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Delve into Malware on Browsers
Finding related web content alterations between browser extensions
JOEL MORIANA BECERRA
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Providing the possibility of installing extensions has become a must-have feature for
all major browsers. Extensions allow users to enhance and customise the browser
functionalities by, for example, modifying the appearance of the web pages, providing
security suites or blocking ads.

In this work, we make a first step towards monitoring web content alterations
coming from extensions. In particular, we focus on the identification of relations
between the mutations performed by different extensions. The study is motivated
by the sequential and event-driven execution model running on web pages. That
model entails that browser extensions can react to web content alterations performed
by other extensions; hence, extensions have access to the data introduced by other
extensions.

We implement our prototype as a couple of logging extensions running on a mod-
ified version of Chromium. The approach relies on dynamic analysis of extensions
and a simulation of a user surfing the web. Our system is capable of automatically
detect web content alterations performed by extensions and identify the events that
triggered them.

We analyse the 150 most downloaded extensions from Chrome Web Store and
characterise the most common alterations as well as the events that cause those
mutations. Finally, although we did not detect direct relations between the exten-
sions analysed, we discuss the alterations identified and the implications of the actual
execution model.

Keywords: Web security, Browser extension, Web content alterations
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1
Introduction

Nowadays, all major browsers vendors include the possibility of installing extensions.
These small applications, which work within the browser session, provide additional
features and allow users to enhance and customise the browser. For instance, exten-
sions can modify the appearance of the browser, integrate web services or block ads.
Typically written in JavaScript, HTML and CSS, extensions are developed by third
parties and are not maintained by the browser vendor.

The advent of online stores to distribute extensions, such as Chrome Web Store
or Mozilla Add-ons have contributed to their popularisation. Apart from central re-
positories, extensions are also accessible from local marketplaces and in combination
with the installation of third-party software [16].

To perform their functionalities browser extensions have access to a privileged
API, acquiring a great degree of control over the browser. For example, extensions
can modify the web content through the Document Object Model (DOM), change
HTTP headers or interact with sensitive data.

In this context, the usage of browser extensions poses new challenges in terms of
security and privacy. Many malicious behaviours have been detected since the early
studies. Kapravelos et al. [16] discuss some of them: (1) ad injection or manipulation
to divert revenue from content publisher to the extension owner, (2) affiliate fraud to
monetize extensions by defrauding major merchants, (3) sensitive information theft,
or (4) online social network abuse.

Because the protection provided to the user is low, browser extensions have
become a major vector of attacks. That fact encourages the aim of this thesis to
study the extensions that can be installed on browsers from the security and privacy
point of view. With this in mind, this work is focused on the identification of relations
between the mutations performed into the web content by different extensions. To
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1. Introduction

address this problem, we propose a solution that automatically monitors the activity
of an extension and simulate its actions to find possible interactions.

1.1 Context
Recently, most browser vendors have been focused on the development of semi-
automated examinations to detect and eliminate malicious extensions from their
repositories, reporting quite good results [15]. These centralised examinations are
principally based on reputation scans of the publishers, static analyses of the code
base and dynamic analyses that emulate common tasks performed in browsers. Al-
though these approaches have been successful in identifying and removing many
kinds of illicit behaviours (e.g., Facebook hijacking, ad injection or affiliate frauds),
malicious code can be easily hidden during the short period of analysis time and go
unnoticed [13]. For example, malicious extensions can avoid being detected by these
analyses by adding constraints, such as time or location checks, to the execution of
their actions.

In this context, other approaches have been suggested. For instance, on the side-
client, Arshad et al. present OriginTracer [10], a fine-grained approach to reliably
determine the source of web content (i.e., identify ads injected by extensions). The
approach is based on a provenance study at the level of individual DOM elements
that in conjunction with visual indicators allow the user to distinguish publisher
content from content that has been originated by third parties.

Similarly, Kapravelos et al. [16] present Hulk, a dynamic analysis system that
detects malicious behaviour in browsers extensions by monitoring their execution
and corresponding network activity. Hulk creates a dynamic environment that sat-
isfies the needs of extensions to trigger all their functionalities and verify the clas-
sification. In the study 48,332 extensions were analysed (47,940 from Chrome Web
Store), reaching the following results: 130 malicious extensions, 4,712 suspicious ex-
tensions and 43,490 benign extensions.

It should be stated that not many investigations have been carried out in the
field. Nevertheless, some Android approaches can be extrapolated within the scope
of this thesis due to the similarities shared between the ecosystems of Android and
browsers (both are based on appified environments). In this context, Fratantonio
et al. [13] present TriggerScope, a pioneering prototype to detect sophisticated
malware based on triggered activation by studying the application logic. This type of
malware hides its malicious actions under certain (often narrow) conditions, making
it hard to trigger them during the analysis.

1.2 Problem Definition

Browser extensions perform web content modifications in a sequential manner [17]
by executing their activities in an event-driven environment (i.e., extensions are
subscribed to events that trigger their actions). For example, extensions may be
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Figure 1.1: Browser extension engine [17].

triggered by visiting a specific website, by user generated events (such as keyboard
or mouse events), or by modifications in the DOM structure among many others.

Figure 1.1 depicts an overview of the extension engine working in the web page
context when an event is triggered. Note that the first extension takes the raw HTML
from the browser, performs some actions, and passes the resulting HTML to the
second extension. Therefore, this execution model reveals that browser extensions
that execute later in the pipeline have access to all the information introduced by
their predecessors.

This sequential execution model, combined with the event-driven environment,
entails that an extension can react to DOM alterations performed by other exten-
sions. By way of illustration, imagine two extensions running on the same browser
session. Suppose that an Extension X removes ads from the web content and an
Extension Y carries out translation functionalities. However, when the Extension Y
detects that an ad has been removed from the web content, it modifies its “normal”
output to inject the ad again. This situation depicts a relation between both ex-
tensions. As a result, an extension can perform its functionality correctly the major
part of the time but modify its output under certain circumstances violating the
expectations of the user.

1.3 Aim

The aim of this Thesis is to investigate the existence of relations based on DOM
alterations between extensions running on the same browser. Particularly, we study
if the alterations performed into the web content by one extension triggers another
extension.
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1. Introduction

1.4 Method of Accomplishment
The proposed approach relies on dynamic execution of extensions and the monitoring
of their activities. Specifically, we log the web content (i.e., HTML content) both
before and after the extension executes. By retrieving the content modifications in
the web pages, we can reliably determine relations between extensions.

The approach is carried out on Chromium, the open-source version of Google
Chrome. This platform has been selected due to its popularisation (currently is the
most used browser [4]) and the number of extensions available in its repository.
Moreover, apart from being the base of Google Chrome, Chromium also provides
source code to Opera browser [5]. In particular, we use the version 56.0.2924.76 of
Chromium due to incompatibilities with newer versions of other packages needed
for the implementation.

1.5 Limitations

The number of extensions to be evaluated is the main limitation. To this day, more
than 140.000 extensions are available in Google Chrome repository [1]. Nevertheless,
we do not analyse all of them due to the high time needed to examine a single
extension. Specifically, we evaluate our solution against the 150 most downloaded
extensions from Chrome Web Store; however, the set of extensions to study can be
easily increased in future works.

1.6 Disposition
After this introduction, Chapter 2 introduces background information on Chrome
extensions; Chapter 3 gives an overview of the proposed approach; Chapter 4 de-
scribes the prototype implementation of our solution, and Chapter 5 shows the
experimental results. Finally, Chapter 6 presents the conclusions of this Thesis and
indicates the future work.
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2
Background

This chapter introduces background information on Chrome extensions presenting
the basics of extensions architecture and focusing on the event-driven execution
system.

2.1 Extension Architecture
Google Chrome extensions are composed of a set of JavaScript files, HTML files and
any other resource needed by the extension (e.g., CSS or image files). JavaScript files
contain the logic and the behaviour of the extension, while the HTML files define
the content of the extension pages. A small number of extensions also include native
binaries that can access the host machine with the user’s full privileges [11].

Apart from these files, each extension contains a mandatory manifest file in
which all the capabilities that the extension might use are indicated. The definition
of this file responds to the spirit of limiting the number of resources accessible to
the extension. For instance, extensions have to declare the set of chrome.* APIs
that use in the manifest permissions section to have access to them. Despite the
efforts to restrict the accessible resources, several investigations [11] [12] [14] claim
that extensions are usually over-privileged and therefore needlessly increasing ex-
ploitable vulnerabilities. Apart from permissions, the manifest file also gathers the
basic parameters of the extension, the list of resources that the browser should load
and the set of web pages in which the extension might run. A complete list of the
fields supported by the manifest file is gathered in the Manifest section of the Google
Chrome Extensions Developer guide [2]. Figure 2.1 shows an example of a manifest
file.

While building an extension, we have to differentiate between two contexts: (1)
the extension context, in which background and other pages (such as popups) live,
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2. Background

" manifest_version ": 2,
"name ": "My Extension ",
"icons ": { ... },
...
" permissions ": [

"tabs",
" webRequest ",
"<all_urls >"

],
" background ": {" scripts ": [" background .js"]},
" content_scripts ": [

{
" matches ": [" http ://*/*" , "https ://*/*"] ,
"js": [" jquery .js", " script .js"],
" run_at ": " document_start "

}
]
...

