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ABSTRACT 

As the construction, maintenance and expansion of water supply systems require 

considerable investments and their operational flexibility is only given to a certain 

degree, special attention should be paid to ensure that the system components are 

designed for a long service life so that the future water demand can be met. For this 

purpose, future water supply parameters, for instance, the daily peak demand and 

various other factors must be determined. In past decades, when determining supply 

parameters little to no consideration was given to the negative impacts of climate 

change on the supply situation. As a result, past heat summers, such as those in 2018 or 

2022, have pushed water supplies to their limits in much of Germany. Therefore, in the 

context of this thesis, a risk analysis is conducted with the aim of determining the future 

water demand in Southern Germany. In order to achieve this, a surrogate model that is 

based on a machine learning approach and operates on the basis of Gaussian process 

regression is applied. The results generated in this process are used to set up an early 

warning system, which can be used by the water utility companies of the study area to 

determine their future water balance and to assess whether the water resources at their 

disposal will be sufficient to provide the necessary future water demand. Furthermore, 

the early warning system can be used to investigate the effect of planned 

countermeasures. In addition to the early warning system, a catalog of measures was 

compiled, which should serve as a guide in the successful adaptation of water supply 

systems to the negative effects of climate change. 

Key words: water demand, climate change, climate projections, machine learning, 

Gaussian process regression 
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1 Introduction 

1.1 Background 

“For [water] it is the chief requisite for life, for happiness, and for everyday use.” 

Morgan (1914)  

Water is an indispensable basis of all life and has always played a decisive role in the 

socio-cultural, political, and economic development of civilizations, as has been 

recorded by the ancient Roman engineer and architect Marcus Vitruvius Pollio in his 

work De architectura. It is therefore not surprising that a vast majority of early 

agricultural sedentary human settlements, such as the ones in the Tigris-Euphrates and 

Nile valleys, were erected in close vicinity to rivers, which did not only provide a means 

for the transportation of goods and the irrigation of crops, but especially guaranteed a 

safe and continuous source of fresh drinking water (Laureano, 2013). As humanity 

progressed great efforts were made to implement technical systems, e.g., the Roman 

aqueduct system, to ensure a safe and continuous supply of drinking water (Aicher, 

1995). Nowadays water supply systems have evolved into highly complex networks, 

which often have grown over many decades and must constantly be adapted to changing 

requirements in order to ensure a secure and reliable supply of drinking water (RBS 

wave GmbH, 2017). One such changing requirement, which harms the qualitative and 

quantitative composition as well as the continuity of the drinking water supply and 

consequently substantially risks its safety, are the changes of the prevailing climatic 

conditions due to climate change. The extent of the impact climate change has had on 

the water supply could be observed in recent years, when exceptionally hot and dry 

summers, such as the ones in 2018 and 2022, have not only caused entire rivers and 

streams to dry up, contributing to crop failures and production stoppages, but also posed 

a major challenge for water utility companies in Germany, as many of them faced 

supply shortages (Imbery et al., 2018).  

Increases in the recorded temperatures, with the global average annual temperature in 

the decade from 2010 to 2020 being 1.1 °C above the average from 1850 to 1900 

according to the Intergovernmental Panel on Climate Change (ICPP) as well as the 

observation of more frequent dry spells and droughts, lead to dried out and therefore 

less water absorbent soil, contributing to declining groundwater recharging rates and 

spring discharges, which thus, due to a lack of availability, increases the risk of 

disruptions in the water supply (Intergovernmental Panel on Climate Change, 2021). In 

addition to diminishing water sources, a correlation between water consumption and 

increasing temperatures as well as dry spell periods could be established, consequently 

exerting additional pressure on the raw water sources. On the one hand, this can be 

observed by the fact that water withdrawals for irrigated agriculture, which currently 

add up to 70% of the water extracted worldwide, are expected to increase by more than 

50% across the world by 2050, due to a more rapid depletion of the soil moisture content 

of agricultural land (United Nations, 2021). On the other hand, this tendency is also 

recognizable in Germany where the average per capita water consumption has shown a 

proclivity to fall since the beginning of the 1990s, but irregularly warm and dry 

summers have led to a reverse of the trend in recent years (Bundesverband der Energie- 

und Wasserwirtschaft, 2022).  

Along with the negative effects of climate change, an increasing global population, 

economic development, and changing consumption patterns have altogether led to the 

increase of the global water demand by a factor of six over the last century. This 
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development is expected to proceed with a steady annual rate of +1.0% (United Nations, 

2021). The previously mentioned factors, which lead to a decrease of the raw water 

renewal rates and an increase in the water demand, consequently, contribute to a 

progressively growing risk of water stress, even in regions where water resources are 

still considered to be abundant today. This is evident by the fact that according to the 

“World Water Development Report” of the United Nations, the number of people living 

in areas that are potentially water-scarce at least one month per year is expected to rise 

from 3.6 billion in 2018 to roughly 4.8 – 5.6 billion by 2050 (World Meteorological 

Organization, 2021). 

 

1.2 Aim and objectives 

There are numerous climate projections reliably predict the development of the global 

and regional climate over the next few decades, but although the connection between 

climatic parameters and their impacts on water availability and drinking water 

consumption have already been established and characterized in theory, statistical and 

reliable projections of the actually expected drinking water demand in the decades to 

come are often missing. For this reason, water utility companies face the major 

challenge of properly assessing whether the available water sources are adequate to 

guarantee the provision of hygienically safe drinking water with sufficient pressure and 

in sufficient quantities in the future, while operating as cost-effectively as possible and 

ideally using and maintaining local water resources, which constitutes the purpose of 

every water supplier (RBS wave GmbH, 2017).  

The aim of this thesis is therefore to conduct a risk analysis to determine the impact 

climate change is expected to have on the future drinking water demand in Southern 

Germany. Furthermore, as part of risk management, appropriate measures to counteract 

the negative effects of climate change on the water supply should be identified. For this 

purpose, in the first step, it should be established how well the water consumption can 

be determined based on climatic factors. In order to achieve this, measured climatic and 

supply-related data from 60 water supply companies in Southern Germany and from 

weather stations of the German Weather Service (GWS; German: Deutscher 

Wetterdienst), which was collected within the framework of an internal research project 

of the consultancy firm RBS wave GmbH, was analyzed with the help of a surrogate 

model that is based on a machine learning approach and operates based on Gaussian 

process regression. In the next step, climate projections from the German Weather 

Service, which are based on different climate scenarios, were incorporated into the 

surrogate model and used to determine the future water demand in the study area. The 

results generated in this process as well as projections about the future availability of 

local water sources were then used to set up an early warning system, with which the 

future water balance of an individual water utility company located in the study area as 

well as the effects of planned countermeasures can be determined and illustrated. Most 

importantly the early warning system also indicates the point in time at which the water 

demand can no longer be met from the company's own water resources.  

In addition to the early warning system, a catalog of measures was compiled in 

cooperation with the investigated water supply companies, which should serve as a 

guide in the successful adaptation of water supply systems to the negative effects of 

climate change. The findings as well as the therefrom resulting early warning system 

and catalog of measures developed in the scope of this thesis are intended to make water 

utility companies aware of the impacts of climate change on their supply systems, assist 
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them in adapting to the consequences of climate change in a timely manner, and provide 

them with a tool with which they can point out the seriousness of the situation to local 

politicians and residents and encourage them to rethink their political decisions and 

consumption behavior. 

 

1.3 Limitations 

This thesis was conducted as part of a research project, which aims at analyzing the 

influence of climate change on the drinking water supply in Southern Germany. Within 

the framework of this thesis Southern Germany is defined as the territory made up of 

the five federal states Baden-Württemberg, Bavaria, Rhineland-Palatinate, Saarland 

and Hesse. The scope of the study was limited to everyday water demand while 

excluding the impacts of climate change on the water supply caused by extreme weather 

events such as forest fires and flood events. For this purpose, climatic data from weather 

stations and supply-related data from water utility companies were collected. Due to 

the limited size and availability of the data basis, the machine learning approach was 

limited to the method of Gaussian process regression, which can provide reliable results 

even in data-poor settings. Other methods such as artificial neural networks (ANN) on 

the other hand require large datasets to provide reliable results and therefore could not 

be implemented. During the analysis and calculations confounding factors that 

prevented conclusions from being drawn about the effects of climate change on future 

water demand were identified. These include data gaps, measurement inaccuracies, 

high water losses in the supply system, a high proportion of large-scale consumers and 

a pronounced water consumption during the winter months caused by winter sport 

tourism. For this reason and due to time restrictions not all available datasets could be 

evaluated in the scope of this thesis. Another limiting factor in connection to the 

available data in the context of this thesis is the composition of the available supply-

related data, which consists of monthly consumption values. A finer breakdown of the 

data would enable the supply-related parameters to be assigned more precisely to 

individual weather events, which would help to improve the accuracy of the projections. 

The projections were moreover limited by the availability of climate projections. Since 

small-scale, local climate projections were not available, the regional climate 

projections for Southern Germany were adjusted to the individual climatic conditions 

of the supply areas of the participating water utility companies. The climate projections 

used for this thesis extend over a period of 70 years (2021-2090). Therefore, the 

projections of future water demand are also limited to aforementioned time period. 

 

1.4 Summary of the work plan 

In the scope of this thesis the following steps were undertaken to accomplish the 

objectives described in Chapter 1.2: 

• Research of scientific literature and the analysis of projects, that used similar 

methods: The scientific literature was selected in order to gain basic knowledge 

and an understanding of the subject as well as to support the implementation of 

the selected machine learning method. 

• Data processing: The sorting and analysis of climatic data from weather stations 

and supply-related data were provided by the water utility companies as well as 
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the requirement and the adjustment of projected climatic data for the projection 

of the future water demand. 

• Programming of the machine learning approach: This step included the learning 

of the programming language Phyton as well as the application of the obtained 

skillsets to implement Gaussian process regression. 

• Carrying out of calculations: Determining of the climate sensitivity of each 

water supply company. Calculation of the future water demand and further 

evaluation for the climate-sensitive water supply companies, resulting in a 

projection for the entire climate zone. 

• Development of an early warning system and a measure catalog: Evaluation of 

the effects of climate change on the quantitative supply situation of drinking 

water supply systems as well as the development of suitable countermeasures 

and adaptation strategies in cooperation with the participating water supply 

companies. 

 

1.5 Report Overview 

Figure 1 serves as a guide of the structure of the thesis report and its content. 

 

Figure 1 Schematic diagram of the thesis report 
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2 Literature review 

2.1 Fundamental principles of water supply in the study 

area of Southern Germany 

2.1.1 Legal framework and regulations 

Water is often referred to as the most important nutrient. Therefore, many national as 

well as international laws, regulations, and resolutions are in place to protect and 

guarantee the safe provision of this natural resource, one of which are the Sustainable 

Development Goals (SDGs), which were established in 2015 by the United Nations 

General Assembly and are intended to be achieved by the year 2030. Among other 

things, 1 of the 17 set goals focuses on the availability and sustainable management of 

drinking water and the access to appropriate and safe sanitation for all humans, which 

is recorded in the SDG 6 “Clean Water and Sanitation” (United Nations, 2015). 

According to the United Nations, in 2020 approximately 2.2 billion people lacked 

safely managed access to drinking water (United Nations Children’s Fund et al., 2019). 

The fulfilment of the sixth SDG poses a major challenge for the international 

community, which is threatened by the increasing magnitude and the projected 

developments of climate change (United Nations, 2015). Therefore, it is important to 

analyze the impact climate change will have on the water resources and the future water 

demand in order to be able to adapt the supply systems to the changing conditions and 

to develop countermeasures against the negative effects of climate change at an early 

stage.  

In addition to the SDGs, there are further legislative regulations within the European 

Union that regulate the handling and supply of water sources, waterways and drinking 

water. One such legislative regulation is called “Water Framework Directive 

2000/60/EC” and was implemented by the European Union (EU) in 2000. This directive 

legally binds the member states of the EU to achieve a good qualitative or chemical and 

quantitative status of water bodies, including surface waters, transitional waters, coastal 

waters and groundwaters. The directive entered into force in December 2000. Its main 

goal is the enhancement of the state of ecosystems, the reduction of the pollution of the 

groundwater as well as the reduction of priority substances in water bodies. 

Furthermore, it aims at the sustainable use of water resources and at reducing the impact 

of flood events and droughts. The member states of the EU were obliged to implement 

the specifications of the directive into national law (European Parliament et al., 2014).  

Another directive of the European Union (EU) is the “Drinking Water Directive 

2020/2184”, which was revised in 2020 and dictates the essential quality standards for 

drinking water intended for human consumption. The directive entered into force in 

January 2021. The directive’s standardized requirements are designed to prevent any 

harmful effects contaminated drinking water can have on the human health and are 

applied to distribution systems which supply drinking water to more than 50 people or 

more than 10 m³ of drinking water per day, drinking water in bottles, containers and 

from tankers, as well as water used in the food-processing industry. The requirements 

include a total of 48 microbiological, chemical and indicator parameters, which are to 

be observed and tested in regular intervals. The member states of the EU were obliged 

to implement the specifications of the directive into national law, while also possessing 

the ability to implement further requirements, such as additional parameters or stricter 

limit values (European Parliament et al., 2020). In addition to setting qualitative limit 

values for drinking water intended for human consumption and by monitoring these to 
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assure the set requirements are met, the directive also dictates preventive measures, 

which have the purpose of identifying potential risks and weak points in the supply 

chain that potentially could have a negative impact on the drinking water quality. To 

achieve that goal, it is foreseen that the water suppliers implement a holistic approach, 

which does not only focus on the supply network, but rather on the analysis of the whole 

supply chain including all steps and processes from the catchment area to the point of 

consumption. According to the directive, the effects of climate change and the 

associated risks therefrom should be taken into special consideration when analyzing 

the supply chain. The risk analysis of all the affected drinking water supply systems is 

to be finalized no later than January 12, 2029. From this date onwards, the risk analysis 

should be carried out in regular periods of maximum 6 years and should be revised and 

updated if needed (European Parliament et al., 2020).  

As a member state of the General Assembly of the UN and the EU, Germany is legally 

obliged to implement the established goals and regulations into national laws.   

The resolutions of the EU drinking water directive were implemented into German 

national law through the introduction of the German drinking water ordinance (German: 

Trinkwasserverordnung), which was enacted in 2001. It sets the legal framework for 

the quality standards of drinking water for human consumption. Its main goal is to 

ensure that no damage to human health results from the consumption of the provided 

drinking water. The German drinking water ordinance also refers to the technical 

regulations for compliance with the generally recognized rules of technology (German: 

Allgemein anerkannten Regeln der Technik) (Bundesministerium der Justiz, 2021).  

One of these regulations is the DIN 2000 standard, which defines the main principles 

of drinking water provision. These include the quality and quantity as well as the 

continuity of the supplied drinking water. According to the DIN standard the quality of 

the drinking water needs to be such that it can be described as appetizing, stimulating 

enjoyment, colorless, clear, cool, and impeccable in terms of smell and taste, when it 

reaches the consumer. Furthermore, another integral component of the DIN 2000 

standard is the ensurement of the supply of hygienically safe drinking water to the 

population and other users, taking into account ecological and economic aspects 

(Deutsches Institut für Normierung, 2000). 

 

2.1.2 Structure of the drinking water supply in Southern Germany 

According to the Federal Office of Statistics (German: Statistisches Bundesamt) in 

2016, a total of 4,258 water utility companies, with a discharge of more than 1,000 m³/a, 

extracted 2,214.0 million m³ of raw water for the drinking water provision in Southern 

Germany, from which 1,936.5 million m³ were provided to the end consumers. The 

consumption of end consumers can be divided into the consumption of the households 

and small businesses, which amounts to approximately 82.0% of the total water 

supplied to the end consumers, and into the consumption of the industry, which amounts 

to approximately 18.0% of the total water supplied to the end consumers. The difference 

between the amount of raw water extracted and the amount provided to the end 

consumers can be divided into the water consumption for the own usage of the water 

utility companies and water losses due to measurement errors and leakages in the supply 

system. The water for own usage amounts to 50.4 million m³, while the water losses 

amount to 227.1 million m³ (Statistisches Bundesamt, 2019).  
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In addition to the public water utility companies in Germany, there are also private 

water utility companies, which operate systems for the extraction of raw water and 

supplying drinking water to their customers and often include companies from various 

sectors such as the agricultural or industrial sector. There are no official statistics on 

the water consumption of the private water utility companies. The water quantities 

provided by the privately owned water utility companies are not included in the 

statistics presented. 

 

Figure 2 Water allocation of the raw water extracted by water utility companies 

with a discharge of more than 1,000 m³/a in Southern Germany for the 

year 2016 based on the report from Statistisches Bundesamt (2019) 

The groundwater resources are of particular importance for the public water supply in 

Southern Germany, since they accounted for 67.3% of the total drinking water supplied 

through public utility companies in 2016 (see Figure 3). Together with spring water and 

the enriched groundwater, it makes up more than 85.0% of the total water supplied.  In 

comparison, the provision by surface water amounts to 7.8%. In 2016, around 34.8 

million residents in Germany were connected to the public water supply. This 

corresponds to a connection rate of 99.6%. The average per capita water consumption 

in Southern Germany in 2016 was 125 l/(C*d), which in addition to water consumption 

of the households also includes the water consumption of small businesses, such as 

bakeries and butchers. At 125 l/(C*d), the per capita consumption in Southern Germany 

is slightly higher than the national average of 123 l/(C*d). However, water consumption 

levels within the individual federal states deviate from the national average value. The 

federal state of Bavaria, for example, has a per capita consumption of 131 l/(C*d), while 

the federal state of Saarland has a per capita consumption of 115 l/(C*d) (Statistisches 

Bundesamt, 2019). 
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Figure 3 Water production by water source in Southern Germany for the year 

2016 based on the report from Statistisches Bundesamt (2019) 

Figure 4 shows the daily drinking water usage of German households and small 

businesses by the type of usage. Assuming the average per capita consumption of 125 

l/(C*d) for Southern Germany, 11 l/(C*d) is accounted for by small businesses. The 

remaining 114 l/(C*d) of water consumed is accounted for by the households 

(Umweltbundesamt, 2017). 

 

Figure 4 Drinking water usage in German households for the year 2018 based on 

the figures of Umweltbundesamt (2017) 
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2.2 Climate change in the study area 

2.2.1 Climate change in Germany 

Climate change is defined as a long-term shift of the prevailing climatic conditions, 

which can be impacted by natural causes, such as solar and volcanic activity, or by man-

made causes, such as the emission of greenhouse gases including carbon dioxide and 

methane. With the beginning of industrialization in Europe in the 19th century, fossil 

fuels like coal, gas and oil were used on a large scale to fuel the economic development, 

which led to a steady increase of the effects of human activities on the state of the 

climate (United Nations, 2022). Nowadays, the energy, industrial and agricultural 

sectors are some of the main greenhouse gas emitters, with the energy sector alone, 

including among other things the production of electricity, transportation and 

manufacturing, accounting for 72.0% of all global emissions (Center for Climate and 

Energy Solutions, 2022). According to the sixth status report of the IPCC, climate 

change affects all regions of the world (Intergovernmental Panel on Climate Change, 

2021). Germany is not exempt from this development and records show that climate 

change is already affecting the prevailing local climatic conditions (Brasseur et al., 

2017). The developments related to climate change are of particular concern for the 

water supply sector, as climate change affects the qualitative and quantitative 

composition of drinking water and, therefore, according to the UN World Water Report 

2020, billions of people worldwide may no longer be able to exercise their human rights 

to fresh and clean drinking water and sanitation (United Nations, 2020). In the 

following paragraphs, the relevant climatic parameters in relation to the drinking water 

supply in Germany will be discussed. 

 

Air temperature 

Weather records confirm that climate change is already showing its effects on the global 

climate conditions, as the average air temperature is already 1.1 °C warmer than in the 

pre-industrial era. Similar developments can also be observed for Germany. According 

to the German Weather Service, an average temperature of 9.5 °C was recorded in 

Germany in the last decade. Thus, the decade from 2010-2020 was 1.9 °C warmer than 

the decades from 1881-1910, when weather records were first recorded. In a global 

comparison, the air temperature in Germany has risen more than the global average 

(Deutscher Wetterdienst, 2022a). Figure 5 shows the course of the annual average 

temperature in Germany in the period 1881-2021. 
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Figure 5 Annual mean temperature in Germany in the period 1881-2021, Source: 

Deutscher Wetterdienst (2022b) 

A linearly increasing trend of the average temperature can be observed. Especially in 

the last 50 years, the temperature in Germany has risen faster than before. This is 

reinforced by the fact that 9 of the 10 warmest years occurred after the year 2000, with 

7 occurring after the year 2010. Furthermore, according to the GWS, 2018 was the 

warmest year to date in Germany with an average temperature of 10.5 °C since weather 

records began, followed by 2020 with 10.4 °C and 2014 with 10.3 °C (Deutscher 

Wetterdienst, 2022b). The time period from 2010 to 2020 is characterized by further 

increasing average temperatures and temperature records. On average, for Germany, 

the years 2014, 2018 and 2020 are characterized by the warmest temperatures since 

weather recording began. In addition, the second warmest winter was measured in 

2019/2020 and the warmest summer in 2020. The years 2010 and 2013 constitute the 

coolest years in the period 2010-2020, with only the year 2010 being below the long-

term average (Deutscher Wetterdienst, 2022a). 

 

Table 1 Annual mean temperature in Germany in the period 1881-2019 

according to the figures of Deutscher Wetterdienst (2022c) 

Season Months Time period Temperature 
change [K] 

spring March, April, May 1881-2019 + 1.6 
summer June, July, August 1881-2019 +1.5 
fall September, October, November 1881-2019 +1.5 

winter December, January, February 1882-2019 +1.5 

Table 1 shows the average temperature change of the four seasons in Germany in the 

period from 1881 to 2019. All four season experienced the same temperature change in 

the observed time period, with only the temperature change in spring being 0.1 K higher 

than in the other seasons. The temperature change values make it clear that all four 

seasons have been affected by global warming to a similar extent in the past. It can be 

assumed that this development will be continued in the future. 
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Precipitation rates 

Precipitation refers to the elimination of liquid or solid water particles from the 

atmosphere. In addition to the air temperature, precipitation can serve as another 

climate parameter that can be used to describe the climate of a region (Deutscher 

Wetterdienst, 2022d). In comparison to the development of the air temperature, a trend 

for the development of precipitation rates in Germany can only be recognized to a 

limited extent due to the high spatial and temporal variability of precipitation. 

Nevertheless, according to the GWS, annual precipitation rates have increased by an 

average of 8.0% across Germany since 1881 compared to the reference period (1961-

1990). Especially during the spring and winter months, increased precipitation rates 

have been recorded. Precipitation rates during the winter months have increased by 

26.0% compared to the reference period (1961-1990), which is how the increase in the 

annual precipitation rates can be explained (Deutscher Wetterdienst, 2020). 

 

 

Figure 6 Anomaly of annual precipitation in the period 1881-2021 in Germany in 

relation to the reference period 1961-1990, Source: Deutscher 

Wetterdienst (2022b) 

Due to the high spatial variability of the precipitation rates, it makes sense to take a 

closer look at the spatial distribution of the mean annual precipitation rate in Germany, 

which is illustrated in Figure 7. 
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Figure 7 Long-term mean of the yearly precipitation rates in Germany for the 

period 1961-1990, Source: Deutscher Wetterdienst (2022e) 

The map of the long-term mean precipitation rates over the period 1961-1990 illustrates 

the spatial variability of precipitation rates over Germany. The highest annual 

precipitation rates on average occur in Southern Germany, especially in the region of 

the Black Forest and in the Alps. There, on average, a maximum quantity of > 2,200 

mm per year has been recorded over the investigated period. The lowest precipitation 

rates have been recorded in Eastern Germany, where minimum values of ≤ 450 mm per 

year have been measured. Within the study area of this thesis, the region north-east of 

the Palatinate Forest (German: Pfälzer Wald) is characterized by particularly low 

annual precipitation rates. Despite the overall upward trend in annual precipitation 

rates, as can be seen in Figure 6, an accumulation of low-precipitation years can be 

observed, especially in the study period (2010-2020). The years 2015, 2018 and 2020 

are characterized by a lack of annual precipitation. Only the years 2010 and 2017 show 

positive deviations from the annual precipitation rates compared to the reference period. 

 

Droughts 

Droughts are defined as periods of prolonged water shortages and can last from a few 

months up until several years. They are affected by climatological factors such as low 

precipitation rates and high evapotranspiration rates caused by higher temperatures or 

winds (Deutscher Wetterdienst, 2022f). The following figure shows the development 

of the drought magnitudes in the rootable soil up to a depth of 1.8 m from 2001-2022 

in Germany. The drought magnitude is used to estimate the severity of the drought, 

considering various influencing factors such as the duration and dryness of the drought 

period. 
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Figure 8 Development of drought magnitudes in the vegetation period April to 

October for soil depths of up to 1.8 m; Source: Marx (2022) 

Within the study period from 2010 to 2020, one can observe that the drought 

magnitudes in Germany increased visibly. The trend shows a gradual annual increase 

in the drought magnitude since the beginning of the study period in 2010, resulting in 

the most severe droughts in 2019 and 2020. Especially the north-eastern part of 

Germany as well as parts of Southern Germany are highly affected.  

The increasing number and length of droughts as a result of climate change increase the 

risk of low water levels in rivers and lakes, which among other things can have serious 

consequences for inland navigation, the industry, agriculture as well as for the water 

and power supply. Furthermore, it increases the risks of forest fires taking place. 

 

Summer and hot days 

A summer day is defined as a day on which the maximum air temperature is greater 

than or equal to 25.0 °C, whereas a hot day is defined as a day on which the maximum 

air temperature is greater than or equal to 30.0 °C. The number of summer days is 

always greater than or equal to the number of hot days. The set of summer days can 

also include a subset of hot day (Deutscher Wetterdienst, (2022g), (Deutscher 

Wetterdienst, 2022h). 
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Figure 9 Number of summer days (left) and hot days (right) in Germany in the 

period 1951-2021; Source: Deutscher Wetterdienst (2022b) 

Figure 9 shows the linear trend of the number of summer and hot days in Germany 

compared to the reference period (1961-1990). In Germany, the long-term average of 

summer days is 27.3 days per year and 4.2 days per year for the hot days (1961-1990). 

