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Layered solid-shell elements for accurate prediction of stresses in laminated composites
Master’s thesis in Applied Mechanics
ELIAS BÖRJESSON
Department of Applied Mechanics
Division of Solid Mechanics
Chalmers University of Technology

Abstract

Laminated composite materials possess very good weight to strength properties, and are therefore
desirable in a wide range of engineering applications. Light-weight composites have traditionally only
been used in the marine- and aero-industry due to expensive and time consuming manufacturing
processes, but is now also being considered as a viable option within the automotive-industry. The
introduction of layered composites does, however, present new CAE challenges. For example, complex
failure mechanisms such as delamination and crack propagation are driven by the transverse stresses
in the material, and are difficult to capture efficiently using standard modeling techniques. The aim of
this thesis is therefore to develop a solid-shell element with increased capability (compared to Mindlin
type shells) of predicting the transverse stress components through the laminate.

The solid-shell element developed is based on a traditional eight node solid element (brick element).
In order the prevent various locking phenomenas, the compatible strain field is enhanced using a
combination of the Enhanced Assumed Strain (EAS) and the Assumed Natural Strain (ANS) methods.
The element is shown to produce accurate and efficient out-of-plane bending results, when applied to
analysis of thin plate and curved structure problems.

Three approaches to improve the accuracy of the transverse stresses in the solid-shell elements, have
been studied in this thesis. The first approach is based on a three field variational formulation and
assumes a higher order variation of the transverse stresses. Unfortunately, poor results in the predicted
stresses were obtained. The second approach predicts the transverse stresses, by recovering them
using the equilibrium equations, in a post processing step. This method is shown to accurately and
efficiently predict the full 3D stress field in thin plate analyses. The third and last approach, obtains
the complete stress field by using multiple solid-shell elements through the thickness of the composite
material. Also this approach produces accurate stress predictions; however, it is computationally
expensive since a relatively fine discretization is needed.

Keywords: Solid-shell, Laminated composites, Transverse stresses, Stress Recovery, FEM
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1 Introduction

The increasing demand for lighter and stronger structures, have made composite materials a vital
tool for today’s engineers. Composites can now be found in a wide range of applications, e.g. in the
automotive industry and in aero space structures [15, 3]. The advantage of composites comes from its
ability to be customized for a specific application, thereby reducing superfluous strength and weight.
For the vehicle industry, the benefits of this are clear; lower weights means less fuel consumption,
which ultimately leads to a decreased impact on the environment.

There are several different types of laminated composites, some common are

• Unidirectional fiber composites. Materials with long fibres oriented in one direction, which
are held together by a matrix material. This leads to a large strength in the longitudinal
direction of the fibers, but reduced strength in the transverse direction.

• Woven fiber composites. This composite is similar to unidirectional fiber composites, however
the fibres are woven together. This leads to similar strength in all directions in the plane,
however the material demonstrates weaker response in compression due to waviness in the fibers.

• Sandwich constructions. Layered structures consisting of a lightweight core material of
relatively low strength, bounded by two thin and stiff skins on each side. The core material
provides a high bending stiffness with overall low density.

The introduction of new complex composite structures does however present great challenges.
Layered composites demonstrate complex failure mechanisms not experienced by traditional homoge-
neous materials, and are therefore difficult to capture with current modeling techniques. Two such
mechanisms are inter- and intralaminar cracking which greatly affects the structural response, and
therefore needs to be modeled. In many industrial applications, it is not feasible to explicitly model
these cracks with finite elements, because the computational cost would be too great, even for the
computers of today. Instead, new possibilities in efficient FE-modeling of composites needs to be
researched.

The underlying cause behind crack initiations and crack propagation, are the transverse stresses
experienced by the material. It is therefore of great interest to be able to determine the complete stress
state in composites. Most of today’s composite modeling techniques, based on shell-kinematics or
high resolution meshes (with solid elements), lack the ability to capture the complete stress state, or,
requires a substantial amount of computer resources to do so. Much effort in the scientific community
is therefore put on developing new methods for stress prediction in composites.

Due to the limitations of today’s standard modeling techniques, this project seeks to develop an
eight node solid-shell element, with increased capabilities of accurately predicting all stress components
in a layered composite. The solid-shell will be based on a standard eight node brick element. However,
as well documented in the literature, traditional brick elements experience many different types of
locking behaviors when analysing thin structural components. Furthermore, low order brick elements
lacks the kinematic freedom to accurately represent the transverse stress components in a material.
Therefore, a large focus on addressing these problems is made in this project.

1.1 Concepts and issues in modeling of laminated composites

This section gives the reader an overview of important concepts and common challenges when modeling
layered composites. As mentioned in the section above, a great challenge is to efficiently predict the
transverse stress components within the material. The in-plane stresses in a laminated structure, are
in general discontinuous through the thickness. On the other hand, the transverse stresses are always

1



continuous through the thickness of the material [3]. This can be seen from Newtons third law, where
the forces acting on the top of one lamina, must be equal to the force acting on the bottom surface
of the adjacent lamina. This fact is referred to in the literature as interlaminar continuity (IC) of
transverse stresses. Figure 1.1a and 1.1b shows a schematic view on how the in-plane and transverse
stresses can vary through the thickness in a layered composite.

A second important fact to consider, is that the mechanical properties within a composite may
be discontinuous and inhomogeneous, due to the stacking of plies of different materials and/or
orientations. These transverse discontinuities, causes the displacement fields in the thickness direction
to change rapidly between layers. A schematic representation of this is illustrated in Figure 1.1c. This
effect is a unique for layered structures, and is known as the zig-zag (ZZ) form of displacement fields
in the thickness direction. For an extensive review of the zig-zag effect, and development ideas to
capture this behaviour, see the summary by Carrera [3].

Classical theories originally developed for isotropic single-layer structures, such as Kirchhoff and
Mindlin-Reissner plate theories, have been extended for modeling of composites. These theories
utilizes plane stress assumptions, which is not always suitable for layered composites, since important
information about the transverse stresses are lost. Furthermore, laminated composites does in
general demonstrate anisotropic material behaviour with large ratios in mechanical stiffness properties
(EL/Ez ≈ 5 ∼ 40, i.e stiffness ratio between length and thickness directions is large). This means that
the transverse effects have a much larger influence on the solution (compared to isotropic material
cases) [3], making the plane stress assumption even more inapplicable.

