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A Fast Radio Burst (FRB) Capture System for the Onsala Space Observatory
Bocheng Jia, Xiao Chen
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract
The discovery of the fast radio burst (FRB) in 2007 was an important moment in
astronomy due to FRB’s unique property, which helps astronomers explore how the
universe expanded and gives clues to study celestial phenomenons such as the ap-
pearance of neutron stars. The purpose of this thesis is to explore and develop a
new digital backend system for Onsala Space Observatory to capture FRB events in
real time and reduce the data rate. A trigger mechanism that can flag the FRB can-
didates is implemented. Only when potential FRB candidates are detected, signal
data would be buffered and saved. We implemented polyphase filterbank channel-
ization to generate the signal’s spectrum in real time. Moreover, we implemented
incoherent de-dispersion algorithms to compensate for the frequency-dependent de-
lay. Filtering and averaging are introduced to improve an FRB’s signal-to-noise
ratio. We first built the system model in MATLAB and analyzed the simulation
results. We also demonstrated the hardware implementation of the FRB capturing
system and tested the system with a signal generator. The test results showed that
our system is able to capture FRB events and reduce the data rate compared to the
current system in Onsala Space Observatory.

Keywords: Fast Radio Burst, Radio astronomy, Incoherent dedispersion, Polyphase
filterbank channelizer, FPGA, Data rate reduction.

v





Acknowledgements
We want to thank the Onsala Space Observatory for offering us this precious mas-
ter project, and providing technical equipment. We also would like to give sincere
thanks to our supervisors: Gary Hovey and Per Larsson-Edefors. They provide
constructive help in academic area and technical areas, guiding us to complete this
thesis. In addition, thanks to Lukas Sandström, Franz Kirsten, and Olof Forssén
for introducing more insights about radio astronomy.

This thesis project is a challenging project, we want to thank all the people who
have ever helped us, it is your support that make this project come true.

Bocheng Jia, Xiao Chen, Gothenburg, October 2021

vii





Contents

1 Introduction 1
1.1 Propagation characteristic: dispersion . . . . . . . . . . . . . . . . . . 1
1.2 Current FRB capture system . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Project goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Theory 5
2.1 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Channelizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Channel division . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Discrete Fourier transform (DFT) channelizer . . . . . . . . . 7
2.2.3 Polyphase filterbank (PFB) channelizer . . . . . . . . . . . . . 8
2.2.4 Oversampled PFB channelizer . . . . . . . . . . . . . . . . . . 9
2.2.5 Fast Fourier Transform (FFT) . . . . . . . . . . . . . . . . . . 11

2.3 De-dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Incoherent de-dispersion method . . . . . . . . . . . . . . . . 14
2.3.2 Coherent de-dispersion method . . . . . . . . . . . . . . . . . 15

2.4 Signal, noise and averaging . . . . . . . . . . . . . . . . . . . . . . . . 16

3 System design and simulation 19
3.1 System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 PFB channelizer . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 Incoherent de-dispersion algorithm . . . . . . . . . . . . . . . 21
3.2.3 Triggering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Module simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.1 Simulated FRB and downsampling . . . . . . . . . . . . . . . 23
3.3.2 Simulation of PFB channelizer . . . . . . . . . . . . . . . . . . 25

3.3.2.1 Simulation behaviour . . . . . . . . . . . . . . . . . . 25
3.3.2.2 Signal-to-Noise Performance . . . . . . . . . . . . . . 26

3.3.3 Simulation of averaging . . . . . . . . . . . . . . . . . . . . . . 28
3.3.3.1 Simulation behaviour . . . . . . . . . . . . . . . . . . 28
3.3.3.2 Predicted results . . . . . . . . . . . . . . . . . . . . 30

3.3.4 Simulation of incoherent de-dispersion . . . . . . . . . . . . . 31
3.3.5 Simulation of triggering . . . . . . . . . . . . . . . . . . . . . 31

3.4 Hardware system simulation . . . . . . . . . . . . . . . . . . . . . . . 34

ix



Contents

4 Hardware implementation 41
4.1 The advantage of using Field-Programmable Gate Array (FPGA) . . 41
4.2 ADQ7WB platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Hardware implementation of algorithms . . . . . . . . . . . . . . . . . 44

4.3.1 Parallel samples and data format . . . . . . . . . . . . . . . . 45
4.3.2 SampleSkip . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.3 Control and Data Register . . . . . . . . . . . . . . . . . . . . 47
4.3.4 Oversampled PFB channelizer . . . . . . . . . . . . . . . . . . 48

4.3.4.1 Commutator . . . . . . . . . . . . . . . . . . . . . . 49
4.3.4.2 Polyphase FIR filterbank . . . . . . . . . . . . . . . 50
4.3.4.3 Phase correction . . . . . . . . . . . . . . . . . . . . 52
4.3.4.4 FFT . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.5 Averaging Filterbank . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.6 De-dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.7 Trigger and snapshot . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.8 Snapshot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 System test and results 59
5.1 Oversampled PFB channelizer . . . . . . . . . . . . . . . . . . . . . . 59
5.2 FRB detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Conclusion 67

x



1
Introduction

Fast radio bursts (FRBs) are transient signals caused by some high-energy astro-
physical processes not yet understood. The first FRB was discovered in 2007 by
Lorimer et al. [1], since then many FRBs have been observed and retrospectively
identified in previously recorded data.

An FRB is an extremely strong transient pulse with a duration from one millisec-
ond to a few milliseconds. The energy of an FRB is exceptionally high, and it has
been estimated that the average FRB energy in a millisecond is as much as the sun
emits in three days [2]. Additionally, an FRB pulse is dispersed over 100’s of MHz,
with low frequencies arriving up to a second behind the high frequencies. While the
dispersion is due to electrons in interstellar space, the origin of FRBs is still under
investigation and is of great scientific interest.

FRBs are an important subject in astronomy. This project aims to assist as-
tronomers in capturing FRBs with higher efficiency and accuracy by improving
the hardware and algorithms of existing systems. By measuring the frequency-time
structure of a pulse (dispersion measure) and the properties of the interstellar space,
researchers can infer information about the distance to a source and the interstel-
lar medium (ISM). Such information contributes to our understanding of how the
universe expanded over its history, as well as to our knowledge of other unknown
phenomena, like the ’dark energy’ and ’dark matter’ in the universe [3].

1.1 Propagation characteristic: dispersion

Free electrons in cosmic space cause lower frequency electromagnetic waves to prop-
agate more slowly than higher frequency waves. Hence, a frequency-dependent delay
is added to FRBs, which is a function of distance and free electron density [4]. Some
examples of dispersed FRB pulses and their frequency-time structure are shown in
Fig. 1.1.
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1. Introduction

Figure 1.1: The pulse profile (top) and frequency-time spectrum (bottom) of the
dispersed FRB010724, FRB110220, and FRB121102 [5]. Note that the prominent
frequency-dependent delay in the leftmost plot (FRB010724) and the weak SNR
(FRB121102) in the rightmost plot is improved by de-dispersion (i.e., the pulse
profile)

.

In each plot, the lower (waterfall) sub-plot shows the frequency sweep across the
time-frequency plane. In contrast, the upper sub-plot shows the total pulse inten-
sity after removing the quadratic dispersion sweep (i.e., de-dispersion).

The dispersion measure, DM , is a common metric used to relate electron density
and distance to the dispersed frequency-time structure of a pulse [6].

The extra delay, t, added at a frequency v is

t = kDM × (DM
v2 ) (1.1)

Here, DM is the dispersion measure and kDM is the dispersion constant, which is
given by

kDM = e2

2πmec
≈ 4.149 GHz2 pc−1 cm3 ms (1.2)

In this expression, me is the mass of the electrons, and c is the speed of light. The
dispersion measure DM can be derived by:

DM =
∫ d

0
nedl (1.3)

where ne is the density of electrons, and d is the distance from the FRB source to
the Earth. The unit of DM is cm−3 pc 1.

1The parsec (pc) is a unit of length used to measure the large distances to astronomical objects
outside the Solar System, approximately equal to 3.26 light-years.
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1. Introduction

Note that for a pulsed signal like an FRB, the DM can be calculated using the time
between the highest and lowest frequencies, vhi and vlo, as:

∆t = kDM ×DM × ( 1
v2

lo

− 1
v2

hi

) (1.4)

After rewriting the above equation, we can determineDM by measuring pulse arrival
times at different frequencies. This is important because most celestial objects
radiate continuously, and as such their DM cannot be computed this way. The
strong transient nature of FRBs makes them extremely useful probes to measure
both the character of the source, the distance to it, and the nature of the electron
density in the intervening cosmic medium.

1.2 Current FRB capture system
The FRB capture system currently used in Onsala Space Observatory is a VLBI
(very-long-baseline interferometry) recorder, which consists of a Digital Baseband
Converter 2 (DBBC2) hardware and the Heimdall software [7][8].

The DBBC2 is a digital backend that has been endorsed by the European VLBI
network and is used as a digital processing unit in radio telescopes. Its primary
purpose is to downconvert radio signals to baseband and perform digital signal pro-
cessing on the data before writing it to disks. Note that the DBBC2 assumes the
SNR is very low so that the data may be re-quantized to 2 bits to save transmis-
sion bandwidth and disk space. A block diagram of DBBC2 is shown in Fig. 1.2.
Table 1.1 summarizes some of the key specifications of DBBC2.

Analogue to 
Digital 
Domain

Conversion

Digital Base 
Band Forming

Output
Streaming

Figure 1.2: A block diagram of the DBBC2 processing flow.

Table 1.1: Specification of DBBC2.

Bandwidth 4× IF-512/1024 MHz
Record data rate 4.096/8.192 Gbps
Data width 2 bits

Heimdall is a fast transient search software that can use graphics processing units
(GPUs) for FRB searching. It has been deployed on many different radio telescopes
as a real-time transient detection system to discover FRBs. A data flow chart of
how Heimdall works is shown in Fig. 1.3.

The software reads the data from the DBBC2 hardware, and Fourier transforms
it to frequency space. Digital signal processing algorithms such as de-dispersion,
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1. Introduction

Read data FFT
De-

dispersion
Whiten

Matched
Filters

Detect
Candidates

Output
Candidates

Figure 1.3: Flow chart of Heimdall.

whitening, and matched filtering are then applied to the received data. The FRB
candidates are detected by examining the matched filter output. Finally, the soft-
ware outputs and displays the FRB candidates.

However, the VLBI recorder has some shortcomings: Firstly, it re-quantizes the data
to 2 bits to reduce the data rate and file size. This can only be done for SNR’s �
1, but when the SNR is > 1, non-linearities cause spurious signals and distortions.
Secondly, FRB events cannot be identified in real time, and post-processing is re-
quired to detect FRB events. Lastly, it is difficult to maintain the DBBC2 as it uses
custom hardware that is not well documented, and it is impractical to modify its
firmware to better reject radio frequency interference (RFI), flag FRB events in real
time, change data rate, and requantized data.

1.3 Project goal
The goal of this project is to develop a new backend based on commericial off-
the-shelf DSP system whose firmware and software can be modified as needed to
monitor FRBs as well as pulsars (which also emit transient pulses similar to FRBs).
We break down this goal into several parts as follow:

• Investigate existing FRB capture systems, to understand the advantages and
disadvantages of the existing FRB systems, and use them as references for
designing our system.

• Investigate FRB detection algorithms, compare their pros and cons, and choose
the appropriate algorithms to use in our system according to our needs.

• Build the system model based on the algorithms we chose in MATLAB, sim-
ulate each algorithm, and explore the influence of the parameters in the algo-
rithm on our system.

• Implement the algorithms and functions as needed using Xilinx Vivado, and
test the performance of the hardware FPGA system.

