
Human activity analysis and classification
using RGB-D videos
Analys och klassificering av mänskliga aktiviteter via RGB-D videos

Bachelor’s thesis in Automation and Mechatronics

CHRISTOPHER INNOCENTI

GUSTAV NERO

HENRIK LINDÉN

Department of Signals and Systems
Chalmers University of Technology
Gothenburg, Sweden 2015

Bachelor’s thesis SSYX02-15-01

Human activity analysis and classification
using RGB-D videos

Analys och klassificering av mänskliga aktiviteter via RGB-D videos

CHRISTOPHER INNOCENTI
GUSTAV NERO

HENRIK LINDÉN

Department of Signals and Systems
Division of Signal Processing

Chalmers University of Technology
Gothenburg, Sweden 2015

Human activity analysis and classification using RGB-D videos
Analys och klassificering av mänskliga aktiviteter via RGB-D videos

c© CHRISTOPHER INNOCENTI, 2015.
c© GUSTAV NERO, 2015.
c© HENRIK LINDÉN, 2015.

Supervisor: Yixiao Yun, Department of Signals and Systems
Examiner: Irene Yu-Hua Gu, Department of Signals and Systems

Bachelor’s Thesis SSYX02-15-01
Department of Signals and Systems
Division of Signal Processing
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2015

Preface

At Chalmers University of Technology, after the first two and a half years of study, it is
time to implement some of the gathered knowledge. This is done in the form of a project
which span over the final semester of the bachelor (undergraduate) level. The project
comprises 15 hp which is the equivalent to 8 weeks of full time work. Due to the versa-
tility of the program Automation and Mechatronics, different types of project subjects
were available. Our group chose to investigate the project regarding “Human activity
analysis and classification using RGB-D videos”, which closely relates to the Automation
part of the program. The field of creating machines that can take sophisticated action
in different kinds of situations is just in its infancy but is rapidly growing. It was with
great interest that we embarked upon this journey to get a glimpse of what it takes for
a computer to ”see as humans do”. Our hope is that the reader will have as much joy
reading this thesis as we had writing it.

The Authors

Abstract

This thesis encompasses parts of the field of computer vision. The main problem dealt
with throughout this project is how to automate classification of specific human activities
via video streams. The essence of this project is therefore that the developed algorithm
shall be able to distinguish these activities from one another. A number of restrictions
were imposed on the data-set in order to keep the problem size manageable. A video
snippet was assumed to contain a single human that either falls to the ground or, in a
controlled way, sits and then lies down on the ground.

Our approach relies heavily on background subtraction as the method for detecting
foreground objects and comparing the performance of several such approaches for video
pre-processing. Features are designed with a heuristic approach utilizing velocities, limb
distance relationships and acknowledged techniques based on oriented gradients and
optical flow. The classification model is a pre-implemented support vector machine from
the libSVM package that is tuned to fit the generated features.

The accuracy of our algorithm reached 93.73% which was well above the goal of 85%.
On average the classification process roughly took 0.6 second per frame which concludes
that the run-time of our algorithm was not fast enough to process a video stream in
real time. The result of this work confirms, however, that the methods used works well
in a restricted setting and produces a high classification rate. The gist is thus that the
proposed method is a good classifier when used in a restricted, offline environment.

Sammanfattning

Den här tesen behandlar en gren av datorseende. Huvudproblemet som hanteras i detta
projekt är hur klassificering av mänskliga aktiviteter fr̊an videoströmmar kan automati-
seras. Projektet handlar väsentligen om att den framtagna algoritmen ska kunna skilja p̊a
tv̊a aktiviteter. Ett antal restriktioner tillämpades för att kunna h̊alla problemet hanter-
bart. Ett videoklipp antogs inneh̊alla en människa som antingen faller eller kontrollerat
sätter sig och sedan lägger sig ned. V̊art tillvägag̊angsätt grundar sig i bakgrundssub-
traktion som metod för att detektera objekt i förgrunden och vi jämför ett antal s̊ada-
na videoprocessering-metoders prestanda. Attribut (säregenskaper) är designade utifr̊an
hastighet, distans mellan kroppsdelar och erkända tekniker s̊asom optiskt flöde och ori-
enterade gradienter. Klassificeringsmodellen är en förimplementerad stödvektormaskin
fr̊an libSVM-biblioteket som justerats för att passa projektets behov. P̊alitligheten för
algortimen n̊adde 93.73% vilket var väl över det initiella m̊alet p̊a 85%. Algoritmen var
dock inte tillräckligt snabb för att bearbeta videoströmmar i realtid d̊a den behövde
cirka en halv sekund per bild. Resultatet av detta arbete kan bekräfta att den metod
som presenteras är en välfungerande lösning p̊a problemet i en begränsad, offline miljö.

Acknowledgements

We would like to express our gratitude and thank our supervisor Yixiao Yun for putting
up with our questions during this project and for helping us getting a better understand-
ing on the subject of computer vision.

The Authors

Contents

1 Introduction 1
1.1 Background . 1
1.2 Purpose and Goal . 2
1.3 Problem definition . 2
1.4 Limitations . 3
1.5 Outline . 4

2 Theory 5
2.1 RGB-D images . 5
2.2 Morphological Transforms . 6

2.2.1 Structuring Elements . 7
2.2.2 Erosion . 7
2.2.3 Dilation . 7
2.2.4 Closing and Opening . 7
2.2.5 Extended Maxima Transform . 8

2.3 Foreground Detection . 8
2.3.1 Color Thresholding . 8
2.3.2 Background Subtraction . 9

2.4 Histogram of Oriented Gradients . 12
2.5 Optical Flow . 13

2.5.1 Horn–Schunck . 14
2.5.2 Lucas–Kanade . 15
2.5.3 The Coarse–to–Fine Approach . 15
2.5.4 The Aperture Problem . 15

2.6 Support Vector Machines . 16
2.6.1 Training of the SVM . 18

2.7 Predictive Analytics . 19
2.7.1 Confusion Matrix . 19
2.7.2 Cross-Validation . 20

3 Method 21
3.1 Approaches for Human Detection . 21

3.1.1 Skeleton Tracking by Color Thresholding 21
3.1.2 Isolation of the ROI by Manual Background Subtraction 22
3.1.3 Subduing the Effects of Inconsistent Illumination via Background

Averaging . 22
3.1.4 Specframe . 22
3.1.5 Foreground Detection Using Gaussian Mixture Models 23
3.1.6 Extended Maxima Transform on Specframe 23
3.1.7 Blob-tracking in HSV color-space 24
3.1.8 Motion Detection with Eigenbackgrounds 24

3.2 Design of Feature Vectors . 24
3.2.1 Centroid Velocity- and Head-Centroid Relation 24
3.2.2 HOG Features . 25
3.2.3 Optical Flow Features . 26
3.2.4 Choosing the Type of Pre-Processing for Each Feature 26
3.2.5 Normalizing and Linear Scaling of Features 27
3.2.6 Feature Fusion . 27

3.3 The Classification Model . 28
3.3.1 SVM Classifier . 28
3.3.2 Confusion Matrix and Cross-Validation 28
3.3.3 Temporal Down Sampling . 29

4 Experimental Results 31
4.1 Image Pre-processing . 31
4.2 Features . 34
4.3 Classification . 37

4.3.1 Cross-validation results . 37
4.3.2 Run-time Estimation . 38
4.3.3 Further Classification Rates . 39

4.4 Developed Software . 42
4.4.1 Graphical User Interface Design using Matlab 42

5 Discussion 44
5.1 Image Pre-processing . 44

5.1.1 Thresholding on Color . 44
5.1.2 Manual Background Subtraction 45
5.1.3 Use of Extended Maxima . 46
5.1.4 Estimating a new Background . 46
5.1.5 Gaussian Mixture Model . 47
5.1.6 Depth-map . 48
5.1.7 Eigenbackground . 48
5.1.8 Subtraction in HSV . 49
5.1.9 Morphological Operations . 50

5.2 Features . 51
5.2.1 Centroid Velocity . 51
5.2.2 Head to Centroid Relation Feature 52
5.2.3 HOG Features . 53
5.2.4 Optical Flow Features . 54
5.2.5 Other Features Specific to Human Classification 55
5.2.6 Scaling . 55
5.2.7 Fusion at Feature vs. Decision Level 56

5.3 Classification . 57
5.3.1 On the Choice of Kernel and Tuning of Parameters 57
5.3.2 Reliability of Estimated Classification Rates 57

6 Conclusion 59

Bibliography 63

Nomenclature

Throughout this thesis we will make use of some acronyms. For simplicity these will be
stated here for future reference.

SVM Support Vector Machine

HOG Histogram of Oriented Gradients

HOF Histogram of Optical Flow

VGA Video Graphics Array

EB EigenBackground

GMM Gaussian Mixture Model

RGB-D Red Green Blue – Depth

HSV Hue Saturation Value

BS Background Subtraction

ROI Region Of Interest

SE Structuring Element

PCA Principal Component Analysis

SVD Singular Value Decomposition

EMT Extended Maxima Transform

BB Bounding Box

CM Confusion Matrix

TPR True Positive Rate

TNR True Negative Rate

FPR False Positive Rate

FNR False Negative Rate

CCR Correct Classification Rate

MCR Miss-Classification Rate

CV Cross-Validation

RBF Radial Basis Function

Chapter 1

Introduction

The human mind is extremely capable of recognizing visual input, especially if the input
consists of what other humans are doing. To distinguish whether a person sits down or
falls down is a quite trivial task for the human mind. If a computer is given the same
input however, things become considerably more complex. For example, the depth of
an object has to be taken into account, as well as the time for a particular action to
occur. These are things that our minds does on their own, without us needing to think
about it. A computer, however, will not be able to make use of the depth, or anything at
all for that matter, without proper teaching (i.e. programming). To create an effective
program or algorithm that enables the computer to see as humans do has proven to be a
difficult task. Perhaps this difficulty stems from the fact that we do not yet fully know
how our own brains interpret the visual stimuli from the eye. Therefore, trying to create
a program that does this becomes quite the challenge, because after all, how do you
teach something of which you know nothing yourself?

1.1 Background

Despite the above mentioned obstacles much progress has been made and the field of
computer vision is rapidly expanding with new applications found frequently. For ex-
ample, the entertainment industry makes use of the technology by incorporating it into
video games such as the Kinect products, where the player is able to “step into the game”
so to speak [1]. Another example of computer vision in entertainment are cameras with
the ability to autofocus on a person’s face as well software that can perform a so called
“faceswap”. However, computer vision is not restricted to the entertainment business
only. When used in conjunction with surveillance some new interesting areas emerge.
In traffic safety, there is a prominent example of computer vision, namely the Volvo city
safety system which assists the driver by detecting potential threats [2]. Computer vision
could also be of use in the care for the elderly by allowing them to stay in the comfort
and familiarity of their own homes but with an automated system that watches over
them. If, for example, a person falls over, the system could be able to decide whether to
send someone over for help (perhaps if the person has stopped moving after the fall or

1

1.2. PURPOSE AND GOAL CHAPTER 1. INTRODUCTION

something similar). A system of this type also needs to be able to accurately distinguish
between a person sitting down on purpose and a person falling down to make sure that
no false alarms are triggered.

1.2 Purpose and Goal

The purposes of this project are to obtain knowledge in the field of computer vision
and maybe broaden the general knowledge base in this relatively young area. The goal
is to generate a software program in Matlab. The piece of software should manage to
detect and classify specific human activities from a Red-Green-Blue-Depth (RGB-D)
video. The activities that this software program should be able to support are falling
and sitting/lying down. Furthermore, it should be re-trainable so that other activities
from new videos can be classified.

1.3 Problem definition

The main problem dealt with throughout this project is how to automate classification
of specific human activities via video streams. The data used in this project are RGB-D
videos captured by a Kinect camera1. Intuitively, actions being very similar to each
other would be the most difficult ones to distinguish and tell apart. Success in devel-
oping an algorithm that is able to accurately classify similar actions would imply that
the same algorithm, after proper training, most likely would classify diverse activities
even better. The aim of this project therefore focuses on classification of two similar
activities. The first activity is a person that starts in an upright pose followed by a
fall to the ground, this activity will be referred to as activity 1 throughout the rest of
this report. The second activity is a sequence of actions where a person starts from
an upright pose followed by sitting down then followed again by lying down, and will
similarly be referred to as activity 2. The process of classifying one activity alone is
quite complex and thus separating this process into sub-tasks will give an overview that
is easier to comprehend. This process can be divided into three sub-tasks, detection,
feature extraction and classification. Each of these gives rise to various problems;

Looking at the first task, detection, which in itself could contain all three tasks
mentioned above. The first issue at hand is the extraction of manageable data from a
video stream, i.e. extracting images, frame by frame, upon which further analysis can
be performed. Once the raw image data can be accessed, the location of the object of
interest (in this case, the person) should be found. In order to locate an object, features
that makes it possible to determine whether the image contain an object or not should
be extracted. Once these features has been extracted, some classification process should
be applied for detection. If an object is detected, the region of interest2 (ROI) should
be masked out in order to reduce the effect of different backgrounds/environments.

1These videos contain a coloured (red) skeleton that’s projected onto the person captured on the
video. The skeleton is connected by the persons joints i.e. head, shoulder, elbow etc.

2A region of interest is a small region of the image that encloses the object of interest.

2

1.4. LIMITATIONS CHAPTER 1. INTRODUCTION

The second step, the task of feature extraction (features corresponding to activities),
should be done by use of the ROI. These features must be characteristic of the individual
activities so that it is possible to distinguish them. To get a sense of motion additional
features should be extracted, features that are non-static in the sense that they are
extracted from a sequence of images.

Finally the classification task, initially the data-set needs to be separated into training
and testing data. The training data is the data used to develop a classifier. This data
should be diverse so that it is not biased towards classifying activities performed by
persons of a certain height, gender or look. Further aspects, e.g. the trajectory and
distance of the fall should also follow this criteria. Since the set of activities is limited to
the size of two, a binary classifier should be used to decide whether a performed activity
belongs to one class or the other. Such a classifier that has shown good performance in
earlier work is the support vector machine (SVM). Because of this, the (SVM) will be
used as the main classifier in the project.

To ensure the robustness and accuracy of the classifier some limits by measures of
performance must be reached. The classification rate i.e. the number of classifications
of activity 1 and 2 that maps them to their true class should be approximately 85-90%.
The false alarm or false positive rate (FPR) i.e. the number of classifications that maps
anything that is not activity 1 to class 1 should be less than 10%. Other aspects such
as the speed and execution time of the algorithm should be, without any formal limit,
fast enough so that it is considered useful. From the descriptions above a summary of
the problems can be derived:

• How to extract manageable data from a video stream?

• How to locate the object of interest in an image?

• How to extract the ROI from the image? What shape?

• What features should be used to enable accurate classification?

• How should the distribution of training vs. testing data be selected?

• How should the training of the classifier be performed?

• How to test and verify the accuracy and robustness of the classifier?

• How to test and verify the speed and execution time?

1.4 Limitations

Since the area of computer vision is quite broad, with a plethora different approaches
available to solve a problem, some restrictions have to be enforced on the project in
order to keep it manageable in the short time frame available for the bachelor thesis.
There exists such a large amount of possible algorithms to use that covering them all is
too overwhelming. Therefore, in order to keep the problem simple enough to tackle with

3

1.5. OUTLINE CHAPTER 1. INTRODUCTION

no prior experience in the area of image processing and computer vision, as well as with
respect to the time restriction, the following limitations will be made.

• There will be only one human to classify in every video-stream. (In each frame
there will only be one person) In addition, the only moving object will be a human.

• There will only be two classes of activities to handle. In this case; falling and
sitting down.

• The data to be used have been captured with a fixed Kinect camera and can have
a skeleton overlayed on top of any humans present in the video.

• For every video there will be possible to access at least one ”empty” frame with
only the background and no objects of interest visible

• The algorithm will be coded in Matlab and will make use of the available toolboxes
such as the Computer Vision System and Image Processing toolboxes in order to
achieve its results. (For example by using the vision.blobAnalyzer object.)

• The classifier (for activity 1 and 2) to be used will be a SVM that we will train by
using some of our data.

• There will be no formal performance demands. The algorithm will not have to run
within a certain time frame.

1.5 Outline

Chapter 2 – Theory Introduces general concepts and methods used throughout this
thesis with regard to detection (pre-processing), feature generation/extraction and clas-
sification techniques.

Chapter 3 – Method Outlines the methodologies used in each phase of this project
and gives implementation details of the corresponding methods respectively.