Nevertheless, composite modeling techniques based on Mindlin-Reissner theory are still able to
accurately predict global characteristics such as deflection and in-plane stresses. In this approach,
the plies in the composite are homogenized through the thickness, and is therefore referred to as an
equivalent single layer model (ESL). These models are usually adequate for describing the behavior of
thin composite shells, however, they typically fail to accurately model moderately thick laminates [7].
As stated earlier, the transverse stresses predicted by ESL models are generally poor or non-existent.

A second common approach for modeling layered structures, is to use so-called layer-wise models
(LW). This means that a separate displacement field expansion is assumed within each layer. Moreover,
some LW-models ensure that the transverse stress components are compatible between layers [3]. The
direct benefits with this approach is that it is possible to capture the full three-dimensional stress
field, and fulfil IC and ZZ, which is not possible in traditional ESL models. However, LW models
leads to a large number of degree of freedom, drastically increasing the computational cost. Careful
consideration is therefore needed if information about transverse affects are important (LW), or if
in-plane information are adequate (ESL).

z

x, y

σxx(z)

(a) In-plane stresses

z

x, y

σzz(z)

(b) Transverse stresses

z

x, y

ux(z)

(c) Displacements

Figure 1.1: Examples of how the in-plane stresses, out-of-plane stresses and displacements vary through
the thickness for a laminate. The displacements and out-of-plane stresses are continuous over the
interfaces while the in-plane stresses are discontinuous.
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2 Layered solid-shell element

In this thesis, a solid-shell element refers to a solid continuum element with no rotational degrees
of freedom, and possess shell-like qualities. Solid-shell elements have some benefits over traditional
shells, to be more suited for three dimensional loading cases (due to an actuall thickness direction),
and easier stacking capabilities (placing elements on top of each other). They are also useful for
modeling shell-like portions of 3D structures without the need to connect solid element degrees of
freedom (translational) to shell degrees of freedom (rotational and translational).

2.1 General kinematics for the solid-shell element

Figure 2.1 shows a solid-shell element in the parent domain, where ξ, η, and ζ are natural coordinates
ranging from [−1, 1]. The element’s initial configuration,X, current configuration, x, and displacement,
u, can be represented in a isoparametric fashion as

X(ξ, η, ζ) =

Nu∑
i=1

Ni(ξ, η, ζ)X̂i, u(ξ, η, ζ) =

Nu∑
i=1

Ni(ξ, η, ζ)ûi, x(ξ, η, ζ) = X + u (2.1)

where Ni(ξ, η, ζ) is shapefunction i of the element, X̂i and ûi are nodal coordinates and displacements
of the element, respectively, and Nu is the number of nodes in the element. Note that this is the
same formulation as for standard solid/brick-elements.

By restricting the element to an hexahedron with only eight nodes, the common thick-shell
assumption is obtained, i.e normals to the mid-surface are assumed to stay straight during deformation.
The eight trilinear shapefunctions, Ni, are then expressed as

Ni(ξ, η, ζ) =
1

8
(1 + ξξi) (1 + ηηi) (1 + ζζi) , i = 1, 2, . . . , 8 (2.2)

The variables ξi, ηi and ζi are the parent corner-coordinates for the element in Figure 2.1. An
alternative way of representing the solid-shell configurations [20, 18], is as follows,

X(ξ, η, ζ) =
1

2
(1 + ζ)XT(ξ, η) +

1

2
(1− ζ)XB(ξ, η) (2.3)

where subscripts T and B denote the top and bottom surfaces, respectively. This formulation is
equivalent to that in Equation (2.1) in combination with Equation (2.2), however, defines ζ as the
preferred thickness direction.

Beyond the kinematic formulation presented in this section, solid-shell elements need to be able
to represent complete tri-linear strains [19]. Without this property, they will not be appropriate for
modeling thin structural components. The reason for this is explained in Section 2.3.

ζ η

ξ

Figure 2.1: A solid element in parent domain.
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2.2 Governing equations for solid-shell element

Two governing equations for a continuum solid will be used in this project. For simplicity, we restrict
the study to linear elastic material behaviour.

The principle of minimum potential energy

The well known principle of minimum potential energy is defined as

ΠP =

∫
V
W dV −

∫
V
b · u dV −

∫
S
t · udS (2.4)

where b is the body forces in a domain V , t is the traction on a surface S and u is the unknown
displacement field. W denotes the stored energy function, and can be calculated as

W =
1

2
ε : D : ε (2.5)

where D is the forth order elastic stiffness tensor of the material, and ε is a strain field.

The Hu-Washizu principle

The variational principle of Hu-Washizu (HW)1 is defined by the functional [17]

ΠHW =

∫
V
W − σ : (εu(u)− ε) dV −

∫
V
b · u dV −

∫
S
t · u dS (2.6)

where εu is the compatible strain field (dependent on the displacement field), ε is a independent
(unknown) strain field, and σ is the stress field,

εu(u) =
1

2
(∇⊗ u)sym , σ = D : ε (2.7)

HW is derived from the principle of minimum potential energy, see [10] for more information.

2.3 Locking phenomenas in FE-elements

Locking is a term describing the overestimation of the stiffness in a structure or element, leading to poor
prediction of the structural response. Solid elements with linear interpolation, as in Equation (2.2),
are especially susceptible to many locking phenomenas. Special precautions to remedy these problems
are therefore needed in order to obtain an element that is usable in analysis of shell like structures.
Below, some common locking phenomenas are described.

Volumetric locking. The so called volumetric locking effect, is the inability of elements to deal with
incompressible material behaviours (often encountered in rubber elasticity and metal plasticity) [11].
Simply put, for incompressible materials Poisson’s ratio will go towards 0.5, resulting in the bulk
modulus approaching infinity, which causes a singular stiffness matrix.

Poisson/thickness locking. This locking phenomena occurs in out-of-plane bending analyses
using solid elements. The underlying reason for this effect is the approximation on the displacement
field. A linear displacement approximation, will produce constant transverse normal strains through
the thickness, which will couple with the linearly varying in-plane strains due to the Poisson’s effect.
This causes a discrepancy between the transverse and in-plane strains, leading to overestimation of
the stiffness [11].