The last time these values were undershot was in 1998 and 1996 respectively. With a 

rise in average temperatures, the number of summer and hot days have also increased. 

While in the 1950s an average of 3.5 hot days per year were recorded in Germany, in 

the last three decades since 1991 the number of hot days increased to an average of 8.9 

days per year. 

 

Frost and icy days 

A frost day is defined as a day on which the minimum air temperature is below 0 °C, 

whereas an ice day is defined as a day on which the maximum air temperature is below 

0 °C. The number of frost and ice days serves as an indicator for the harshness of a 

winter. The set of frost days can also include a subset of ice days (Deutscher 

Wetterdienst, 2022i), (Deutscher Wetterdienst, 2022j). 
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Figure 10 Number of frost days (left) and ice days (right) in Germany in the period 

1951-2021, Source: Deutscher Wetterdienst (2022b) 

Figure 10 shows the linear trend of the number of frost and ice days in Germany per 

year compared to the reference period (1961-1990). While the number of summer days 

and hot days are increasing as a result of climate change, the number of frost and ice 

days are falling compared to the long-term average of the reference period (1961-1990). 

In the 1950s an average of 28 ice days per year were recorded in Germany, as opposed 

to the last three decades since 1991, in which the number of ice days decreased to an 

average of 19 ice days per year. 

 

2.2.2 Impacts of climate change on drinking water supply system 

The availability, the quality and the quantity of water are not only prerequisites for 

human health and existence, but are essential to all aspects of our society, including the 

economic and industrial development, the energy production and food supply as well 

as the well-being of the environment and its ecosystems. The advancing effects of 

climate change however lead to a multitude of negative impingements on the 

beforehand mentioned aspects. One such negative impingement is the increase in the 

average annual temperature as mentioned in Chapter 2.2.1. Since the global climate and 

its various parameters are interlinked and influence each other, this development 

influences many other climatic aspects, for instance the evapotranspiration rate or the 

likelihood of occurrence of extreme weather events such as droughts. These as well as 

other developments and the resulting water scarcity pose a major challenge for the 

sustainable management of water resources, particularly in regions that are already 

experiencing water-stress today. Furthermore, numerous ecosystems, such as forest and 

wetlands, have already been affected by and are experiencing the negative impacts of 

climate change. This is of particular concern, as this not only leads to the loss of these 

ecosystems and hence a decline in biodiversity but also to the loss of the associated 

ecosystems services, for instance the water storage and purification, which in turn 

directly impacts the water availability, the water quality, and the water quantity. 

Therefore, the impacts of climate change need to be analyzed and studied and 

adaptation and mitigation strategies need to be developed in order to maintain public 

life and to preserve the affected ecosystems (United Nations, 2020).  

The chapter focuses on the expected and already observed impacts climate change has 

and has had on the quantitative aspects of the drinking water supply in Germany. 
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Drinking water consumption and demand 

The global water consumption has increased sixfold over the last century and due to the 

negative effects of climate change, an increasing global population, economic 

development and changing consumption patterns, it is expected to further increase with 

an annual rate of 1.0% (United Nations, 2021). Evaluations of consumption data by the 

Federal Association of Energy and Water Management (German: Bundesverband der 

Energie- und Wasserwirtschaft e.V.) have shown that this trend can also be observed in 

Germany (Bundesverband der Energie- und Wasserwirtschaft, 2022). 

 

Figure 11 Development of the daily average per capita water consumption in 

Germany for the period of 1990-2021 based on the figures of 

Bundesverband der Energie- und Wasserwirtschaft (2022) 

Figure 11 shows the development of the daily average per capita water consumption in 

Germany in the period from 1990 to 2020. Although water consumption has shown a 

proclivity to fall since the beginning of the 1990s, part driven by the development of 

water-saving household appliances, which was stimulated by a higher environmental 

awareness of the consumers and a change in the legislation, a reverse of the trend could 

be observed in recent years. In addition, an increased water consumption in statistically 

dry years, e.g., 2003 and 2018, can clearly be detected in Figure 11 (Bundesverband 

der Energie- und Wasserwirtschaft, 2022). 

Water consumption and water demand are influenced by a variety of factors, some of 

which are summarized in the following list: 

• Climate, 

• water supply, 

• water quality, 

• water price, 

• economic structure and size of the supply area, 

• social structure and type of settlements, 

• condition of the supply system and 

• sewerage quality and connection degree (Baur et al., 2019). 

The water consumption is subject to seasonal fluctuations, which are caused by climatic 

conditions. Months with high temperatures and low precipitation rates, for example, 

can lead to an increased water consumption, since, in contrast to the winter months, 

more water is needed to irrigate lawns or to fill up swimming pools. For this reason, 
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above-average water consumption rates generally occur in the months of May to 

August, with the lowest water consumption rates being recorded in the months of 

January and February. Nonetheless, it can be observed that high consumption rates also 

occur during the winter months. This is especially the case for regions where winter 

sport tourism is prevalent (Baur et al., 2019). However, even in regions without winter 

tourism sometimes higher than usual water consumptions can be observed. This 

phenomenon is often caused by pipe bursts caused by especially harsh weather 

conditions and their effects, e.g., frost movements in the soil (Data and Statistical 

Studies Department, 2019). Figure 12 shows an example of the monthly distribution of 

water consumption of a city, in this case the city of Stuttgart in 2006. 

 

Figure 12 Monthly water consumption in the city of Stuttgart in the year 2006 based 

on figures from Baur et al. (2019) 

In general, the influence of seasonal fluctuations is more pronounced in rural areas, 

since they have a higher share of gardens and green areas than cities, hence an increased 

requirement of water for irrigation.  

 

Peak demand 

In addition to seasonal fluctuations, water consumption is also subject to daily 

fluctuations caused by various influencing variables such as habits and human biology 

(day-night rhythm) (Baur et al., 2019).  

According to the W 410 regulation of the German Association of the Gas and Water 

Industry (German: DVGW Regelwerk W410), the peak daily demand is a planning 

variable that is decisive for the dimensioning of supply systems and resource capacities 

and is defined as the highest daily demand in the supply area within an observation 

period. The future peak demand value is calculated according to the W410 regulations 

using peak factors, which are determined in dependence to the number of inhabitants 

(Deutscher Verein des Gas- und Wasserfaches, 2008). 

The daily peak factor results from: 
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𝑓𝑑 =  
𝑄𝑑,𝑚𝑎𝑥

𝑄𝑑,𝑚
 (1.1) 

with  

𝑓𝑑:  Daily peak factor [-] 

𝑄𝑑,𝑚𝑎𝑥: Peak daily demand [l/(C*d)] 

𝑄𝑑,𝑚:   Average daily demand [l/(C*d)] (Deutscher Verein des Gas- und 

Wasserfaches, 2008). 

The daily water demand and thus the peak daily demand depend essentially on the size 

and structure of the supply area. In general, it could be observed that the larger the 

supply area and the more residents are connected to the supply system, the lower the 

daily peak factor tends to be. Furthermore, climatic factors, such as the temperature and 

precipitation rates, have a major impact on the water consumption and thus also on peak 

daily demand.  As already described in the previous chapter, increased temperatures 

paired with low precipitation rates lead to more water being used for irrigation of green 

areas and gardens as well as the filling up of pools. This can be observed during 

statistically dry years, such as 2003 and 2018, where increased peak water consumption 

could be measured (Baur et al., 2019).  

Figure 13 shows an example of the course of the monthly average temperature and the 

monthly peak daily demand in the city of Stuttgart from September 2006 to August 

2007. One can see that the curve of the daily peak factor corresponds to the course of 

the curve regarding the monthly average temperature, with both reaching their peak in 

the month of July. 

 

Figure 13 Daily peak factor 𝑓𝑑  and monthly average temperature in the city of 

Stuttgart in the period from September 2006 to August 2007, Source: 

Baur et al. (2019) 
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A study which aimed to examine the influence various factors have on water 

consumption has shown that, in addition to the average daily temperature and the 

precipitation rates, the duration of dry periods could be identified as a driving factor. 

Water consumption increases with increasing duration of a dry period. The dependency 

was particularly evident during the summer months. Figure 14 shows the results of this 

study. Increasing temperatures and durations of dry periods lead to an increase in water 

consumption rates, whereas increasing precipitation rates lead to a decrease in water 

consumption rates (Bundesministerium für Land- und Forstwirtschaft, Umwelt und 

Wasserwirtschaft, 2012). 

 

Figure 14 Per capita water consumption in dependence of the duration of dry 

periods and the average temperature or season, Source: 

Bundesministerium für Land- und Forstwirtschaft, Umwelt und 

Wasserwirtschaft (2012) 

Furthermore, water consumption rates and peak demands are also influenced by the 

water demand of the commercial and industrial sectors. Whether the water demand of 

these sectors have a positive or negative impact on the peak water demand depends on 

whether their water demand is continuous or discontinuous and to what proportion of 

the overall water demand it accounts for (Baur et al., 2019). Due to the negative effects 

of climate change, the peak consumption is expected to rise, also resulting in a higher 

daily peak factor. As a consequence, the gap between the two operation loads, the basic 

and the peak consumption, will further increase. This must be considered through 

additional appropriate measures during the planning, construction, and operation of 

supply networks (Castell-Exner et al., 2010). 
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Population development 

The population development is another important factor that must be considered when 

assessing the water consumption of a certain area. The influence of the population 

development on the water consumption can be circumvented, by only considering the 

per capita water consumption, instead of the overall water consumption. Although the 

trend in the population development in most of the examined federal states points to a 

further increase of the population in the future, the results cannot be transferred 

homogenously to the entire area of the federal states. While the population number in 

some areas, namely cities and metropolitan areas, is expected to continue to grow, as 

can be seen in Figure 15, the population number in other areas, namely many rural 

areas, is expected to decline even further. 

 

Figure 15 Projected population development in the districts of Germany for the 

period 2017-2040, Source: Bundesamt für Bauwesen und Raumordnung 

(2022) 

Therefore, when examining water supply systems, the population development of the 

respective supply area should always be analyzed and taken into consideration. 

Furthermore, the influence of migration movements due to climate catastrophes and 
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wars, but also technical developments, e.g., remote working, cannot be clearly assessed 

and therefore cause uncertainty in the assessment of the future population development. 

 

Groundwater renewal rates and spring discharges 

Ground water together with spring water and enriched groundwater are of particular 

importance for the drinking water supply in Germany, as they account for 78.4% of the 

total drinking water provided (see Chapter 2.1.2). Therefore, an adequate supply of 

groundwater is essential to guarantee the drinking water provision in Germany. To 

determine the natural regenerative capacity and the sustainable groundwater abstraction 

rate of an aquifer, the groundwater recharge rate is commonly determined. Groundwater 

recharge rates and spring discharges are influenced by a variety of factors, namely the 

soil condition and its permeability, as well as the precipitation and evaporation rate over 

a certain region. The groundwater recharge rate is calculated by subtracting the actual 

evapotranspiration 𝐸𝑇𝑎  and the fast runoff component 𝑄𝐷 from the amount of 

precipitation 𝑃. For this purpose, a wide range of mathematical, physical, and chemical 

methods are available (Petruzzello, 2022). 

Due to the available data basis and a lack of reliable data for the real evapotranspiration, 

a simplified calculation method for the approximation of the potential groundwater 

recharge (𝐺𝑊𝑅) in the study area, according to the example of Lunkenheimer (1994), 

was chosen. This leads to the following relationship, according to which the 

groundwater recharge is equated with the climatic water balance. 

𝐺𝑊𝑅 = 𝑊𝐵𝑐𝑙𝑖𝑚𝑎𝑡𝑖𝑐 (1.2) 

with   

𝐺𝑊𝑅:          groundwater recharge [mm] 

𝑊𝐵𝑐𝑙𝑖𝑚𝑎𝑡𝑖𝑐: climatic water balance [mm] (Lunkenheimer, 1994). 

The influences of the surface runoff, the groundwater inflow and outflow and the 

storage changes in the unsaturated zone are neglected when using this calculation 

method.  

Rising air temperatures as a consequence of global warming, result in higher 

evapotranspiration rates and thereby less water can contribute to groundwater recharge. 

The results are declining groundwater formations and falling groundwater levels or 

spring discharges. Especially in the case of prolonged dry periods, a reduction in the 

discharge, up to the point where shallow springs dry up, is possible. A study by the 

Federal Environmental Agency (German: Umweltbundesamt), which was conducted in 

2019 and analyzed existing data from 136 groundwater measuring points throughout 

Germany, concluded that a tendency towards declining groundwater levels and lower 

spring discharges during the study period of 1971 to 2017, but especially during the last 

decade, could be observed. When conducting the study, only groundwater measuring 

points were selected, which cover the uppermost aquifer levels and are as unaffected as 

possible by human activity, e.g., no relevant groundwater extraction or irrigation taking 

place in the catchment area or a low degree of soil sealing. This rule out the possibility 

that the observed changes in the groundwater level are due to parameters other than the 

temperature and the precipitation (Umweltbundesamt, 2019). 
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Low water levels in surface waters 

The rising air temperatures as a result of climate change and the associated higher 

evapotranspiration rates and dry periods ensure a higher probability of low water levels 

in rivers and lakes. Furthermore, declining spring discharges and falling groundwater 

levels also impact surface water levels (Arbeitskreis Kliwa, 2018). 

In the dry years of 2003 and 2015, as well as in 2018 and 2022, low water levels were 

measured on several rivers and lakes throughout Germany, which restricted both the 

public and shipping use of the affected waterways. This could also be observed at Lake 

Constance in 2003 where the water levels fell to its lowest level for a summer month 

since the beginning of the measurements in 1816 (Ministerium für Umwelt, Klima und 

Energiewirtschaft Baden-Württemberg et al., 2020). 

With a total area of 536 km², Lake Constance is the second largest alpine lake in Europe 

and one of the main water sources for many cities and towns in the south-western part 

of Germany. The water level in the lake largely depends on the Alpine catchment area 

and is subject to seasonal fluctuations. The lowest water levels are measured in winter, 

since precipitation falling in the catchment area of the lake is bound in the form of snow 

or ice. During the summer months, the water level reaches its maximum when the snow 

and ice in the catchment area surrounding the lake melts. The fluctuations in the water 

level amount to approx. 1.5 m per year. As a result of climate change, air temperatures 

are expected to increase, leading to precipitation in the winter months falling as rain 

rather than snow. This leads to a change in the annual discharge regime of the 

watercourses and to the fact that during summer there is less low-water compensation 

as a result of the snowmelt and consequently the fluctuation of the water level increases 

(Landesanstalt für Umwelt Baden-Württemberg, 2013). Figure 16 shows the annual 

course of the daily mean curve for the periods 1850-1959 (blue), 1960-1989 (green) 

and 1990-2020 (pink) at the measuring point Constance (German: “Pegel Konstanz”). 

 

Figure 16 Annual course of the daily mean curve of the water level at the measuring 

point Constance (Lake Constance) for the periods 1850-1959, 1960-1989 

and 1990-2020, Source: Internationale Gewässerschutzkommission für 

den Bodensee (2022) 
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A downward trend in mean daily values during the summer months can be observed. 

Within the measured values shown, the water level during the month of July fell by 

about 50 cm. Studies show that all high water levels in the lake in the last century 

occurred up to 1999, while the frequency of low water levels increased from 2000 

onwards (Jeromin, 2020). Communities that depend on surface water to maintain their 

water supply are especially affected by these developments. 

 

2.2.3 Climate models 

Forecasts, predictions, and projections play an important part in our society and aid 

decision-makers in politics, economy as well as administration to make vital decisions, 

as with the decision to expand production or public facilities due to an expected higher 

demand in the future. They also play a major role in the public drinking water supply 

sector, where population development models for example are used to determine the 

water demand of a supply area in the future. Nowadays, climate models are used for 

several applications and play an important role in forming and implementing policy 

decisions as well as informing the public about the potential impacts of climate change 

(Deutscher Wetterdienst, 2022k). 

 

Weather forecasts 

Weather forecasts are a type of climate model, which are used to provide detailed 

information about the weather over a specific area for the next few hours or the next 

few days (Deutscher Wetterdienst, 2022l). In order to create weather forecasts, data 

from different sources are used. These include measuring stations on land and sea, data 

gathered from planes and weather balloons as well as satellite measurements and 

imagery. Furthermore, computer models are also used to support the prediction models. 

Weather forecasts are initialized and mainly influenced based on the observed and 

currently prevailing climatic conditions. For periods that lie even further in the future 

(> 10 days), it is not possible to create a precise weather forecast for a specific day, but 

only to give general trends for the weather of a specific area (Deutscher Wetterdienst, 

2022m). 

 

Climate predictions 

Climate predictions are a type of climatic model, which reflect a rough trend in climate 

development over the next few weeks, months, or years. Unlike weather forecasts, 

climate predictions are not used to predict the weather of a specific area at a specific 

time in the near future, but rather to predict climatic trends over longer periods of time 

and over a larger area. These are then used to show deviations from the normal climatic 

state. In order to create climate predictions, two main data sources are used, one of 

which is data gathered from observations and measurements, which is similar to the 

data collected for the creation of weather forecasts. The other data source for the 

creation of climate predictions are greenhouse gas emission models, which take into 

account the influence and effects greenhouse gas emissions are expected to have on the 

climate. Climate predictions are therefore initialized based on the observed and 

currently prevailing conditions, but further influenced by the long-term developments 

of greenhouse emission (Deutscher Wetterdienst, 2022k), (Deutscher Wetterdienst, 

2022l). 
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Climate projections 

Climate projections are a type of climatic model, which reflect a rough trend in the 

climatic development over the next few decades (30 – 100 years). Climatic models on 

this time scale are mainly influenced by the effects of the greenhouse gas emissions and 

the estimated future scenarios, which depend on global social and political 

developments (Deutscher Wetterdienst, 2022k). Therefore, in contrast to weather 

forecasts and climate predictions, the initial state of the atmosphere is not decisive for 

the creation of climate projections. Rather, climatic projections depend on assumed 

specifications, so-called climate scenarios. The expected changes in radiation due to the 

global time course of the concentrations of climate-relevant greenhouse gases, e.g., 

carbon dioxide or methane, the concentration of aerosol with its influence on the 

radiation budget and external drivers such as radiative forcing serve as points of 

reference for the determination of the scenarios. Since all scenarios are merely based 

on assumptions about the future anthropogenic influence on the greenhouse gas 

emissions, the selected scenarios and the therefore calculated climatic projections are 

associated with uncertainties. Therefore, the results of climate projections do not serve 

as exact forecasts, but rather as a kind of tool with the help of which one can study the 

effects of different concentrations of greenhouse gasses on the future climate 

(Deutscher Wetterdienst, 2022k). Based on different scenarios of anthropogenic 

influence on greenhouse gas emissions a variety of climatic models can be 

distinguished. The Representative Concentration Pathways (RCPs) are four 

representative scenarios to which the IPCC currently refers. Intergovernmental Panel 

on Climate Change (2018) Based on the different trajectory of greenhouse gas and 

aerosol concentrations, the so-called radiative forcing is calculated, which leads to 

different climate projections. They serve as the basis for various models of the near and 

distant future as well as for the development of regional climate models (Deutscher 

Wetterdienst, 2022n). The most important Representative Concentration Pathways are 

described below.  

Representative Concentration Pathways 2.6 (RCP2.6):  

The RCP2.6 is the best-case scenario which is characterized by an improvement of the 

climatic conditions. It corresponds to a development in which climate protection 

measures take effect and today's greenhouse gas emissions are greatly reduced. In this 

scenario, climatic warming does not exceed 2 °C by 2100 when compared to 1860, and 

radiative forcing begins to decline from 2050 onwards. To achieve this, the maximum 

value would have to be reached in 2020 and the "zero emissions" status would have to 

be reached globally before 2080. The RCP2.6 would thus fulfil the agreement of the 

Paris climate agreement of the UN climate conference. This scenario however is 

considered to be unlikely.  

Representative Concentration Pathways 4.5 and 6.0 (RCP4.5 and RCP6.0):  

The RCPs 4.5 and 6.0 represent moderately trending scenarios in which radiative 

forcing and emission concentrations increase until 2100. After that, either a decreasing 

radiative forcing takes place or falling emission concentrations are to be expected.  

Representative Concentration Pathways 8.5 (RCP8.5):  

The RCP8.5 is the business as usual or worst-case scenario and represents a 

development that runs under the assumption of unchanged high emissions. In this 

scenario greenhouse gas emissions will continue to increase steadily until 2100, leading 

to an increase in the global temperature by 4.4 °C in 2100 when compared to 1860. 
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Furthermore, the radiative forcing will remain high until the year 2300 (Deutscher 

Wetterdienst, 2022n).  

The Representative Concentration Pathways 2.6 is considered as a best-case scenario, 

while the Representative Concentration Pathways 8.5 is considered as a worst-case 

scenario. The pathways of both climate scenarios are illustrated in Figure 17. 

 

Figure 17 Bandwidth of the time course of the annual mean temperature change in 

Germany for the scenarios RCP8.5 (red) and RCP2.6 (blue), Source: 

Schmid (2021)  

 

Comparison between climate projections and measured values  

Climate projections from the 1970s and 1980s have been able to reliably predict the 

current warming trend, as can be seen in Figure 18. The black curve and the thin gray 

curves show the forecasted mean or the upper and lower range of the forecasted global 

annual average temperatures. The colored lines show the measured temperature 

development according to different datasets. 

 

Figure 18 Comparison of climate projections and measured values for the global 

annual average temperature, Source: Climate Brief (2022) 
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Figure 18 demonstrates that the measured values correspond to the curves of the 

predicted data. Therefore, it can be assumed that current climate projections will also 

be able to predict future climatic developments as precisely or even more precisely, 

since our understanding of climatic interrelations and the computing power has 

improved since the 1970s and 1980s (Deutscher Wetterdienst, 2022n). 

 

2.3 Risk analysis of drinking water supply systems 

The security of drinking water supply is not only ensured by constantly monitoring, 

maintaining, repairing, and replacing components of the supply system, but also by the 

preparedness to react as adequately and as quickly as possible and to restore the normal 

operation capabilities of the supply system after hazards and associated system failures 

in the freshwater supply network have occured. To achieve this, it is necessary to 

conduct a risk analysis of the total water supply system. The aim of a risk analysis is to 

assess whether a water supply system is able to provide drinking water in the face of 

hazards and hazardous events (Verband kommunaler Unternehmen, 2019). In addition, 

its aim is to find out which system components are particularly susceptible to certain 

hazardous events and which steps must be taken to rectify the damages that have 

occurred during or in the aftermath of a hazardous event. Once the hazards and 

hazardous events have been identified, they should be used to carry out a risk 

assessment for the system in question, with the help of which countermeasures and 

damage minimization measures can be developed and implemented. Finally, a 

validation of the decided on and implemented countermeasures should be carried out 

in order to identify possible weak points. This process should be reviewed periodically 

so that the risk analysis includes all new significant developments and insights and thus 

keeps the water utility company prepared in case of a hazard or hazardous event 

(Wienand et al., 2019).  

The goals pursued by the risk analysis of drinking water supply systems can be divided 

into the following three categories: 

• The identification of relevant risk scenarios for the supply system (risk 

identification), 

• the determination of the extent of damage and the likelihood of occurrence of 

the relevant risk scenarios (risk assessment) and 

• the comparison of risks and the creation and implementation of 

countermeasures (risk management) (Wienand et al., 2019). 

The prescribed procedure for the risk analysis of a drinking water supply system is 

illustrated in the figure below. 
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Figure 19 Flowchart of the prescribed procedure for conducting a risk analysis of 

a drinking water supply system based on Deutscher Verein des Gas- und 

Wasserfaches (2008) 

 

2.3.1 Risk identification of/for drinking water supply systems 

Hazards and hazardous events 

Hazards and hazardous events can never be completely controlled. Although modern 

technology empowers us to build technical structures, which provide a certain level of 

protection, they are nevertheless only designed to withstand and provide protection 

against an event with a defined return period, since they are limited by various factors 

such as the financial means available or due to limitations in the material properties 

being used and therefore cannot guarantee protection against every possible scenario 

(Bundesministerium des Inneren, 2009). 

 

Description of drinking water supply systems 

The description of the current state of the drinking water supply system is the basis for 

the development of a risk analysis. It should be conducted in consideration of all legal 

provisions and technical regulations and should include the following elements: 

• Summary overviews, 

• system specifics, 

• network development strategies and 

• further information (e.g., reliability considerations of risk-relevant 

components). 

Thereby the description of the supply system should begin and end at the transfer points 

and include all steps from the catchment area to the handover point to the customer 

(Deutscher Verein des Gas- und Wasserfaches, 2008), (Deutscher Verein des Gas- und 

Wasserfaches, 2011). In addition, foreseeable developments and future plans, including 
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the population development and the expansion of the supply network, should be 

included in the description of the drinking water supply system. Since every water 

utility company is structured differently and has its own special features that are adapted 

to the individual conditions on site, the description of the drinking water supply system 

must be made individually (Deutscher Verein des Gas- und Wasserfaches, 2011). 

 

Risk identification 

The aim of the risk identification in regard to drinking water supply systems is to 

identify hazards and hazardous events, which have the potential to disrupt the normal 

operation of the water supply network, and to determine conceivable conditions and 

events that could lead to the occurrence of a hazard (Deutscher Verein des Gas- und 

Wasserfaches, 2008). It should be ensured that the risk identification includes all steps 

that are crucial for the normal operation of the supply, ranging from the catchment area 

to the handover point to the customer, and investigates how these process steps can 

potentially be impacted by hazards and hazardous events (Wienand network et al., 

2019). 

The following list contains an overview of possible process steps that should be taken 

into consideration when conducting a risk identification: 

• Raw water catchment areas, 

• water production plants, 

• raw water transport, 

• water treatment, 

• drinking water transport, 

• water pumping systems, 

• water storage facilities, 

• water meter shafts, pressure reducer shafts, pipe rupture protection shafts and 

transfer shafts and 

• water distribution (supply areas) (Wienand et al., 2019). 

