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Building a Linux Distribution for Space Computers
Lina Lagerquist Sergel & Gustav Pettersson,
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract
Computer platforms used in mission- or safety-critical applications are often de-
signed to support execution of hard real-time tasks. Linux has traditionally not
been used as a real-time operating system for these applications but has become a
more viable option within recent years.

In this thesis, we explore how embedded Linux distributions can be built to be
used as a real-time operating system for space computers. We compare how the
build systems Yocto Project and Buildroot can generate the components required
to boot Linux on two reference design boards provided by RUAG Space. By using
the benchmark tools cyclictest and lat_ctx we evaluate the latency of response
to an interrupt and context switching latency. This is done for two builds on one
of the reference design boards. Further, we provide pointers on how an implemen-
tation can be made on RUAG Space’s custom space computer, and discuss what
components should be included in such a build.

Based on our benchmark results, we conclude that a Linux kernel equipped with
the PREEMPT_RT patch has an improved deterministic behaviour. The patched
kernel compared to a basic version of the kernel has a reduced maximum latency
when reacting to an interrupt. The patched kernel also has a more consistent increas-
ing context switching latency based on the number of involved processes. Regarding
the build systems we can, through our observations, conclude that Buildroot is more
user-friendly than Yocto. However, we perceive that Buildroot can be more limiting
because of its reduced complexity and available packages.

Keywords: Linux, PREEMPT_RT, cyclictest, rt-tests, LMbench, Yocto Project,
Buildroot, RTOS
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1
Introduction

When launching computers into space there are many design options to take into
consideration. One cannot simply take a standard off-the-shelf computer, plug it into
a satellite and launch it into space. Just like with cars or aircraft, it is not desirable
that the computers sent into space fail or experience lag. Computer failures can
have devastating consequences in this kind of systems. This is where Real-Time
Systems comes in, where not only the logical correctness of the system is important,
but also at what time the results are generated.

The term ”real-time” can be distinguished as soft and hard real-time [1]. Examples
of soft real-time could be applications on your desktop that are controlling the video
or sound where minor inaccuracies are acceptable. Hard real-time could for example
be applications that run on safety-critical platforms, for instance in cars or planes
where there is no room for hiccups.

Platforms that execute critical tasks traditionally uses a Real-Time Operating Sys-
tem (RTOS) [2]. A prime example of an RTOS is VxWorks, which has been used
extensively for space application where timely delivery of results can be paramount
for mission success [3]. Linux is today used in various types of systems but has not
been a natural choice as an RTOS, since the focus is mainly on desktop and server
use. This is changing since there is an interest in the market, partly because of the
lucrative aspects of Linux. It has for instance been widely used by SpaceX for their
on-board computers on their satellites and rockets [4, 5].

The work reported in this thesis was carried out in collaboration with RUAG Space
(from now on referred to as RUAG) which is a leading supplier of products for
the space industry in Europe [6]. We had access to their guidance and hardware
throughout our thesis project.

1.1 Purpose & Scope

The goal of this thesis project was to study the feasibility to use Linux as a RTOS
for space computers. This was done by investigating if, and how an implementation
could be made on two Reference Design Boards (RDB) provided by RUAG. The
research questions addressed in this thesis are:
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1. Introduction

1. Is Linux suitable for a platform that must ensure hard real-time requirements?

2. What components are suitable to use when building a Linux distribution for
space computers?

3. Does the PREEMPT_RT patch for Linux improve the deterministic behaviour
for interrupt latency and task switching latency?

There are many open source tools available for building a Linux distribution for a
given hardware platform. We conducted two tests to evaluate the real-time proper-
ties of the Linux kernel in this thesis. These tests are limited to factors that affect
the performance of the operating system. This thesis does not provide a finished
product, but rather documentation and a pointers to how further development can
be made.

1.2 Structure
The remainder of the thesis is organized as follows. The gathered background theory
based on an initial literature study is presented in Chapter 2. In Chapter 3, we
describe several attempts to produce a Linux distribution for the two RDBs provided
by RUAG. In the same chapter, we present results of the benchmark tests conducted
on one of the RDBs called LS1046ARDB. In Chapter 4, we provide guidelines for
how a custom-built Linux distribution can be implemented on one of RUAG’s space
computers. The contents of this report is discussed in Chapter 5 and lastly, we
conclude by reflecting upon our work in Chapter 6.
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2
Background

This chapter describes fundamental concepts and background information, which
serves as a foundation for the rest of thesis. First, we give a short introduction
to space computers, Operating Systems (OS) and RTOS. We then discuss Linux
and its use as a RTOS. We also discuss how Linux distributions can be built for
embedded platforms. Finally, we provide an overview of the Linux tools we selected
for our investigations.

2.1 Space Computers
Computers installed in mobile objects such as spacecrafts are called on-board com-
puters [7]. An example of why these are not too similar to normal desktop com-
puters is because of the unique aspect that computers in space are susceptible to
errors caused by cosmic radiation [8]. This could traditionally be dealt with by
using radiation-hardened components [9]. An alternative solution has been applied
by SpaceX which rather uses Commercial-Off-The-Shelf (COTS) technology. COTS
is merchandise that is available for sale and not specifically tailored for the fin-
ished product. This technology brings advantages such as reduced development
time, simplified supply-chain, and cost efficiency [10]. Using COTS, SpaceX focuses
on the creation of a radiation-tolerant design for a system such as redundancy in
computation [5].

These On-Board Computers do not run a typical OS such as Windows 10, since they
are not intended for plugging in a monitor and provide a friendly user experience.
It may vary, but the focus rather lies in OSs that are reliable, deterministic, and
secure. These are typically referred to as RTOS, which we discuss in Section 2.3.

2.1.1 RUAG’s On-Board Computers
Two of RUAG’s on-board computers in development are the constellation On-Board
Computer (cOBC), and the Lynx. Both of these are based on COTS technology.
The focus is this thesis is two RDBs, the P2020RDB and LS1046ARDB, which uses
the same processor as the cOBC and Lynx respectively. An RDB can be used to
quickly evaluate and demonstrate a new design.
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2. Background

Both of these processors are produced by NXP Semiconductors (formerly Freescale).
The cOBC and P2020RDB uses a PowerPC processor with two e500 cores, namely
a QorIQ P2020 [11]. The Lynx and LS1046ARDB both uses a LS1046A processor
based on the ARM architecture, with four Cortex-A72 cores [12].

2.2 Operating Systems
In a desktop computer system, the OS is placed between the computer hardware
and the application programs users have access to, see Figure 2.1. Such OS provides
users with several services and controls program execution to prevent errors and
improper use of the computer.

SYSTEM AND APPLICATION PROGRAMS

COMPILER ASSEMBLER TEXT EDITOR DATABASE SYSTEM

OPERATING SYSTEM

COMPUTER HARDWARE

USER nUSER 3USER 2USER 1 ...

Figure 2.1: Abstract view of the components included in a desktop computer
system.

An OS manages devices connected to the computer and takes actions for every event
a device may generate, also called an interrupt. For example, pressing a key on a
keyboard generates an interrupt which the OS will evaluate and schedule so that the
character shows up on the screen. The core component of an OS is called the kernel
and its job is to schedule and control the execution of system and user programs.
A computer program such as a text editor or web browser request services from the
kernel via system calls [13].

A computer can operate in two different modes: user mode and kernel mode. In
the former, the system is simply running a user program. In kernel mode, a privi-
leged program is being executed where the process has unrestricted access to system
resources like hardware, memory, etc.

The main services provided by an OS are [14]:

• allowing a user to interact with the system

• allowing a user to access files and directories

4



2. Background

• allowing programs to run

• allowing communication with I/O devices

A task can be explained as set of program instructions loaded into memory that an
OS controls and a thread as a flow of a task being executed on a processor.

