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Abstract
In the last century, astronomers have concluded that the luminous mass in the Universe impossibly can

be responsible for the huge gravitational pull observed in stellar and galactic systems. The explanation

for this discrepancy between luminous mass and gravitational effects is believed to be dark matter –

an unknown particle species that does not emit or absorb light at detectable wavelengths. Although

extensive efforts have been made to detect this mysterious particle, it remains undiscovered, and its

nature is one of the greatest unsolved questions in fundamental physics.

This thesis investigates the prospects of discriminating between Dirac and Majorana dark matter,

if dark matter is to be found in direct detection experiments. The Dirac or Majorana nature of a

particle corresponds to the existence or absence of a distinct antiparticle, which for the invisible, and

therefore probably neutral, dark matter particle is a property of major importance. The theoretical

framework is fermionic dark matter at the sub-GeV mass scale, interacting with electrons in direct

detection experiments with argon, xenon and germanium targets. The coupling constant parameter

space of photon mediated interactions is explored, and the regions where statistical rejection of a

Majorana hypothesis could be possible in the future are determined.

It is found that the discrimination significance for rejecting a Majorana hypothesis, given simulated

Dirac-like experimental signals, reaches values of >4 standard deviations for a substantial part of the

coupling constant parameter space for germanium targets, whereas argon and xenon targets entail

stronger restrictions on the discrimination parameter space. The discrimination significance is highly

dependent on the available detection energy region, and the dark matter mass.

Key words: dark matter, Dirac, Majorana, direct detection, electron scattering.
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1 Introduction
Ever since the 18th, century astronomers have been referring to dark matter in the sky when asking

questions about the Universe [1]. These invisible objects were often believed to be stars or other known

astronomical bodies, only too faint or too far away to be seen from Earth. It is only recently, in the past

few decades, that the term ”dark matter” has come to be the label of an unknown particle species,

unable to emit or absorb light at measurable wavelengths but noticeably affecting its surroundings

through gravity. However, the mystery embedded in the word ”dark” – once just a description but

nowadays a distinguished name – still prevails.

Although the evidence for the existence of dark matter in the Universe is overwhelming, the nature

of dark matter is one of the great unsolved questions in astroparticle physics and in science in general.

The solution could point towards new paths in cosmology, which would help us understand the past

and future of our Universe, and perhaps even throw the so faithful but so frustrating Standard Model

of particle physics over, once and for all.

This thesis is a contribution to the gigantic research project that aims to determine what dark

matter is. Focus is on the particle/antiparticle nature of dark matter – a feature that could help single

out which dark matter model is actually describing reality. If dark matter is its own antiparticle,

which for fermions correspond to a Majorana particle, this could point towards the supersymmetric

extensions of the Standard Model. If dark matter on the contrary has a distinct antiparticle, as Dirac

fermions do, this could point towards asymmetric dark matter models.

The particle/antiparticle nature investigated in this thesis applies for dark matter in the MeV – GeV

mass range, so called light dark matter. This is a collection of dark matter models that is currently

gaining a lot of interest in the astroparticle physics community, since large parts of the underlying

parameter space is unexplored but experiments aiming to explore it already exist. One promising

experimental procedure is direct detection, where interactions between Milky Way dark matter and

Standard Model particles are probed in low-background detectors. In the MeV-mass range, dark

matter would primarly interact with electrons, thus giving rise to excitation signals in detector targets

such as liquid noble gases or semiconductors [2]. Three distinct target materials will be considered in

this project; argon, xenon and germanium.

The different signal event rates that are to be expected in these experiments if the dark matter

particle is a Majorana or a Dirac fermion are calculated for the particle physics scenario of dark matter-

electron scattering, mediated by a loop level photon interaction. Although dark matter does not emit

or absorb measurable light, it can still interact with photons through higher-dimensional operators

[3]. This theoretical framework is chosen after proving that spin independent, general couplings to

electrons results in indistinguishable event rates. Through a statistical analysis of Monte Carlo simu-

lated experimental data, it is shown that a Majorana hypothesis can be rejected in favour of a Dirac

1



1 INTRODUCTION

hypothesis. Thus the possibility that dark matter is identical to its antiparticle can be excluded. This

has been done within the experimental framework of dark matter-nuclei scattering [4], but not for

electron scattering.