Since every water utility company is structured differently and has its own special 

features that are adapted to the individual conditions on site, the risk identification 

should be carried out individually for each supply system (Deutscher Verein des Gas- 

und Wasserfaches, 2008). Many water suppliers have been in operation for a long time 

and can draw on a wealth of experiences regarding hazards and hazardous events. That 

being the case, when performing a risk identification, one should first consider hazards 

and hazardous events that have occurred in the past and that have impacted the drinking 

water supply, since they can offer valuable information about possible weak points in 

and limitations of the supply system. Furthermore, they offer valuable insights on the 

emergency reaction capabilities of the water utility company (Wienand et al., 2019). 

Risk control measures (Chapter 2.3.3) that have already been taken to address hazards 

and hazardous events can deliberately be disregarded when conducting a risk 

identification. This enables the risk identification to be carried out regardless of the 

effectiveness of the measures already taken. After collecting the data in regard to past 

hazards and hazardous events, the remaining potential risks to the water supply system 

can be gathered. One should not simply focus on the potential risks hazards and 
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hazardous events pose, but likewise on the possible negative effects these can have on 

the drinking water supply. These negative effects should be listed and described briefly 

(Deutscher Verein des Gas- und Wasserfaches, 2008). 

 

2.3.2 Risk assessment of drinking water supply systems 

Once the potential risks and dangers for the drinking water supply system have been 

identified, a risk assessment for the supply system in question can be carried out, with 

the help of which in a next step risk control measures can be developed. According to 

the technical code “Safety in the drinking water supply - Risk management during 

normal operation” from the German Association for Gas and Water from 2008, a risk 

is defined as the product of the likelihood of occurrence and the extent of damage of a 

hazard or hazardous event (Deutscher Verein des Gas- und Wasserfaches, 2008). The 

values of the likelihood of occurrence and the extent of damage of a hazard or hazardous 

event must therefore be determined before the risk assessment of the drinking water 

supply system can be carried out. 

 

Likelihood of occurrence 

The likelihood of occurrence of a hazard or hazardous event is determined by 

calculating the annuity of a specific hazard or hazardous event. Various mathematical 

models as well as calculation and modeling software can be used for this purpose 

(Wienand et al., 2019). 

 

Extent of damage 

The extent of damage is directly correlated with the duration of the hazard or hazardous 

event and the duration of its impacts. The longer the hazard or the hazardous event and 

its impacts prevail, the more consumers are potentially affected by a lack of access to 

fresh and clean drinking water (Wienand et al., 2019). Water storage tanks are designed 

to even out daily fluctuations and the water stored in them is on average sufficient to 

supply drinking water for 12 to 24 hours. Short or medium-term hazards, that fall within 

the time frame of maximum 12 to 24 hours and do not have a direct impact on the 

distribution network, can be covered by storage tanks. Elevated storage tanks alone, 

however, are therefore not sufficient to ensure an adequate drinking water provision in 

case of a hazardous scenario of a longer extent. Taking that into account, one also needs 

to examine whether the affected water utility company is connected to other water 

suppliers who can help to maintain the drinking water supply. If that is not the case, the 

drinking water supply in the affected supply network is as interrupted. If, on the other 

hand, an external supply is available, it must be determined whether the supply of the 

whole or just a certain proportion of the population (e.g., only certain supply zones) can 

be guaranteed. In the case that the provision of drinking water is possible for at least an 

individual proportion of the population, it can be assumed that the supply can be 

maintained partially. Furthermore, even if one or more working external possibilities to 

supply water supply exist, the vulnerability of the other components of the drinking 

water supply must also be checked. If the elevated storage tanks or pumping stations 

are highly vulnerable (i.e., the functionality is not given), the drinking water supply 

cannot be maintained despite an existing external water supply (Wienand et al., 2019). 
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2.3.3 Risk management of drinking water supply systems 

For hazards and hazardous events for which a need for action has been derived in the 

scope of the risk assessment, risk control measures must be developed and 

implemented, in order to ensure that the drinking water provision can be met at all 

times. As described in Chapter 2.3.2, the risk emanating from a hazard or hazardous 

events is defined as likelihood of occurrence and the extent of damage of a hazard or 

hazardous event. Since the likelihood of occurrence cannot be influenced, the only 

possibility to minimize the impact of a risk is through a reduction of the extent of 

damage. During the selection processes, preference should be given to measures with a 

high process reliability and operational stability (Deutscher Verein des Gas- und 

Wasserfaches, 2008). 

 

Figure 20 Overview and classification of the risk control measures in connection 

with the impacts of climate change on the water demand 

As mentioned in Chapter 2.3.2, climate change poses a threat if changes of the climatic 

conditions lead to the future water demand exceeding the future available water supply. 

Therefore, in general, one can distinguish two types of measures. On the one hand, 

measures which aim to reduce the drinking water demand and on the other hand, 

measures which aim to increase the drinking water supply. Figure 20, which is based 

on …, provides an overview and classification of the measures identified in connection 

with the impacts of climate change on the water demand. 

 

2.3.3.1 Measures to decrease the water demand 

If the water supply cannot be increased, measures that aim to decrease the water demand 

are the only way to counteract an increasing water demand. Depending on influencing 

factors such as the condition of the supply network, the political will of the decision-

makers as well as the behavior and habits of the consumers, a different savings potential 

for each water utility company exists. In general, it can be observed that the domestic 
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and small business consumption has the greatest savings potential, as this sector has the 

largest share of the overall drinking water consumption, as can be seen in Figure 2. 

 

Legislative and administrative measures 

Legislative and administrative measures to reduce water consumption do not intervene 

directly into the supply system, for example by replacing the supply lines, but rather 

intend to reduce the water consumption by influencing consumer behavior. The 

legislative and administrative measures can be divided into three groups, namely 

measures based on positive incentives, measures based on negative incentives and 

measures to inform and educate the public, as can be seen in Figure 20. In order to 

influence the water consumption of consumers, measures based on positive incentives 

offer some kind of advantage for the consumer, e.g., by establishing and utilizing 

reward systems, which reward water conservation efforts or offer incentives to 

implement water conservation systems. Measures based on negative incentives, on the 

other hand, exert an influence on the water consumption of consumer groups by 

penalizing excessive water use, for example through the enforcement of restrictions or 

tiered water fees. Measures which aim to inform the public focus on the provision of 

information on the current and prospective state of the local water resources, while in 

addition offering practicable advice on how water can be saved. 

 

Bonus and monetary incentive programs 

An example of measures based on positive incentives are the bonus and incentive 

programs for water conservation that are currently brought forward by Thames Water 

Utilities Limited. Thames Water is the UK's largest water supplier, supplying 2.6 

million m³ of drinking water per day to a total of 9 million consumers in Greater London 

(Thames Water, 2022a). The utility company is faced with the challenge that the 

number of residents is constantly increasing due to migration movements. According 

to the Office for National Statistics, the population is expected to increase by 2.7 million 

by 2050 (Thames Water, 2022b). This poses a major challenge for the security of the 

water supply. For this reason, the company offers various programs with the aim to 

reduce the water consumption. Consumers that have a smart meter installed can, for 

example, register for a bonus program. With the data collected from the smart meters 

participants can track their weekly water usage rates and are provided with a summary 

report. In addition, information material with advice on how to reduce water 

consumption in the household is offered. Households that manage to minimize their 

water consumption collect points, which they can redeem prizes with, such as gift cards 

(Thames Water, 2022c). Another program that is offered is the incentive program for 

housing developers. Housing developers who develop new properties which achieve 

“water neutrality” by equipping them with low water using devices and rainwater 

collection systems, receive a discount on the charges for connection to the public 

drinking water network (Thames Water, 2022d). It is conceivable that similar programs 

are transferable to sectors that have a high water consumption, such as car washes or 

food production companies. 

 

Water saving appliances 
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Victoria is the most densely populated federal state in Australia and repeatedly 

struggles with water supply shortages. Driven by these circumstances, many water 

utility companies were looking for innovative ways to reduce the overall water 

consumption, one of which led to the creation of the so-called showerhead exchange 

program. Many of the older shower head models, which are still in use today, were not 

designed to save water and thus a lot of water is consumed unnecessarily. For this 

reason, the water suppliers offered their consumers water-saving shower heads for free. 

By replacing an old shower head that uses 12 liters per minute by a new model that only 

uses 8 liters per minute, one can save up to 1/3 of the water used while showering (City 

West Water, 2021). The program offers consumers a double monetary advantage. On 

the one hand, they do not have to buy a new shower head and on the other hand, the 

shower heads lower their water consumption, which has a positive effect on their water 

bills. Many water utility companies accept the fact that the implementation of such a 

program leads to increased costs, since they hope that the program will reduce the 

overall water demand and there will be no need for the development of new water 

sources, especially since the development of new water sources often is not possible at 

all or cost many times more than the program. Similar programs have also been 

implemented in other cities and regions struggling with water shortages, such as 

Istanbul, where non-profit organizations hand out water-saving appliances for free 

(Tansel, 2021). 

 

Restriction of water usage 

The irrigation of gardens and green spaces are one of the main water consumers during 

particularly arid periods. Above all, spray irrigation during the hottest hours of the day 

is particularly wasteful, since the water losses with this form of irrigation are 

particularly high, adding up to around 50% in some cases. Therefore, many cities and 

communities suffering from water shortages have implemented restrictions on the water 

usage in order to save water and to manage the water sources as ecologically as possible. 

Such restrictions, for example, include bans on watering of gardens and green spaces, 

the filling up of ponds and pools, the washing of hard surfaces, such as driveways and 

streets, and the washing of vehicles (Las Vegas Valley Water District, 2022a), 

(California Water Boards, 2022). For this purpose, a legal basis must be created by the 

responsible legislative authorities. In some supply areas, an executive authority has 

been developed specifically to monitor the compliance with the prohibitions, one of 

which is the so-called Water Patrol, which was established by the water utility company 

Las Vegas Valley Water District. Residents who are caught having violated the 

restrictions set in place must expect fines, so-called water waste fees, which start at $80 

and can go up to $5,120 (Las Vegas Valley Water District, 2022b). 

 

Changes in the billing system 

There are several possible rate structures for billing drinking water consumption, some 

of which are of historical origin and offer little or no incentive to use water sparingly. 

One of the most common ways of billing drinking water today is via a so-called uniform 

rate, where a fixed sum is paid for a specific amount of water, but there are also other 

billing systems which are described in the following paragraphs (Alliance for Water 

Efficiency, 2022a). 
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Unmetered water billing systems 

In most parts of Europe, nowadays, it is common for water consumption to be 

determined by water meters. In some places, however, water consumption is not 

measured and is instead billed by using so-called unmetered water billing systems. 

Since the water consumption is not being determined, fixed installments are paid for 

the water usage. As a result, consumers do not have an incentive to reduce their water 

consumption, but on the contrary, they have an incentive to claim as much water as 

possible for themselves. Therefore, if possible, a system change should take place and 

water meters should be installed. This has not only shown to raise the value of the 

commodity water in the minds of the consumers and to reduce the overall water 

consumption, but also has the advantage that it provides a better basis for network 

calculations and simulations, since water consumption can be assigned more precisely 

(Thames Water, 2022e). 

 

Tiered water fees 

In a drinking water supply network where the water consumption is registered with 

water meters, one has the option of implementing alternative water rate structures. In 

contrast to the uniform rate structure, alternative rate structures are designed 

specifically to encourage water conservation. One such billing system is the water 

budget-based rating system, which sets up individualized water budgets for each 

consumer. Based on specific factors and characteristics, such as the number of persons 

per household, the evapotranspiration rate, or the plot size, an individual and reasonable 

water budget is determined for each household. As long as the water consumption of a 

household is within the limits of its individual water budget, a low water price is paid 

for the water consumed. However, as soon as the water consumption exceeds the limit 

of their water budget, water prices rise sharply. This billing system was pioneered in 

the 1990s in California and has since been successfully implemented by many water 

suppliers across the USA (Alliance for Water Efficiency, 2022b). Studies have shown 

that water budget rate structures have reduced the overall consumption 

substantially.  The water consumption in the Californian city of San Juan Capistrano, 

for example, declined by 35% when comparing the periods before and after the 

implementation of the water budget rate structure (Mayer, 2008). 

 

Public information programs 

A measure to counteract the forecasted trends regarding climate change and its effects 

on the water supply is to involve the public. Through various media outlets, events and 

school lessons, the population can be made aware of the importance of water and of the 

urgency to change one's consumption behavior in an effort to conserve water. An 

economical use of drinking water together with the transition to other water resources 

can help to reduce the per capita consumption and thus relieve pressure off of the 

drinking water resources. Furthermore, informing the population about times of peak 

consumption and their impacts on the supply system can help to decrease the pressure 

on the supply network. In the early 2000s, Australia experienced one of the worst 

droughts recorded in its history, which affected large parts of Southern Australia and 

lasted for several years. Public awareness programs have been implemented 

successfully in the city of Melbourne to help raise the awareness of the public to the 

dire situation of the water reservoirs that are used to supply the city with drinking water. 
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For this purpose, the utility company Melbourne Water set up electronic billboards 

indicating the current capacity of the reservoirs in exposed places throughout the 

city.  In addition, other media outlets, such as newspapers and television, also drew 

attention to the current situation of the water supply. Together with other measures, the 

public information program has led to a reduction of the overall water consumption, 

which consequently held up the occurrence of “Day Zero”, the day on which the water 

supply can no longer be provided (Climate Access, 2014). 

 

Technical supply measures 

Technical supply measures aim to reduce water consumption directly by intervening 

into the supply system, for example by replacing leaking supply lines. Most of the 

technical supply measures can be implemented directly by the water supplier itself and 

therefore have the advantage that they do not require the involvement and approval of 

third parties. 

 

Early warning systems 

Early warning systems are critical components for the adaptation to climate change and 

with the objective of avoiding or reducing the damage caused by hazards and hazardous 

events. In order to be efficient, early warning systems need to actively inform the target 

group affected by efficiently broadcasting messages and warnings (Climate Adapt, 

2019). One example of such an early warning system in Germany are the applications 

Nina, of the Federal Office of Civil Protection and Disaster Assistance (German: 

Bundesamt für Bevölkerungsschutz und Katastrophenhilfe) or Katwarn, of the 

Fraunhofer Institute, which both warn the population of disasters and hazards through 

notifications on the application (Bundesamt für Bevölkerungsschutz und 

Katastrophenhilfe, 2022). Early warning systems also exist in the hydrological sector. 

An example is the U.S. Drought Monitor, which provides a weekly map of drought 

conditions for the United States that is used by the U.S. Department of Agriculture and 

the Federal Emergency Management Agency, among others, to evaluate which areas 

may need financial assistance due to losses caused by droughts. For this purpose, they 

use the imagery of the GRACE and GRACE-FO (Geosciences’s Gravity Recovery and 

Climate Experiment - Follow On) satellites, a joint project of NASA and German 

Research Center for Geosciences, as well as meteorological forecasts. The forecast 

provided by the U.S. Drought Monitor extend over the next 30 to 90 days (National 

Drought Mitigation Center, 2022). 

 

Replacement of drinking water 

Figure 4, which displays the domestic drinking water usage by usage type, clearly 

demonstrates that drinking water is used for applications for which water of lower 

quality would suffice. According to Paragraph §3 of the Drinking Water Ordinance, 

only approximately 60% of the water used in German households is defined as drinking 

water and as such is subjected to drinking water standards, which includes water used 

for drinking and the preparation of meals, for dishwashing and personal hygiene as well 

as water used to wash the laundry. Water that is used to flush the toilet or to irrigate 

gardens does not have to exhibit the same qualitative requirements as water intended 

for human contact and consumption. The same also applies to many applications and 
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processes in the industry (Bundesministerium der Justiz, 2021). The drinking water 

usage of these applications and processes could be replaced by graywater, rainwater or 

service water and would help to decrease the pressure on the drinking water resources. 

By switching to other water sources, toilet flushing alone could reduce the drinking 

water consumption in Germany by nearly one third. Implemented on a nationwide 

scale, this would mean that the national average per capita consumption would decrease 

from 123 to 90 l/(C*d). In order to implement these measures, many structural changes 

would be necessary, including the retrofit of plumbing in houses and buildings, the 

construction of rainwater collection and storage facilities or the installation of a service 

water pipe system. These changes are easier to implement in rural areas and new 

buildings, because more space is available and the differences in the plumbing can be 

integrated during the planning stage (Freeflush Water Management, 2022). 

 

Measures to minimize water losses 

Water losses in the system occur when water is used without being assigned to a 

consumer and without fees being charged for its consumption. This includes water that 

seeps into the ground due to leaks in the pipe network or in storage tanks, measurement 

errors caused by inaccurate water meters, but also illegal water withdrawals from 

hydrants or illegal connections to the network. The therefrom resulting costs are 

redistributed to all consumers via the water price (Bayerisches Landesamt für Umwelt, 

2019). Although water losses cannot be completely avoided, efforts should be made to 

reduce them to a minimum in order to conserve the resources, but also to protect the 

consumers' financial means. 

 

Regular maintenance and repair of pipe networks 

In order to increase the technical service life of pipes, they must always be maintained 

and repaired. With an annual renewal rate of 1%, it takes 100 years to completely 

replace all pipes from the supply system. A study conducted by various associations 

and authorities from Baden-Württemberg concluded that water supply companies from 

this federal state revealed that the network renewal rate in the year 2020 was 0.5% on 

average, which means that the renewal cycle lasts 200 years (Rödl und Partner, 2022). 

Similar values can also be observed for the other federal states of Germany (Rödl und 

Partner, 2019). In order to maintain the condition of the supply network, a renewal rate 

of at least 1.5 to 2.0% should be aimed for. The reactive maintenance approach of many 

water utility companies leads to a deterioration of the supply network and high 

prospective costs for future generations (Rödl und Partner, 2022).  In addition to the 

regular maintenance and repair of structural components, it is advisable to carry out 

structural reports and pipe network calculations to have the supply network properly 

assessed and to identify possible weak points and deficits. 

 

Setting up of district metered areas (DMA) 

Another way to minimize water loss is by implementing so-called district metering 

areas or DMAs. To achieve this, in a first step, the entire coverage area is divided into 

smaller coverage units. Existing supply zones are suitable for the creation of DMAs, as 

long as they are not too vast and supplied from a single supply line. In a next step, water 

meters are being installed at the feed-in points of the DMAs, which enables one to 
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balance each of the metered areas individually. This means that the water losses can 

now be assigned to a smaller area, which consequently helps localize the water losses 

in the system faster and more efficiently (DTK Hydronet, 2019). 

 

Network monitoring systems 

A further method to minimize water losses in supply systems is through network 

monitoring. For this purpose, flow measurement devices are attached to the outside of 

water pipes at hydraulically relevant points. These are then used to permanently 

measure the volumetric flow rate inside the pipe. If the measuring devices register 

changes in the flow behavior, such as when a pipe bursts, the system alerts the network 

operator and facilitates leak detection by calculating and indicating an area in which the 

leakage is suspected to have occurred.  In order to minimize the water losses through 

such a system, the detection by the monitoring system should be complemented by a 

rapid intervention and repair of the damaged utility (RBS wave GmbH, 2015). 

 

2.3.3.2 Measures to increase the available water supply 

The second set of measures, which can be implemented to counteract the negative 

effects of climate change on the drinking water demand, aim to increase the available 

water supply. There are mainly two ways to do this, one of which is to increase the 

locally sourced water supply sources and the other one is the purchase of drinking water 

from long-distance water utility companies. Depending on influencing factors such as 

the hydrogeological composition of the subsoil there exists a different potential for each 

water utility company. 

 

Increase in the locally sourced water supply 

Increase of the extraction rate 

One way to increase the supply capacity is to tap into already existing or new locally 

available water sources and thereby increasing the overall extraction rate. This can be 

achieved by drilling new wells or by developing springs for the use of drinking water. 

To do this, it must first be examined which yield can be expected from the local 

groundwater resources and whether it can cover the required demand. If such 

examinations have not been conducted yet, test drilling and pumping tests need to be 

carried out. In addition, it must be clarified with the responsible authorities whether a 

permit for increased extraction can be obtained. When designing the new wells and 

springs, it is important to anticipate a decrease in future water resources due to climate 

change. Past hot summers have already caused a temporary decrease of the yield of 

surface wells and springs (Karger et al., 2008). Apart from the above-mentioned 

possibilities, other water resources can also be utilized to supply drinking water or to 

replace applications where drinking water is currently used, but lower quality water 

would suffice (see Chapter 2.3.3.1). One possibility is to reuse water, for instance 

through the usage of treated wastewater for the irrigation of urban vegetation or the 

flushing of sewers. Another possibility would be the desalination of saltwater. 

 

Change in land surface 
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Soil sealing leads to precipitation no longer being able to seep through the soil into 

deeper layers of the earth and thus hinders it from contributing to the formation of new 

groundwater. Instead, the precipitation is drained off on top of sealed surfaces and is 

diverted to the nearest body of water, where it favors the occurrence of a flood event 

taking place during heavy rain events. Although soil sealing in Germany has shown a 

downward trajectory in recent years, still 56 ha of undeveloped land are converted into 

areas for settlements and traffic every day, of which 45.1% are being sealed. This leads 

to the surface sealing of 25.3 ha of land in Germany every day (Umweltbundesamt, 

2022). One way to counteract the process is to unseal already sealed areas or to 

minimize the degree of sealing in new construction projects. Although this method 

would only have a limited local impact in the catchment areas of the wells and springs 

in the study area of Southern Germany, since most of the time they are already located 

in highly permeable areas, such as forests or fields, it would have an impact on 

the groundwater resources on a global level. The unsealing of urban areas would mean 

that more rainwater would seep through the soil, increasing groundwater renewal rates 

and consequently leading to the rise of groundwater levels. As a result, trees in cities 

would not have to be watered at all or only much later than usual during dry spells or 

summer months with little precipitation. 

 

Intermediate storage of water 

As described in Chapter 2.2.2, water consumption in Germany is seasonally dependent. 

It can be observed that cold periods exhibit lower water demands than hot periods. If 

possible, it is therefore advisable to utilize the excess water that is available during rainy 

months with low water demands by storing it in order to be able to access it during 

months with high water demands. Based on the storage type used one can distinguish 

between above ground and in the ground storage facilities (Thomas et al., 2011). One 

way to store excess water above ground is through the creation of freshwater reservoirs. 

This can be accomplished by the erection of barrages in streams, which hold back 

excess water during periods with increased runoff, or by the creation of stormwater fed 

reservoirs, which for example divert excess precipitation away from urban zones into 

the reservoirs. One such structre is the Marina Barrage, which is located in Singapore 

and separates the freshwater reservoir Marina Reservoir from the Straits of Singapore. 

The reservoir is fed by several rivers, whose catchment areas are heavily urbanized and 

stretch out over 10.000 ha, covering approximately 10% of the city-states water demand 

(Singapore’s National Water Agency, 2022). Another major project that aims to store 

surplus stormwater and is still in the planning phase is the Rory M. Shaw Wetlands 

Park Project, located in Los Angeles County. For this purpose, 21 ha of a 46-hectare 

area is to be converted into a detention pond, where stormwater will be collected, while 

the remaining area will be divided into a part that will be turned into a wetland and be 

used for the treatment of the stormwater and another part which will be used as a 

recreational area. After the treatment the stormwater will be pumped to existing 

infiltration basins, which are operated by a group of Los Angeles Departments (Los 

Angeles County, 2022). 

 

Connection to long-distance water sources and regional networking of supply 

networks 

In the event that the water demand cannot be met, and the locally available water 

resources are exhausted, there is the possibility of obtaining water from other water 
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utility companies, which have capacity reserves. For this, it must be checked whether a 

water supplier in the near vicinity meets the criteria or whether the pipes of a long-

distance water supplier with capacity reserves runs through or near the own supply area, 

to which one could establish a connection. However, one should note that many long-

distance water suppliers, such as the Bodensee Wasserversorgung, have already 

reached their capacity limits and are therefore unable to deliver more water or to enter 

into contracts with new customers (Gajer, 2022). Therefore, this option should only be 

considered, when all other options have been exhausted or in the case that they are 

economically unviable. 

 

2.3.4 Periodic revision of the risk analysis 

After all hazards and hazardous events as well as their likelihood and extent have been 

determined and the appropriate measures have been developed and implemented, a 

periodic review should be carried out (Wienand et al., 2019). Infrastructure, such as 

drinking water supply systems, constantly needs to be repaired and maintained in order 

to guarantee their functionality, but also needs to be adapted to changing circumstances 

and conditions, such as population development, changing consumer habits, climate 

change and the connection of new districts. The risk analysis, assessment and 

management of drinking water supply systems should therefore be carried out at regular 

intervals, with the objective to always stay up to date and to include new findings and 

changed data bases. It is recommended to repeat the risk analysis at intervals of 3-5 

years or when major changes to the supply system are imminent (Deutscher Verein des 

Gas- und Wasserfaches, 2008). 

 

2.4 The use of machine learning for the prediction of the 

future water demand 

Machine learning can be defined as a collection of methods and techniques, with the 

help of which data patterns can be detected automatically, which in turn can then be 

utilized for the prediction of datasets or data points, which have not been observed. It 

offers a wide range of possible applications in different sectors and is used, for example, 

in face or voice detection and recognition, in the optimization of processes or for the 

prediction of stock market prices. In general, one can distinguish two approaches of 

machine learning, the descriptive or unsupervised learning approach and the predictive 

or supervised learning approach. The predictive or supervised learning approach can 

further be divided into two categories according to the type of the output or response 

variables. If the output values are considered to be categorical or nominal variables they 

belong to the category of classification or pattern recognition, while output values 

which are considered to be real-valued variables belong to the category of regression 

(Murphy, 2012). 

Many successful investigations and studies in the field of machine learning based water 

demand forecasting, which falls into the category of time series forecasting, have led to 

its establishment as an innovative approach within the framework of water demand 

development. Depending on the framework of the conducted studies as well as the 

available data basis, various influencing factors can be incorporated into the 

simulations, such as economic, demographic or climatic factors.  To date, climate-based 

simulations in the field of water demand development have been limited to short- or 
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medium-term forecasts, i.e., to a time frame of a few hours to several months. For this 

purpose, in addition to historical climatic and water supply-specific data, data from 

weather forecasts or weather prognoses were used as the data basis for the simulations 

(Ghiassi et al., 2008). 