Figure 2.1: Example of a manifest file.

and (2) the web page context, where content scripts operate. The developer makes
use of the manifest file to indicate the context where each file has to be loaded (see
Figure 2.1). Note that in conjunction with the content script files a set of web hosts
(indicated as matches in the manifest file) has to be defined. In this way, content
scripts will be only loaded into the web pages that fulfil the declared hosts.

Regarding the functionality, each context provides a set of distinctive features.
On the one hand, background pages can access all the chrome.* APIs1 that allow
tight integration with the browser. On the other hand, content scripts are just like
the scripts loaded by web pages and can use all the APIs that the browser provides to
them (e.g., Standard JavaScript APIs, XMLHttpRequest, or HTML5) [3]. Although
background and content scripts are isolated worlds, they can communicate to each
other by exchanging messages through chrome.extension API. For instance, one
can use message passing to perform an activity in the web page context as a result
of an event occurred in the background. A typical use case consists in load scripts
into the web page as a result of the user clicking the extension’s icon. Figure 2.2
illustrates this architecture.

Both background and content scripts live in an event-driven environment (i.e., ex-
tensions performs activities in response to an event being dispatched). For instance,
extensions may be triggered by visiting a specific web page, by user generated events
(e.g., keyboard events), or by modifications in the DOM elements. Nevertheless, the
manner in which each context is managed by Chrome differs widely. In the following,
we present the peculiarities of both background and content scripts.

1https://developer.chrome.com/extensions/api_index
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Content Scripts
Extension Core

(background page 
and other pages)

WEB PAGE CONTEXT BROWSER CONTEXT

Message passing

Bo
un

da
ry

Page DOM
(Some methods of extension, i18n, runtime 

and storage chrome APIs are accessible)
*.chrome APIs

(tabs, downloads, management, etc.)

Figure 2.2: Extension architecture.
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Figure 2.3: Example of how an event object is handled in background pages when
three extensions are listening to it.

2.2 Background Pages

Background pages run in the thread of the extension, having each extension its
thread (i.e., the execution of an extension does not block the execution of other
extensions). Figure 2.3 shows background pages engine.

As stated above, background scripts can access to all the chrome.* APIs to
perform their functionalities. Most of the methods of these APIs are executed asyn-
chronous (i.e., they return immediately, without waiting for the operation to finish).
A callback function passed into the scope of the method is used to know the out-
come of the operation. Alternatively, other chrome.* methods are synchronous.
Synchronous methods do not return until the work is completely done and therefore
no callback function is required.

7



2. Background

2.3 Content Scripts
In contrast to background pages, content scripts live in the thread of the web page,
leading to a system in which only one block of code can be executed at a time. This
feature is inherited from JavaScript engine. JavaScript engine has a concurrency
model based on an event loop that is well known for having a single thread of
execution. The event loop is managed by a user agent, and it is principally composed
of (1) a call stack, (2) a set of task queues and (3) a microtask queue.

Call stack. The call stack is used to manage the execution of a block of code.
In Javascript, the call stack is composed of frames. When a function is called, a
frame, which encapsulates information about the called function (e.g., context and
local variables), is added to the stack. As a result of a frame being processed, other
frames may be added to the stack. The call stack works in a last-in-first-out model,
and therefore the active frame (i.e., the frame being executed) is always the last
which was added. When a frame is completely processed, the execution returns to
the exact point of the previous frame in which the new frame was created. This
process continues until the stack is empty.

Task queues. Tasks queues contain sets of functions to be executed. A task may
be the callback of a timer, the callback associated with an event, or I/O operations
among many others. JavaScript classifies tasks in different queues depending on
their sources. For example, the source may be DOM manipulation, user interaction
(e.g., mouse and keyboard events), or networking (i.e., tasks that trigger in response
to network activity) [8]. As a result, task priorities can be established but always
guarantying execution order within a source (task queues respond to a first-in-first-
out model). Due to the nature of the call stack, only a single task can be executed
at a time.

Microtask queue. Microtasks are tasks scheduled to happen in the most imme-
diate future (i.e., straight after the currently executing script) [6]. In contrast to
tasks, all the microtasks are collected in a single queue. Therefore, is not possible
to establish preferences between them and the execution system only responds to a
first-in-first-out model. The queued microtasks are executed as soon as the execu-
tion of the current task, if any, finishes. Until the microtask queue is not emptied
(i.e., all the queued microtasks have been executed, even those queued as a result
of the execution of other microtasks), the next task is not processed. For instance,
MutationObservers2 and Promises3 are microtasks.

The user agent of the event loop takes responsibility for coordinating the oper-
ations that are sent to the call stack. Apart from tasks and microtasks, the user
agent also schedules when the rendering task of the web page takes place. The loop-
ing process is infinitely working and looking for new tasks to execute. That process
is summarised in the next steps:

2https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver
3https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
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2. Background

while ( eventLoop . waitForTask ()) {
const taskQueue = eventLoop . selectTaskQueue ()
if ( taskQueue . hasNextTask ()) {

taskQueue . processNextTask ()
}

const microtaskQueue = eventLoop . microTaskQueue
while ( microtaskQueue . hasNextMicrotask ()) {

microtaskQueue . processNextMicrotask ()
}

if ( shouldRender ()) {
render ()

}
}

Figure 2.4: Event loop pseudocode [9]

1. When the call stack is empty, the user agent looks for a new task to execute. If
any, the task is chosen depending on source preferences and sent to the call stack.

2. Once the execution of the task has finished, the user agent looks for microtasks
to execute. In contrast to tasks, which are executed one by one in each loop, all
the microtasks queued are executed at this point.

3. If necessary, the user agent sends the rendering task to the call stack.

4. Jump to step 1.

A single iteration of this loop is called a tick. Figure 2.4 shows the pseudocode
of the event loop model.

In the scope of this work, we focus on the monitoring of three different kinds of
tasks: (1) the moment of injection of the script (i.e., the moment in which the script
is loaded into the web page), (2) event-based tasks (e.g., keyboard events) and (3)
timer-based tasks. Microtasks are left to be covered in future works.

2.3.1 Script Injection
Content scripts can be loaded in two different ways: (1) declaratively, indicating
the script file in the manifest of the extension, or (2) programmatically, using the
chrome.tabs.executeScript() method in the background page.

The way the developer uses to load the scripts establishes the time of injection.
On the one hand, when loading the script declaratively, the developer can control
the moment of injection through the run_at property (see Table 2.1). An example
illustrating the usage of this property is shown in Figure 2.1. On the other hand,
when the script is loaded programmatically, the developer can inject the scripts
from the background page at any time (e.g., as a result of an event triggered in the
background page).

9



2. Background

document_start The files are injected when the Document element
has been created but after any files from CSS is
loaded. Internally, Google Chrome loads the files
when DidCreateDocumentElement() is triggered.

document_end The files are injected just after DOM is com-
pleted but before any other subresource have
been loaded (e.g., images and frames). Intern-
ally, Google Chrome injects the scripts when
DidFinishDocumentLoad() is triggered.

document_idle The files can be injected just at the same time
as document_end or just after DOM is com-
pletely loaded (this includes subresources). The
moment of injection depends on the complexity
of the document and the necessary time to load
it. Internally, Google Chrome tries to inject the
files both when DidFinishDocumentLoad() and
DidFinishLoad() are triggered.

Table 2.1: Possible values for run_at property and moment of injection.

It should be stated that while injecting declarative scripts from different exten-
sions with the same run_at property, scripts are loaded by following the order of
installation of each extension. Moreover, due to the event loop model, both in declar-
atively and programmatically methods, scripts are injected synchronously (i.e., the
injection of the next script does not start until the previous script is not completely
loaded).

2.3.2 Event-Based Tasks
Content scripts can attach event listeners to event targets (such as a Window, a
Document, an Element in a document or any other objects that support events)
using either vanilla JavaScript or any other third-party library such as jQuery. While
registering an event listener, the developers indicate a callback function, which is the
block of code executed when the event is fired. In particular, in vanilla JavaScript,
one can make use of the method addEventListener to register and event to an event
target. For instance, extensions can use the beforeunload event to intercept when
a user is going to leave a web page. Nonetheless, the number of events that may
be listened is limited. Blink, which is the web render engine used by Chromium,
provides 279 different events; however, custom events can be created and dispatched
by the extension itself. See Appendix B for a table showing all the events provided
by Blink.

Different events occur in different objects. For instance, the resize event is
only dispatched on the Window object, while the DOMContentLoaded is only dis-
patched on the Document object. However, some events propagate within the DOM

10



2. Background

Capture phase The event object propagates from the Window to
the target’s parent.

Target phase The event object arrives to the event target. At this
point, if the event does not bubble, the propaga-
tion will halt after completion this phase.

Bubbling phase The event object propagates from target’s parent
to the Window.

Table 2.2: Event phases.

structure. For propagated events, a propagation path is computed when an event
is triggered. This propagation path consists of an ordered set of targets through
which the event will pass sequentially on the way to and back from the event target
[7]. Altogether, event object propagates through three different phases: (1) capture
phase, (2) target phase, and (3) bubbling phase. The explanation of each phase is
gathered in Table 2.2.