The statistical analysis of the particle/antiparticle nature of dark matter is crucial in the design

optimisation of next generation direct detection experiments searching for sub-GeV dark matter –

it can highlight the strengths and weaknesses of different experimental setups, and it can determine

the prospects, in terms of number of signal events for different regions of the mass- and couplings

parameter space, for future discoveries regarding the particle nature of dark matter.

1.1 Purpose

The main purpose of this thesis is to investigate the prospects for determining the particle/antiparticle

nature of dark matter particles in the MeV–GeV mass range, interacting with electrons in direct

detection experiments based upon argon, xenon and germanium. What parts of the interaction coupling

parameter space enables discrimination between the Dirac and Majorana nature, and how big is this

discrimination?

1.2 Thesis outline

The thesis begins with a background chapter, where an overview of the evidence for dark matter

is given, as well as a description of the most relevant possible dark matter candidates, the current

detection techniques and the particle/antiparticle nature. It is followed by a theoretical review, which

treats the theory of Dirac fields and charge conjugation, needed to distinguish between Dirac and

Majorana particles, and calculations of their corresponding signal event rates, based on dark matter-

electron scattering in semiconductor and liquid noble gas detectors.

The numerical calculation procedure is then described in the next chapter, where the approxima-

tions used in the calculation are explained and motivated. Here the data simulation and the statistical

analysis, used to discriminate between the two hypotheses, is also presented. This is followed by a

presentation of the results. That is, the discrimination significance for rejection of the Majorana hy-

pothesis, given a dark matter signal simulated under the Dirac hypothesis in the chosen theoretical

framework, for a range of different free parameters. The three experimental setups are compared.

Lastly, the results are discussed in light of the theoretical background, the uncertainties in the dis-

crimination procedure and the future prospects of discovering dark matter.

2



2 Background
Although the word ”dark” has been used for a long time to describe various amounts of objects in

astronomy, the contemporary meaning of ”dark matter” dates back to the early 1900s. In 1904, Lord

Kelvin proposed a method to link the velocity dispersion of stars to the mass of the stellar system:

gases of particles obey the laws of thermodynamics, so through describing stars as gas clouds one

can induce the mass needed to maintain the observable movement of the stars [5]. The discrepancy

between this mass and the luminous mass of the stars was baptised to dark matter.

Since then the evidence for this discrepancy between luminous mass and mass induced from gravi-

tational effects on other observables has continued to grow, and it is now a well established scientific

fact. The search for dark matter has evolved into an entire field of research, and the theoretical particle

models of dark matter range from super light bosonic axions to super heavy ”wimpzillas”, intriguing

scientists all over the world [6]. In the following sections, I will go through the major evidence for dark

matter on different size scales, some of the possible candidates for dark matter, and the experimental

procedures that aims to detect them. Finally, a short presentation of the particle/antiparticle nature

of dark matter, and the prospects for determining it, will be given.

2.1 Evidence for dark matter

The evidence for dark matter ranges from interstellar scales, through galaxies and galaxy clusters to

the largest cosmological structure. I will begin with the galactic scale, where rotation curves of spiral

galaxies are the observables in question; continue with galaxy clusters, where the velocity dispersion of

galaxies constitute the evidence; and finally discuss the evidence on the largest cosmological structure,

focusing on temperature anisotropies in the cosmic microwave background radiation and structure

formation. This section is to a large extent based upon the overview of particle dark matter by

Bertone, Hooper and Silk from 2008 [7].

2.1.1 Galactic scale

On a galactic scale, the evidence for dark matter mainly comes from the relationship between circular

velocities of stars and gas in spiral galaxies and their radial distance from the galactic centre – the

so called rotation curves. The circular velocity of a star in a galaxy depends on the gravitational

potential, which is linked to the mass of the galaxy. Thus the gravitational mass can be estimated

from the circular velocities and compared to the luminous mass.