An important component of the kernel is the scheduler whose job is to assign and
decide how tasks should run on the processor. The scheduler also makes sure that
the utilization of the processor is maximized [15]. A scheduler can use different types
of scheduling algorithms to rank a task’s need for CPU time. An important class of
scheduling algorithms are those that assign priorities to tasks. An example of such
an algorithm is priority-based scheduling. This is where tasks are assigned a priority
based on some property, and the tasks with the highest priority should be scheduled
first. Hence, the scheduler ensures that tasks always preempt running tasks with a
lower priority [15]. In real-time systems where deadlines have to be met, a higher
priority could, for example, be given to tasks with the shortest deadline.

In embedded systems, embedded operating systems are used as they are designed to
be more compact, reliable, and resource efficient [16]. An embedded OS generally
does not load and execute a variety of individual programs at a user’s command as
a standard desktop OS would. Instead, it is usually designed for a single purpose
to cover specific tasks. The commands to the kernel are coming from applications
rather than from users.

2.3 Real-Time Operating Systems
RTOS are designed to ensure timely delivery of result from tasks with strict timing
requirements. [17]. Technically, we use real-time applications on our traditional
desktops in our everyday life in the form of video and sound [1]. In those cases,
inaccuracies or delays are acceptable since they will usually go unnoticed to the
user, and these could be classified as tasks with soft real-time requirements. The
OS we refer to as RTOS are usually intended for applications with strict requirements
on precise delivery of computational results. This could be where the running tasks
are safety-critical such as sensors in cars or airplanes where a delay and imprecision
could have devastating consequences. These tasks are classified as hard real-time
tasks. The general goal for hardening a real-time system is to minimize response
times and removing possible unbounded latencies [18]. The term ”response time”
can be explained as the elapsed time between an interrupt and the response to that
interrupt and ”latency” describes some type of delay.

There is no actual formal definition of how ”hard” or ”soft” a system is. It is rather
a spectrum where the placement of the hardness depends on the importance of
meeting a deadline. In the end, real-time is about timely delivery of results rather
than fast execution time and high performance [19].

One example of a commercial RTOS is VxWorks, which has been used extensively
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for space application, where timing can be paramount for mission success [3]. Wind
River, which is the distributor of VxWorks, themselves mentions that VxWorks is
”...ideal for hard real-time embedded applications.” [20].

2.3.1 Performance Metrics
An area of interest when measuring an RTOS’s performance is the timely delivery of
results. Two factors that affect this is the context switching latency and the latency
of response to an interrupt.

Context switching is the process of switching between two independent tasks with
the same priority [21]. Context switching consists of the following actions:

• Save the context of the task being suspended.

• Select a new task.

• Prepare a new task to be executed.

Even though it is impossible to avoid the context switching latency in its entirely,
it is desired that it becomes as minimal as possible since the CPU is not doing any
useful work during this time [22].

The calculation of a context switch is straightforward. As illustrated in Figure 2.2,
at the end of the suspended task task1, the time is denoted as t1, and the beginning
of the new task task2, the time is t2. The time for the context switch becomes t2 −t1.

task1 task2 task1 task2

t1 t2

Context Switch

...
t

Figure 2.2: Illustration a context switch.

To measure the latency for a response to an interrupt, the application cyclictest
can be used, which is one of the most frequently used benchmarks for evaluating
the performance of real-time systems [23]. It measures latencies by running one
master thread which starts a specified number of threads with a given priority, called
measuring threads [23]. A measuring thread, in turn, will be woken up periodically
with a predefined interval of a timer. The difference between the programmed
wake-up time and the true wake-up time is calculated and the maximum, minimum,
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2. Background

and average latencies will be printed out. In short, a group of periodic measuring
threads will measure the difference between the expected wake-up time and their
actual wake-up time. A few factors that may increase this latency can be interrupt
handling, the invocation of the scheduler code, and the time it takes to start the
program. Delays can also be caused by higher priority programs that are currently
running [24]. cyclictest is described more thoroughly in Section 2.6.5.

2.4 The boot process
The boot process can briefly be described as all the processes and tasks that are
carried out to make a computer ready to be used when powered on. The process
varies from device to device but is generally quite similar. One of the key components
in the boot process is the bootloader.

When an embedded platform is powered on, the OS is normally not loaded into the
RAM straight away [25]. Instead, the CPU starts to execute an initial piece of code
which is the bootloader. A bootloader can initialize necessary hardware, find and
load another program into the memory from non-volatile storage and then execute
it. This next program to be run can in turn be another bootloader since it is not
uncommon to use a bootloader to load other bootloaders in multiple stages. Such
bootloaders are referred to as multi-stage bootloaders. Finally, the OS code will be
loaded and executed.

Execution of
initial code
(bootloader)

Bootloader
initializes
hardware

...
OS code is

loaded

Figure 2.3: An abstract view of how the boot process happens in multiple stages.

2.4.1 Das U-Boot
The previously described boot process corresponds to the process of one of the most
common embedded bootloaders, Das U-Boot (U-Boot), which was used throughout
this thesis project [25]. It supports different CPU architectures, amongst them are
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2. Background

ARM and PowerPC. U-Boot is an open-source bootloader and can boot a kernel
over a file transfer protocol or from an external device such as an SD card. U-Boot
also provides an interface (much like a shell) where it is possible to set hardware
configurations and necessary environment variables [26].

2.5 Linux

Linux is an open-source OS with the Linux kernel being the at lowest level, and
all Linux distributions (distros) are based on this kernel [27]. A large ecosystem is
built around the kernel with software components, and a big community is actively
maintaining and contributing to further development of this ecosystem. One of the
most important aspects of Linux is that it is open-source and free, meaning that it
is freely available for anyone to use, distribute and build upon.

This leads to some of the aspects why using Linux is popular. It does not require any
licensing to use, it is constantly maintained and got a large supply of tools. Since it
is developed by an open source community, there is a lot of help and support that
can be found online through a search or by asking for help in forums.

This section introduces how Linux can be applied as an RTOS, as well as the build
systems that can be used to produce the components for a functional distro.

2.5.1 Linux as an RTOS

Linux has mostly throughout its time been developed as a general-purpose OS rather
than an RTOS. These two objectives are conflicting by nature since the prior focuses
on maximizing the throughput, while the other aims to enforce an upper-bound on
the execution time of a task [1]. Linux compared to a traditional RTOS, has a fairly
complex kernel and it has therefore been a challenge to achieve the determinism
that is desired on real-time platforms. However, efforts to achieve determinism have
been in the works with the PREEMPT_RT patch for the kernel [28].

PREEMPT_RT Patch

The PREEMPT_RT patch is one of the bases of improving the real-time aspects of
the Linux kernel. It gives the option to reconfigure the kernel, so that a larger portion
of the kernel code becomes preemptable and unbounded latencies are removed [18].
The patch consists of two additional preemption levels apart from the ones available
in the standard kernel [28]. These two additional levels expand the parts of the kernel
that can be preempted, minimizing possible unbounded latencies in the system.

Linux with the PREEMPT_RT patch has been used by SpaceX for their on-board
computers [4].

8



2. Background

2.5.2 Build Systems

There are several tools that support the development of a custom embedded Linux
distribution. These tools are commonly referred to as build systems. We have
considered two popular build systems called Yocto Project (Yocto) and Buildroot
in our thesis project.

Yocto Project

Yocto is an open-source project that consists of a reference distribution called Poky
and a set of build tools [29]. These tools can be used by a user to manage patches and
packages and then produce an image to be deployed on the targeted embedded com-
puter. Yocto has a large ecosystem of users developing packages and contributing
to the project. Many silicon vendors contribute to Yocto to provide easy imple-
mentation of their Board Support Packages (BSP). A BSP contains software that
is essential for running Linux on a specific computer board, including device drivers
and the bootloader [30].

