the stochastic exponential in Equation (4.4) is a Lévy process, whose Lévy measure
is denoted ν. It is always possible to write L = L1 + L2 where L2 is a process with
piecewise constant trajectories and jumps satisfying ∆L2

t ≤ −1/m and L1 is a process
with jumps satisfying ∆L1

t > −1/m. In other word, L1 has Lévy measure ν(dx)1x>−1/m

and L2 has Lévy measure ν(dx)1x≤−1/m, no diffusion component, and no drift. Denote
by λ∗ := ν((−∞,−1/m]) the jump intensity of L2, by τ the time of occurrence of the first
jump of L2 (it is an exponential random variable with intensity λ∗), and by L̃2 = ∆L2

t

the size of the first jump of L2. Let the characteristic function of the Lévy process

log E(mL1)t be denoted by φt and define ψ(u) =
1

t
log φt(u). Finally, the assumption

C∗0 = 1 may be made without loss of generality.

Now, the expectation of loss may be calculated [5, p. 385].

Proposition A.1. Assume ∫ ∞
1

xν(dx) <∞.
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Then the expectation of loss conditional on that a loss occurs is

E[C∗T |τ ≤ T ] =
λ∗ +m

∫ −1/m
−1 xν(dx)

(1− e−λ∗T )(ψ(−i)− λ∗)
(e−λ

∗TφT (−i)− 1),

and the unconditional loss satisfies

E[C∗T 1τ≤T ] =
λ∗ +m

∫ −1/m
−1 xν(dx)

ψ(−i)− λ∗
(e−λ

∗TφT (−i)− 1), (A.3)

Proof. The discounted cushion satisfies

C∗T = E(mL1)τ∧T (1 +mL̃21τ≤T ) = E(mL1)T 1τ>T + E(mL1)τ (1 +mL̃2)1τ≤T . (A.4)

Since L1 and L2 are Lévy processes, τ , L̃2 and L1 are independent. From [7, Theorem
25.17 on p. 319] and the definition of φt,

E[E(mL1)t] = φt(−i),

and therefore

E[C∗T |τ ≤ T ] =
E[1 +mL̃2]

1− e−λ∗T

∫ T

0
λ∗e−λ∗tE[E(mL1)t]dt

=

(
λ∗ +m

∫ −1/m

−1
xν(dx)

)
1

1− e−λ∗T

∫ T

0
e−λ

∗tφt(−i)dt,

from which the result follows.

Remark A.1. Denote by (σ2, ν, γ) the characteristic triplet of L with respect to zero
truncation function (general Lévy processes may be treated similarly by applying a
somewhat heavier notation) and suppose that

∫
R |x|ν(dx) <∞. By [5, Proposition A.1

on p. 399] and the Lévy-Khintchine representation [see 8], the characteristic exponent
of log E(mL)t is given by

ψ(u) = −m
2σ2u2

2
+ iu

(
mγ − σ2m2

2

)
+

∫
z>−1/m

(eiu log(1+mz) − 1)ν(dz) (A.5)

ψ(−i) = mγ +m

∫
z>−1/m

zν(dz).

From Equation (A.4) is follows that the expected gain conditional on that the floor is
not broken satisfies

E[C∗T |τ > T ] = E[E(mL1)T ] = φT (−i) = exp

{
Tmγ + Tm

∫
z>−1/m

zν(dz)

}
.

Therefore, similarly to the Black-Scholes case covered in Section 1.1.1, conditional ex-
pected gain in an exponential Lévy model is increasing with the multiplier, provided the
underlying Lévy process has a positive expected return.
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A.3 Loss distribution

In order to calculate various risk measures, the distribution function of the loss given
that a loss occurs is needed. That is, the quantity

P [CT ∗ < x|τ ≤ T ]

for x < 0. One approach for calculating this conditional distribution function, which
will be studied here in what follows, is to express its characteristic function explicitly
in terms of the characteristic exponents of the Lévy processes involved and then recover
the distribution function by means of numerical Fourier inversion [5, pp. 386–387].

In the following theorem,

φ̃ :=
1

λ∗

∫ −1/m

−∞
eiu log(−1−mx)ν(dx)

denotes the characteristic function of log(−1−mL̃2).

Theorem A.1. Consider a random variable X∗ with characteristic function φ∗, such

that E[|X∗|] <∞ and
|φ∗(u)|
1 + |u|

∈ L1. If

|φ̃(u)|
(1 + |u|)|λ∗ − ψ(u)|

∈ L1∫
R\[−ε,ε]

| log |1 +mx||ν(dx) <∞ (A.6)

for sufficiently small ε, then for every x < 0,

P [C∗T < x|τ ≤ T ] =P [−eX∗
< x] (A.7)

+
1

2π

∫
R
e−iu log(−x)

(
λ∗φ̃(u)

iu(λ∗ − ψ(u))

1− e−λ∗T+ψ(u)T

1− e−λ∗T
− φ∗(u)

iu

)
du.

Remark A.1. The random variable X∗ is needed only for the purpose of Fourier inver-
sion: the cumulative distribution function of the loss distribution is not integrable and
its Fourier transform cannot be computed, but the difference of two distribution func-
tions has a well-defined Fourier transform. In practice, X∗ can always be taken equal to
a standard normal random variable [5, p. 387].