The inward acceleration a of matter rotating in the galactic plane, and the spherically symmetric

3



2 BACKGROUND

Newtonian gravitational potential, V , at distance r from the centre are

a(r) =
v2
c

r
=
∂V (r)

∂r
, V (r) = −GM(r)

r
. (2.1)

G is the gravitational constant, vc is the circular velocity and M(r) is the mass contained within a

sphere of radius r with density distribution ρ(r′): M(r) = 4π
∫ r

0
ρ(r′)r′2dr′. The relation between

circular velocity and mass is therefore

vc(r) =

√
GM(r)

r
. (2.2)

For large radii, the luminous density distribution ρL in a galaxy is approaching zero, leaving M(r)

constant. Therefore, one would expect to see the rotation curves fall off as 1/
√
r for large r. This is

however not the case. The experimental data instead show rotation curves that are almost constant

at large radii – they are flat instead of slowly decreasing. This is where the dark matter enters the

stage; by introducing a dark matter halo, with density distribution ρDM = C/r2 for some constant C,

the flat curves are reproduced theoretically. The total mass distribution is then

M(r) = 4π

∫ r

0

(ρL + ρDM )r′2dr′ = ML,const + 4πCr, (2.3)

for r bigger than the radius of the visible stellar disc. This yields the rotation curve

vc(r) =

√
GML,const

r
+G4πC. (2.4)

By adjusting the constant C, the term stemming from the dark matter halo can compensate for

the 1/
√
r-dependence, leaving the rotation curve flat and thus reestablishing the connection between

observations and Newtonian gravity. It is however hard to estimate the amount of dark matter through

this approach, since it is difficult to measure how far the dark matter halo extends.

2.1.2 Galaxy clusters

The first evidence of dark matter on the next size scale, that of galaxy clusters, is one of the most

famous results in dark matter history. In 1933, the Swiss-American astronomer Fritz Zwicky calculated

the mass of the Coma cluster from the observed velocity dispersion of eight galaxies using the virial

theorem, and found a discrepancy between the luminous and non-luminous mass corresponding to a

mass-to-light ratio of a couple of hundreds [8].

The virial theorem states that the kinetic energy T and the potential energy V of a galaxy cluster

must obey 2T + V = 0, if the cluster is to be stable. Through expressing the kinetic and potential

energies as averages over distances between the included galaxies, 〈r〉, and their velocity dispersion,
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〈v2〉, one can obtain a relation between the total mass M and the measurable velocities:

T =
M〈v2〉

2
, V = −GM

2

2〈r〉
, =⇒ M =

2〈v2〉〈r〉
G

. (2.5)

It was this mass that Zwickey found to be much larger than the total luminous mass, found for example

by counting the galaxies in the cluster and assuming an average mass for each.

Today the mass of galaxy clusters can be determined not only through Zwickey’s method, but

also from weak gravitational lensing, and from the X-ray emission profile tracing the distribution

of hot intracluster gas. In general relativity, strong gravitational fields bend the lines along which

light travels, thus distorting the images reaching us from behind heavy objects. The gravitational

potential from a galaxy cluster can therefore be estimated from the distortion of background objects,

and thereby the cluster mass can be induced. The X-ray emission estimation of cluster mass is instead

based on thermodynamics. Assuming that the intracluster gas behaves like a spherically symmetric

ideal gas, the equation for hydro-static equilibrium relating density to pressure can be expressed in

terms of mass and temperature instead. This enables a calculation of galaxy cluster mass based on

temperature determinations from X-ray emission profiles.

The observed temperature outside the core of galaxy clusters is substantially larger than the tem-

perature expected for the luminous mass, pointing towards the existence of a large amount of dark

matter in galaxy clusters. Weak gravitational lensing yields the same result, although this method has

received some critique: the distribution of dark matter on galaxy cluster scale might be affected by

the ordinary, baryonic matter distribution in unforeseen ways, leaving the results uncertain [9].

2.1.3 Large cosmological structures

The most convincing evidence for dark matter comes from the largest size scale in the Universe:

surveys of the large scale cosmological structure and measurements of the temperature anisotropies in

the cosmic microwave background radiation (CMB). It is also from the CMB analysis that the actual

quantity of dark matter present in our Universe is conceived.

The overall cosmological structure origins from the early days of the Universe [10]. During the

first ∼ 300 000 years after Big Bang, the Universe was very hot. The temperature was so high

that electrons and protons were unable to combine into neutral atoms, leaving the matter content

as a chaotic, shapeless plasma. This plasma interacted continuously with electromagnetic radiation,

prohibiting light from travelling over any substantial distances. It was first when the temperature

decreased to the point where neutral hydrogen could be formed, that light could escape from the scene

and structure formation could begin. This is called the recombination, and the light emanating from

this time period is called the cosmic microwave background radiation.