1.4 Thesis outline
Apart from this introduction, the thesis consists of five chapters. Chapter 2 mainly
introduces the principles of the signal processing algorithms involved in the FRB
capture system. Chapter 3 presents the design and simulation of the system, while
chapter 4 introduces the hardware implementation of the system. Chapter 5 presents
our test scheme and the test results. The final chapter is the conclusion.
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2
Theory

As mentioned in chapter 1, a significant feature of FRBs is that the signal is highly
dispersed. Thus, the most important part of the digital signal processing chain is to
remove the distortion by moving all the FRB’s frequencies to a reference frequency.
Hence, before the de-dispersion algorithm can be applied, the broadband input sig-
nals must be divided into many narrow frequency bins (or channels). This is done
using a channelizer. This chapter will give a brief introduction to the basic prin-
ciples of the signal processing algorithms such as the de-dispersion and channelizer
algorithms, as well as some other algorithms which will be used in the system.

2.1 Sampling
Many FRBs are detected around 1400 MHz, and a few are detected at lower fre-
quencies in the range of 400-800 MHz[9]. According to the Nyquist-Shannon sam-
pling theorem [10], to fully recover or reconstruct the original signal after sampling,
the sampling frequency should be greater than twice the signal’s highest frequency.
Hence, to sample the FRB signals without aliasing and distortion, we need a sam-
pling frequency at around 2.8 GHz (2 ·1400 MHz). Although the current high-speed
analog-to-digital converters (ADCs) can reach such a high sampling rate, it makes
the computational load for the digital signal processing system extremely high and
results in unnecessary resources waste.

Bandpass sampling theorem is then introduced to handle these problems. For a
bandpass signal with a frequency range (fL, fH), the sampling rate must fulfill the
following equation from Nyquist sampling theorem [11]:

fs ≥ 2(fH − fL) (2.1)

And the acceptable sampling rate is given by [11]:

2 · fH

m+ 1 ≤ fs ≤ 2 · fL

m
(2.2)

Here fL and fH stand for the lowest and highest frequency of the signal, respectively.
m is the maximum integer that fulfills the requirement of the above equation. There-
fore, it is more efficient to sample the FRB signal at twice its bandwidth than at
twice its highest frequency.

5



2. Theory

2.2 Channelizer
A channelizer is used to divide a broadband signal into multiple narrow channels
and downconvert each output channel to baseband, so one or more channels may be
extracted.

The following subsections explain the function of a channelizer in more detail. The
terms used are defined as follows: M is the total number of channels, k is the
channel index range from 0 to M − 1, D is the decimation ratio, and ω(k) is the
center frequency of each channel.

2.2.1 Channel division
In general, there are two allocations for the channels: odd stacking and even stack-
ing [12]. Fig. 2.1 illustrates the difference between these two different channel allo-
cations.

2π/M 2π/M 2π/M 2π/M

ω0=0 ω1 ω2 ωk-1

.......

2π/M 2π/M 2π/M 2π/M

ω0 ω1 ω2 ωk-1=2π

.......

2π

0

Even stacking

Odd stacking

Figure 2.1: Channel allocation. The upper part shows an even-stacked channel
allocation and the lower part shows an odd-stacked channel allocation. The band-
width of each sub-channel is 2π/M .

For even stacking, the center frequency of each channel can be calculated as:

ω(k) = kπ

M
(2.3)

In contrast, for odd stacking, the center frequency is calculated as:

ω(k) = 2k + π

M
(2.4)
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2. Theory

2.2.2 Discrete Fourier transform (DFT) channelizer
Typically, a channelizer operates by shifting the desired band to baseband, atten-
uating out-of-band signals, and finally decimating the signal to a narrower band-
width [12]. The channelizer structure based on this is commonly known as the
discrete Fourier transform analyzer. Fig. 2.2 illustrates a channelizer with four
channels. Here, different shapes represent different frequency components.

4-channel
channelizerFrequency

Frequency

Figure 2.2: Illustration of a 4-channel channelizer.

The structure of a DFT channelizer is shown in Fig. 2.3. In this figure, n represents
the undecimated samples andm represents the decimated sample. ωk, k ∈ [0,M−1],
is the Fourier frequency used to downconvert the signal to baseband, and H(z) is
the discrete time filter transfer function.

𝐻(𝑧)

𝑒−𝑗𝜔0𝑛

𝑒−𝑗𝜔1𝑛

𝑒−𝑗𝜔𝑀−2𝑛

𝑒−𝑗𝜔𝑀−1𝑛

𝐻(𝑧)

𝐻(𝑧)

𝐻(𝑧)

𝑀

𝑀

𝑀

𝑀

𝑦0(𝑚)

𝑦1(𝑚)

𝑦𝑀−2(𝑚)

𝑦𝑀−1(𝑚)

𝑥(𝑛)

Figure 2.3: Conventional DFT channelizer structure.

In this approach, M independent 1-channel channelizers are working in parallel.
Each separate channel extracts one desired band from the broadband input. The
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2. Theory

advantage of using this straightforward approach is the high degree of flexibility in
selecting each channel’s center frequency and bandwidth. Meanwhile, the bandwidth
of each channel are not required to be uniform. However, this approach is inefficient
(more resources, power, cost) for high-sampling-rate applications, for the reason
that every sample, n, is processed by M filters, H(z), at the full sample rate, and
down-converted by M shift frequencies e−jωkn.

2.2.3 Polyphase filterbank (PFB) channelizer
A more efficient method than the DFT channelizer is to decimate first and then
process m samples by M filters and downconvert using the fast Fourier transform
(FFT). This approach has order n log2 n operations instead of n2 (where n stands
for data length) saving log2 n

n
operations over a DFT channelizer. Such a channel-

izer is known as a polyphase filterbank, or PFB, because it processes the decimated
phases of the signal in separately, and typically downconverts and integrates using
the FFT. The term filterbank refers to it having an identical channel bandwidths.

Since the PFB channelizer decimates the input samples first and then processes
them, it is very suitable for application in FPGAs because it can handle the clock
speed mismatch between the fast ADCs and slower FPGAs: the highest clock rate
that most of the FPGAs could run at is typically hundreds of megahertz while
modern ADCs can reach a very high sampling rate up to several Giga samples per
second. In this project, for example, the ADC clock rate is 5 GHz while the FPGA
clock rate is 1/16 of that, 312.5 MHz.

A typical PFB structure is shown in Fig. 2.4. This kind of PFB channelizer is
also known as the critically sampled PFB channelizer because the channel complex
output data rate is the same as the channel bandwidth. In other words critically
sampled..

𝐻0(𝑛)

𝐻1(𝑛)

𝐻𝑀−1(𝑛)

M-Point
FFT.

.

.

.

.

.

𝑥[𝑛]

Sample rate: 𝑓𝑠

𝑓𝑠

𝑀

𝑦0[𝑚]

𝑦1[𝑚]

𝑦𝑀−1[𝑚]

Commutator
switch

Polyphase filters

Figure 2.4: Critically sampled PFB channelizer structure.
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2. Theory

The first stage of a PFB channelizer structure is a commutator switch where the
decimation of factor M is applied. It starts on the first branch as shown in Fig. 2.4
and travels through these branches in the clockwise direction. The Hk(n) in the
second stage represents the polyphase filters which are formed by decomposing a
prototype filter intoM sub-filters. Here, the prototype filter is a low-pass filter with
a bandwidth of 1

M
. An example of the polyphase filter coefficients are obtained for

a prototype filter is shown in Table 2.1. This table assumes that the coefficients of
prototype filter are: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] and the number
of channels is M = 4.

Table 2.1: Arrangement of PFB.

Polyphase filters Prototype filter coefficients
H0(n) 0, 4, 8, 12
H1(n) 1, 5, 9, 13
H2(n) 2, 6, 10, 14
H3(n) 3, 7, 11, 15

Each polyphase decomposed filter takes one coefficient from the prototype filter in
order until all coefficients of the prototype filter are taken away.

2.2.4 Oversampled PFB channelizer
There are various types of channelizers, each with its own set of characteristics.
Two commonly used channelizers are the critically sampled PFB channelizer and
oversampled PFB channelizer. The former one (critically sampled channelizer) is
the basic one where the bandwidth of each channel is exactly 1

M
of the original

signal spectrum, and the decimation ratio D is equal to the number of channels M .
Therefore, the output sample rate is the same as the channel spacing. However,
because of aliasing, frequencies outside the channel (from noise or strong signals)
will fold back into the channel, placing constraints on the prototype filter pass, tran-
sition and stop band. To avoid this problem in critically sampled channelizers, one
can create a wider guard band between signals on adjacent channels, and another
way is to design a higher order prototype filter so that a sharper transition band
can be achieved and hence reducing the frequency overlap between a filter and its
images [13]. However, the guard band would reduce the useful bandwidth of the
signal, and the higher-order filter would increase the resource usage.

The oversampled PFB channelizer can avoid reducing the useful signal bandwidth
and minimizing the frequency aliasing efficiently by making the Nyquist frequency
of the channel, fs

D
, greater than the channel spacing fs

M
so that the channel filters

are overlapping in terms of the input signal, but their images do not overlap, and
therefore, do not cause aliasing after decimation [14].

9



2. Theory

To summarize, a critically sampled channelizer has M = D while an oversampling
channelizer hasM > D. The ratio betweenM andD is known as oversampling ratio.

For an oversampled PFB channelizer, there are M outputs for every D inputs. To
increase the number of samples at the output, the number of input samples to the
polyphase filter should be increased accordingly. Therefore, there will be a M −D
overlapping input samples to the PFB. Assume, for example, that the number of
channels M is 8 and the decimation ratio D is 4; the resulting arrangement of
samples feeding into the PFB is shown in Table 2.2.

Table 2.2: Arrangement of input samples to oversampled PFB channelizer.

Third Group Second Group First Group Polyphase Filters
S15 S11 S7 H0(n)
S14 S10 S6 H1(n)
S13 S9 S5 H2(n)
S12 S8 S4 H3(n)
S11 S7 S3 H4(n)
S10 S6 S2 H5(n)
S9 S5 S1 H6(n)
S8 S4 S0 H7(n)

In the table above, Sn represents input samples to the PFB, and Hk(n) represents
the polyphase filters for each channel. Each group of samples will be fed to the
corresponding polyphase filters group by group. Note that the upper four samples
in each group overlap with the lower four samples of its next group. Fig. 2.5 shows
the structure of an oversampled PFB channelizer.

𝐻0(𝑛)

𝐻𝐷−1(𝑛)

𝐻𝐷(𝑛)

M-Point
FFT

.

.

.

.

.

.

.

[𝑥(𝑛) to 𝑥(𝑛 − 𝐷 + 1)]

Sample rate: 𝑓𝑠

𝑓𝑠

𝑀

𝑦0[𝑚]

𝑦𝑀−1[𝑚]

Commutator
switch Polyphase filters

.

.

𝐻𝑀−1(𝑛)

D samples
delivered

Circular
Shift

Figure 2.5: Oversampled channelizer structure.

A consequence of using an oversampled PFB channelizer is that a phase rotation is
introduced at each of the output channel of the channelizer [15]. This phase rotation
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2. Theory

can be corrected by implementing a circular shifting buffer between the FIR filters
and the Fast Fourier Transform (FFT) unit as shown in Fig. 2.5.

For a special case when the oversampling ratio of the oversampled PFB channelizer
is 2, this phase rotation can be corrected by a state machine with 2 states. To
help explain, name these two states as state 1 and state 2 respectively. The state
machine switches its state whenever the polyphase filters output a new set of data.
In state 1, the outputs of the polyphase filters are delivered to the input of the FFT
unit directly, while in state 2, the upper part and the lower part of polyphase filters’
outputs are exchanged first, and then sent to the FFT unit.

2.2.5 Fast Fourier Transform (FFT)
The FFT is an efficient algorithm for implementing a DFT. It transforms a sequence
of N complex numbers xn:= x0, x1, ..., xN−1 into another sequence of complex num-
bers XK := X0, X1, ..., XN−1.