Although the event flow always includes the three phases, the event is only
handled in the target phase and in the capturing or bubbling phase. In this way, while
attaching an event listener to an event target, the phase in which the event should be
handled has to be selected. In vanilla JavaScript, the property that modifies this be-
haviour is capture and can be included as a parameter in the addEventListener()
method. It should be stated that not all the events support bubble propagation and
therefore, in these cases, that phase is skipped during the propagation path [7]. For
instance, error, focus and resize events do not bubble. Moreover, event listeners
can stop the propagation of the event object through the methods stopPropagation
and stopImmediatePropagation.

Regarding the handling of an event, it is always processed sequentially and syn-
chronously (i.e., until an event is not completely handled, the execution of the next
event does not start). Even so, a distinction between synchronous events and asyn-
chronous events should be stated. Synchronous events are those that are queued in a
virtual list in a first-in-first-out model, ordered by temporal occurrence with respect
to other events (mouse and keyboard events are synchronous). Alternatively, asyn-
chronous events may be dispatched as the results of the actions being completed,
with no relation to other events (i.e., asynchronous events are not queued in the
virtual list of events). For example, load and error events are asynchronous.

When an event is fired, a new task is queued into the event loop to be executed.
At the moment of the execution, the event listeners attached to this event are ex-
ecuted as soon as they are found in the propagation path. In this way, the event
listeners registered in the capture phase will always be executed before the event
listeners registered in the bubbling phase. If an event target has multiple event
listeners registered in the same phase, event listeners are executed in the order they
were attached (see Figure 2.5). Therefore, event listeners are in a virtual queue in
a first-attached-first-handled model. It should be stated that the execution of an

11



2. Background
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Figure 2.5: Example of how an event object is handled in web page context when
three event listeners are listening to it

event may trigger other events. For instance, in response to the DOMContentLoaded
event, an extension may inject a <div> element into the web content, triggering
the DOMNodeInserted event. In that situation, these events do not generate an in-
dependent task but are executed synchronously as soon as they are triggered [8].
Figure 2.6 summarises the main keys of the event-based execution system that works
in the web page context.
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Figure 2.6: Event flow. Firstly, an event object is selected ( ). Secondly, if the
event propagates, the event object flows through the propagation path ( ). For each
object in the propagation path, all the attached event listeners are handled ( ).

2.3.3 Timer-Based Tasks
Developers can make use of timer events to perform actions after a specific period
of time has passed. In practice, two kinds of timers can be generated: (1) one-
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shot timers and (2) multiple-shot timers. On the one hand, one-shot timers can
be injected via the setTimeout method and are only executed once. On the other
hand, multiple-shot timers can be injected through the setInterval method and
are executed infinitely, every time after the elapsed time expires. Both methods
require the definition of a callback function, which is the block of code executed
when the timer is fired.

When a timer is registered, a countdown starts. The expiration of that countdown
implies to queue a new task into the event loop mechanism. Hence, the time defined
while registering a timer is the minimum elapsed time and not the time that passes
until the timer is executed (which will always be a major period of time). Multiple
timers add tasks into the event loop every time the countdown expires.
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3
Methodology

In this section, we describe the proposed methodology to identify relations between
extensions. The approach relies on dynamic execution of extensions and the monit-
oring of their activities. Specifically, we develop a couple of logging extension that
installed within the browser session and in conjunction with some modifications
in Blink rendering engine monitors changes in the DOM elements. Moreover, we
automate the study of extensions simulating a user surfing the web. Using these
techniques, we can retrieve content modifications in the web pages and reliably de-
termine interactions between extensions.

Definitions. From this point forward the following nomenclature will be used:

• Task: We define a task as the execution of a block of code of an extension. In
this work, we consider as a task the injection of a script into the web page and
the callbacks associated with JavaScript events and DOM timers.

• Action: We define an action Ax as the set of mutations performed into the web
content in the execution of a task.

• Trigger : We define a trigger Tx as the event that “activate” the execution of a
task. In the scope of this work, the trigger may be the injection of a script, a
JavaScript event, or a timer event.

3.1 Delimitations
In this project, we focus on the monitoring of declarative content scripts (i.e., scripts
registered in the extension manifest file). Therefore, content scripts injected from the
background pages via executeScript method are excluded. Along the same line,
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3. Methodology

message passing, which allows the performance of actions in the scope of the content
script as a result of an event occurred in the background, are not tracked. Finally,
content modifications by microtasks are neither monitored. To sum up, within the
context of the web page, we track (1) the script injection, (2) the event-based tasks
and (3) the timer-based tasks.

3.2 Approach Overview
To find related web content alterations between browser extensions, we need to
respond two questions:

• What does an extension do?. Before analysing relations between extensions,
we need to characterise the extensions according to DOM alterations. For that
purpose, we monitor the activity of the extensions and gather all the mutations
performed into the web content.

• Are the extensions reacting to web content changes?. By answering this ques-
tion, we can find DOM alterations that trigger actions of other extensions.
The characterisation of the extensions according to DOM alterations in the
previous stage allows us to connect both parts and find relations between
extensions.

In the following, we present a detailed description of each stage.

3.2.1 Characterising Extensions
To gather DOM alterations performed by an extension we track its tasks during a
browser session. For that purpose, we carry out a system that takes responsibility
for triggering and monitoring the tasks of an extension.

Triggering tasks. As discussed in chapter 2, extensions operate in an event-driven
environment (i.e., extensions are registered to events that trigger their tasks), having
the possibility of listening to different events; for example, an extension En may
listen to DOMContentLoaded and click events. It should be remembered that not
only JavaScript events but also the injection of the script may cause the execution
of a task. The next set shows this situation.

(E1, T1), (E1, T2), ..., (E1, T3)
(E2, T1), (E2, T2), ..., (E2, T3)

...
(E3, T1), (E3, T2), ..., (E3, T3)

Thus, to monitor the actions performed by an extension, we have to dispatch
the events that trigger them. We automate the execution of those triggers by using
Selenium, which allows the simulation of common tasks performed in browsers. In
the next chapter, we present a detailed description of that simulation.
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Monitoring tasks. Once a trigger has been dispatched, a couple of extensions
installed within the environment of the browser session take responsibility for re-
trieving the HTML content either in the input or output of the task that is being
handled. The way we monitor each type of task is detailed in the chapter 4. Figure
3.1 depicts the methodology followed when an event is triggered.

Trigger Log HTML

Task

Log HTML Task 
Executed

Figure 3.1: Log extension engine.

It should be stated that the actions performed by an extension may vary accord-
ing to the event that triggered it. For instance, an extension may inject an <iframe>
element when the load event is fired, but it may change an attribute of a <div>
element when a click event is fired. This situation is depicted in the next set:

(E1, (T1, A1)), (E1, (T2, A2)), ..., (E1, (T3, A3))
(E2, (T1, A1)), (E2, (T2, A2)), ..., (E2, (T3, A3))

...
(E3, (T1, A1)), (E3, (T2, A2)), ..., (E3, (T3, A3))

3.2.2 Finding Relations

In this stage, we excite the extensions by performing alterations into the web content.
To simplify the analysis, we do not simulate the mutations gathered in the first stage
but simulate all the possible mutations that an extension may perform. In that way,
both stages are not dependent and can be executed at the same time. Identically
to the previous stage, we track the extensions during the execution of their tasks,
which allows us to identify mutations originated due to DOM alterations.

As a result of this stage, we can find triggers corresponding to actions that
“activate” actions of other extensions. A relation between two extensions can be
expressed as the next set:

(E2, (E1, (A1, T1)))

An alternative way of displaying this information is shown in Table 3.1.
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3. Methodology

Action
Trigger

E1 E2 E3 . . . En−1 En

E1 - • • . . . × ×
E2 × - × . . . × •
E3 × × - . . . • ×
... ... ... ... . . . ... ...

En−1 × × × . . . - ×
En × • × . . . × -

Table 3.1: Relation between extensions.
•=related; ×=not related
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4
Implementation

In this chapter, we present our prototype implementation for identifying extension
interactions. We implemented a dynamic analysis that comprises:

• A simulation of a user surfing the web as well as a simulation of all the possible
DOM alterations.

• Two logging extensions that, installed within the environment of the browser
session, take responsibility for retrieving the HTML content both before and
after the execution of a task takes place.

• A server that receives the data retrieved by the logging extensions and com-
putes the difference between HTMLs.

In the following, we provide more detail on the components that comprises our
proposed solution.

4.1 Web Browser Automation
We simulate a user surfing the web to dispatch the events that trigger the extension’s
logic. The aim of this analysis is to fire the maximum number of events to “activate”
all the possible functionalities of the extension. With this in mind, our analysis
comprises two parts: a generic analysis and a specific analysis.

Generic Analysis. This analysis consists of the performance of a set of actions
that are common to all the visited web pages. In it, we insert and remove one
HTML tag of each type in the web content (see Appendix A for a table showing
all the HTML tags used) as well as modify the attributes and character data of all
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Google Uses Google search engine and visits wikipedia.org
with it.

Facebook Tries to log into Facebook and tries to create a new
account.