The problem – or for one who argues that dark matter exists the key – is that recombination occurs

5
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too late to explain the structures we observe in the Universe today. When the evolution of the large

scale structures are traced backwards in time, we land in the era of the hot particle plasma, where

leptons and baryons were running wild, constantly flirting with light and therefore unable to build up

the foundations of galaxies. The existence of dark matter in the early Universe could be the solution to

this. Dark matter, weakly or not at all interacting with other Standard-Model particles and therefore

untouched by their realm of chaos, could have formed the first structures in the Universe, around

which the baryonic matter content later gathered. For this to be theoretically plausible however, dark

matter needs to have been non-relativistic during structure formation [11]. This theory goes under the

name Cold Dark Matter (CDM), often prolonged ΛCDM to also take Einstein’s cosmological constant

Λ into account. In contrast to relativistic Hot Dark Matter (HDM), ΛCDM is considered the most

reliable cosmological model.

The other major argument for the existence of dark matter on the largest possible scale comes from

the fluctuations in the CMB temperature. The CMB temperature is astonishingly homogeneous at

about 2.7K, but it does exhibit fluctuations of order of magnitude 10−5 [7]. The angular dependence

of these fluctuations can be expanded in terms of spherical harmonics Ylm(θ, φ):

δT

T
(θ, φ) =

∞∑
l=2

l∑
m=−l

almYlm(θ, φ). (2.6)

The variance Clm of the coefficients alm, Clm =< |alm|2 >, can be expressed as a function of l and

plotted in what is called a CMB power spectrum. This function Clm(l) will theoretically depend on

the solutions of Einstein’s equations of general relativity at recombination, and therefore depend on

the density variables Ωb and ΩM , describing the baryon density and the total matter density in the

Universe. The likelihood of generating a model that fits the experimental temperature fluctuations

data is optimised over all cosmological parameters, thereby extracting the most probable ratios of

baryonic matter to total matter [12].

In figure 1, a CMB power spectrum showing both observed data and the best fitted theoretical

model is presented. This is a ΛCDM model with specified densities – thus proving the existence of

dark matter quantitatively. In order for the second peak in the spectrum to be present, a strict limit is

put on the baryonic matter density, demanding that the majority of the matter content in the Universe

is something other than baryons. The 2018 results from the Planck satellites are Ωbh
2 ∼ 0.02 and

ΩMh
2 ∼ 0.12 , where h is the Hubble constant [13]. Hence the conclusion: non-baryonic dark matter

constitutes about 85% of all matter in our Universe.

6
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Figure 1: CMB power spectrum obtained from the Planck collaboration in 2013. The red dots are
temperature measurements with corresponding error bars, and the green curve is the best parameter
fit from a ΛCDM cosmological model. The second peak in the observed spectrum is the most famous
one – it is namely a peak that disappears for all cosmological models containing Ωbh

2 > 0.08.
Copyright: ESA and the Planck Collaboration [14].

2.2 Dark matter candidates

To summarise, it is put beyond reasonable doubt that our Universe contains dark matter, and that

dark matter constitutes the majority of all existing matter. What we so far have learned about dark

matter is a list of negative properties: it does not interact with electromagnetic radiation at any today

observable wavelength, it can not be baryonic and it can not be relativistic, for structure formation

reasons (among others). It is however stable, and it is affected by gravity. The evidence for dark

matter resides to a great extent in the discrepancy between luminous matter and the matter derived

from gravitational effects on other observables. One way to explain this discrepancy would be to say:

there is something wrong with our understanding of gravity. This would be a fundamental turnover

in physics, since not only Newtonian mechanics but also Einstein’s general theory of relativity would

need to be revised – but such turnovers have happened before.

Modified gravity models that account for dark matter range from Milgroms classical modification of

Newtonian dynamics (MOND) to later theories based upon high energy corrections of the gravitational

interaction or the scale invariance of empty space [15–17] . These models all have difficulties explaining

the grand diversity of dark matter evidence, especially the CMB power spectrum and the structure

formation. Furthermore, one of the strongest indications that modified gravity is not the answer to

the dark matter question surprisingly comes from the absence of dark matter. In the past year, two

galaxies that seem to lack dark matter have been found [18, 19]. This is extremely hard to explain

7
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within the framework of modified gravity – if gravity is modified, it is not likely modified in separate

ways from one galaxy to another.