The calculation formula of DFT is:

X[k] =
N−1∑
n=0

x[n]W nk
N , 0 ≤ k ≤ N − 1 (2.5)

where W nk
N = e−j 2πk

N
n.

By splitting the DFT formula into parity terms, the firstN/2 points can be expressed
as:

X[k] =
N−1

2∑
r=0

X[2r]W 2rk
N +

N−1
2∑

r=0
X[2r + 1]W (2r+1)k

N

=
N−1

2∑
r=0

X[2r]W rk
N
2

+W k
N

N−1
2∑

r=0
X[2r + 1]W rk

N
2

= A[k] +W k
NB[k], k = 0, 1, ..., N2 − 1

(2.6)

Similarly, the last N/2 points can be expressed as:

X[k + N

2 ] = A[k] +W k
NB[k], k = 0, 1, ..., N2 − 1 (2.7)

It can be seen that the value of the last N/2 points can be determined entirely by
calculating the intermediate process value when the first N/2 points are calculated.
The parity decomposition is continued for A[k] and B[k] until it becomes a 2-point
DFT, which avoids a large number of repeated calculations and realizes the FFT
process.
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2. Theory

Suppose the number of FFT operation points is N , and there are M levels of oper-
ations in total, then the relationship between N and M is:

M = log2 N (2.8)

An 8-point FFT structure with 3 levels of operations is shown in Fig. 2.6.
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Figure 2.6: 8-point FFT structure.

From the figure above, it can be seen that the DFT can be completed by several
multiplications and additions, instead of serial multiplication and accumulation of
each sample. The basic operation unit of FFT is commonly known as butterfly unit.
Fig. 2.7 shows a schematic diagram of the butterfly unit:

-1

𝑥𝑚(𝑝)

𝑥𝑚 𝑞 𝑊𝑁
𝑟

𝑥𝑚+1(𝑝)

𝑥𝑚+1(𝑞)

Figure 2.7: Schematic diagram of the butterfly unit.

The relationship between the input and output of a butterfly unit is:

xm+1(p) = xm(p) + xm(q)×W r
N (2.9)

xm+1(q) = xm(p)− xm(q)×W r
N (2.10)
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There are one multiplication and two additions in a butterfly unit. In each level,
there are N

2 butterfly units. Therefore, the total number of multiplications for one
FFT operation is N

2 log2 N and additions is N log2 N .

The FFT we introduced previously is complex FFT because both the input and out-
put of the FFT are complex value. However, in many cases the data transformed
are not complex but real. In this case, if we still use a complex FFT to deal with
sequence of real valued data, there will be a waste of approximately half of the re-
sources.

There is an algorithm that can use an N -point complex FFT operation to obtain a
2N -point real sequence FFT. Assume x(n) is a real sequence of 2N points, and now
x(n) is artificially divided into an even sequence and an odd sequence:

x1(n) = x(2n), n = 0, 1, ..., N − 1

x2(n) = x(2n+ 1), n = 0, 1, ..., N − 1

Then combine x1(n) and x2(n) into a complex sequence:

y(n) = x1(n) + jx2(n)

By using an N -point FFT we can get:

Y (k) = X1(k) + jx2(k)

According to the nature of DFT, we can get:

X1(k) = 1
2[Y (k) + Y ∗ (N − k)]

X2(k) = −j2[Y (k)− Y ∗ (N − k)]

In order to getX(k), we need to find the relationship amongX(k), X1(k) andX2(k):

X[k] =
2N−1∑
n=0

x[n]W nk
2N =

N−1∑
n=0

x(2n)W 2nk
2N +

N−1∑
n=0

x(2n+ 1)W (2n+1)k
2N

N−1∑
n=0

x(2n)W nk
N +W k

2N

N−1∑
n=0

x(2n+ 1)W nk
N

and

X1[k] =
N−1∑
n=0

x1[n]W nk
N =

N−1∑
n=0

x(2n)W nk
N (2.11)

X2[k] =
N−1∑
n=0

x2[n]W nk
N =

N−1∑
n=0

x(2n+ 1)W nk
N (2.12)
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Thus,
X(k) = X1(k) +W k

2NX2(k) (2.13)

The complex sequence composed of x1(n) and x2(n) is processed by FFT to get
Y (k). ThenX1(k) andX2(k) can be calculated with the help of conjugate symmetry.
Finally, using (2.13) yields X(k). Using this method an N -point FFT can calculate
a 2N -point real sequence DFT.

2.3 De-dispersion
Cosmic radio signals are typically extremely weak and often weaker than the most
sensitive amplifiers’ noise. Because the energy of a dispersed pulse is spread in time
and frequency, it is much weaker than the original undispersed version. Therefore, to
recover the FRB signal, it is vital to de-disperse the received pulse and compensate
for the time delay between different frequencies. A figure of three de-dispersed FRBs
is shown in Fig. 2.8. It can be seen that the time delay between frequencies has been
removed after de-dispersion. Currently, there are two methods to do this. The first
is called coherent de-dispersion, and the other is incoherent de-dispersion. These
methods are described separately in the following two sections.

Figure 2.8: The pulse profile (top) and frequency-time spectrum (bottom) of the
three FRBs: FRB170827, FRB170922, and FRB180110 [5].

2.3.1 Incoherent de-dispersion method
The incoherent de-dispersion method calculates the time delay across a frequency
range with a known DM value, then subtracts this delay from each frequency chan-
nel. The premise of achieving incoherent de-dispersion is to know how long each
channel needs to be delayed. From Eq. 3.3, the delay between channels can be
calculated:

td = kDM ·DM · (v1
−2 − v2

−2) (2.14)
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2. Theory

Here, the dispersion constant kDM = 4.15 × 103 MHz2pc−1cm3s. v1 and v2 are
the start frequency and stop frequency of the signal in MHz. DM is the dispersion
measure in pc cm−3.

There are three steps to achieve incoherent de-dispersion:
1. PFB channelization: Divide the broadband signal to several independent nar-

row channels.
2. Delay compensation: Calculate each channel’s delay from Eq. 3.3, select a

reference channel, and then move other channels to the time point where the
reference channel’s components appear.

3. Channel integration: Sum all channel’s signal components together to generate
the de-dispersed time series.在同一时刻对齐；(3) 通道累加，将所有通道时间序列叠在一起。 
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图 1 非相干消色散原理 

Fig 1. The principle of incoherent de-dispersion 

 

图1说明了非相干消色散的处理过程。图中左半部分未进行消色散，右半部分是消色散

处理后的结果。从图中可以看出，消色散前，通道累加之后脉冲宽度被展宽，输出信号信噪

比下降，消色散之后可以得到信噪比大幅提高的脉冲星轮廓。 

非相干消色散已被广泛应用于脉冲星、快速射电爆
[6]
搜寻。非相干消色散方法处理后

的脉冲星数据，其各个子通道内的色散延迟依旧存在，不能得到脉冲的真实轮廓，随着频谱

通道数的增加，每个通道的带宽变小，带内的色散效应可相应减轻，低频信号f1和高频信号

f2在星系际介质中的传播速度时间差为： 
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  式中，c为光在真空中的传播速度，e为电子电荷，DM为色散量，m为电子质量。DM可

表示为： 
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e eDM n dl n d                          (2) 

  式中，ne为电子密度，d为电磁波实际所经过的路径。 

脉冲星消色散处理中，一个频率通道 chanf 相对于参考通道 reff （通常是观测带宽中心

频率）的时间延迟，可根据色散量公式（3）计算： 
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Figure 2.9: Incoherent de-dispersion demonstration.

Fig. 2.9 demonstrates the process of incoherent de-dispersion. The left figure is the
dispersed signal, while the right figure is the de-dispersed signal. From the figure,
it is clear that de-dispersion increases the dispersed signal’s amplitude.

However, the ability of incoherent de-dispersion to compensate for the frequency-
dependent delay is limited by the width of each channel. Incoherent de-dispersion
moves the sub-channel to compensate for the delay, so delay inside sub-channels can
not be compensated. When the width of each channel decreases, the delay inside
each channel will decrease.

2.3.2 Coherent de-dispersion method
The coherent de-dispersion can compensate for the dispersion phase by convolving
the signal with the inverse of the phase distortion resulting from the pulse passing
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2. Theory

through the interstellar medium (ISM). The convolution can also be done by multi-
plication in the frequency domain. The computational cost of coherent de-dispersion
depends on the observational bandwidth as well as the DM , so for FRBs, the coher-
ent de-dispersion calculation can be computationally complex and slow [2][6]. The
transfer function of ISM is defined in frequency domain [16]:

H(f + f0) = exp(2πif 2kDMDM

f0
2(f + f0)

) (2.15)

Here, f0 is the center frequency of a particular channel, f is the offset to f0 within
that channel. Note that f0 and f are both in MHz.

There are three steps to achieve coherent de-dispersion:
1. PFB channelization: Divide the broadband signal to several independent nar-

row channels in order to improve FFT efficiency.
2. Fourier transform : Transform time-domain data to frequency domain.
3. De-dispersion in frequency domain: Multiply the raw signal with the inversed

ISM transfer function H(−f).
4. Inverse Fourier transform: Transfer the frequency domain data back to time

domain.
5. Channel integration: Sum all channel’s signal in time to generate the de-

dispersed time series.

2.4 Signal, noise and averaging
When the telescope observes a radio source, a randomly fluctuating noise signal
with instantaneous amplitude A(t) would be introduced at the receiver side. This
noise is Gaussian and has a standard deviation σ and a mean µ = 0. Thus, for N
independent observing samples, the mean power of noise A(t) is:

P̄ =
∑(A− µ)2

N
=

∑
A2

N
= σ2 [17] (2.16)

The standard deviation σ is calculated by the following equation:

σ =
√

(x1 − x̄)2 + (x2 − x̄)2 + · · ·+ (xn − x̄)2

N
(2.17)

Here x1, x2 · · ·xn are the power samples, x̄ is the average power, N is the total num-
ber of samples.

The averaging filter technique is used to improve the SNR for a series of power sam-
ples. The averaging filter is a statistical technique to calculate averages of different
subsets of the entire data set. Because the average power of a large subset (N»1 )
has a Guassian distribution (a consquence of the Central Limit Theorem), its vari-
ance (due to noise) decreases with the number of independent samples averaged.
Thus the SNR, which is the ratio of average noise power, P̄ , to standard deviation,
is improved by the square root of the number of power samples, N, averaged.
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2. Theory

From the Nyquist sampling theorem, we know the relationship between the number
of samples N , integration (averaging) time τ , and the equivalent noise bandwidth
∆ν (Hz) is:

N = 2∆ντ (2.18)

Therefore, the improved new SNR is:

SNRnew = SNRoldN = SNRold(2∆ντ) (2.19)

The above derivations show that averaging in time or bandwidth can improve the
system SNR by a factor of N , and the factor can also be represented by 2∆ντ .
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3
System design and simulation

This chapter will first give a brief overview of the system structure and then show
how we simulate and verify the signal processing algorithm in MATLAB.

3.1 System overview
A block diagram of the system being developed is shown in Fig. 3.1.

ADC

SampleSkip
Polyphase
Filterbank

Averaging
Filterbank

De-
Dispersion

Trigger

Raw Data Memory

Dedispersed
Data

Memory

Control Bus

Commericial ADC/FPGA 
PCIe-3 board (ADQ7WB)

GUI and
data display

PCIe Bus (Gen3)

CPU

Applicat ion Program 
Interface

Linux Server

Band
pass
Filter

Matched filter

Figure 3.1: A block diagram of the FRB monitor system.

As shown in Fig. 3.1, the system is divided into two parts. The upper part is imple-
mented in a ADQ7WB hardware platform [18], and the lower part is the software for
data display and analysis. More detailed information about the hardware platform
is given in Chapter 4.