The obtained information and results regarding the analysis and forecasting of the 

future water demand, are of great importance since they enable an optimal supply 

demand management and serve as the basis for the early implementation of measures 

that can assist in meeting the water demand, such as increasing the treatment capacity, 

provided that further production, treatment, and storage capacities are available 

(Vijayalaksmi et al., 2015). 

Nevertheless, the operational flexibility of water supply systems is only given to a 

certain degree as they are designed for a long service life, spanning over several 

decades, and their construction, maintenance and expansion require considerable 

investments. 

Due to the restricted operational flexibility of the water supply systems, decisions 

should be made at an early stage with regard to possible measures to ensure that the 

water demand can continue to be met at all times in the future. Consequently, this 

implies that to realize this, long-term predictions of the future water demand, which 

span over the next few decades, are required. Long-term forecasts in the area of water 

demand development have also been conducted, but these have been limited 

exclusively to the effects of economic and demographic factors on the future water 

demand (Nawaz et al., 2019). 

In this process, non-linear models such as artificial neural networks have proven to be 

particularly suitable since, in contrast to linear models such as multivariate linear 

regression (MLR) or autoregressive integrated moving averages (ARIMA), they can 

represent the actual water consumption, which exhibits nonlinear behavior, more 

accurately and therefore provide better results (Adamowski et al., 2012). 

Besides that, most classical parametric machine learning models, such as linear or 

polynomial regression, only generate a single output value as a prediction for every 

input value provided by a certain dataset, resulting in a single function that best fits the 

observed data points, while disregarding every other potential function which could 

also be used to depict a certain dataset, as illustrated on the left side in Figure 21. Other 

methods, such as Gaussian process regression (GPR), on the other hand do not only 

provide the expected function, but also offer a corresponding empirical confidence 

interval that varies in dependence with the certainty of the model, which can be seen on 

the right side of Figure 21 (Shi, 2019). This offers an advantage, when making decisions 

based on the foundation of the predictions, since the indicated certainty of the 

regression analysis makes one less susceptible to erroneous conclusions based on the 

mean value. 
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Figure 21 Comparison between a polynomial regression (left) and a Gaussian 

process regression (right), Source: Shi (2019) 

Besides Gaussian process regression, there are also other regression based on machine 

learning methods, such as artificial neural networks, which can be applied for such 

applications.  

The innovative approach of this master thesis is that, in contrast to previous studies that 

relied on climatic data provided by weather forecasts or weather predictions and were 

thus able to predict water demand over short or medium-term time periods, historical 

data has been combined with climate projections and thus enabling to provide long-

term predictions (over the next several decades) of the future water demand. 

The following chapters should act as a brief introduction into the basics of Gaussian 

process regression and are merely meant to provide the reader with the necessary 

knowledge in order to be able to understand the calculations carried out in the further 

course of this thesis. Therefore, it does not claim to represent a complete mathematical 

description or derivation of Gaussian processes or Gaussian process regression. 

 

2.4.1 Introduction to Gaussian process regression 

Gaussian process regression is a method used for interpolation, which is based upon 

Gaussian processes. Since they are predicated on the Gaussian distribution, both 

Gaussian processes and Gaussian process regression were named after the German 

mathematician and physicist Carl Friedrich Gauss. At first, Gaussian process regression 

was applied in the scientific field of geostatistics, where it is also known as Kriging and 

was utilized to interpolate geological data from unsampled or not sampleable locations. 

Since then, its scope of application has expanded and nowadays, it is used to provide 

predictions in various scientific branches, including the financial and pharmaceutical 

sectors, to name but two. There exist two approaches to developing Gaussian process 

regression models, namely the weight-space view and the function-space view. This 

work will focus on the visualization of Gaussian process regression by using the 

function-space view. According to the function-space view, Gaussian processes define 

the probability distribution over functions and consider inference directly taking place 

in the function space (Rasmussen et al., 2006). 

Since Gaussian processes can be visualized as probability distributions over functions, 

Bayesian inference can be applied to update the probability distribution over the 

possible functions according to the knowledge gained from observed data points 

(Knagg, 2019). In the following section, the aim is to illustrate the operation of 

Gaussian process regression using Bayes' theorem and Bayesian inference. 
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2.4.2 Bayes’ theorem and Bayesian inference 

Bayes' Theorem is a mathematical equation, in which prior knowledge and beliefs can 

be incorporated to calculate conditional probabilities, also known as posterior 

probability distributions (Stanford Encyclopedia of Philosophy Archive, 2003). 

The following formula displays the mathematical representation of the Bayes’ theorem: 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴) × 𝑃(𝐴)

𝑃(𝐵)
 

 
(1.3) 

with 

𝑃(𝐴):      Prior (probability of observing the event A) 

𝑃(𝐵):    Evidence (probability of observing the event B) 

𝑃(𝐴|𝐵): Posterior (probability of event A occurring given that event B is true) 

𝑃(𝐵|𝐴): Likelihood (probability of event B occurring given that event A is true). 

Bayesian inference is the process of deducing properties from the probability 

distribution of a dataset using Bayes’ theorem, which means that observed values are 

used to update our knowledge and beliefs about a certain model (Brooks-Bartlett, 

2018). 

In the context of Gaussian process regression, the prior probability distribution can be 

described as the distribution of the data, which is believed to occur based on preceding 

knowledge before any data has actually been observed. When conducting a regression 

analysis, this means that the functions that are incompatible with our prior can be 

disregarded, whereby the likelihood determines the definition of incompatibility in 

regard to the prior. The remaining functions are considered to be functions of the 

posterior. In the event that there is no prior knowledge or belief of the data, the mean 

can be considered as 0, as illustrated on the right side of Figure 22. This lack of 

knowledge results in a wide variety of sampled functions, since a pre-selecting of 

functions cannot take place, as can be seen on the left side of Figure 22. 

 

Figure 22 Resulting functions (left) and the mean function and standard deviation 

in the case that the mean function is equal to zero (right), Source: Knagg 

(2019) 

Once new evidence is presented, as illustrated by four data points in Figure 23, the 

belief system can be updated by calculating the posterior probability distribution. 
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Figure 23 The introduction of evidence displayed as data points, Source: Knagg 

(2019) 

 

This results in the selection of functions, which fit the observed data points more 

precisely, as depicted on the left side of Figure 24. Furthermore, it can be observed that 

the probability distribution of the functions has also changed according to our updated 

belief system or posterior and has been adjusted to cross through the data points. The 

expected function or mean, pictured as a black graph in Figure 24, is formed by 

calculating the mean value of the newly selected functions. The uncertainty of the 

model at and in the near vicinity of the observed data points is low and increases the 

further away one moves from the data points. 

 

Figure 24 Resulting functions (left) and updated mean and standard deviation 

(right) after the introduction of evidence, Source: Knagg (2019) 

This cycle can be repeated any number of times as new insights or data points become 

available, resulting in an increasing certainty of the model. The model can now also be 

used to compute the value of data points, which have not been observed yet, while also 

supplying the certainty of the computed predictions. 

 

2.4.3 Gaussian process regression 

After a short introduction into the operation of a Gaussian process regression, the 

procedure of the regression analysis as well as important parameters, their influence 

and importance for the process will be explained in the following chapters. These are 

based predominantly on the standard work for Gaussian process regression by 

Rasmussen, Williams (2006). A Gaussian process can be defined as a collection of 

random variables, any finite number of which are jointly Gaussian distributed. Gaussian 

processes are determined entirely by their mean function 𝑚(𝑥) and their covariance 

function 𝑘(𝑥), which is also known as the kernel. The mean and covariance function 

can be defined as 

𝑚(𝑥) = 𝐸[𝑓(𝑥)], (1.4) 
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𝑘(𝑥, 𝑥′) = 𝐸[(𝑓(𝑥) − 𝑚(𝑥))(𝑓(𝑥′) − 𝑚(𝑥′)], (1.5) 

with 𝑥 and 𝑓(𝑥) being the input and output values of the observed data points, which 

are also known as training data, and 𝑥′ and 𝑓(𝑥′) being the input and output values of 

the to be predicted data points, also known as test data. As such the prior of a Gaussian 

process can be written as 

𝑓(𝑥)~𝐺𝑃(𝑚(𝑥), 𝑘(𝑥, 𝑥′)). (1.6) 

For a finite set of data points, the joint distribution 𝑝(𝑓(𝑥1), . . . , 𝑓(𝑥𝑛)) of the output 

values 𝑓(𝑥) itself is Gaussian normal distributed 𝑁() and can be described as 

𝑝(𝑓|𝑋) = 𝑁(𝑓|𝜇, 𝐾), (1.7) 

where 𝜇 =  (𝑚(𝑥1), . . . , 𝑚(𝑥𝑛)) and 𝐾𝑖𝑗 =  𝑘(𝑥𝑖, 𝑥𝑗). 

Knowledge or beliefs can be incorporated into the prior distribution through the 

selection of the mean and the covariance functions, which is called surrogate model 

selection (see Chapter 3.2.1.3). Most of the time the mean function is constant, being 

either zero or the mean of the training dataset. The covariance function on the other 

hand needs to be selected. Commonly used covariance functions include the constant 

kernel, the linear kernel, the squared exponential (SE) or radial basis function (RBF) 

kernel and the Matern kernel. In addition, covariance functions can also be summed up, 

through which new covariance functions can be generated. 

In the further course of this chapter the radial basis function (RBF) covariance function, 

with mean function 𝑚(𝑥) = 0, will be used as an example to illustrate how Gaussian 

process regression operates. Covariance functions are used to specify the covariance 

between pairs of random variables as follows: 

𝑐𝑜𝑣(𝑓(𝑥), 𝑓(𝑥′)) = 𝑘(𝑥, 𝑥′) = exp (−
1

2
|𝑥 − 𝑥′|2) . (1.8) 

In this case for the sake of simplicity we will consider that the observed data is noise 

free and that the characteristic length-scale 𝑙 equals 1. Assuming a training dataset 𝐷 =
{(𝑥𝑖, 𝑦𝑖)}𝑖=1

𝑛  with 𝑛 observations and the function output 𝑓, where 𝑥 represents an input 

vector and 𝑦  represents a scalar output, the so-called design matrix 𝑋  can be 

aggregated. In a similar way, the matrix of a test data 𝑋∗ containing 𝑛∗ observations can 

be aggregated. 

If the function output of the test data 𝑓∗ is to be determined, the prior distribution of the 

Gaussian process needs to be converted into a posterior distribution. Since the outputs 

of the training data 𝑓 and the outputs of the test data 𝑓∗ are joint Gaussian distributed 

they can be written as 

[
𝑓
𝑓∗

] ~𝛮 (0, [
𝐾(𝑋, 𝑋) 𝐾(𝑋, 𝑋∗)

𝐾(𝑋∗, 𝑋) 𝐾(𝑋∗, 𝑋∗)
]). (1.9) 

If there are 𝑛  training observations and 𝑛∗  test observations, the 𝑛 × 𝑛∗  matrix of 

covariances assessed at all pairs of training and test points is denoted as 𝐾(𝑋, 𝑋∗) and 

likewise for the other entries. 

To obtain the posterior distribution over functions, we need to limit this joint prior 

distribution to include solely those functions that correspond to the observed training 

data. When applying the principles for the conditioning of Gaussians, the following 

equation is obtained for the posterior distribution 
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𝑓∗|𝑋∗, 𝑋, 𝑓~𝑁(𝐾(𝑋∗, 𝑋)𝐾(𝑋, 𝑋)−1𝑓, 𝐾(𝑋∗, 𝑋∗) −

𝐾(𝑋∗, 𝑋)𝐾(𝑋, 𝑋)−1𝐾(𝑋, 𝑋∗)). (1.10) 

Test data outputs 𝑓∗  can now be sampled from the joint posterior distribution by 

evaluating the mean and covariance matrix from the equation above. 

In more realistic settings, we typically only have access to noisy representations of 

functions, which can be expressed as 𝑦 = 𝑓(𝑥) + ɛ . This results in the following 

formulation of the covariance 

𝑐𝑜𝑣(𝑦, 𝑦′) = 𝑘(𝑥, 𝑥′) + 𝜎𝑛
2𝛿𝑥𝑥′ , (1.11) 

where 𝛿𝑥𝑥′ is the Kronecker delta which is one if 𝑥 = 𝑥′and otherwise zero. 

For the sake of simplicity, the determination of the posterior distribution of a model 

setting with noise will not be discussed. Rather, the following is limited to the effects 

of the adjustments that can be achieved by modifying the variable parameters of the 

covariance function. 

In the context of Gaussian process regression, most of the covariance functions have 

free parameters. The radial basis function covariance function is denoted as follows 

𝑐𝑜𝑣(𝑓(𝑥), 𝑓(𝑥′)) = 𝑘𝑦(𝑥, 𝑥′) = 𝜎𝑓
2exp (−

1

2
|𝑥 − 𝑥′|2)+𝜎𝑛

2𝛿𝑥𝑥′ ,  (1.12) 

with 𝑙>0 and 𝜎𝑓
2>0 and where the covariance is denoted as 𝑘𝑦  as it is for the noisy 

targets 𝑦 rather than for the underlying function 𝑓 . One can observe that the three 

parameters length-scale 𝑙 , the signal variance 𝜎𝑓
2  and the noise variance 𝜎𝑛

2  can be 

varied. These variable parameters are called hyperparameters. Rasmussen, Williams 

(2006) 

The influence of the hyperparameters on the selection of the functions is summarized 

in the following paragraph with the help of Figure 25.  

Correlation length 𝑙: The correlation length is a measure of the constraint between 

height displacements of neighboring points and is significant when the points are within 

the correlation length and negligible when they are outside of it. Lower correlation 

length values result in a smaller influence of the neighboring point, as illustrated in the 

top left graph in Figure 25, and vice versa, as illustrated in the top right graph in Figure 

25. 

Signal variance 𝜎𝑓
2 : The signal variance is responsible for the amplitude of the 

functions. This can be observed by the fact that the uncertainty outside the training 

dataset is much higher in the middle right graph, than in the middle left graph of Figure 

25. 

Noise variance 𝜎𝑛
2 : The noise variance depicts the noise level in the training data. 

Larger noise values result in rougher estimations, which avoid overfitting to noisy data, 

as can be seen in the bottom two graphs in Figure 25 (Krasser, 2018). 
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Figure 25 The influence of the hyperparameters on the selection of the functions 

and standard deviation, Source: Krasser (2018) 

 

Surrogate model selection 

Surrogate model selection refers to the selection of the mean and covariance functions 

as well as the setting up of the hyperparameters of the covariance functions. Since it is 

not always clear from the beginning which covariance function would fit the observed 

dataset most optimally, in such cases it is advisable to try several covariance functions 

or combinations of these.  Furthermore, it is beneficial to review literature to find out 

what kind of kernels were used to develop models for similar or related research 

questions (Rasmussen et al., 2006). 

 

Selection of mean functions 

As stated earlier it is common to use 𝑚(𝑥)  =  0 as the mean function. (Murphy, 2012). 
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Selection of covariance functions 

Radial basis function kernel 

The radial basis function kernel (RBF), also known as the squared-exponential kernel, 

is a stationary kernel, which is parameterized by a length scale hyperparameter 𝑙>0 and 

the signal variance hyperparameter 𝜎𝑓
2 >0 (see Chapter 2.4.3). Since this kernel is 

infinitely differentiable, GPs which use a radial basis function kernel as a covariance 

function have mean square derivatives of all orders and are thus exceedingly smooth 

(Scikit-learn Developers, 2022a). 

 

Matern kernel 

The Matern kernel is a class of kernels, which are a generalization of the radial basis 

function kernel and are parameterized by an additional parameter 𝜈, which controls the 

smoothness of the resulting functions. The higher the 𝜈 -value, the smoother the 

approximated function is. When, the Matern kernel is equal to the radial basis function 

kernel, while when 𝜈 = 0.5, the Matern kernel is equal to the absolute exponential 

kernel. The parameter can also take the values 𝜈 = 1.5 or 𝜈 = 2.5, which results in once 

differentiable functions or twice differentiable functions, respectively. 

The kernel is defined as: 

𝑘(𝑥𝑖 , 𝑥𝑗) =
1

𝛤(𝜈)2𝜈−1 (
√2𝜈

𝑙
𝑑(𝑥𝑖 , 𝑥𝑗))𝜈𝐾𝜈(

√2𝜈

𝑙
𝑑(𝑥𝑖 , 𝑥𝑗)), (1.13) 

where 𝑑() is the Euclidean distance, 𝐾𝜈 is a modified Bessel function and 𝛤() is the 

gamma function (Scikit-learn Developers, 2022b). 

 

Validation of the model 

Model-validation is a method that can be used for model selection. The main idea of 

validation is to divide the training set into two disjoint sets, one for training and the 

other for validation of the model. This allows for a model to be set up and to be 

evaluated according to its performance, which is used as a proxy for the generalization 

error, a measure that describes how precisely a model is able to predict unobserved 

data. It is recommended to choose a split of 70/30 or 80/20, which means that 70-80% 

of the observed data is used to train the model, while 20-30% of the observed data is 

used to validate the model. It is important to note that a model is never verified with the 

data it was trained with, since this procedure would falsify the results of the calculation. 

There are two possible ways to select validation data. One is to just randomly select 

data points out of the dataset, while the other option is to select the last 20-30% of the 

data sorted according to the independent variable. This is especially useful when the 

independent variable is time, and you want to determine how well the model will predict 

future values. The validation of the model needs to be conducted for each dataset 

individually, since it can only provide how well the model works for a certain dataset 

(Rasmussen et al., 2006). 

 

Coefficient of determination 𝑅² 

One validation method that can be used is the calculation of the coefficient of 

determination 𝑅², or also known as the Nash-Sutcliffe model efficiency coefficient 
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(NSE). The coefficient of determination 𝑅² is used as an indicator to describe the 

quality of the surrogate model, meaning how good a model fits a certain dataset. As a 

result, it can be used to evaluate how well unobserved samples will be predicted by the 

model. The best possible score a model can reach for the coefficient of determination 

is 1.0, which means that the model would predict the value of an unobserved data point 

exactly. When the coefficient of determination is 0 it means that the prediction capacity 

of the model is as good as the mean value, while a negative coefficient of determination 

means that the prediction capacity of the model is worse than the mean value. Models 

with a 𝑅2-value of ≥0.55 are considered to supply sufficient predictions for the output 

values, whereas models with a 𝑅2-value of <0.55 are considered to supply insufficient 

predictions for the output values. It can be concluded that, the closer the 𝑅²-value is to 

1, the stronger the correlation between the dependent and the independent variables. 

If �̂�𝑖 is the predicted value to the corresponding true value 𝑦𝑖 for a total of 𝑛 samples, 

the coefficient of determination 𝑅² can be defined as: 

R2(y, ŷ) = 1 −
𝛴𝑖=1

𝑛 (𝑦𝑖−�̂�𝑖)2

𝛴𝑖=1
𝑛 (𝑦𝑖−�̅�)2

, (1.14) 

where �̅� =
1

𝑛
𝛴𝑖=1

𝑛 𝑦𝑖  and 𝛴𝑖=1
𝑛 (𝑦𝑖 − �̂�𝑖)

2 = 𝛴𝑖=1
𝑛 є𝑖

2.  Since the coefficient of 

determination is dataset dependent, it is not comparable across different datasets 

(Scikit-learn Developers, 2022c). 

 

Over- and Underfitting 

When setting up surrogate models, one wants to ensure, that it fits the available 

(validation) dataset as optimally as possible.  In this process, care needs to be taken, 

that the surrogate model does not adapts too much to the training data points, which is 

called overfitting as illustrated in the right graph of Figure 26, or that it does not adapt 

enough to the training data, which is called underfitting as pictured in the left graph of 

Figure 26 (Murphy, 2012). 

 

Figure 26 Graphical representation of a underfitted model (left), an optimal model 

(middle) and an overfitted model (right), Source: Rathod (2022): 

 

To prevent over- or underfitting of the surrogate model, 𝑅²-surrogate model assessment 

can be carried out (see Chapter 3.2.1.3). In this context the surrogate model would be 

considered to be underfitted, if the resulting 𝑅²-value were low for the training as well 
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as the test dataset, while the surrogate model would be considered to be overfitted, if 

the resulting 𝑅²-value were high for the training dataset, but low for the validation 

dataset. 

 

Advantages and Disadvantages of Gaussian process regression 

Having introduced and outlined the principles of operation of Gaussian process 

regression in the preceding sections, the advantages and disadvantages of the GPR will 

be discussed briefly. A brief summary of the main advantages and disadvantages of 

Gaussian process regression are listed in Table 2. 

Table 2 Summary of the advantages and disadvantages of Gaussian process 

regression (Knagg, 2019), (Rasmussen et al., 2006) 

Advantages Disadvantages 

Unlike artificial neural networks, GPRs 
provide good results even with small 
datasets  

Computational cost of predictions 
(cost increases cubically with the 
number of training samples) 

Possibility to incorporate expert/prior 
knowledge and beliefs (surrogate model 
selection) 

Polynomial chaos expansion needs 
assumptions about the parameter 
distribution 

Offers predictions of the expected values 
and captures the model uncertainty 

 

Implementation of Gaussian process regression 

There are several general-purpose programming languages (GPLs) that can be used for 

the implementation of Gaussian process regression, for instance C, C++, MATLAB, or 

Python. The syntax of Python is considered to be user-friendly, and it is regarded as an 

intuitive programming language, which makes it especially susceptible for 

inexperienced programmers. Furthermore, it facilitates many scientific and data-based 

libraries, in particular NumPy, Pandas, Matplotlib or Scikit-learn, which assist the 

programmer in the fields of machine learning, data science, data visualization and many 

more. In addition, it is an open-source programming language, which is one of the 

reasons why so many users and library developers decide to work with this particular 

programming language. Several libraries, such as scikit-learn, Gpytorch and GPy, can 

be used for the implementation of Gaussian process regression. (Kumar, 2018). 
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3 Methodology 

This master thesis was carried out in cooperation with the Chalmers University of 

Technology, Department of Architecture and Civil Engineering, the University of 

Stuttgart, Institute for Modelling Hydraulic and Environmental Systems and the 

consultancy firm RBS wave GmbH as part of the internal research project "Influence 

of climate change on drinking water supply". Within the scope of this work, questions 

regarding the development and safeguarding of the quantitative aspects of the drinking 

water supply in relation to climatic developments are to be answered. The aim is to 

offer water utility companies the opportunity to get an overview of possible regional 

climatic developments and to demonstrate the resulting impact on their own drinking 

water supply. In addition, recommendations are drawn up with which the establishment 

of a safe and sustainable drinking water supply is possible. 

The basis for this master's thesis is the first and second part of the research project in 

the form of a bachelor's thesis by Mr. Marcel Gerigk (B.Eng.) at the Esslingen 

University of Applied Sciences, Faculty of Building, Energy and Environmental 

Technology and a master's thesis by Ms. Selina Hüsam (M.Sc.) at the University of 

Stuttgart, Institute for Sanitary Engineering, Water Quality and Solid Waste 

Management. Furthermore, the processing of the task is based on the findings of 

previous literature research. In the first two parts of the research project, the study area 

was divided into five climatic zones on the basis of meteorological data and, with the 

help of questionnaires, supply data from water supply companies in the respective 

climatic regions were collected. In the course of the research project the questionnaire 

has been answered by a total of 60 water supply companies from the federal states of 

Baden-Württemberg, Bavaria, Rhineland-Palatinate, Saarland and Hesse. The data 

collection relates to the period 2010 - 2020. Furthermore, the water supply companies 

were also assigned location-related climatic data from the German Weather Service. 

With these datasets, an attempt was made to carry out initial projections for the 

development of the water consumption based on climatic parameters. However, these 

projections were set up by determining the dependency between an individual climatic 

parameter and the water consumption and by extrapolating it linearly, not taking actual 

projected climate data into account. The projections therefore only considered the 

dependency of a single climate parameter on water consumption and did not consider 

how combinations of parameters influence the water consumption. 

As part of this master's thesis, a prognosis tool was therefore developed with which, on 

the one hand, it can be determined how reliably climatic parameters can be used to 

predict the water consumption of individual water utility companies and, on the other 

hand, can predict the future water consumption of a water utility company or within a 

climate zone. To achieve this, the datasets collected in the scope of the research project 

as well as climate data projections by the German Weather Service were used, on the 

basis of which the water supply companies were first analyzed individually, before 

developing forecast scenarios for each of the five climatic zones by comparing the 

results of the individually analyzed water supply companies. Based on the results of the 

analysis, potential measures and adaptation strategies to mitigate the risks to the 

quantitative aspects of the drinking water supply caused by climate change were 

developed and existing data deficits as well as monitoring needs were identified. 
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3.1 Description of the study area and data collection 

3.1.1 Description of the study conducted 

As part of the first part of the research project "Influence of climate change on drinking 

water supply" by the consultancy firm RBS wave GmbH, climatic and supply-related 

data from the study area was collected and evaluated. For this purpose, a total of 92 

publicly owned water utility companies from the study area located in Southern 

Germany, which represents 2.2% of all publicly owned water utility companies in the 

study area, were requested to take part in the survey conducted, from which 60 

answered the questionnaire, 15 withdrew their participation due to a lack of capacity 

and staff shortages and 17 are yet to answer the questionnaire. The 60 participating 

water utility companies represent 1.4% of all publicly owned water utility companies 

located in Southern Germany. However, the drinking water provided by the 

participating water supply companies, which adds up to 257.4 million m³, cover 11.6% 

of the total amount of drinking water provided in the study area. Figure 27 shows an 

overview map of the surveyed water supply companies, marked as participating (green), 

unassessed (yellow) or not participating (red). The evaluation of the survey was 

anonymous, which is why each company was assigned a number. 

 

Figure 27 Overview map of the surveyed water utility companies in the study area 

Southern Germany 

The questionnaire that was created for the research project aimed to collect the essential 

planning parameters and design variables of each water supply company. The data 

collected by the questionnaires included: 

• The annual provision quantity, 

• the monthly provision quantity of locally sourced water and long-distance 

water, 
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• daily peak values, 

• population numbers, 

• the net length, 

• spring discharges and well yields including static groundwater levels and 

• pipe burst statistics. 

The influence of the population development on the water provision was circumvented, 

by only considering the per capita water provision, instead of the overall water 

provision. 