Yocto uses a build tool called BitBake that can be used to build a bootable image
for a target embedded computer. BitBake acts as a task scheduler that builds up a
dependency tree and then uses recipes and configuration files to build all the required
and specified components. A recipe file (.bb) is similar to a package; it consists of
a collection of metadata in a file with information such as a source, descriptions,
and instructions on how to install a particular software. The recipes could contain
anything from a test tool to a compiler, depending on what should be included in a
build. The configuration files (.conf) contains data such as target computer options
and distribution configuration options.

Yocto uses a layer model to simplify the development and to ease working with
multiple embedded computers. This model makes it possible to enable/disable par-
ticular layers in the build. Silicon vendors may create their own layers to provide
support for their hardware via Yocto, with components such as BSPs.

Buildroot

Buildroot is another open-source embedded Linux build system which is designed
for small to medium-sized embedded systems. It uses fewer software components
compared to Yocto, which makes it more straightforward and easier to understand.
However, what it can achieve is limited due to its reduced complexity.

Buildroot relies on the Makefile language and uses a configuration interface in which
it is possible to manage all configurations for a specified target system. Buildroot is
automated in the way that it downloads and builds the necessary packages. It then
extracts the source codes, compiles and installs the selected components, and takes
care of any dependencies [31].

9



2. Background

2.5.3 Components
In this thesis, three of the generated components from the build systems were de-
ployed onto RUAG’s hardware. These components were the root file system, device
tree and kernel image.

Root File System

A root file system (rootfs) consists of a hierarchy of file directories that are crucial
for the system to operate. In Linux, the root directory, denoted ”/”, is the highest
directory of that hierarchy. It contains a series of sub-directories which, in turn,
contains further subdirectories. An example of a rootfs structure can be seen in
Figure 2.4. The content of the rootfs varies depending on the computer.

root

bin tmp

data users

/

Figure 2.4: Illustration of a root file system with the root directory and some of
its sub-directories.

Device Tree

A device tree is a data structure built up by properties and nodes [32]. Properties
are key-value pairs, and nodes can contain both properties and child nodes. The
task of a device tree is to describe the hardware layout on a particular embedded
device by specifying the memory layout, pin assignments, address bindings, etc [33].
This is utilized by the kernel as a map of what hardware is available and how it
should manage these different components on the device.

Two different notions are used when talking about device trees and these are Device
Tree Source (DTS) and Device Tree Blob (DTB). A DTB can also be referred to as
a Flattened Device Tree (FDT), although we use the term DTB in this thesis. The
DTS and DTB contain the same information but are represented differently. The
DTS is a human-readable file that can be converted into a DTB which is a binary
object usable by the kernel.

10



2. Background

/ {
      model = "fsl,P2020RDB";
      compatible = "fsl,P2020RDB";

      aliases {
            ethernet0 = &enet0;
            ethernet1 = &enet1;
            ethernet2 = &enet2;
            serial0 = &serial0;
            serial1 = &serial1;
            pci0 = &pci0;
            pci1 = &pci1;
      };

      memory {
            device_type = "memory";
      };

      lbc: localbus@ffe05000 {
            reg = <0 0xffe05000 0 0x1000>;

            /* NOR and NAND Flashes */
            ranges = <0x0 0x0 0x0 0xef000000 0x01000000
                         0x1 0x0 0x0 0xffa00000 0x00040000
                         0x2 0x0 0x0 0xffb00000 0x00020000>;

            nor@0,0 {
                     #address-cells = <1>;
                     #size-cells = <1>;
                     compatible = "cfi-flash";
                     reg = <0x0 0x0 0x1000000>;
                     bank-width = <2>;
                     device-width = <1>;

Figure 2.5: An example of how a DTS is structured.

Kernel Image

A kernel image is a binary representation of the kernel. The image can be wrapped
with different headers depending on the chosen bootloader [34]. If for example U-
Boot is used, the kernel image is called uImage and is wrapped with a U-Boot
header, making it possible for U-Boot to extract it. At the end of the boot process,
the computer begins to execute the kernel image from a predefined state.

2.6 Tools
In his section, the tools used in this thesis are presented.

2.6.1 UART
A UART is a hardware circuit that enables a computer to communicate with other
hardware devices via a serial communication link [35]. A UART can be configured
with parameters such as baud rate (the rate at which information is being transferred
in a communication channel), stop bit (signaling the end of data transmission),
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parity (detection if a frame has changed), and bits per byte.

2.6.2 Screen
We used the utility program screen for displaying the console of the target systems
on the host computer [36]. It can be used to configure a channel connected to UART
and through the window see messages from the target board.

2.6.3 Trivial File Transport Protocol
To transfer files from the host computer to the target board, we used a protocol
called Trivial File Transfer Protocol (TFTP) [37]. This requires that a TFTP server
is set up on the host computer. It is then possible to transfer the desired file(s) by
accessing the TFTP server via the network or by using an Ethernet crossover cable
between the two machines directly. However, there are risks to using TFTP since it
does not use any security during the file transfer.

2.6.4 LMbench
LMbench is a suite of benchmark programs that measures system performance on
UNIX-related OS [38]. The test called lat_ctx measures context switching latency
and does so by creating a specified number of processes and, by UNIX pipes, connects
them in a ring [39]. Each process will read a token from its pipe and then write it
to the next process. The generated numbers of this benchmark can be somewhat
inaccurate and vary by about 10 to 15 % for each run.

2.6.5 Rt-tests
It is possible to test and measure a kernel’s real-time behavior with the programs
included in the rt-tests test suite. Two of its programs used in this thesis are
cyclictest and hackbench.

cyclictest

cyclictest is extensively used in Linux PREEMPT_RT analyses [1]. The test
measures the sum of all latencies occurring when the system reacts to an input
event. The results of the measurements are expressed in microseconds. In [40], the
author states that short tests may not be able to reflect the actual load of a system
as infrequent latencies may not even be measured. Therefore, tests should preferably
run for a longer time, from a day to a week, depending the usage of the system.

Several parameters need to be considered while setting up a system for cyclictest,
and the parameters used in this thesis are:

• Number of measuring threads This parameter specifies the number of
measuring threads with --threads (-t). It is in general a good idea to have
one measuring thread running on each CPU of the target system [41].
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• Thread wake-up interval The option --interval (-i) decides the ex-
pected execution period of the measuring threads [42]. When using several
measuring threads, --distance (-d) is used to specify if the threads should
have different wake-up times. For most test situations, it is recommended to
run all the measuring threads simultaneously, and in that case -d should be
set to 0.

• Thread real-time priority --priority (-p) decides the measuring threads
real-time priority [43]. This option should always be specified. The priority
must be set so that it is lower than whatever is producing the latency. This to
avoid a thread’s timer interrupting an ongoing measured latency of interest.
Moreover, the priority must be set higher than that of tasks whose latencies
should not be measured. On a Symmetric Multiprocessing (SMP) system,
--smp (-S) can be used to give all measuring threads the same priority.

• Test duration By default, the duration is set to infinity and can be stopped
manually [44]. The duration and number of iterations can be specified with
--duration (-D) and --loops (-l) respectively.

• Prevent memory page out Generally, --mlockall (-m) should always be
set to prevent pages from being paged out of memory [45].

• Use clock_nanosleep() --nanosleep (-n) will make the measuring threads
use the function clock_nanosleep() to sleep until their next intended exe-
cution time [46]. clock_nanosleep() shortens the threads wake-up latency
rather than the default interval timer. In general, when running cyclictest,
this option should always be used.

• Histograms With --histofall (-H), a summary of all latencies during a
run will be presented at the end of the test [23].