Chapter 4 – Experimental Results Gives an overview of the results obtained by
different approaches used for solving the detection problem, the design of features as
well as classification rates.

Chapter 5 – Discussion Provides a comprehensive discussion where advantages and
disadvantages for each part of this project is more thoroughly evaluated.

Chapter 6 – Conclusions Gives a concluding summary of our thoughts on the ob-
tained results and how the initial problems were solved.

4

Chapter 2

Theory

The aim of this chapter is to present the basic theory on the subject of image processing.
It will also outline descriptions of the methods and techniques used throughout this
thesis. Initially the general concept of RGB-D (Red,Green,Blue,-Depth) images and
some basic operations used for processing is explained. A description of methods usable
for object detection is presented followed by several sections introducing methods used
for extraction of image features. Finally the concept of classification using support vector
machines (SVM:s) is described.

2.1 RGB-D images

Digital images are built up by pixels, i.e. small picture elements arranged in two dimen-
sional space. Pixels are represented by numerical values, the RGB pixel is comprised
of three numerical values representing the intensity of the red, green and blue colors
respectively. These values are often 8-bit numbers, i.e. ranging from 0–255 where a
larger number corresponds to a higher intensity. An RGB pixel comprised of three 8–bit
values can represent 2563 ≈ 16.7 · 106 different colors. In Figure 2.1 an RGB image1 has
been split into its three components to illustrate the intensities in each color band. The
intensity is represented with a gray scale image and the corresponding histograms show
the distributions of pixels over the range [0,255]. Kinect uses an infrared laser projector
coupled with a monochrome camera to generate the depth-map that functions under any
ambient light conditions. The depth-map is in standard VGA resolution, i.e. 640 × 480
pixels. Each and every pixel contains a value which represents the distance between the
camera and the object in millimeters. The various pieces of furniture and educational
appliances, e.g. the overhead projector, depicted in the corner of the room in Figure 2.2a
are not distinguished in the depth-map in Figure 2.2b even though the furniture is not
at the same depth as the wall. This is due to the operational range of Kinect, which is
0.7-6 meters and the appliances are at a distance greater than 6 meters from the camera
[3].

1The original RGB image is illustrated in Figure 2.2a.

5

2.2. MORPHOLOGICAL TRANSFORMS CHAPTER 2. THEORY

(a) Red channel (b) Green channel (c) Blue channel

0 50 100 150 200 250

(d) Red histogram

0 50 100 150 200 250

(e) Green histogram

0 50 100 150 200 250

(f) Blue histogram

Figure 2.1: Red, green and blue channels of an RGB image. The histogram representations
corresponds to the gray scale intensity of each color band.

(a) RGB image (b) Depth map

0 2,000 4,000

(c) Depth histogram

Figure 2.2: Components of an RGB-D image. The histogram represents the intensity in distance
between the camera and the corresponding objects measured in millimeters. The depth map
depicts the same correspondence in a gray scale image where black (or 0) corresponds to distances
to far from, alt. to close to the camera.

2.2 Morphological Transforms

Morphological transforms, with regard to the subject of image processing, are operations
that most often are applied to binary images. A binary image is an image constructed
by pixels that are logically true/false (1/0 or white/black). The idea is to shrink or grow
objects in images. Objects, also known as blobs, are represented as sets of connected
(neighbouring) pixels that are logically true (1). In the following sections, true will imply
logically true.

6

2.2. MORPHOLOGICAL TRANSFORMS CHAPTER 2. THEORY

(a) Binary (b) SE (c) Erosion (d) Dilation

Figure 2.3: Figure 2.3a illustrates a binary image with a single object, i.e. neighbouring logically
true pixels. By use of the structuring element depicted in Figure 2.3b the resulting images after
applying erosion/dilation is illustrated in Figures 2.3c/2.3d.

2.2.1 Structuring Elements

A structuring element (SE) is a set of points arranged in a given shape, e.g. N × N
points forming a square, line or a random configuration. The SE needs to specify a center
point [4] and is applied to a binary image by projecting its center point onto every pixel
(in parallel) that are true. The pixels are then marked true or false (depending on the
operand) if every pixel covered by the SE is true. In other words, if every point of the
SE maps to a pixel that belongs to an object, see Figure 2.3.

2.2.2 Erosion

Erosion, denoted 	, has the purpose of removing pixels that do not fit a given SE
(shrinking an object). Applying the structuring element onto an image as mentioned
above results in an image where pixels that fit the SE are marked true [4], see Figure
2.3c. Any pixel that is not marked true is removed from the object. The object is
therefore likely to be comprised of less pixels after this operation.

2.2.3 Dilation

Dilation, denoted ⊕ has the purpose of adding pixels, i.e. grow objects. Applying the
SE on a binary image therefore results in, as apposed to erosion, that the pixels that fit
the SE are marked false [4], see Figure 2.3d. Later, any pixel that is marked true will
have to mark some neighbouring pixels true in order for the SE to solely hit pixels that
belongs to the object. In other words, when the SE is projected onto the set of pixels
comprising the object, it should only hit true pixels. In general some pixels do not fit
the SE and the object is therefore likely to be enlarged.

2.2.4 Closing and Opening

The terminology of closing and opening an object refers to the use of erosion and dilation
in specified orders. If A represents a binary image and B is a SE, the operations is
performed as follows. Opening, denoted ”◦” is the the equivalent to applying erosion
followed by dilation, i.e. A ◦ B = (A 	 B) ⊕ B. Closing, denoted ”•” is the opposite of
opening, i.e. dilation followed by erosion, A •B = (A⊕B)	B [4].

7

2.3. FOREGROUND DETECTION CHAPTER 2. THEORY

2.2.5 Extended Maxima Transform

The different regional extremes in a picture can contain both interesting and irrelevant
features. In order to make use of these features the Extened Maxima Transform can be
used. The transform is preformed by extracting the regional maxima of the H-transform.
This is done by first conducting the H-transform on the image. The H-transform is
essentially a search for all maxima in an image that are greater then some value V .
The H-transform filters the image by looking at the intensity values of the pixels with a
contrast parameter. Any pixel that is V higher in intensity compared to its neighbours
is considered a maxima. The Exteneded Maxima transform differs somewhat from the
other kinds of morphological operations which instead use shape criteria set by the
specified SE. [5]

2.3 Foreground Detection

One of the more important parts of computer vision is to prepare the video data for
future processing. Not all parts of the video frames are of interest. Most often only a
subsection of the frame contains the relevant information. In order to get usable data, the
region of interest (ROI) has to be extracted. What parts of the video that belong to the
foreground as well as what parts belong to the background, has to be determined. This
evaluation can be done in a multitude of ways, each of which with their own strengths
and weaknesses.

2.3.1 Color Thresholding

The process of thresholding an RGB image Irgb by color is a simple process. The images
of each color band, Ir (red), Ig (green) and Ib (blue) represents parts of the original image
which upon separation makes it possible to mask out, i.e. use specific partitions [αi,βi]
of the intensity range where i = r,g,b and 0 ≤ αi ≤ βi ≤ 255 for an image represented
by 8-bit integers.

The values of αi and βi can be obtained by use of some interactive tool, e.g. Matlab’s
Color Thresholder. Once the values are obtained the masked images
(Irm, Igm, Ibm) of each color band is obtained by

Iim = (Ii < αi) ∧ (Ii > βi) (2.1)

where i = r,g,b. The image mask IM , containing the binary representation of the
region of interest, is then constructed by the logical conjunction between the masked
images from each color band as

IM = Irm ∧ Igm ∧ Ibm. (2.2)

8

2.3. FOREGROUND DETECTION CHAPTER 2. THEORY

2.3.2 Background Subtraction

One of the most basic approaches in generating a ROI is to remove the background.
Removing the background would in a perfect world just leave out the objects of interest.
Unfortunately achieving this can be problematic, especially in a varied setting such as
the ones found in real world applications of computer vision.

The process of background subtraction can be done in various ways. Depending
on what type of video should be processed and its characteristics, e.g changes in illu-
mination, different methodologies produce different results. Therefore there exists no
universal rule as to which method should be used in any particular case.

One of the simplest techniques for performing a background subtraction is by man-
ually subtract a frame, with only the background visible, from every other frame. By
doing this, every pixel that belong to the background should be set to zero, i.e. becoming
black since they contain the same data. The black pixels are considered to be irrelevant
i.e. belonging to the background. Correspondingly, every pixel with contents greater
than zero is set as foreground.

The method is only viable if an ”empty” frame, free of any objects or regions of
interest, is accessible. This may or may not be the case, depending on what the computer
is“watching”. If no such empty frame is available, the risk of introducing errors increases.
The types of errors introduced are most often erroneous masks from the later steps in the
method. The mask may, for example, get a ”phantom” silhouette of a object appearing
wherever the faulty background contains ”non empty” data. However, when a proper
background image is attainable, the subtraction should isolate any new objects entering
the video. These objects can then, for example, be sifted through a color-threshold to
obtain a ROI. Unfortunately this will not always give the desired results since it might be
possible that the objects of interest contains similar pixels to the ones in the background
which would make them black as well. This will in turn result in holes in the ROI after
thresholding. An example of a manual subtraction resulting in a noisy ROI can be seen
in Figure 2.4.

(a) Background. (b) Spotted ball in front. (c) Subtracted background.

Figure 2.4: In 2.4a the background is shown. A frame extracted from the video when a spotted
ball passes over the background is shown in 2.4b. Subtracting 2.4a from 2.4b results in the
picture shown in 2.4c. It can be seen that the subtraction creates ”holes” were the spots should
be.

A similar approach is background subtraction in HSV color-space. HSV presents the
pixel-value more intuitively than RGB. Instead of a red, green and blue channel HSV has
a hue, saturation and brightness (value) channel. The saturation channel is of prominent

9

2.3. FOREGROUND DETECTION CHAPTER 2. THEORY

interest since human skin more often than not tends to be relatively highly saturated,
as shown in Figure 2.5b. Background subtraction in HSV color-space does not differ
much from manual background subtraction, but is more of a variation of it. It operates
in the same manner, where the current image is compared to the background image to
spot differences. The most defining aspect of this method is unsurprisingly that it is
performed in the HSV color-space.

(a) Hue Channel (b) Saturation Channel (c) Brightness Channel

Figure 2.5: The hue channel does a bad job distinguishing the human from the mat, the
saturation channel somewhat highlights the human and the brightness channel only acts as black
and white version of the original image.

Another way of determining what parts of a video are in the background or in the
foreground is to use a Gaussian mixture model (GMM). The purpose of the GMM is to
to model the probability distribution of certain features, for example in a video stream.
This can be used to create a model that describes the background. This model can then
in turn be used to extract a ROI. The GMM consists of a weighted sum of Gaussian
density distributions [6]. By concatenating a sum of Gaussians it is possible to model a
more “uneven” density function as the one shown in Figure 2.6b. Using GMMs is a good
choice if the gathered data points clusters together as can be seen in Figure 2.6c and
Figure 2.6d. The GMM generally performs better than k-means clustering2, especially
if the data clusters differ in size and have some correlation between them [8].

A final approach, the method of eigenbackgrounds (EB), makes use of the method
of principal component analysis (PCA). The process can be divided into training and
execution phases.

The training phase could be conducted in a variety of ways, e.g. static by use of a
single set of images or dynamic such that the model is re-trained during the execution
phase [9]. The work flow of the training phase is structured in the following steps [10].

• A set of images I = {Ii : i = 1,2, . . . ,n} with width w and height h is initially
reshaped into a set of vectors V = {vi : i = 1,2, . . . ,n} where the vector vi is con-
structed by vertical concatenation of the columns of Ii. The vectors in V is thus
column vectors of size m× 1 where m = w × h.

2K-means clustering is a method for separating clusters in k classes and is a common method used
for data mining [7].

10

2.3. FOREGROUND DETECTION CHAPTER 2. THEORY

(a) Three Gaussians. (b) The weighted sum
of the Gaussians

(c) Data points in dis-
tinct clusters.

(d) Gaussian mixture
model applied to clus-
ters

Figure 2.6: 2.6a shows three separate Gaussians fitted to one-dimensional data. 2.6b shows the
generated model which is the weighted sum of the previous curves. In 2.6c it is clear that the
two-dimensional data belongs to two distinct clusters. The distribution of the different points
are modeled by 2 Gaussians in 2.6d. It can be seen in the topography that the model captures
the distribution of the data.

• An average vector v̄ is computed as v̄ = 1/n
∑n

i=0 vi.

• A matrix X is then constructed by horizontal concatenation of the normalized
image vectors xi = vi − v̄ as X = [x1 x2 · · · xn].

• Assuming that the images in I are very similar, a principal component analysis can
be applied to represent the images in a vector space of lower dimension. Singular
value decomposition (SVD) then yieldsX = USV T where U is anm×m orthogonal
matrix, V T is a n× n orthogonal matrix and S is an m× n diagonal matrix with
the singular values of X. The first k columns of U approximates a basis of the
column space of X if the k first columns of S contains non-zero singular values and
the residual n− k values is sufficiently close to zero.

• The basis Ũ of the subspace then represents the EB model.

The execution phase is conducted by iteratively project new images Ĩ onto the sub-
space as

ṽ′ = Ũ ŨT (ṽ − v̄) + v̄ (2.3)

where ṽ is the new image represented as a column vector and ṽ′ its projection onto the
subspace. If Ĩ contains significant deviations from the set of images in I, the absolute
difference between the image and its projection at the corresponding locations would
increase. By thresholding this difference

w = |ṽ − ṽ′| > T (2.4)

where T is a given threshold, most anomalies would be detected. Finally to get the
image representation of the deviations (moving objects), the values of w in intervals of
h is concatenated horizontally into a two dimensional matrix (an image) [10], i.e. the
first column consists of the first 1,...,h values, the second column of the h + 1,...,h + h
values etc.

11

2.4. HISTOGRAM OF ORIENTED GRADIENTS CHAPTER 2. THEORY

2.4 Histogram of Oriented Gradients

Histogram of Oriented Gradients, HOG, first described by Navneet Dalal and Bill Triggs
in 2005, is an algorithm to identify specific features in an image. The first step to
acquire the features of an image are by applying an 1-dimensional centered point discrete
derivative mask,

[−1, 0, 1]. (2.5)

The pixel evaluated is multiplied with the factor 0, the pixel left and right to it
with -1 and 1 respectively. The sum of these three pixels are then the new value for the
evaluated pixel. This is done both horizontally and vertically. When computed vertically
the transposed version of the mask (2.5) is used. Every pixel determines a vote for an edge
orientation histogram channel, where the vote is weighted on the gradient magnitude or
a function of the gradient magnitude, e.g. the square-root of the gradient magnitude.
All of the pixels that vote to the same histogram makes up a sub-image and these sub-
images are referred to as cells. The shape of the cells can be set to either rectangular or
radial, referred to as R-HOG and C-HOG respectively. An example of rectangular cells
is shown in 2.7a where each cell consist of 9 pixels. The bins of the histogram are 20
degrees wide. Whether the gradient is unsigned or signed decides the spreading range
of the histogram bins. When unsigned, the bins are spread evenly from 0 to 180 degrees
and when signed, they are instead evenly distributed from 0 to 360 degrees.

HOG can be used on both colour and grayscale-images. The results are comparable
between RGB and LAB colour spaces, but when restricting to grayscale, HOG performs
slightly worse [11]. When HOG is applied on colour images each colour channel is
calculated individually and the pixel’s gradient vector becomes the channel with the
biggest norm.

The histogram for each cell is used to normalize the contrast of larger spatial regions
of the picture, referred to as blocks. The normalization of the blocks are overlapping,
meaning that cells have the potential to be used several times. The overlap eliminates
local inconsistencies of illumination. Otherwise these inconsistencies possibly can appear
between block-boundaries. The block normalization schemes most commonly used by
Dalal and Triggs are L2-hys and L1-sqrt [12].

Let all the histograms from a block make up the non-normalized vector v, let ||v||k
be the k-norm for k = 1,2 and let β be a small unspecified constant. The normalization
scheme can then be defined as one of the following:

L1-sqrt f =
√
v/(||v||1 + β) (2.6)

L2-norm f = v/(||v||22 + β2) (2.7)

L2-hys is a variation of L2-norm, where L2-norm is followed by a threshold which
limits the maximum value of v to 0.2 and then re-normalized (with L2-norm).

12

2.5. OPTICAL FLOW CHAPTER 2. THEORY

(a) 9, 3× 3 Cells (b) A 2 by 2 block consisting
of 4 3-by-3 cells

Figure 2.7: The bottom left 2× 2 block (light grey) is the only block that the bottom left 3×
cell (dark grey) is part of in the 9× 9 pixel image.