The data was requested for the period from 2010 to 2020. When selecting the water 

supply companies for the survey, care was taken to include representative water utility 

companies of different sizes and supply structures. The distribution of the size classes 

and water supply structure can be found in Table 3 and Table 4. 

Table 3 Classification of water supply companies according to size classes 

Size class Small Medium Large 
Supply quantity 
[m³/d] 

< 1,000 1,000 – 10,000 ≥ 10,000 

CZ 1 0 4 0 
CZ 2 2 4 0 
CZ 3 6 4 2 
CZ 4 6 14 6 
CZ 5 0 8 4 
Total 14 34 12 

Table 4 Classification of water supply companies according to supply structure 

according to the code of practice DVGW 392 

Supply class 1 (metropolitan) 2 (urban) 3 (rural) 
Supply structure 
[m³/(km*a)] 

> 15,000 5,000 – 15,000 < 5,000 

CZ 1 - 3 1 
CZ 2 - 4 2 
CZ 3 - 8 4 
CZ 4 - 20 6 
CZ 5 - 12 - 
Total - 47 13 

In addition to the questionnaires that provided supply-related data, measured values 

from weather stations of the German Weather Service were evaluated in order to gain 

information about the prevailing climatic conditions. For this purpose, each water 

supply company was assigned a weather station, which is located in the shortest spatial 

distance from the supply areas of the water supplier. The data collected by the 

evaluation of the weather stations included: 

• The maximum monthly temperature, 

• the monthly average temperature, 
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• the monthly precipitation rate, 

• the number of hot days per month, 

• the number of summer days per month, 

• the number of ice days per month and 

• the monthly climatic water balance. 

Depending on the prevailing local climatic conditions, the surveyed water utility 

companies were then assigned to climate zones. The basis for the formation of the five 

climate zones are the respective annual averages of the air temperature and the total 

precipitation rate for the years 1991 - 2021 from all climate stations of the German 

Weather Service. A value between 1 and 15 is assigned to these as shown in Table 5.  

Table 5 Table for the determination of the values used for the classification into 

climate zones 

Value Temperature [°C] Precipitation [mm/a] 
Minimum Maximum Minimum Maximum 

1 - < 5.0 > 1,800 - 
2 5.0 5.5 1,700 1,800 
3 5.5 6.0 1,600 1,700 
4 6.0 6.5 1,500 1,600 
5 6.5 7.0 1,400 1,500 
6 7.0 7.5 1,300 1,400 
7 7.5 8.0 1,200 1,300 
8 8.0 8.5 1,100 1,200 
9 8.5 9.0 1,000 1,100 
10 9.0 9.5 900 1,000 
11 9.5 10.0 800 900 
12 10.0 10.5 700 800 
13 10.5 11.0 600 700 
14 11.0 11.5 500 600 
15 11.5 12.0 400 < 500 

Table 6 Table for the classification of weather stations into the climate zones 

Sum Climate zone 

1 – 10 1 
11 – 15 2 
16 – 20 3 
21 – 25 4 
26 - 30 5 

The sum of the values for the temperature and total precipitation then results in the 

classification into the climatic zones according to the sections, as listed in Table 6. 

Climate zone 1 covers a larger range of values than the other climate zones due to the 

fact that with a more specific subdivision the resulting climate zones would occupy a 

very small area. In the thus created zones, the number of water supply companies would 

be too small for a meaningful comparison with the other climatic zones. In this thesis, 

the water supply companies are assigned to the individual climatic zones and analyzed 
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separately. The individual results are then used to create predictions for the individual 

climate zones. In the future, this will enable water supply companies to position 

themselves in accordance with their climate zone and to initiate possible measures to 

improve the water supply as well as the security of supply in their supply systems. The 

study area is henceforth divided, as shown in the following Figure 28. 

 

Figure 28 Subdivision of the study area Southern Germany into climate zones 

In terms of surface area, the first climate zone covers 6.6%, the second climate zone 

9.8%, the third climate zone 21.3%, the fourth climate zone 42.6% and the fifth climate 

zone 19.7% of the total surface area of the study area (see Table 7). 

Table 7 Comparison between the specific area shares and the proportional 

number of water utilities in the five climate zones 

Climate zone CZ 1 CZ 2 CZ 3 CZ 4 CZ 5 

Percentage of WUC 
[%] 

6.6 9.8 21.3 42.6 19.7 

Percentage of the 
study area [%] 

5.0 7.2 23.7 48.8 15.3 

The specific surface areas of the climatic regions in the study area roughly correspond 

to the relative proportions of the participating water supply companies in the analysis, 

which is why it can be assumed that the analysis of all water supply companies reflect 

the entire study area in a representative way. The participating water utility companies 

are assigned to climatic regions as follows: 4 water utility companies are located in the 

climate zone 1, 6 water utility companies are located in the climate zone 2, 12 water 

utility companies are located in each of climate zones 3 and 5, and 26 water utility 

companies in the climate zone 4. Figure 29 provides an overview of the distribution of 

the water utility companies. 
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Figure 29 Statistic of participating water utility companies by climate region 

Based on the analyzed weather stations, a rough comparison between the climate zones 

is made possible, which is used to classify the climatic zones in terms of temperature 

(see Figure 30) and precipitation (see Figure 31). The mean for South Germany results 

from the mean value of all weather stations used in the context of this work. 

 

Figure 30 Comparison of the average temperature of the climatic zones compared 

to the study area Southern Germany in the years 2011-2020 

In Figure 30 one can observe that the annual average temperatures of climate zone 3 is 

similar to the mean for the entire study area. The average annual temperature in climate 

zone 3 for the analyzed period 2011 - 2020 is 9.3 °C. At 11.3 °C, climate zone 5 is the 

warmest region and on average 3.3 °C warmer than climate zone 1. It can also be seen 

that climate regions 1 and 2 exhibit a similar climatic behavior. This is due to the fact 

that these statistics are based on the selective consideration of individual climate 
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stations and not, as is the case for the formation of the climate zones, on the 30-year 

average of all climate stations of the German Weather Service in the study area. Due to 

the relatively small area and the associated small number of climate stations in both 

climate regions, the same climate stations were sometimes assigned to different water 

supply companies. In combination with the overall smaller amount of data, these 

climate stations carry more weight and result in a similar behavior of the climate zones 

1 and 2. The following Figure 31 results from the graphic analysis of the annual 

amounts of precipitation in the individual climatic regions. 

 

Figure 31 Comparison of the annual precipitation rates of the climatic zones 

compared to the study area Southern Germany in the years 2011-2020 

It is evident that the highest precipitation rates occur in the climate zone 1 (1,519 

mm/year) and 2 (1,303 mm/year). Climate region 5, on the other hand, on average only 

experiences 568 mm precipitation per year and is consequently the driest climate zone. 

All other absolute values regarding the annual average temperature and precipitation as 

well as the number of summer, hot and ice days are listed in Table 8. 

Table 8 Comparison of the climate zones and the study area based on the average 

annual values of selected climate parameters in the period 2011-2020 

Average annual values of selected climate parameters in the period 2011-2020 
Climate parameter Unit S.G. CZ 1 CZ 2 CZ 3 CZ 4 CZ 5 

Annual mean 
temperature 

[°C] 9.3 8.0 8.2 9.5 10.6 11.3 

Hot days 
 

[-] 12 5 5 12 16 20 

Summer days 
 

[-] 48 33 31 50 60 68 

Ice days 
 

[-] 15 20 17 14 14 15 

Annual precipitation 
rate 

[mm/a] 1,008 1,519 1,303 908 740 568 
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Furthermore, the study area can be broadly divided into 6 different major hydrogeologic 

units, each of which was assigned a number as illustrated in Figure 32. On the basis of 

the hydrogeological units reduction factors for aquifers and spring discharges by 2050 

were determined, as illustrated in Table 9. These are used in the later course of this 

thesis to estimate the decline in the available water supply. 

Table 9 Classification of the hydrogeological units 

Unit-
Nr. 

Hydrogeological Units Reduction 
factor for 
aquifers 

Reduction 
factor for 
spring 
discharges 

color 

1 Upper Rhine Rift, Mainz Basin and 
Nort Hessian Tertiary 

0 – 5% 5 – 10%  

2 Alpine foothills 
 

0 – 5% 5 – 10%  

3 West and South German stratigraphic 
and fracture clod country 

5 – 10% 10 – 20%  

4 Alps 
 

0 – 5% 5 – 10%  

5 West and Central German Basement 
 

5 – 15% 15 – 30%  

6 Southwest German Basement 
 

5 – 10% 10 – 20%  

 

Figure 32 Overview map of the hydrogeological units in the study area of Southern 

Germany 
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3.1.2 Data collection 

In order to create predictions in regard to the future water demand, within the 

framework of this thesis, data from the German Climate Atlas (German: Deutscher 

Klimaatlas) of the German Weather Service was requested. The German Climate Atlas 

is based on different climate scenarios of anthropogenic influence on the greenhouse 

gas emissions, as described in Chapter 2.2.3, and provides regional climate projections 

for the individual federal states and regions of Germany. Each of the three provided 

climate scenarios, in particular the scenarios RCP2.6, RCP4.5 and RCP8.5, is made up 

of different global and regional climate models that serve as the basis for its calculation. 

Thus, the German Climate Atlas displays a possible range of developments for a single 

climate scenario, rather than giving a single value, as can be seen in Figure 33 

(Deutscher Wetterdienst, 2022o). 

 

Figure 33 Graphical representation of measured values and projected ranges for 

the climate scenario RCP8.5 of the annual temperature in Germany, 

Source: Deutscher Wetterdienst (2022p) 

The Figure shows the measured (yellow points) and projected values (gray and red 

areas) of the climate scenario RCP8.5 for the air temperature in Germany from 1880 to 

2100. The gray area represents the range of all climate models of the single climate 

scenario, while the red area represents the 15th to 85th percentile of the running mean 

of all climate models. As climate projections do not precisely predict the climate, but 

rather point out general climatic trends, as described in Chapter 2.2.3, the measured and 

projected climate data are often given or presented as 30-year running means, to 

compensate for extreme fluctuations in the projections, as represented by the black 

curve and the red area in Figure 33. Since the goal of the analysis was to cover the 

whole range of possible climatic developments and the datasets from the German 

Climate Atlas are not freely available, it was decided to request the datasets for the two 

climate scenarios RCP2.6 and RCP8.5 from the German Weather Service. In this 

context, climate scenario RCP2.6 represents the "best-case" scenario, whereas climate 

scenario RCP8.5 represents the "Business-as-usual" or "worst-case" scenario. The 

climate scenario RCP2.6 was made up of 11, while the climate scenario RCP8.5 was 

made up of 20 individual climate models. Each climate model included quarterly or 

yearly predictions of the following climatic parameters: 

• The average temperature, 
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• the precipitation rate, 

• the number of hot days, 

• the number of summer days and 

• the number of ice days. 

Since the climate scenarios and climate models of the German Weather Service refer to 

federal states and the region of Southern Germany, respectively, and no finer 

distinctions according to the climate zones is available, the projected climate data for 

Southern Germany was provided. This data was then adapted to the local climate 

conditions of the water supply companies. For this purpose, the difference between 

predicted and measured climate data for the period from 2011-2020 was formed and 

added or subtracted to the period from 2021-2090, as can be seen exemplarily in Figure 

34. In this case, the average annual deviation of the measured temperature values 

between the water utility company 02 and Southern Germany was calculated, which in 

this case was 2.3 °C, and in a next step it was added to the predicted annual temperature 

values for Southern Germany, resulting in the projected temperature values for the 

water utility company 02. 

 

Figure 34 Comparison of the measured and projected climate data for the entire 

study area of Southern Germany and for the water utility company 02 in 

the period from 2010-2030 

Due to time restrictions, this method was applied for three climate models of each 

climate scenario, resulting in six climate models overall. In each case, the most 

pessimistic, most optimistic, and a neutral climate model were selected, as illustrated 

in Figure 35. 
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Figure 35 Comparison of the temperature curves of three different climate models 

for the climate scenario RCP8.5 in the period 2010-2090 

Figure 36 and Table 10, shows an example of the development of a single climate 

parameter, the decadal average temperature, in this case for the water utility company 

02, which is located in climate zone 5. 

Table 10 Development of the decadal average temperature for the water utility 

company 02 in the period 2011-2090 

Decadal average temperature [°C] 
time 
period 

RCP2.6 RCP8.5 
(1) (2) (3) (1) (2) (3) 

2011-2020 11.73 11.73 11.73 11.73 11.73 11.73 
2021-2030 11.55 12.09 11.64 12.65 12.37 11.99 
2031-2040 11.62 12.48 12.14 13.03 12.54 11.88 
2041-2050 11.58 12.62 12.29 13.31 13.11 12.16 
2051-2060 11.48 12.54 12.28 14.31 13.44 12.63 
2061-2070 11.39 12.68 12.39 14.70 13.92 12.93 
2071-2080 11.22 12.43 12.12 15.48 14.43 13.56 
2081-2090 11.10 12.32 11.92 16.37 14.89 13.99 
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Figure 36 Graphical representation of the development of the decadal average 

temperature for the water utility company 02 in the period 2011-2090 

It can be seen that the average temperature in the scenario RCP2.6 at best is expected 

to be decrease 0.8% per decade until the end of the study period, while the average 

temperature in the scenario RCP8.5 at worst is expected to increase 5.7% per decade 

over the same period. The projections of the other climate parameters for the water 

utility company 02 can be found in Appendix B. 

 

3.2 Implementation of Gaussian process regression for the 

prediction of the future water demand in dependence 

of climatic parameters 

The first two parts of the research project identified the relationships between the water 

consumption and individual climatic parameters, which were then used as the basis of 

initial water demand projections. These projections however only referred to a single 

climatic parameter at a time and did not consider the interaction between different 

climatic parameters, such as the temperature and the precipitation. In addition, these 

projections were made by using linear regression, which is not well suited since the 

projections exhibited a low coefficient of determination and were therefore subject to 

great uncertainties. Furthermore, the linear predictions only provide a point forecast, 

but no confidence interval with which the certainty of the calculation can be 

determined. For this reason, it was decided to use machine learning to incorporate the 

interaction of the various climatic parameters into a surrogate model in order to 

represent their influence on the water consumption as realistically as possible and, in a 

next step, to use the surrogate model to determine the future water demand based on 

projected climate data. Due to the limited amount of data available (each dataset 

consisting of roughly 130 values) it was decided to implement Gaussian process 

regression rather than artificial neural networks, since the former can achieve reliable 

results with small datasets, while the later requires large datasets to provide reliable 

results. For this implementation of the Gaussian process regression scikit-learn’s 

Gaussian process package was chosen. 
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3.2.1 Dependence of the drinking water consumption in relation to 

climatic parameters 

Amongst the 60 participating water utility companies 42 provided complete and usable 

datasets, as described in Chapter 3.1.1. From the remaining 18 datasets, 11 have shown 

to have gaps, some of which extend over several years, or only provided yearly values, 

but not monthly values, while the remaining 7 were submitted in later stages of the 

analysis and therefore could not be considered anymore. Since each complete dataset 

consists of a small number of about 132 data points, and the calculations and validation 

with an even smaller number of points would not provide a satisfactory result, it was 

decided to disregard the 11 incomplete datasets for the further analysis. The following 

eight input parameters were available for the analysis: 

• The maximum monthly temperature (x1), 

• the monthly average temperature (x2), 

• the monthly precipitation rate (x3), 

• the number of hot days per month (x4), 

• the number of summer days per month (x5), 

• the number of ice days per month (x6), 

• the monthly climatic water balance (x7) and 

• the number of the month (x8). 

The first seven input parameters (x1-x7) are climatic factors and were provided by the 

German Weather Service, whereas the input parameter x8 is a temporal factor and was 

added as an additional parameter. 

Figure 37 shows a section of the dataset of the water utility company 02. 

 

Figure 37 Section of the dataset of the water utility company 02 

 

3.2.1.1 Data scaling 

Since the values of the individual climate parameters differ greatly and it should be 

prevented that one climate parameter influences the analysis greater than another one, 

the input parameters were scaled. For this purpose, an estimator, which scales and 

translates each feature individually such that it lies in between a given range, in this 

case between zero and one, was used. Scikit-learn Developers (2022d) 
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3.2.1.2 Data splitting 

After that, in order to be able to validate the model, the training data was divided into 

a training set and a validation set. For this purpose, the respective datasets were divided 

in dependence of the time, since the aim of the calculations is to determine the future 

water demand and thus through this approach, which is also known as time-series 

forecasting, one can determine how well future data can be predicted. The data points 

before July 2017, which correspond to 77% of the entirety of data points, were used to 

train the model and the remaining data points from July 2017 to December 2020, which 

correspond to 23% of all data points, were used to validate the model. Figure 38 shows 

the division of the datasets into the training set (gray points) and a validation part (red 

points), as well as the calculated expected function (red graph) and the corresponding 

confidence interval (gray area), for the water utility company 24. 

 

Figure 38 Graphical representation of the monthly water consumption in the period 

2010-2020 of the Gaussian process regression of the water utility 24 

 

3.2.1.3 Surrogate model selection 

In order to analyze the water demand in dependence of climatic parameters, the most 

suitable surrogate model needs to be selected. Initially, therefore, an attempt was made 

to combine the datasets of the individual water suppliers from one climate zone to then 

use them to set up a single surrogate model for each climate region. However, this 

approach has proven not to be possible, since the supply structure and the consumption 

figures of each supply network and each supply area, even within a climate zone, are 

spread out too widely. Consequently, every dataset was analyzed individually, in order 

to figure out which input parameter combination and kernel provide optimal results. In 

this context, the Matern kernel was used as a covariance function, which had the 

advantage that four individual kernels can be obtained by simply changing the 

parameter, as described in Chapter 2.4.3. The results of the individual calculations for 

each dataset are presented in Appendix A. With a total of 42 datasets used for the 

analysis, each of which contains a set of eight input parameters, this resulted in a total 

of 255 input parameter combinations for each dataset. Taking into account that each 

input parameter combination needs to be calculated for each of the four Matern kernels, 

this results in 1020 calculations per dataset. 
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3.2.1.4 Validation of the surrogate model 

In order to validate the surrogate model, the coefficient of determination 𝑅², also known 

as the Nash-Sutcliffe model efficiency coefficient (NSE), of each dataset needs to be 

determined individually. In particular, the coefficient of determination of a dataset is 

significant for the validation since it provides an indication of the accuracy of the 

prediction of unseen datapoints. In the further course, the coefficient of determination 

of the validation set serves as the main criteria for the decisions regarding the setup of 

the surrogate model. 

 

3.2.1.5 Analysis of the input parameters and input parameter combinations 

The analysis of the input parameters and their combinations is aimed to determine how 

well these are able to predict the water consumption. To evaluate the prediction 

performance of the surrogate model, which is trained on the training dataset, the 

coefficient of determination of the validation set is determined, which then can be used 

to conclude if individual input parameters exert influence on the water consumption, 

and if to what extent, or not. For this purpose, in a first step the individual input 

parameters were first compared with one another before the various input parameter 

combinations were compared with one another in the next step. In order to compare the 

individual input parameters, the coefficient of determination for each of the eight input 

parameters, using the 42 complete and usable datasets, was calculated. In this process, 

three variants were evaluated. The first one being the evaluation of all datasets, the 

second one being the evaluation of the datasets where a positive coefficient of 

determination was achieved and the third one being the evaluation of the datasets where 

a coefficient of determination of at least 0.55 was achieved. Since it occurred in some 

cases, that individual input parameters have produced the same results, multiple 

responses per dataset were possible. The results of the first analysis are illustrated in 

the figure below. 

 

Figure 39 Frequency of the input parameters which resulted in the highest 

coefficient of determination 

Figure 39 shows that the input parameters x7, x1 and x4 most often result in the highest 

values for the coefficient of determination in all of the three evaluated variants. 

In the next step, the input parameter combinations that result in the highest values for 

the coefficient of determination were identified. However, since there are 255 possible 

input parameter combinations for each dataset and they could not be compared to one 

another due to time limitations, the individual input parameters that occurred in the 

input parameter combination with the highest coefficient of determination were 
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determined. In this process, again three variants were evaluated. The first one being the 

evaluation of all datasets, the second one being the evaluation of the datasets where a 

positive coefficient of determination was achieved and the third one being the 

evaluation of the datasets where a coefficient of determination of at least 0.55 was 

achieved. The following figure shows how often individual parameters occurred within 

the input parameter combination that resulted in the highest coefficient of 

determination. 

 

Figure 40 Frequency of the input parameters within the input parameter 

combination which resulted in the highest coefficient of determination 

Figure 40 shows that the input parameters x7, x3 and x6 in particular occur most often 

in the input parameter combination, which results in the highest values for the 

coefficient of determination. 

The following figure displays the obtained coefficients of determination for all 255 

input parameter combinations of a single dataset, which are depicted as columns. The 

number of input parameters within the combinations increases from left to right, starting 

with single input parameters on the left and ending with the combination containing all 

eight input parameters on the far-right side. It can be observed that although in some 

isolated cases certain input parameter combinations produce higher results for the 

coefficient of determination, in general it can be said that the coefficient of 

determination increases with an increased number of input parameters within a 

combination. Furthermore, it can be observed that there are no outliers and also no large 

fluctuations between the last few input parameter combinations, which include 7 to 8 

input parameters and are depicted as the columns on the far-right side of the graph. 

These combinations all achieve values of over 0.8 for the coefficient of determination. 
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Figure 41 Coefficient of determination for all 255 input parameter combinations of 

the dataset of the water utility company 24  

This behavior could be observed for the other datasets as well. As a consequence and 

since no single input parameter combination which led to the highest coefficient of 

determination across all evaluated datasets could be identified, all input parameters 

were considered for the subsequent calculations in order to minimize computation time. 

 

3.2.1.6 Sensitivity analysis of the input parameters 

After the input parameters and input parameter combinations have been evaluated, a 

sensitivity analysis of the input parameters was carried out, the aim of which is to 

determine which influence a single parameter has on prediction capacity of the 

surrogate model and hence the influence on the 𝑅²-value. In this respect, the higher the 

resulting index of an individual parameter, the higher its influence is on the prediction 

capacity. Furthermore, an input parameter with a positive index means that it influences 

the prediction capacity of the surrogate model positively, while an input parameter with 

a negative index means that it influences the prediction capacity of the surrogate model 

negatively. For this purpose, the total sensitivity indices of each input parameter were 

determined. Figure 42, depicts the results of the sensitivity analysis for the datasets of 

the water utility companies 33 and 34, which are located in the same climate zone. 
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Figure 42 Sensitivity analysis of the individual input parameters for the datasets of 

the water utility companies 33 and 34 

In Figure 42, it can be clearly seen that the extent for the total sensitivity indices of the 

individual input parameters vary widely between the two datasets and thus influence 

the model differently, although they are located in the same climatic zone. As a result, 

no single input parameter could be identified that, across all datasets, affects the model 

the most or at a constant rate. Furthermore, the extent of the individual input parameters 

changes every time input parameters are added or taken away. Thus, if one wants to 

generate insights into the influence individual input parameters exert on the model, it 

is advisable to consider this for each dataset independently. In addition, in scope of the 

performed sensitivity analysis, no input parameter was found that took on a negative 

value and would therefore negatively affect the prediction capacity of the model. 

Consequently, the further calculations were conducted with all available input 

parameters. 
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3.2.1.7 Analysis of the covariance function 

The analysis of the covariance function is aimed to determine how the kernel choice 

affects the accuracy of the surrogate model and hence the projection of the water 

consumption. For this purpose, the coefficient of determination needs to be determined. 

In this analysis, the Matern kernel was selected, which results in 4 different kernels 

depending on the 𝜈 -value, as described in Chapter 2.4.3. In order to compare the 

performance of the different kernels the coefficient of determination for each of the 

eight input parameters, using the 42 complete and usable datasets, was calculated. In 

this process, three variants were evaluated. The first one being the evaluation of all 

datasets, the second one being the evaluation of the datasets where a positive coefficient 

of determination was achieved and the third one being the evaluation of the datasets 

where a coefficient of determination of at least 0.55 was achieved. Since it has occurred 

in some cases, that individual kernels have produced the same results, multiple 

responses per dataset were possible. The results of the covariance function analysis are 

illustrated in the figure below. 

 

Figure 43 Frequency of the kernel which resulted in the highest coefficient of 

determination 

Figure 43 shows that the radial basis function kernel most often results in the highest 

values for the coefficient of determination in all the three evaluated variants. 

Consequently, in order to minimize the computing time, the future calculations were all 

carried out with the radial basis function kernel as the covariance function. 

 

3.2.1.8 Confounding factors 

When performing the calculations, it was observed that for some datasets no 

satisfactory results could be determined, i.e., the coefficient of determination assumed 

low or negative values, which means that the prediction capacity of the model is worse 

than the mean value, as described in Chapter 2.4.3. Conversely, this implies that an 

increase in the climate parameters does not influence the drinking water demand. For 

this reason, a plausibility analysis was performed on the datasets that had low or 

negative coefficients of determination (𝑅2 < 0.55). In doing so, the datasets were 

checked for confounding factors that are not climate dependent and therefore might 

cause inferior results. 
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The following confounding factors were identified in the process: 

• High water losses,  

• a high share of large-scale consumers (e.g., industry), 

• pronounced winter tourism and 

• measurement inaccuracies or changes in the supply structure. 

 

The individual confounding factors are briefly described in the section below. 

 

High water losses 

High water losses are an interfering factor for the analysis of the water consumption in 

connection to climate parameters. Water losses are a major problem in some cities and 

towns, where they are responsible for a large proportion of the overall amount of 

drinking water provided. These can be in the mid-double-digit range, with some water 

utilities companies in the study area having been found to have water losses of up to 

50%. Since the water losses in the supply system do not occur constantly or in regular 

intervals, but oscillate and therefore falsify the actual water consumption, they represent 

a major challenge for the accuracy of the surrogate model. As a result, no clear 

relationship between the climatic parameters and water consumption could be 

established and therefore no satisfactory results for datasets with high water losses 

could be provided. 