This reinforces the use of ”dark matter” as ”unknown substance”. What kind of substance is dark

matter then? During the last century, fundamental physics has entered a particle paradigm – the

Standard Model consists of 17 distinct particles and the Standard Model extensions are swamped with

new, yet unconfirmed ones. The electromagnetic neutrality in combination with the non-relativistic

and non-baryonic properties of dark matter rule out all of the Standard Model particles – neutrinos

were for a long time considered as possible candidates, but this theory has been refuted due to upper

bounds on the relic neutrino density (among other reasons) [7]. The research eye has since then turned

to Standard Model extension particle models, of which a few is presented below. The models are split

into two major categories depending on mass range: weakly interacting massive particles and light

dark matter, the latter of which is the focus of this thesis.

2.2.1 Weakly interacting massive particles

The leading paradigm in astroparticle physics the past decades goes under the name WIMPs: Weakly

Interacting Massive Particles. This is a theoretical framework describing electrically neutral particles

in the mass range 1 GeV – 100 TeV, with interaction strengths up around the weak nuclear force scale.

Such particles could have been produced in the early Universe through their chemical decoupling from

the thermal bath. WIMP is rather a category of dark matter models than a specific type of particle

– examples of particles contained within the WIMP collection are light neutralinos, the superpartners

of the neutral Gauge and Higgs Standard Model bosons in supersymmetry (supersymmetry will be

explained further in the context of light dark matter); particles coming from an extended Higgs sector;

or Kaluza-Klein states, massive particle states stemming from vibration modes in fields living in

dimensions beyond our space time [20, 21].

The experimental search for WIMPs has been remarkable in the past decade [20]. Three comple-

mentary procedures have been used:

• Direct detection experiments, where signals of Milky Way WIMPs scattering off detector target

nuclei are traced in deep underground detectors with low background noise.

• Indirect detection experiments, where products of WIMP annihilation or decay in the Milky Way

are searched for with satellites and ground based telescopes.

• Particle collider experiments, where missing energy in high energy collision spectra of known

particles are analysed in search for WIMPs produced in the process.

Despite the major research investment in this area, WIMPs have so far escaped non-ambiguous

detection. There is however one experimental collaboration that for the past two decades claims to

8
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have found dark matter in the WIMP mass range: the DAMA/LIBRA collaboration [22]. They use

direct detection and the claimed discovery is based on annual modulation signals, that measures the

modulation of the scattering events over time. Since the detector direction relative the Milky Way

dark matter halo changes with the rotation of the Earth around the sun, such an annual modulation

is expected: when Earth is aligned with the halo, the signal should be stronger, and vice versa.

Unfortunately, no other experiment has been able to reproduce the DAMA result, although efforts to

mimic their exact experimental setup are currently made [20, 23]. Hence it is not considered to be a

discovery.

All other experiments are instead constantly producing negative search results. For particle can-

didates in the mass range 10 GeV–10 TeV, direct detection experiments such as the XENON1T col-

laboration have limited the scattering cross sections to very small levels, without detecting any dark

matter induced nuclear recoils [24, 25]. Nor have indirect detection experiments lead to a discovery

of a dark matter particle within the WIMP framework. Another strong indication against the WIMP

paradigm is the absence of non-Standard Model physics at particle colliders, such as the Large Hadron

Collider (LHC) at CERN – this also narrows down the window for a potential WIMP discovery [26].

The theoretical motivation for WIMPs is hence lessened by this.

2.2.2 Light dark matter

One alternative to the WIMP theory that has gained a lot of interest over the past years is Light

Dark Matter (LDM), a dark matter model category describing particles in the keV–GeV mass range.

This is lighter than the WIMPs, but still not light enough to be relativistic and therefore part of the

unlikely hot dark matter scenario. There is a wide variety of models for LDM, explaining the relic

abundance needed to match the current amount of dark matter in the Universe, as well as the possible

interactions with Standard Model particles.