Proof. It follows from Equation (A.4) that the characteristic function of log(−C∗T ) con-
ditionally on that a loss occurs, satisfies

E[eiu log(−C∗
T )|τ≤T ] =

1

1− e−λ∗T

∫ T

0
λ∗e−λ

∗tE[eiu log(−E(mL1)t(1+mL̃2))]dt

=
1

1− e−λ∗T

∫ T

0
λ∗e−λ

∗tetψ(u)φ̃(u)dt

=
φ̃(u)(1− e−λ∗T+ψ(u)T )

(λ∗ − ψ(u))(1− e−λ∗T )
.
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The integral in Equation (A.7) converges as u→∞ due to the theorem’s conditions and
the fact that ∣∣∣∣∣1− e−λ

∗T+ψ(u)T

1− e−λ∗T

∣∣∣∣∣ < 1 + e−λ
∗T

1− e−λ∗T
.

Moreover, condition (A.1) is equivalent to

E[| log(−1−mL̃2)|] <∞
E[| log E(mL1)T |] <∞,

which together with the assumption E[|X∗|] <∞ proves that φ(u) = 1 +O(u), φ̃(u) =
1 + O(u) and φ∗(u) = 1 + O(u) as u → 0, and therefore the integrand in Equation
(A.7) is bounded and therefore integrable in the neighbourhood of zero. The proof is
completed by applying [5, Lemma B.1 on pp. 399–400].

43



A.3. LOSS DISTRIBUTION
APPENDIX A. MORE ON CPPI IN

THE PRESENCE OF JUMPS

44



B
Pricing of the European put
option with Lévy-exponential

underlying process

W
ith an aim of enabling modelling of the OBPI portfolio in the context of
a risky asset that follows an exponential Lévy dynamic, the price of the
European put option subject to such underlying dynamics needs to be
estimated.

In the following calculations the volatility of the underlying is assumed to be constant
and equal to σ. The price of the risky asset at time t is denoted by St. In this notation,
the pay-off function of a European put option with maturity T and strike K is G(ST ) =
(K − ST )+. The following proposition may then be formulated [14]

Proposition B.1. If g(x) = G(ex) denotes the log pay-off function on a European option
and there exists R 6= 0 such that

(1) g(x)e−Rx has finite variation on R,

(2) g(x)e−Rx ∈ L1(R),

(3) E[eRZT−t ] <∞ and
∫
R
|ΦT−t(u− iR)|

1 + |u|
du <∞,

where Z is the exponential Lévy process and Φ is its characteristic function, then the
price at time t of the European put option satisfies

P (t,St) =
e−r(T−t)

2π

∫
R
ĝ(u+ iR)ΦT−t(−u− iR)(S0

t )R−iudu, (B.1)

where ĝ(u) =
∫
R e

iuxg(x)dx, S0
t = er(T−t)St, and r is the, assumed constant, interest

rate.
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One may immediately note that the log payoff function under consideration, g(x) =
(K− ex), satisfies the conditions (1) and (2) for any value of R ∈ R. Furthermore, if the
assumption R < 0 is made, the following is obtained

ĝ(u+ iR) =

∫
R
eix(u+iR)(K − ex)+dx =

∫ log(K)

−∞
eix(u+iR)(K − ex)dx (B.2)

=
K1+iu−R

(iu−R)(iu+ 1−R)
=

elog(K)(1+iu−R)

(iu−R)(iu+ 1−R)
.

Moreover, one may write

(S0
t )R−iu = SR−iut er(T−t)(R−iu) = Ste

r(T−t)e−r(T−t)(iu+1−R)S
−(1+iu−R)
t (B.3)

= Ste
r(T−t) exp(− log(St)− r(T − t)(1 + iu−R)).

By substituting the results of Equations (B.2) and (B.3) into the option price formula
(B.1), the following is obtained

P (t,St) =
St
2π

∫
R
e(log(k/St)−r(T−t))(iu+1−R) ΦT−t(−u− iR)

(R− iu)(R− 1− iu)
du (B.4)

= Ste
kf (1−R) 1

2π

∫
R
eiuk

f
Ψ(u)du,

where Ψ(u) :=
ΦT−t(−u− iR)

(R− iu)(R− 1− iu)
and kf = log(K/St) − r(T − t) is the log-forward

moneyness.

At this point, all that remains to do is to find an explicit expression for the character-
istic function Φt(u). The type of underlying dynamic under consideration is one of the

form Zt = µt+ σWt +Xt, where Xt =
N∑
i=1

Yi is a compound Poisson process. Therefore,

the following proposition may be utilized:

Proposition B.1. Suppose X is a compound Poisson process with jump intensity λ and
jump size distribution nu0, then its characteristic function is

E[eiuXt ] = exp(tλ

∫
R

(eiux − 1)ν0(dx)) (B.5)

As ν0 is absolutely continuous with respect to the Lebesque measure with density
ν0(dx) = (pη+e

−η+x1x>0 + (1− p)η−e−η−|x|1x<0)dx, it is possible to compute Φt(u) as

Φt(u) = E[eiuZt ] = E[e
iu(µt+σwt+

Nt∑
i=1

Yi)
] = exp(iuµt− 1

2
σ2u2t+ tλ

∫
R

(eiux − 1)ν0(dx))

= exp

(
iuµt− 1

2
σ2u2t+ tλ(

pη+

η+ − iu
+

(1− p)η−
η− + iu

− 1)

)
.
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If, in particular, η+ < η− then R =
η+ − η−

2
< 0 may be chosen. With this R it is easily

seen that the second part of condition (3) of Proposition B.1 is fulfilled. It therefore
only remains to verify the first part of the condition (3), which is the integrability of
E[eRZT−t]:

E[eRZT−t] = E[e
Rµt+RσWt+

Nt∑
i=1

RYi
] = eµRtE[eσR

√
tN(0,1)]E[e

Nt∑
i=1

RYi
].