 

High proportion of large-scale consumers 

An additional interfering factor for the analysis of the water consumption in connection 

to climate parameters is the high proportion of large-scale consumers. The influence of 

large-scale consumers is most noticeable in smaller cities and towns that are highly 

industrialized, where some large consumers within the study area have been found to 

purchase up to 30-60% of the total amount of drinking water provided. An example of 

this is the city of Sindelfingen, where one company alone purchases 60,000-90,000 m³ 

of drinking water per month, which accounts for 13-30% of the total drinking water 

provided by the local utility company. Since the water consumption of large-scale 

consumers often is not constant but oscillates strongly, e.g., depending on how much 

water is used to produce goods or cooling, it represents a major challenge for the 

accuracy of the surrogate model. Production facilities are also known to expand, which 

can lead to a sudden increase in the water consumption, as described in the sub-chapter 

‘Measurement inaccuracies or changes in the supply system’ below and therefore lead 

to inaccurate results. As a result, no clear relationship between the climatic parameters 

and water consumption could be established and therefore no satisfactory results for 

datasets with a high proportion of large-scale consumers could be provided. 

 

Pronounced winter tourism 

Another interfering factor for the analysis of the water consumption in connection to 

climate parameters is pronounced winter tourism, which in this study area mainly 

affects water utility companies in climate zone 1 and partly in climate zone 2. In the 



 
 
 

CHALMERS, Architecture and Civil Engineering, Master’s Thesis ACEX30 69 

areas of Southern Germany where there are ideal climatic and geographic conditions 

for the practice of winter sports, such as in the Alpine region or the Black Forest, large 

tourism flows can be recorded during the winter months. As a result, the actual number 

of inhabitants during the winter months is significantly higher than during the rest of 

the year. An example of a town affected by pronounced winter tourism within the study 

area is the town of Oberstdorf, which is located in the Alpine region and is inhabited 

by approximately 9000 inhabitants. On average 2.5 million overnight stays and 1.5 

million daily tourists are recorded in the town per year (Markt Oberstdorf, 2022). This 

implies that on average about 6,850 overnight stays per day take place. However, since 

a large part of these overnight stays takes place during the winter sports season, high 

water consumption rates are recorded during the winter months, which are partially 

even higher than the water consumption rates during the summer months. As a result, 

no clear relationship between the climatic parameters and water consumption can be 

established and therefore no satisfactory results can be provided for the datasets of 

water utility companies whose supply area experiences pronounced winter tourism. 

 

Measurement inaccuracies or changes in the supply system 

A further interfering factor for the analysis of the water consumption in connection to 

climate parameters are measurement inaccuracies or changes in the supply structure. 

While measurement inaccuracies mostly result in sudden peak or base values occurring 

for a short time, changes in the supply structure most of the time result in long-term 

increases or decreases in water consumption. These phenomena can occur due to a 

number of causes, such as incorrect recording of the water consumption, measurement 

errors due to faulty technology or the addition or elimination of water supplied to large-

scale consumers. In some cases, it was possible to remove single occurring extreme 

data points from the datasets, but in the end, this was not sufficient to achieve a 

coefficient of determination higher than 0.55, since other interfering factors still 

influenced the results. As a result, no clear relationship between the climatic parameters 

and water consumption could be established and therefore no satisfactory results for 

datasets with measurement inaccuracies or changes in the supply system could be 

provided. 

Of the total 42 analyzed dataset, 27 showed a coefficient of determination that was 

higher than 0, among which 15 had a coefficient of equal or higher than 0.55, while 15 

had a coefficient less than or equal to 0. As described in Chapter 2.4.3 the best possible 

score a model can reach for the coefficient of determination is 1.0, while a coefficient 

of determination that equals or is smaller than 0, means that the prediction capacity of 

the model is either good or worse as the mean value. A coefficient of determination of 

≥ 0.55 is considered to be acceptable for a surrogate model. The following table shows 

the subdivision of the analyzed datasets by climate zone classification: 
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Table 11 Subdivision of the analyzed datasets based on the values for the 

coefficient of determination (𝑅²-values) 

Climate 
zone 

analyzed 
datasets 
in total 

analyzed 
datasets with 
𝑅²-values equal 
to or higher than 
0.55 

analyzed datasets 
with a positive 
𝑅²-value lower 
than 0.55 

analyzed datasets 
with a 𝑅²-value 
less than or equal 
to 0 

CZ 1 4 1 1 2 
CZ 2 5 0 2 3 
CZ 3 8 2 4 2 
CZ 4 15 4 4 7 
CZ 5 10 8 1 1 
In total 42 15 12 15 

When comparing the results of the different climate zones, it is evident that the number 

of analyzed datasets that have a coefficient of determination that is positive or greater 

than 0.55 increases the higher the average annual temperature and the lower the annual 

precipitation rates within a climate zone is. This confirms previous research showing 

that the more extreme the prevailing climatic conditions are, the higher their influence 

on the water consumption is. To all 15 datasets that did not provide a satisfactory result 

one or more of the listed interfering factors could be assigned to. In total, the 4 

determined disruptive factors occurred 25 times within the analyzed datasets. The 

distribution of the various interfering factors is depicted in the figure below. 

 

Figure 44 Frequency of the interfering factors 

Since some of the datasets did not provide satisfactory results, it was decided to 

disregard these and to proceed with the remaining 15 datasets with a coefficient of 

determination of equal to or higher than 0.55. Due to the fact that the data processing 

and computational time of the individual datasets is very time intensive it was resolved 

to carry out the calculations with the most promising datasets of the climate zones 1, 3 

and 5, the results of which should serve as the basis for a projection of the entire climate 

zones. The climate zones 2 and 4 should in a further step then be derived from the mean 

values of the climate zones 1 and 3 as well as 3 and 5, respectively. 
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3.2.2 Determination of the future water demand 

For the determination of the water demand expected in the future, on the one hand the 

measured data provided by the water utility companies and the weather stations was 

used, and on the other hand the projected climatic data of the German Weather Service. 

The projected climatic data is composed of the Representative Concentration Pathways 

2.6 and the Representative Concentration Pathways 8.5 (see Figure 17). 

This limited the number of parameters to the following six input parameters, which 

were available for the further analysis: 

• The monthly average temperature (x2), 

• the monthly precipitation rate (x3), 

• the number of hot days per month (x4), 

• the number of summer days per month (x5), 

• the number of ice days per month (x6), 

• the number of the month (x8). 

The first five input parameters (x2-x6) are climatic factors, whereas the input parameter 

x8 is a temporal factor and was added as an additional parameter. The lower number of 

available parameters, in some cases resulted in a slight decrease of the coefficient of 

determination, which in most cases was between 0.03 and 0.05. The analysis and 

calculations were performed individually for each dataset, the results of which are 

presented in the following chapter. 

 

3.3 Implementation of the risk analysis 

3.3.1 Risk identification 

In the scope of this thesis the risk identification of the drinking water supply system 

was dictated by the limitations set within the framework of the thesis. Only hazards and 

hazardous events that are caused by climate change and that have an impact on the 

everyday water usage were considered. Extreme events influenced by climate change 

such as increasing forest fires or floods and their impact on the drinking water supply 

were not taken into account. 

 

3.3.2 Risk assessment 

In the scope of this thesis the risk assessment of the drinking water supply system was 

performed by determining the likelihood of occurrence, which is set by the two climate 

scenarios, and the extent of damage, which is defined by the result of the water balance, 

of the hazards and hazardous events, which were determined during the risk 

identification. 

 

3.3.2.1 Likelihood of occurrence 

In this thesis, the likelihood of occurrence of the hazards and hazardous events was 

determined by setting two boundary values within which climate change is expected to 

proceed, a so-called best-case and worst-case scenario (see Chapter 2.2.3). The 
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selection of these two scenarios guarantees that the entire spectrum of possible 

development options in relation to climate change and its influence on the drinking 

water demand are being covered. 

 

3.3.2.2 Extent of damage 

In this thesis, the extent of damage of a hazard or hazardous event was determined by 

calculating the difference between the future projected water demand and future water 

supply. As long as there is a surplus of available water, meaning that the water supply 

is greater than or equal to the water demand, there is no threat to the security of 

the supply system and all consumer needs can be met. If the water demand however 

exceeds the water supply, the needs of the customers cannot be met and there is a risk 

of a partial or total failure of the water supply system. 

 

3.3.3 Risk management 

In the scope of this thesis the risk management of the drinking water supply system was 

conducted by compiling a catalog of measures in cooperation with the participating 

water utilities. When selecting the possible measures for the catalog, care was taken to 

ensure that only measures that the participating water utilities consider to be 

realistically implementable were included. 

 

3.4 Setting up of the early warning system 

For the establishment of the early warning system for the quantitative assessment of 

drinking water supply systems, the percentage change per decade of the water demand 

between the 2011-2020 and 2081-2090 was calculated and applied to each decade, 

which is why the projected graph of water demand is shown as a straight line. In 

addition, the population forecast of the State Statistical Office was considered in the 

calculations. Furthermore, the total water demand was split up into its individual 

components, which are the water demand of the population, the water demand of large-

scale consumers, the water demand for own purposes and the water losses. This division 

was carried out to see how changes of the individual components affect the overall 

supply situation. Figure 45 represents the interface of the early warning system, with 

details on the various parameters influencing the water supply and water demand. In 

this case, the values for water utility 02 are depicted. The water utility company 02 was 

chosen, since it is located in the climate zone 5, the climate zone which is expected to 

experience the highest impacts of climate change on the drinking water supply. 
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Figure 45 Interface of the early warning system with the values of the water utility 

company 02 

These values are then used to determine the water demand in each decade and, in 

addition, the future available water supply. In this case, depending on the climate 

scenario, this results in the following values, which are listed in Figure 46. 

climate zone of the water utility company

development of the average water demand (RCP2.6): 0.5 %/decade

development of the average water demand (RCP8.5): 1.4 %/decade

development of the maximum water demand (RCP2.6): 0.5 %/decade

development of the maximum water demand (RCP8.5): 2.0 %/decade

number of inhabitants (2011-2020): 45,598 C

per capita water consumption (2011-2020): 110 l/(C*d)

population development (2040): 47,903 C

population development (2040): 2.5 %/decade

223,170 m³/a

611.0 m³/d

223,170 m³/a

611.0 m³/d

150,000 m³/a

410.7 m³/d

150,000 m³/a

410.7 m³/d

735,000 m³/a

2012.3 m³/d

735,000 m³/a

2,012.3 m³/d

daily peak demand factor: 1.8 [-]

future daily peak demand factor: 1.8 [-]

157 l/s

13,582 m³/d

26 l/s

2,240 m³/d

183 l/s

15,822 m³/d

hydrogeological unit of the water utility company 1

available water supply (own water sources):

available water supply (long-distance water):

total available water supply:

development of the available water supply: -2.2 %/decade

water demand for large-scale consumers (2011-2020):

future water demand for large-scale :

peak factor

available water supply

remaining water demand

water losses (2011-2020):

future water losses:

water demand for own purposes (2011-2020):

future water demand for own purposes:

Early warning system for the water utiliy company 02

climatic scenarios

5

water demand of the households
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Figure 46 Illustration of the resulting spreadsheet for the entered values in the 

interface of the early warning system with the values of the water utility 

company 02 

The calculated values for the two climate scenarios are displayed graphically in Chapter 

4.3. 
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4 Results 

The results of the analysis and calculations of the water demand in relation to the 

climatic influences are presented in the following chapter. Although the projections of 

the water demand are available on a monthly basis, it was decided to present the results 

as a decadal average. This was done due to the fact that climate projections are primarily 

used to indicate trends and do not provide accurate forecasts of the future as described 

in the Chapters 2.2.3 and 3.1.2. Therefore, the projected water demands also cannot 

provide exact forecasts, but rather serve to point out trends of the water demand in 

dependence of the projected climate parameters. This approach also contributes to 

ensure that extreme fluctuations in the projections are evened out. Furthermore, the 

evaluation of the water demand refers to the gross per capita consumption of drinking 

water. This means that to calculate the per capita consumption the total drinking water 

volume supplied by a water utility company is divided by the number of inhabitants 

connected to the supply system, without excluding charges to large-scale consumers, in 

the industry or agriculture, water losses and the internal water consumption of the water 

utility companies. Therefore, in the further course of this thesis the term per capita 

consumption always refers to the gross per capita consumption of drinking water. 

Furthermore, the calculations and results assume that the future water demand will 

continue to develop under today's prevailing consumption patterns, i.e., no change in 

consumer behavior will take place. 

 

4.1 Projected changes of the climatic parameters in the 

study area 

In the following, the projected changes of the climatic parameters in the climatic zones 

of the study area are presented briefly. For this purpose, the values of the most negative 

and most positive climate models of a climate scenario were used. The changes in the 

climatic parameters in the individual climatic zones are summarized in Figure 47. 

Comparing the results of Figure 47 with the values of Table 8, it can be seen that the 

climatic parameters in the scenario RCP2.6 remain almost constant until the decade 

2081 - 2090, with only small increases or decreases being observed, whereas significant 

changes of the climatic parameters in the scenario RCP8.5 can be observed for the same 

time period. 

 

Figure 47 Projected values of the climatic parameters in the individual climatic 

zones of the study area in the decade 2081-2090 (*averaged values) 

From the values of Table 8 and Figure 47 the percentage change of climatic parameters 

per decade in the individual climate zones for the two considered scenarios RCP2.6 and 

RCP8.5, which is depicted in Figure 48, can be calculated. 
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Figure 48 Percentage change of the climatic parameters in the individual climatic 

zones of the study area from the decade 2011-2020 to the decade 2081-

2090 (*averaged values) 

According to Figure 48 the strongest percentage changes will take place in the coldest 

and most precipitation-rich climate zones 1 and 2. 

 

4.2 Projected changes of the supply-related parameters in 

the study area 

In contrast to the climate data, the consumption structure and thus also the consumption 

data of the individual water utility companies within a climate zone differ greatly. 

Therefore, for the following section, the percentage change in consumption data for 

each analyzed water utility company within a climate zone was determined and 

combined into an overall projection for each climate region. This should allow each 

water utility company to transfer and apply the projection results independently of their 

own consumption data. For this purpose, the results of the most optimistic climate 

model of the climate scenario RCP2.6 were selected as well as the results of the most 

pessimistic climate model of the climate scenario RCP8.5.  

 

4.2.1 Climate zone 1 

Since the water utility company 07 was the only water supplier within climate zone 1 

to provide a complete and usable dataset, only its dataset was available to determine 

the future water demand of the climate zone 1. The changes in the supply parameters 

of climate zone 1 are depicted in Table 12. 

Table 12 Comparison of the changes in the average per capita water demand and 

the maximum per capita water demand for the climate scenarios RCP2.6 

and RCP8.5 in climate zone 1   

Time 
period 

RCP2.6 RCP8.5 
Change in the 
average per 
capita water 
demand [%] 

Change in the 
maximum per 
capita water 
demand [%] 

Change in the 
average per 
capita water 
demand [%] 

Change in the 
maximum per 
capita water 
demand [%] 

2021-2030 1.2 1.0 1.4 1.2 
2031-2040 2.1 2.3 2.3 2.7 
2041-2050 2.8 3.1 3.1 3.6 
2051-2060 3.2 3.2 3.4 4.2 
2061-2070 3.0 3.1 3.6 3.5 
2071-2080 3.1 3.1 3.8 3.3 
2081-2090 3.0 3.0 3.8 3.2 
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As is evident from Table 12 the change in climatic parameters only has a minor impact 

on the future water demand. The difference in the average per capita demand between 

the two analyzed climate scenarios at the end of the study period, in the decade 2081-

2090, is only 0.8%. This indicates that the water demand in climate zone 1 is not 

sensitive to changes in the prevailing climatic conditions. Since the difference between 

the percent change in maximum per capita demand and average per capita demand is 

very small, it can be assumed that the peak factor of the water utility companies in 

climate zone 1 will remain approximately constant. 

 

4.2.2 Climate zone 2 

The results of climate zone 2 are derived from the values of climate zones 1 and 3. The 

changes in the supply parameters of climate zone 2 are depicted in Table 13. 

Table 13 Comparison of the changes in the average per capita water demand and 

the maximum per capita water demand for the climate scenarios RCP2.6 

and RCP8.5 in climate zone 2 

Time 
period 

RCP2.6 RCP8.5 
Change in the 
average per 
capita water 
demand [%] 

Change in the 
maximum per 
capita water 
demand [%] 

Change in the 
average per 
capita water 
demand [%] 

Change in the 
maximum per 
capita water 
demand [%] 

2021-2030 1.4 1.2 1.8 2.4 
2031-2040 2.4 2.4 2.9 3.8 
2041-2050 3.3 3.2 3.8 4.5 
2051-2060 3.5 3.6 4.7 5.2 
2061-2070 3.3 3.5 5.2 5.4 
2071-2080 3.4 3.4 5.8 5.9 
2081-2090 3.3 3.2 6.4 6.3 

As is evident from Table 13, the change in climatic parameters has a moderate impact 

on the future water demand. The difference in the average per capita demand between 

the two analyzed climate scenarios at the end of the study period, in the decade 2081-

2090, is 3.3%. This indicates that the water demand in climate zone 3 is somewhat 

sensitive to changes in the prevailing climatic conditions. Since the percent change of 

the maximum per capita demand is larger than the percent change of the average per 

capita demand, it can be assumed that the peak factor of the water utility companies in 

climate zone 2 will increase slightly. 

 

4.2.3 Climate Zone 3 

To determine the future water demand of climate zone 3, the results of water utilities 

04, 10 and 28 B were summarized. The changes in the supply parameters of climate 

zone 3 are depicted in Table 14. 
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Table 14 Comparison of the changes in the average per capita water demand and 

the maximum per capita water demand for the climate scenarios RCP2.6 

and RCP8.5 in climate zone 3 

Time 
period 

RCP2.6 RCP8.5 
Change in the 
average per 
capita water 
demand [%] 

Change in the 
maximum per 
capita water 
demand [%] 

Change in the 
average per 
capita water 
demand [%] 

Change in the 
maximum per 
capita water 
demand [%] 

2021-2030 1.5 1.3 2.1 3.5 
2031-2040 2.7 2.5 3.4 4.8 
2041-2050 3.8 3.3 4.5 5.3 
2051-2060 3.8 3.9 5.9 6.1 
2061-2070 3.6 3.8 6.8 7.3 
2071-2080 3.6 3.6 7.7 8.4 
2081-2090 3.5 3.4 8.9 9.3 

As is evident from Table 14, the change in climatic parameters has an elevated impact 

on the future water demand. The difference in the average per capita demand between 

the two analyzed climate scenarios at the end of the study period, in the decade 2081-

2090, is 5.4%. This indicates that the water demand in climate zone 3 is sensitive to 

changes in the prevailing climatic conditions. Since the percent change of the maximum 

per capita demand is larger than the percent change of the average per capita demand, 

it can be assumed that the peak factor of the water utility companies in climate zone 3 

will increase. 

 

4.2.4 Climate zone 4 

The results of climate zone 4 are derived from the values of climate zones 3 and 5. The 

changes in the supply parameters of climate zone 4 are depicted in Table 15. 

Table 15 Comparison of the changes in the average per capita water demand and 

the maximum per capita water demand for the climate scenarios RCP2.6 

and RCP8.5 in climate zone 4 

Time 
period 

RCP2.6 RCP8.5 
Change in the 
average per 
capita water 
demand [%] 

Change in the 
maximum per 
capita water 
demand [%] 

Change in the 
average per 
capita water 
demand [%] 

Change in the 
maximum per 
capita water 
demand [%] 

2021-2030 1.7 1.4 2.7 3.7 
2031-2040 2.9 2.6 4.4 5.4 
2041-2050 4.2 3.5 6 5.9 
2051-2060 4.1 4.1 7.1 7.0 
2061-2070 3.9 3.9 8.0 8.7 
2071-2080 3.8 3.7 8.7 9.9 
2081-2090 3.7 3.5 9.5 11.5 

As is evident from Table 15, the change in climatic parameters has a high impact on 

the future water demand. The difference in the average per capita demand between the 
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two analyzed climate scenarios at the end of the study period, in the decade 2081-2090, 

is 5.8%. This indicates that the water demand in climate zone 4 is sensitive to changes 

in the prevailing climatic conditions. Since the percent change of the maximum per 

capita demand is larger than the percent change of the average per capita demand, it 

can be assumed that the peak factor of the water utility companies in climate zone 4 

will increase. 

 

4.2.5 Climate Zone 5 

To determine the future water demand of climate zone 5, the results of water utilities 

02, 34 and 24 were summarized. The changes in the supply parameters of climate zone 

5 are depicted in Table 16. 

Table 16 Comparison of the changes in the average per capita water demand and 

the maximum per capita water demand for the climate scenarios RCP2.6 

and RCP8.5 in climate zone 5 

Time 
period 

RCP2.6 RCP8.5 
Change in the 
average per 
capita water 
demand [%] 

Change in the 
maximum per 
capita water 
demand [%] 

Change in the 
average per 
capita water 
demand [%] 

Change in the 
maximum per 
capita water 
demand [%] 

2021-2030 1.9 1.5 3.3 3.8 
2031-2040 3.1 2.7 5.4 5.9 
2041-2050 4.5 3.6 7.5 6.5 
2051-2060 4.4 4.2 8.3 7.9 
2061-2070 4.2 4.0 9.1 10.1 
2071-2080 4.0 3.8 9.6 11.4 
2081-2090 3.8 3.6 10.0 13.7 

As is evident from Table 16, the change in climatic parameters only has a high impact 

on the future water demand. The difference in the average per capita demand between 

the two analyzed climate scenarios at the end of the study period, in the decade 2081-

2090, is 6.2%. This indicates that the water demand in climate zone 5 is sensitive to 

changes in the prevailing climatic conditions. Since the percent change of the maximum 

per capita demand is larger than the percent change of the average per capita demand, 

it can be assumed that the peak factor of the water utility companies in climate zone 5 

will increase. 

 

4.2.6 Overview of the development of the water demand in the 

investigated Climate Zones 

Figure 49 and Figure 50 provide an overview of the decadal change of the average per 

capita water demand and maximum per capita water demand, respectively. 
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Figure 49 Overview of the development of the average per capita water demand in 

all Climate Zones for the climate scenarios RCP2.6 and RCP8.5 

 

Figure 50 Overview of the development of the maximum per capita water demand 

in all Climate Zones for the climate scenarios RCP2.6 and RCP8.5 

When comparing the two bar charts, it is evident that the increase of the average and 

maximum per capita water demand is nearly identical in the first two climate zones, 

while the increase in maximum per capita water demand in the last three climates is 

higher than the increase in the average per capita water demand.  

 

4.3 Demonstration of the functionality of the early warning 

system 

In the following, the implementation of the early warning system is demonstrated on 

the basis of the data and results of an exemplary selected water supply company, in this 

case the water utility company 02. This particular water utility company was selected 
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since it is situated in the climate zone 5, the climate zone which is expected to 

experience the highest impacts of climate change on the drinking water supply. For this 

purpose, the impacts of the projected changes of the climate parameters on the 

quantitative water supply, the early warning system itself, as well as possible measures 

and countermeasures are presented. 

 

4.3.1 Impacts of the projected changes of the climate parameters on 

the quantitative water supply 

As can be seen in Figure 47, depending on the climate scenario a climate-induced 

increase in water demand of 0.5-1.4% per decade is adopted for the average water 

demand and an increase of 0.5-2.0% per decade is adopted for the maximum water 

demand. Since the water utility company 02 is located within the hydrogeologic unit 1, 

a reduction factor of 5% until 2050 for the well discharge and a reduction factor of 10% 

until 2050 for the spring discharge is adopted. As the water supplier meets 

approximately 70% of its water demand from wells and approximately 30% of its water 

demand from springs, which results in a decrease in the available water supply of 6.5% 

until 2050. In this depiction, this development is continued in a linear fashion until the 

year 2090. Furthermore, according to the Federal Statistical Office, a population 

development of 2.5% per decade is to be expected. 

 

Average daily demand 

Figure 51, shows the development of two possible scenarios for the quantitative water 

supply situation for the average daily demand 𝑄𝑑,𝑚 in the future. On the top a scenario 

is illustrated, in which the water supply remains constant over the study period and on 

the bottom a scenario is illustrated, in which the water supply decreases by 2.2% per 

decade over the study period. As can be seen from the figures below, the average daily 

demand can still be provided even if the water supply decreases by 15.4% until the 

decade 2081 - 2090. 
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Figure 51 Development of the quantitative drinking water supply situation for the 

average daily demand assuming a constant water availability (top) and 

assuming a reduction in the water availability (bottom) 

However, since the water supply systems are designed for the peak load so that 

sufficient water can still be provided even on the day with the highest consumption, the 

average daily consumption does not pose a challenge for the quantitative water supply 

in the future. The following analysis therefore focuses on the impact of the projected 

changes of the climate parameters on the peak daily demand. 

 

Peak daily demand 

For the service area of the water utility company 02 a daily peak factor 𝑓𝑑 of 1.8 was 

recorded. Figure 52, shows the development of two possible scenarios for the 

quantitative water supply situation for the peak daily demand 𝑄𝑑,𝑚𝑎𝑥 in the future. On 

the top a scenario is illustrated, in which the water supply remains constant over the 

study period and on the bottom a scenario is illustrated, in which the water supply 

decreases by 15.4% over the study period. 
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Figure 52 Development of the quantitative drinking water supply situation for the 

peak daily demand assuming a constant water availability (top) and 

assuming a reduction in the water availability (bottom) 

As can be seen from the top figure above, if the available water supply remains constant, 

the peak daily demand only can be provided until the decade 2061-2070 for the climate 

scenario RCP8.5. In the case that the water supply decreases, the intersection of the 

curves of peak daily demand and available water supply occur before the decade 2041-

2050 for the climate scenario RCP8.5 and before the decade 2051-2060 for the climate 

scenario RCP2.6. 

 

4.3.2 Measures to reduce the impact of the projected changes of the 

climate parameters on the quantitative water supply 

Based on the scenarios presented for the water supply situation during the peak daily 

demand for the water utility company 02, the implementation of certain measures to 

optimize the quantitative water supply situation as well as their effects are 

demonstrated. In Chapter 2.3.3 general risk control measures whose implementation 

can help to improve the quantitative supply situation of drinking water were already 

presented. In the following, therefore, the focus will lie on measures which can be 

implemented by the water utility companies and which implementation they therefore 

can influence directly. 