Some of them are incorporated in the supersymmetric framework that has swept the physics world

off its feet in the past decades, for example gravitinos [27] and axinos [28]. Supersymmetry is an

extension of the Standard Model, presenting supersymmetric partners of all known (and unknown)

particles. The partnership is based on spin – for each fermion the superpartner is a boson and vice

versa, and these are created in pairs. Supersymmetry was introduced to solve other problems than

the dark matter question in fundamental physics, such as the hierarchy problem, but it has since then

been applied in a wide area of new physics. The lightest supersymmetric particle should be stable,

since it can not decay to any lighter particle couples, and if it is neutral as well it is a candidate for

dark matter. In order to establish a reasonable dark matter relic density, all the neutral Standard

Model particles would have supersymmetric partners beyond the LDM mass range; neutralinos are in

the WIMP range and sneutrinos (partners of neutrinos) even higher [7]. Hence only the wild cards

are left: the gravitino, partner of the yet unseen graviton; and the axino, partner of the tiny axion
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postulated to solve the CP problem but not discovered.

Other models imply a dark sector similar to the visible Standard Model sector, where the dark

matter particles can be composite states – in analogy with mesons or hadrons – and the present-day

abundance originates from an asymmetry between particles and antiparticles [29]. This theory goes

under the name asymmetric dark matter. Another proposition is so called sterile neutrinos: new right-

handed sisters to the left-handed Standard Model neutrinos [30]. Sterile neutrinos do not exhibit weak

interactions, but they do interact with the Standard Model neutrinos, through oscillations between

left- and right-handed particle states.

There is a wide variety of alternatives concerning how, and to what extent, the particles in this

hypothetical dark matter zoo interact with the Standard Model particles. They could couple directly

to Standard Model particles, interactions could be induced from higher-dimensional operators at loop

level, or they could be enabled by an invisible mediator; an axion, a dark photon or an electromagnetic

dipole moment, etc. LDM should however in theory be possible to detect. Since LDM in many ways

is just a lighter variant of a WIMP, detection techniques similar to the ones used for the WIMP search

can also be used for the LDM search. This is the main reason why the experimental search for LDM has

gained a lot of interest over the last years. LDM is a broad theoretical framework still unconstrained

by the exclusion limits weighing down the WIMP paradigm, but with large detection possibilities.

2.3 Experimental searches for light dark matter

As described in the WIMP scenario, there are three different experimental setups aiming to detect dark

matter: direct detection, indirect detection, and production of dark matter in particle accelerators.

All of these procedures can be used in the search for LDM, with slight modifications compared to

the WIMP search, which most of the experiments existing today were initially built for. The focus in

this thesis is direct detection of LDM, thus this will be described in more detailed than the other two

detection techniques.

2.3.1 Indirect detection

Indirect detection searches for Standard Model particles produced by dark matter processes in space.

One such process is annihilation – which of course requires dark matter antiparticles to exist and to

be abundant enough to generate a detectable signal. The other is decay, which also could give rise

to Standard Model particle production, provided that dark matter has a limited lifetime. Different

experimental setups are needed for detection of different final products: neutrinos, gamma rays, cosmic

rays, etc. The main drawback with this approach is that it is difficult to distinguish dark matter

processes from all other astrophysical processes constantly occurring in space.

In the framework of LDM, there are a few recent developments and suggestions to solve the back-

ground issue. For example, if dark matter couples primarily to quarks, the annihilation or decay of
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Milky Way dark matter particles could generate detectable photon signals [31]. These signals would

stand out in a spectrum since there are quite few particles that can be generated from a process with

centre-of-mass energy in the sub-GeV range. One of the possible particle candidates is the η-meson, so

annihilating or decaying dark matter in the above theoretical framework have the potential to produce

specific photon spectra through η-mesons decaying to photons.

Other possible dark matter particle physics frameworks suitable for indirect detection of LDM

are studied in [32], where the gravitino and the sterile neutrino, among others, are explored. The

experimental setup considered there is diffuse X-ray and gamma ray observations, originally measured

in the WIMP search but reinterpreted in the LDM framework.

2.3.2 Particle colliders

The search for dark matter in particle colliders is a search for missing energy due to production of

undetectable dark matter particles. These dark matter particles can, as a kind of reversed indirect

detection process, be produced either in Standard Model particle decays or in a particle-antiparticle

creation. The processes where LDM can be created have lower centre-of-mass energy compared to

the WIMP scenario, so the high-energy colliders such as LHC are not relevant in the LDM search.