As the first two terms are clearly bounded, only the last term needs to be further
investigated:

E[e

Nt∑
i=1

RYi
] = E[

∑
n∈N

1Nt=ne

Nt∑
i=1

RYi
] =

∑
n∈N

E[1Nt=ne

Nt∑
i=1

RYi
]

=
∑
n∈N

P (Nt = n)(E[eRY1 ])n < +∞,

where the last inequality holds because Nt is a Poisson random variable and E[eRY1 ] <
+∞.
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C
Goodness of fit of the Kou model

calibration

G
oodness of fit is illustrated through plots of the densities of the data over
plots of the densities of simulation results obtained from the models, using the
calibrated parameters. The time series for which goodness of fit is illustrated
are: NIKKEI225 index, SNP500 index, BMW stocks, and AZN stocks, each

over ten, three and one years spanning backwards from November 30, 2014. The graphs
corresponding to the indices and stocks may be found in Figure C.1 and Figure C.2,
respectively.
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(a) 10 years of NIKKEI225 index data.
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(b) 10 years of SNP500 index data.
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(c) Three years of NIKKEI225 index data.
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(d) Three years of SNP500 index data.
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(e) One year of NIKKEI225 index data.
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(f) One year of SNP500 index data.

Figure C.1: Logarithm of the densities corresponding to ten, three and one years of
NIKKEI225 and SNP500 index time series. Solid lines: Kernel density estimator applied
directly on data. Dashed lines: Kou model simulations with parameters estimated via
empirical characteristic exponent. All data used spans backwards from 30 November, 2014.
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(a) 10 years of BMW stock data.
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(b) 10 years of AZN stock data.
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(c) Three years of BMW stock data.
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(d) Three years of AZN stock data.
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(e) One year of BMW stock data.
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(f) One year of AZN stock data.

Figure C.2: Logarithm of the densities corresponding to ten, three and one years of BMW
and AZN stock time series. Solid lines: Kernel density estimator applied directly on data.
Dashed lines: Kou model simulations with parameters estimated via empirical characteristic
exponent. All data used spans backwards from 30 November, 2014.
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D
MATLAB code

N
umerical implementations of both calibration and simulation were done in
the technical computing language MATLAB. Minor variations to the code were
made during it’s use, to cover different special cases or parameter inputs. The
output of the calibration code was manually inserted into the simulation code.

The first line of each file is a comment containing the file name used.

D.1 Calibration code

The code used in calibrating the models is the following:

1 % FILE : parameter estmat ion .m
2

3 c l e a r
4 c l c
5

6 %% I n i t i a l guess , parameters and data are de f ined
7

8 % NOTE: mu = theta (1 ) ; sigma = theta (2 ) ; lambda = theta (3 ) ; p =
theta (4 ) ;

9 % etaPlus = theta (5 ) ; etaMinus = theta (6 ) ;
10

11 di sp ( ’The i n i t i a l guess f o r the parameter vecor i s ( [mu sigma
lambda p etaPlus etaMinus ] ) ’ ) ;

12 theta0 = [ 0 . 2 5 0 .2 50 0 .5 0 .05 0 . 0 5 ] % I n i t a l guess f o r theta
13 K = 60 ; % +/− K i s the upper/ lower i n t e g r a t i o n bound , as by

Cont & Tankov
14 gap ha l fwidth = 0 . 0 2 ; % Half−width o f gap around 0 in the

i n t e g r a t i o n i n t e r v a l
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15

16 s t o c k p r i c e s = csvread ( ’ Data/AZN/AZN. csv ’ ,2267 ,0) ; % csvread
i n d i c e s s t a r t at 0

17 p e r i o d l e n g t h = round ( l ength ( s t o c k p r i c e s ) /252) ; % No . o f years
over which the data s t r e t c h e s

18 t i m e r e s o l u t i o n = p e r i o d l e n g t h / l ength ( s t o c k p r i c e s ) ; % Average
no . o f t rad ing days per year in the data

19

20 % The log returns , i . e . the X k : s , are c a l c u l a t e d
21 l o g r e t u r n s = ze ro s ( l ength ( s t o c k p r i c e s ) −1 ,1) ;
22 f o r i =1:( l ength ( s t o c k p r i c e s )−1)
23 l o g r e t u r n s ( i ) = log ( s t o c k p r i c e s ( i +1 ,1)/ s t o c k p r i c e s ( i , 1 ) )

;
24 end
25 s i gma sta r = std ( l o g r e t u r n s ) ; % Standard dev i a t i on o f the log

r e tu rn s
26

27 %% The d i s t anc e i n t e g r a l i s de f i ned as a func t i on o f theta
28 in tegrand = @(u , theta ) abs ( c h a r a c t e r i s t i c e x p o n e n t (u , theta )

. . .
29 − e m p i r i c a l c h a r a c t e r i s t i c e x p o n e n t (u , l o g r e tu rn s ,

t i m e r e s o l u t i o n ) ) . ˆ2 . . .
30 .∗ weight (u , s i gma sta r ) ;
31 d i s t anc e = @( theta ) i n t e g r a l (@(u) integrand (u , theta ) ,−K, −

gap ha l fwidth ) . . .
32 + i n t e g r a l (@(u) integrand (u , theta ) , gap hal fwidth , K) ;
33