The system starts with an analog-to-digital converter (ADC) block where the ana-
log signal is sampled at 5 Giga samples per second (Gsps). In order to minimize
the influence of RFI and increase the sensitivity of our system, there is a bandpass
filter implemented at the very beginning of our DSP chain. The bandpass filter has
a passband from 625MHz to 781.25MHz (BW = 156.25 MHz) since this frequency
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3. System design and simulation

range matches a folding frequency related to the clocks that we have (the sample
clocks have to be a multiple, or a fraction of 5 Gsps). According to the bandpass
sampling theorem (see section 2.1), for a signal with 156.25 MHz bandwidth, the
sampling frequency only needs to be twice the signal bandwidth. Hence, there is no
need to sample the signal at 5 Gsps. Therefore, a SampleSkip block is implemented
after the bandpass filter to reduce the data rate from 5 Gsps to 312.5 Msps.

To detect target FRB signals, a de-dispersion algorithm is implemented to select
the FRB with the DM we are looking for and suppress other transients. The basic
idea of the de-dispersion algorithm is to compensate for the time delay for different
frequency components which had been discussed in section 2.3. A PFB channelizer
is needed to divide the broadband input signal into many narrow channels, provid-
ing various frequency bins for the incoherent de-dispersion algorithm.

Averaging is implemented between the PFB and the de-dispersion algorithm because
of its ability to improve signal SNR and reduce the data rate.

The trigger block generates a trigger when the averaged matched filter output
exceeds a programmable threshold and buffers the de-dispersed data in the de-
dispersed data memory while the raw data is stored in the raw data memory. A
data rate reduction block is placed before the raw data memory to store a longer
period of raw data. Both the raw data and the de-dispersed data are then delivered
to CPU for data display and analysis.

Table 3.1 shows some key parameters of the system. The reasons for choosing these
parameters will be explained in subsequent sections.

Table 3.1: Key parameters of the system.

ADC Sampling rate/channel 5 Gsps/Ch

Bandpass Filter

Fstop1 625 MHz
Fpass1 639.125 MHz
Fcenter 703.125 MHz
Fpass2 767.125 MHz
Fstop2 781.25 MHz
attenuation at Fstop1 8.5 dB
attenuation at Fstop2 8.5 dB
Filter order 64

SampleSkip Sampleskip factor 16

PFB

Number of channels 128
Downsample factor 64
Oversampling ratio 2
Prototype filter order 511
Prototype filter Fpass 0.61 MHz
Prototype filter Fstop 1.83 MHz
attenuation at Fstop 40 dB

Averaging Filterbank Average length 256 points
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3.2 System Design

3.2.1 PFB channelizer
An oversampled PFB channelizer is implemented to channelize the broadband signal
into multiple narrower frequency channels. An M -channel oversampled PFB chan-
nelizer takes D input samples to computeM outputs. The structure of oversampled
PFB is shown in Fig. 2.5.

In our system, the channelizer has 128 channels with a down-sampling factor of 64.
Because the sampling frequency is 312.5 MHz, each channel would have a bandwidth
of 2.44 MHz. And 50% of the channel width is overlapped with its adjacent chan-
nels because we set the oversampling ratio to 2. Our prototype filter is a low-pass
finite impulse response (FIR) filter with a pass frequency of 0.61 MHz and a stop
frequency of 1.83 MHz.

According to the Nyquist sampling theorem, the first half channels (channel 1 to
channel M

2 ) are symmetrical to the second half channels (channel M
2 + 1 to chan-

nel M). So, we can only use the first half of channels’ results to do further signal
processing processes such as averaging and de-dispersion to save hardware resources.

3.2.2 Incoherent de-dispersion algorithm
When FRBs travel through the interstellar medium, they will be dispersed in time,
and the higher frequencies will arrive earlier than lower frequencies. Similarly, the
energy of FRBs would be dispersed over time, making FRB too weak to be detected.
A solution to this problem is de-dispersion, which delays higher frequencies to lower
frequencies, integrating signal energy, and giving FRB signals a unique signature,
making them easier to be detected in an RFI environment despite their weakness.
As discussed in chapter 2, compared with coherent de-dispersion, although its sensi-
tivity is lower than coherent de-dispersion, incoherent de-dispersion is much simpler
to realize. Considering our system aims to reduce the data rate and storage needed
to detect an FRB, the lower sensitivity is not a problem as long as a transient pulse
from a target FRB, which is unpredictable and rare, is not missed. So, to first get a
working system and verify the system’s feasibility, incoherent de-dispersion is used
in this project.

As the final system will be running in real-time, signals that arrive first should be
delayed. In a given observing band with a particular DM , the channel with the
lowest frequency will be considered as the reference channel. The basic idea is to
have variable delay times for each frequency channel. Our system calculates the
delay between other channels and this reference channel and uses the system clock
to express this delay. The delay precision is set by the averaging time. Less aver-
aging means more delays and higher delay precision. The delays are implemented
in variable-length shift registers, 64 shift registers would be generated for the first
64 channels, and each shift register’s length equals the number of clock cycles that
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specific channel should be delayed. During the system running, all shift registers
will shift one unit at each clock cycle. The outputs of the shift registers are summed
to implement the final integration stage of a matched filter.

Fig. 3.2 is a simple demonstration of de-dispersion operation where ’S’ stands for
FRB signal. At time t0, the FRB signal appears in channel 4, which is the channel
with the highest frequency component, then at time t1, the FRB signal starts to
appear at channel 3, finally, when the time goes to t3, FRB reaches channel 4.
Because these four registers right shift one unit at each clock cycle, at time t3, all
FRB signals would be aligned in time.

S     S     S     S

   S    S    S

    S   S

   S

 
t0 t1 t2 t3

CH4

CH3

CH2

CH1

Figure 3.2: Shift registers for de-dispersion, ’S’ represents FRB signal.

3.2.3 Triggering
After de-dispersion, the next step is to generate an integrated de-dispersed series
to find the target signal. FRB signals in each channel are aligned in time to get
the integrated de-dispersed series by summing them together. If the integrated de-
dispersed series exceeds a user-defined threshold, then a potential FRB is found, so
we generate a trigger to store a snapshot of the candidate.

When the control unit detects a trigger, the system takes a snapshot and transfers
the data from the raw data memory to the host computer for astronomers to analyze
FRB signals with high fidelity. The trigger time would be set as the center point
of the snapshot, and to avoid missing any target signal, the snapshot would contain
extra buffers at the start and end of the target signal. Users can set the length of
the extra buffer.

3.3 Module simulation
The function of our system is to generate a trigger signal when a candidate FRB
signal arrives and save the candidate signal in a "snapshot". By only saving candi-
dates, the data rate of the system can be reduced. To verify the system, a simulated
FRB signal is generated by creating a dispersed pulse with random Gaussian noise
added. We will start with this simulated FRB signal and apply our algorithms to
see if we can detect the pulse.
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The signal processing chain starts with the sampling module, where the FRBs will be
sampled and quantized to simulate the ADC. Then the PFB channelizer will divide
the input into several frequency channels. Moving averaging is applied to the PFB
results to improve SNR and reduce the data rate. Since the dispersion measure
(DM) of the FRB is known a priori, a frequency-dependent delay is applied to
each frequency channel to yield the de-dispersed FRB. When the SNR reaches the
programmed threshold, a trigger is generated. In parallel with this, sample data
is being stored in the raw data memory buffer so that when a trigger occurs, The
sample data can be transferred to the CPU, where it is stored on disk and optionally
displayed. The flow chart of the simulation system is shown in Fig. 3.3.

Start

Generate input signal

Downsampling

PFB channelization

Moving average

Incoherent de-dispersion

Generate integrated pulse

Triggering

Taking Snapshot

Finish

Bandpass sampling

Raw data storing

Figure 3.3: Simulation flow.

3.3.1 Simulated FRB and downsampling
A simulated FRB signal is used as the input signal. This signal is a quadratic chirp
with DM equals to 10 pc cm−3, whose spectrum and power spectrum are shown in
Fig. 3.4. The frequency-time spectrum is shown in Fig. 3.5. Because the sampling
rate of ADC is 5 GHz, the spectrum is 2.5 GHz wide in these two figures. The input
simulated FRB sweeps from 781.25 MHz to 625 MHz, arrives at around 0.5 ms,
and lasts for 0.5 ms. Due to the computer’s performance limitation, the windowing
length is not long enough compared to the 5 GHz sampling rate. So, among the
whole spectrum, signal leakage would happen as an artifact of the plot. Artifact
Gaussian noise is added to the original FRB to simulate the telescope’s noise, which
mainly comes from the low noise amplifier (LNA) and ground radiation picked up in
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the sidelobes of the antenna. For the 25m telescope, the noise temperature is about
30Kelvin.

Input signal
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Figure 3.4: Input simulated FRB: (1) Top: Time series of the simulated FRB. (2)
Middle: Magnitude spectrum of the simulated FRB. (3) Bottom: Power spectrum
the simulated FRB.
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Figure 3.5: Simulated FRB: 781.25 MHz to 625 MHz.

After receiving the input signal, a bandpass filter would be added to attenuate
the frequencies outside the 625 - 781.25 MHz. Then the signal is downsampled
by a factor of 16, which results in a 312.5 MHz sampling rate. One reason for
downsampling here is that this can reduce the data rate and save disk space. Another
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reason is that the interested observing band is 625 - 781.25 MHz, so according to
the bandpass sampling theorem, 312.5 MHz is minimal sampling frequency to get
sampled signal without aliasing. Fig. 3.6 shows the signal after the downsampling
process. Because the spectrum is 0 - 156.25 MHz now, the simulated FRB signal
with 156.25 MHz wide crosses the entire band exactly.

input fake FRB (After downsampling, fs = 312.5 MHz)
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Figure 3.6: Down-sampled signal: (1) Top: Time series of the down-sampled
signal. (2) Middle: Magnitude spectrum of the down-sampled signal. (3) Bottom:
spectrum the down-sampled signal.

3.3.2 Simulation of PFB channelizer

3.3.2.1 Simulation behaviour

Since we would implement incoherent de-dispersion in our system, the resolution of
de-dispersion depends on each channel’s bandwidth. The more narrow the channel,
the higher the resolution. In our design, the PFB channelizer has 128 channels,
covering the whole 312.5 MHz sampling frequency band, and each channel would
have a 2.44 MHz wide bandwidth. To better understand the detection limits of our
system, a simulated FRB with -3 dB SNR was generated. The simulated FRB sig-
nal is from 625 MHz to 781.25 MHz, which locates between 0 MHz to 156.25 MHz
after downsampling, crossing the whole 128 channels. The channelization results
are shown in Fig. 3.7, where different colors represent signal components in different
channels. Components from channel 1-128 are placed along the time axis, which
matches our expectations.
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Figure 3.7: PFB channelizer output for a -3 dB input.

Furthermore, if we zoom in at several specific channels, we should see individual
signal components. In 9 to 14 in Fig. 3.8, we can see that there are correspond-
ing frequency components in each channel, and higher frequency components arrive
earlier than lower frequency components, which exactly shows the FRB’s dispersion
property. Using these frequency components, we can de-disperse the FRB.
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Figure 3.8: Channelization results in channel 9 to 14.

3.3.2.2 Signal-to-Noise Performance

A Gaussian noise vector is used as input to verify the PFB channelizer’s function
and performance, as Gaussian noise is distributed over the whole spectrum. The
PFB channelization process divides the one channel input signal into 128 channel
outputs, so the noise power should be distributed in 128 channels evenly. Assume
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the total power of the Gaussian noise vector is 1 W, then the ideal power in each
channel is:

ideal power in each channel = Total Power
Num of channel = 1

128 = 7.8 mW (3.1)

In MATLAB simulation, a Gaussian noise vector is generated with standard devi-
ation equals to 1, and the resistance is also set to 1 Ω, so the total power of this
input is V 2

R
= 1 W. After PFB channelizer, the power in each channel is 6.8 mW,

compared to the ideal value 7.8 mW, there is a 13% power attenuation. The results
are shown in Table 3.2. One reason for this power attenuation is that in our PFB
design, in each channel, 50% of the channel bandwidth is passband, 50% of the chan-
nel is transition band, which is overlapped with adjacent channels. The 50% long
overlapped transition band can cause power attenuation. Another reason is that we
use a 512 taps equal ripple filter as the prototype filter, and the prototype filter’s
order may not be high enough. Moreover, the frequency response of the equal ripple
filter shown in Fig. 3.9 has a narrow passband, which can also cause attenuation.