1Many articles refer to HW as a three field variational [18, 19], however in [10] it is shown that HW is a two field
variational formulation.
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Shear locking. Shear locking can be found in for example eight node solid elements and bilinear
Mindlin plate elements. The effect can be seen when considering a plate subjected to pure bending,
for which the out-of-plane shear stresses should be zero. However, the transverse shear strains cannot
vanish at all points within the element when it is subjected to pure bending, due to the linear
approximation of the out-of-plane displacements [4]. This causes the stiffness of the element to be
overestimated.

Trapezoidal/curvature locking The trapezoidal locking effect occurs when, for example, solid
element takes a trapezoidal shaped form, i.e the element edges in the thickness direction is not
perpendicular to the mid-surface [11]. The trapezoidal shape (that is unavoidable when modeling
curved structures), activates incompatible normal strains in the thickness direction, which may cause
the locking [8]. These shapes are unavoidable when modeling curved structures.

Membrane locking. Membrane locking describes curved element’s inability to exactly represent
pure bending deformations. This locking effect is seldom found in linear elements, while quadratic
elements show strong membrane locking. The membrane locking problem becomes more pronounced
as the thickness decreases [11].

The unwanted locking behavior in FE-elements has led to a lot of research in this area. Two effective
methods for eliminating or reducing locking behaviors are the Enhanced Assumed Strains (EAS)
method and Assumed Natural Strains (ANS) method. These are described below.

2.4 Enhanced Assumed Strains

The EAS method was first proposed by Simo and Rifai [23], and is an effective method for elimi-
nating some of the locking phenomenas described above. The key assumption in the method is the
enhancement of the strain field

ε = εu(u) + εA(α) (2.8)

where εu and εA are the compatible and enhanced strain fields, respectively, and α is a vector of
parameters representing the enhanced strain field. The EAS method emanates from the HW functional
in Equation (2.6). Using HW together with Equation (2.8), and taking the first variation δΠHW,
leads to the following three equations∫

V
δεA : (σε − σ) dV = 0 ∀δεA ∈ E∫

V
δσ : εA dV = 0 ∀δσ ∈ S (2.9)∫

V
δεu : σε dV −

∫
V
δu · b dV −

∫
Γ
δu · t dV = 0 ∀δu ∈ U0

where σε = ∂
∂εW (x, εu + εA) = D : ε, and where the following spaces have been introduced

U0 =
{
u ∈ H1(V ) | u = 0 on ΓD

}
(2.10)

E = {e ∈ L2(V )} (2.11)

S = {s ∈ L2(V )} (2.12)
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In the equation above, the spaces L2 and H1 are defined as

L2 =
{
v|
∫
V
|v|2 dV <∞

}
(2.13)

H1 =
{
v|
∫
V

[
|v|2 + |v ⊗∇|2

]
dV <∞

}
(2.14)

The enhanced strain field is computed by

εA = Gα (2.15)

where G is an interpolation matrix and where Voigt notation has been used. Two major conditions
are put on the enhanced strain field [23]:

• Condition (i). The enhanced strain field and the compatible strain field must be independent.
This is reasonable since, if the assumed strain field is to enhance the strain field, the compatible
strain field should not be included in E. In addition, it is assumed that the column of G are
linearly independent.

• Condition (ii). The spaces S and E are L2-orthogonal.

If the second criteria is fulfilled a priori, Equation (2.9)2 becomes identically satisfied, and the second
term in Equation (2.9)1 vanishes, leading to the reduced set of equations∫

V
δεA : σε dV = 0 ∀δεA ∈ E∫

V
δεu : σε dV −

∫
V
δu · b dV −

∫
Γ
δu · tdV = 0 ∀δu ∈ U0 (2.16)

Note that Equation (2.16) is only dependent on two fields, u and εA.

Choosing the interpolation matrix

The Voigt notation for the field variables are henceforth used for the presentation of the EAS-method,
i.e

ε =
[
εξξ εηη εζζ εξη εξζ εηζ

]T
(2.17)

Furthermore, the ζ-coordinate will denote the thickness direction. The interpolation matrix G is
evaluated as [23]

G =
detJ0

detJ
T 0M (2.18)

where J0 and J denotes the Jacobi matrices at the centre of the element and at a Gauss quadrature
point, respectively. T 0 is a transformation matrix for the strain tensor from parent domain to the
element coordinate system [18], and is explicitly written as

j2
11 j2

12 j2
13 2j11j12 2j11j13 2j12j13

j2
21 j2

22 j2
23 2j21j22 2j21j23 2j22j23

j2
31 j2

32 j2
33 2j31j32 2j31j33 2j32j33

j11j21 j12j22 j13j23 j11j22 + j12j21 j11j23 + j13j21 j12j23 + j13j22

j11j31 j12j32 j13j33 j11j32 + j12j31 j11j33 + j13j31 j12j33 + j13j32

j21j31 j22j32 j23j33 j21j32 + j22j31 j21j33 + j23j31 j22j33 + j23j32

 (2.19)

where jαβ , α = β = 1, 2, 3, are the components of the Jacobi matrix. The matrix M can be chosen in
multiple ways in order to eliminate different locking phenomenas. In [18], the interpolation matrices
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in Equation (2.20) and (2.21) are shown to eliminate transverse shear-locking, due to linear and
bi-linear enhacement of the transverse shear strains,

M (1) =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
ξ 0 ξη 0
0 η 0 ξη

 (2.20)

M (2) =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
ξ ζ 0 0 ξζ ξη 0 0
0 0 η ζ 0 0 ξη ηζ

 (2.21)

The extension of the linear ζ-terms in Equation (2.21) pays off when the solution for the strain distri-
bution provokes the linear part of the polynomials [18]. Furthermore, to eliminate thickness/Poisson’s
locking, the normal strain in the thickness direction can be enhanced with, cf. [9]

εAζζ =



0 0 0 0
0 0 0 0
ζ ζξ ζη ζηξ
0 0 0 0
0 0 0 0
0 0 0 0

 (2.22)

In [17], the following matrix was shown to produce good results for membrane and out-of-plane
bending analyses

M (3) =



ξ 0 0 0 0 0 0 0 0
0 η 0 0 0 0 0 0 0
0 0 ζ ξζ ηζ ξηζ 0 0 0
0 0 0 0 0 0 ξ η ξη
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

 (2.23)

Since the latter matrix does not enhance the transverse shear strains, shear locking would still exist.
Therefore, one can add terms to the transverse shear strains, or use the ANS method; this is described
next.