34 %% An opt imiza t i on rou t ine i s used to f i n d the minimizing theta
35 opt ions = optimset ( ’ MaxFunEvals ’ , 100000 , ’ MaxIter ’ ,100000 , ’

TolX ’ , 1e−6) ;
36 lb=[− I n f 0 0 0 0 0 ] ;
37 ub=[ I n f I n f I n f 1 I n f 0 . 9 9 9 9 ] ;
38 di sp ( ’The CONSTRAINED c a l i b r a t i o n r e s u l t i s ( [mu sigma lambda p

etaPlus etaMinus ] ) ’ ) ;
39 t h e t a c a l c o n s t = fmincon ( d i s tance , theta0 , [ ] , [ ] , [ ] , [ ] , lb , ub ,

[ ] , opt ions )
40

41 di sp ( ’The c a l i b r a t i o n r e s u l t i s ( [mu sigma lambda p etaPlus
etaMinus ] ) ’ ) ;

42 t h e t a c a l = fminsearch ( d i s tance , theta0 , opt ions )
43

44 %% The f i t i s gauged by comparison to the ke rne l dens i ty
es t imate
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45 [ f data , x i data , bw data ] =ksdens i ty ( l o g r e tu rn s , ’ width ’ ,
0 . 012 ) ;

46

47 addpath . . / S imule r ingar
48 theta s im = t h e t a c a l ;
49 s i m u l r a t i o =1; % The s imu la t i on s i z e i s s i m u l r a t i o t imes the

data s i z e
50 s i m u l a t e d l o g r e t u r n s = d i f f ( l evy (1 , l ength ( l o g r e t u r n s ) ∗

s im u l r a t i o , . . .
51 p e r i o d l e n g t h ∗ s im u l r a t i o , theta s im (1) , theta s im (2) ,

theta s im (3) , . . .
52 theta s im (4) , theta s im (5) , theta s im (6) ) ) ;
53 rmpath . . / S imule r ingar
54

55 [ f s imu l , x i s imul , bw simul ] =ksdens i ty ( s imu la t ed l og r e tu rn s ,
’ width ’ , 0 . 012 ) ;

56

57 f i g s 2 k e e p = [ ] ; % The numbers o f the f i g u r e s to be kept
58 a l l f i g s = f i n d o b j (0 , ’ type ’ , ’ f i g u r e ’ ) ;
59 d e l e t e ( s e t d i f f ( a l l f i g s , f i g s 2 k e e p ) ) ;
60

61 f i g u r e (1 )
62 p lo t ( x i data , l og ( f da ta ) , ’b ’ , x i s imul , l og ( f s i m u l ) , ’−−r ’ , ’

LineWidth ’ , 1 . 2 ) ;
63 l egend ( ’ Kernel e s t imator ’ , ’Kou model ’ ) ;

1 % FILE : c h a r a c t e r i s t i c e x p o n e n t .m
2

3 f unc t i on [ p s i t h e t a ] = c h a r a c t e r i s t i c e x p o n e n t ( u , theta )
4 % CHARACTERISTIC EXPONENT Returns the value o f the
5 % c h a r a c t e r i s t i c exponent o f the Kou model f o r s p e c i f i c u and a

s p e c i f i c
6 % s e t o f model parameters theta , as by P. Tankov
7

8 u = reshape (u , 1 , l ength (u) ) ; % Reshape u in to a row vecto r
9 b = theta (1 ) ; sigma = theta (2 ) ; lambda = theta (3 ) ; p = theta (4 )

;
10 etaPlus = theta (5 ) ; etaMinus = theta (6 ) ;
11

12 p s i t h e t a = −sigma ˆ2∗u . ˆ 2 . / 2 + 1 i ∗b∗u + lambda∗p./(1+1 i ∗u∗
etaMinus ) . . .

13 + lambda∗(1−p) ./(1−1 i ∗u∗ etaPlus ) − lambda ; % A row vecto r
14 end
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1 % FILE : e m p i r i c a l c h a r a c t e r i s t i c e x p o n e n t .m
2

3 f unc t i on [ p s i h a t ] = e m p i r i c a l c h a r a c t e r i s t i c e x p o n e n t ( u ,
l o g r e tu rn s , t i m e r e s o l u t i o n )

4 % EMPIRICAL CHARACTERISTIC EXPONENT Returns the value o f the
e m p i r i c a l c h a r a c t e r i s t i c

5 % exponent f o r s p e c i f i c u , based on a s e t o f l og r e tu rn s with
6 % time−r e s o u l t i o n in the un i t 1 year ( f o r d a i l y r e tu rn s

t i m e r e s o l u t i o n i s
7 % approximately 1/252)
8

9 u = reshape (u , 1 , l ength (u) ) ; % Reshape u in to a row vecto r
10 l o g r e t u r n s = reshape ( l o g r e tu rn s , l ength ( l o g r e t u r n s ) ,1 ) ; %

Ditto
11

12 p s i h a t = 1/ t i m e r e s o l u t i o n ∗ l og (mean( exp (1 i ∗ l o g r e t u r n s ∗u) ) ) ; %
A row vecto r

13 end

1 % FILE : weight .m
2

3 f unc t i on [ w ] = weight ( u , s i gma sta r )
4 % WEIGHT Returns the value o f the weight func ion f o r s p e c i f i c u
5 % and s igma sta r
6