Amazon Navigates the web and follows all the necessary
steps to buy an item.

YouTube Plays a video.

Table 4.1: Web pages visited during the analysis and principal activity performed.

of them. Note that these modifications allow us to simulate all the possible DOM
mutations and therefore find interactions between extensions. Finally, other general
actions (such as mouse movements, resize or scroll) are fired.

Specific Analysis. This part of the analysis consists of surfing a specific web page.
Altogether we visit four of the most visited web pages1. The web pages included in
the analysis are Google, Facebook, Amazon and YouTube. Table 4.1 shows the
principal activity performed on these web pages.

Altogether, the analysis fires 86 events out of the 279 events provided by Blink
(all the dispatched events are gathered in Appendix C). Although this analysis is
a good starting point, we consider that further efforts are needed to extend it in
future works. It should be stated that the only way to monitor an extension is being
capable of triggering its logic. With this in mind, some tips considered for future
works are: fulfil extensions needs via surfing the webs to which content script are
registered and dispatch those events that the extensions attach during the analysis.

With respect to time, the analysis takes around 14-15 minutes to analyse a single
extension. Our testing environment consists of a Ubuntu virtual machine with 8
GB RAM running on a Mac computer with 16 GB 1600 MHz DDR3 RAM and 3
GHz Intel Core i7 processor. This sandbox environment allows us to analyse the
extensions without causing harm to the host machine.

We have implemented the simulation in Python, in conjunction with Selenium
and PyAutoGUI libraries.

Selenium. This library allows the automation of the browser by interacting with
CSS and HTML elements within a web page. Apart from common events (e.g.,
click, dbclick or contextclick), Selenium allows the usage of all the Standard
JavaScript APIs via the injection of JavaScript code in the browser.

PyAutoGUI. This library is a GUI automation tool implemented as a Python
module and used to control the mouse and keyboard programmatically. This library

1Based on the ranking provided by Alexa Internet: http://www.alexa.com/topsites
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allows us to execute events that Selenium does not trigger, specifically not HTML
and CSS related events.

4.2 Logging Extensions
The logging engine is composed of two different extensions: AdivinoINI and
AdivinoFIN that work together within the browser environment to monitor the
activity of an extension. In particular, they take advantage of the event loop
mechanism as well as some modifications introduced in Blink to monitor (1) the
script injection, (2) the event-based tasks and (3) the timer-based tasks.

Logging DOM changes. To monitor a task, we log the HTML both before and
after the tasks is handled. However, as well as retrieving the HTML content, we also
record a list with the mutations performed into the web page during the execution
of the task. The mutation list is composed of mutation objects, which contains
information about the alteration. Specifically, a mutation object gathers (1) the
mutation type, (2) the node in which the alteration happened and (3) the parent
of the node modified. Additionally, if the mutation consists in the modification of
an attribute, the mutation object also contains the name of the attribute modified.
That mutation list is useful for: (1) detecting changes that are done and undone
within the same task and (2) retrieving easily all the information related to the
mutation. To generate the mutation list accurately, we need to react synchronously
to DOM mutations (i.e., gather the mutation just after it occurs). To this end,
we have created a set of custom events that inform synchronously to the listeners
attached to it about the DOM changes (see Table 4.2). As a result, we classify
the mutations as (1) NodeInserted, (2) NodeRemoved, (3) AttrModified and (4)
CharacterDataModified.

It should be noted that these events are only dispatched if the mutations alter
elements that are part of the document. In this way, mutations that affect to elements
that are not part of the document are not gathered.

In the following, we provide more detail on the methodology followed for the
monitoring of each task.

4.2.1 Monitoring script injections
In this work, we only monitor content modifications by declarative content scripts
(i.e., scripts registered in the extension manifest file). To monitor declarative script
injection both AdivinoINI and AdivinoFIN load a script into the web page just
before and after the extension of study injects its scripts.

Achieving the desired order of injection. As discussed in chapter 2, declar-
ative scripts with the same run_at value are injected in the order in which the
extensions they belong to were installed. Therefore, the desired order of injection
can be achieved by installing the extensions in the proper order, i.e., (1) Adivin-
oINI, (2) extension of study and (3) AdivinoFIN.
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CustomDOMNodeInserted Fired when a new node is inserted into
the document. We dispatch this event
in ContainerNode class.

CustomDOMNodeRemoved Fired when a node is removed from the
document. We dispatch this event in
ContainerNode class.

CustomDOMAttrModified Fired when an attribute of a node is
modified. The event includes modi-
fications in the style of the node. We
dispatch this event in Element and
PropertySetCSSStyleDeclaration
classes.

CustomDOMCharacterDataModified Fired when the text of a node is modi-
fied. It should be stated that this muta-
tion is only dispatched when the text
of an existing node is changed, and not
when a text is added to a node previ-
ously empty. We dispatch this event in
the CharacterData class.

Table 4.2: Custom mutation events.

Monitoring all runt_at values. As we do not know the exact moments in
which the extension of study will inject its scripts, we load an AdivinoINI and
AdivinoFIN script in each one of the possible moments (i.e., document_start,
document_end and document_idle). As a result, all the possible moments of injec-
tion are covered.

4.2.2 Monitoring event-based tasks
To monitor event-based tasks, we place an event listener of our extension Adivin-
oINI just before an after the event listeners registered by the extension of study.
Due to the event loop mechanism, the event listeners of the extension of study will
always be executed among our logging listeners.

Monitoring registration of event listeners. In order to monitor the registra-
tion of an event listener, we slightly modified the EventTarget class of Blink to
dispatch two new events: beforeaddeventlistener and afteraddeventlistener.
These events communicate the exact moment in which an event listener is attached
to an event target (Figure 4.3 gathers the information that encapsulates these
events) and allow us to place the event listener of the extension of study among
our logging listeners. It should be stated that this system not only works with
addEventListener method but also with any other third-party library that allows
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rTarget A reference to the target in which the event listener
is attached. May return a Window, a Document or
an Element in a document.

rEventType The name of the event that is attached.
rCapture A boolean indicating whether the listener is re-

gistered in the capture or bubbling phase.

Table 4.3: Properties for beforeaddeventlistener and afteraddeventlistener
events.

event registration, such as jQuery. Moreover, we also have added a monitor option
in the AddEventListenerOptions class to control when these events are triggered.
This is useful to avoid dispatching the events when AdivinoINI and AdivinoFIN
are attaching event listeners.

Monitoring execution of event listeners. As discussed in chapter 2, the exe-
cution of an event may trigger other events that are handled synchronously. To avoid
monitoring actions not performed by the extension of study but triggered because
of its actions, we modified EvenTarget class to inform about the initial and final
moment in which the event listeners of an event target are handled. Specifically, we
dispatch beforehandlelisteners and afterhandlelisteners to open and close
respectively a monitoring window for those listeners. The monitoring window al-
ways starts disabled, and its state (enabled/disabled) is managed by the logging
listeners that were previously registered. Figure 4.1 shows the monitoring engine for
event-based tasks.

4.2.3 Monitoring timer-based tasks
Similarly to event-based tasks, we split the monitoring of timer-based tasks in two
parts: (1) monitoring the registration of the timer and (2) monitoring its execution.

Monitoring registration of timers. To monitor the registration of
a timer (either via setTimeout or setInterval methods), we modified
DOMTimerCoordinator class to dispatch the timerinstalled event. This event
is dispatched just before the timer is installed and contains the identifier i that
Blink assigns to it. Timers installed within an enabled monitoring window (i.e.,
timers registered by the extension of study) are gathered in a set of identifiers I.

Monitoring execution of timers. We slightly modified DOMTimer class to com-
municate the initial and final moment in which a timer is handled. Specifically, we
dispatch the events beforetimerexecuted and aftertimerexecuted containing the
identifier of the timer that is being handled. We monitor the execution of the timer
if its identifier i belongs to the set of identifiers I.
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Window
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<html>

<body>

<ul>

<li> <li><li>

Text 1

Capture Phase
(1)

Bubbling Phase
(3)

Target Phase
(2)

Text 2 Text 3

1

2

3

1

1

1

1

2

2

3

3

3

3

Event listener 001

Event listener 002

Event listener 003

Event listener 004

Event listener 005

Create monitoring window
(in response to beforehandlelisteners)

Remove monitoring window
(in response to afterhandlelisteners)

The monitoring window is enabled and disabled by the 
event listener of the AdivinoINI extension

enable monitoring 
window

disable monitoring 
window

Figure 4.1: The example shows the monitoring engine for the event listeners at-
tached to the body element when an event is triggered. We create a disabled mon-
itoring window after the event listeners are handled ( ). The logging listeners ( )
enable and disable the monitoring window ( ). While the monitoring window is en-
abled, we retrieve the DOM alterations performed by the extension of study ( ). We
remove the monitoring window when all the event listeners attached to the target
have been executed ( ).

4.3 Server
The data we send to the server fulfil two objectives: (1) communicate event listeners
registered and (2) log the HTML content both before and after the execution of a
task takes place.

Listener requests. We send a request to the server each time the extension of
study attaches an event listener. Specifically, we send this request while handling the
beforeaddeventlistener event. Table 4.4 shows the data contained in the request.