To set these parameters accordingly, it is necessary to have good knowledge about
the platform. However, it is important to consider that the result of cyclictest
may not reflect the exact maximum latencies an application would experience.

While running cyclictest, a load as similar as possible to the real-time application
for which the system is intended should be executed [47].

hackbench

hackbench is a stress test intended for the kernel [48]. Besides this, it also stresses
parts of the memory subsystem by first creating and then destroying threads. The
main goal with hackbench is to help identify a system’s bottlenecks and can be
executed simultaneously with cyclictest. However, it is not possible to generate
the same load as a real-time application would since hackbench does not test the
communication between devices. A few examples of how to run the program can be
found in the manual page [48].
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3
RDB Deployment and

Benchmarking

The first two sections in this chapter provide the necessary information needed to set
up the host and target environment correctly. We then describe a series of attempts
to build a Linux distribution for two RDBs provided by RUAG. In the final section
we present the results of two benchmarks tests conducted on one of the RDBs, the
LS1046ARDB.

3.1 Host Environment Setup
We conducted our work using a desktop computer provided by RUAG, which initially
was running the Ubuntu 20.04 distribution of Linux. However, due to compatibility
issues in several build environments, we downgraded to Ubuntu 18.04 early in the
project.

A TFTP server was set up on the host computer so that files could be transferred
via Ethernet onto the target boards. To this end, an additional network card was
installed on the host computer, which hosted the TFTP server. The network card
was assigned with the IP address 192.168.0.3. It was practical to have the additional
network card to be able to access the internet while also being connected to the target
board via a Crossover Ethernet Cable.

The software application screen was used on the desktop as a console emulator for
the target board. The screen application was used to communicate with the target
system using a serial link connected via USB from the desktop and an adapter to
an RJ45-connector on the computer board.

3.1.1 Choice of Build System
There are several approaches to build a kernel and a distribution for Linux. In this
chapter, we describe our attempts to build Linux distros using Yocto. We decided
to use Yocto because it appeared to have a wide range of advantages. For example,
it is widely adopted across the industry, supports several processor architectures,
and the output can easily be changed for separate embedded computers [49].
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3.1.2 Yocto Setup
Yocto comes in many forms and sizes, and different variants operate slightly differ-
ently from each other and a problem may have many solutions. This section will
briefly describe how we set up Yocto using the official manual.

First, Yocto needs to be fetched which normally is done using git, which is a free
open-source version control software. This is done with the following command:

$ git clone git://git.yoctoproject.org/poky

The fetched items are a combination of a script to set up the build environment,
other build tools, and layers which contain recipes and configuration files. The next
step is to set up the build environment, which is done as follows:

$ source oe-init-build-env

This creates a build folder in the source directory. From the source directory, run:

$ bitbake <TARGET>

where <TARGET> is the recipe that should be built. There are various recipes to
choose from (it is also possible to make a custom one) depending on what the
desired output is. A minimal build can for example be produced by running bitbake
core-image-minimal, and will be based on the recipe called core-image-minimal.bb.
BitBake takes the configurations in that file and produces an output that will be
placed in the directory /build/tmp/deploy/images/<MACHINE>.

An important variable that resides in build/conf/local.conf is MACHINE. This
variable should be set to the name of the target board for which the build is intended.
This ensures that the correct BSP for the target platform is included in the build.

A customized or downloaded layer can be added by running:

$ bitbake-layers add-layer ../<LAYER>

Different releases of Yocto have different code names, of which the three latest are
Gatesgarth, Dunfell & Zeus (newest first). We have used all three releases in different
attempts of building a Linux distro.

3.2 Target Environment Setup
To get started, we wanted to build a plain Linux distro that could be implemented
on the two RDBs. Conveniently enough, both RDBs had previously been set up with
the U-Boot bootloader from the factory and could therefore be used immediately.
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By running:

$ screen /dev/ttyUSB0 115200

in the host terminal, we were able to access the target console. Before we could
connect the target board to the TFTP server and begin transferring files from the
host, a few environmental variables had to be set in U-Boot for the target board.
The environment variables serverip, ipaddr, and gatewayip were set accordingly:

=> setenv serverip 192.168.0.3
=> setenv ipaddr 192.168.0.1
=> setenv gatewayip 192.168.0.3

Once this was done, a ping was sent in U-Boot from the target board to the host
to make sure it was reachable and we received a response that the host was alive.
We then used the tftp command to transfer the necessary files onto the target
board. Two arguments were required for the tftp command: address and filename.
These arguments, which we describe in Sections 3.2.1 and 3.2.2, vary depending on
what files are being used in the boot process. For more details on how the TFTP
server was set up and used, see Appendix A. The following commands represent a
generalization of how the kernel image, rootfs, and DTB were loaded:

=> tftp <0xaddr> <uImage>.bin
=> tftp <0xaddr> <root_file_system>.rootfs.ext2.gz.u-boot
=> tftp <0xaddr> <device_tree_blob>.dtb

Another way of loading the required components onto the target board is with a
Flattened Image Tree (FIT). The file transfer looks slightly different as the kernel
and the DTB are embedded into a single file. The generalization of the file transfer
of a FIT-image is:

=> tftp <0xaddr> <FIT-image>.bin

When all necessary files had been loaded into the board’s memory, another envi-
ronment variable, bootargs, needed to be set. With bootargs, information can be
passed directly to the Linux kernel such as what device is to be used as the rootfs
while booting and what serial port to take over after U-Boot. The variable was set
differently depending on what build system we used and will be specified in Section
3.2.1 and 3.2.2. However, it will have a similar syntax to:

=> setenv bootargs ’<passed boot arguments>’

Finally, to start the boot process run:

=> bootm <address>

The initial attempts for getting the desired software to be deployed onto an RDB
were carried out on the P2020RDB. Unfortunately, we encountered several problems
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trying to implement the PREEMPT_RT patch with Yocto for the P2020RDB. Since
we were unable to resolve these problems, we could only produce a working image
using Yocto for the LS1046ARDB.

3.2.1 Attempts to build and deploy Linux on P2020RDB

Vanilla Yocto With meta-freescale

NXP have their own BSP layer ”meta-freescale” which was downloaded and applied
to Yocto. The layer is available for download from the OpenEmbedded Layer Index.1
It includes build configuration for their boards. Simply by changing the MACHINE
variable to ”p2020rdb”, BitBake will build according to that board’s requirement
and configuration. The build was performed as follows:

$ bitbake core-image-minimal

A resulting kernel image, rootfs, and DTB were transferred via TFTP onto the
board in U-Boot. However, U-boot was not able to boot the image successfully; the
kernel did not start when U-boot tried to hand over control to kernel.

Linux SDK for QorIQ Processors

Our next attempt was to use ”Linux SDK for QorIQ Processors” which is a five year
old release of Yocto with some additional layers.2 The build environment is slightly
modified since it is set up for a specific machine in the source folder, rather than a
general one.

$ . ./setup-env -m p2020rdb

This creates a folder called build_p2020rdb with the MACHINE variable already
specified as ”p2020rdb”.

However, after many attempts to build with different versions of Ubuntu on separate
host computers, errors were encountered related to the build process. This approach
was abandoned because of these problems.

Layerscape Software Development Kit User Guide for Yocto

Our next approach was to use ”Layerscape Software Development Kit User Guide
for Yocto (LSDKYOCTOUG)”.3 It was not initially obvious that this could be used
since Layerscape is a subset of newer ARM processors in the larger QorIQ family.
However, it was discovered that support for the P2020 was included as well. The

1Link to the OpenEmbedded Layer Index https://layers.openembedded.org/layerindex/
branch/master/layers/

2Link for downloading Linux SDK for QorIQ Processors https://www.nxp.com/webapp/
swlicensing/sso/downloadSoftware.sp?catid=SDK_ENABLEMENT

3Link to the Layerscape Software Development Kit User Guide for Yocto (LSDKYOCTOUG)
https://www.nxp.com/docs/en/user-guide/LSDKYOCTOUG.pdf
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build environment was set up the same way as for the ”Linux SDK for QorIQ
Processors”.