7 u = reshape (u , 1 , l ength (u) ) ; % Reshape u in to a row vecto r
8

9 w = exp(− s i gma sta r ˆ2∗u . ˆ 2 ) ./(1− exp(− s i gma sta r ˆ2∗u . ˆ 2 ) ) ; % A
row vec to r

10 end

1 % FILE : o u c a l i b r a t e m l .m
2

3 f unc t i on [mu, sigma , lambda ] = OU Calibrate ML (S , d e l t a )
4 n = length (S)−1;
5

6 Sx = sum( S ( 1 : end−1) ) ;
7 Sy = sum( S ( 2 : end ) ) ;
8 Sxx = sum( S ( 1 : end−1) . ˆ2 ) ;
9 Sxy = sum( S ( 1 : end−1) .∗S ( 2 : end ) ) ;

10 Syy = sum( S ( 2 : end ) . ˆ2 ) ;
11

12 mu = ( Sy∗Sxx − Sx∗Sxy ) / ( n∗( Sxx − Sxy ) − ( Sxˆ2 − Sx∗Sy ) ) ;
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13 lambda = −l og ( ( Sxy − mu∗Sx − mu∗Sy + n∗muˆ2) / ( Sxx −2∗mu∗Sx
+ n∗muˆ2) ) / d e l t a ;

14 a = exp(−lambda∗ d e l t a ) ;
15 sigmah2 = ( Syy − 2∗a∗Sxy + aˆ2∗Sxx − 2∗mu∗(1−a ) ∗( Sy − a∗Sx ) +

n∗muˆ2∗(1−a ) ˆ2) /n ;
16 sigma = s q r t ( sigmah2 ∗2∗ lambda/(1−a ˆ2) ) ;
17 end

D.2 Simulation code

The code used in creating the simulations is the following:

1 % FILE : main .m
2

3 c l e a r
4 c l c
5

6 f i g s 2 k e e p = [ ] ;
7 a l l f i g s = f i n d o b j (0 , ’ type ’ , ’ f i g u r e ’ ) ;
8 d e l e t e ( s e t d i f f ( a l l f i g s , f i g s 2 k e e p ) ) ;
9

10 %% Model parameters are s e t up
11

12 T = 5 ;
13 di sp ( ’The Kou model parameters used are ( [mu sigma lambda p

etaPlus etaMinus ] ) ’ ) ;
14 param vec = [−0.473 0 .245 99 .9 0 .230 0 .0153 0 . 0 2 5 6 ] %

Cal ibrated parameters
15 lambda = param vec (3 ) ; p = param vec (4 ) ; e t a p l u s = param vec

(5 ) ; eta minus = param vec (6 ) ;
16 i n i t i a l s i g m a = param vec (2 ) ; average s igma = param vec (2 ) ;
17 mu = param vec (1 ) ;
18

19 k = 20 ; d e l t a = 0 . 9 ;
20 s0 = 1 ; % i n i t i a l s tock p r i c e
21 m0 = 3 . 5 ; % i n i t i a l m u l t i p l i e r o f the cushion
22 m f ina l = 3 . 5 ; % f i n a l m u l t i b l i e r in parameter sweep
23 d e l l = 0 . 1 ; % Fine−ness o f m u l t i p l i e r parameter sweep
24 G = 0 . 8 5 ; % guaranteed amount
25 v o l a t i l i t y r = 0 . 0 2 ; % v o l a t i l i t y o f the r i s k l e s s i n t e r e s t

r a t e p roce s s
26 r0 = 0 . 0 2 ; % i n i t i a l r i s k l e s s i n t e r e s t ra t e
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27 a = 2 ; b = 0 . 0 4 ; % parameters o f the Ornstein−Uhlenbeck
i n t e r e s t ra t e model

28 M = 50000; % number o f Monte Carlo i t e r a t i o n s
29 V0 = 1 ; % i n i t i a l va lue o f the p o r t f o l i o
30 R = −0.3; % R<0 i s the parameter o f the opt ion

p r i c e formula
31

32 % The p a r t i t i o n o f the time−i n t e r v a l [ 0 ,T] i s de f in ed by N
p a r t i t i o n po in t s

33 N = 252∗T; % Daily adjustments
34 h = T/N;
35 t = 0 : h :T;
36

37 %% V o l a t i l i t y sur face , Levy proce s s r e a l i s a t i o n s , s t o ckpr i c e− ,
r i s k l e s s i n t e r e s t rate− and bond p r i c e e v o l u t i o n s are

generated
38

39 % A v o l a t i l i t y s u r f a c e i s generated
40 sigma = s i gma f c t ( M, N, T, k , i n i t i a l s i g m a , average sigma ,

d e l t a ) ;
41

42 % Levy proce s s r e a l i s a t i o n s are c rea ted accord ing to the Kou
model

43 Z = levy ( M, N, T, mu, average sigma , lambda , p , e ta p lus ,
eta minus ) ; %sigma in s t ead o f avg

44

45 % Stock p r i c e e v o l u t i o n s are computed ( f o r g r a p h i c a l
r e p r e s e n t a t i o n and OBPI)

46 s t o c k p r i c e = ze ro s (M, N+1) ;
47 s t o c k p r i c e ( : , 1 ) = s0 ;
48 f o r i =2:N+1
49 s t o c k p r i c e ( : , i ) = s t o c k p r i c e ( : , i −1) + . . .
50 s t o c k p r i c e ( : , i −1) . ∗ ( Z ( : , i )−Z ( : , i −1) ) ; %F i r s t order

Taylor expansion ?
51 end
52

53 % R e a l i s a t i o n s o f the evo lu t i on o f the r i s k l e s s i n t e r e s t r a t e
and the bond