2.5 Optical Flow

Most optical flow algorithms are based on a few assumptions, primarily intensity con-
stancy, gradient constancy and smoothness. The intensity constancy assumption makes
use of the assumption that pixel values do not change as a result of pixel displacements
between frames (see Figure 2.8a). This could formally be stated as

I(x,y,t) = I(x+ u, y + v, t+ 1), (2.8)

where I(x,y,t) denotes the image intensity function for a pixel (x,y,t) and (u,v,1)T

is the displacement vector between images at time t and t + 1 (see Figure 2.9) [13].
If displacements between images are assumed to be small (approximately one pixel),
linearization of Equation 2.8 by a first order Taylor expansion is a valid approximation
that yields the equation know as the optical flow constraint [13],

∂I

∂x
u+

∂I

∂y
v +

∂I

∂t
= 0. (2.9)

The optical flow constraint alone, as stated in [14] and [15], is not sufficient for the
computation of velocity vectors since there exists two unknowns, u and v, and give rise
to what is referred to as the aperture problem (see Section 2.5.4).

k k + 1

(a) Intensity constancy assumption

k k + 1

(b) Gradient constancy assumption

Figure 2.8: Illustration of optical flow assumptions, (a) The illumination (intensity) of pixels
are assumed to be constant when displacement occurs between frame k and k+1. (b) The image
gradient is assumed not to change when change of illumination occurs between frame k and k+1.

The second assumption mentioned is stronger. It is stronger since it is invariant to

13

2.5. OPTICAL FLOW CHAPTER 2. THEORY

changes in pixel intensities, i.e. gradient constancy make use of the assumption that the
gradient of an image do not change due to changes in pixel intensities (see Figure 2.8b).
Displacements of pixels are assumed not to affect the gradient [13], permitting the gra-
dient constancy assumption to be stated as

∇I(x,y,t) = ∇I(x+ u,y + v,t+ 1) (2.10)

where ∇I = (∂x,∂y)
T denotes the spatial gradient.

The third assumption, smoothness, is often used in order to help solve the aperture
problem. It is stated in [14] that in most parts of an image, pixels tend to move similarly
to their neighborhood, except of course, at object boundaries. A smoothness assumption
therefore aids estimation of optical flow in parts of an image where gradients can not
be estimated. Due to discontinuities at object boundaries, an assumption of a piecewise
smooth flow, i.e. smoothness in small regions, often result in better estimates of the
flow field [13],[14],[15]. In [15] it is also stated that filtering or smoothing (using low-
or bandpass filters) prior to the computation of image differentials enhances the pattern
signals relative to the noise inherent in the image and produces a more accurate structure.

2.5.1 Horn–Schunck

The Horn-Schunck method is a global method for estimation of optical flow and makes
use of the assumptions mentioned earlier. It is denoted global since it introduces a
global smoothing constraint. The smoothing constraint introduced is the square of gra-
dient magnitudes [14]. The problem of estimating optical flow is defined as an energy
minimization problem, giving rise to a linear system of equations that is solved by use of
the numeric Gauss-Seidel method [14]. For a more thorough derivation of this method,
see the original work of Horn and Schunck [16].

(u,v,t)T

t

x

y k = 1
2

3
4

Figure 2.9: Illustration of the spatio-temporal space, between images at time t and t + ∆t
(frame k and k + ∆k) the displacement vectors (u,v,t)T shows how a pixel at (x,y,t), t = 1,2,...
moves.

14

2.5. OPTICAL FLOW CHAPTER 2. THEORY

2.5.2 Lucas–Kanade

The Lucas–Kanade method is a local method for estimation of optical flow. It is assumed
that the optical flow field in small regions around each pixel is constant. It is denoted
local due to the introduced smoothness assumption and solves the optical flow constraint
in local regions of an image. Each of these regions give rise to overdetermined linear
systems, systems that are solved by use of the least square method. For a more thorough
derivation of this method, see the outline made by Lucas and Kanade [17].

2.5.3 The Coarse–to–Fine Approach

The coarse-to-fine approach can be viewed as a series of three steps, starting with an
initialisation step followed by two iterative execution steps.

Initialisation Starts by re-sizing/down-sampling of a pair of images. Illustratively, by
placing the down-sampled images on top of each other creates a Gaussian pyramid
where images with coarser resolution appear upwards (see Figure 2.10). A pixel of
an image above the base level is then a mean value of n pixels, where n depends on
the re-sizing factor and the level, from the original image that forms the base of the
pyramid. By starting optical flow estimation with an image of coarser resolution,
large displacements will appear smaller. The images at the top level will be denoted
itop1, itop2 for image 1 and 2 respectively.

Execution step 1 Estimation of optical flow between images is iteratively calculated,
starting at the top level where the flow is first estimated between itop1 and itop2.
The estimated flow field is then used to warp itop1 towards itop2, creating a warped
image, iwtop. The next estimation of flow is then calculated between iwtop and itop2
followed by the procedure of warping iwtop towards itop2 again. This procedure of
estimating optical flow and warping continues until the warped image converges
with itop2.

Execution step 2 Once iwtop has converged with itop2 the estimated flow field is up-
sampled to match the image at the next level, i.e. the same image with higher
resolution. The up-sampled flow field is then used as an initial ”guess” to warp
inext1 towards inext2, where inext1,2 are the images at the next level. Once the
initial guess is done, the process is looped back to execution step 1, performing
the same procedure on this level. This loop involving execution step 1 and 2 then
continues to execute until the estimated flow of the original images have been
retrieved.

2.5.4 The Aperture Problem

The rectangular area depicted in Figure 2.11 represents an area with a uniform texture,
i.e. insufficient for gradient calculation. The aperture problem is that when looking

15

2.6. SUPPORT VECTOR MACHINES CHAPTER 2. THEORY

iterative estimation of flow

warp & up-sample

iterative estimation of flow

image 1 image 2

Figure 2.10: The coarse-to-fine approach of estimating optical flow. Gaussian pyramids depicts
down-sampled images with coarser resolution upwards.

through an aperture, say 1, any horizontal movement of the rectangle would be impos-
sible to register since only vertical pixel movement is seen. Aperture 3 depicts the same
problem, being able to detect horizontal but not vertical movement. Through aperture
2 however, it is possible to detect both vertical and horizontal motion [14].

1
2

3

Figure 2.11: Uniform textured rectangular surface with three circular apertures.

2.6 Support Vector Machines

SVM or, ”Support Vector Machine”, is a method to systematically allow a computer to
undergo supervised learning. The SVM generates on a given data-set, a classifier capable
of separation of two classes of objects. The SVM is essentially a two object classifier [18]
but in theory the possibility of cascading SVM:s together allows classifying into two or
more categories.

The idea is that all entities to be classified are represented as a feature vector. This
feature vector may be of an arbitrary dimension, that is, it can contain n elements. All
feature vectors that are passed into the SVM needs to have the same size however. The
elements in the feature vector may be some measure of certain characteristics on the
object or something else that distinguishes the objects among each other. When plotted
these vectors make up points in an n-dimensional space. The plot depicted by 2.12a
shows an example of this using two-dimensional feature vectors. Assume that there are

16

2.6. SUPPORT VECTOR MACHINES CHAPTER 2. THEORY

two possible classes, class A (black circles) and class B (white circles). As seen in 2.12a
points from the same class, here having the same color, cluster together and are quite
easily distinguished by the human mind. For a computer however, the task is not so
trivial. Where one class ends and another begins has to be determined. One way to
asses this is by using the SVM. The SVM-algorithm tries to separate the points into
two classes via a hyperplane. Since there usually are quite a few such hyperplanes the
SVM tries to choose the one that guarantees that the maximum distance betwixt the
two closest data-points (also called support vectors) is achieved. 2.12b illustrates the
separation of the two classes by the hyperplane. Since the demonstration-data is two-
dimensional the hyperplane is reduced to a line. Any data that falls to either side of the
line is assumed to belong to that class. This means that in the example below, any data
point above the black line is considered to belong to class B and vice versa [19].

(a) Feature vectors in 2D space. (b) Hyperplane separating two classes.

Figure 2.12: The feature vectors can be seen in 2D space in 2.12a. It is clear that vectors
belonging to the same class cluster together. In 2.12b the SVM has introduced a hyperplane
that clearly separates the classes on each side of the plane (a line in 2D).

Unfortunately some cases exists where the data is not so well clustered. In that case
the data may not be linearly separable as in 2.12b. What this means is that there does
not exist a hyperplane such that it divides the points into two categories. Nevertheless
it might be possible for the human imagination to find some sort of similarity between
them. In 2.13a it is clearly displayed that the data shows some sort of correlation. All
the black circles are clustered together in the middle and the white ones seems to have
some sort of minimum distance from the origin. Separating them using a plane (line) is
futile. In this case there are two possible alternatives accessible. One option is to choose
the hyperplane that presents the smallest error. [18] In this case this is not possible since
it would introduce an error so big that the classifier would lose its meaning, as can be
seen in 2.13b.

The other option is to use the kernel trick. The kernel trick means that by some
function called the kernel, the feature vectors are mapped into a higher dimensional
space. There also exists another possibility if additional non-correlated features are
available. By introducing the extra features into the feature vectors, it would increase
their dimensionality (which is what the kernel essentially does). In the higher dimension
the data might be linearly separable as seen in 2.14a. Thanks to the kernel function or

17

2.6. SUPPORT VECTOR MACHINES CHAPTER 2. THEORY

(a) Feature vectors in 2D space. (b) Hyperplane separating the data.

Figure 2.13: As can be seen in 2.13a the data clearly clusters together in some way but it is also
apparent that the data is not linearly separable. In 2.13b we can see a failed attempt at separating
the classes. The data points are separated but the hyperplane introduces an unacceptable error
which makes it useless for classification.

(a) 3D space view (b) Hyperplane in 3D space.

Figure 2.14: Using a kernel the data from 2.13a can be observed to be mapped to a higher
dimensional space (in this case 3D) which is depicted by 2.14a. In this case it is obvious that
there exists hyperplanes that can separate the data without introducing any errors. One such
plane is shown in 2.14b

the increase of dimensionality on the feature vectors, it was made possible to achieve the
state shown in 2.14a. In this case it is clear that the data is separable by a plane passing
between the same colored data points. One such plane is shown in 2.14b.

In the cases where the kernel function is used it is usually best to utilize the basic
ones, especially if the data set is large. This is because the execution of the program
would otherwise be slowed down due to the costly complex calculations needed. The
most commonly used kernel functions are linear, Gaussian or polynomial. There also
exists the choice of the RBF kernel which usually gives satisfying results [20].

2.6.1 Training of the SVM

The training is done by allowing the SVM to analyze several data points and then try
to find the dividing hyperplane, given by equation 2.11. w and b are model parameters
and xi is one of the feature vectors. All available training-data is mapped into a suitable

18

2.7. PREDICTIVE ANALYTICS CHAPTER 2. THEORY

n-dimensional space, where n is the dimensionality of the data. The distance from
the closest data point to the dividing hyperplane is calculated via equation 2.12. This
distance, r, should be as large as possible and is basically a quadratic optimization under
linear constraints [19]. This is a common, and known problem in mathematics and can
be solved by maximizing Lp in equation 2.13 [18].

wTxi = 0 (2.11)

r =
(wTxi + b)

||w||
(2.12)

Lp =
1

2
||w|| −

t∑
i=1

αiyi(wxi + b) +
t∑
i=1

αi (2.13)

Here αi (i = 1,2,3 . . . t) is a non-negative number such that the partial derivatives of
Lp with respect to αi are zero. t is the number of training cases (i.e. data points) that
the SVM is feeded with, the vector w and the scalar b define the hyperplane as seen in
equation 1. The value Lp is called the Lagrangian.

2.7 Predictive Analytics

To evaluate the performance of machine learning techniques, such as SVM classification,
predictive analytics can be used.

2.7.1 Confusion Matrix

One technique that predictive analytics encompasses is a table of confusion, also referred
to as a confusion matrix (CM). The confusion matrix is a n × n table layout which
highlights where a supervised learning algorithm confuses one class for another, i.e. the
CM visualizes the performance of the classifier. For a binary classification n is equal
to 2 since there are two classes. As shown below in Table 2.1 the input data for the
CM is true positives (TP), false positives (FP), false negatives (FN) and true negatives
(TN). TP is where actual true instances are classified as true, whereas FN is where true
instances instead incorrectly are marked as false. TN is where actual false instances are
classified as false and FP is where false instances instead incorrectly are labeled as true.

Table 2.1: A 2× 2 confusion matrix for assessment of binary classification rates.

Is True Is False

Lbl. True TP FP

Lbl. False FN TN

19

2.7. PREDICTIVE ANALYTICS CHAPTER 2. THEORY

The content in Table 2.1 can then be used to acquire, inter alia, the correct classi-
fication rate (CCR) which is also referred to as accuracy (ACC), the miss classification
rate (MCR), true positive rate (TPR), true positive rate (TNR), the false positive rate
(FPR), the false negative rate (FNR). The calculation procedure of these rates are given
by Equation 2.14–2.19.

CCR = (TP + TN)/(TP + FP + FN + TN) (2.14)

MCR = (FP + FN)/(TP + FP + FN + TN) (2.15)

TPR = TP/(TP + FN) (2.16)

TNR = TN/(TN + FP) (2.17)

FPR = FP/(FP + TN) (2.18)

FNR = FN/(TP + FN) (2.19)

2.7.2 Cross-Validation

Cross-validation (CV) is a technique used to estimate classification-errors. When a
method needs to be calibrated on known data to later be tested on separate data and
the available sample size of data is not of satisfying proportion, CV can be used. There
exists several variations of CV and k-Fold Cross-Validation is one of those.

When applying k-Fold CV the data set is divided into k roughly equally sized groups.
One group is used as validation data while the other k−1 groups are used as training data.
This procedure is then repeated k times to make sure all groups of data are validated
exactly once. Once all k sets of prediction statistics are generated, the mean of said
statistics can be calculated. These mean values act as an estimation of the prediction
statistics.

20

Chapter 3

Method

This chapter will focus on the process of designing algorithms and the methodologies
used to extract the necessary data. Part 3.1 mainly consists of descriptions on how the
detection of the foreground and ROI was performed. Part 3.2 describes the procedures
used to generate the different features and the process of concatenating them into a
single feature vector. Finally part 3.3 outlines the creation of the actual classifier, what
different parameters that were used, how they were obtained, and the type of kernel
used. One thing to note is that we have knowingly omitted most of exact parameter
values since many of them are unique to this particular data-set.

3.1 Approaches for Human Detection

This section serves to give an outline of the algorithms used for video pre-processing.

3.1.1 Skeleton Tracking by Color Thresholding

A skeleton tracking approach for detecting motion was implemented. A video, captured
by a Kinect camera, can be set up to project a skeleton onto the human object, connecting
its joints. The skeleton is drawn with a distinct red color, making it possible to apply
color thresholding in order to extract it. Detection of the skeleton from an RGB image
was conducted in accordance to the method described in section 2.3.1. The RGB image
was initially split in its respective color components and thresholded by a given value
T . An initial image mask IM∗ was then computed by the logical conjunction of the
thresholded image components. To reduce the effect of excessive objects, pixel areas
smaller than a given size N were removed from the initial mask. A bounding box of the
object in IM∗ was then extracted and to successfully fit the entire person, the box had
to be scaled. The output was thus an image mask IM , a rectangular object (area) of the
image.

21

3.1. APPROACHES FOR HUMAN DETECTION CHAPTER 3. METHOD

3.1.2 Isolation of the ROI by Manual Background Subtraction

To isolate the ROI from the rest of the image a method of background subtraction was
tested. The background- subtraction procedure began by finding an “empty” frame,
containing only the background setting, obtained by manual extraction from the video
stream. This background-frame was then subtracted from every other frame in the video,
making most of the data (pixel values) in the images zero. After that, every color band
of each frame, red, green and blue, was thresholded on intensity. The intensity level had
to be manually tuned depending on the type of video being processed. The results from
the thresholding was then recombined via logical AND operation, producing a logical
mask.

The logical mask obtained from the previous steps was then passed through a series of
morphological operations to remove noise and tidy up the contours. In this case opening
and closing. This was done using two different SE:s, one octagon of size 6 and one disk
of size 4. The final mask was then used to remove everything but the ROI from each of
the video frames. The same procedure could also be done on the depth map to instead
obtain a mask generated from the D-part of the RGB-D data. In that case however, the
thresholding could only be performed on the one band present, with a different intensity
level tailored to the depth image.