The current release is based on ”Dunfell”, the second most recent major release
of Yocto. With this build system, a successful build could be made that was able
to boot on the P2020RDB. However, to build an image with the PREEMPT_RT
patch we had to downgrade to the prior major release ”Zeus” since support to build
with the patch has not yet been implemented for the ”Dunfell” release by NXP.
Another attempt was made to build an image with PREEMPT_RT, but errors
were encountered once again. Eventually, we found reasons to believe that support
for PowerPC is slowly dropping which could be the source of our problems working
with the P2020 processor [50]. We therefore decided to move our work with Yocto
to the LS1046ARDB board.

3.2.2 Moving ahead with LS1046A

Layerscape Software Development Kit User Guide for Yocto

In another attempt using Yocto, the project proceeded with the ”Zeus” release. The
git repositories were cloned according to the Zeus branch’s readme-file in the QorIQ
Yocto SDK repository. 4 A minimal image was built by running:

$ bitbake fsl-image-networking

The PREEMPT_RT patch could be added successfully by adding the following line
in the local.conf file:

PREFERRED_PROVIDER_virtual/kernel = "linux-qoriq-rt"

By running:

$ bitbake linux-qoriq -c menuconfig

we entered an interface where the preemption settings could be changed from ”No
Forced Preemption” to ”Preemptible Kernel”. The configuration was then saved and
exited.

The previously mentioned LSDKYOCTOUG document provides the necessary bootargs
and addresses used in U-Boot.

The following commands in U-Boot were then executed:

=> setenv bootargs root=/dev/ram0 rw console=ttyS0,115200
earlycon=uart8250,mmio,0x21c0500 ramdisk_size=0x10000000
=> tftp 0x82000000 Image-ls1046ardb.bin
=> tftp 0xa0000000 fsl-image-networking-ls1046ardb.ext2.gz.u-boot

4Link to the Zeus branch’s readme-file in the QorIQ Yocto SDK repository https://source.
codeaurora.org/external/qoriq/qoriq-components/yocto-sdk/tree/readme?h=zeus
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=> tftp 0x8f000000 fsl-ls1046a-rdb-sdk.dtb
=> bootm 0x82000000 0xa0000000 0x8f000000

Unfortunately, this did not seem to boot as intended. At this point, we started to
investigate if it was possible to use the FIT-image as described in the QorIQ Yocto
SDK repository. With the same bootargs, the following commands were used to
transfer and boot the image:

=> tftp 0xa0000000 FIT-image.bin
=> bootm 0xa0000000

The boot process ended successfully, and by running $ uname -a we could confirm
that the kernel had been patched and enabled with PREEMPT_RT. With future
documentation and measurement in mind, we included the rt-test suite to the build
by adding the lines:

rt-tests \
hwlatdetect \

to the variable IMAGE_INSTALL_append in the file fsl-image-networking.bb. The
build was successful and booted properly again.

3.3 Benchmarks
In this section, we present how we executed the benchmark tests and the results of
these. The goal of these tests was to compare the context switching latency and the
interrupt response latency between a basic (vanilla) version of the Linux kernel and
a version that included the PREEMPT_RT patch. We used the lat_ctx bench-
mark for measuring the context switching latency, and the cyclictest benchmark
for measuring the interrupt response latency. All tests were conducted with the
LS1046ARDB and Linux distributions produced by Yocto.

Section 3.3.1 and 3.3.2 describes the set up of cyclictest and lat_ctx respectively,
while Section 3.3.3 presents the benchmark results.

3.3.1 cyclictest

Since the LS1046A has four cores, the number of threads for the test was set to four.
The number of loops was set to 1,000,000 which takes roughly 20 minutes to finish
and the priority was set to 80. Ideally, the tests should run for several hours to
reach the edge case for maximal latency. However, to compare distributions rather
than investigate the maximum latencies, a shorter period may be sufficient [51].

We conducted two types of benchmarks, one on an idle system and one under system
load. These benchmarks were conducted on a vanilla kernel as well as one with the
PREEMPT_RT patch. The system load was added by running hackbench for all
four cores and performing enough loops to run at least as long as cyclictest. By
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appending ”&” after the options, hackbench was executed in the background.

$ hackbench -T 4 -l 10000000 -p &
$ cyclictest -t4 -m -n -S -d 0 -l 1000000 -p 80 -q -H 1000

From the results of the four tests, Figure 3.1 and Figure 3.2, were generated with
gnuplot which is a command-line program that can generate plots of data.

3.3.2 lat_ctx

lat_ctx may be executed with a varying number of participating processes and
different work buffer sizes to cause pressure on the data cache [38, 52]. The varying
buffer sizes means that a process does some work before it gets switched [39]. The
work corresponds to summing up of an array of a specified size of approximately
2.7 thousand instructions. The effect of this is that the data and instruction cache
get polluted resulting in larger context switching latencies. We performed similar
tests on both kernels. The benchmark was executed four times per kernel accord-
ingly, where <buffer size> was set to 0, 1, 4, and 16 for the different runs. The
subsequent numbers are the participating processes that are tested for each run.

$ lat_ctx -s<buffer size> 2 4 6 8 10 12 14 16

The plots were generated by the programming and numeric computing platform,
MATLAB.

3.3.3 Results
Results - cyclictest

The results from executing cyclictest on an idle system are shown in Figure 3.1.
The x-axis represents the latency in microseconds and the y-axis represents how
many times a latency occurred. In the figure, we can see that the vanilla kernel
had a higher maximum latency than the patched kernel. It can also be seen that
the vanilla kernel has a higher number of occurred minimum latencies than the
patched kernel. The maximum, minimum, and average latencies for both kernels
are compiled into Table 3.1. The minimum latency is the same for both kernels
while the vanilla kernel has a lower average latency.

A second comparison was made with the results we got from executing hackbench
simultaneously with cyclictest. This time, the maximum latencies for the two
kernels differ even more. The latency plot is presented in Figure 3.2 and the values
of the maximum, minimum, and average latencies are presented in Table 3.2. Again,
we can see that for the vanilla kernel, the average latency is lower and the number
of occurred minimum latencies are higher compared to the patched kernel.
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Figure 3.1: Results from cyclictest without background load for the vanilla and
the PREEMPT_RT patched kernels.

Kernel Type Min. Lat. Avg Lat. Max Lat.
PREEMPT 2 3 7

Vanilla 2 2 10

Table 3.1: Minimum, average and maximum latency from cyclictest on an idle
system.
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Figure 3.2: Results from cyclictest with background load for the vanilla and the
PREEMPT_RT patched kernels

Kernel Type Min. Lat. Avg Lat. Max Lat.
PREEMPT 3 4.5 13

Vanilla 3 4 24

Table 3.2: Minimum, average and maximum latency from cyclictest on a system
with a background load.

Results - LMbench

lat_ctx was executed on an idle system because neither of the prior papers we read
mentioned any load on the system [38, 52]. The results for the vanilla kernel are
shown in Figure 3.3, while the results for the patched kernel are shown in Figure
3.4. The x-axis in the plots shows the number of participating processes and the
y-axis shows the measured task switching latency in microseconds. The four graphs
in each plot represent the runs with different buffer sizes. In both plots, it can be
seen that the latency is increasing when involving more processes. The most visible
difference between the two plots is the behaviour of the graphs. In the vanilla kernel,
the measuring points are more scattered while in the patched kernel, the measuring
points are increasing in a more consistent fashion. The context switching latencies
for the patched kernel are slightly higher for almost all measuring points than for
the vanilla kernel. However, an important note is that LMbench reports the average
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task switching latency captured and does not include the maximum or minimum
task switching latency [38].