54 % p r i c e are generated
55 [ r , bond ] = bond pr ice ( M, a , b , v o l a t i l i t y r , N, T, r0 ) ;
56

57 %% CPPI STRATEGY
58
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59 L = length (m0: d e l l : m f ina l ) ;
60

61 mean CPPI = ze ro s (1 ,L) ;
62 std deviat ion CPPI = ze ro s (1 ,L) ;
63 de fau l t rate CPPI = ze ro s (1 ,L) ;% Fract ion o f CPPI p o r t f o l i o s

d e f a u l t i n g
64 a v e r a g e l o s s = ze ro s (1 ,L) ; % Average l o s s
65 c o n d i t i o n a l a v e r a g e l o s s = ze ro s (1 ,L) ; % Average l o s s

c o n d i t i o n a l on that a l o s s happens
66

67

68 f o r j =1:L
69

70 m = m0+(j−1)∗ d e l l ;
71 % The cushion m u l t i p l i e r i s est imated
72 m = m∗ ones (1 ,N) ; % r e a l (m0∗ sigma/ i n i t i a l s i g m a ) .ˆ( −0 .17) ;
73

74 % Further , the evo lu t i on o f the CPPI p o r t f o l i o va lue i s
computed

75 V = ze ro s (M, N+1) ;
76 ze r = ze ro s (M, 1) ;
77 V( : , 1 ) = V0 ;
78 r i sky inve s tment = ze ro s (M, N+1) ;
79 f o r i =2:N+1
80 r i sky inve s tment ( : , i ) = min (max( zer , m( : , i −1) .∗ r e a l ( V

( : , i −1) . . .
81 −G∗bond ( : , i −1) ) ) , r e a l (V( : , i −1) ) ) ;
82 V( : , i ) = V( : , i −1) + r i sky inve s tment ( : , i ) . ∗ ( Z ( : , i )−Z ( : ,

i −1) ) . . .
83 + ( ( bond ( : , i )−bond ( : , i −1) ) . / bond ( : , i −1) ) . ∗ (V( : , i −1)

−r i sky inve s tment ( : , i ) ) ;
84 end
85

86 i f m0==m f ina l
87 f i g u r e (1 )
88 p lo t ( t , V, ’b ’ , t , s t o ckpr i c e , ’ r ’ , t , G∗ ones (1 ,N+1) , ’ k ’ ,

’ LineWidth ’ , 1 . 2 ) ;
89 l egend ( ’CPPI p o r t f o l i o va lue ’ , ’ Stock p r i c e ’ , ’ F loor ’ ) ;
90 x l a b e l ( ’Time ( years ) ’ ) ;
91 y l a b e l ( ’ Stock p r i c e / P o r t f o l i o Value ’ ) ;
92 t i t l e ( ’CPPI on BMW−c a l i b r a t e d s imulated stock data ’ ) ;
93 end
94
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95

96 % Fina l ly , some metr i c s o f performace are c a l c u l a t e d
97 mean CPPI( j ) = mean(V( : , N+1) ) % Mean f i n a l p o r t f o l i o va lue

f o r the CPPI s t r a t e g y
98 std deviat ion CPPI ( j ) = std (V( : ,N+1) ) ; % Standard dev i a t i on

o f f i n a l p o r t f o l i o va lue
99 [ rr , cc , vv ] = f i n d (V( : ,N+1)<G−0.0000005) ; % Finding

d e f a u l t i n g p r o t f o l i o s
100 de fau l t rate CPPI ( j ) = length ( vv ) /M % Fract ion o f CPPI

p o r t f o l i o s d e f a u l t i n g
101 vv = V( rr ,N+1) ; % Values o f d e f a u l t i n g p o r t f o l i o s
102 c o n d i t i o n a l a v e r a g e l o s s ( j ) = mean(G−vv ) ; % Average l o s s

c o n d i t i o n a l on that a l o s s happens
103 a v e r a g e l o s s ( j ) = mean(G−vv ) ∗ l ength ( vv ) /M; % Average l o s s
104 end
105

106 i f m0˜=m f ina l
107 f i g u r e (1 )
108 p lo t (m0: d e l l : m f ina l , de fault rate CPPI , ’ LineWidth ’ , 1 . 2 )
109 g r id on
110 x l a b e l ( ’ M u l t i p l i e r ’ ) ;
111 y l a b e l ( ’ P ro ba b i l i t y o f l o s s ’ ) ;
112 s e t ( gca , ’ XMinorTick ’ , ’ on ’ , ’ YMinorTick ’ , ’ on ’ )
113

114 f i g u r e (2 )
115 p lo t (m0: d e l l : m f ina l , ave rage l o s s , ’ LineWidth ’ , 1 . 2 )
116 g r id on
117 x l a b e l ( ’ M u l t i p l i e r ’ ) ;
118 y l a b e l ( ’ Average l o s s ’ ) ;
119 s e t ( gca , ’ XMinorTick ’ , ’ on ’ , ’ YMinorTick ’ , ’ on ’ )
120

121 f i g u r e (3 )
122 p lo t (m0: d e l l : m f ina l , c o n d i t i o n a l a v e r a g e l o s s , ’ LineWidth ’

, 1 . 2 )
123 g r id on
124 x l a b e l ( ’ M u l t i p l i e r ’ ) ;
125 y l a b e l ( ’ Cond i t iona l average l o s s ’ ) ;
126 s e t ( gca , ’ XMinorTick ’ , ’ on ’ , ’ YMinorTick ’ , ’ on ’ )
127 end
128