Table 3.2: PFB channelizer results of Gaussian noise.

Predicted result Simulation result
Noise power in each channel 7.8 mW 6.8 mW
Total noise power 1 W 0.87 W

Table 3.3: PFB channelizer results of a single tone signal.

Predicted result Simulation result
Signal power in channel 3 and 127 0.5 W 0.48 W
Total signal power 0.5 W 0.48 W
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Figure 3.9: Frequency response of equal ripple prototype filter.

27



3. System design and simulation

Apart from the Gaussian noise that crosses all channels, a single tone sine wave
signal is also generated at 4.88 MHz. The power of this sine wave is 0.5 W. The sine
wave should appear at the center of channel 3 and channel 127, and since these two
channels are mirror channels, they should each have half of the total power of the
sine wave. The simulation result shows that channels 3 and 127 each have 0.24 W
power, which matches our predicted result. The results are shown in Table 3.3.

3.3.3 Simulation of averaging

3.3.3.1 Simulation behaviour

In later process steps, the de-dispersed signal will be accumulated to generate the
integrated time series. This means that not only the signal would be integrated but
also the noise. So as discussed in chapter 2, we average each channel in time to
improve the SNR and reduce the data rate in our signal chain.

The results of the averaging filter are shown in Fig. 3.10 and Fig. 3.11. Compared
to Fig. 3.7 and Fig. 3.8, the signal pattern remains the same, and the signal-to-noise
ratio improves significantly. The power increases along the time axis in Fig. 3.10
because the averaging process can be seen as a low-pass filter, and the simulated
FRB’s frequency decreases along the time axis. Frequencies that come later have
lower frequency result in higher amplitude.
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Figure 3.10: Averaged channelization result.
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Figure 3.11: Averaged channelization results in channel 9 to 14.

If we zoom in on a specific channel: channel 14, the PFB result and averaging PFB
result are shown in Fig. 3.13 and Fig. 3.12. We noticed that the baseline noise level
is decreased by a factor of 256, and SNR improves significantly.
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Figure 3.12: PFB channelization results in channel 14.
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Figure 3.13: Averaged channelization results in channel 14.

3.3.3.2 Predicted results

For Gaussian noise, power = (std)2, where std stands for the standard deviation.
By applying N-point averaging, std would decrease by a factor of

√
N , so the noise

power would decrease by a factor of N . And in our PFB design, since 50% of the
channel’s bandwidth is overlapped with its adjacent channel, that half of the signal
is repetitive in each channel, so that the power would decrease by a factor of N

2 ,
then the SNR would increase by a factor of N

2 consequently.

A Gaussian noise vector and a single tone sine wave are generated to verify that
the simulation matches our predicted results. The power of the noise vector is 1 W,
and a 256-point averaging filter is added in the simulation. So the total noise power
after averaging should be:

ideal total power = Total Power
N
2

= 1
256 = 0.0039 W (3.2)

If we also compare the averaging results for different settings, we can see an SNR
improvement of factor N

2 in Table 3.5. The comparison between 512-point simulation
and predicted results is shown in Table 3.4, the SNR improvement factor has some
attenuation comparing to the ideal case, but still, the results are in close agreement
with our predicted results.
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Table 3.4: Averaging results for 512-point averaging.

Predicted result Simulation result
Noise power in each channel 3.0469*1e-5 W 3.0088*1e-5 W
Total power after averaging 0.0039 W 0.0039 W
SNR improvement factor 256 248

Table 3.5: Averaging results for 512-point averaging.

128-point
averaing

256-point
averaging

512-point
averaging

1024-point
averaging

Total power after averaging 0.0156 W 0.0078 W 0.0040 W 0.0020 W
SNR improvement factor 64 128 248 495

3.3.4 Simulation of incoherent de-dispersion
The de-dispersion result is shown in Fig. 3.14, and compared to Fig. 3.10, all the
signal components are aligned at one same time point.
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Figure 3.14: De-dispersion result.

3.3.5 Simulation of triggering
Once the incoherent de-dispersion is implemented, we can get de-dispersed time se-
ries by integrating all channels. The de-dispersed time series is shown in Fig. 3.15.
A pulse appears at 30 ms, which is the endpoint of the target FRB. The trigger
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would also be generated at 30 ms. Fig. 3.16 shows the comparison between dis-
persed signal and de-dispersed signal. We can see that the de-dispersed time series
has higher SNR compared to dispersed time series.

The SNR can be calculated by

SNR = signal power
std_noise = pulse− std_noise

std_noise (3.3)

where the std_noise is the standard deviation of the noise baseline. When we only
put pure noise as input to the system, then the result we get is the noise baseline.
pulse is the power of the de-dispersed time series vector. In our simulation case, the
SNR of the de-dispersed series is 8.11 dB, and for the dispersed series, it is almost
impossible to distinguish any valid signal from it. Furthermore, in the bottom two
plots in Fig. 3.16, the dispersed series’s frequency components are spread out along
the time axis, while the de-dispersed signal’s frequency components are all gathered
at one same time point.
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Figure 3.15: De-dispersed series.
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Figure 3.16: Comparison between dispersed and de-dispersed time series.

Furthermore, Fig. 3.17 shows the comparison between dispersed time series and de-
dispersed time series. So, after de-dispersion, a clear pulse can be detected by setting
a proper threshold. Secondly, compared to dispersed time series, the de-dispersed
pulse’s power has an obvious increase, making the FRB out of the noise baseline
and increasing the SNR. Thirdly, it can be seen that the noise floor is reduced in
the de-dispersed plot. The reason is that in dispersed time series, the noise baseline
is the summation of noise power and dispersed FRB power. However, in the de-
dispersed time series, the noise baseline only equals pure noise power since all FRB
components are delayed to the same time point.
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Figure 3.17: Dispersed signal and de-dispersed signal for -3 dB input.
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If we set a trigger threshold that is just below the maximum magnitude of the de-
dispersed time series, that is, the de-dispersed pulse at 30 ms in Fig. 3.17, then
only target FRB will exceed this threshold. Ideally, the power of the noise will not
be larger than this threshold, so every trigger is valid. However, when the input’s
SNR is extremely low, the final de-dispersed pulse’s power can still be less than that
of noise even with averaging and de-dispersion. Consequently, false triggering will
happen.

3.4 Hardware system simulation

To simulate the hardware system’s performance, we simulate our hardware system
implementation in MATLAB. The hardware system implementation uses a linear
chirp signal as the input signal, and the input signal is from 725 MHz to 625 MHz.
To keep consistency with the hardware tests that will be presented in section 5.2,
the root mean square (RMS) value is set to 100 mV, and Fig. 3.18 shows the input
signal at -3 dB SNR. The input signal comes at 0 ms and lasts to 5 ms. Fig. 3.19
shows the linear chirp pattern of the input.
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Figure 3.18: Input linear chirp with noise: (1) Top: Time series of the input
linear chirp. (2) Middle: Magnitude spectrum of the input linear chirp. (3) Bottom:
Power spectrum the input linear chirp.
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Frequency vs Time: raw signal
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Figure 3.19: Input linear chirp: 725 MHz to 625 MHz.

A bandpass filter is implemented to select the signal band of interest, which is
625 MHz to 781.25 MHz. When passed through the bandpass filter, the noise’s
amplitude is decreased to 35 mV due to the filtering process. The filtering result
is shown in Fig. 3.20, we see that the signal components outside the interested
frequency band are attenuated. Furthermore, bandpass sampling is implemented to
downsample the input. In Fig. 3.21, the signal sampling rate is decreased to 312.5
MHz. Comparing to Fig. 3.20, the signal pattern in the time domain remains the
same, but in the frequency domain (middle and bottom plots of both figures) since
the signal is downsampled, the spectrum width is decreased to 312.5 MHz from 5
GHz, fewer data would be recorded. Thus, we can save hardware resources.
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Figure 3.20: Input signal after bandpass filtering: (1) Top: Time series of the
filtered input. (2) Middle: Magnitude spectrum of the filtered input. (3) Bottom:
Power spectrum of the filtered input.

35



3. System design and simulation

input fake FRB (After downsampling, fs = 312.5 MHz)
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Figure 3.21: Input signal after downsampling: (1) Top: Time series of the down-
sampled input. (2) Middle: Magnitude spectrum of the downsampled input. (3)
Bottom: Power spectrum of the downsampled input.

The PFB channelization result after averaging is shown in Fig. 3.22, it can be
seen that signal components are dispersed along the time axis. Since the signal
passes through the bandpass filtering process, due to the bandpass filter response,
frequency components near the pass band edge would be attenuated, so that low
frequency components’ magnitude is lower than high frequency components. After
de-dispersion, all frequency components are moved to a same time point (shown in
Fig. 3.23). The integrated time series of both dispersed time series and de-dispersed
time series are shown in Fig. 3.24. It is obvious that the de-dispersed time series
have a strong pulse, indicating the occurrence of FRB. Fig. 3.25 also shows the same
result, frequency components from 100 MHz to 0 MHz are gathered together at 5
ms, which represents the original 100 MHz wide input in 625 MHz to 725 MHz.
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Figure 3.22: Averaged PFB channelization result: input signal is dispersed along
time axis.
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Figure 3.23: De-dispersed PFB channelization result.
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Figure 3.24: Comparison between dispersed and de-dispersed time series.
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Figure 3.25: Dispersed linear chirp and de-dispersed time series.

To explore the performance of the hardware system, we use input signal within
the SNR range between -24 dB to 3 dB, and the results are shown in Table 3.6.
Moreover, comparisons between dispersed time series and de-dispersed time series
are shown in Fig. 3.26 and Fig. 3.27, which represent 3 dB input and -20 dB input
cases.
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Table 3.6: De-dispersion performance for different inputs.

Input SNR (dB) 3 0 -4 -8 -12 -16 -20 -24
De-dispersed SNR (dB) 33.6 30.0 25.5 23.0 17.7 13.2 9.2 5.0
False trigger No No No No No No No Yes
SNR improvement (dB) 30.6 30.0 29.5 31.0 29.7 29.2 29.2 29.0
False trigger rate - - - - - - - 42.3%

From Table 3.6, we find that when the input SNR decreases, the maximum pulse of
the de-dispersed time series would have a lower magnitude. When the magnitude
is lower than the noise, false triggering will happen. In our tests, if the input sig-
nal’s SNR is stronger than -24 dB or less, the original FRB signal can be detected
without false triggers. However, when the input has -24 dB SNR, a false trigger
that is stronger than the original FRB would appear. And in general, we can see
a constant SNR improvement of rough 30 dB for all cases, which shows that our
signal processing system is able to identify an FRB even in a very noisy environ-
ment. Fig. 3.28 shows an example of false triggering, if we set a trigger threshold
just below the de-dispersed pulse of FRB (the pulse at 5 ms), there are still two
noise spikes higher than the threshold. So, there are two false triggers in this case,
and the false trigger rate is 66.67%.

As a result of 50 independent simulations, the -24 dB case has an average false
trigger rate of 42.25%, and the rest 57.75% of the triggers are valid, So even when
the de-dispersed SNR is only 5 dB, we can still reduce the data rate by 57.75%,
which is a significant improvement.
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Figure 3.26: Dispersed signal and de-dispersed signal for 3 dB input.
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Figure 3.27: Dispersed signal and de-dispersed signal for -20 dB input.
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Figure 3.28: False triggering.
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4
Hardware implementation

In this chapter, we will first briefly introduce the hardware platform we are using
for the design and then describe the implementation of the functions and algorithms
as needed using Xilinx Vivado.