2.5 Assumed Natural Strains

The ANS method was first proposed by Bathe and Dvorkin [5], motivated purely from engineering
intuition. The method was later variationaly justified through the Hu-Washizu principle in [13, 14].
The key point in the ANS method, lie in the assumed interpolation of certain strain components. In
order to circumvent transverse shear locking, the following interpolation of the compatible transverse
shear strains can be used

εANS
ξζ =

1

2

(
(1− η)εA

ξζ + (1 + η)εC
ξζ

)
(2.24)

εANS
ηζ =

1

2

(
(1− ξ)εD

ηζ + (1 + ξ)εB
ηζ

)
(2.25)
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where εA
ξζ , ε

B
ξζ , ε

C
ξζ and εD

ξζ are the transverse shear strains at four sampling points, see Figure 2.2 and
Table 2.1.

Furthermore, in order to relieve curvature locking, the following interpolation scheme has proven
to be effective, cf. [1]

εANS
ζζ =

1

4
((1 + ξ)(1− η)εE

ζζ + (1− ξ)(1− η)εF
ζζ+ (2.26)

(1 + ξ)(1 + η)εG
ζζ + (1− ξ)(1 + η)εH

ζζ) (2.27)

where εE
ζζ , ε

F
ζζ , ε

G
ζζ and εH

ζζ are the transverse shear strains at four sampling points, see Figure 2.2
and Table 2.1.

A

B

C

D

E F

GH

ξ

ηζ

Figure 2.2: The location of the sampling points A-F used in ANS.

Table 2.1: Sampling points A-F for ANS method

Point A B C D E F G H

(ξ, η) (0, -1) (1, 0) (0, 1) (-1, 0) (-1, -1) (1, -1) (1, 1) (-1, 1)
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3 Methods for transverse stress prediction in solid-shell

elements

As described in the previous sections, predicting the transverse stresses are of particular interest when
modeling layered composites, and doing so in an efficient manner. Three approaches in obtaining
these stresses is presented in the sections below. The first method is based on enhancing the stress
and strain fields with additional degrees of freedom. The second method recovers the transverse
stresses in a post-processing step, using the equilibrium equations. The final method, is the straight
forward approach of modeling the composite with multiple solid or solid-shell elements through the
thickness, thereby obtaining a high resolution of the transverse stresses.

3.1 Enhancement of strains and stresses

By enhancing the eight node solid-shell element with higher order stress and strain fields, the element
is given extra flexibility which may improve the transverse stress prediction. The goal of this modeling-
technique is to only require one element through the thickness for a layered composite, thereby keeping
the computational cost low. This element formulation can therefore be classified as an ESL element.
No similar approach can currently not be found in the literature, and is therefore developed in this
project.

With the EAS-method (Section 2.4) as a starting point, a variational formulation, with displace-
ments, strains and stresses as independent fields, is developed. The equations in the EAS method
contains only two fields, the displacement and assumed strain field. In order to include a higher
order variability for the stress field, a third equation is required. The proposed three-field variational
formulation is∫

V
δεA : σε dV = 0 ∀δεA ∈ E∫

V
δεu : σ dV −

∫
V
δu · b dV −

∫
Γ
δu · t dV = 0 ∀δu ∈ U0 (3.1)∫

V
(σn − σε

n) : δσ dV = 0 ∀δσ ∈ S

The third equation describes a least squares fit between the transverse stress components σn ={
σzz σxz σyz

}
and the compatible transverse stress components σεn. The in-plane stress components,

σp =
{
σxx σyy σxy

}
are still obtained from the constitutive material relation, i.e σp = σεp.

Furthermore, σ =
{
σp σn

}
is exchanged for σε in Equation (3.1)1 (compare with Equation (2.16)1),

to ensure the stress field fulfils equilibrium. Henceforth, subscripts n and m denotes transverse and
in-plane components, respectively.

Finite element formulation The discretization of Equation (3.1) is performed as follows. Consider
a layered composite with NL layers. The volume integral over an element can then be rewritten as a
sum of integrals over each ply ∫

V
• dV =

NL∑
i=1

∫
Vi

•dV (3.2)
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In order to avoid performing the FE-formulation in Voigt format, the independent variables, and their
corresponding variations, are approximated in tensor form as

u(x) =
Nu∑
i=1

N i · (a)i δu(x) =
Nu∑
i=1

N i · (δa)i

εA(x) =

Nε∑
i=1

Gi · (α)i δεA(x) =

Nε∑
i=1

Gi · (δα)i (3.3)

σn(x) =
Nσ∑
i=1

P i · (β)i δσn(x) =
Nσ∑
i=1

P i · (δβ)i

where a, α and β are vectors containing nodal values, and (•)i is the i:th component of the vector.
Furthermore, N i are first order tensors consisting of the standard tri-linear shape functions defined
in Equation (2.2). Gi are the tensor representation of the interpolation matrix in the EAS method,
see Equation (2.18). Finally, P i are second order tensors defining the interpolation for transverse
stress components. In this thesis, σp is chosen to vary quadratic within each layer in the element.

From the approximation of the independent variables in Equation (3.3), the compatible stress and
strain fields can be computed as

εu = [∇⊗ u]sym =

Nu∑
i=1

[∇⊗N i]
sym · (a)i =

Nu∑
i=1

Bi · (a)i

σε = D : (εA + εu) = D :

( Nα∑
i=1

Gi · (α)i +
Nu∑
k=1

Bk · (a)k

)
(3.4)

where [•]sym denotes the symmetric part of the tensor. Inserting Equation (3.4), (3.3) and (3.2)
into Equation (3.1), the following equations are obtained,

∫
V
δεA : σε dV =

Nε∑
i=1

(δα)i

( Nε∑
j=1

(C)ij(α)i +

Nu∑
k=1

(δα)i(A)ik(a)k

)
= 0 (3.5)

∫
V
δεu : σ dV =

Nu∑
i=1

(δa)i

( Nσ∑
j=1

(K)ij(β)k +
Nε∑
k=1

(S)ik(α)k +
Nu∑
l=1

(U)il(a)l

)
= F ext (3.6)