129 %% OBPI STRATEGY
130

131 % The p r i c e o f the European put opt ion i s c a l c u l a t e d
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132

133 % The i n i t i a l investments o f the OBPI p o r t f o l i o
134 investment stocks OBPI = (V0−G∗exp(−r0 ∗T) ) ∗m0; % Amount o f

money inve s t ed in s to ck s
135 number stocks OBPI = investment stocks OBPI / s0 ; % Total number

o f s t o ck s ( t h i s number i s f i n a l )
136 number bonds OBPI = (1 − number stocks OBPI∗ s0 ) ∗exp ( r0 ∗T) ; %

This i s s imply
137 % the i n i t i a l number o f bonds ; the f i n a l number depends on

the put , and i s c a l c u l a t e d below
138

139 %I f the number o f zero−coupon bonds i s sma l l e r than the
guaranteed amount ,

140 %then the d i f f e r e n c e i s used to buy puts
141 i f number bonds OBPI<G
142 fun = @( x ) pu t p r i c e (T, G−x , R, r0 , investment stocks OBPI ,

lambda , . . .
143 p , e ta p lus , eta minus , average s igma , mu) + x∗exp(−r0 ∗

T) . . .
144 + investment stocks OBPI − V0 ;
145 c0 = 0 ;
146 number bonds OBPI = f z e r o ( fun , c0 ) ;
147 end
148

149 % The f i n a l va lue o f the OBPI p o r t f o l i o i s c a l c u l a t e d
150 value OBPI = r e a l ( number stocks OBPI∗ s t o c k p r i c e + ones ( s i z e (

s t o ckpr i c e , 1 ) ,1 ) ∗number bonds OBPI∗exp(−r0 ∗(T−t ) ) +
pu t p r i c e (T−t , G−number bonds OBPI , R, r0 ,
number stocks OBPI∗ s t o ckpr i c e , lambda , . . .

151 p , e ta p lus , eta minus , average s igma , mu) ) ;
152 f i g u r e (2 )
153 p lo t ( t , value OBPI , ’b ’ , t , s t o ckpr i c e , ’ r ’ , t , G∗ ones (1 ,N+1) , ’ k ’ ,

’ LineWidth ’ , 1 . 2 ) ;
154 l egend ( ’OBPI p o r t f o l i o va lue ’ , ’ Stock p r i c e ’ , ’ F loor ’ ) ;
155 x l a b e l ( ’Time ( years ) ’ ) ;
156 y l a b e l ( ’ Stock p r i c e / P o r t f o l i o Value ’ ) ;
157 t i t l e ( ’OBPI on BMW−c a l i b r a t e d s imulated stock data ’ ) ;
158

159 pp = p ut p r i c e (T−t , 0 . 7 , R, r0 , s t o ckpr i c e , lambda , . . .
160 p , e ta p lus , eta minus , average s igma , mu) ;
161

162 f i g u r e (3 )
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163 p lo t ( t , pp , t , s t o ckpr i c e , t , 0 .75∗ ones (1 ,N+1) , ’ k ’ , ’ LineWidth ’ ,
1 . 2 ) ;

164 l egend ( ’ Put p r i c e ’ , ’ Stock p r i c e ’ , ’ S t i k e ’ ) ;
165 x l a b e l ( ’Time ( years ) ’ ) ;
166 y l a b e l ( ’ Put/ Stock p r i c e ’ ) ;
167 t i t l e ( ’ ’ ) ;
168

169

170 %Fina l ly , some metr i c s o f performace are c a l c u l a t e d
171 mean OBPI = mean( value OBPI ( : ,N+1) ) ; %Mean f i n a l p o r t f o l i o

va lue f o r the OBPI s t r a t e g y
172 std deviat ion OBPI = std ( value OBPI ( : ,N+1) ) ;%/ s q r t (T) ; %

Standard dev i a t i on o f f i n a l va lue

1 % FILE : l evy .m
2

3 f unc t i on [ Z ] = levy ( M, N, T, mu, sigma , lambda , p , e ta p lus ,
eta minus )

4 % LEVY This func t i on r e tu rn s M r e a l i z a t i o n s , as the matrix Z ,
o f a Levy

5 % proce s s generated accord ing to the Kou model with the g iven
parameters

6

7 % This Levy proce s s i s the sum of the d e t e r m i n i s t i c trend mu∗ t ,
Brownian

8 % part sigma∗B t , and jump part sum( Y i , 1 , N t )
9

10 Z = ze ro s (M, N+1) ; Z ( : , 1) = 0 ; h = T/N; t = ( 0 : h :T) ;
11

12 % F i r s t the Brownian part i s generated
13 brown = abs ( sigma ) .∗ normrnd (0 ,1 ,M,N+1) ∗ s q r t (h) ;
14

15 % Second the jump prat i s generated
16 jump = ze ro s (M, N+1) ;
17 poi = po i s s rnd ( lambda∗h ,M,N) ; % poi ( i , j ) i s number o f jumps

that occur
18 % with in the t imespace ( j−1)∗h to j ∗h f o r the i : th p roce s s

r e a l i z a t i o n
19 f o r i =1:M
20 f o r j =2:N+1
21 f o r k=1: po i ( i , j−1)
22 i f rand>p
23 jump( i , j ) = jump( i , j ) − l og ( rand ) ∗ e t a p l u s ;
24 e l s e
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25 jump( i , j ) = jump( i , j ) + log ( rand ) ∗ eta minus ;
26 end
27 end
28 end
29 end
30