3.1.3 Subduing the Effects of Inconsistent Illumination via Background
Averaging

When the illumination of the video changes, a manual background subtraction might
produce unreliable results. Therefore it could be of interest to generate a new background
with updated lightning conditions every few frames. An attempt at one such method
was implemented in the following way: by masking out the bounding box of the ROI
from the current frame, leaving only the background, and then combining the newly
masked image with the currently saved image of the background. First the ROI of
the current frame was used to generate an inverted mask. That is, a mask that had
ones everywhere but on the ROI-box. This mask was then used to extract the partial
background from the current frame. The same area and location as the bounding box
on the original background was then multiplied by two. Then the average of the new
and old background was taken, producing a new one but with different illumination
which was saved as the current background. This new background could then be used
for manual subtraction. Here the reason for the multiplication by two in the previous
step becomes clear. If it would have been omitted, a region much dimmer than the rest
of the image would appear at the same position as the ROI because of the averaging.

3.1.4 Specframe

When analysing different ways to extract the human from the background, a promising
method was found. Performing a manual gray-scale background subtraction did isolate
the foreground (human) a bit but it also produced much noise as well. To smooth out

22

3.1. APPROACHES FOR HUMAN DETECTION CHAPTER 3. METHOD

the noise, a 2 × 2 median filter was applied. Despite of this some noise still remained.
Realizing that it was much dimmer than the actual foreground a change in contrast and
brightness was made to reduce the visibility of the noise by so much as to in fact set
the intensity values of the ”noise-pixels” to zero. The actual foreground being brighter,
would become dimmer, but not disappear. Increasing the contrast and brightness again
after the initial reduction would then only affect the foreground, making it clearly visible,
almost like a binary mask. This new high-contrast frame was denoted “specframe”, short
for “special-frame”.

The change in contrast in order to obtain the specframe was found to be dependent on
how the illumination changed and therefore had to be manually set to suit a particular
type of video. As such it would be impossible to give a universal value that always
generates good results.

3.1.5 Foreground Detection Using Gaussian Mixture Models

To eliminate the background from the objects of interest a GMM can be used. Usually
quite a few frames of the background is supplied to train the model with. Unfortunately
this could not be done in this case since only a very limited number of ”empty” frames
from the data-set were available. Most of the time not even one. In order to circumvent
this limitation the specframes were used instead. Almost being binary masks in their
own right, the GMM could easily find the actual foreground. The GMM was set up to
create the model with 2 separate Gaussians, using only the first frame (specframe) as
training.

The other specframes generated from the video were then passed through the mixture
model, producing a binary mask. The produced mask underwent some morphological
operations to improve the ROI. The mask was filled so that any small holes in larger blobs
were removed. Then a dilation with a SE in the form of a 4 pixel wide disk was performed.
This was followed by a closing (using the same SE) and finally a blob-size filtering where
any blob smaller than fixed pixel size (5000 in this case) was removed. The final mask
and the ROI for that particular frame could then be used to extract important data
later. Using a blob-analyzer object from Matlab’s computer vision toolbox, additional
data, e.g. center of mass with respect to the mask could be obtained.

3.1.6 Extended Maxima Transform on Specframe

By performing the same grayscale manual background subtraction as above, followed by a
contrast increase, the earlier mentioned “specframe” was produced. Then, by performing
an extended maxima transform on the specframe, a true binary mask could be generated.
The scalar level of the EMT was a case-specific parameter and as such it had to, like the
rest, be manually tuned to suit different videos illumination characteristics. By letting
the mask produced by the EMT trough a similar series of morphological operations as
used in the method with the GMM, a more convenient mask with less noise and cleaner
edges was received. This mask could then in turn be used to extract the relevant data
from the video frames.

23

3.2. DESIGN OF FEATURE VECTORS CHAPTER 3. METHOD

3.1.7 Blob-tracking in HSV color-space

The first step of this method was to perform a color-space transformation, where each and
every element of an input array of RGB-images changes color-space from RGB to HSV.
A background subtraction with regard to the saturation-channel was then performed.
A threshold was then used to create a logical matrix. The logical matrix was filtered
and only connected components with a size within a certain range were kept. In the
hue-channel, cold, i.e. blue and green hue, got strained off. The cold hue threshold was
implemented to reduce the risk of obtaining highly saturated areas with cold hue which,
judging from the test data videos, most likely were not human skin. A mask was created
from the filtered hue-channel and the logical matrix. The biggest connected component
was then computed. The x- and y-coordinates of said component’s mass-center was then
put into a 1-by-n cell-array, where n was the number of frames represented in the input.

3.1.8 Motion Detection with Eigenbackgrounds

An EB model for detection of moving objects was implemented with both a static set of
images as well as a dynamic approach for the computation of the eigenspace. Computa-
tion of the approximated basis of the column space were identical to the method outlined
in section 2.3.2. For the static approach, an image that solely captures background (for
the respective video) were reproduced as a set of images where each reproduction of the
image had a gradual change in intensity. The approximated basis where thus computed
ones and used to map every new frame. The dynamic approach were set up to itera-
tively calculate new approximations of the model. The approximation of the column
space basis were thus calculated from N images prior to the currently evaluated image.

3.2 Design of Feature Vectors

In this section the process of feature design is described. Initially the different types of
features are explained, followed by sections describing fusion at the feature level as well
as normalization techniques.

3.2.1 Centroid Velocity- and Head-Centroid Relation

These features were generated by tracking the center of mass for the human blob and
head, obtained from the masks generated trough the previous steps in section 3.1. By
taking the Euclidean distance between two points (head or centroid) from two consecutive
frames and multiplying by the frame rate (FPS), the velocity (pixels/s) of the moving
points could be calculated. Omitting the x-coordinate meant that only movements on
the y-axis would be taken into consideration for the velocity. In the case where the
centroid might be lost in the next frame the old coordinate for the centroid was assumed
to still be valid and used once more. The velocity for the center of mass between two
consecutive frames was then added into a vector vCV .

24

3.2. DESIGN OF FEATURE VECTORS CHAPTER 3. METHOD

vCV = FPS ·
[
||(Cf1)− (Cf2)|| ||(Cf2)− (Cf3)|| . . . ||(Cfn−1)− (Cn)||

]
(3.1)

where Cfi denotes the centroid on frame i. Performing statistical measurements
served to reduce the data size of the vector to a manageable one. The measurements
used were the mean and the variance. This therefore resulted in a two-tuple fCV on the
following form

fCV =
[
E[vCV] Var(vCV).

]
(3.2)

Another similar feature was created by calculating the Euclidean distance between
the center point of the human blob and the center point of the head. Utilizing two pre-
process methods, blob-tracking HSV-background subtraction and ROI-extraction. For
every frame where any of these points were unavailable, the values missing defaulted to
the middle of the picture. For example if the data used was a video with a resolution of
640×480, the replacement values would be 320 and 240. To reduce the size of the feature
the mean and the variance was applied to the vector vHC that held the head-to-centroid
relation of each frame.

vHC =
[
||(Cf1)− (Hf1)|| ||(Cf2)− (Hf2)|| . . . ||(Cfn)− (Hn)||

]
(3.3)

where Cfi denotes the centroid on frame i. Taking the statistical measures then gives
the feature vector fHC as a two-tuple on the form

fHC =
[
E[vCV] Var(vCV).

]
(3.4)

3.2.2 HOG Features

The process of generating features from the HOG began by extracting out only the
contents present in the ROI generated by the detection algorithm using Matlab default
parameters. Then, by taking the magnitude of the difference between the HOG of two
consecutive frames it could be reduced to a single value. This value was then placed in
a vector for further processing. By making statistical calculations, such as taking the
variance, the dimensionality was reduced further. The process also served to extract the
characteristics of the HOG as well. The statistical measurements used to generate the
feature vector were: mean and variance in that order, creating a two-tuple for later use.
The following equation explains the process of obtaining the two tuple:

vHOG =
[
||HOG(ROIf1)− HOG(ROIf2)|| . . . ||HOG(ROIfn−1)− HOG(ROIfn)||

]
(3.5)

where fi denotes frame number i. Performing the statistical measures then gives the
total feature vector

fHOG =
[
E[vHOG] Var(vHOG)

]
(3.6)

25

3.2. DESIGN OF FEATURE VECTORS CHAPTER 3. METHOD

3.2.3 Optical Flow Features

Optical flow was calculated between adjacent images in a set of frames (a video) corre-
sponding to individual activities. Standard parameters were used for both Lucas-Kanade
and Horn-Schunck as described in [21]. For every set of frames, calculations generated
two sets of flow fields (x and y matrices), one for vertical movement (vy) and one for
horizontal movement (vx). Average flow fields (v̄y, v̄x) was constructed by simply av-
eraging the initial two sets in the temporal dimension. Feature components was then
computed from v̄y and v̄x. Initially two types of histograms was calculated, one known as
histogram of oriented optical flow (HOOF) where the orientation of flow (arctan(v̄y/v̄x))
was used as a criteria for assigning each flow vector to a bin. The magnitude of that
vector was then used to assess the contribution to the histogram. The second type of
histogram, denoted histogram of optical flow (HOF) simply used the magnitude for both
assigning flow vectors to bins and assess their contribution. A non-histogram feature was
constructed by use of a PCA on the average flow fields, projecting each field onto its
first eigenvector, giving two vectors vEIGx, vEIGy. The feature was then constructed by
taking the mean of these vectors resulting in a two-tuple feature fEIG as

fEIG = [E[vEIGx], E[vEIGy]].

Further component was the mean and variance of flow. For each flow field vxi, vyi
where i = 1,2, . . . ,n and n is equals the number of frames capturing an activity, the
mean E[vxi], E[vyi] and variance var(vxi), var(vyi) values was calculated. For each pair
of frames (i and i + 1) a scalar value for vertical/horizontal mean/variance thus gives
1×n vectors (fV ARx, fV ARy, fEx, fEy) with the corresponding values. The final features
fV AR and fE was then generated by creating histograms of the vectors values as

fV AR = k-bin histogram of [fV ARx, fV ARy]

fE = k-bin histogram of [fEx, fEy].

The histograms were calculated by initially identifying the maximum vmax and min-
imum vmin values which was used as start/end points. Every edge in the histogram was
then calculated by splitting the range vmax − vmin into k bins. The content/value of
each bin was then assigned with the sum of every value vi that was mapped to that bin,
i.e. every value that was in the range of specific bin. Finally a normalization of the
histogram was conducted by dividing the value of each bin with the total value of every
bin. k values used was 30 and 9.

3.2.4 Choosing the Type of Pre-Processing for Each Feature

There were some options for how each feature was pre-processed. i.e. how the human
was detected. To decide what settings to use a table was set up, displaying the correct
classification rate (CCR) for each feature’s different pre-process-method. That means a

26

3.2. DESIGN OF FEATURE VECTORS CHAPTER 3. METHOD

SVM was trained and tested for a single feature and this procedure was then repeated
until all features had been tested. The few that had a CCR above 80% were then taken
in consideration for usage in the final set of features.

3.2.5 Normalizing and Linear Scaling of Features

Since the data inside the different feature tuples sometimes had a drastic size differ-
ence and were often quite big overall, they were normalized in order to speed up the
calculations in the SVM and also to improve its classification rate. This normalization
was done using two different methods. The first one, and perhaps the most commonly
used, involved calculating the mean and standard deviation for each column in the total
feature matrix F . Then each individual value in the vector was normalized as follows:

F̂ij =
Fij − mean(Fj)

std(Fj)
(3.7)

where Fij denotes the item at row i and column j and Fj the entire column
For example: consider a feature matrix F very similar to one generated from the

centroid:

F =

fCV1fCV2
fCV3

 =

845 7531590
778 6547530
875 9852014

→
 0.304 −0.322
−1.348 −1.032
1.044 −1.353

 (3.8)

Using this method, each individual value was normalized to lie close to the range
[-1 1] which simplified the calculations in the SVM. The other method followed a more
heuristic approach in the sense that it only served to reduce the size of the data. In
this method, every value in the total feature vector was rounded up/down to the closest
power of 10. Then the inverse of the most frequent power for each respective column was
used to linearly scale down each value in that column. This process, served to reduce
each value close to a range [0 1] whilst still retaining the original difference between the
falls and lies. A small example (3.9) using the same feature matrix as in equation 3.7.

F =

fCV1fCV2
fCV3

 =

845 7531590
778 6547530
875 9852014

→
0.845 0,753

0.778 0,655
0.875 0,985

 (3.9)

3.2.6 Feature Fusion

As mentioned above, several types of features were generated in order to create accurate
”models” describing different activities. In order to avoid that certain types of features
wrongfully classified one activity as something different, the combination or ”fusion” of
several features was used as the primary model (feature vector) for classification. For
example, the centroid velocity feature, mentioned above, might classify a falling object,
such as a ball, as a ”falling human” since it describes the movement of the center of
mass. By fusing diverse features fi where i = 1,2, . . . ,n, that describes different aspects
of an activity, a combined vector f = [f1, f2, . . . , fn] will probably give a more accurate

27

3.3. THE CLASSIFICATION MODEL CHAPTER 3. METHOD

result. As will be discussed later on, the feature vector giving the most satisfying result
was built using five types of features, which included: centroid velocity (fCV), head-
to-centroid distance (fHC), HOG difference (fHOG), an optical flow variance histogram
(fV AR) and finally a feature based on PCA of the temporal mean of optical flow (fEIG).
Resulting in a feature vector f as

f = [fCV , fHC , fHOG, fHOF , fEIG].

3.3 The Classification Model

In this section the method of how the classifier was trained, the measurement of its
accuracy and false alarm rate is described. Also a small outline of the process of down-
sampling videos is given.

3.3.1 SVM Classifier

The SVM model was created using the package from libSVM [20]. The type of SVM
used was a standard binary classifier. Using the normalized features from the data-set,
the SVM was trained on 383 lies and 383 falls. A function was also created to draw 373
random samples from the data-set to train the SVM with. The randomizing process was
created using the Matlab-native function rand(). The remaining parts of the data-set
was then used to test the SVM during the initial trials. By trying (training the SVM and
testing it) each feature individually, the ones with promising CCR could be sorted from
the ones with poorer performance. The promising features were then fused together and
a new SVM was trained using the fused data. When the decision of which features to
use had been made, the process began of tuning the SVM so as to not over-fit the data.
Since the kernel was RBF and the SVM of type C-svm, there were two parameters, c
and g, to optimize. At first this was done using trial and error. Setting the SVM to
perform a 100-fold cross-validation, different values of c and g were tried and the ones
that generated the best results i.e. gave the best CCR were recorded. Just a few trials
were made however, enough to get a general sense of right direction. To make sure that
the real optimal choice was made, or at least very close to it, an exhaustive search (grid
search) was programmed. Letting c run from 0.05 to 2.55 in increments of 0.1 and for
each such value try g between 0.005 to 0.5 with increments of 0.005, good values for c
and g were found. The same procedure was used to find the most suitable c–value for
the SVM when using the linear kernel. The two SVM:s where then compared and the
one with the highest CCR was picked as the final classification model.

3.3.2 Confusion Matrix and Cross-Validation

To acquire the CCR, MCR, TPR and TNR, the built-in cross-validation function of
the libSVM package was used. The variation of cross-validation used was 100 fold.
This function presented the results in percentage. However the cross-validation did not
calculate the FNR and FPR. Both FNR and FPR were of uttermost importance and were

28

3.3. THE CLASSIFICATION MODEL CHAPTER 3. METHOD

acquired utilizing confusion matrices. As can be observed in Equation 2.16 and 2.17,
TP, FP, FN and TN can be extracted. These four values are required for setting up a
CM.

When calculating CCR and MCR, the whole data-set was used for cross-validation.
This was not the case when calculating FNR and FPR. Instead 20 instances of 100 fold
cross-validation on approximately 250 randomly selected data were used, i.e. CV was
performed on chunks of data and not the complete set. For each instance the confusion
matrix was set up and FNR and FPR acquired. The mean of these 20 values of FNR
and FPR gave an estimation of the actual FNR and FPR.

3.3.3 Temporal Down Sampling

To reduce the computing time and also increase the classification accuracy of videos with
high frame-rate, a temporal down-sampling method was implemented. Quite simply the
method was set to consider only every other frame. For example removing every third
frame would reduce the effective number of frames to compute by a third. Since the
data-set used in this project consisted of videos with a frame rate ζ20 = 20 frames per
second (FPS), any other video had to be down sampled to this FPS in order to generate
features that captured the characteristics of an activity in the same way. For example if
a video V = [I1, I2, . . . , In] with n frames has a frame rate ζx ≥ ζ20 FPS, then a down
sampled version V↓ would be the set of frames

V↓ =
{
Ii = V

[⌈ ζx
ζ20
× i
⌉]

, i = 1,2, . . . ,N
}

where N = ζ20
ζx
× n.