4.1 The advantage of using Field-Programmable
Gate Array (FPGA)

FRB signal processing is difficult to accomplish on a serial processor because of the
high frequency, large DM, and broad bandwidth properties of the signal itself, re-
sulting a large computational load. An ideal solution is to make use of an FPGA
which is widely used in digital signal processing.

FPGAs are a type of high-performance programmable logic device based on CPLDs
(Complex Programmable Logic Device). FPGAs have a high level of integration,
allowing them to perform highly complex timing and combinational logic circuit
functions. They are ideal for designing high-speed, high-density digital logic circuits.

The main advantage of using FPGAs to implement FRB signal processing appli-
cations is their high-speed parallel processing capability. This is mainly achieved
through two technologies: concurrency and pipeline. Concurrency refers to the
repeated allocation of computing resources so that multiple modules can perform
independent calculations simultaneously. A simple example is that FPGA can per-
form multiple additions and multiplications at the same time. Pipeline refers to
divide one task into segments and execute them simultaneously.

This parallel mechanism makes FPGA an excellent choice for performing repetitive
digital signal processing tasks such as digital FIR filters. For high-speed parallel
digital signal processing tasks, FPGA performance far outperforms the serial exe-
cution architecture of general-purpose digital signal processing (DSP) processors.

As outlined in the previous sections, 5 × 109 multiply accumulate operations are
needed per second to keep up with the data rate. To do this using a CPU would
require a clock rate of 5 GHz and a memory bandwidth of 40 Gbps which is far
beyond the capacity of a single processor. Only an FPGA or custom hardware can
be used to process the 40 Gbps data stream. To deal with the data rate the current
system (DBBC2) decreases the dynamic range of the data to only 2 ADC bits and
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can only process that at 1 Gbps rate. The FPGA based system we propose has 40
times the processing capability of the existing system.

4.2 ADQ7WB platform
The ADQ7WB is a high-end 12b data acquisition board with digital signal processing
firmware [18]. It is designed for wide-band radio frequency applications. Table 4.1
lists the critical features for ADQ7WB.

Table 4.1: Features for ADQ7WB.

Channels 2
Sampling 5 Gsps
Resolution 12 bit
Analog BW[MHz](-1 dB) 4000
Analog BW[MHz](-3 dB) 6500
ENOB 8.8
SNR[dBc] 55
SFDR[dBc] 60
Data Transfer Gen3×8
ADC TI ADC12DJ2700
Transfer to PC 7 GBytes/s sustained
FPGA model XCKU085
Buffer Memory 4 GByte

The ADQ7WB has two analog channels, each with a 5 Gsps sample rate and a 12-bit
vertical resolution. The high-speed PCIe Gen3 × 8 enables efficient communication
between the board and the host computer. There is a 4 GBytes data memory for
data transfer, and the maximum transfer rate to PC is 7 GBytes/s.

Figure 4.1: ADQ7WB.
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The FPGA chip integrated into ADQ7WB is Xilinx Kintex UltraScale XCKU085 [19],
a high-performance, low total power consumption FPGA. The UltraScale architec-
ture of this chip enables users to perform more calculations with fewer DSP resources
comparing to other chips, improving both device utilization and performance. The
available resources for XCKU085 are shown in Table 4.2.

Table 4.2: Available resource for XCKU085.

LUT 497520
LUTRAM 267840
FF 995040
BRAM 1620
DSP 4100
IO 624
GT 48
BUFG 1128
MMCM 22
PLL 44
PCIe 4

Fig. 4.2 illustrates the data flow path of ADQ7WB firmware. ADC data, exter-
nal trigger, and timestamp information first enter the Data Trigger module. The
module selects different trigger methods according to user configuration, including
external trigger, internal trigger, software trigger, and level trigger. It decides which
data is inserted into the trigger vector at the start of the data path. Then the data
goes through User Logic 1, which has a built-in symmetrical 17 taps FIR filter for
reducing the noise in unwanted signal bands. Users can change the filter coefficients
via API. The Sampleskip next to User Logic 1 is used to downsampling the data
and reduce the data rate. Subsequently, the Acquisition module handles triggers
and controls the data flow. Next, the data enters User Logic 2, where most of our
digital signal processing algorithms are deployed. In Package Generator, all the
valid data is packaged and sent to memory for transferring to the host PC.

Each User Logic module has its register control bus, as shown in the upper part of
Fig. 4.2. The bus can be used to interface block Random Access Memory (RAM),
first in, first out (FIFO), and other custom blocks.
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Figure 4.2: Block diagram of ADQ7WB firmware.

4.3 Hardware implementation of algorithms
The FPGA implementation is broken down into blocks, each implementing a sepa-
rate portion of the algorithm. This method helps us to develop concurrent develop-
ment and individual block testing process. Each block is implemented in Verilog and
checked for proper functionality with Vivado Simulator. Fig. 4.3 shows a functional
block diagram of the functions and algorithms implemented in the target FPGA
board.
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Figure 4.3: Block diagram of hardware design.

As can be seen from Fig. 4.3, the hardware system is built with eight different blocks.
Each of these blocks will be illustrated in the following sections in detail. Note that
the bandpass filter and sample skip functions are mapped to User Logic 1 while
others are mapped to User Logic 2.
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The overall resource usage, including the basic firmware design, is shown in Table 4.3.

Table 4.3: Resource utilization.

Resource Used Available Utilization ratio
LUT 243129 497520 48.87%
LUTRAM 32345 267840 12.08%
FF 457110 995040 45.94%
BRAM 749.50 1620 46.27%
DSP48 3338 4100 81.41%

4.3.1 Parallel samples and data format

Before introducing the hardware implementation of the functions and algorithms
needed in our system, it is necessary to know the concept of parallel design because
the FPGA cannot clock at 5 Gsps (the ADC’s sampling rate). Instead the ADQ7WB
clock is set to the ADCs decimated clock of 1/16th of 5 Gsps. This results in a clock
rate of 312.5 MHz, which is lower than the maximum FPGA clock rate of 850 MHz
and a good choice to avoid timing issues.

In ADQ7WB, although the ADC has 12 bits resolution, the format of the data in-
side the FPGA and out to the host PC is 16 bits. The 12 bits from the ADCs are
MSB aligned to a 16 bits word. Initially the 4 LSBs are zeros. However, due to
calibration and other computations in the FPGA, the entire full scale 16 bits range
is output from ADQ7WB.

Since the user logic receives 16 parallel samples at each ADC clock, and each sample
has 16 bits, the User Logic 1 will receive 256 bits at each clock. Table 4.4 is a detailed
description of the 256 bits input and output data bus format. Note that sample 0
represents the oldest sample and sample 15 represents the newest sample.
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Table 4.4: 256 bits input and output data bus format.

Bits Description
Bit 0∼15 Sample 0
Bit 16∼31 Sample 1
Bit 32∼47 Sample 2
Bit 48∼63 Sample 3
Bit 64∼79 Sample 4
Bit 80∼95 Sample 5
Bit 96∼111 Sample 6
Bit 112∼127 Sample 7
Bit 128∼143 Sample 8
Bit 144∼159 Sample 9
Bit 160∼175 Sample 10
Bit 176∼191 Sample 11
Bit 192∼207 Sample 12
Bit 208∼223 Sample 13
Bit 224∼239 Sample 14
Bit 240∼255 Sample 15

4.3.2 SampleSkip

The SampleSkip module is a built-in module in ADQ7WB firmware. It takes every
kth set of 16 input samples. The SampleSkip module is placed between User Logic
1 and User Logic 2, as shown in Fig. 4.2. Thus, User Logic 1 runs at full sampling
rate (5 Gsps) while User Logic 2 runs at decimated sampling rate.

Take sample skip by a factor of 1 (no smapleskip) and 2 as examples, Table 4.5
and Table 4.6 show how the sample skip module influence the data received in User
Logic 2. Note that DC means Don′t Care.

Table 4.5: Sampleskip when sampleskip factor = 1.

Clock cycle 16 parallel samples data_in_valid
Cycle 0 S15 S14 ...... S1 S0 1
Cycle 1 S31 S30 ...... S17 S16 1
Cycle 2 S47 S46 ...... S33 S32 1
Cycle 3 S63 S62 ...... S49 S48 1
...... ...... ...... ...... ...... ...... ......
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Table 4.6: Sampleskip when sample skip factor = 2.

Clock cycle 16 parallel samples data_in_valid
Cycle 0 S32 S30 ...... S2 S0 1
Cycle 1 DC DC ...... DC DC 0
Cycle 2 S64 S62 ...... S36 S34 1
Cycle 3 DC DC ...... DC DC 0
...... ...... ...... ...... ...... ...... ......

In general, SampleSkip module packs up every kth sample in the 256 bits vector and
asserts data_valid == 1 every kth clock cycle.

In our design, the sampleskip factor k is set to 16 by default, so the sampling
frequency after SampleSkip module is 5 GHz/16 = 312.5 MHz.

4.3.3 Control and Data Register
The read and write of registers in each user module is accomplished through a
Control Register module, specifically designed to configure the trigger threshold
and the delay for each channel to adapt to different input signals. Furthermore, it
is also used as a buffer for de-dispersed data transmission from the FPGA to the
host PC. The signal ports for the Control Register module are listed in Table 4.7.

Table 4.7: Signal ports of Control Register module.

Signal Direction Description
clk input 1 bit CPU clock
rst_i input 1 bit Active high reset
addr_i input 14 bits Read/Write address
wr_i input 1 bit Active high write strobe
wr_ack_o output 1 bit Active high write data qualifier
wr_data_i input 32 bits Write data
rd_i input 1 bit Active high read strobe
rd_ack_o output 1 bit Active high read data qualifier
rd_data_o output 32 bits Read data

The 14 bits address is allocated for different registers for different usages. Table 4.8
shows the allocation of these addresses.

Table 4.8: Address allocation.

Address Destination Description
0x10 ∼ 0x13 Null Reserved for internal functions
0x14 ∼ 0x53 Dedispersion module number of delay for each channel
0x54 Trigger module Trigger threshold
0x55 Snapshot module For reading out de-dispersed data
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The first four addresses are reserved by the firmware developer for internal functions
and cannot be used. Addresses 0x14 to 0x53 are used to set the number of delays for
channel 0 to channel 63, respectively. Address 0x54 is used for configuring the trigger
threshold, and address 0x55 is used as a buffer for transferring the de-dispersed data
snapshot to the host PC. The registers in addresses 0x14 to 0x54 are both readable
and writable, but 0x55 is only readable because this is where the dispersed data are
stored.

4.3.4 Oversampled PFB channelizer

In our design, we used a 128-channel oversampled PFB channelizer with an over-
sampling ratio of 2 to divide the 312.5 MHz broadband signal into 128 narrower
subchannels. Each subchannel has a bandwidth of 2.44 MHz. The advantage of
using this type of channelizer has been discussed in section 2.2.4, and the reason for
choosing 128 channels has been explained in chapter 3.

The signal ports for the oversampled PFB channelizer module are listed in Table 4.9.

Table 4.9: Signal ports of PFB module.

Signal Direction width Description
clk input 1 bit Data clock
rst input 1 bit Active high reset
data_in input 256 bits input data
data_in_valid input 1 bit input data valid
data_out output 256 bits output data
data_out_valid output 1 bit output data valid

According to the structure of the oversampled PFB channelizer shown in Fig. 2.5,
the FPGA implementation of the oversampled PFB channelizer is divided into four
sub-blocks. Since the oversampling ratio of the PFB channelizer is 2, we can use
a 2-state state machine to correct the phase rotation instead of using a circular
shift buffer. Fig. 4.4 illustrates how these sub-blocks are connected to form the
oversampled PFB channelizer.
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Figure 4.4: Block diagram of PFB module.