∫
V

(σn − σε
n) : δσ dV =

Nβ∑
i=1

(δβ)i

( Nβ∑
j=1

(Q)ij(β)k −
Nu∑
k=1

(R)ik(a)k −
Nε∑
l=1

(L)il(α)l

)
= 0 (3.7)

where F ext is the regular external force vector, and where

(C)ij =

∫
V
Gi : D :Gj dV, (A)ik =

∫
V
Gi : D :Bk dV (3.8)

(K)ij =

∫
V
Bi : P j dV, (S)ik =

∫
V
Bi : D :Gp

k dV, (U)il =

∫
V
Bi : D :Bp

l dV (3.9)

(Q)ij =

∫
V
P i : P j dV, (R)ik =

∫
V
P i : D :Bn

k dV, (L)il =

∫
V
P i : D :Gn

l dV (3.10)

Using the equations above, the variables a, α and β can be computed. Since α and β are discontinuous
over element boundaries, a static condensation procedure can be performed.
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3.2 Stress recovery

As mentioned in the introduction, many elements based on ESL theory are adequate for predicting
in-plane stresses, but fails to give reasonable results for the transverse stresses. One way of resolving
this, is to utilize stress recovery in a post-processing step. A review of different stress recovery
approaches can be found by e.g. Carrera [2] as well as Noor and Malik [16]. In this thesis, the
transverses stresses are recovered from the equations of equilibrium (body forces excluded),

σxx,x + σxy,y + σxz,z = 0

σyy,y + σxy,x + σyz,z = 0 (3.11)

σxz,x + σyz,y + σzz,z = 0

where (•),α denotes the derivative with respect to α = x, y, z. If the in-plane stress gradients are
known, the transverse stress components can be obtained from Equation (3.11) above. Integration
from e.g the bottom of the laminate, leads to three expressions

σxz = −
NL∑
n=1

∫ zn

zn−1

σxx,x + σxy,y dz + Cx

σyz = −
NL∑
n=1

∫ zn

zn−1

σyy,y + σxy,x dz + Cy (3.12)

σzz =
NL∑
n=1

∫ zn

zn−1

∫ zn

zn−1

σxx,xx + σyy,yy + 2σxy,xy dz dz + Cz1z + Cz2

The equation for the transverse shear stress in Equation (3.12)1 (and Equation (3.12)2), contains one
integration constant, Cx, which is determined from the two boundary conditions at the top and the
bottom surfaces. This means that only one boundary condition can be enforced. This can be handled
by distributing the potential error evenly between the two boundaries, as suggested in [6]. In this
work the constant is determined from the bottom boundary (for simplicity).

Due to the fact that the transverse stresses are recovered a posteriori, they become incompatible
with the corresponding transverse strain components. In fact, the transverse strains still remain
inaccurate. This means that the information obtained from stress-recovery can only be used for
predicting damage initiation, and not to describe (for example) material evolution laws, since these
laws are generally based on the compatible strains.

The stress recovery in Equation (3.12) is based on the gradients of the in-plane stresses within
an element. Unfortunately, the linear displacement assumption in eight node solid elements, limits
these stresses to be constant over the element (leading to zero gradient). A method of estimating the
gradients of the in-plane stresses are therefore needed. A review of three such methods are presented
below.

3.2.1 Least square fit method

One method of obtaining non-zero gradients of the in-plane stresses, is to least square fit a continuous
function, say σLSF, to the compatible stress field σε. This could be performed over all elements in
the FE-model, or on local element patches. The mathematical formulation of the least square fit
approach can be formulated as,

σLSF = arg
(
min Π

)
, Π =

1

2

∫
V

(σLSF − σε) : (σLSF − σε) dV (3.13)
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The benefits with this approach is that it is simple and straight forward. If the least square fit
procedure is performed on specific patches/areas on the model where the transverse stresses are of
interest, only a small number of elements needs to be handled, and the method can be considered to
be computationally efficient.

3.2.2 Mixed stress-displacement formulation

By using a mixed stress-displacement formulation, the in-plane stresses will be continuous between
elements, leading to non-zero gradients. A mixed stress-displacement formulation is derived from the
weak form of the equilibrium and constitutive equations, and is presented below∫

V
σ : δεu dV =

∫
V
f · δudV +

∫
S
t · δu dS (3.14)∫

V
(εu −D−1 : σ) : δσdV = 0

If the stresses are assumed to vary linearly within each element, the same interpolation and mesh as for
the displacement can be used. This means that six additional degree of freedoms, σxx, σyy, σzz, σxy, σxz
and σzx, would be added to each node in the element. This would make it much more computationally
expensive compared to standard displacement-based solid elements, but with the added benefit of
obtaining continuous stress field without post-processing. Although this approach sounds promising,
unwanted effects arises in the results. More specifically, the obtained stress-field is of low quality near
boundaries, making it unusable at these areas.

3.2.3 Assuming cylindrical bending

In [22], an estimation of the in-plane stress gradients for an element are obtained by assuming
cylindrical plate bending. A brief explanation of the theory is explained below. The equilibrium
equations in plate bending relates the moments M with the shear forces T , and can be written as

Txz = Mxx,x +Mxy,y Tyz = Myy,y +Mxy,x (3.15)

If cylindrical bending is assumed, then Mxy,y and Mxy,x are zero, and the gradient of the moments
can be evaluated from the shear force. Furthermore, the relationship between the strains and sectional
forces from classic lamina theory, can be written as,[

N
M

]
=

[
A B
B D

] [
ε0

κ

]
giving

[
N ,α

M ,α

]
=

[
A B
B D

] [
ε0,α

κ,α

]
, α = x, y (3.16)

where the introduced variables may be found in any book describing classical laminate theory. In [22],
it is also assumed that the Mxx,x and Myy,y are the dominating parts in the force and moment vectors,
which leads to the simplification[

N ,x

M ,x

]
=
[
0 0 0 Mxx,x 0 0

]T
,

[
N ,y

M ,y

]
=
[
0 0 0 0 Myy,y 0

]T
(3.17)

By inverting the ABD-matrix in Equation (3.16), the gradient of the strains can be obtained, which
can be inserted into Hooke’s law to finally obtain the desired in-plane stress gradients,

σ = Dε giving σ,α = Dε,α (3.18)

Furthermore, an additional shear correction factor may be needed in order to compensate for the
inaccurate shear forces predicted by most shell elements. The shear correction factor is based on the
materials and layup for the composite. This approach has demonstrated good results in [22].
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3.3 High resolution through the thickness using solid or solid-shell
elements

A straight forward approach of modeling layered composites, is to use a large number of solid elements,
where one or more solid elements can be used to resolve each laminae in the composite. This means
that a high resolution through the thickness of the material is obtained, and the complete stress field
can be resolved. The direct disadvantage of this is computationally inefficiency, due to a large number
of degree of freedoms.