29

3.3. THE CLASSIFICATION MODEL CHAPTER 3. METHOD

30

Chapter 4

Experimental Results

In this chapter, the results obtained in the pre-processing stage, feature design/ gen-
eration and classification process is outlined. In Section 4.1 the outcome generated by
different pre-processing approaches will be given and the results, with respect to ”degree
of detection”, will be illustratively presented. Section 4.2 shows feature characteristics
and average values (vectors) are used as a result measure. Section 4.3 gives the obtained
classification rates and run-time results for various setups.

4.1 Image Pre-processing

The performance measurements of the detection methods are outlined in Table 4.1 and
the frame references corresponds to Figure 4.2. Figure 4.1 shows the set of images used
to compare the different detection techniques. It is also stepped 2 frames at at time in
order to cover most of the process of falling.

The results of color thresholding can be seen in frame 1–4 of Figure 4.2. The enclosed
area given by the bounding box (BB) fits the entire person and gives consistent results
for most sequences capturing the skeleton. The execution time was quite fast but the
notable downside was, however, the relatively large amount of background data that gets
interpreted as foreground.

(a) (b) (c) (d)

Figure 4.1: Image set used for visual comparison of proposed methods, results are shown in
Figure 4.2. These images are extracted with a gap of one frame, i.e. frame n→ n+ 2→ n+ 4→
n+ 6 in order to illustrate the majority of a fall.

31

4.1. IMAGE PRE-PROCESSING CHAPTER 4. EXPERIMENTAL RESULTS

Eigenbackgrounds, both static (frame 5–8) and dynamic (frame 9–12) of Figure 4.2
generated average to poor results. The static approach had a reasonable run-time but
was probably the one most sensitive to uneven illumination change. The run-time given
in Table 4.1 is an approximation where the background model had been computed from
a set of 40 images. The initial computation time of this model was approximately 3s.
The dynamic approach was slower, Table 4.1 gives the result where the dynamically
computed model consisted of three images prior to the one currently being analysed.
This model was especially sensitive to the speed of motion. If slow motion occurred (or
no motion at all) the model would interpret almost everything as background. If on the
other hand fast motion, i.e. large displacements between frames occurred, the model
would capture the trajectory.

As can be seen in frame 17–20 of Figure 4.2 the GMM on speccframe method performs
quite well. It does however produce a slight error in the first picture. Fortunately this
error is caught elsewhere and as seen the ROI only covers the part of the mask that
contains the human. Also the centroid closely follows the actual middle of the person.
The mask has an overall good bound on the human although it loses some parts of him at
the end. Its resource consumption, shown in Table 4.1, shows a quite short computation
time but a somewhat high memory usage.

The Manual background subtraction frames (13-16) shows quite the clear capture
on the first two cases but rapidly deteriorates in the later frames, only covering parts of
the human. It does consume a little less memory than the GMM but takes a little bit
longer to perform. The depth method also captures the human quite well in the initial
frames but like the rest, loses its accuracy during later frames. It also takes significantly
longer to process than GMM or manual subtraction. Most of the methods also have the
problem of accurately capturing the persons feet.

The HSV subtraction brought various results. The algorithm sometimes completely
filtered away the head and reported ”nothing”. However, as shown in frame-sequence
25–28 it has the potential to work as intended, tracking the head. Out of all the detection
methods implemented, HSV subtraction had the longest run time as well as the highest
memory usage by far.

When considering the stated performance measurements in Table 4.1 the parameter
regarding memory consumption should not be taken at face value since the method used
to measure it was quite crass.

32

4.1. IMAGE PRE-PROCESSING CHAPTER 4. EXPERIMENTAL RESULTS

(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

(13) (14) (15) (16)

(17) (18) (19) (20)

(21) (22) (23) (24)

(25) (26) (27) (28)

Figure 4.2: Different methodologies for determining the foreground in a video stream.

33

4.2. FEATURES CHAPTER 4. EXPERIMENTAL RESULTS

Table 4.1: Performance of the implemented detection algorithms. Run time results are average
values (of approximately 300–400 frames) calculated by tic/toc function in MATLAB. Memory
consumption was watched via the resource monitoring tool in Windows-systems. The tests were
conducted on a machine with a Intel core i5-4200M 2.50 GHz processor, 8 GB of RAM clocked
at 800MHz, running MATLAB R2014b on Windows 8.1.

Algorithm Results Run Time Memory Usage

[frame no. in Fig 4.2] [s/frame] peak/standby [MB]

Skeleton Color Threshold 1–4 0.013 610/580

Eigenbackground Static 5–8 0.042 809/803

Eigenbackground Dynamic 9–12 0.055 825/801

Manual Background Subtraction 13–16 0.078 1206/655

Gaussian Mixture Model 17–20 0.067 1270/678

Background subtraction via Depth 21–24 0.110 1223/652

HSV Subtraction 25–28 0.780 1971/1458

4.2 Features

Results regarding features will be given with respect to their individual classification rates
as well as average measures on how big of a“difference”a feature produces for the different
activities. two-dimensional (2D) features will be illustrated as scatter-plots in order to
visualize this “difference”, which in turn is interpreted as the relative difference of cluster
centers or the average distance from the origin for different activities. Average histogram
plots, based on various optical flow measures, is also given in order to determine the shape
of such distributions. Table 4.2 displays the top performing individual features with a
specific pre-processing method and SVM-type. Feature notation are

fCV – Centroid velocity (see Section 3.2.1)

fHC – Head coordinate relative to the center of mass for the body (see Section 3.2.1)

fHOG – HOG difference feature (see Section 3.2.2)

fV AR – Variance histogram of optical flow (see Section 3.2.3)

fANG – Optical flow histogram based on flow angle (see Section 3.2.3)

fMAG – Optical flow histogram based on magnitude of flow (see Section 3.2.3)

fE – Optical flow histogram based on temporal mean (see Section 3.2.3)

fEIG – Optical flow feature based on PCA (see Section 3.2.3).

and the utilized pre-processors are

34

4.2. FEATURES CHAPTER 4. EXPERIMENTAL RESULTS

GMM – Gaussian Mixture Model (see Section 3.1.5)

Depth – Foreground detection using a depth-map (see Section 3.1.2)

EMT – Extended Maxima Transform (see Section 3.1.6)

k-HS – k-binned optical flow histogram based on Horn-Schunk (see Section 3.2.3)

k-LK – k-binned optical flow histogram based on Lucas-Kanade (see Section 3.2.3)

Table 4.2: Estimated CCR of individual features for various setups of pre-processing and
classification models.

Feature Pre-proc. Norm. SVM Kernel Weight CV (100-fold)

fCV GMM no C RBF 1 92,04%

fHC GMM yes C Linear 100 91,90%

fHOG GMM no C RBF 1 91,90%

fHC GMM yes C RBF 1 91,78%

fHOG GMM no C Linear 1 91,78%

fHOG GMM yes ν RBF 0.35 91,76%

fCV GMM yes C Linear 100 91,64%

fCV GMM yes ν RBF 0.35 91,51%

fV AR 30HS n/a C Linear 10 90,60%

fV AR 30HS n/a ν RBF 0.25 90,47%

fV AR 30HS n/a ν RBF 1000 90,43%

fV AR 30HS n/a C RBF 1000 90,34%

fCV Depth yes ν RBF 0.3 90,01%

fHC GMM yes ν RBF 0.35 89,95%

fCV Depth yes C Linear 1 88,96%

fCV Depth yes C RBF 1 88,43%

fV AR 9HS n/a C RBF 10 86,55%

fV AR 9HS n/a C Linear 1 86,55%

fCV EMT yes C Linear 100 86,11%

fCV EMT yes C RBF 1000 85,60%

fHOG Depth yes ν RBF 0.39 84,60%

fHOG Depth no C Linear 1 84,30%

fHOG Depth no C RBF 1 84,10%

fEIG 30HS n/a ν RBF 100 81,72%

fEIG 30HS n/a ν RBF 0.43 81,59%

fE 30HS n/a C RBF 1000 78,99%

35

4.2. FEATURES CHAPTER 4. EXPERIMENTAL RESULTS

As mentioned earlier, GMM, Depth and EMT are all variations of the same detection
method (background-subtraction), whereas HS and LK are variations of optical flow.
Optical flow histograms of bin size k = 9 and k = 30 was used. The SVM model is
either C or ν (nu) [20] with a linear or radial basis function (RBF) kernel. The weights
vary quite a lot, which stems from how they were determined. A small trial-and-error
process was utilized in order to acquire as high CV-results as possible. Most weights
were decided on a power of 10 level, although some were even more fine-tuned.

mean

v
a
ri
a
n
ce

(a) Centroid velocity (fCV)

mean
v
a
ri
a
n
ce

(b) Head-to-centroid relation (fHC)

mean

v
a
ri
a
n
ce

(c) HOG difference (fHOG)

x mean

y
m
ea

n

(d) PCA of avg optical flow (fEIG)

Figure 4.3: Scatter plots of individual features. Each point corresponds to a feature vector
of an activity, i.e. one point for each video where a plus (+) denotes a person lying down and
a circle (o) denotes a person falling down. Each plot contains 383 lie sequences and 473 fall
sequences.

As can be seen in Figure 4.3, each feature plot (4.3a–4.3d) shows clustered regions
for each activity. A vector f̄ representing the average length or the ”center of mass” of a
cluster is used as a measure for how ”well” a certain feature can distinguish one activity
from the other. The larger the difference, the easier it would be to classify an instance
as one class or the other.

The average centroid velocity vector f̄CV was, with respect to both mean and variance
approximately 2.5 times larger for the average fall sequence compared to the correspond-
ing lie sequence as can be seen in Equation 4.1.

36

4.3. CLASSIFICATION CHAPTER 4. EXPERIMENTAL RESULTS

f̄CV = [E[fCVx], E[fCVy]] =

{
[0.9105, 0.2364] (fall)

[0.3593, 0.0917] (lie)
(4.1)

The average head-to-centroid distance f̄HC had relatively even mean values but dif-
fered considerably with respect to the variance value. A fall sequence had an approxi-
mately 2.4 times larger variance than an average lie, as seen in Equation 4.2.

f̄HC = [E[fHCx], E[fHCy]] =

{
[0.1371, 0.1166] (fall)

[0.1134, 0.0487] (lie)
(4.2)

f̄HOG, the average HOG-vector, showed characteristics similar to that of the centroid
velocity feature. An average fall had a mean value approximately 2 times greater than
a lie while the difference in variance was approximately 1.5 as shown in Equation 4.3.

f̄HOG = [E[fHOGx], E[fHOGy]] =

{
[0.3489, 0.8030] (fall)

[0.1675, 0.5175] (lie)
(4.3)

The PCA of optical flow feature f̄EIG showed different characteristics than that of
previous features mentioned. Instead of looking at the center of mass (which essentially
is the same for both falling down and lying down), the average distance to the origin
was used as a measure of difference. This difference is given in Equation 4.4 as

f̄EIG =
√
f2EIGx

+ f2EIGy
=

{
0.9200 (fall)

0.2316 (lie).
(4.4)

Figure 4.4 illustrates the average appearance of histogram features based on optical
flow. Utilizing 100-fold CV, the highest CCR was obtained from the variance histogram
fV AR with approximately 90,6% correctly classified falls. Histograms based on temporal
mean values, fE , reached a 79% CCR while angle fANG and magnitude fMAG based
histograms resulted in a CCR of 67,5% and 61,2% respectively.

4.3 Classification

In this section we will state the results obtained from the final classifier as well as give
its time-performance and further classification rates such as the FNR and FPR.

4.3.1 Cross-validation results

When the features had been fused together, normalized using the two different methods
and the correct parameters for each SVM had been found via the exhaustive search,
Table (4.3) depicting the performance could be constructed. Each SVM in Table 4.3 was
tested using a 100-fold cross validation on the 383 falls and lies. The parameters used
to obtain the results as well as what type of kernel is also presented.

37

4.3. CLASSIFICATION CHAPTER 4. EXPERIMENTAL RESULTS

0

2

4

6

·10−2

bins

(a) Angle histogram (fANG)

0

2

4

6
·10−2

bins

(b) Magnitude Histogram (fMAG)

−1

0

1

2

bins

(c) Mean histogram (fE)

0

0.1

0.2

0.3

bins

(d) Variance histogram (fV AR)

Figure 4.4: Average histograms of optical flow based on angle (fANG), magnitude (fMAG),
mean (fE) and variance (fV AR). Wide bars depict the average height of each bin for 383 lying
down sequences and thin bars (overlaid histogram) depicts the corresponding average values for
473 fall sequences.

Table 4.3: 100-Fold Cross-Validation of 4 different SVM:s

Kernel c g Scaled/normalized Run Accuracy (%)

Linear 1.6 n/a Linear scaling 93.73

RBF 0.1 0.6 Linear scaling 93.73

Linear 0.3 n/a Normalized 92.95

RBF 1.85 0.005 Normalized 93.34

From Table 4.3 it is clear that certain ”combinations” of the SVM:s parameters and
the used normalization methods results in different values on the accuracy of the classi-
fier.

4.3.2 Run-time Estimation

When timing the final classifier on some of the videos, the data presented in Table 4.4 was
obtained. An estimated run-time t for the classification process is then t = tavg/favg =

38

4.3. CLASSIFICATION CHAPTER 4. EXPERIMENTAL RESULTS

16.03/26.33 ≈ 0.6s/frame, where tavg and favg are the average computation time and
number of frames given in Table 4.4.

Table 4.4: Time-consumption of the classification algorithm

Activity # Frames (st) Compt. Time (s)

Fall1 9 5.52

Fall2 12 7.92

Fall3 11 8.45

Lie1 61 36.1

Lie2 34 20.1

Lie3 31 18.1

Avg 26.33 16.03

4.3.3 Further Classification Rates

Table 4.5: 6 tables of confusion used for estimation of FNR and FPR. Average values represents
classification rates estimated from a set of 20 confusion tables (see all estimates in Table 4.6 and
4.7.

Acc Fall Acc Lie FNR MCR CCR FPR

Pred Fall 159 11 6,47% 9,24% 90,76% 16,18%

Pred Lie 11 57

Pred Fall 159 12 4,22% 7,60% 92,40% 14,29%

Pred lie 7 72

Pred Fall 166 6 2,92% 4,37% 95,63% 7,41%

Pred Lie 5 75

Pred Fall 162 3 8,47% 7,23% 92,77% 4,17%

Pred lie 15 69

Pred Fall 153 5 8,93% 8,16% 91,84% 6,49%

Pred Lie 15 72

Pred Fall 147 5 5,16% 5,39% 94,61% 5,81%

Pred Lie 8 81

Average 5,79% 6,93% 93,07% 9,43%

Table 4.5 gives 6 out of 20 of the estimated results for FNR, as described in section
3.3.2 (more detailed results can be seen in Table 4.6 and 4.7). The average values, at the
bottom of the table, are computed from the complete set of the 20 cases. Additionally,
note that the table is not a full cross-validation computation. The input for the CM are

39

4.3. CLASSIFICATION CHAPTER 4. EXPERIMENTAL RESULTS

Acc Fall (actual fall), Acc Lie (actual lie), Pred Fall (classified to be fall) and Pred Lie
(classified to be lie) where fall and lie are activity 1 and activity 2 respectively. FNR is
therefore the rate at which activity 1 is classified as activity 2, similarly FPR is the rate
at which activity 2 is classified activity 1.

Table 4.6: Confusion tables 1–10 for FPR/FNR estimation.

Acc Fall Acc Lie FNR MCR CCR FPR

Pred Fall 152 8 6,17% 7,17% 92,83% 8,99%

Pred Lie 10 81

Pred Fall 157 10 4,85% 7,26% 92,74% 12,05%

Pred Lie 8 73

Pred Fall 159 8 1,85% 4,82% 95,18% 12,12%

Pred Lie 3 58

Pred Fall 164 9 4,09% 6,58% 93,42% 12,50%

Pred Lie 7 63

Pred Fall 142 7 5,33% 6,73% 93,27% 9,59%

Pred Lie 8 66

Pred Fall 174 9 3,87% 6,23% 93,77% 11,84%

Pred Lie 7 67

Pred Fall 164 4 8,38% 7,76% 92,24% 6,06%

Pred Lie 15 62

Pred Fall 159 11 6,47% 9,24% 90,76% 16,18%

Pred Lie 11 57

Pred Fall 159 12 4,22% 7,60% 92,40% 14,29%

Pred Lie 7 72

Pred Fall 166 6 2,92% 4,37% 95,63% 7,41%

Pred Lie 5 75

40

4.3. CLASSIFICATION CHAPTER 4. EXPERIMENTAL RESULTS

Table 4.7: Confusion tables 11–20 for FPR/FNR estimation.