The following measures are considered in the process: 

• The minimization of water losses, 
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• the reduction of the water demand of the large consumers, 

• the reduction of the water demand for own purposes, 

• the reduction of the peak daily demand and  

• the development of new water sources. 

 

Minimization of water losses 

With an annual water loss rate of 7.6% of the total volume provided, which corresponds 

to a total volume of 223,170 m³/a, the water losses of water utility 02 are already 

relatively low. Therefore, there is only a small potential for savings here. In the 

following example, a reduction of water losses to a value of 5% of the total volume 

supplied, which corresponds to a value of 159,407 m³/a, was assumed. In Figure 53, on 

the top the quantitative supply situation for the case that the water supply remains 

constant and the water losses are minimized is illustrated, whereas on the bottom the 

quantitative supply situation for the case that the water supply remains decreases and 

the water losses are minimized is illustrated. 

 

Figure 53 Development of the quantitative drinking water supply situation for the 

peak daily demand assuming a constant water availability and a 

reduction of water losses (top) and assuming a reduction in the water 

availability and a reduction of water losses (bottom) 
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When comparing the figures above one can notice a minor change in the values for the 

peak daily demand.  Assuming that the available water supply remains constant and the 

water losses are decreased, the available water supply is sufficient to provide the peak 

daily demand for approximately a quarter decade longer in both climate scenarios. 

 

Reduction of the water demand of the large consumers 

The annual water demand for large-scale consumers amounts to 735,000 m³/a, which 

corresponds to 25.0% of the total volume provided. Therefore, there is a big potential 

for savings here. In the following example, a reduction of water losses to a value of 

588,000 m³/a, which corresponds to 20.0% of the total volume supplied, was assumed. 

In Figure 54, on the top the quantitative supply situation for the case that the water 

supply remains constant and the water demand for large-scale consumers are minimized 

is illustrated, whereas on the bottom the quantitative supply situation for the case that 

the water supply remains decreases and the water demand for large-scale consumers 

are minimized is illustrated. 

 

Figure 54 Development of the quantitative drinking water supply situation for the 

peak daily demand assuming a constant water availability and a 

reduction of the water demand for large-scale consumers (top) and 

assuming a reduction in the water availability and a reduction of the 

water demand for large-scale consumers (bottom) 
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When comparing the figures above one can notice a change in the values for the peak 

daily demand.  Assuming that the available water supply remains constant and the water 

demand of the large consumers decreases, the available water supply is sufficient to 

provide the peak daily demand for approximately a decade longer in both climate 

scenarios. 

 

Reduction of the water demand for own purposes 

The annual water demand for own purposes amounts to 150,000 m³/a, which 

corresponds to 5.1% of the total volume provided. Therefore, there is only a small 

potential for savings here. In the following example, a reduction of water losses to a 

value 100,000 m³/a, which corresponds to 3.4% of the total volume supplied, was 

assumed. In Figure 55, on the top the quantitative supply situation for the case that the 

water supply remains constant and the water demand for own purposes are minimized 

is illustrated, whereas on the bottom the quantitative supply situation for the case that 

the water supply remains decreases and the water demand for own purposes are 

minimized is illustrated. 

 

Figure 55 Development of the quantitative drinking water supply situation for the 

peak daily demand assuming a constant water availability and a 

reduction of the water demand for own purposes (top) and assuming a 

reduction in the water availability and a reduction of the water demand 

for own purposes (bottom) 
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When comparing the figures above one can notice a minor change in the values for the 

peak daily demand.  Assuming that the available water supply remains constant and the 

water demand for own purposes decreased, the available water supply is sufficient to 

provide the peak daily demand for approximately less than a quarter decade longer in 

both climate scenarios. 

 

Reduction of the daily peak factor 

For the service area of the water utility company 02 a daily peak factor of 1.8 was 

recorded. In the following example, a reduction of daily peak factor to a value of 1.7, 

was assumed. In Figure 56, on the top the quantitative supply situation for the case that 

the water supply remains constant and the daily peak factor is reduced is illustrated, 

whereas on the bottom the quantitative supply situation for the case that the water 

supply remains decreases and the daily peak demand is reduced is illustrated. 

 

Figure 56 Development of the quantitative drinking water supply situation for the 

peak daily demand assuming a constant water availability and a 

reduction of the daily peak factor (top) and assuming a reduction in the 

water availability and a reduction of the daily peak factor (bottom) 

When comparing the figures above one can notice a change in the values for the peak 

daily demand. Assuming that the available water supply remains constant, and the daily 

peak factor decreases, the available water supply is sufficient to provide the peak daily 

demand for approximately one and a quarter decade longer in both climate scenarios. 
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Development of new water sources 

The annually available water supply amounts to 5,775,030 m³/a. In the following 

example, an increase of the annually available water supply to a value of 6,063,781 

m³/a, which corresponds to an increase of 5.0%, was assumed. In Figure 57, on the top 

the quantitative supply situation for the case that new water sources are developed with 

no decrease in the water supply taking place of the study period is illustrated, whereas 

on the bottom the quantitative supply situation for the case that new water sources are 

developed with decrease in the water supply taking place over the study period is 

illustrated 

 

Figure 57 Development of the quantitative drinking water supply situation for the 

peak daily demand assuming a constant water availability and the 

development of new water sources (top) and assuming a reduction in the 

water availability and the development of new water sources (bottom) 

When comparing the figures above one can notice a change in the values for the 

available water supply.  Assuming that the available water supply increases, it is 

sufficient to provide the peak daily demand for approximately one decade longer in 

both climate scenarios. 
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Combination of all presented measures 

In Figure 58, on the top the quantitative supply situation for the case that the water 

supply remains constant and the combination of all measures presented is illustrated, 

whereas on the bottom the quantitative supply situation for the case that the water 

supply remains decreases and the combination of all measures presented is illustrated. 

 

Figure 58 Development of the quantitative drinking water supply situation for the 

peak daily demand assuming a constant water availability and a 

implementation of the presented measures (top) and assuming a 

reduction in the water availability and a implementation of the presented 

measures (bottom) 

Assuming that all measures are implemented, the available water supply is sufficient to 

provide the peak daily demand approximately two and a half decades longer. 

 

4.4 Measures catalog 

Based on the results, a catalog of measures to mitigate impacts of climate change on 

the quantitative aspects of drinking water supply was developed in cooperation with the 

surveyed water utility companies. This includes a list of possible measures that the 

participating water utilities consider to be realistically implementable. The measure 

catalog can be found in the Appendix C. 
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5 Conclusion and recommendations 

Climate change and its impacts have already led to noticeable changes of the global and 

regional climatic conditions. Globally, the annual mean temperature in the decade 

2010-2020 was already 1.1 °C above the level of the pre-industrial era. In Germany, an 

increase of 1.9 °C was recorded for the same time period.  These developments have 

led to an increase in droughts in recent years, particularly in the summer months, which 

in some cases have caused entire rivers and streams to dry up, contributing to crop 

failures or production stoppages. The drinking water supply has also been and continues 

to be affected by these changes. Especially hot summers, such as the one in 2018, 

presented many water utilities in Germany with supply shortages. Climate change and 

its effects therefore pose major challenges for water utility companies to meet their 

obligations to continue to provide drinking water of excellent quality in sufficient 

amounts and with sufficient pressure to the public at all times. In addition to the effects 

of climate change, there are a number of other challenges facing drinking water supplies 

in Germany, such as population growth due to migration. As water suppliers only have 

a limited influence on the aforementioned developments, appropriate countermeasures 

should be taken at an early stage, especially when considering that many measures 

cannot be implemented immediately, but must first go through phases of planning, 

approval and implementation. 

In order to be well prepared for the future, it is advisable to conduct a risk analysis in 

order to investigate to what extent climate change will possibly affect the drinking water 

supply in future. In theory, the connection between climatic parameters and their 

impacts on water sources and the drinking water consumption have already been 

established and characterized. However, statistical and reliable projections of the 

expected future drinking water demand are missing. Therefore, the aim of this work 

was to analyze how well the water consumption in Southern Germany can be 

determined on the basis of climatic factors and in a next step to use climate projections 

to determine the water demand that can be anticipated in the future. For this purpose, 

measured climatic and supply-related data from 60 water supply companies in Southern 

Germany and from weather stations of the German Weather Service, which were 

collected within the framework of a research project, were analyzed with the help of a 

surrogate model that is based on a machine learning approach and operates on the basis 

of Gaussian process regression. 

Within this framework, essential knowledge about the possibilities and limitations of 

the analysis and projection of water demand based on climatic factors were determined. 

When comparing the individual results of the water utility companies, it became 

apparent that the more extreme the prevailing climatic conditions in the respective 

supply area are, the more climate-sensitive the water demand is and thus the accuracy 

of the water demand projection tends to be more precise. In this context, confounding 

factors that lead to inaccuracies in the analysis, which include data gaps, measurement 

inaccuracies, high water losses in the supply system, a high proportion of large-scale 

consumers and a pronounced water consumption during the winter months caused by 

winter sport tourism were also identified. The datasets containing confounding factors 

could not be used for further analysis, which reduced the number of available datasets. 

In the next step, projected climate data for two climatic scenarios, a best-case scenario 

(RCP2.6) and a worst-case scenario (RCP8.5), were requested from the German 

Weather Service, incorporated into the surrogate model and used to determine the future 

water demand for each water utility company. The climate scenarios consisted of 20 
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individual climate models. However, due to time constraints, only 3 climate models per 

climate scenario were evaluated. The remaining climate models could be used in 

follow-up studies to corroborate the results obtained in the framework of this thesis. 

Furthermore, since there no local climate projections exist, the regional climate 

projection provided by the German Weather Service had to be adapted to the prevailing 

local climate conditions of the analyzed water utility companies. When local climate 

projections become available in the future, they should be applied in the analysis, in 

order to optimize the results from the analysis. 

For the purpose of generating a statement about the individual climate zones of the 

study area, the results of the individual water utility companies of the defined climate 

zones were merged. Due to time constraints, but also due to a lack of available datasets, 

three water utilities each from the climate zones 3 and 5 were used for this purpose, 

while one water utility from climate zone 1 was used. The results of the projections 

showed that the water demand in the climate zones with high annual precipitation rates 

and lower annual temperatures, namely the climate zones 1 and 2, are not climate 

sensitive and therefore climate change will only have a minor influence in these climate 

zones. The higher the annual temperature and the lower the annual precipitation rate 

within a climate zone are at present, the more sensitive the water demand reacts to 

changes of the prevailing climatic conditions and consequently the higher the impact of 

climate change on the water demand is expected to be. This is apparent, when looking 

at the calculated results of the climate zones 3 to 5. To validate the results gained in the 

scope of this thesis, further datasets should be analyzed. For this purpose, additional 

water utility companies should be surveyed and already available datasets should be 

further analyzed. The consultancy firm RBS wave GmbH is planning to generate and 

evaluate further datasets as part of the continuation of the research project. 

Subsequently, the results gained from the calculations was used to develop an early 

warning system as well as a catalog of measures for the water supply companies in the 

investigated climate zones. The early warning system was designed to allow each water 

supplier from the study area to identify and visually represent the impact of climate 

change on their own drinking water system by entering in a few supply-related baseline 

values. Furthermore, the impact of the implementation of various countermeasures can 

be ascertained. In addition, the developed early warning system can also be used in 

meetings with local politicians, committees and decision-makers to highlight the impact 

of climate change on the local water supply situation and the urgency of the need for 

action. 

In general, limitations in the analysis of the impacts of climate change on the water 

demand resulted from deficits in the collection, storage and processing of data 

concerning technical supply parameters in the field of water supply. A solid data basis 

however is not only crucial for the proper assessment of the future water supply 

situation with regard to climate change, but also represents the foundation for an 

optimal supply demand management and decisions regarding the implementation of 

countermeasures. Therefore, in order to conduct a holistic analysis of the quantitative 

supply situation with respect to climate change, all relevant water supply parameters, 

including water consumption rates as well as water levels of wells and spring 

discharges, should be recorded, analyzed and projected into the future. The therefrom 

generated results can then be incorporated into the already developed early warning 

system, which would improve its validity. In addition, considering the security of 

supply, it is also recommended to record and store the qualitative parameters as well as 

parameters regarding the continuity of the water supply in order to be able to investigate 
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the impact of climate change on the qualitative and continuous aspects of the drinking 

water supply at a later stage. 

In order to eliminate deficits in the acquisition, storage and processing of data in the 

water supply sector, it is advisable to conceive and implement a digitization concept. 

In this context, it is important that the digitization concepts include the recording of all 

relevant technical supply parameters as well as a selection of suitable measuring 

intervals. This allows the supply-related parameters to be assigned more precisely to 

individual weather events as well as to incorporate more climatic parameters, which 

would lead to an improvement of the accuracy of the calculations and projections. In 

addition, with a larger amount of data, other machine learning methods, such as 

artificial neural networks, can be implemented, which in turn can help to improve the 

accuracy of the projections. Due to time constraints the projected climatic data from 6 

climate models were used for the determination of the future water demand. The 

inclusion of additional climate models could further benefit the accuracy of the water 

demand projections. 

Advances in technology and the associated higher computational power will also allow 

to determine the influences of individual factors on the climate more precisely. 

Consequently, this will lead to increasingly more accurate global and regional climate 

models or enable climate projections for smaller territorial units. The surrogate model 

developed within the framework of this thesis can incorporate the new findings and 

thus be constantly updated and further developed. 

It should also be mentioned that this thesis has focused on the impact of climate change 

on the everyday water demand. Extreme events such as increasing forest fires or floods 

and their impact on the drinking water supply were not taken into account. However, 

when considering a holistic view of the impact of climate change on the drinking water 

supply, such extreme weather events and their impacts on the supply system should 

also be accounted for, so that measures and strategies can be implemented at an early 

stage to ensure the safety of the drinking water supply at all times. 
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Appendix 

Appendix A - Results of the input parameter analysis for the individual 
water supply companies subdivided into the respective climate zones 

Climate Zone 1 

 

Figure 59 Results of the WUC 01 

 

Figure 60 Results of the WUC 07 

 

Figure 61 Results of the WUC 21 

 

Figure 62 Results of the WUC 27 

 

 

 

 

 

x1 x2 x3 x4 x5 x6 x7 x8

average T. Max. T. HD SD ID P CWB monthly. N.

0.5 absolute exponential -3.03 -3.03 -1.62 -2.98 -3.20 -3.52 -3.41 -3.46 -3.21

1.5 once differentiable functions -3.14 -3.12 -1.62 -2.93 -3.18 -3.55 -3.41 -3.60 -3.28

2.5 twice differentiable functions -3.11 -3.15 -1.62 -2.91 -3.18 -3.55 -3.41 -3.63 -3.30

inf RBF -3.02 -3.18 -1.62 -2.88 -3.15 -3.53 -2.81 -3.67 -3.32

best combination: r2_score: -1.62

combination

WUC 01

Input parameter combination

Matern-Kernel

nu-value

x3

x1 x2 x3 x4 x5 x6 x7 x8

average T. Max. T. HD SD ID P CWB monthly. N.

0.5 absolute exponential 0.78 0.71 0.24 0.58 0.32 -0.10 0.52 0.81 0.83

1.5 once differentiable functions 0.80 0.73 0.24 0.58 0.31 -0.10 0.53 0.82 0.83

2.5 twice differentiable functions 0.80 0.73 0.24 0.58 0.30 -0.10 0.53 0.82 0.83

inf RBF 0.80 0.73 0.24 0.58 0.29 -0.10 0.53 0.81 0.83

best combination: r2_score: 0.87x3, x4, x6, x7, x8

WUC 07

nu-value

Matern-Kernel

Input parameter combination

combination

x1 x2 x3 x4 x5 x6 x7 x8

average T. Max. T. HD SD ID P CWB monthly. N.

0.5 absolute exponential -0.33 -0.33 -0.33 -0.33 -0.33 -0.33 -0.33 -0.46 -0.33

1.5 once differentiable functions -0.39 -0.43 -0.33 -0.33 -0.33 -0.33 -0.33 -0.33 -0.33

2.5 twice differentiable functions -0.33 -0.43 -0.33 -0.33 -0.33 -0.33 -0.33 -0.46 -0.33

inf RBF -0.33 -0.33 -0.33 -0.33 -0.33 -0.33 -0.33 -0.46 -0.33

best combination: r2_score: -0.31

WUC 21

Matern-Kernel

Input parameter combination

combination

nu-value

x6, x8

x1 x2 x3 x4 x5 x6 x7 x8

average T. Max. T. HD SD ID P CWB monthly. N.

0.5 absolute exponential 0.03 0.12 -0.05 0.23 -0.04 -0.04 -0.16 0.12 0.14

1.5 once differentiable functions 0.03 0.14 -0.05 0.24 -0.04 -0.04 -0.16 0.12 0.15

2.5 twice differentiable functions 0.17 0.15 -0.05 0.24 -0.04 -0.04 -0.04 0.12 0.14

inf RBF 0.19 0.16 -0.05 0.24 -0.03 -0.04 -0.04 0.12 0.12

best combination: r2_score: 0.28

nu-value

x3, x4, x7

WUC 27

Matern-Kernel

Input parameter combination

combination
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Climate Zone 2 

 

Figure 63 Results of the WUC 08 

 

Figure 64 Results of the WUC 25 

 

Figure 65 Results of the WUC 42 

 

Figure 66 Results of the WUC 47 

 

 

Figure 67 Results of the WUC 67   

 
 
 

x1 x2 x3 x4 x5 x6 x7 x8

average T. Max. T. HD SD ID P CWB monthly. N.

0.5 absolute exponential -0.88 -0.89 -0.88 -0.88 -0.88 -0.88 -1.15 -0.88 -0.88

1.5 once differentiable functions -0.88 -0.89 -0.88 -0.88 -0.88 -0.88 -1.18 -0.88 -0.88

2.5 twice differentiable functions -0.88 -0.88 -0.88 -0.88 -0.88 -0.88 -1.20 -0.88 -0.88

inf RBF -0.93 -0.89 -0.88 -0.88 -0.88 -0.88 -1.23 -0.88 -0.88

best combination: r2_score: -0.69

nu-value

x3, x5, x7

WVU 08 

Matern-Kernel

Input parameter combination

combination

x1 x2 x3 x4 x5 x6 x7 x8

average T. Max. T. HD SD ID P CWB monthly. N.

0.5 absolute exponential -0.71 -1.22 -1.12 -0.98 -1.30 -1.39 -1.62 -1.00 -0.63

1.5 once differentiable functions -0.68 -1.20 -1.09 -1.02 -1.33 -1.23 -1.77 -0.99 -0.65

2.5 twice differentiable functions -0.68 -1.20 -1.07 -1.04 -1.35 -1.22 -1.77 -0.99 -0.66

inf RBF -0.68 -1.21 -1.00 -0.90 -1.37 -1.22 -1.77 -0.99 -0.70

best combination: r2_score: -0.26

nu-value

x6, x7

WUC 25

Matern-Kernel

Input parameter combination

combination

x1 x2 x3 x4 x5 x6 x7 x8

average T. Max. T. HD SD ID P CWB monthly. N.

0.5 absolute exponential -0.20 -0.16 -0.02 -0.28 -0.60 -0.47 -0.43 -0.09 -0.23

1.5 once differentiable functions -0.21 -0.16 -0.02 -0.31 -0.64 -0.37 -0.48 -0.10 -0.21

2.5 twice differentiable functions -0.21 -0.17 -0.02 -0.32 -0.64 -0.37 -0.33 -0.10 -0.21

inf RBF -0.21 -0.17 -0.07 -0.32 -0.65 -0.37 -0.32 -0.09 -0.20

best combination: r2_score: -0.01

nu-value

x3, x5, x8

Matern-Kernel

Input parameter combination

combination

WUC 42

x1 x2 x3 x4 x5 x6 x7 x8

average T. Max. T. HD SD ID P CWB monthly. N.

0.5 absolute exponential -0.12 -0.12 -0.30 -0.21 -0.12 -0.12 -0.12 -0.12

1.5 once differentiable functions -0.66 -0.12 -0.51 -0.30 -0.12 -0.12 -0.33 -0.12

2.5 twice differentiable functions -0.66 -0.12 -0.57 -0.11 -0.12 -0.12 -0.34 -0.12

inf RBF -0.66 -0.12 -0.65 -0.08 -0.12 -0.12 -0.30 -0.12

best combination: r2_score: 0.2

nu-value

x3, x6

WVU 47

Matern-Kernel

Input parameter combination

combination

x1 x2 x3 x4 x5 x6 x7 x8

average T. Max. T. HD SD ID P CWB monthly. N.

0.5 absolute exponential -1.67 -0.02 -0.49 -0.02 -0.02 -0.02 0.08 -0.02 -0.02

1.5 once differentiable functions -0.02 -0.02 -0.48 -0.02 -0.02 -0.02 0.08 -0.02 -0.02

2.5 twice differentiable functions -0.09 -0.76 -0.49 -0.02 -0.02 -0.02 -0.02 -0.02 -0.10

inf RBF -1.67 -0.02 -0.49 -0.02 -0.02 -0.02 0.08 -0.02 -0.02

best combination: r2_score: 0.32

nu-value

x3, x7

Matern-Kernel

Input parameter combination

combination

WVU 67
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Climate Zone 3 

 

Figure 68 Results of the WUC 04 

 

Figure 69 Results of the WUC 10 

 

Figure 70 Results of the WUC 22 

 

Figure 71 Results of the WUC 28 A 

 

Figure 72 Results of the WUC 28 B 

x1 x2 x3 x4 x5 x6 x7 x8

average T. Max. T. HD SD ID P CWB monthly. N.

0.5 absolute exponential 0.35 0.33 0.35 0.41 -0.01 -0.01 0.17 0.24 0.44

1.5 once differentiable functions 0.35 0.35 0.36 0.42 0.02 0.03 0.11 0.25 0.44

2.5 twice differentiable functions 0.35 0.35 0.36 0.42 0.02 0.03 0.10 0.25 0.44

inf RBF 0.34 0.35 0.36 0.42 0.02 -0.01 0.10 0.25 0.44

best combination: r2_score: 0.5

WUC 04

Matern-Kernel

Input parameter combination

combination

nu-value

x1, x3, x6, x7, x8

x1 x2 x3 x4 x5 x6 x7 x8

average T. Max. T. HD SD ID P CWB monthly. N.

0.5 absolute exponential 0.25 0.23 0.22 0.31 -0.01 -0.01 0.24 0.29 0.35

1.5 once differentiable functions 0.27 0.25 0.24 0.31 -0.01 -0.01 0.29 0.29 0.34

2.5 twice differentiable functions 0.27 0.25 0.24 0.31 -0.01 -0.01 0.29 0.29 0.33

inf RBF 0.28 0.26 0.24 0.32 -0.01 -0.01 0.29 0.29 0.33

best combination: r2_score: 0.4

WUC 10

Matern-Kernel

Input parameter combination

combination

nu-value

x3, x4, x6, x7

x1 x2 x3 x4 x5 x6 x7 x8

average T. Max. T. HD SD ID P CWB monthly. N.

0.5 absolute exponential -0.85 -0.75 -0.61 -1.29 -0.63 -0.63 -0.31 -0.37 -0.30

1.5 once differentiable functions -0.85 -0.58 -0.64 -1.46 -0.63 -0.63 -0.39 -0.38 -0.26

2.5 twice differentiable functions -0.85 -0.58 -0.64 -1.50 -0.63 -0.65 -0.40 -0.38 -0.26

inf RBF -0.73 -0.60 -0.65 -1.55 -0.63 -0.63 -0.44 -0.39 -0.26

best combination: r2_score: -0.04

nu-value

x1, x5, x7

WUC 22

Matern-Kernel

Input parameter combination

combination

x1 x2 x3 x4 x5 x6 x7 x8

average T. Max. T. HD SD ID P CWB monthly. N.

0.5 absolute exponential -0.21 -0.19 -0.27 -0.12 -0.16 -0.22 -0.28 -0.28 -0.22

1.5 once differentiable functions -0.20 -0.19 -0.28 -0.09 -0.16 -0.22 -0.28 -0.28 -0.23

2.5 twice differentiable functions -0.20 -0.19 -0.28 -0.08 -0.16 -0.22 -0.28 -0.28 -0.23

inf RBF -0.19 -0.19 -0.29 -0.08 -0.28 -0.22 -0.28 -0.28 -0.25

best combination: r2_score: -0.08

nu-value

x4

Matern-Kernel

Input parameter combination

combination

WUC 28 A

x1 x2 x3 x4 x5 x6 x7 x8

average T. Max. T. HD SD ID P CWB monthly. N.

0.5 absolute exponential 0.44 0.43 0.37 0.23 -0.01 -0.11 0.22 0.51 0.66

1.5 once differentiable functions 0.47 0.46 0.37 0.54 -0.01 -0.11 0.28 0.52 0.64

2.5 twice differentiable functions 0.47 0.46 0.37 0.04 -0.01 -0.07 0.29 0.52 0.64

inf RBF 0.47 0.46 0.36 0.55 -0.01 -0.11 0.29 0.52 0.63

best combination: r2_score: 0.67

nu-value

x1, x4, x6, x7, x8

WUC 28 B

Matern-Kernel

Input parameter combination

combination
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Figure 73 Results of the WUC 44 

 

Figure 74 Results of the WUC 65 

 

Figure 75 Results of the WUC 90 

 

Climate Zone 4 

 

Figure 76 Results of the WUC 06 

 

Figure 77 Results of the WUC 12 

x1 x2 x3 x4 x5 x6 x7 x8

average T. Max. T. HD SD ID P CWB monthly. N.

0.5 absolute exponential 0.12 0.13 -0.22 0.10 0.00 -0.05 0.09 0.39 0.24

1.5 once differentiable functions -0.38 0.12 -0.22 0.06 0.00 0.00 0.11 0.39 0.17

2.5 twice differentiable functions 0.12 0.11 -0.22 0.05 0.00 -0.05 0.12 0.39 0.25

inf RBF 0.13 0.10 -0.22 0.20 0.00 0.00 0.14 0.39 0.25

best combination: r2_score: 0.39

WUC 44

Input parameter combination

nu-value

Matern-Kernel
combination

x8

x1 x2 x3 x4 x5 x6 x7 x8

average T. Max. T. HD SD ID P CWB monthly. N.