Figure 3.3: Plot based on results from lat_ctx for the vanilla kernel.
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Figure 3.4: Plot based on results from lat_ctx for the patched kernel.
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Pointers for Implementation on

the cOBC

Implementation of Linux on the cOBC is not as straightforward as with the RDBs.
This is because the cOBC uses its own custom bootloader. The custom bootloader
is fairly simple compared to U-Boot, since it only sets up the memory management
unit and loads a binary file into the RAM. It then instructs the processor to execute
the transferred program. The custom bootloader cannot currently pass components
such a rootfs, DTB, and or arguments to the kernel.

The first section in this chapter looks into the requirements to implement Linux on
the cOCB. The second section looks into how this may be done with the help of
boot wrappers for the PowerPC architecture. The final section explains how a Linux
distro is built for an embedded computer with the P2020 processor, using Buildroot
version 2020.08.

4.1 Requirements to boot on the cOBC

According to the documentation in the kernel source code for the PowerPC archi-
tecture, some processor registers must be pre-loaded with specific pointers when the
execution of the kernel code begins.1 These pointers are to the memory address of
the board info structure (DTB) and the init RAM disk (rootfs).

*r3 - Board info structure pointer (DRAM, frequency, MAC address, etc.)
*r4 - Starting address of the init RAM disk
*r5 - Ending address of the init RAM disk

Two other registers may contain the start and end address of the kernel command
line arguments:

*r6 - Start of kernel command line string (e.g. "mem=128")
*r7 - End of kernel command line string

1Link to kernel execution entry point code where the processor registers are described https:
//github.com/torvalds/linux/blob/master/arch/powerpc/kernel/head_fsl_booke.S
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However, the command line arguments could also be supplied via the ”chosen” node
in the DTS that passes data between the firmware and the Linux kernel [53].

chosen {
bootargs = "<Bootargs to pass to the kernel>";

};

Another way to fulfill these requirements can be done with the help of a boot
wrapper.

4.2 Boot wrappers

U-Boot is the most commonly used bootloader for embedded Linux systems [25]. For
a kernel image to be bootable, U-Boot (or any other bootloader being used) must be
able to extract it. A boot wrapper can be used to generate target images by using
a ”wrapper script”. The script wraps the kernel image with a header and generates
a single binary file that is recognizable by the bootloader [54]. An example of such
a target image is the uImage which is a kernel image wrapped with the U-Boot
header.

For RUAG’s custom bootloader, it would be required to create a self-contained
binary file that does not rely on a specific bootloader. We suggest a wrapped image
containing the DTB and rootfs which is then executed from any location in the
RAM.

According to the official Linux kernel documentation, there are two target images
that are available for the PowerPC architecture that potentially could be used to
solve the problem [54]. These are zImage and simpleImage.

zImage

A zImage is a compressed version of the Linux kernel that self-extracts. According
to the documentation in the wrapper script, it says that ”This script takes a ker-
nel binary and optionally an initrd image and/or a device-tree blob, and creates a
bootable zImage for a given platform”2 However, this contradicts the kernel docu-
mentation for PowerPC which states that a zImage is an ”Image format which does
not embed a device tree.” and ”This image expects firmware to provide the device
tree at boot” [54].

Either way, Buildroot does not seem to provide this support for our particular pro-
cessor core from what we have seen in the configuration. Attempts were also made
to manually use the wrapper script to generate the zImage, but were unsuccessful. It
may be possible to implement support for this, but further investigation is required.

2Link to the wrapper script located in the kernel source tree https://github.com/torvalds/
linux/blob/master/arch/powerpc/boot/wrapper
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simpleImage

simpleImage is another target image available for PowerPC which fits the criteria of
not relying on the bootloader according to the kernel documentation [54]. However,
in a Github-file it says that the only architecture supporting the simpleImage-format
is the MicroBlaze architecture, an embedded processor optimized for implementation
in Xilinx FPGAs [55].3 In the Buildroot interface, this was proved to be the case
because it was not possible to create a simpleImage for the P2020. Since there
is close to no documentation regarding simpleImage, it is difficult to determine if
anything in particular can be done to circumvent this.

4.3 Build for P2020/cOBC with Buildroot
The same host setup was used in this section as in Chapter 3. The configuration
for Buildroot was made in the menuconfig interface shown in Figure 4.1. It was
initiated via the command

$ make menuconfig

in the Buildroot source folder.

Figure 4.1: The menuconfig interface where it is possible for a user to choose
Buildroot configuration.

In the interface, features were added manually within the headings ”Target Options”,
”Kernel” and ”File system images”. When the configuration is finished, it can be
saved in a .config in the root folder. To build according to the configuration, run:

3Link to the Github-file containing information about the configuration options https://
github.com/buildroot/buildroot/blob/master/linux/Config.in
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$ make

The output is placed in the folder ./output/images.

We generated a successful build for the P2020RDB as a starting point that can be
further developed for the cOBC. In Appendix B, the build configuration is specified
as a defconfig file, which is a configuration file with the default options omitted.
Below are some explanations of the relevant categories, and how the options were
set.

Target Options

Here, the target architecture and processor core are specified according to the pro-
cessor. For the P2020, the architecture was set to PowerPC and e500v2 as the
core.

Kernel

Here, a choice can be made to build with a recent kernel version or to build from a
custom kernel tree provided via sources such as git repositories or tarballs. In this
build, a git repository was specified as a kernel source provided by NXP patched
with PREEMPT_RT.4

Building a DTB can be done from an In-Tree or Out-of-Tree DTS. In-Tree means
that a module is already built into the kernel source while an Out-of-Tree module is
loaded locally. In the build for the P2020RDB, an In-Tree DTS was used since there
is one available from the kernel source. For the cOBC however, an Out-of-Tree DTS
would be necessary since RUAG has their own DTS for their custom board.

The kernel also needs a kernel configuration which can be provided via a defconfig
file. Just like the DTS, it may be provided In-Tree or Out-of-Tree. In our case, we
used a defconfig called mpc85xx_smp_defconfig. In Yocto’s meta-freescale layer, the
same defconfig is specified for the P2020RDB. Note that the defconfig is available
In-Tree but not as an actual file, but rather a combination of the following defconfigs
merged into one:

mpc85xx_basic_defconfig, 85xx-32bit, 85xx-smp, 85xx-hw, fsl-emb-nonhw

It is not enough to fetch and use a patched kernel, but the real-time configurations
have to be activated in the defconfig as well. Since we cannot edit an In-Tree
defconfig, it was downloaded from the source, edited, and provided Out-of-Tree.
The following lines were added to the downloaded defconfig:

CONFIG_PREEMPT=y
CONFIG_PREEMPT_RT_BASE=y
CONFIG_PREEMPT_RT_FULL=y

4Linux Tree for QorIQ support - Kernel Patched with PREEMPT_RT https://source.
codeaurora.org/external/qoriq/qoriq-components/linux/tree/?h=linux-4.19-rt
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4. Pointers for Implementation on the cOBC

A kernel binary format can be selected for a build to compress or wrap the kernel
image with the desired header. For the RDB, we selected zImage since it can be
used by U-Boot.

File system images

Here, options are set for the rootfs. For example, if the build should generate a
rootfs and what compression to use. These options may be specified according to
the deployment method for the target. The enabled options for this build made it
possible to boot on the P2020RDB.
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5
Discussion

This chapter discusses the separate build systems presented in in Chapter 3 & 4,
and the benchmark results from Chapter 3. It also compares some of the different
building blocks of Linux, and VxWorks as a complete alternative to Linux. The
chapter also discusses the challenges of implementing Linux on the cOBC.