Acc Fall Acc Lie FNR MCR CCR FPR

Pred Fall 102 10 4,67% 8,06% 91,94% 12,66%

Pred Lie 5 69

Pred Fall 158 13 5,95% 9,47% 90,53% 17,33%

Pred Lie 10 62

Pred Fall 152 7 2,56% 4,89% 95,11% 10,14%

Pred Lie 4 62

Pred Fall 152 9 3,80% 6,38% 93,62% 11,69%

Pred Lie 6 68

Pred Fall 156 11 1,89% 5,79% 94,21% 13,25%

Pred Lie 3 72

Pred Fall 154 8 4,94% 6,61% 93,39% 10,00%

Pred Lie 8 72

Pred Fall 152 5 5,59% 5,81% 94,19% 6,25%

Pred Lie 9 75

Pred Fall 162 3 8,47% 7,23% 92,77% 4,17%

Pred Lie 15 69

Pred Fall 153 5 8,93% 8,16% 91,84% 6,49%

Pred Lie 15 72

Pred Fall 147 5 5,16% 5,39% 94,61% 5,81%

Pred Lie 8 81

41

4.4. DEVELOPED SOFTWARE CHAPTER 4. EXPERIMENTAL RESULTS

4.4 Developed Software

This section gives an overview of the functionality and interfaces of the developed soft-
ware used for activity classification.

A wrapper function for the classification process, didYouFall(V)1, was developed
that initially calls the GMM and head-to-centroid pre-processing models, generating the
ROI and head/centroid coordinates for each frame ∈ V . Then calculates the velocity,
head-to-centroid, HOG, PCA- and variance of optical flow features. These features are
then normalized and fused as described in section 3.2 and finally classified by a SVM
model described in Table 4.3. The output of this function is thus the predicted result,
i.e. 1 if the video contains a fall and 0 otherwise.

4.4.1 Graphical User Interface Design using Matlab

In order to get a simple way of using the didYouFall(.)-function and introducing ad-
ditional functionality, a graphical user interface was implemented using Matlab. The
different attributes of this interface can be seen in Figure 4.5. The core functionality of
the GUI is essentially the classification process (a call to the didYouFall(.)-function)
but, in addition, the GUI enables the user to load and playback a video prior to or after
the classification process. This functionality was implemented to give the user an easy
way of confirming the predicted results.

1V is an avi, mp4 or mat video file.

42

4.4. DEVELOPED SOFTWARE CHAPTER 4. EXPERIMENTAL RESULTS

(a) Startup (b) Playback video

(c) Classification (d) Output results

Figure 4.5: Overview of the graphical user interface illustrating different views.

43

Chapter 5

Discussion

In this chapter we will discuss the three main components of the project and their
respective sub-components, Detection, Features and Classification. We will mainly focus
on our implementation of the algorithms and their final results. In addition we will also
discuss possible ideas of improvement as well as other areas that we took special interest
in.

5.1 Image Pre-processing

In this section we will focus on the procedures used to detect the foreground (the human)
in order to generate the binary mask and the ROI.

5.1.1 Thresholding on Color

A few main issues were encountered when motion detection was conducted by color
thresholding of the Kinect skeleton. The first issue was that the projection of the skele-
ton, i.e. the joint coordinates, did not map accurately onto to the human for certain
orientations/poses. This problem mainly occurred when the person was lying on the
floor. Then the skeleton would often cluster to some part of the body, e.g. the legs.
This was probably due to the significant difference in shape between a person standing
up and one lying down. The entire set of joints was not always ‘’visible” when a person
was lying down and the Kinect seems to have problems estimating the location of the
‘’non-visible” joints in such a setting. Other faulty mappings also occurred, e.g. a joint
could sometimes be mapped to a random coordinate of the image. The later issue was
assumed not to pose much of a problem since erroneous estimations of the ROI only
would appear in a few images. The fundamental flaw of this approach was, however,
that the images mask produced did not capture the whole person, only a ‘’stick man”
or skeleton representation of the pose. A solution to this problem was to produce a
bounding box (BB) of the mask and extract a rectangular ROI. Further difficulties led
to additional processing. One such difficulty was that the ”head” coordinate was mapped
to the centre of the head. In order for the BB to fit the entire person, it therefore had

44

5.1. IMAGE PRE-PROCESSING CHAPTER 5. DISCUSSION

to be scaled. The scaling was also important in order to solve the first issue, i.e. to fit
the BB to the person when the skeleton clustered together. The enlarged ROI was a
significant drawback of this method because the amount of background data included
got significantly larger as apposed to background subtraction approaches. Discernible
advantages was, on the other hand, the invariance to illumination change and the ability
to detect a person even if no motion occurred. These were issues that showed to be
critical problems in some of the other approaches.

5.1.2 Manual Background Subtraction

The method of manually subtracting the background from every frame was early adopted.
The process was deemed feasible since the camera capturing the videos of our dataset
was fixed at the same place. This meant that only one frame containing the background
had to be extracted which could then be used multiple times. Also, because of its sim-
plicity the manual background subtraction was a good starting point for the foreground
detection before moving on to the more complex strategies. The initial results, in the
form of binary masks and the ROI, from the manual background subtraction showed,
tough crude, that the method was worth pursuing. At first the generated binary mask
contained much noise and other unimportant debris. Unfortunately some of the persons
in the videos also wore clothing with color similar to parts of the background. Whenever
one such video was processed, large parts of the person would be lost to the background.
In some cases this meant that the ROI got split up in smaller ROI:s containing the body
parts that did differ from the background. In order to achieve a cleaner mask as well
as getting a better ROI, some image enhancements were investigated. At first using
a Laplace filter to sharpen the images before the background subtraction, was consid-
ered. The method was not pursued however, mainly because other pressing matters took
precedence and after that the idea was forgotten.

The first attempt in enhancing the image to prepare it for background subtraction was
to enhance the colors by performing a decorrelation stretch. At first this improved the
masks generated but since it did not contribute much when the images were converted
to grayscale it was later dropped. In connection with using the grayscale image for
background subtraction an interesting effect was produced. The subtracted image still
contained some noise and debris but now a human-like shape could vaguely be seen. To
make use of this special frame, denoted “speccframe”, the contrast was increased. This
resulted in an image with decent properties for thresholding. Under some circumstances
the speccframe was also quite noisy. To alleviate the effects of the noise a median filter
was used. The parameters were manually tuned to suit our videos by testing. The use
of a Gaussian blur was also tried out. Although it made the frame smoother and seemed
to reduce the noise, it did not work properly later in the process in conjunction with
the EMT, and was therefore removed. The final specc-frame sadly had one annoying
disadvantage. It was still a bit susceptible to changes in illumination. Due to the nature
of the videos these changes happened often. Because if this, the speccframe would become
completely white and in turn resulted in a binary mask which basically covered the whole
frame. It goes without saying that such a mask would have been useless. However, after

45

5.1. IMAGE PRE-PROCESSING CHAPTER 5. DISCUSSION

continued tweaks and the choice of detecting method to GMM the specframe showed
good results.

5.1.3 Use of Extended Maxima

By generating the specframe from each color channel individually, performing an EMT on
each and finally logically OR them together created a mask with reduced susceptibility
to changing lightning conditions. Unfortunately, this procedure tripled the computa-
tional load and was therefore considered a quite high price to pay for the improvement.
Nevertheless, it was considered to useful to neglect and was therefore left in the code as
an available option. Unfortunately the EMT had a tendency to make false positives on
moving shadows e.g the shadow cast by the persons body. This would most often mean
an enlargement of the blob and by extension of the ROI as well. Since this were most
likely to happen when the person was just roaming around the room and not during
the falls or lying-downs it was not considered to cause any major problems and was
therefore not remedied. Over the course of the implementation the method was in some
sense ”forgotten” and it did not receive as much tweaks as the other methods. It was
perhaps because of this that the method struggled a little to keep on par with the others
during the testing. At the final stage of the project the method was removed since it,
as mentioned, did not manage to keep up with the others. If more work had been done
on it it might have become more useful. If we had had the time it would have been
interesting to return to it and make improvements.

5.1.4 Estimating a new Background

Due to the sensitivity to changes in illumination new possible methods of foreground
detection were investigated. A method of estimating a new background every n number
of frames was considered and a first attempt was also implemented and tested. If a
new background with updated lightning conditions could be obtained much fewer errors
would be able to propagate trough to the final mask and would therefore most likely have
improved the results. The main problem encountered with extracting a new background
was that a person could already be present. In that case extracting a new background
would only have made matters worse. In order to avoid this, the ROI on the previous
frame was enlarged a bit and assumed to still contain the person. This part was then
cut out from the frame and the remains was merged with the previous background data
as an average. In theory the idea seemed quite good but in practice the results were
mediocre to poor. On some videos the technique worked but on some, extremely poor
results were produced. Due to this inconsistency in performance coupled together with
the high risk of the accumulation of small errors over time in the averaging, the method
was not pursued further. If more time was available it might have evolved to something
better.

46

5.1. IMAGE PRE-PROCESSING CHAPTER 5. DISCUSSION

5.1.5 Gaussian Mixture Model

Another method of distinguishing what parts of the video belonged to the foreground
was by using a GMM to model the background. The idea to use GMM first came when
a mathworks webinar on the computer vision system toolbox briefly described its use in
detecting moving cars on a street view [8]. It was then realized that the GMM should
be suitable for detecting moving humans as well. The first test were done by passing the
original frames right through the GMM in order to establish a model of the background.
The initial results showed much promise so further investigations were performed. By
conducting further literature studies as well as running more tests, better and better
results were achieved. The produced binary masks generated via the GMM had some
areas in them which did not contain any interesting information. A false detection of
the foreground so to speak. This error was probably due to faulty initial parameters
and an unsuitable number of training frames. Over time, some problems as for example,
how many Gaussians to use or how many training frames the model should be based
upon was found by a trial and error process. There was however one flaw with the
GMM. Just as the other methods, it too suffered from a minor, but nevertheless present,
susceptibility to illumination changes. Since there only were a few frames of background
which the model could be based on, typically around five, the model was not as robust
as we would have hoped. An interesting thing to try out would have been to train the
model with at least 50 frames, with significant changes in illumination, and see if this
would have decreased the susceptibility. Unfortunately no such data were available and
therefore the first few frames had to suffice.

Eventually the idea came to let the GMM operate on the specframe. Since the
specframe had very little intensity difference, (it was essentially black or white) only
two Gaussians were needed to create a reliable model. We considered that since there
was much less varied data in the background of the specframe, the modeling would be
simpler and produce a more precise mask. The tests showed good results as well as
good performance. It also had the big advantage of not being as susceptible to the
aforementioned illumination changes. Consequently, it was quickly implemented and
only received minor tweaks to its parameters from there on out.

During the final stages of the project we realized that since we only made a classi-
fication of video-clips containing one activity, the few empty background frames for the
GMM would be unavailable. Not wanting to impose the restriction that every classifi-
cation would need an empty background setting, we tried to tweak the GMM to only
train on the first specframe that it received. After a while we managed to get satisfying
results using only the first image as training. After having generated all of the features
for the 500 video data set we realized how oddly the GMM actually behaved. Since each
video clip now immediately contained a person the first specframe would also contain
some representation of this in the form of a white area where the person should be.
Passing this specframe into the GMM as the only training frame should have generated
a faulty ROI due to the training frame containing white parts (a proper background
should have been completely black in this case). Afraid that all generated features were
faulty because of this error we ran around 30 tests on the GMM but to our astonishment

47

5.1. IMAGE PRE-PROCESSING CHAPTER 5. DISCUSSION

found that not a single one generated a bad ROI. We were even more puzzled when the
GMM generated extremely poor ROI:s when two or three frames were used as training.
Being in the final stages of the project we did not have more time to investigate this
behaviour. Perhaps it was due to how the GMM was programmed in Matlab or how
the training image was preprocessed before being passed into the GMM. It could also be
that the GMM plainly ignores the training frame if only one (1) is present, effectively
emulating passing a black frame into it. Still, it was somewhat confusing.

5.1.6 Depth-map

As was already mentioned, the sudden changes in luminosity of the videos wrought
havoc on nearly all of the implemented methods. Looking for ways that did not have
this drawback, the realization came that by using the depth of the image, the interference
of uneven illumination would be nullified. Since the objects in the video, other than the
human, naturally remained at the same distance it should have been possible to perform
a more exact manual background subtraction with the depth instead of with the RGB
data. The frames obtained through this method should only have had non-zero pixels at
the place of the person. This could then easily have been thresholded in order to obtain
a mask of the ROI. Disappointingly, the depth-data captured by the Kinect only covered
the interval [0,7-7]m from the camera. This resulted in depth-data that contained mostly
zeroes. Therefore it was not to much use. Some workarounds to the conundrum was tried,
however only one produced satisfying results. If complete depth data had been available
the method would most probably have gotten great results but in this case the data was
deemed too poor to motivate continued investigation. As such, all further work with
the method was halted. The one technique that did produce some good results focused
only on parts of the depth interval at a time and later reconstructed the whole image
via logical OR operations. It sill suffered from most of the same problems as the original
data did though. Whenever the person moved to far away or too close to the camera,
the tracking capability was lost. During the final stages of the project we came to the
realization that the loss of the person was not as big a problem as we had thought. Since
we had made the restriction to only operate on pre-cut videos containing one activity
and the random loss of the person only happened when they moved around to the back
of the set and never during the actual falling or lying sequence, the masks produced by
the depth-subtraction method should have been quite satisfactory. Unfortunately the
realization came well after the final code had been packed and could therefore not be
tested. Nevertheless the method could have created even better results and would have
been very interesting indeed to investigate.

5.1.7 Eigenbackground

The static EB model shown to be highly sensitive to illumination change. The attempt
of creating a set of images (from a single image) with varying intensities, did occasionally
show some improvements. The difficulty was however, that changes in illumination often
were caused by natural light, e.g. increasing/decreasing amount of sunlight through a

48

5.1. IMAGE PRE-PROCESSING CHAPTER 5. DISCUSSION

window. The effect was thus that, illumination change occurred unevenly in the image.
The uneven change did not match well with the set of images used to construct the model
because this set had gradual, but even, change in intensity. As a result, image patches
with uneven intensity got interpreted as foreground objects. Within a contained setting,
e.g. a room without windows, where illumination change (by artificial light) could be
assumed to change evenly, this method would have been advantageous in the sense that
a foreign object would be detected even if it was still. The dynamic approach also had
its disadvantages. Depending on the number of (prior) images N used to compute the
model, different problems were observed. If N = 1 the model basically represent a
straightforward background subtraction and therefore suffered from such problems as
mentioned before in (5.1.2). If N ≥ 2 the ROI would be represented as the entire
trajectory of the object that occurred during those frames, i.e. a ”lag”. To capture
the interesting region in a fall, the dynamic approach therefore had the disadvantage of
capturing much of the trajectory (depending on the number of frames used for building
the model).

5.1.8 Subtraction in HSV

In contrast to what sub-figures 25–28 in Figure 4.2 displays, background subtraction
in the saturation-channel of HSV color space did not excel at continuously masking
the head. The algorithm worked but did so inconsistently. It does seem to work fine
during activity 1 and 2 but not when the human is performing ”random” activities.
The cause of this unreliable behaviour requires a review of the algorithm. The human
skin continuously had distinguishably high saturation in the test data videos. The goal
with the algorithm was therefore to locate and separate the head, but the face had
approximately the same saturation as the rest of the human skin visible, e.g. hands.
This observation lead to the conclusion the connected components, blobs, needed to be
filtered. The blobs were filtered for a certain range of size acquired by trial and error. A
threshold was set up in the hue-channel to reduce the risk of including some non-human
skin parts. The skin tone seemed to be orange to red, i.e warm colors. This meant that
cold colors, i.e. green and blue were filtered away. This filter imposed an issue when
a human was lying with the head towards the camera. The only ”skin” that could be
observed was the scalp, which more often than not was covered by hair. Hair which both
could have a low saturation and a hue that could be classified as cold. The observed
person ran the risk of being ”decapitated”. The problem which occurred was that the hue
filter either made the extraction more precise or completely removed the data obtained
from the subtraction. What this meant was that at certain frames no data would be
extracted. To nullify this fact under these very specific conditions the output could be set
to contain two sets of data, computation of the biggest blob’s location before and after
the filtering of cold hue. The two sets could be anticipated to include the coordinates
for a rough center point of the torso (with a lot of noise) and the center point of the
head (if it existed). However, to compute the biggest blob’s center point twice extended
the run time of the algorithm quite significantly (approaching 1 second per frame). The
”safe”, extra coordinates of the torso were excluded due to the occasions where they were

49

5.1. IMAGE PRE-PROCESSING CHAPTER 5. DISCUSSION

needed were few and far between. In addition to the risk of not having values, there was
a risk of having the wrong values. If a highly saturated warm-colored object with an
appropriate size would be present, e.g. a pattern on a t-shirt, this object’s coordinates
could be the values extracted instead of the real head’s coordinates.