Traditionally, if this approach is used, the composite structure in question would be modeled with
brick-elements. A possible improvement in efficiency would be to use solid-shell elements instead
because solid-shell elements allows for a larger aspect ratio for each element without the loss of
accuracy. This means that a coarser discretization can be used, with fewer degrees of freedom.

Note that this approach does not qualify as an ESL model, however, can be seen as a simplified
LW-model.
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4 Numerical examples

In this section, the performance of the solid-shell elements presented in Section 4.1, are assessed
and compared. The first two examples investigates the elements abilities to represent the correct
displacement for various loading cases. This will give an indication if different locking phenomenas
has been eliminated (or if they persist). The remaining examples examines the elements abilities to
predict the stress distribution in laminated composites.

4.1 Description of considered solid-shell elements

Using the theory presented in this thesis, various elements are constructed. Two interesting questions
to investigate are

1. How different interpolation matrices in the EAS-method (for example Equation (2.20) or (2.21))
and/or in combination with the interpolation from the ANS-method, affects the behaviour of a
solid-shell element.

2. The efficiency and performance of the three methods for predicting the transverse stresses, as
described in Section 3.

Based on the points above, the following elements are constructed.

Ss8 Standard eight node solid element. This elements is used as a reference to show the improvements
obtained with the solid-shell elements.

SS8x A solid-shell element with the stress, strain and displacement as independent field variables,
as described in Section 3.1. Quadratic interpolation of the stress-field in each layer is used. The
strains are enhanced with the interpolation matrix in Equation (2.20).

SSE1 and SSE2 Solid-shell elements with enhanced strains using the interpolation matrices
in Equation (2.20) and (2.21). (Note that these elements will not be used in examples where the
stress prediction is of interest. Only the performance in deflection analyses will be investigated).

SSRA3E3 A solid-shell element with ANS interpolation for the transverse shear and normal strains,
see Equation (2.24) and Equation (2.26). The remaining strain components are enhanced according
to the EAS-matrix in Equation (2.23). The transverse stress components in the material are obtained
using the stress recovery approach as described in Section 3.2.

SSsA3E3 The same as SSRA3E3, but the stress field is obtained by using multiple elements through
the thickness.

The abbreviations of the elements above can be read as follows; S (Solid), SS (Solid-Shell), s
(stacked, one or multiple elements through the thickness is used to obtain transverse stresses), R
(stress recovery used to obtain transverse stresses), E1 (EAS-method with interpolation matrix 1)
and A1 (ANS-method with interpolation 1).
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4.2 Simply supported plate with uniform load

This example investigates the solid-shell elements abilities to predict out-of-plane bending. A simply
supported plate subjected to a uniform load is considered, see Figure 4.1a. The aspect ratio of the
plate is such that the length to width to height ratio is 100:100:1. The uniformly distributed load,
q0, acts in the negative direction on the top surface. The material used is a unidirectional fibrous
composite with transversely isotropic plies, with the following parameters,

EL = 174.6 GPa, ET = 7 GPa, GLT = 3.5 GPa, GTT = 1.4 GPa, νLT = 0.25 (4.1)

where subscripts L (x-direction) and T (y-direction) denotes the longitudinal and transverse directions
to the fibres, respectively. The deflection at the middle of the plate, x = L/2, y = L/2, is studied for
different cross-ply layups,

[0◦ / 90◦ / 0◦], [0◦ / 90◦ / 0◦ / 90◦]S , [0◦ / 90◦ / 0◦ / 90◦]2S

Navier’s analytical solution is used as a reference [21]. The plate is discretized into 11x11 elements
in-plane, and one element out-of-plane. Results from a traditional shell elements using classic laminate
plate theory (CLPT) is also presented (which is known to produce good results and is commonly used
when analysing composite plate problems).

The deflections for the studied elements are presented in Table 4.1, where it can be seen that
all elements produce good results. Element SSE1 and SSE2 performs similarly, indicating that the
additional EAS-parameters, ζ, ηξ and ηζ, used in element SSE2, does not contribute to the overall
solution. Furthermore, SSRA3E3 is closest to the analytical solution, and show good agreement
with the CLPT -element. From this, one can conclude that all major locking phenomenas have been
eliminated, in the case of a simply supported plate.

Table 4.1: The deflections, w, and relative error for a simply supported plate with cross-ply layup,
predicted by the solid-shell elements.

Layup [0◦ / 90◦ / 0◦] [0◦ / 90◦ / 0◦]S [0◦ / 90◦ / 0◦ / 90◦]2S

w Rel. error (%) w Rel. error (%) w Rel. error (%)

SS8x 0,9319 2,2500 0,9576 2,6324 0,9589 2,6555
SSE1 0,9319 2,2500 0,9576 2,6324 0,9589 2,6555
SSE2 0,9319 2,2500 0,9576 2,6323 0,9589 2,6555
SSRA3E3 0,9343 2,0012 0,9600 2,3895 0,9613 2,4136
CLPT 0,9343 2,0012 0,9600 2,3880 0,9613 2,4114
Navier (ref.) 0,9534 - 0,9835 - 0,9851 -

4.3 Curved beam with edge load

This example is used to asses the behaviour of solid-shell elements in analyses of curved structures.
The dimensions and load of a semi-circular beam can bee seen in Figure 4.1b. The beam consists of a
isotropic material with the following Young’s modulus and Poisson’s ratio

E = 10 MPa, ν = 0.25 (4.2)

To asses the convergence rate for the different element types, the vertical tip displacement is analyzed
with respect to four different discretizations; 10, 20, 40 and 60 elements (along the beam). An
analytical solution for the problem is presented in [12] (0.08734 m), and acts as a reference solution.
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The vertical tip displacement, normalized with the reference solution, is plotted in Figure 4.2. Ele-
ment SSRA3E3 show good agreement with analytical result, when 40 elements are used. Furthermore,
SSE2 performers better than SSE1, where the extra enhancement parameters contributes slightly to
the results. These elements does not converge to the analytical solution, indicating that some locking
phenomenas are, most likely, still present. One can also note that SSE1 and SS8x produce identical
results, since they implement the same EAS-parameters.
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Figure 4.1: Dimensions and loads defined for the structures in the first two examples.
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Figure 4.2: Convergence check for some solid-shell elements in a curved structure. Normalized
deflection plotted vs. different dicretizations.