Record requests. Before and after a task is executed by the extension of study,
we send a request to the server with the data shown in Table 4.5. To compute the
difference, we intersect the list of mutations of the requests with the same id but
different sender. Specifically, the id allows us to differentiate between tasks, and
the sender parameter allows us to know which request belongs to the start of the
task and which to the end.
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url A reference to the current URL in web browser.
target A reference to the target to which the event listener

was dispatched.
event The name of the event.
capture A boolean indicating whether the event uses cap-

turing or not.

Table 4.4: Data in listener request.

id Unique identifier of the event.
sender A reference to the sender of the event. May be ini

or fin.
event The name of the event.
url A reference to the URL in which the mutation was

performed.
target A reference to the target to which the event was

dispatched.
current target A reference to the currently registered target.
time stamp The time at which the event was created, in milli-

seconds.
mutations List of mutations records that contains comple-

mentary information about the DOM changes.
html HTML content.

Table 4.5: Data in record request.
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5
Results

This chapter presents the results of the analysis of the 150 most downloaded exten-
sions from Chrome Web Store. See Appendix D for a table showing all the analysed
extensions.

We organise this chapter as follows. Firstly, we present the events listeners re-
gistered by the extensions, analysing the target and phase to which they were at-
tached. Secondly, we show the mutations introduced into the web content and the
moments in which they were performed. Finally, we discuss the possible relations
that the analysis reveals.

5.1 Event Listeners
In this section, we describe the event listeners registered during the analysis by
identifying the type of the listener, the target to which was attached and the phase
in which is handled.

Event type. A total of 381 different event listeners were attached by the exten-
sions during the analysis. Table 5.1 shows the number of extensions that attach a
specific event. The most commonly used, the click, load and message events, al-
lows an extension to listen to an element being clicked, listen to an element being
totally loaded and listen to data received from a server. The second most popular
event, DOMContentLoaded, is fired when the DOM has been loaded and parsed but
before any other subresource have been loaded (e.g., images and frames). It is worth
pointing out the usage of custom events (6.67% of the extensions analysed use cus-
tom events to operate), which allow developers to fire their own events for their own
particular needs. These events can be created by the CustomEvent interface and
fired by the dispatchEvent method. Besides, more than a half of the logged event
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Event #ext.
click 17
load 17
message 17
DOMContentLoaded 12
keyup 11
custom 10
webkitvisibilitychange 10
mouseup 9
error 6
unload 6
contextmenu 5
mousedown 5
focus 3
keydown 3
visibilitychange 3
blur 2

Event #ext.
auxclick 1
beforeunload 1
change 1
hashchange 1
mousemove 1
mouseout 1
mouseover 1
mousewheel 1
paste 1
popstate 1
resize 1
scroll 1
toggle 1
transitionend 1
wheel 1

Table 5.1: Number of extensions that attach a specific event.

listeners were custom events (224 out of 381 listeners). In particular, we detected a
great use of custom events in the extensions TamperMonkey, Honey, Ad Block and
Ads Killer.

Event target We also computed the target to which these events were attached
(see Table 5.2). These results reveal that around a 90% of the listeners are attached to
elements that can be found in all the web pages. Specifically, the Window, Document,
<html> and <body> objects contain a 92.34% of the targets. Attaching an element
to a root element is easier than registering it to a specific element since the developer
makes sure the element is contained in all the web pages. While choosing the object
to which attach the event listener, we have to take into account that different events
occur on different objects. Therefore, developers use the target that has the event
in which they are interested in. On propagated events, which are dispatched either
on Window or Document objects, the only difference is the timing. See Appendix E
for a detailed table showing targets by event type.

Event phase. Table 5.3 shows the percentage of listeners attached to the capture
and bubbling phase. The most used phase, the bubbling phase, is the default phase
in vanilla JavaScript. Moreover, jQuery, which is a widely used library to interact
with the DOM elements, does not allow the registration of listeners for the capture
phase. The advantage of registering a listener for the capturing phase is that, in
the pipeline, the listener is handled before the listeners registered for the bubbling
phase. A detailed table showing the registered phases by event type is shown in
Appendix E
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Target Pct (%)
Window 36.47
Document 35.88
<body> 14.71
<html> 5.29
<div> 2.94
<textArea> 1.76
<a> 1.18
<iframe> 0.59
<img> 0.59
<span> 0.59

Table 5.2: Targets to which listeners are attached

Phase Pct (%)
Capture 16.47
Bubbling 83.53

Table 5.3: Phase to which listeners are attached

Finally, it should be mentioned the effect of the injection of jQuery into the web
page as many extensions use this library instead of vanilla JavaScript. Specifically,
the injection of jQuery implies the registration of the DOMContentLoaded event on
the Document object and for the bubbling phase and the load event on the Window
object and for the bubbling phase.

5.2 DOM Mutations
Regarding DOM changes, we have identified 20 extensions that perform mutations
into the web content. Table 5.4 shows the percentage of mutations by type. The
results reveal that modifications into the attribute of an element are the most per-
formed mutation (50.47%), followed by the insertion of an element (31.66%) and
the elimination of an element (17.87%). The analysis did not detect mutations in
the character data of a node. It should be remembered that this mutation is only
dispatched when the text of an existing node is modified, and not when a text is ad-
ded to a node previously empty. The addition of new text to an element implies the
creation of a TextNode element, and therefore a NodeInserted mutation is recorded.

Apart from the mutations performed, we also have identified the triggers
that caused those mutations (see Table 5.5). Note that init_start, init_end
and init_idle correspond to the injection of the scripts at document_start,
document_end and document_idle respectively. The data shows that more than
the 85% of the mutations were introduced as a result of the execution of a
timer-based task, the handling of the load event and the injection of a script at
document_start. Firstly, timer-based tasks allow developers to execute a block of
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Action Pct (%)
AttrModified 50.47
NodeInserted 31.66
NodeRemoved 17.87
CharacterDataModified 0.0

Table 5.4: Percentage of mutations by type

Trigger Pct (%)
DOMTimer 33.23
load 29.47
init_start 23.2
init_idle 7.84
init_end 3.76
DOMContentLoaded 2.19
message 0.31

Table 5.5: Percentage of mutations by trigger

code after a specific period of time has passed. For instance, jQuery uses timers
to dispatch some custom events (e.g., the event ready is dispatched certain time
after the DOMContentLoaded event is triggered). Secondly, the load event is
dispatched when an element is completely loaded. Finally, when a script is injected
at document_start, only the Document object has been created, and therefore
specific elements can not be modified. Mutations at this moment are addressed to
root elements, such as the Window and Document objects. Table 5.6 shows the
percentage of mutations by type and trigger. Appendix E gathers more specific
information about the mutations identified.

As with the event listeners, jQuery performs changes into the web content during
its injection. See Table 5.7 for a table gathering all the mutations performed.

5.3 Interaction Between Extensions
The analysis did not reveal relations between the extensions studied. In practice, an
extension has to be listening to web content changes to be triggered by the mutations
performed by another extension. Reacting to DOM alterations can be achieved by
using (1) mutation events or (2) mutations observers.

On the one hand, the mutation events comprise the next set of events:

• DOMNodeInserted

• DOMNodeInsertedIntoDocument

• DOMNodeRemoved
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AttrModified

Trigger Pct (%)
DOMTimer 48.45
load 37.89
init_start 7.45
DOMContentLoaded 3.11
init_idle 1.86
init_end 1.24

NodeInserted

Trigger Pct (%)
init_start 35.64
load 20.79
DOMTimer 19.8
init_idle 14.85
init_end 5.94
DOMContentLoaded 1.98
message 0.99

NodeRemoved

Trigger Pct (%)
init_start 45.61
load 21.05
DOMTimer 14.04
init_idle 12.28
init_end 7.02

Table 5.6: Percentage of mutations by mutation type and trigger.

Order Mutation Target Parent
1 NodeInserted <fieldset> <html>
2 AttrModified <fieldset> <html>
3 NodeRemoved <fieldset> <html>
4 NodeInserted <fieldset> <html>
5 NodeInserted <a> <fieldset>
6 NodeInserted <select> <fieldset>
7 NodeRemoved <fieldset> <html>
8 NodeInserted <fieldset> <html>
9 AttrModified <fieldset> <html>
10 NodeRemoved <fieldset> <html>

Table 5.7: Mutations performed into web content when jQuery is injected
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• DOMNodeRemovedFromDocument

• DOMCharacterDataModified

• DOMSubtreeModified

These events are handled synchronously as soon as the mutation happens. Note
that attribute mutations can not be detected via the mutation events. The mutation
events have been marked as deprecated in the DOM Events specification in favour
of mutation observers.

On the other hand, mutation observers are implemented as microtasks, and there-
fore they were not tracked in this analysis. In contrast to mutation events, mutation
observers allow tracking changes performed into the attributes of an element.
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6
Conclusion

This chapter describes the conclusions made from the results of this Thesis. We
organise this section as follows. Firstly, we discuss the results obtained and the
possible implications of the actual execution model running on web pages. Secondly,
we expound the potential future work. Finally, we summarise our main contributions.