An desired result of an improvement for this algorithm would be to locate the head
more continuously and reliably. Several options are available to achieve such a goal.
Fine tune the values of the filters is one obvious step, another one is implementing
an object recognition algorithm, may be to be used on the blobs. Another potential
improvement would be to run the whole HSV-subtraction on the ROI instead of the
original image. This would probably result in a lower run-time, since less data would be
used in the calculation. It can be noted that ambient changes in illumination did not
pose much of an impediment to this method. A probable explanation for this was the
change of illumination mainly affected the brightness-channel which was left unused in
the algorithm.

5.1.9 Morphological Operations

The masks produced from the earlier mentioned methods were all quite rough around the
edges and also contained small specs of erroneous positives. Much of the blobs present
also had tiny holes in them. There were also some cases where the blob containing the
human was split up in 2 or more separate, but adjacent, blobs. In other cases the limbs
of the blob with the person was unreasonably thin. A remedy for these problems was
to make use of some morphological transformations. By using a function to fill in the
small holes, better blobs were obtained. By manually looking through the masks it was
deduced that the blob containing a person never shrunk to a size less than a couple of
thousands of pixels. Therefore by removing any blobs smaller than around a fifth of this,
a cleaner mask was obtained without losing any data from the larger ones. The mask
was nevertheless still too spiky and sometimes too “thin” to be used effectively. Using
dilation and erosion, the shape of the blobs were smoothed out and to a certain extent
enlarged as well. Because of the enlargement of the blobs via dilation, the connectivity
problem was solved too. The decision of which type of SE to use and its size was
determined through manual testing to see which ones gave the most satisfying results.
Due to the manual tweaking, improved results could most likely have been achieved but
was nevertheless a time consuming process that was unnecessary to continue working on
after acceptable results had been reached.

Since the above mentioned methods discussed throughout this section had different
strengths and weaknesses and excelled at detecting different parts of the human, it
seemed, at the time, wasteful not to use them all. Unfortunately no better way of
combining their strengths than logically OR them together was found. In some cases
this gave better results than using any one of them on its own. The results it gave to add
them together did motivate the decision to at least implement the option of choosing
“any and all of the methods” into the intermediate detection code. Using ”any and all
of the methods” did however increase the computational load drastically and resulted in
elongated running times. Although we did not have any actual restriction on how fast

50

5.2. FEATURES CHAPTER 5. DISCUSSION

the program had to run or resource consumption, we felt that waiting three or four times
as long for a small gain in accuracy was not worth it and the option was dropped in the
final version of the software.

5.2 Features

In this section we discuss the various features that we used in the final classifier. We
also mention the ones that did not get implemented. On both of the groups we try to
reason what their respective strengths and weaknesses are and perhaps how they could
be improved upon.

5.2.1 Centroid Velocity

The centroid velocity feature is perhaps the most simple one of the features used. At
first the centroid was supposed to track the movements on the horizontal line as well as
on the vertical, but we soon realized that a quick movement to the right or left of the
image could generate a false positive. Seeking a way to prevent this from happening,
the feature was changed to only consider vertical movement. This turned out very well
in our controlled setting but in reality, the centroid feature could still generate false
positives. For example, it is very plausible that a quick jump could generate a centroid
feature value very similar to the one that would have been generated if it was a fall.
Therefore one mustn’t take the feature at face value but instead apply a more critical
mindset in order to make qualified determinations on the nature of the activity that
generated them.

Due to the computation of the magnitude of the difference between two centroids,
the feature experienced a loss of information, That is, not all data the feature contained
could be properly utilized. For example, the calculation of the feature resulted in a
loss of the direction of the movement which meant that that information could not be
used for classification anymore. In fact, the final centroid feature did not contain any
information at all on the direction of the movement since it did not even support, for
example, negative values for moving up. The feature generation was also tailored to suit
the specific frame-rate of 20FPS that we had in our training data. Therefore a down-
sample had to be made on any video with higher FPS (see Section 3.3.3). The feature
generator for the centroid velocity also had the slight problem of generating different
values for the velocity depending on how far away in the image the centroid was. The
closer the centroid was to the camera the higher its value would be. This problem
could have been remedied by the use of the depth-data but was not implemented due to
time-restrictions.

The feature did have some good qualities as well. Thanks to its simplicity it took very
little computational effort to create it which resulted in low performance costs and quick
loading time. It is also quite intuitive to think about the movement of the center of mass
as a descriptor of how a person (or object) is moving which makes it easy to grasp the
concept of the feature. Furthermore, the feature also had some areas where improvements

51

5.2. FEATURES CHAPTER 5. DISCUSSION

could be made, which perhaps could have increased its accuracy. For example, by instead
of taking the mean of the vector, create a histogram, more information of the movement
could have been retained and used by the SVM. Another possibility could have been to
calculate the acceleration of the centroid instead of its velocity. The acceleration of a
fall would most likely be close to the gravitational constant g and easy to compare to.
Sadly, actually computing the centroid acceleration in m/s2 would have been hard since
pixels/s2 translates to different values for the acceleration depending on how far away
the person or object is in the image (as stated in the previous paragraph). It would
have been possible to do (since we had access to the depth-data via the Kinect sensor)
but we deemed it to time-consuming to implement. Because of this, the two mentioned
additions to the feature were dropped but it would nevertheless have been interesting
to investigate them. Lastly, as already mentioned, in our specific setting the feature did
show good performance and was therefore kept in the final version of the classifier.

5.2.2 Head to Centroid Relation Feature

The head feature, or more specifically the relation between the head and the center of the
body feature, is quite simple. For each frame the euclidean distance between the head
and the body’s center of mass is calculated. Since the head-trajectory pre-processing is
a little prone to report ”nothing” (section 4.1) the head-feature assigned a default value
whenever that happened. These values were the X- and Y-coordinates of the middle
of the image. This created a situation where the person could be at the outskirts of
the image in one frame but in next frame the data from the head-trajectory would be
missing. The head-feature would assign the ”missing” values to the middle of the image.
The result of such a situation would therefor be a abnormal long distance between what
was assumed to be the head and body. Since this happened somewhat at random for
both activities the feature did not get spoiled as can be seen in Table 4.2 and in the
Figure 4.3b as well. In the table the rightmost column shows the performance, and the
head feature (with the notation fHC) is a top scorer. In the figure the two activities can
be seen to be decently distinguishable along the variance-axis.

If the head-feature had handled missing data differently, for example by using the last
recorded value before the missing data, another problem would arise. If a person moves
in and out of the image, the coordinates would remain at the edge of the image where
the person left the screen. However, this scenario is not relevant due to the restrictions
imposed to the data, where the video snippets are assumed to completely contain a
human performing an activity. This leaves us with four scenarios.

• If both the head- and body-data are present no adjustments are needed.

• If only the head-data is missing i can be assumed that there still is a body but the
pre-processor for the head coordinates accidentally ”decapitated” the body (section
5.1.8) and head’s coordinates would be replaced by the old or default values.

• If only the body data is missing it can be assumed that the head trajectory pre-
processor has erred and detected a head in an ”empty” frame. This could possibly

52

5.2. FEATURES CHAPTER 5. DISCUSSION

be resolved by checking if a ROI is present for the whole body or not. Another
solution could be to perform the head trajectory on the ROI instead of the whole
image, as mentioned in section 5.1.8.

• If both head- and body-data are missing it can be assumed that there is no human
in the image.

As mentioned earlier default values is one way to replace missing data. These default
value would have to be set to something that minimize the interference with ”real”values.
Zeroes is one possibility, minus one is another and the coordinates for the middle of the
image (CMI) a third. In contrast to zeroes and minus one, the CMI acts as a cover up
for missing data. Since it is in the middle of the image the majority of actions happens,
CMI is a ”static estimation” where the human has a high likelihood of being. Since the
replacement values only would be the values for one frame and the data delivered to the
SVM is the mean and variance of a video snippet, it is hard to say how these different
implementations would affect the classification accuracy.

The variance and the mean was implemented to reduce the number of data the SVM
had to compute for every video snippet. That both the variance and the mean are used
means that there is a possibility to distinguish certain scenarios. For example, if there
is no data extracted from certain frames of a video snippet, the data are replaced with
zeroes and the mean drops. If the very same video snippet generated some bigger values
as well, the mean would not be much different that the mean of a video snippet generating
strictly ”normal” values. So by looking only at the mean these two video snippets would
not be distinguishable. However, there would be a difference in the variance and they
would therefor be distinguishable.

5.2.3 HOG Features

The process of obtaining the feature from the HOG was quite similar to the process
of obtaining the centroid and head feature. However, due to the nature of the HOG
calculation itself it produced entirely different values. At first we tried to use the HOG
in its raw form but the sheer size of the HOG vector prevented us from using it directly.
Instead, the magnitude of the difference of to consecutive hogs was taken, reducing the
size to a single value and losing some information in the process. Taking the statistical
measures mentioned in section (3.2.2) reduced the size further to a one more fit for the
SVM. Much like the case with the centroid, one could have opted to calculate a new
histogram from the the intermediate HOG vector (Equation 3.5 section 3.2.2). However,
due to the fact that our familiarity with the HOG was quite low, we chose not to pursue
that method since the initial results with the two-tuple had proven to be quite satisfying
right from the beginning. One thing we nevertheless did try was to check whether only
computing the HOG on the contents inside the ROI was better than on the entire frame.
In our case there was a big gain in performance as well as CRR when restricting the
HOG to the ROI. One great thing about the HOG was that it did not depend as much
on the speed of which tings were happening. Rather it seemed to in some sense actually

53

5.2. FEATURES CHAPTER 5. DISCUSSION

”look” at the change in the image and responded accordingly. We drew this conclusion
when we looked how the HOG performed on some videos with higher frame rate. Since
it was quite unaffected by the frame rate in its accuracy it must be that it does not rely
as much on the speed of which things are happening.

5.2.4 Optical Flow Features

Some variations of optical flow turned out to generate satisfying results. Among the
different types of histogram features used, optical flow variance gave the highest CCR
during tests. Variance of movement was expected to vary significantly between the
activities under test, even though the type of motion was quite similar. At a fixed frame
rate a fall must, by common sense, finish in fewer frames compared to a person lying
down. For example, if a person in a standing pose falls to the ground, the body would
approximately move with a constant acceleration (due to gravity), while if a person that
intentionally lies down, surely would have a trajectory towards the ground with a lesser
accelerated motion. Of course it is possible to lie down during a time frame equivalent
to that of a fall but this would essentially mean that the person intentionally falls. If
there are less motion between frames, the variance naturally gets smaller and since a
lying down sequence has exactly these characteristics in comparison to a fall, the lying
down histogram gets a greater amount of low variance values. That is, a larger part of
the values gets binned in the left region of the histogram as seen in Figure 4.4.

The temporal mean histogram was, for the same reasons as variance, expected to
produce noticeable differences when generated from different activities. The obtained
results was not entirely as expected and the reason for this might stem from the calcula-
tion procedure. Unlike variance, which is a positive number based on the variety of flow,
the mean values was simply calculated as the mean value of each flow vector, generating
the average flow field. The flow vectors of both horizontal and vertical orientation was,
as mentioned in Section 3.2.3, numeric values representing the magnitude of flow and
was positive if the orientation of flow was down/right and negative if the orientation
was up/left. This means that if the same amount of motion would occur towards the
left as to the right or upwards and downwards during a video sequence, the temporal
mean would be close to zero. A better approach would perhaps have been to look at
the average magnitude of vertical/horizontal flow. If this method were to be adopted,
this approach would still differ from the magnitude histogram fMAG, which computes
the 2-dimensional magnitude (f̄2x + f̄2y)1/2 but might represent similar information. The
information contained in both fE and fMAG essentially are the same with the only dif-
ference that fE bins horizontal and vertical flow separately based on their individual size
while fMAG bins the size of the actual (2D) flow vector.

Since the magnitude histogram also was based on the temporal mean, this feature
might have been improved by utilizing the idea of calculating the temporal mean of flow
vectors as a temporal mean of flow vector size.

Using the angle of flow for assigning a flow vector to a bin turned out to generate
histograms with a relatively poor classification rate. This might be the case since both
a fall and a person lying down exhibits similar characteristics in terms of the angle of

54

5.2. FEATURES CHAPTER 5. DISCUSSION

motion. If instead diverse activities were to be compared this approach would probably
generate significantly better results.

The non-histogram feature based on PCA of the temporal average flow turned out
to be non-linearly separable in 2D space as can be seen in Figure 4.3d. This phenomena
made it necessary to use the kernel trick as mentioned in Section 2.6 by utilizing a
RBF kernel for classification. A CCR of 81,7% could then be reached. This feature is
somewhat cryptic in the sense that it is not directly intuitive as what it represents. The
choice of using the projection of the data on the first eigenvector was made in order to
reduce the dimension as much as possible, keeping only the most significant part [22].
Since the dimension of an eigenvector ve of an N ×M flow field still has a quite large
dimension (N ×1) the mean value of such a vector E[ve] for both horizontal and vertical
flow was, as mentioned in Section 3.2.3, used as the resulting feature. The final step of
taking average values most likely destroys much information but it still seem to generate
distinguishable results.

5.2.5 Other Features Specific to Human Classification

When extracting activity-sequences from the test data a certain pattern was distin-
guished in the very beginning of activity 2 (lie down). People with pants tended to bring
their hands towards their knees, most likely to adjust the pants and prepare for the
activity. In comparison while performing the early stages of activity 1 (fall), the hands
were more or less randomly flailing. If our detection methods had supported knee-joint
and hand trajectory, tracking the relation between hands and knees would have been an
interesting feature to investigate.

Tracking the relation between different body parts in general would be interesting.
The features would help specify if it indeed was a human that was detected and performed
an action or if it for example just was a cat strolling by. For example if the hand
trajectory algorithm, intended for humans, managed to extract the coordinates for the
cat’s left hind limb and head and a knee trajectory algorithm extracted the cat’s tail.
The feature above would probable differ substantially between a cat and a human. The
features would therefore complement the motion detector to recognize certain aspects
of human movement pattern and as a result probably increase the correct classification
rate. However the trajectory algorithms would need to be of highest reliability when a
human is the cause of the detected motion. To conclude the example, it would most
likely not matter if hands were extracted from every ”screen of motion” as long as the
”actual hands” were extracted as soon as a human was on screen, due to as mentioned
above it would be the relation between several human body parts and not the specific
coordinates nor existence of such coordinates that would be the deciding factor.

5.2.6 Scaling

When using the scaled and normalized vectors we found that the linearly scaled ones
gave the best results when passed into the SVM. When performing a 100 fold cross
evaluation the CCR almost reached 94% (93.7337 to be exact). When using the other

55

5.2. FEATURES CHAPTER 5. DISCUSSION

set we were only able to reach 93.21 % CCR. Since the same videos were used to gen-
erate the training with the only difference being the normalization of the features, and
using the “optimal” RBF parameters for the SVM we drew the conclusion that in this
particular case, a linear scaling was better than the traditional one. One thing to note
however is that this was done with a fairly small data-set. It could very well be so that if
the data-set was larger and contained more varying individuals falling, that the conven-
tional normalization would have reached higher CCR. Also, the RBF kernel essentially
produced the same results with the only difference that it was a bit wore at classifying
the features individually. We also tried another way of reducing the size (values) of
the feature vector, namely by creating a unit vector pointing in the same direction and
train the SVM on that. Unfortunately this did not help at all since the feature vectors
only differed in magnitude and not in direction between the falls and lies. Normalizing
them in this way only made everything cluster together in the same spot, making the
classes indistinguishable. Because of this, the method was switched out in favor the
linear scaling.