4.4 Stress prediction in a cantilever beam with uniform load

This example investigates the ability of SSRA3E3 and SS8x to predict the stress state in a thin
cantilever beam with a uniformly distributed load, see Figure 4.5a. The beam is analyzed with two
materials, one isotropic and one fibrous composite with transversely isotropic material. The isotropic
material is mainly used for simple validation against analytical solutions from Euler-Bernoulli beam
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theory. The reference solution, for the transversely isotropic material, is a high fidelity mesh with
standard solid elements. The aspect ratio of the beam is such that the length to width to thickness
ratio is 100:10:1. The beam is discretized using 11 elements along the beam. The three stress
components with largest magnitude, σxx, σxz and σzz, at the center of the beam (x = L/2, y = Z/2)
are considered.

4.4.1 Homogeneous beam

The elastic material is parameters are (Young’s modulus, E, and Poisson’s ration ,ν)

E = 200 GPa, ν = 0.3 (4.3)

The resulting stresses can be seen in Figure 4.3. Both elements predicts σxx and σxz accurately,
however, SS8x is not able to evaluate σzz in a correct manner.

4.4.2 Laminated beam

The fibrous composite beam consists of a [0◦ / 90◦ / 0◦] layup, and the material properties defined
in Equation (4.1). The stresses predicted by the elements SS8x and SSRA3E3 can be seen in
Figure 4.4. Once again, SSRAE3 predicts all stress components accurately, however, element SS8x
produces inaccurate results for σxz and σzz (σzz has been scaled by a factor 100, to fit in the plot).
Since this element have not been able to accurately predict the transverse stress components, not
even for simpler cases, it is not considered in the proceeding studies.
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Figure 4.3: Predicted stresses in a cantilever beam subjected to uniform load with isotropic material.
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Figure 4.4: The stresses in a cantilever beam subjected to uniform load with a fibrous composite
material with layup [0◦ / 90◦ / 0◦].
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4.5 Stress prediction in simply supported plate with uniform load

The aim of this example, is to investigate the accuracy of the stresses predicted by SSRA3E3, and
the possible benefits of using SSsA3E3 over Ss8 (i.e stacking of solid-shell or brick elements)

A simply supported plate is considered, with dimension and loads defined in Figure 4.5b. The aspect
ratio of the plate is such that the length to width to thickness ratio is 20:20:1. The material is a fibrous
composite with transversely isotropic layers, with material parameters defined in Equation (4.1). The
layup is [90◦/45◦/-45◦/0◦]. As a reference solution, a high fidelity mesh using element SSsA3E3 is
used.
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(a) Cantilever beam.
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(b) Simply supported plate.

Figure 4.5: Dimensions for a cantilever beam and simply supported plate.

Performance of SSRA3E3

The mesh used to asses the performance of SSRA3E3 is 61 by 61 in-plane, and 1 element in the
thickness direction. The stress distribution through the thickness is analyzed at the material point
x = A/4, y = B/4. The results are presented in Figure 4.6. The element does an excellent job
predicting all stress components accurately. Note that only the boundary condition on the bottom
surface for σzz is enforced.
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Figure 4.6: The stress distribution through the thickness predicted by SSRA3E3, in a simply supported
plate with layup [90◦/45◦/-45◦/0◦].
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Performance benefits with SSsA3E3 over Ss8

Solid-shell elements perform good for larger element aspect-ratios, and the benefits of SSsA3E3
over Ss8 is therefore of interest to study. For this reason, the plate is analyzed with three different
discretizations, to investigate the structural response for different element aspect ratios. The different
mesh sizes used are; 6x6x20, 15x15x20 and 30x30x20 elements in-plane (5 elements per ply).

The maximum deflection, at x = A/2 and y = B/2, for Ss8 and SSsE3A3 is presented in Table 4.2.
It can be noted that Ss8 approaches the reference solution much slower than SSsE3A3. The predicted
stresses for both elements are presented in Figure 4.7-4.9. The results are summarized as follows:

• SSsA3E3 accurately predicts the in-plane stresses, even for the coarsest mesh. Ss8 underestimate
the in-plane stresses.

• SSsA3E3 accurately predicts the deflection for all discretizations, however requires a fine mesh
in-plane, to represent the transverse stresses correctly.

• Ss8 accurately predicts the transverse stresses if a fine mesh is used, even though the maximum
deflection has not fully converged.

• Ss8 appears to oscillate in the prediction of σzz, which might arise due to thickness locking.
SSsA3E3 eliminates this behaviour from the enhancement of the EAS interpolation, however,
this does not affect the average magnitude in the solutions.

Table 4.2: The normalized deflection and relative error predicted by solid-shell elements, for a simply
supported plate with composite material. The maximum deflection from the reference solution is
4, 2502 · 10−6 m.

Mesh 6x6x20 15x15x20 30x30x20

w [µm] Rel. error(%) w [µm] Rel. error(%) w [µm] Rel. error(%)

Ss8 2,1508 49,39588 3,6340 14,49987 4,0696 4,25034
SsA3E3 4,0338 5,09257 4,1716 1,84983 4,2287 0,50769

4.6 Stress distrubution in a curved beam

In this example, we revisit the curved beam in Section 4.3 (see Figure 4.1b). The cross sectional
normal stress, σξξ, on the inside of the beam is analyzed. The beam is dicretized with 60 elements
along the beam, and with 1 element through the thickness. The reference solution is a high fidelity
mesh of Ss8 elements.