Yocto Vs. Buildroot

For this thesis project, we initially opted for Yocto as our build system, but later on
we decided to transition over to Buildroot due to difficulties we encountered with
Yocto.

Our literature study showed that both Yocto and Buildroot were the main options
for porting Linux to embedded systems. One of the main reasons we initially chose
Yocto was because a lot of information and support from NXP’s side was provided
via Yocto. Even though Yocto is more complex and can be difficult to work with
as a newcomer, getting started was quite easy in our experience. The Yocto docu-
mentation is well written and contains a starter guide to help new users with their
very first build. However, as soon as we wanted to make even minor changes, we
perceived a steep learning curve because of the significant amount of research and
investigation needed. Another challenge is the confusing workflow since it differs
from traditional desktop and server software development. Packages are for ex-
ample added by modifications in the configuration instead of from Internet-hosted
package libraries [56].

Even though both Yocto and Buildroot have the same goal of generating the separate
Linux components, they have their separate use cases [57]. Buildroot focuses on
simplicity and is straightforward to use. The codebase comes in under 1,000 lines,
making it straightforward to generate a simple distro. Yocto, on the other hand,
has a codebase of over 60,000 lines of code and have far more packages available.
There are many ways to solve a problem, which can be frustrating since different
sources can become somewhat contradicting. This also makes it challenging to learn
the best practices.

In retrospect, we are sure that if we had chosen Buildroot over Yocto at the beginning
of this thesis we would have achieved a successful build much sooner. SpaceX, who
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has explored more of the work with building Linux distros suitable for spacecraft,
has also opted for using Buildroot [4].

A third build system we encountered was Flex-builder, which is developed by NXP.
However, it was not extensively explored since it does not seem to be widely adopted
yet and lacks support for the P2020 processor.

How do we interpret the benchmark results?

An interesting note to highlight from the results of cyclictest is the obtained
average latencies. The vanilla kernel has a lower average latency in both cases, seen
in Table 3.1 and 3.2, and this can be somewhat surprising. However, there is an
explanation for this. Degraded throughput and increased minimum latencies are the
costs of determinism. In [58], the author explains it as ”... real-time improvements
come at the cost of possible performance degradation. An RTOS may (or may not)
sacrifice performance to become more deterministic”. In Figures 3.1 and 3.2, it is
seen that the vanilla kernel does indeed have a higher number of occurred minimum
latencies compared to the patched kernel. However, regarding real-time systems, we
care more about the maximum latency since timing guarantee is more important
than fast execution time. As seen in both tables, the maximum latency is lower on
the kernel patched with PREEMPT_RT.

The results obtained by executing lat_ctx were rather expected. The graphs in
Figures 3.3 and 3.4 behave differently. In the first figure, the measuring points are
scattered while in the second figure, the measuring points is increasing consistently.
Another thing we mentioned about the results were that the patched kernel’s mea-
suring points was higher than the vanilla kernel. We believe the reason for this
is that the measuring points are based on the average latency. If the values were
based on the maximum latency, we suspect the kernel patched with PREEMPT_RT
would have had lower values than the vanilla kernel.

The tests clearly show differences in the results and, as we expected, the PRE-
EMPT_RT patch has increased the deterministic behavior of our Linux distro.
Even though this can be established it is still too difficult to define how hard or
soft the real-time system is. It is up to the customers to determine if the system
meets their requirements based on what applications will run on the platform in the
future, which is why it is still important to conduct tests thoroughly.

What could be done differently in the benchmarks?

As stated in Section 2.6.5, cyclictest should preferably run for a longer time to
be able to identify the edge cases for maximum latency and generate even more
accurate numbers.

lat_ctx could have been run together with hackbench, as it was done for cyclictest,
to see if the differences between the two kernels become even clearer for a system
under load.
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Another factor influencing the results is the system load. The most accurate latency
measurements are made while running the actual real-time application on a system
together with other non-real-time applications that are usually running in the back-
ground as well [47]. Generating a system load with hackbench that should be as
close to the final application is complex and difficult since an artificial load may not
trigger system latencies as the actual applications would. Therefore, the obtained
results may not reflect the actual maximum latencies but are used to make general
comparisons in this thesis.

Comparison of building blocks used to build a Linux distribution

The kernel used in the implementation for the cOBC in Chapter 4 was based on
the LSDK20.04 version 4.19 (patched with PREEMPT_RT). We felt it could be
beneficial to choose a Linux kernel intended for NXP QorIQ platforms since the
P2020 is a part of the QorIQ family. Due to a lack of time, we did not investigate
the differences between the vanilla kernel and the one provided in the QorIQ Linux
tree.

Another building block we considered to investigate further was the C library (libc).
A libc is a set of named functions that can be used in programs as they are reliable
and optimized for performance [59]. The small libc used in the builds we produced is
a library for developing embedded Linux systems called uClibc. It is much smaller
than the GNU C Library (glibc) which is by far the most widely used libc on
Linux [60]. In addition, practically all applications supported by glibc work perfectly
with uClibc as well [61].

Towards the end of the thesis project we found a libc called musl (pronounced
muscle). In a Q&A held by developers at SpaceX, they acknowledged that musl has
been used in their spacecrafts [4]. As an alternative to glibc and uClibc, its goal is to
meet the needs of tiny embedded systems but also typical desktops and servers [62].
In the Embedded Linux Conference in 2015, Rich Felker presented several reasons
for switching from uClibc to musl, two of these being due to technical benefits for
musl as well as musl’s project health [63]. musl supports both the PowerPC and
ARM architecture and is an option in Buildroots toolchain menu [63].

In general, we believe that starting with a minimal build and then including the nec-
essary packages is a favorable way to proceed. This to avoid unnecessary programs
interfering with the critical ones on the computer.

Improvements of real-time properties

It has already been established that PREEMPT_RT can be used to improve the
real-time properties of Linux [4].

Other factors improving the real-time properties could be to avoid unnecessary pack-
ages, as was discussed above. Other tools we have come across but not investigated
further are Xenomai and RTAI. Xenomai is a framework cooperating with the Linux
kernel to provide hard-real time support for user-space applications among other
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things. RTAI is a co-scheduler and an interface that allows a user to write applica-
tions with strict timing constraints for Linux.

Comparison between VxWorks and Linux with PREEMPT_RT

Wind River themselves claims in the VxWorks product overview that it is the indus-
try’s most trusted and widely deployed RTOS for mission-critical embedded systems
that must be secure and safe [20]. The product overview also states that compa-
nies, regardless of industry or device type, can rely on the VxWorks pedigree of
security, safety, high performance, and reliability. Embedded Linux with the PRE-
EMPT_RT patch, however, has also been shown to be effective in mission-critical
embedded systems but due to the project’s time frame, we did not perform any tests
to compare real-time properties for these OS.

Linux and VxWorks have their architectural differences but share UNIX-like features
like a shell and shared memory. Furthermore, even though there are fundamental
differences in their implementation, they share similarities like almost identical in-
terfaces for accessing devices and conceptual I/O interfaces [64].

Linux is open-source and thereby open freely for anyone who wishes to download
it. VxWorks, however, is proprietary and entails a cost for a license. Wind River
has not provided any pricing information for VxWorks but can be obtained through
a request for a custom quote. We have reasons to believe that a single developer
license costs approximately $18,000-$20,000 according to a forum where anyone can
make an entry.1

The popularity of Embedded Linux is increasing, and in 2019, EE Times (Electronic
Engineering Times), an electronics industry magazine, did a market study for sev-
eral purposes [65]. These were to identify used technology, aspects of the embedded
development process, and used operating systems, amongst other things. The par-
ticipants in the study were subscribers to EE Times. Regarding operating systems,
participants answered a question about what operating systems they are currently
using and what operating systems they are considering using in the next 12 months.
Embedded Linux got 21% and 31% on the first and second questions respectively,
an increase of 10 percentage points, while VxWorks got 5% on both questions. This
shows an increasing interest in Embedded Linux. The data is based on 958 answers
and is claimed to be highly projectable at 95% confidence with +/-3.15%.