As can be seen from Fig. 4.4, the oversampled PFB channelizer is formed by a
128-path commutator switch, a 128-path polyphase FIR filterbank, and a phase
correction unit, as well as a 128-point real-valued parallel FFT unit. Each of these
sub-blocks will be described in the following sub-sections.

Sets of 16 data points sampled at 312.5 MHz are input to this module. A 128 point
real FFT will yield 64 channels, each with a reduced bandwidth and sample rate
further decimated by 64.

4.3.4.1 Commutator

The first stage of the oversampled PFB channelizer is the commutator. It distributes
input samples to 128 lines and reduces clock speed by a factor of 64.

Fig. 4.5 illustrates how the commutator is implemented by two data arrays and one
counter. To help explain, we name these two arrays array1 and array2 respectively,
and the counter cnt.

From section 4.3.1 we know that our user logic will receive 16 parallel samples at
each clock when data is valid. Since the 128-channel oversampled PFB channelizer
will process 128 samples in one run, the data arrays used here will have a depth
of 8 (128 samples/16 samples) and a width of 256 bits (16 samples × 16 bits per
sample). Among them, array1 is used as a buffer for input samples, and array2 is
the output of commutator. The data in array2 will be delivered to polyphase FIR
filterbank for filtering. According to Table 2.2, the top half of the samples in each
group are overlapping with the bottom half of samples of its next group. Therefore,
the counter cnt is used to count how many sets of 16 parallel samples have been
delivered to the array.
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Figure 4.5: Timing diagram of commutator.

From Fig. 4.5, we can see that a new set of 16 parallel samples will be delivered
to the top of array1 at every valid data clock. At the same time, the old sets of
samples in array1 will be moved down by one unit, and the oldest set of 16 parallel
samples will be removed from the array. Meanwhile, every time a new set of samples
comes cnt increases by 1 (when the value of cnt exceeds 3, it will return to 0). When
cnt == 0, the data in array1 will be buffered in array2 as shown in the bottom of
Fig. 4.5 so that the upper part of the array2 is overlapping with the next array2.
In this way, the inputs are rearranged in the form described in Table 2.2.

The clock rate is 312.5 MHz. Since data_valid signal will be only asserted every
16th clock cycle, the data rate for array1 is 312.5 MHz/16 = 19.53 MHz. The data
in array2 will be only updated when cnt == 0, hence the data rate for array2 is
19.53/4 = 4.88 MHz. Thus, the input samples to the oversampled PFB channelizer
have been decimated by a factor of 64 after the commutator.

4.3.4.2 Polyphase FIR filterbank

The polyphase FIR filterbank is composed of 128 FIR filter components as shown
in Fig. 4.6.
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Figure 4.6: Block diagram of the polyphase FIR filterbank.

For the design of a filter, the filter order is of vital importance. We always want the
order to be as high as possible to get a better filter response. However, this is un-
realistic because higher order requires more resources. In this design, the prototype
filter has an order of 512. Table 4.10 shows the characteristic of the prototype filter
used in this design.

Table 4.10: Characteristic of the prototype filter.

Response type Lowpass
Filter order 512
Sampling frequency 312.5 MHz
Passband frequency 0.61035 MHz
Stopband frequency 1.83105 MHz

The inputs to this module are the 128 parallel samples that come from the commuta-
tor. Each of the polyphase FIR filter components takes 4 of the 512 filter coefficients.
Fig. 4.7 shows the hardware implementation of an FIR filter component.

𝑧−1 𝑧−1 𝑧−1

coe2coe1coe0 coe3

𝑥[𝑛]

∑ ∑ ∑ y[𝑛]

Figure 4.7: Hardware implementation of a FIR filter component.

Here x[n] is the input sample, and y[n] is the filter output that will be send to the
circular shift buffer. The top part of Fig. 4.7 is a 4-stage delay line with four taps,
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the delayed input samples will be multiplied with the filter coefficients, and its result
will be accumulated to get the filter output.

4.3.4.3 Phase correction

The phase rotation at the outputs of the polyphase filterbank are corrected by a
phase correction module before the FFT unit can process the samples. Its basic
principles are already illustrated in section 2.2.4.

In the hardware implementation, we use a 1-bit register named flag to indicate the
current state of the 2-state state machine. The value of flag toggles whenever there
are valid outputs from the polyphase filterbank. When flag == 0, the outputs of
polyphase filterbank are directly delivered to the FFT unit. However, when flag ==
1, the upper and lower parts of the polyphase filterbank’s outputs are first swapped
and then sent to the FFT unit.

4.3.4.4 FFT

In section 2.2.5 we have shown that the FFT of a real-valued sequence of 2N points
can be computed efficiently by employing an N-point complex FFT. Since the input
to our system is a real signal, it will be more efficient to use a 128-point real-valued
FFT which is formed by a 64-point complex valued FFT rather than a 128-point
complex FFT. Fig. 4.8 shows a block diagram of the 128-point real valued FFT unit.
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Figure 4.8: Block diagram of real valued FFT.

As can be seen from Fig. 4.8, the data from the circular shift buffer will be divided
into an odd sequence x1(n) and an even sequence x2(n). Then, the odd and even
sequence will be sent to the real and imaginary input of the 64-point complex FFT
units, respectively, to compute the Y (k). After that, X1(k) and X2(k) can be calcu-
lated from Y (k) according to (2.11) and (2.12). Finally, the DFT of the input real
sequence can be calculated by multiplying the twiddle factors with X2(k), and then
adding X1(k) to it.
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The 64-point complex FFT unit is composed of 6 stages, each with 32 butterfly
units. We use MATLAB to generate the twiddle factor of each butterfly operation
unit, and all are scaled with 8192 to convert it from floating-point to fix-point. The
multiplications in each stage cause an increment in the number of bits and to avoid
overflows we essentially divide the outputs of each stage by 8192 by truncating the
LSB’s. Table 4.11 shows the resource utilization of the PFB module.

Table 4.11: Resource utilization of PFB module.

Resource Used Available Utilization ratio
LUT 60745 497520 12.20%
LUTRAM 17217 267840 6.42%
FF 126958 995040 12.75%
BRAM 0 1620 0%
DSP48 1664 4100 40.58%

4.3.5 Averaging Filterbank

The Averaging Filterbank module is used to increase the SNR and reduce the data
rate. This permits the De-dispersion module to achieve longer time delays and the
Snapshot module to store data for longer periods. The signal ports of the Averaging
Filterbank module are listed in Table 4.12.

Table 4.12: Signal ports of Averaging Filterbank module.

Signal Direction Width Description
clk input 1 bit Data clock
rst input 1 bit Active high reset
data_in input 256 bits input data
data_in_valid input 1 bit input data valid
data_out output 256 bits output data
data_out_valid output 1 bit output data valid
wr_en input 1 bit write register enable
rd_en input 1 bit read register enable

The Averaging Filterbank is composed of 64 block averaging filters. A block diagram
of the Averaging Filterbank is shown in Fig. 4.9.
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Figure 4.9: Block diagram of Averaging Filterbank.

The block averaging filter divides the input data into blocks, and each block is
treated as an individual data point and calculates the average from that. The
algorithm flowchart is shown in Fig. 4.10.
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+ data_in

no

cnt ++

Yes
data_out = 

sum
end

Figure 4.10: Block averaging flowchart.

There is a counter which counts the number of sums in the variable cnt. If cnt is
less than 256, which is the integration length in our design, then the input data will
be added to the variable sum where the cumulative sum of input data is stored. At
the same time, cnt will be increased by 1. When cnt reaches 256, then the output
of this block averaging algorithm is the cumulative sum of the 256 input data. Note
that the integration length is fixed.

Since we are considering a block of 256 samples as an individual sample, the data
frequency has been decimated by a factor of 256:

fdatanew = fdata

ave_length = 4.8828 MHz
256 ≈ 19 kHz (4.1)
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Thus, the time resolution of the system is now approximately 52 µs. Table 4.13
shows the resource utilization of the Average Filterbank module.

Table 4.13: Resource utilization of Averaging Filterbank module.

Resource Used Available Utilization rate
LUT 468 497520 0%
LUTRAM 0 267840 0%
FF 3072 995040 0.31%
BRAM 0 1620 0%
DSP48 0 4100 0%

4.3.6 De-dispersion

The De-dispersion module compensates for the time delays of frequency components
in different frequency channels. Different lengths of delay are added to each of the
64 frequency channels so that the target frequency component can arrive simulta-
neously. The signal ports of the De-dispersion module are listed in Table 4.14.

Table 4.14: Signal ports of De-dispersion module.

Signal Direction width Description
clk input 1 bit Data clock
rst input 1 bit Active high reset
data_in input 256 bits input data
data_in_valid input 1 bit input data valid
data_out output 256 bits output data
data_out_valid output 1 bit output data valid
wr_en input 1 bit write register enable
rd_en input 1 bit read register enable
addr input 14 bits register address
cmd_ch_dly input 2048 bits delay per channel (32 bits)

The number of delays to each channel is pre-calculated in MATLAB according to
(3.3), and it can be configured in real-time via the Control Register module. A block
diagram of the De-dispersion module is shown in Fig. 4.11.
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Figure 4.11: Block diagram of De-dispersion module.

As shown in Fig. 4.11, the delay is achieved by 64 FIFOs in parallel. Ideally, the
length of each FIFO could be different since the highest frequency channel needs
the longest delay while lower frequency channels do not. But because of implemen-
tation reasons, we make them all the same fixed length. The write and read of these
FIFOs are controlled by a controller. The data are written into a FIFO, and the
write enable signal of the FIFO is set to high at the very beginning while the read
enable signal stays low. At the same time, a counter starts to count the number of
clock cycles, and when the value of the counter is equal to the number of delays, the
read enable signal will be set to high. After this, the delayed data will be read out
from the FIFOs.

Because of the FPGA chip’s limited BRAM resources, extremely large FIFOs are
not possible in the design. For the time being, the FIFO used in the design has
a depth of 8192, implying that the De-dispersion module can achieve a maximum
of 8192 clock cycles of delay. In this case, the maximum delay in terms of time is
8192× 52 µs = 425 ms.

It is also worth noting that the FIFO and the counter will be reset whenever the
number of delays changes.

Table 4.15 shows the resource utilization of the De-dispersion module.

Table 4.15: Resource utilization of De-dispersion module.

Resource Used Available Utilization ratio
LUT 9496 497520 1.90%
LUTRAM 0 267840 0%
FF 14080 995040 1.41%
BRAM 256 1620 15.80%
DSP48 0 4100 0%

After the De-dispersion module, a channel integration module is built to integrate
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all 64 channels together to form the de-dispersed time series or matched filter. The
matched filter output indicates the strength of the de-dispersed pulse. When the
output exceeds a pre-programmed level a trigger is generated.

4.3.7 Trigger and snapshot

The trigger module is used to generate a trigger based on the trigger threshold. The
signal ports of the Trigger module are listed in Table 4.16.

Table 4.16: Signal ports of Trigger module.

Signal Direction width Description
clk input 1 bit Data clock
rst input 1 bit Active high reset
data_in input 22 bits input data
data_in_valid input 1 bit input data valid
cmd_threshold input 32 bits trigger threshold
trigger output 1 bit trigger

If a sample from the Channel Integration module is greater than the threshold and
the previous sample, then trigger.

4.3.8 Snapshot

The snapshot module is used to buffer the FRB snapshot. A great feature of the
system is the ability to see what is going on before the trigger. Therefore, a ’Mid-
display trigger’ mechanism is implemented in the Trigger module to buffer the data
before the trigger. The basic idea is that the Snapshot module continuously collects
data, and the memory gets overwritten repeatedly. However, if a trigger occurs, the
Trigger module will continue to collect for half more of its memory depth before
stopping. It keeps half of its memory with what happened before the trigger and
half of what happened after.