0.5 absolute exponential -0.04 -0.03 -0.17 -0.03 -0.02 -0.09 0.07 0.04 -0.03

1.5 once differentiable functions -0.05 -0.03 -0.16 -0.04 -0.02 -0.03 0.09 0.04 -0.02

2.5 twice differentiable functions -0.06 -0.03 -0.16 -0.04 -0.02 -0.09 0.09 0.04 -0.01

inf RBF -0.02 -0.03 -0.16 -0.05 -0.02 -0.09 0.09 0.04 0.00

best combination: r2_score: 0.1

WUC 65

Matern-Kernel

Input parameter combination

combination

nu-value

x5, x7

x1 x2 x3 x4 x5 x6 x7 x8

average T. Max. T. HD SD ID P CWB monthly. N.

0.5 absolute exponential 0.23 0.10 0.10 0.12 -0.20 -0.37 -0.06 0.09 0.23

1.5 once differentiable functions 0.22 0.11 0.12 0.14 -0.22 -0.37 -0.03 0.11 0.27

2.5 twice differentiable functions 0.21 0.11 0.12 0.16 -0.22 -0.37 -0.02 0.11 0.27

inf RBF 0.20 0.11 0.13 0.16 -0.23 -0.37 -0.02 0.11 0.27

best combination: r2_score: 0.32

combination

WUC 90

nu-value

x1, x3, x7, x8

Matern-Kernel

Input parameter combination

x1 x2 x3 x4 x5 x6 x7 x8

average T. Max. T. HD SD ID P CWB monthly. N.

0.5 absolute exponential -2.46 -1.87 -1.53 -1.53 -1.53 -1.69 -1.53 -2.11 -2.39

1.5 once differentiable functions -2.56 -1.85 -1.53 -1.74 -1.53 -1.59 -1.53 -2.20 -2.43

2.5 twice differentiable functions -2.58 -1.86 -1.53 -1.53 -1.53 -1.60 -1.53 -2.21 -2.43

inf RBF -2.60 -1.87 -1.53 -1.74 -1.53 -1.68 -1.53 -2.21 -2.39

best combination: r2_score: -1.38

combination

WUC 06

nu-value

x4, x5, x7

Matern-Kernel

Input parameter combination

x1 x2 x3 x4 x5 x6 x7 x8

average T. Max. T. HD SD ID P CWB monthly. N.

0.5 absolute exponential 0.09 0.05 0.16 0.08 -0.07 -0.07 0.19 0.13 0.20

1.5 once differentiable functions 0.09 0.07 0.16 0.10 -0.07 -0.07 0.21 0.13 0.18

2.5 twice differentiable functions 0.00 -0.06 0.15 0.10 -0.07 -0.07 0.21 0.13 0.16

inf RBF 0.09 0.07 0.15 0.10 -0.07 -0.07 0.21 0.13 0.22

best combination: r2_score: 0.29

nu-value

x1, x2, x8

Matern-Kernel

Input parameter combination

combination

WUC 12
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Figure 78 Results of the WUC 14 

 

Figure 79 Results of the WUC 16 

 

Figure 80 Results of the WUC 26 

 

Figure 81 Results of the WUC 31 

 

Figure 82 Results of the WUC 32 

x1 x2 x3 x4 x5 x6 x7 x8

average T. Max. T. HD SD ID P CWB monthly. N.

0.5 absolute exponential -0.27 -0.36 -0.31 -0.24 -0.57 -0.62 -0.26 -0.38 -0.29

1.5 once differentiable functions -0.28 -0.34 -0.27 -0.21 -0.57 -0.57 -0.25 -0.57 -0.26

2.5 twice differentiable functions -0.28 -0.34 -0.27 -0.20 -0.57 -0.57 -0.26 -0.38 -0.26

inf RBF -0.29 -0.34 -0.27 -0.20 -0.57 -0.57 -0.26 -0.38 -0.25

best combination: r2_score: -0.18

Matern-Kernel

Input parameter combination

combination

WUC 14

x1, x7

nu-value

x1 x2 x3 x4 x5 x6 x7 x8

average T. Max. T. HD SD ID P CWB monthly. N.

0.5 absolute exponential 0.13 0.07 -0.06 0.22 -0.06 -0.06 0.14 -0.06 -0.06

1.5 once differentiable functions 0.18 0.16 -0.06 0.22 -0.06 -0.06 0.21 -0.06 0.14

2.5 twice differentiable functions 0.19 0.18 0.02 0.22 -0.06 -0.06 0.23 -0.06 0.19

inf RBF 0.20 0.20 0.01 0.22 -0.06 -0.06 0.24 -0.06 0.23

best combination: r2_score: 0.31

Matern-Kernel

Input parameter combination

combination

WUC 16

nu-value

x2, x3, x7

x1 x2 x3 x4 x5 x6 x7 x8

average T. Max. T. HD SD ID P CWB monthly. N.

0.5 absolute exponential -1.84 -1.82 -1.74 -1.75 -2.21 -2.21 -1.51 -1.92 -1.54

1.5 once differentiable functions -1.93 -1.84 -1.69 -1.72 -2.21 -2.21 -1.45 -1.92 -1.55

2.5 twice differentiable functions -1.88 -1.84 -1.69 -1.72 -2.21 -2.21 -1.45 -1.92 -1.51

inf RBF -1.88 -1.84 -1.68 -1.72 -2.21 -2.21 -1.44 -1.93 -1.52

best combination: r2_score: -1.38

Matern-Kernel

Input parameter combination

combination

WUC 26

nu-value

x7, x8

x1 x2 x3 x4 x5 x6 x7 x8

average T. Max. T. HD SD ID P CWB monthly. N.

0.5 absolute exponential 0.54 0.45 0.21 0.42 -0.05 -0.17 0.44 0.45 0.64

1.5 once differentiable functions 0.53 0.47 0.19 0.42 -0.05 -0.18 0.45 0.45 0.65

2.5 twice differentiable functions 0.53 0.47 0.17 0.41 -0.05 -0.17 0.45 0.44 0.60

inf RBF 0.48 0.46 0.36 0.44 -0.11 -0.18 0.45 0.44 0.58

best combination: r2_score: 0.73

WUC 31

Matern-Kernel

Input parameter combination

combination

nu-value

x1, x6, x7

x1 x2 x3 x4 x5 x6 x7 x8

average T. Max. T. HD SD ID P CWB monthly. N.

0.5 absolute exponential 0.12 0.14 -0.03 0.10 -0.48 -0.57 0.18 0.09 0.36

1.5 once differentiable functions 0.17 0.13 -0.01 0.04 -0.48 -0.58 0.18 0.09 0.35

2.5 twice differentiable functions 0.18 0.13 -0.02 0.02 -0.48 -0.53 0.18 0.09 0.35

inf RBF 0.21 0.13 0.09 0.17 -0.53 -0.53 0.17 0.09 0.34

best combination: r2_score: 0.51

nu-value

x5, x6, x7, x8

Matern-Kernel

Input parameter combination

combination

WUC 32
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Figure 83 Results of the WUC 50 

 

Figure 84 Results of the WUC 55 

 

Figure 85 Results of the WUC 63 

 

Figure 86 Results of the WUC 69 

 

Figure 87 Results of the WUC 70 

x1 x2 x3 x4 x5 x6 x7 x8

average T. Max. T. HD SD ID P CWB monthly. N.

0.5 absolute exponential -0.65 -0.70 -0.67 -0.64 -0.93 -0.89 -0.51 -0.73 -0.55

1.5 once differentiable functions -0.62 -0.68 -0.64 -0.60 -0.94 -0.90 -0.53 -0.73 -0.53

2.5 twice differentiable functions -0.63 -0.68 -0.63 -0.59 -0.94 -0.90 -0.51 -0.73 -0.53

inf RBF -0.64 -0.68 -0.63 -0.59 -0.95 -0.94 -0.51 -0.74 -0.54

best combination: r2_score: -0.51x7, x8

nu-value

Matern-Kernel
combination

WUC 50

Input parameter combination

x1 x2 x3 x4 x5 x6 x7 x8

average T. Max. T. HD SD ID P CWB monthly. N.

0.5 absolute exponential 0.14 0.09 0.12 0.11 -0.09 -0.18 0.10 0.06 0.14

1.5 once differentiable functions 0.16 0.10 0.13 0.13 -0.09 -0.20 0.11 0.07 0.15

2.5 twice differentiable functions 0.16 0.10 0.13 0.13 -0.09 -0.20 0.11 0.07 0.14

inf RBF 0.12 0.10 0.14 0.13 -0.09 -0.09 0.09 0.07 0.12

best combination: r2_score: 0.22x1, x3, x7

WUC 55

Matern-Kernel

Input parameter combination

combination

nu-value

x1 x2 x3 x4 x5 x6 x7 x8

average T. Max. T. HD SD ID P CWB monthly. N.

0.5 absolute exponential -0.16 -0.15 -0.18 -0.16 -0.26 -0.26 -0.26 -0.13 -0.09

1.5 once differentiable functions -0.18 -0.15 -0.16 -0.16 -0.26 -0.28 -0.26 -0.12 -0.09

2.5 twice differentiable functions -0.19 -0.15 -0.16 -0.16 -0.26 -0.28 -0.24 -0.12 -0.09

inf RBF -0.13 -0.14 -0.16 -0.16 -0.26 -0.28 -0.20 -0.13 -0.09

best combination: r2_score: -0.02

Matern-Kernel

Input parameter combination

combination

WUC 63

nu-value

x6, x7

x1 x2 x3 x4 x5 x6 x7 x8

average T. Max. T. HD SD ID P CWB monthly. N.

0.5 absolute exponential -0.23 -0.20 -0.27 -0.35 -0.34 -0.27 -0.11 -0.13 -0.09

1.5 once differentiable functions -0.28 -0.23 -0.27 -0.37 -0.34 -0.27 -0.08 -0.13 -0.09

2.5 twice differentiable functions -0.28 -0.19 -0.27 -0.37 -0.34 -0.27 -0.07 -0.13 -0.09

inf RBF -0.30 -0.18 -0.18 -0.18 -0.27 -0.25 -0.07 -0.13 -0.09

best combination: r2_score: -0.04x3, x7, x8

Matern-Kernel

Input parameter combination

combination

WUC 69

nu-value

x1 x2 x3 x4 x5 x6 x7 x8

average T. Max. T. HD SD ID P CWB monthly. N.

0.5 absolute exponential -0.06 0.06 0.16 -0.01 -0.03 -0.08 0.12 0.25 0.14

1.5 once differentiable functions -0.07 0.07 0.15 -0.02 -0.04 -0.09 0.12 0.25 0.16

2.5 twice differentiable functions 0.00 0.10 0.15 -0.02 -0.04 -0.09 0.12 0.25 0.17

inf RBF 0.03 0.10 0.16 0.04 -0.03 -0.10 0.12 0.24 0.15

best combination: r2_score: 0.32

WUC 70

Matern-Kernel

Input parameter combination

combination

nu-value

x2, x3, x8
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Figure 88 Results of the WUC 77 

 

Figure 89 Results of the WUC 79 

 

Figure 90 Results of the WUC 86 

 

Climate Zone 5 

 

Figure 91 Results of the WUC 02 

 

Figure 92 Results of the WUC 15 

x1 x2 x3 x4 x5 x6 x7 x8

average T. Max. T. HD SD ID P CWB monthly. N.

0.5 absolute exponential 0.62 0.50 0.24 0.56 -0.01 -0.32 0.37 0.63 0.67

1.5 once differentiable functions 0.64 0.52 0.25 0.56 0.00 -0.32 0.37 0.63 0.68

2.5 twice differentiable functions 0.64 0.53 0.25 0.57 0.00 -0.32 0.38 0.63 0.68

inf RBF 0.64 0.53 0.25 0.57 0.00 -0.32 0.37 0.63 0.67

best combination: r2_score: 0.76

WUC 77

Matern-Kernel

Input parameter combination

combination

nu-value

x6, x7, x8

x1 x2 x3 x4 x5 x6 x7 x8

average T. Max. T. HD SD ID P CWB monthly. N.

0.5 absolute exponential 0.26 0.31 0.14 0.27 -0.12 -0.18 0.26 0.25 0.34

1.5 once differentiable functions 0.28 0.32 0.15 0.28 -0.12 -0.18 0.33 0.26 0.35

2.5 twice differentiable functions 0.28 0.33 0.15 0.29 -0.12 -0.18 0.34 0.27 0.35

inf RBF 0.28 0.33 0.14 0.29 -0.18 -0.18 0.34 0.27 0.35

best combination: r2_score: 0.46

Matern-Kernel

Input parameter combination

combination

WUC 79

nu-value

x6, x7

x1 x2 x3 x4 x5 x6 x7 x8

average T. Max. T. HD SD ID P CWB monthly. N.

0.5 absolute exponential -0.15 -0.20 -0.10 -0.13 -0.36 -0.34 -0.09 -0.27 -0.12

1.5 once differentiable functions -0.14 -0.20 -0.08 -0.11 -0.36 -0.34 -0.07 -0.25 -0.13

2.5 twice differentiable functions -0.14 -0.20 -0.08 -0.10 -0.38 -0.34 -0.07 -0.25 -0.13

inf RBF -0.14 -0.20 -0.07 -0.10 -0.38 -0.34 -0.06 -0.25 -0.14

best combination: r2_score: 0

Matern-Kernel

Input parameter combination

combination

WUC 86

nu-value

x2, x3, x6, x7

x1 x2 x3 x4 x5 x6 x7 x8

average T. Max. T. HD SD ID P CWB monthly. N.

0.5 absolute exponential 0.55 0.56 0.56 0.48 -0.04 0.10 0.65 0.42 0.67

1.5 once differentiable functions 0.55 0.56 0.45 0.54 -0.04 0.11 0.64 0.42 0.69

2.5 twice differentiable functions 0.55 0.56 0.10 0.54 -0.04 -0.06 0.64 0.42 0.68

inf RBF 0.55 0.56 0.10 0.54 -0.04 0.12 0.65 0.42 0.68

best combination: r2_score: 0.73

WUC 02

Input parameter combination

Matern-Kernel
combination

nu-value

x2, x3, x6, x7

x1 x2 x3 x4 x5 x6 x7 x8

average T. Max. T. HD SD ID P CWB monthly. N.

0.5 absolute exponential 0.68 0.71 0.65 0.66 0.08 0.00 0.69 0.60 0.78

1.5 once differentiable functions 0.70 0.69 0.65 0.65 0.08 0.00 0.72 0.61 0.81

2.5 twice differentiable functions 0.70 0.69 0.65 0.65 0.02 0.00 0.73 0.61 0.81

inf RBF 0.68 0.69 0.63 0.65 0.08 0.00 0.73 0.60 0.81

best combination: r2_score: 0.86

WUC 15

Matern-Kernel

Input parameter combination

combination

nu-value

x1, x3, x4, x7
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Figure 93 Results of the WUC 17 

 

Figure 94 Results of the WUC 24 

 

Figure 95 Results of the WUC 30 

 

Figure 96 Results of the WUC 33 

 

Figure 97 Results of the WUC 34 

x1 x2 x3 x4 x5 x6 x7 x8

average T. Max. T. HD SD ID P CWB monthly. N.

0.5 absolute exponential 0.09 -0.10 0.10 0.07 -0.13 -0.35 -0.05 0.08 0.06

1.5 once differentiable functions 0.11 -0.10 0.06 0.10 -0.13 -0.35 -0.04 0.10 0.08

2.5 twice differentiable functions 0.11 -0.10 0.04 0.11 -0.13 -0.24 -0.04 0.10 0.09

inf RBF 0.11 -0.12 0.02 0.11 -0.13 -0.35 -0.05 0.11 0.08

best combination: r2_score: 0.14

nu-value

x1, x8

WUC 17

Input parameter combination

Matern-Kernel
combination

x1 x2 x3 x4 x5 x6 x7 x8

average T. Max. T. HD SD ID P CWB monthly. N.

0.5 absolute exponential 0.72 0.72 0.60 0.67 0.07 -0.08 0.79 0.61 0.86

1.5 once differentiable functions 0.72 0.72 0.57 0.68 0.07 -0.08 0.80 0.61 0.85

2.5 twice differentiable functions 0.71 0.71 0.59 0.68 0.07 -0.08 0.79 0.61 0.84

inf RBF 0.69 0.71 0.59 0.66 0.07 -0.08 0.79 0.61 0.83

best combination: r2_score: 0.88

Matern-Kernel
combination

WUC 24

Input parameter combination

nu-value

x2, x3, x6, x7

x1 x2 x3 x4 x5 x6 x7 x8

average T. Max. T. HD SD ID P CWB monthly. N.

0.5 absolute exponential 0.48 0.45 0.36 0.39 0.00 -0.02 0.28 0.37 0.41

1.5 once differentiable functions 0.49 0.44 0.36 0.38 0.01 0.00 0.29 0.37 0.43

2.5 twice differentiable functions 0.49 0.44 0.36 0.38 0.01 -0.02 0.29 0.37 0.43

inf RBF 0.41 0.42 0.36 0.38 0.00 -0.02 0.29 0.37 0.44

best combination: r2_score: 0.48

combination
Matern-Kernel

Input parameter combination

nu-value

WUC 30

x1, x2, x3, x4, x5, x7, x8

x1 x2 x3 x4 x5 x6 x7 x8

average T. Max. T. HD SD ID P CWB monthly. N.

0.5 absolute exponential 0.52 0.60 0.47 0.56 -0.08 -0.25 0.72 0.42 0.75

1.5 once differentiable functions 0.53 0.57 0.43 0.57 -0.09 -0.25 0.73 0.43 0.75

2.5 twice differentiable functions 0.52 0.57 0.43 0.56 -0.09 -0.25 0.73 0.43 0.74

inf RBF 0.52 0.57 0.41 0.55 -0.09 -0.25 0.73 0.43 0.74

best combination: r2_score: 0.79

Input parameter combination

Matern-Kernel

nu-value

WUC 33

x1, x3, x7

combination

x1 x2 x3 x4 x5 x6 x7 x8

average T. Max. T. HD SD ID P CWB monthly. N.

0.5 absolute exponential 0.54 0.32 0.40 0.52 -0.16 -0.30 0.47 0.33 0.57

1.5 once differentiable functions 0.55 0.32 0.41 0.42 -0.16 -0.29 0.47 0.34 0.60

2.5 twice differentiable functions 0.55 0.32 0.42 0.57 -0.16 -0.29 0.48 0.34 0.61

inf RBF 0.54 0.31 0.42 0.15 -0.16 -0.29 0.48 0.34 0.61

best combination: r2_score: 0.65

Matern-Kernel

Input parameter combination

combination

WUC 34

nu-value

x1, x2, x3, x6, x7
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Figure 98 Results of the WUC 35 

 

Figure 99 Results of the WUC 37 

 

Figure 100 Results of the WUC 75 

x1 x2 x3 x4 x5 x6 x7 x8

average T. Max. T. HD SD ID P CWB monthly. N.

0.5 absolute exponential -0.75 -0.75 -0.82 -0.68 -0.75 -0.80 -0.40 -0.43 -0.42

1.5 once differentiable functions -0.76 -0.71 -0.82 -0.80 -0.75 -0.79 -0.34 -0.45 -0.40

2.5 twice differentiable functions -0.75 -0.71 -0.75 -0.62 -0.75 -0.79 -0.33 -0.45 -0.40

inf RBF -0.76 -0.74 -0.82 -0.61 -0.75 -0.87 -0.33 -0.47 -0.39

best combination: r2_score: -0.15x1, x3, x6, x7

Matern-Kernel

Input parameter combination

nu-value

combination

WUC 35

x1 x2 x3 x4 x5 x6 x7 x8

average T. Max. T. HD SD ID P CWB monthly. N.

0.5 absolute exponential 0.47 0.39 0.38 0.44 -0.11 -0.10 0.53 0.31 0.55

1.5 once differentiable functions 0.45 0.37 0.38 0.45 -0.11 -0.11 0.53 0.32 0.53

2.5 twice differentiable functions 0.44 0.37 0.38 0.45 -0.11 -0.11 0.53 0.32 0.52

inf RBF 0.43 0.37 0.38 0.46 -0.07 -0.11 0.52 0.32 0.52

best combination: r2_score: 0.57

nu-value

x1, x3, x6, x7

Matern-Kernel

Input parameter combination

combination

WUC 37

x1 x2 x3 x4 x5 x6 x7 x8

average T. Max. T. HD SD ID P CWB monthly. N.

0.5 absolute exponential 0.26 0.26 0.20 0.30 -0.22 -0.41 0.46 0.22 0.48

1.5 once differentiable functions 0.27 0.28 0.14 0.30 -0.23 -0.39 0.49 0.23 0.51

2.5 twice differentiable functions 0.26 0.28 0.18 0.29 -0.23 -0.41 0.49 0.23 0.52

inf RBF 0.26 0.28 0.17 0.29 -0.23 -0.41 0.50 0.22 0.51

best combination: r2_score: 0.55

nu-value

x1, x2, x4, x6, x7

WUC 75

Matern-Kernel

Input parameter combination

combination
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Appendix B - Development of the climatic parameters for the supply area of 
one investigated individual water utility companies from the climate zone 
5 

In the following, the development of the prognosticated climatic parameters for one 

water utility company, in this case the WUC 02 located in the climate zone 5, are 

illustrated exemplarily. 

WUC 02: 

Table 17 Development of the decadal average precipitation rate for the water 

utility company 02 in the period 2011-2090 

Decadal precipitation rate [°C] 
time 
period 

RCP2.6 RCP8.5 
(1) (2) (3) (1) (2) (3) 

2011-2020 731 731 731 731 731 731 
2021-2030 694 682 696 667 637 693 
2031-2040 696 677 696 799 641 642 
2041-2050 686 641 649 731 698 664 
2051-2060 676 705 746 718 658 650 
2061-2070 681 659 764 775 638 626 
2071-2080 687 704 616 811 674 672 
2081-2090 691 694 766 781 650 631 

 

Table 18 Development of the number of summer days per decade for the water 

utility company 02 in the period 2011-2090 

Decadal number of summer days [-] 
time 
period 

RCP2.6 RCP8.5 
(1) (2) (3) (1) (2) (3) 

2011-2020 613 613 613 613 613 613 
2021-2030 613 615 614 686 663 651 
2031-2040 612 614 613 725 703 696 
2041-2050 610 612 613 755 734 728 
2051-2060 609 612 612 827 798 789 
2061-2070 609 610 611 856 731 717 
2071-2080 607 611 610 901 869 850 
2081-2090 605 611 609 972 948 932 
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Table 19 Development of the number of hot days for the water utility company 02 

in the period 2011-2090 

Decadal number of hot days [-] 
time 
period 

RCP2.6 RCP8.5 
(1) (2) (3) (1) (2) (3) 

2011-2020 161 161 161 161 161 161 
2021-2030 156 161 159 172 169 165 
2031-2040 155 162 158 184 176 172 
2041-2050 154 163 158 191 183 179 
2051-2060 154 162 157 207 190 185 
2061-2070 153 161 155 214 197 191 
2071-2080 151 160 154 223 208 199 
2081-2090 150 160 153 241 237 218 

 

Table 20 Development of the number of icy days for the water utility company 02 

in the period 2011-2090 

Decadal number of icy days [-] 
time 
period 

RCP2.6 RCP8.5 
(1) (2) (3) (1) (2) (3) 

2011-2020 77 77 77 77 77 77 
2021-2030 71 76 73 69 55 42 
2031-2040 56 63 59 44 35 28 
2041-2050 47 55 51 36 23 16 
2051-2060 34 42 38 24 17 8 
2061-2070 14 26 21 9 11 4 
2071-2080 8 20 13 7 4 2 
2081-2090 2 11 6 3 1 0 
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Appendix C - Measure catalog 

This brief measure catalog was compiled together with the water utility companies 

participating in the research project “Influence of climate change on drinking water 

supply” and includes measures that the water suppliers considered to be realistically 

implementable. The measure catalog should serve a guide for water utility companies 

in the study area, whose water supply is at risk due to climate change and who therefore 

need to take action to ensure a secure water supply can be provided in the future. The 

catalog of measures is intended only as a suggestion, the implementation and feasibility 

must be examined individually in the respective supply area. The measures are divided 

into 2 categories. On the one hand, measures that reduce the water demand and on the 

other hand, measures that increase the available water supply. It should be noted that 

the measures that reduce the water demand are preferable to the measures that increase 

the water supply. 

 

Measures to reduce the water demand 

1. Measures to minimize water losses 

It should be investigated whether the water demand can be reduced by minimizing 

water losses. How high are the water losses? Are there approaches in place to detect 

pipe bursts and to minimize water losses? 

 

2. Measures to reduce the water demand of large consumers 

It should be investigated whether the water demand can be reduced by reducing the 

water demand of large consumers. Is it possible for the large consumers to reduce 

their consumption or to be supplied by other sources? 

 

3. Measures to reduce the water demand for own purposes 

It should be investigated whether the water demand can be reduced by reducing the 

water demand for own purposes. Is it possible to reduce their consumption or to 

provide the water consumed for own purposes by other sources? 

 

4. Measures to reduce the peak daily demand 

It should be investigated whether the water demand can be reduced by reducing the 

peak daily demand. Is it possible to reduce the peak daily factor? 

 

5. Measures to inform the public 

It should be investigated whether the water demand can be reduced by conducting 

programs aimed to inform the public about water conservation. Are there 

information campaigns already? 

 

6. Change of the water pricing 
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It should be investigated whether the current water pricing can be modified. Has 

any thought been given to a new pricing system? Can a new pricing system be 

implemented? 

 

7. Promotion of water-saving measures in the household 

It should be investigated whether the promotion of water-saving measures in the 

household can be implemented. Is it possible to promote water-saving fittings or 

systems for rain storage and usage? 

 

Measures to increase the available water supply 

1. Development of new water sources 

It should be investigated whether the water supply can be increased by water from 

own sources or by one or more connection(s) to long-distance water supplier(s). 

 

Measures to increase the available water supply 

1. Development of new water sources 

It should be investigated whether the water supply can be increased by water from 

own sources or by one or more connection(s) to long-distance water supplier(s). 
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