Implementing Linux on the cOBC

While building a Linux distro intended for the cOBC we encountered several dif-
ficulties. Although a complete Linux distro with the PREEMPT_RT patch could
successfully boot on the P2020RDB at last, we experienced a few obstacles making
it more difficult than necessary. Firstly, combining the three components: the ker-
nel image, DTB, and rootfs into a single binary file for RUAG’s custom bootloader
appeared to be more difficult than expected. Initially, we considered generating

1Link to VxWorks Wiki discussion https://en.wikipedia.org/wiki/Talk%3AVxWorks
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a simpleImage or a zImage containing the three components but simpleImage was
not available for the P2020 in Buildroot and zImage did not contain all three com-
ponents. Due to this, we consider that it would be advantageous to use a widely
adopted bootloader like U-Boot since all build systems mentioned in this thesis can
produce an output that can be booted with U-Boot.

Another already mentioned difficulty about working with the P2020 was that we
found reasons to believe that support for PowerPC is slowly dropping. As we men-
tioned in Chapter 4, Buildroot had to be downgraded from version 21.02 to 20.08
to generate a successful build for the P2020. It is disadvantageous to work with
outdated software and hardware since the support and documentation will eventu-
ally not be able to address problems that may arise. An advantage, however, for
working with older processor architectures is of course that they are proven to work
after many years of usage. Regarding cosmic radiation, larger transistors which are
used in older processors are less vulnerable to cosmic rays because smaller transis-
tors require a less electrical charge to flip between binary states [66]. Hence, smaller
transistors are more vulnerable when getting struck by cosmic rays.

Besides the processor and the custom bootloader, we did not experience any other
difficulties working with the provided hardware and we believe that as long as the
DTS describes the board’s hardware correctly, no further problems should arise.
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6
Conclusion

The goal of this thesis was to investigate the possibilities to use Linux as an RTOS
on space computers, partly by investigating if and how an implementation could be
made on RUAG’s computers. We have used the build systems Yocto Project and
Buildroot to build Linux distributions that we were able to boot on two different
RDBs provided by RUAG. The main contributions of this thesis are:

• An evaluation of the build systems Yocto and Buildroot.

• Results of the benchmark tests cyclictest and lat_ctx.

• Guidelines and suggestions on how RUAG can continue to work with Linux
on their cOBC.

• A high-level comparison of the pros and cons of Linux vs VxWorks.

Regarding the build systems we can, through our observations, conclude that Buil-
droot is more user-friendly than Yocto. We find it easier to work in an interface
which Buildroot provides rather than working with Yocto’s many configuration files.
However, we perceive that Buildroot can be more limited in a build because of its
smaller code base and fewer available packages.

The results we got from running cyclictest and lat_ctx on the LS1046ARDB
indicate that the PREEMPT_RT patch has improved the deterministic behaviour
of our tailored kernel. This was compared to a kernel without the PREEMPT_RT
patch. The maximum delay it takes for a system (with and without a running
background load) to react to an interrupt has decreased significantly. We have
also observed how the context switching latency in the patched kernel is increasing
in a more consistent fashion when the number of involved processes are increasing.
Because of these improvements, and as it is in use for other space applications today,
we believe Linux is suitable on platforms having hard real-time requirements. We
see the possibilities of RUAG meeting customers interest in using Linux on their
cOBC in the future.

There are a vast number of decisions that can be made to build a tailored Linux
distro. A couple of suitable building blocks we have discussed are the kernel and the
choice of libc. We found it beneficial to use the kernel from the QorIQ Linux tree
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since it was provided by NXP. We also believe that the libc musl would be a good
addition because of its small size and large functionality. Besides the patch, we have
discussed that the chosen features and building blocks of a Linux distro should also
be carefully evaluated. This to reduce the chance of installing interfering packages,
and the size of the build.

In the original plan for our thesis project, we had the intention to investigate how
Linux and COTS hardware could be protected against cosmic radiation by redun-
dancy techniques. However, due to the project’s timing constraints, we did not
address this topic in the thesis.

6.1 Future Work
Besides Yocto and Buildroot, there is Flexbuild which is another build framework
that can generate various components including a Linux distro. Other frameworks
and applications like Xenomai and RTAI can be utilized to improve the real-time
properties of a Linux distribution. To create an understanding of which approach
is the best, a thorough investigation should be made to compare these build tools,
frameworks, and applications against each other to explore their advantages and
disadvantages.

As the libc musl was not included in our presented builds, it would be of interest to
include it in future builds and conduct tests to study if musl brings any advantages.

Since neither a simpleImage nor a zImage could be created in Buildroot to include
a kernel image, DTB, and rootfs, a solution could be to develop a custom wrapper
to do this instead. Another approach could be to implement support for the custom
bootloader that would pass static pointer addresses to the processor registers. It
could then make sure to load the binaries of the core components into the correct
addresses in memory.
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Appendix A

A short guide for connecting the target board’s console to a window at the host
computer with screen, and then setting up a TFTP server.

1. Display detected serial connections by running

$ dmesg | grep ttyUSB

on the host. Linux uses the prefix ttyUSB for USB based serial ports. Our
output was

usb 1-10: pl2302 converter now attached to ttyUSB0

Hence, the connected serial port is ttyUSB0 and will be used in the next step
when running screen.

2. Start screen by running

$ sudo screen /dev/ttyUSB0 115200

The default configurations were already set for us and should be: 8 bits per
byte, No parity, 1 stop bit, Flow control hardware: Yes, Flow control software:
No. 8N1 Yes No, in short.

3. Start/reset the board and the boot process should be seen in the connected
window. When ”Hit any key to stop autoboot”, hit any key on the keyboard.

The next step is to set up a TFTP server to be able to transfer the necessary
files into the memory of the reference design board. We followed a guide to install
the tftpd-hpa TFTP server package on Ubuntu [68]. To make sure the server was
working and reachable, we sent a ping in U-Boot to the serverip (host computers IP
address). The response was:

=> host <serverip> is alive

Then the necessary files should be copied from the image directory into the same
directory the TFTP server is running. Files can now be transferred from the host.
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Appendix B

The defconfig file to build Linux with the PREEMPT_RT patch for the P2020RBD
with Buildroot:

BR2_powerpc=y
BR2_powerpc_8548=y
BR2_KERNEL_HEADERS_4_19=y
BR2_LINUX_KERNEL=y
BR2_LINUX_KERNEL_CUSTOM_GIT=y
BR2_LINUX_KERNEL_CUSTOM_REPO_URL="https://source.codeaurora.org/external
/qoriq/qoriq-components/linux"
BR2_LINUX_KERNEL_CUSTOM_REPO_VERSION="LSDK-20.04-V4.19-RT"
BR2_LINUX_KERNEL_USE_CUSTOM_CONFIG=y
BR2_LINUX_KERNEL_CUSTOM_CONFIG_FILE="mpc85xx_smp_defconfig"
BR2_LINUX_KERNEL_ZIMAGE=y
BR2_LINUX_KERNEL_DTS_SUPPORT=y
BR2_LINUX_KERNEL_INTREE_DTS_NAME="p2020rdb"
BR2_TARGET_ROOTFS_CPIO=y
BR2_TARGET_ROOTFS_CPIO_GZIP=y
BR2_TARGET_ROOTFS_CPIO_UIMAGE=y
BR2_TARGET_ROOTFS_EXT2=y
BR2_TARGET_ROOTFS_EXT2_GZIP=y
# BR2_TARGET_ROOTFS_TAR is not set

III
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