6.1 Discussion

Out of 150 extensions analysed, we have identified 20 extensions that perform muta-
tions into the web content, characterising the moments in which the mutations were
made. On the one hand, we have detected that the modification of attributes is the
most performed mutation, followed by the insertion of an element and the elimin-
ation of an element. On the other hand, we have found that timer callbacks, load
event callbacks, and script injection at document_start tasks are the most used
places to perform a mutation. With respect to event listeners, we have detected that
most of them are registered to elements that are present in all the web pages (i.e.,
objects that always can be found in the DOM structure). Besides, the major part of
them are attached for the bubbling phase.

Even though not relations were found, the execution model that operates within
a web page make possible the existence of interactions between extensions. That
execution model entails that extensions can react to DOM alterations performed by
other extensions and therefore access to the data introduced. One might argue that
this is an undesirable behaviour, since information— which might not be relevant
for the task that other extensions perform-was disclosed. Thus, this can lead to
a potential source of personal information leakage since extensions can intercept
sensitive information embedded in web content alterations.
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6.2 Future work
The most immediate future work is to extend the set of extensions analysed. Extend-
ing the analysis provides more reliable data, and relations between extensions may
be found. Alternatively, improvements in the implemented prototype can be done.
On the one hand, the analysis can be improved by fulfilling extensions needs via surf-
ing the webs to which content script are registered and by dispatching those events
that the extensions attach during the analysis. On the other hand, the monitoring
of extensions can be extended by tracking the microtasks and the communication
via message passing of content scripts with background pages.

Besides, other types of interactions between extensions can be studied. In this
Thesis, we have focused on the investigation of “direct” relations (i.e., extensions
that trigger other extensions as a result of a DOM alteration); however, extensions
can access to the data introduced by other extensions in other ways. For instance,
extensions not listening to DOM mutations can scan the web content in search
of alterations as a result of other events being triggered. We find this study as a
potential research area in which interesting results can be found.

6.3 Summary
In this work, an approach for identifying relations through web content modifications
between extensions has been proposed. We have implemented our prototype as a
couple of logging extensions running on a modified version of Chromium. Through a
simulation of a user surfing the web as well as the simulation of all the possible DOM
mutations, we have retrieved the event listeners registered by the extensions and the
mutations performed. Specifically, we have analysed the first 150 most downloaded
extensions from Chrome Web Store. Although not relations were found during the
analysis, we have demonstrated that the nature of the environment where extensions
operate make possible the existence of interactions between them. We also have
characterised the event listeners attached by analysing the target and phase to which
were registered.
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A
HTML Tags

Table A.1: HTML Tags.

a center footer label picture table
abbr cite form legend pre tbody
acronym code frame li progress td
address col frameset link q textarea
applet colgroup h1 main rp tfoot
area datalist h2 map rt th
article dd h3 mark ruby thead
aside del h4 menu s time
audio details h5 menuitem samp title
b dfn h6 meta script tr
base dialog head meter section track
basefont dir header nav select tt
bdi div hr noframes small u
bdo dl html noscript source ul
big dt i object span var
blockquote em iframe ol strike video
body embed img optgroup strong wbr
br fieldset input option style
button figcaption ins output sub
canvas figure kbd p summary
caption font keygen param sup

I



A. HTML Tags
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B
Blink Events

Table B.1: Blink events.

DOMActivate midimessage
DOMCharacterDataModified mousedown
DOMContentLoaded mouseenter
DOMFocusIn mouseleave
DOMFocusOut mousemove
DOMNodeInserted mouseout
DOMNodeInsertedIntoDocument mouseover
DOMNodeRemoved mouseup
DOMNodeRemovedFromDocument mousewheel
DOMSubtreeModified mute
abort negotiationneeded
activate nomatch
active notificationclick
addsourcebuffer notificationclose
addstream notificationerror
addtrack noupdate
animationend obsolete
animationiteration offline
animationstart online
appinstalled open
audioend orientationchange
audioprocess pagehide

Continued on next page
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B. Blink Events

Table B.1 – continued from previous page
audiostart pageshow
auxclick paste
availablechange pause
beforecopy paymentrequest
beforecut periodicsync
beforeinput play
beforeinstallprompt playing
beforepaste pointercancel
beforeunload pointerdown
beginEvent pointerenter
blocked pointerleave
blur pointerlockchange
boundary pointerlockerror
bufferedamountlow pointermove
cached pointerout
cancel pointerover
canplay pointerup
canplaythrough popstate
change progress
characteristicvaluechanged push
chargingchange ratechange
chargingtimechange readystatechange
checking rejectionhandled
click removesourcebuffer
close removestream
complete removetrack
compositionend repeatEvent
compositionstart reset
compositionupdate resize
connect resourcetimingbufferfull
connecting result
connectionavailable resume
contextlost scroll
contextmenu search
contextrestored securitypolicyviolation
controllerchange seeked
copy seeking
crossoriginmessage select
cuechange selectionchange
cut selectstart
dataavailable shippingaddresschange
datachannel shippingoptionchange
dblclick show

Continued on next page
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B. Blink Events

Table B.1 – continued from previous page
defaultsessionstart signalingstatechange
devicechange slotchange
devicelight soundend
devicemotion soundstart
deviceorientation sourceclose
deviceorientationabsolute sourceended
dischargingtimechange sourceopen
disconnect speechend
display speechstart
downloading stalled
drag start
dragend statechange
dragenter stop
dragleave storage
dragover submit
dragstart success
drop suspend
durationchange sync
emptied terminate
encrypted textInput
end timeout
endEvent timeupdate
ended toggle
enter tonechange
error touchcancel
exit touchend
fetch touchmove
finish touchstart
focus transitionend
focusin typechange
focusout unhandledrejection
foreignfetch unload
frametimingbufferfull unmute
fullscreenchange update
fullscreenerror updateend
gamepadconnected updatefound
gamepaddisconnected updateready
gattserverdisconnected updatestart
geofenceenter upgradeneeded
geofenceleave versionchange
gestureflingstart visibilitychange
gesturelongpress voiceschanged
gesturescrollend volumechange

Continued on next page
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B. Blink Events

Table B.1 – continued from previous page
gesturescrollstart vrdisplayactivate
gesturescrollupdate vrdisplayblur
gestureshowpress vrdisplayconnect
gesturetap vrdisplaydeactivate
gesturetapdown vrdisplaydisconnect
gesturetapunconfirmed vrdisplayfocus
gotpointercapture vrdisplaypresentchange
hashchange waiting
icecandidate waitingforkey
iceconnectionstatechange webglcontextcreationerror
icegatheringstatechange webglcontextlost
inactive webglcontextrestored
input webkitAnimationEnd
install webkitAnimationIteration
invalid webkitAnimationStart
keydown webkitBeforeTextInserted
keypress webkitEditableContentChanged
keystatuseschange webkitTransitionEnd
keyup webkitfullscreenchange
languagechange webkitfullscreenerror
levelchange webkitprerenderdomcontentloaded
load webkitprerenderload
loadeddata webkitprerenderstart
loadedmetadata webkitprerenderstop
loadend webkitspeechchange
loading webkitvisibilitychange
loadingdone wheel
loadingerror write
loadstart writeend
lostpointercapture writestart
mark zoom
message

VI



C
Blink Events Dispatched During

The Analysis

Table C.1: Blink events dispatched during the analysis.

DOMActivate mousedown
DOMCharacterDataModified mouseenter
DOMContentLoaded mouseleave
DOMFocusIn mousemove
DOMFocusOut mouseout
DOMNodeInserted mouseover
DOMNodeInsertedIntoDocument mouseup
DOMNodeRemoved pagehide
DOMNodeRemovedFromDocument pageshow
DOMSubtreeModified paste
animationiteration play
animationstart playing
auxclick pointerdown
beforecopy pointerenter
beforecut pointerleave
beforeunload pointermove
blur pointerout
canplay pointerover
canplaythrough pointerup
change progress

Continued on next page
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C. Blink Events Dispatched During The Analysis

Table C.1 – continued from previous page
click readystatechange
contextmenu resize
copy scroll
cut select
dblclick selectionchange
devicemotion selectstart
deviceorientation stalled
deviceorientationabsolute submit
durationchange textInput
emptied timeupdate
error transitionend
focus unload
focusin visibilitychange
focusout volumechange
input waiting
keydown webkitBeforeTextInserted
keypress webkitEditableContentChanged
keyup webkitprerenderdomcontentloaded
load webkitprerenderload
loadeddata webkitprerenderstart
loadedmetadata webkitprerenderstop
loadstart webkitvisibilitychange
message wheel
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D
Analysed Extensions

Table D.1: Analysed extensions.