The implementation is achieved by a Finite State Machine (FSM), and it is illus-
trated in Fig. 4.12.
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Figure 4.12: A state machine diagram of Snapshot module with 6 states.

The finite state machine consists of 6 states in total. The Idle state is where the
state machine starts and where all the registers are initialized. In the PreTrigger
state, data is kept written to the RAM, and when half of the RAM’s memory is
filled with data, the state machine goes to the next state. In WaitTrigger state, the
counter stops counting, but the data is written to the RAM repeatedly. Moreover,
when a trigger is detected, the state machine goes to PostTrigger state. In this state,
the trigger position is recorded, and the counter starts counting again to write half
more data and then stops. The state machine goes to ReadOut state, where the
data in RAM is delivered to a FIFO. After all the data in RAM is delivered to the
FIFO, the state machine ends and then starts over.

The de-dispersed data will be delivered to a register with an address of 0x55 in
the Control Register module (See Table 4.8) so that the data can be transferred to
the host computer for post signal processing. However, the clock domain between
the Control Register module and other signal processing modules is different. So
an independent clock FIFO is used here to deal with the cross time-domain issue.
Table 4.15 shows the resource utilization of the Trigger module.
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5
System test and results

In this chapter, we will mainly introduce the testing methods used to test our system
and show the test results that we have.

Due to practical issues, we are not able to use the telescope to test our system. Thus,
all the testing is carried out with the signal generator Rohde&Schwarz SMP02 [20].
The frequency range of this signal generator is from 10 MHz to 20 GHz, and the
output level is from -20 dBm to 11.5 dBm, which is enough for us to emulate the
high frequency range of an FRB signal.

The test is mainly divided into two parts. One is to test the performance of the
oversampled PFB channelizer, and the other is to test the ability to detect FRBs.
We will introduce these results separately in the following two sections.

5.1 Oversampled PFB channelizer

The purpose of testing the oversampled PFB channelizer is mainly to check if the
frequencies can arrive in the correct channel and the resolution can match our ex-
pectation. The method is to use the signal generator to generate two sine signals
with different frequencies, feed them into the system, and observe whether the fre-
quencies can arrive in the correct channel and whether the PFB channelizer can
distinguish these two different frequencies.

According to section 2.2, the bandwidth for each channel is 312.5
128 = 2.44 MHz,

which means the channelizer would have a resolution of 2.44 MHz theoretically.
Therefore, if we input two signals with a frequency difference of 2.44 MHz to the
channelizer, then at the output of the channelizer, these two signals should appear
in two adjacent channels.

In the actual test, we input two signals with frequencies of 650 MHz and 652.44 MHz
into the channelizer, and the results are shown in Fig. 5.1.
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Figure 5.1: Channelizer outputs when f=650 MHz and 652.44 MHz.

In Fig. 5.1, the x-axis is the center frequency of each channel, which is obtained by
equation 2.3 and the y-axis is the signal power in each channel. As can be seen from
the figure, it is clear that these two frequencies appear in the correct channels and
the channelizer is able to distinguish them.

For further verification, we randomly select another set of inputs: 708.56 MHz and
711 MHz. The result is shown in Fig. 5.2.

Figure 5.2: Channelizer outputs when f=708.56 MHz and 711 MHz.

Similarly, the frequencies arrive in the correct channels and the channelizer could
distinguish these two input signals as shown in Fig. 5.2. Hence, according to the
above tests, we can conclude that our oversampled PFB channelizer works and the
resolution of it is 2.44 MHz which is the same as the theoretical resolution.

It would also be interesting to know the frequency response within one channel.
A feasible method is to use a signal to sweep the entire bandwidth of a chan-
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nel. From previous sections we know that the bandwidth BW for each channel
is 312.5 MHz/128 = 2.44 MHz and the sampling frequency fs for each channel is
312.5 MHz/64 = 4.88 MHz. We normalized the frequency with Nyquist frequency
(fs/2 = 2.44 MHz). Fig. 5.3 shows the frequency response for one channel.

Figure 5.3: Frequency response within one channel.

In Fig. 5.3, the green and red lines are the results from MATLAB simulation and
FPGA, respectively. It can be seen from the figure, except for the slight difference in
magnitude, that the FPGA result is basically the same as the MATLAB simulation.
The main reason for this difference is that all operations in the simulation use
floating-point numbers while in FPGAs, fixed-point numbers are used. In addition,
we can also get from the figure that the channel bandwidth is 1 (1 × 2.44 = 2.44
MHz), the passband of each channel is 0.5 (0.5 × 2.44 = 1.22 MHz), and the one-
sided transition band is 0.25 (0.25× 2.44 = 0.61 MHz), which is consistent with our
filter design as discussed in Table 4.10.

5.2 FRB detection

From section 1.1, we know that one of the most obvious feature for an FRB signal
is that its frequency will change in time due to the effect of dispersion. Therefore,
we can use the signal generator to generate a linear step sweep signal to emulate
this feature of the FRB signal. Table 5.1 shows the characteristics of the linear step
sweep signal that we used for testing.
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Table 5.1: Characteristics of linear step sweep used for testing.

Start frequency 625 MHz
Stop frequency 725 MHz
Frequency span 100 MHz
Frequency step 10 MHz
dwell time 10 ms

The frequency of this test signal starts at 625 MHz, and the frequency of the signal
increases by 10 MHz every 10 ms until the signal frequency reaches 725 MHz. The
relationship between frequency and time is shown in Fig. 5.4.

Figure 5.4: Time vs frequency for the test signal.

If the system can successfully de-disperse the test signal whose frequency changes
with time, all its frequency components will appear simultaneously, as shown in
Fig. 5.5.
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Figure 5.5: Time vs frequency for the test signal after de-dispersion.

At this point, if we add up all the frequency components, we will get an evident
pulse. By comparing the magnitude of the pulse with the threshold we set, we
can judge whether the target signal is captured. If the target signal is captured,
then we can analyze the data at the trigger time and plot the power spectrum of
it. Theoretically, its power spectrum should have eleven frequency components, as
shown in Fig. 5.6.

Figure 5.6: Power spectrum of the target signal.
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Then we use this test signal together with noise as the input to verify the function
of the hardware system. The SNR of the input signal is 0 dB. Fig. 5.7 shows the
de-dispersed time series after de-dispersion, and Fig. 5.8 shows the power spectrum
of the de-dispersed data snapshot.

Figure 5.7: Dedispersed time series.

Figure 5.8: Power spectrum of the de-dispersed data snapshot.

As shown in Fig. 5.7, the dedispersed time series are the summation of the data over
all frequency channels in a way that follows the dispersive sweep. From Fig. 5.7 we
can clearly see that there is an SNR improvement of around 23 dB compared to the
input signal’s SNR.

As we introduced in the previous sections, this time series (pulse) will be used to
indicate whether we have detected the target signal. If the value of the time series at
a particular moment exceeds the trigger threshold we set, the system considers that
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the target signal is detected at this moment, and a snapshot of this target signal
will be sent to the PC for post-processing and analysis.

Fig. 5.8 is the spectrum analysis of the snapshot, we can see that there are 11 spikes
in this figure and each of these spikes represents one frequency component. From
left to right, they are 625MHz, 635MHz, 645 MHz, 655 MHz, 665 MHz, 675 MHz,
685 MHz, 695 MHz, 705 MHz, 715 MHz, and 725 MHz. This result is basically in line
with our expectations (see Fig. 5.6), except that the magnitude of each frequency
component is different. The reason is that these frequencies do not exactly fall on
the center frequency of each channel. The farther away from the center frequency
(see Fig. 5.3), the greater the attenuation, so the amplitude will be different.

Next, we adjust the SNR of the input signal to find the limitation of the hardware
system for FRB detection. The test conditions and results are described in Table 5.2.

Table 5.2: System test.

Input SNR (dB) 0 -4 -8 -12 -16 -20 - 24
FPGA results

Dedispersed SNR (dB) 23 17.4 11.8 8.2 4.2 2.0 1.2
SNR improvement (dB) 23 21.4 19.8 20.2 20.2 22.0 25.2

MATLAB simulation results
Dedispersed SNR (dB) 30.0 25.5 23.0 17.7 13.2 9.2 5.0
SNR improvement (dB) 30.0 29.5 31.0 29.7 29.2 29.2 29.0

The upper part of Table 5.2 is the test result of the FPGA and the lower part is
the simulation result from MATLAB which we had presented in Table 3.6. From
the table, we know that our hardware system can significantly improve the SNR
of the signal. Therefore, even when the SNR of the input signal is very low, we
can still detect the FRB. Compared to the simulation, the actual test result and
the simulation result as shown in Table 5.2 are roughly the same. The difference
is that the SNR improvements in FPGA are lower than that in the simulation.
One reason is that FPGA does not have the feature of floating point. So all the
data processed in FPGA are fix point which means we have to discard the decimal
part of the data. This result the hardware system to lose some accuracy compared
to MATLAB simulation. Another reason is that when we process data in FPGA,
in order to prevent the data bit width from expanding continuously, the data is
truncated to 16 bits at each modules’ output. This causes the output value of some
modules to be smaller than the MATALB simulation which also affect the output
SNR.
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6
Conclusion

In this work, we have developed a new backend system for FRB capturing in the
commercial FPGA platform ADQ7WB. The needed algorithms for detecting FRB
events such as channelizer and de-dispersion algorithms have been reviewed and
evaluated. A simulation model of the DSP chain has been built to explore the pa-
rameters of these algorithms. The hardware implementation of these algorithms has
been optimized to reduce resource usage, but it still has much room for improvement.
The performance of the hardware system has been tested via a signal generator.

The system is flexible, and most of the internal parameters of the modules can be
programmed in real time via the application program interface (API). For example,
the delay of each channel in the de-dispersion module and the trigger threshold in
the triggering module are both programmable. This flexibility makes the system
able to deal with different FRBs.

The system can detect target FRBs even when the input SNR is low. In the simu-
lation, the dispersed target FRB can be detected without false triggers down to an
input SNR of -20 dB. When the input SNR is -24 dB, 42.5% of the triggers are false
triggers. Even so, it shows that 57.5% of the triggers are valid, which can reduce
the system‘s data rate significantly. The hardware system test results show that it
can detect the target FRB when the input SNR is as low as -24 dB, and it has an
SNR improvement of 22 dB on average.

From a qualitative perspective, the system can effectively screen out FRB candidates
in observations by giving a reasonable trigger threshold (lower than the highest de-
dispersed pulse). For extreme noisy inputs, false triggers may happen. However,
the data rate can still be reduced compared to the current system, which records
and transfers all the data, including pure noise data in the observations.

The current system only processes one channel of ADC samples, but it has already
taken 80% of the DSP resources in the target FPGA chip, which means that we
might not have enough DSP resources for the second ADC channel. Due to time
limitations, we cannot improve the efficiency of hardware implementation in this
project. So, the future work will be to further optimize the algorithms implemented
in hardware, especially the PFB, since it takes up the most resources. The currently
used PFB does 128 channels which is a waste of resources since those channels are
working at a fraction of the clock rate. A 16-channel PFB would be enough to
decimate the data rate to the FPGA basic clock rate of 312.5 MHz. After the PFB,
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a serial FFT can be implemented to generate more channels.

So far, the system can generate a trigger when it detects an FRB candidate but
can not capture the raw samples and transfer them to the host PC. Thus, one can
improve the system by implementing a data capture function that can transfer the
raw data to the host PC once a trigger is generated.

Furthermore, the system could be improved by having variable bit rates. The system
can send coarse quantization data continuously to the host PC, and when an FRB
event is triggered, it switches to full resolution. In this way, the system can be used
as a continuous recorder which does not lose any samples within the observation.

In addition, the system could have a graphical user interface (GUI) that can control
the hardware system, display and analyze the collected data. An event notification
function can also be added to flag FRB candidates in real time.
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