The results can be seen in Figure 4.10, where σξξ is plotted against the angle θ. The results are
summarized as follows

• SSRE3A3 predicts a waviness in the normal-stress, which is not in agreement with the reference
solution. Recall from Section 4.3, that the solution accurately predicts the displacement, and
this waviness can therefore not be attributed to a discritization error.

• SSE2 Shows good agreement with the reference solution (recall from the convergence check
in Section 4.3, that SSE2 has fully converged, but does not approach the reference solution
exactly).

From this, it can be concluded that SSRE3A3 is not a robust element.
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Figure 4.7: The predicted stresses by Ss8 and SSsA3E3, in a simply supported plate with fibrous
composite material with layup [90◦/45◦/-45◦/0◦]. The plate is discretized into 6x6x20 elements.
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Figure 4.8: The predicted stresses by Ss8 and SSsA3E3, in a simply supported plate with fibrous
composite material with layup [90◦/45◦/-45◦/0◦]. The plate is discretized into 15x15x20 elements.

20



−1,000 −500 0 500 1,000
−0.5

−0.25

0

0.25

0.5

σxx/q0

z
/h

−200 −100 0 100 200
−0.5

−0.25

0

0.25

0.5

σyy/q0
z
/h

Ref. SSsA3E3 Ss8

−2 −1 0 1 2
−0.5

−0.25

0

0.25

0.5

σzz/q0

z
/
h

−200 −100 0 100 200
−0.5

−0.25

0

0.25

0.5

σxy/q0

z
/h

−10 −5 0 5 10
−0.5

−0.25

0

0.25

0.5

σxz/q0

z
/h

−4 −2 0 2 4
−0.5

−0.25

0

0.25

0.5

σyz/q0

z
/
h

Figure 4.9: The predicted stresses by Ss8 and SSsA3E3, in a simply supported plate with fibrous
composite material with layup [90◦/45◦/-45◦/0◦]. The plate is discretized into 30x30x20 element.
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Figure 4.10: Normal stress σξξ in a curved beam, predicted by different solid/solid-shell elements, with
1 element through the thickness of the beam.
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5 Discussion and conclusions

In this thesis, different solid-shell elements with increased transverse stress predication capabilities have
been developed and investigated. The main scope of the thesis was: eliminating locking phenomenas
experienced by eight node solid elements and efficiently predicting the transverse stress components
in layered composites.

Two method of eliminating the locking-effects was implemented, the enhanced assumed strains
(EAS) and assumed natural strains (ANS) methods. The most effective solid-element developed,
utilized a combination of the two methods. This element, denoted SSRA3E3 (and SSsA3E3 ),
provided accurate and efficient predictions of the deflections, for planar plate and curved structures
(see section 4.1 and 4.3). SSRA3E3 also predicts the stress distribution in flat beam and plate
examples accurately. However, when SSRA3E3 was used to predict the normal stress in a curved
beam, the element performed poorly as shown by a waviness in the stress prediction (see Section 4.6).
From this it can be concluded that the element is not very robust. It is still unclear what causes the
element to perform poorly. One theory is that the strain field in the element is heavily modified,
which might be an advantage for prediction of the deflection, but not for the stresses.

One solid-shell element that performed good in the curved beam stress analysis was SSE2. However,
from the deflection analyses, it can be seen that the element still exhibit some locking.

SSRA3E3 contains 24 translational degrees of freedom, and 9 internal EAS-parameters; and is
therefore slightly more computationally heavy compared to traditional brick elements. The 9 internal
parameters can be removed through a static condensation procedure, meaning that implementing the
element in a commercial software would be a straight forward task.

Three methods to predict the full 3D stress field of a composite material has been presented. The
first method was based on equivalent single layer models, where the stresses and strains was enhanced
in hope of obtaining better results. The element using this method, denoted SS8x, was shown to give
poor results, even for simpler numerical examples. If this type of enhancement-approach is possible,
the main challenge is to find a suitable variational formulation with allows for independent variation
of the stress, strain and displacement field. The three-field variational formulation developed and
used in this thesis, included a least square fit of the compatible stress field, and was the underlying
cause behind the inaccurate results. It is unclear if a different formulation would yield better results.

The second approach, also being an equivalent single layer element, recovered the transverse
stresses in a post-processing step. This provided very accurate results in an efficient manner. The
main challenge in this approach, is to obtain the gradients of the in-plane stresses (which are typically
zero in the eight node solid-shell/brick elements). This can be resolved using different techniques,
and the one used in this thesis was a simple least square fit of the compatible stresses onto the nodes,
on the structural level. This is a relatively efficient approach, and provides sufficient approximations
of the in-plane stress gradients.

A second method to approximate the in-plane stress gradients, which has not been investigated in
this thesis, is described in [22], and is based on the assumption of cylindrical bending in plates, see
Section 3.2.3. The transverse shear stresses are recovered using information about the sectional shear
force, without requiring information from the neighboring elements. However, there is often a need
for a shear correction factor, to accommodate for the slightly inaccurate shear-stresses predicted by
solid and shell elements.

The use of the stress-recovery approach is somewhat limited. The information of the recovered
transverse stresses can be used as input to a damage criteria to predict damage initiation, such as
delamination. However it is not suitable to use the information for damage evolution or material
evolution laws, since these are generally based on the strains, which are still inaccurate (in the
transverse direction).

The third and last method for better transverse stress prediction, uses multiple solid-shell element
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through the thickness of the material. In this thesis, a study of the benefits of using solid-shell
elements over standard brick elements was presented. This is discussed in Section 4.5, where it
is concluded that solid-shell elements (SSsA3E3 ) can utilize a coarser discretization compared to
brick-elements (Ss8 ) when predicting out of plane displacement. Note however, that this approach
requires a fine discretization to accurately predict the transverse stresses.

5.1 Outlook

To further analyze the robustness of the solid-shell elements developed, they should be validated
against more complex geometries and loading cases. If they are able to produce results that show
good agreement with standard shell-elements used today, the solid-shell elements can be considered
usable in industrial applications. One weakness of SSRA3E3 that appeared in the thesis, was the
poorly predicted σyy. Methods of solving this problem needs to be investigate further.

As of now, the stress recovery method is only applied in static problems. In order to incorporate
this method in dynamic analyses, for example in crash analyses, further development is needed.
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