# id Name

1 chfdnecihphmhljaaejmgoiahnihplgn AVG Web TuneUp
2 gighmmpiobklfepjocnamgkkbiglidom AdBlock
3 cfhdojbkjhnklbpkdaibdccddilifddb Adblock Plus
4 efaidnbmnnnibpcajpcglclefindmkaj Adobe Acrobat
5 gomekmidlodglbbmalcneegieacbdmki Avast Online Security
6 eofcbnmajmjmplflapaojjnihcjkigck Avast SafePrice
7 flliilndjeohchalpbbcdekjklbdgfkk Avira Browser Safety
8 jlhmfgmfgeifomenelglieieghnjghma Cisco WebEx Extension
9 mallpejgeafdahhflmliiahjdpgbegpk FromDocToPDF
10 ghbmnnjooekpmoecnnnilnnbdlolhkhi Google Docs Offline
11 hcglmfcclpfgljeaiahehebeoaiicbko Google Photos
12 kbfnbcaeplbcioakkpcpgfkobkghlhen Grammarly for Chrome
13 gpdjojdkbbmdfjfahjcgigfpmkopogic Pinterest Save Button
14 lifbcibllhkdhoafpjfnlhfpfgnpldfl Skype
15 nafaimnnclfjfedmmabolbppcngeolgf iLivid
16 dhdgffkkebhmkfjojejmpbldmpobfkfo Tampermonkey
17 mppnoffgpafgpgbaigljliadgbnhljfl Ask App for iLivid
18 gkojfkhlekighikafcpjkiklfbnlmeio Unlimited Free VPN - Hola
19 mfhehppjhmmnlfbbopchdfldgimhfhfk Google Classroom
20 aapbdbdomjkkjkaonfhkkikfgjllcleb Google Translate
21 cjpalhdlnbpafiamejdnhcphjbkeiagm uBlock Origin
22 kfmpgofbpmkihnamkhcoohnmipjkfjph Social Color Changer for Chrome

Continued on next page
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D. Analysed Extensions

Table D.1 – continued from previous page

23 kpocjpoifmommoiiiamepombpeoaehfh EasyPDFCombine
24 nckgahadagoaajjgafhacjanaoiihapd Google Hangouts
25 adokjfanaflbkibffcbhihgihpgijcei Share to Classroom
26 knipolnnllmklapflnccelgolnpehhpl Google Hangouts
27 inoeonmfapjbbkmdafoankkfajkcphgd Read&Write for Google Chrome™
28 ejidjjhkpiempkbhmpbfngldlkglhimk Gmail Offline
29 hdokiejnpimakedhajhdlcegeplioahd LastPass: Free Password Manager
30 idkloemkmldbemijiamdiolojbffnjlh G Suite Training
31 nmgcfemagnogdodbambjhdcmfcpicngl Norton Safe Search as default for Chrome
32 okgjbfikepgflmlelgfgecmgjnmnmnnb WeVideo - Video Editor and Maker
33 glcimepnljoholdmjchkloafkggfoijh 360 Internet Protection
34 pioclpoplcdbaefihamjohnefbikjilc Evernote Web Clipper
35 mihcahmgecmbnbcchbopgniflfhgnkff Google Mail Checker
36 dpdmhfocilnekecfjgimjdeckachfbec Dropbox for Gmail
37 cmedhionkhpnakcndndgjdbohmhepckk Adblock for Youtube™
38 bahkljhhdeciiaodlkppoonappfnheoi Search Manager
39 phkdcinmmljblpnkohlipaiodlonpinf Поиск Mail.Ru
40 bmnlcjabgnpnenekpadlanbbkooimhnj Honey
41 miijbmhjndcihicbljlcieiajhemmdeb SuperBlock Adblocker
42 komhbcfkdcgmcdoenjcjheifdiabikfi Google Play
43 kmljjoddjjkoidiahlgbgjjgodcajhgf Superblock Extended - Adblocker
44 mbckjcfnjmoiinpgddefodcighgikkgn AVG SafePrice
45 odijcgafkhpobjlnfdgiacpdenpmbgme Домашняя страница Mail.Ru
46 bnbaboaihhkjoaolfnfoablhllahjnee GeoGebra Math Apps
47 obdbgibnhfcjmmpfijkpcihjieedpfah TypingClub
48 fdcgdnkidjaadafnichfpabhfomcebme ZenMate VPN
49 ceopoaldcnmhechacafgagdkklcogkgd OnlineMapFinder
50 fhbjgbiflinjbdggehcddcbncdddomop Postman
51 ejbdobdndcjhdmljipngpeoekdinlohe Norton Home Page for Chrome
52 fkepacicchenbjecpbpbclokcabebhah iCloud Bookmarks
53 mkaakpdehdafacodkgkpghoibnmamcme Google Drawings
54 ikgjglmlehllifdekcggaapkaplbdpje VideoDownloadConverter
55 elicpjhcidhpjomhibiffojpinpmmpil Video Downloader professional
56 heildphpnddilhkemkielfhnkaagiabh Legacy Browser Support
57 lbfehkoinhhcknnbdgnnmjhiladcgbol Evernote Web
58 hehijbfgiekmjfkfjpbkbammjbdenadd IE Tab
59 pbjikboenpfhbbejgkoklgkhjpfogcam Amazon Assistant for Chrome
60 mgijmajocgfcbeboacabfgobmjgjcoja Google Dictionary (by Google)
61 icdipabjmbhpdkjaihfjoikhjjeneebd Kindle Cloud Reader
62 icmaknaampgiegkcjlimdiidlhopknpk Pixlr Editor
63 bgnkhhnnamicmpeenaelnjfhikgbkllg Adguard AdBlocker
64 kjagjnchnnlgiafjjlahaedeagnmhefi uBlock Plus
65 mmeijimgabbpbgpdklnllpncmdofkcpn Screencastify (Screen Video Recorder)
66 gmbmikajjgmnabiglmofipeabaddhgne Save to Google Drive
67 gbkeegbaiigmenfmjfclcdgdpimamgkj Office Editing for Docs Sheets & Slides
68 pdnfnkhpgegpcingjbfihlkjeighnddk Unblock Youku
69 ghgabhipcejejjmhhchfonmamedcbeod Click&Clean

Continued on next page
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D. Analysed Extensions

Table D.1 – continued from previous page

70 lpcaedmchfhocbbapmcbpinfpgnhiddi Google Keep Chrome Extension
71 abjcfabbhafbcdfjoecdgepllmpfceif Magic Actions for YouTube™
72 ioekoebejdcmnlefjiknokhhafglcjdl Dropbox
73 jhknlonaankphkkbnmjdlpehkinifeeg Google Forms
74 honjcnefekfnompampcpmcdadibmjhlk LanSchool Web Helper
75 niloccemoadcdkdjlinkgdfekeahmflj Save to Pocket
76 aciahcmjmecflokailenpkdchphgkefd Entanglement Web App
77 lalfiodohdgaejjccfgfmmngggpplmhp Start Page - Yandex
78 laookkfknpbbblfpciffpaejjkokdgca Momentum
79 omghfjlpggmjjaagoclmmobgdodcjboh Browsec VPN
80 mlomiejdfkolichcflejclcbmpeaniij Ghostery
81 bhdheahnajobgndecdbggfmcojekgdko Desmos Graphing Calculator
82 ndjpnladcallmjemlbaebfadecfhkepb Office Online
83 fdjdjkkjoiomafnihnobkinnfjnnlhdg Советник Яндекс.Маркета
84 cnkjkdjlofllcpbemipjbcpfnglbgieh Spotify - Music for every moment
85 klhphccnhmdlnljpdljjhehlmplnmini Dell Activity Light
86 mcbkbpnkkkipelfledbfocopglifcfmi Poppit!
87 kbmfpngjjgdllneeigpgjifpgocmfgmb Reddit Enhancement Suite
88 ocifcklkibdehekfnmflempfgjhbedch Adblock Pro
89 pchfckkccldkbclgdepkaonamkignanh Visual Bookmarks
90 ijjnmdphpnlnelhbhefnfmimenjgbfcn MapsGalaxy
91 ppgplhcfmaadpnkmnkhgadmaekeldbnh TelevisionFanatic
92 aiahmijlpehemcpleichkcokhegllfjl Duolingo on the Web
93 fiombgjlkfpdpkbhfioofeeinbehmajg Word Online
94 jkfpchpiljkaemlpmpebnglgkomamfeo HP Network Check Launcher
95 menkifleemblimdogmoihpfopnplikde LINE
96 cnciopoikihiagdjbjpnocolokfelagl Videostream for Google Chromecast™
97 fdigbpdlfijdjelfdfocjhadkcpgmfcf Unfriend Notify for Facebook
98 gmbgaklkmjakoegficnlkhebmhkjfich Google Calendar (by Google)
99 bapebekcapehfapcilombbgepgedmnmn SearchStart Tab

100 deeboegbjcnfgidliakhpoapnpomphji uDev - Web Developer Toolbar
101 deceagebecbceejblnlcjooeohmmeldh Netflix
102 oppjbdkgpfhhllancffaoaemplhkngoc Free Games Zone
103 gdbabpaggdgcakhjllleobffeghmhjme Lucidchart for Education
104 mnehmlglkdbpcimikacjgegmpebacoab Lightspeed User Agent
105 niojcggonafbneajjmkpkcigabaobmge FilmFanatic
106 laddjijkcfpakbbnnedbhnnciecidncp Yandex Search
107 bkgoccjhfjgjedhkiefaclppgbmoobnk Audiotool
108 aaaaddliknddhjhjcofimffekgonpkom Music Box
109 lfbgimoladefibpklnfmkpknadbklade Webcam Toy
110 kbpnbonnhilfdihhodnflcplajklibbc Yandex search
111 nlipoenfbbikpbjkfpfillcgkoblgpmj Awesome Screenshot
112 anepigfegadpjplagifaocofigipbjhn 네이버 Software 다운로더
113 jjckigopagkhaikodedjnmbccfpnmiea Ads Killer
114 aiimdkdngfcipjohbjenkahhlhccpdbc Flash Video Downloader
115 kbohafcopfpigkjdimdcdgenlhkmhbnc Hapara Highlights Extension
116 fngmhnnpilhplaeedifhccceomclgfbg EditThisCookie