31 % F i n a l l y the trend i s added , and the wanted proce s s
r e a l i z a t i o n c rea ted

32 f o r i =2:N+1
33 Z ( : , i ) = Z ( : , i −1) + max(−0.99 , mu∗h + brown ( : , i ) + jump ( : , i

) ) ;
34 % The max(−0.99 , ) r e s t r i c t i o n i s app l i ed to ensure (

s t r i c t l y ) p o s i t i v e
35 % a s s e t p r i c e s
36 end
37 end

1 % FILE : bond pr ice .m
2

3 f unc t i on [ r , bond ] = bond pr ice ( M, a , b , sigma , N, T, r0 )
4 %BOND PRICE This func t i on c a l c u l a t e s the evo lu t i on o f the

r i s k l e s s i n t e r e s t ra t e and
5 %the bond p r i c e . I t i s assumed that the i n t e r e s t r a t e f o l l o w s

the Ornste in
6 %Uhlenbeck proce s s with v o l a t i l i t y sigma
7

8 r = ze ro s (M, N+1) ;
9 bond = ze ro s (M, N+1) ;

10 h = T/N;
11

12 %The i n i t i a l va lue s o f the i n t e r e s t r a t e and bond p r i c e are s e t
13 r ( : , 1 ) = r0 ;
14 bond ( : , 1 ) = exp(−r0 ∗T) ;
15

16 %In order to avoid d i s c r e t i z a t i o n e r ro r s , the c l o s e d form
s o l u t i o n s f o r the

17 %i n t e r e s t ra t e and bond p r i c e are used
18 i n t e g r = s q r t ( i n t e g r a l (@( s ) exp (2∗ a∗ s ) , 0 , h ) ) ;
19 f o r i =2:N+1
20 r ( : , i ) = r ( : , i −1)∗exp(−a∗h) + b∗(1−exp(−a∗h) ) + sigma∗exp(−

a∗h) ∗ i n t e g r ∗normrnd (0 ,1 ,M, 1 ) ;
21 bond ( : , i ) = exp(−b∗(T−( i −1)∗h) + (b−r ( : , i ) )∗(1−exp(−a ∗(T−( i

−1)∗h) ) ) /a . . .
22 − ( sigma ˆ2/(4∗ a ˆ3) )∗(1−exp(−a ∗(T−( i −1)∗h) ) ) ˆ2 . . .
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23 + ( sigma ˆ2/(2∗ a ˆ2) ) ∗(T−( i −1)∗h−(1−exp(−a ∗(T−( i −1)∗h) ) ) /
a ) ) ;

24 end
25 end

1 % FILE : s i gma f c t .m
2

3 f unc t i on [ sigma ] = s i gma f c t ( M, N, T, k , i n i t i a l s i g m a ,
average sigma , d e l t a )

4 %SIGMA FCT This func t i on r e tu rn s M r e a l i s a t i o n s , as the matrix
sigma , o f a

5 %s t o c h a s t i c v o l a t i l i t y p roce s s with the g iven parameters
6

7 sigma = ze ro s (M, N+1) ;
8 sigma ( : , 1 ) = i n i t i a l s i g m a ;
9 h=T/N;

10 brownian increments = s q r t (h) ∗normrnd (0 ,1 ,M,N) ;
11 f o r i =2:N+1
12 sigma ( : , i ) = sigma ( : , i −1) + k∗( average s igma − sigma ( : , i −1) )

∗h + d e l t a ∗ s q r t ( sigma ( : , i −1) ) .∗ brownian increments ( : , i −1)
;

13 end
14 end

1 % FILE : p u t p r i c e .m
2

3 f unc t i on x = p ut p r i c e (T, K, R, r0 , s t o ckpr i c e , lambda , p ,
e ta p lus , eta minus , sigma , mu)

4 % PUT PRICE Ca l cu l a t e s the p r i c e o f a European put opt ion with
time to maturity

5 % T and s t r i k e K, g iven the i n t i a l s tock p r i c e and that the
p r i c e dynamic

6 % f o l l o w s the exponent ia l Levy proce s s
7

8 T mat = ones ( s i z e ( s t o ckpr i c e , 1 ) , 1 ) ∗T;
9 kf=log (K. / s t o c k p r i c e )−r0 .∗T mat ; % log−forward moneyness

10

11 % The integrand func t i on i s de f ined as per Appendix B
12 u1 = @( x ) x − 1 i ∗R;
13 in tegrand = @(u) exp (1 i .∗u .∗ kf + 1 i .∗ u1 (u) .∗T mat .∗mu−0.5∗ sigma

ˆ2 ∗ u1 (u) .ˆ2∗T mat + . . .
14 T mat∗ lambda ∗(p ./(1+1 i ∗u1 (u) ∗ eta minus ) + (1−p) ./(1−1 i ∗u1 (u

) ∗ e t a p l u s )−1) ) . / ( (R−1 i ∗u) . ∗ (R−1−1 i ∗u) ) ;
15

64



D.2. SIMULATION CODE APPENDIX D. MATLAB CODE

16 % Fina l ly , the i n t e g r a t i o n i s c a r r i e d out
17 x = s t o c k p r i c e .∗ exp ( k f .∗(1−R) ) .∗ r e a l ( i n t e g r a l ( integrand ,−50 ,

50 , ’ ArrayValued ’ , t rue ) ) /(2∗ pi ) ;
18 end
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