5.2.7 Fusion at Feature vs. Decision Level

Initial experimentation on individual features gave varied results, i.e. at the individ-
ual level the accuracy in classifying activities varied from approximately 50% to values
exceeding 90%. Features providing a higher CCR was then naturally the ones used
in forthcoming tests. As mentioned earlier, centroid velocity, head-to-centroid distance
and HOG-difference was three types of features that showed promising results (CCR
90+%). As for optical flow, histograms based on variance gave the highest accuracy
followed by the PCA-of-flow-feature giving CCR in the lower 80:s (81+%). By merging
(fusing) the five best performing feature vectors fi, i = 1,2, . . . ,5 into a combined vector
f = [f1, f2, . . . , f5], even higher CCR was reached. The motivation of utilizing fusion
at the feature level, as mentioned in Section 3.2.6 was that features specifically design to
look at certain aspects of an activity might not give sufficient results. This is since there
might be other activities showing similar characteristics with respect to that aspect.

Another approach would be to apply fusion at the decision level, that is, to classify
an activity with each feature individually, in our case, making five separate classifications
and fuse the outcomes. A theoretical model was developed but due to time limitations
it was not implemented. An outline of the model is given here

• Train n classification models mi, i = 1,2, . . . ,n with CCR αi ∈ [0,1] for each type
of feature fi

• Compute sum of decision value α =
∑n

i=1 αi

• Classify an activity A with each mi, giving n classification values pi ∈ 0 or 1

• if 1
α

∑n
i=1 αipi > 0.5 then A is classified to belong to the positive class

Since each model mi contributes with a value αi, a model m+ with greater α = α+

than a model m− with a smaller α = α− would have a greater contribution (weight) in
deciding the final classification.

56

5.3. CLASSIFICATION CHAPTER 5. DISCUSSION

An interesting observation is that, if the number of features is less than three (i < 3),
fusion at the feature level might work fine for any value αi while fusion at the decision
level only would consider the model with the largest αi. That is, for i = 2 and α1 > α2,

pi =

{1,0} → α1

α1+α2
> 0.5 = positive

{1,1} → α1+α2
α1+α2

= 1 = positive

{0,1} → α2
α1+α2

< 0.5 = negative

{0,0} → 0
α1+α2

= 0 = negative

5.3 Classification

In this part we discuss the classifying model itself and also the calculated performance
measures.

5.3.1 On the Choice of Kernel and Tuning of Parameters

The choice of which kernel to use in the SVM was relatively easy. Since our feature
vector was quite long we decided to give the linear kernel a try first since it in our
case resulted in faster computation. The initial results were quite bad, not much over
50%. Thinking that this was due to the linear mapping we decided to try the RBF
as well. Unfortunately this did not help much either since we still just barely reached
over 50%. Luckily we realized that if we normalized the vectors we might get better
results. After the normalization the CCR jumped up to around 93% the linear kernel
and close to 92% for the RBF. Since this result was reached using only the default values
of the parameters in the SVM we figured that some increase in CCR perhaps could be
gained if the parameters were correctly adjusted. Finding these parameters manually
seemed quite time consuming so the process was automated using an exhaustive search.
By saving the parameters that gave the best results we could be certain that a close to
optimal choice had been made. The process was not without flaws however. Even though
the process was automated a complete exhaustive search with 100-fold cross-validation
would have taken around 24 hours to complete. In order to reduce the running time only
a 25-fold was used. The value for the parameters generated this way was then manually
entered into the SVM and then slightly tweaked in order to see if a better result were to
be found in the close proximity. Using this method we could at least be certain that we
found good values and only perhaps missing out on a tenth of a percent. In the end we
found out that in our case the use of a C-SVM (cost parameter c = 0.1) with RBF-kernel
(exponent factor γ = 0.6) on the linearly scaled feature data performed best.

5.3.2 Reliability of Estimated Classification Rates

The mean of 20 FNR and FPR values from the CM, 5.79% and 9.43% respectively,
were concluded to be reasonable estimations. This was because the estimated CCR,
93.07%, very much resembled the CCR of the 100-fold CV performed on the whole data

57

5.3. CLASSIFICATION CHAPTER 5. DISCUSSION

set (global CCR). The global CCR was 93.73%. Although the global CCR was slightly
greater than the estimated CCR obtained (0.66% to be precise), the deviation should not
affect the legibility of the estimated FNR or FPR much. A lesser CCR implies increased
FNR and FPR, but not necessarily by an equal amount. Since the global CCR obtained
is greater than the estimated CCR, it is reasonable to assume that the global FNR and
FPR would be even lower than the estimated values.

58

Chapter 6

Conclusion

In addition to the more “floating” boundaries of the goal and purpose, we did have some
qualitative and quantitative performance measures imposed on the project. For the
program to be considered useful and robust enough, we required that it at least reached
a CCR of 85-90% and not have a FPR of more than 10%. Looking at Table 4.3 in section
4 we can clearly see that this criteria was fulfilled with some percent to spare as well. If
we take a look in the problem definition we initially set up as a guide for the project we
pointed out eight (8) sub-problems to the whole project.

1. How to extract manageable data from a video stream?

2. How to locate the object of interest in an image?

3. How to extract the ROI from the image? What shape?

4. What features should be used to enable accurate classification?

5. How should the distribution of training vs. testing data be selected?

6. How should the training of the classifier be performed?

7. How to test and verify the accuracy and robustness of the classifier?

8. How to test and verify the speed and execution time?

In the final stage of the project we realized that most of these problems were trivial.
Points 1,3 and 6 were all solved using Matlab-native functions or functions provided in
the libSVM package. The shape of the ROI in point 3 was also quite arbitrary chosen
to be rectangular for simplicity reasons. Point 2 was a more complex matter, more than
one technique was utilized in order to solve this problem but it was finally solved using
the GMM detector (see section 3.1.5). Point 4 regarding the type of features to be used
was, as outlined earlier, basically a heuristic approach where some possible features were
created and then compared amongst each other to find the ones with highest accuracy.
We finally settled using a fused feature vector presented in section 3.2.6. For point 5

59

CHAPTER 6. CONCLUSION

and 7 we divided the data-set in equal parts (383 falls and lies) to make sure that our
classifier would not be biased towards a specific class. We had to reduce the data-set
from 500 to 383 due to the fact that the first 110 videos did not contain a lie, just a
sit. Moreover some videos were found to be corrupt and could not be used. We used
the cross-validation method on the 383 videos to obtain the performance measures of
the classifier that allowed us to verify its robustness and accuracy. The final classifier
reached a CCR or 93.7337%, a FPR of 9.43% and a FNR of 5.79%. For the final question,
point 8, which connects to the informally stated time-performance criteria, we simply
used the Matlab-native tic-toc function to time our program and then divide the result
with the number of frames in the processed video. By looking at Table 4.4, we can see
that the final program roughly requires ∼ 0.6 seconds of computation time per frame in
the video in order to classify it. This means that a 50 frame video would take around 30
seconds to process which at least feels acceptable. This means that we also managed to
reach that performance criteria as well. Of course, if this value could have been reduced
to a tenth, that is, taking ∼ 0.05 seconds per frame we would have been able to classify
a video with a frame rate of 20 in real time. This improvement could be well worth
looking into in order to improve the usefulness of the program. Other areas to improve
upon would have been the generation of the features since some of them lost a bit of
information during their extraction. Finding more ”non-destructive” feature extraction
methods or trying the ones presented in section 5 could perhaps have increased the CCR
of the classifier.

Credibility assessment Considering that the used resources, Matlab and libSVM are
commonly used, and have high credibility and extensive bug-tests of their own, we can at
least be sure that these do generate correct results. Also the methods used throughout
this thesis are known to work and in the cases where the methods are new we have tried
to document them so that they easily could be repeated later on by some other party.
Of course there is always the risk of us having chosen erroneously at a certain point in
the project which in turn would have given us lower results than we might have gotten
had we chosen “right”. However there should not exist a case where a “wrong” choice
generates better results which implies that the presented CCR becomes a sort of lower
bound for what is possible with this particular data-set and imposed limitations.

Looking back at the results and statements made in the previous chapters we feel
quite satisfied with our effort and where it has led us. Back when the project started, the
goal was to create a Matlab software (function) that could make a distinction between
the two classes of activities, falling and lying down. Since we actually managed to create
such a function with an acceptable CCR we feel that the goal had been reached. In
addition we also created a graphical user interface which makes the function easy to
use. We also feel, when considering the purpose of the project, that we have fulfilled
the part of obtaining a general understanding of some of the methodologies in computer
vision. When the project began none of us had any experience at all with the workings
of computer vision and machine learning. Throughout the project we have investigated

60

CHAPTER 6. CONCLUSION

and tried some of the most common techniques, not to mention reached a satisfying
result. Therefore we feel confident to claim that our knowledge have increased. As for
if our work has contributed to the general growth of the accumulated knowledge in the
field, it is not for us to decide. Most probably we have not come up with any new or
groundbreaking, but hopefully our efforts can still serve as a proof that the methods
used in this thesis, at least in this case, can generate acceptable results. And in a sense,
if our results can be of use to someone else, then we actually have expanded the general
knowledge in the field, fulfilling our initial hopes.

61

Bibliography

[1] Microsoft kinect, Online.
URL http://www.microsoft.com/en-us/kinectforwindows/

[2] Volvo city safety, Online.
URL https://www.media.volvocars.com/global/en-gb/media/

pressreleases/154717/city-safety-by-volvo-cars-outstanding-crash-

prevention-that-is-standard-in-the-all-new-xc90

[3] Microsoft kinect range, Online.
URL https://msdn.microsoft.com/en-us/library/jj131033.aspx

[4] R. Strand, Computer assisted image analysis i: Lecture 5, mathematical morphol-
ogy and distance transforms (2014).
URL http://www.it.uu.se/edu/course/homepage/bild1/ht14/L5_

morphology.pdf

[5] P. Soille, S. A. (e-book collection), S. (e-book collection), Morphological Image Anal-
ysis: Principles and Applications, Springer Berlin Heidelberg, Berlin, Heidelberg,
1999.

[6] D. Reynolds, Gaussian mixture models.
URL https://www.ll.mit.edu/mission/cybersec/publications/

publication-files/full_papers/0802_Reynolds_Biometrics-GMM.pdf

[7] J. MACQUEEN, Some methods for classification and analysis of multivariate data.
URL http://www.umiacs.umd.edu/~raghuram/ENEE731/Spectral/kMeans.pdf

[8] I. The MathWorks, Gaussian mixture model, online (1994-2014).
URL http://se.mathworks.com/help/stats/gaussian-mixture-models.html

[9] M. Piccardi, Background subtraction techniques: a review, Vol. 4, 2004, pp. 3099–
3104 vol.4.

62

http://www.microsoft.com/en-us/kinectforwindows/
https://www.media.volvocars.com/global/en-gb/media/pressreleases/154717/city-safety-by-volvo-cars-outstanding-crash-prevention-that-is-standard-in-the-all-new-xc90
https://www.media.volvocars.com/global/en-gb/media/pressreleases/154717/city-safety-by-volvo-cars-outstanding-crash-prevention-that-is-standard-in-the-all-new-xc90
https://www.media.volvocars.com/global/en-gb/media/pressreleases/154717/city-safety-by-volvo-cars-outstanding-crash-prevention-that-is-standard-in-the-all-new-xc90
https://msdn.microsoft.com/en-us/library/jj131033.aspx
http://www.it.uu.se/edu/course/homepage/bild1/ht14/L5_morphology.pdf
http://www.it.uu.se/edu/course/homepage/bild1/ht14/L5_morphology.pdf
https://www.ll.mit.edu/mission/cybersec/publications/publication-files/full_papers/0802_Reynolds_Biometrics-GMM.pdf
https://www.ll.mit.edu/mission/cybersec/publications/publication-files/full_papers/0802_Reynolds_Biometrics-GMM.pdf
http://www.umiacs.umd.edu/~raghuram/ENEE731/Spectral/kMeans.pdf
http://se.mathworks.com/help/stats/gaussian-mixture-models.html

BIBLIOGRAPHY

[10] N. Joubert, Background modelling and subtraction: for object detection in video,
Master’s thesis, Stellenbosch University (2009).
URL http://dip.sun.ac.za/~wbrink/students/NJoubert2009.pdf

[11] N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, Vol. 1,
IEEE, 2005, pp. 886–893 vol. 1.

[12] N. Dalal, B. Triggs, Object detection using histograms of oriented gradients, online
(May 2006).
URL http://www0.cs.ucl.ac.uk/staff/a.moore/mvpractical2.pdf

[13] High accuracy optical flow estimation based on a theory for warping, in: T. Pajdla,
J. Matas (Eds.), Computer Vision - ECCV 2004, Vol. 3024 of Lecture Notes in
Computer Science, 2004.

[14] J. Tompkin, Machine vision - practical 2: Optical flow an introduction, online
(March 2008).
URL http://www0.cs.ucl.ac.uk/staff/a.moore/mvpractical2.pdf

[15] Performance of optical flow techniques, International Journal of Computer Vision
12 (1).

[16] B. K. P. Horn, B. G. Schunck, Determining optical flow, Artificial Intelligence 17 (1)
(1981) 185–203.

[17] B. D. Lucas, T. Kanade, An iterative image registration technique with an applica-
tion to stereo vision, 1981, pp. 121 – 130.

[18] D. G, Pattern Recognition An Introduction, Springer Science+Business Media, Lon-
don, 2013.

[19] X. Wu, V. Kumar, J. Ross Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLach-
lan, A. Ng, B. Liu, P. S. Yu, Z.-H. Zhou, M. Steinbach, D. J. Hand, D. Steinberg,
Top 10 algorithms in data mining, Knowledge and information systems 14 (1) (2008)
1–37.

[20] C.-C. Chang, C.-J. Lin, LIBSVM: A library for support vector machines, ACM
Transactions on Intelligent Systems and Technology 2 (2011) 27:1–27:27, software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[21] P. Dollár, Piotr’s Computer Vision Matlab Toolbox (PMT), http://vision.ucsd.
edu/~pdollar/toolbox/doc/index.html.

[22] L. I. Smith, A tutorial on principal components analysis, avaliable 2015-02-27
(2002).
URL http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_

components.pdf

63

http://dip.sun.ac.za/~wbrink/students/NJoubert2009.pdf
http://www0.cs.ucl.ac.uk/staff/a.moore/mvpractical2.pdf
http://www0.cs.ucl.ac.uk/staff/a.moore/mvpractical2.pdf
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html
http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html
http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf
http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf

	Introduction
	Background
	Purpose and Goal
	Problem definition
	Limitations
	Outline

	Theory
	RGB-D images
	Morphological Transforms
	Structuring Elements
	Erosion
	Dilation
	Closing and Opening
	Extended Maxima Transform

	Foreground Detection
	Color Thresholding
	Background Subtraction

	Histogram of Oriented Gradients
	Optical Flow
	Horn–Schunck
	Lucas–Kanade
	The Coarse–to–Fine Approach
	The Aperture Problem

	Support Vector Machines
	Training of the SVM

	Predictive Analytics
	Confusion Matrix
	Cross-Validation

	Method
	Approaches for Human Detection
	Skeleton Tracking by Color Thresholding
	Isolation of the ROI by Manual Background Subtraction
	Subduing the Effects of Inconsistent Illumination via Background Averaging
	Specframe
	Foreground Detection Using Gaussian Mixture Models
	Extended Maxima Transform on Specframe
	Blob-tracking in HSV color-space
	Motion Detection with Eigenbackgrounds

	Design of Feature Vectors
	Centroid Velocity- and Head-Centroid Relation
	HOG Features
	Optical Flow Features
	Choosing the Type of Pre-Processing for Each Feature
	Normalizing and Linear Scaling of Features
	Feature Fusion

	The Classification Model
	SVM Classifier
	Confusion Matrix and Cross-Validation
	Temporal Down Sampling

	Experimental Results
	Image Pre-processing
	Features
	Classification
	Cross-validation results
	Run-time Estimation
	Further Classification Rates

	Developed Software
	Graphical User Interface Design using Matlab

	Discussion
	Image Pre-processing
	Thresholding on Color
	Manual Background Subtraction
	Use of Extended Maxima
	Estimating a new Background
	Gaussian Mixture Model
	Depth-map
	Eigenbackground
	Subtraction in HSV
	Morphological Operations

	Features
	Centroid Velocity
	Head to Centroid Relation Feature
	HOG Features
	Optical Flow Features
	Other Features Specific to Human Classification
	Scaling
	Fusion at Feature vs. Decision Level

	Classification
	On the Choice of Kernel and Tuning of Parameters
	Reliability of Estimated Classification Rates

	Conclusion
	 Bibliography