Continued on next page
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D. Analysed Extensions

Table D.1 – continued from previous page

117 dbaonaocldpohelilahfhnkmjankmbcc Orbitum Speed Dial
118 fdpohaocaechififmbbbbbknoalclacl Full Page Screen Capture
119 npmoikddpdgbhgbkjgjemncoegpojpng MyTransitGuide
120 bfbmjmiodbnnpllbbbfblcplfjjepjdn Turn Off the Lights
121 fjnbnpbmkenffdnngjfgmeleoegfcffe Stylish - Custom themes for any website
122 mjbepbhonbojpoaenhckjocchgfiaofo Ace Stream Web Extension
123 dkpejdfnpdkhifgbancbammdijojoffk Logitech Smooth Scrolling
124 gcbommkclmclpchllfjekcdonpmejbdp HTTPS Everywhere
125 bigefpfhnfcobdlfbedofhhaibnlghod MEGA
126 pfpeapihoiogbcmdmnibeplnikfnhoge Outlook.com
127 mjcnijlhddpbdemagnpefmlkjdagkogk Pocket
128 hbdpomandigafcibbmofojjchbcdagbl TweetDeck by Twitter
129 iljnkagajgfdmfnnidjijobijlfjfgnb Excel Online
130 bdehgigffdnkjpaindemkaniebfaepjm MindMeister
131 knkapnclbofjjgicpkfoagdjohlfjhpd Little Alchemy
132 pdabfienifkbhoihedcgeogidfmibmhp Click&Clean App
133 ilmbnmigihncgeckjgmkehcgkdeohkhl CK-12
134 ooadnieabchijkibjpeieeliohjidnjj 네이버 동영상 플러그인

135 beobeededemalmllhkmnkinmfembdimh TV
136 hcmdpeobfoppdkhcneogcflfmfceenlf AdsGuard Suit for Google Chrome™
137 mdafamggmaaaginooondinjgkgcbpnhp PowerPoint Online
138 opalpjjboefohnelaemnhdhlceibbcgl Hola - Unlimited Proxy VPN
139 jjkofiknkjdjgkkbfdibgajealfbjhdj Search By WowMovix
140 cmendinpapjjojakimjlmkkkcmnojefg McAfee SiteAdvisor Enterprise
141 ooebklgpfnbcnpokahmdidgbmlcdepkm 管家上防

142 chhjbpecpncaggjpdakmflnfcopglcmi Ebates Cash Back
143 nbkekaeindpfpcoldfckljplboolgkfm Video Downloader GetThemAll
144 chphlpgkkbolifaimnlloiipkdnihall OneTab
145 mdanidgdpmkimeiiojknlnekblgmpdll Boomerang for Gmail
146 gjknjjomckknofjidppipffbpoekiipm Betternet Unlimited Free VPN Proxy
147 ipmkfpcnmccejididiaagpgchgjfajgp Avira SafeSearch Plus
148 nffchahhjecejoiigmnhhicpoabngedk OneDrive
149 nlbejmccbhkncgokjcmghpfloaajcffj Hotspot Shield Free VPN Proxy
150 ghfmhofojkkfdnlfefhkckbflohgiicn mixMovie Start
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E
Detailed Results

Table E.1: Event targets by event type.

Event Target
DOMContentLoaded Document 71.43%

Window 28.57%
auxclick <body> 100.0%
beforeunload Window 100.0%
blur Window 50.0%

<textarea> 50.0%
change <div> 100.0%
click <html> 36.36%

Document 22.73%
<body> 18.18%
<a> 9.09%
<div> 9.09%
Window 4.55%

contextmenu <body> 60.0%
Document 40.0%

custom Document 69.23%
Window 23.08%
<div> 7.69%

error Document 83.33%
Continued on next page

XIII



E. Detailed Results

Table E.1 – continued from previous page
Window 16.67%

focus Window 66.67%
<textarea> 33.33%

hashchange Window 100.0%
keydown Window 66.67%

Document 33.33%
keyup <body> 72.73%

Window 18.18%
Document 9.09%

load Window 70.0%
Document 20.0%
<img> 5.0%
<iframe> 5.0%

message Window 100.0%
mousedown Document 60.0%

Window 40.0%
mousemove Window 25.0%

Document 25.0%
<span> 25.0%
<html> 25.0%

mouseout Document 100.0%
mouseover Document 100.0%
mouseup <body> 88.89%

Window 11.11%
mousewheel Document 100.0%
paste Window 100.0%
popstate Window 100.0%
resize <body> 50.0%

Window 50.0%
scroll Document 50.0%

<textarea> 50.0%
toggle Document 100.0%
transitionend <div> 100.0%
unload Window 100.0%
visibilitychange Document 100.0%

Continued on next page
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E. Detailed Results

Table E.1 – continued from previous page

webkitvisibilitychange Document 100.0%
wheel Document 100.0%

Table E.2: Event phase by event type.

Event Phase
DOMContentLoaded Bubble 100.0%

Capture 0.0%
auxclick Bubble 100.0%

Capture 0.0%
beforeunload Bubble 100.0%

Capture 0.0%
blur Capture 50.0%

Bubble 50.0%
change Bubble 100.0%

Capture 0.0%
click Bubble 81.82%

Capture 18.18%
contextmenu Bubble 60.0%

Capture 40.0%
custom Bubble 92.31%

Capture 7.69%
error Capture 83.33%

Bubble 16.67%
focus Bubble 66.67%

Capture 33.33%
hashchange Bubble 100.0%

Capture 0.0%
keydown Bubble 66.67%

Capture 33.33%
keyup Bubble 90.91%

Capture 9.09%
load Bubble 80.0%

Capture 20.0%
message Bubble 100.0%

Continued on next page
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E. Detailed Results

Table E.2 – continued from previous page
Capture 0.0%

mousedown Capture 80.0%
Bubble 20.0%

mousemove Bubble 75.0%
Capture 25.0%

mouseout Bubble 100.0%
Capture 0.0%

mouseover Bubble 100.0%
Capture 0.0%

mouseup Bubble 100.0%
Capture 0.0%

mousewheel Capture 50.0%
Bubble 50.0%

paste Capture 100.0%
Bubble 0.0%

popstate Bubble 100.0%
Capture 0.0%

resize Capture 50.0%
Bubble 50.0%

scroll Bubble 100.0%
Capture 0.0%

toggle Bubble 100.0%
Capture 0.0%

transitionend Bubble 100.0%
Capture 0.0%

unload Bubble 100.0%
Capture 0.0%

visibilitychange Bubble 100.0%
Capture 0.0%

webkitvisibilitychange Bubble 100.0%
Capture 0.0%

wheel Bubble 100.0%
Capture 0.0%
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E. Detailed Results

Table E.3: Mutations by trigger.

Trigger Mutation
DOMContentLoaded <span> Attrmodified 28.57%

<body> Attrmodified 28.57%
<meta> Inserted 14.29%
<div> Inserted 14.29%
<div> Attrmodified 14.29%

DOMTimer <a> Attrmodified 48.11%
<div> Attrmodified 21.7%
<div> Inserted 9.43%
<link> Inserted 3.77%
<div> Removed 3.77%
<script> Removed 1.89%
<td> Attrmodified 1.89%
<html> Attrmodified 1.89%
<script> Inserted 1.89%
<table> Inserted 1.89%
<table> Removed 0.94%
<span> Inserted 0.94%
<img> Removed 0.94%
<Grammarly-Btn> Inserted 0.94%

init_end <fieldset> Inserted 25.0%
<fieldset> Removed 25.0%
<fieldset> Attrmodified 16.67%
<div> Removed 8.33%
<select> Inserted 8.33%
<a> Inserted 8.33%
<div> Inserted 8.33%

init_idle <div> Removed 28.0%
<div> Inserted 28.0%
<select> Inserted 12.0%
<div> Attrmodified 12.0%
<a> Inserted 12.0%
<style> Inserted 4.0%
<text> Inserted 4.0%

init_start <script> Inserted 18.92%
<script> Removed 14.86%
<fieldset> Inserted 12.16%
<fieldset> Removed 12.16%
<fieldset> Attrmodified 8.11%
<div> Removed 6.76%
<div> Inserted 5.41%

Continued on next page
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E. Detailed Results

Table E.3 – continued from previous page
<div> Attrmodified 5.41%
<a> Inserted 5.41%
<select> Inserted 5.41%
<html> Attrmodified 2.7%
<body> Removed 1.35%
<body> Inserted 1.35%

load <div> Attrmodified 58.51%
<div> Inserted 15.96%
<div> Removed 9.57%
<td> Attrmodified 6.38%
<table> Inserted 6.38%
<table> Removed 3.19%

message <div> Inserted 100.0%
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