Instead, low energy electron and positron collisions are analysed. BaBar and BELLE(II) are the

leading facilities for such collisions, and the results from these particle colliders have been analysed in

the LDM framework [33, 34].

Production of dark matter through B-meson decays in low energy collisions were initially considered

to be a promising channel of probing LDM [35]. These meson decays are though very rare, so other

possibilities have been explored too. If the dark matter production is mediated through for example a

dark photon, it could give rise to a larger missing energy in electron-positron collisions [36].

One overall challenge in the search of dark matter in particle colliders is that neutrinos also display

themselves as missing energy in the spectra, so the division between the two is hard. Furthermore,

even if a new particle were to be found in these experiments, it would still not be certain that this new

discovery was dark matter – there are plenty of other new particle candidates that does not necessarily

constitute 85% of the matter content in the Universe.

2.3.3 Direct detection

Direct detection experiments are based on the scattering of Milky Way dark matter particles and

Earth-based detector targets. Provided that dark matter interacts, directly or via a mediator of some

kind, with Standard Model particles, such scattering events would in principal be possible to detect on

Earth. Since these interactions are expected to be quite weak – after all, no interactions of dark matter

have yet been detected – a crucial part of the experiment is the background noise. For this reason,

direct detection experiments are often placed deep underground [37]. This shields the detector from

11



2 BACKGROUND

uninvited space travelling particle guests, for example cosmic muons. Muons produced when cosmic

rays meet the upper atmosphere can travel all the way down to a ground based detector without

decaying or annihilating, thus creating a misleading signal. Luckily, they can not as easily pass the

crust of the Earth. Other background sources are external neutrons, electrons induced by gamma

radiation in the surrounding bedrock, or internal detector radiation.

Today a great range of different detection target and experimental procedures exists: superheated

fluids, liquid noble gases, scintillators, crystal semiconductors, etc [37]. These were all initially designed

to capture WIMPs, thus measuring the nuclear recoil induced by WIMP scattering. However, in a

2012 paper by Essig, Mardon and Volansky [2], it was proposed that some of these experimental setups

could also be used in the search for LDM in the mass range MeV–GeV. This is possible if one measures

the electron recoil instead of the nuclear recoil, which for the LDM mass range is beyond the reach of

current experimental thresholds.

The possibility to detect a signal in a WIMP direct detection experiment is determined by the

energy of the recoiling nucleus ENR, and thus the transferred momentum q since ENR = q2/2mN .

The maximum value of q occurs when the angle between the incoming dark matter velocity v and the

nuclear recoil is 0. Through energy and momentum conservation, this is determined to qmax = 2µN,χv,

where µN,χ is the reduced mass of the nucleus and the dark matter particle [38]. If we assume that

mχ � mN and approximate the dark matter velocity to 10−3c, this yields an upper limit for the recoil

energy ENR [39]:

ENR =
q2

2mN
≤

2µ2
N,χv

2

mN
' 1 eV ×

( mχ

100 MeV

)2
(

20 GeV

mN

)
. (2.7)

Here, the numbers have been rearranged to prefixes, to create a simple overview. For a dark matter

mass of a few hundreds of MeV, the nuclear recoil energies are a few tens of eV. When comparing

this result to the current thresholds for detecting these signals in experimental setups, which often

are of order keV [25], the case for looking at dark matter-electron scattering instead is clearly made.

Since the electron is much lighter than the nucleon and the dark matter-electron scattering is naturally

inelastic, the dark matter particle can transfer a large fraction of its kinetic energy to the electron,

causing a detectable ionization signal even for ∼ 1 MeV dark matter masses [39].

Unfortunately, bound electrons are a bit trickier to handle than nuclei. For example, bound elec-

trons have indefinite momentum, which complicates the kinematics involved in the process – the

momentum transfer is no longer directly linked to the deposited energy as in the case of nuclear scat-

tering. The signal rate is also highly dependant on the electron structure in the detector material,

which especially in the case of semiconductor targets can be quite complicated [39]. This complex

electron behaviour can however be encoded in an atomic form factor, which is independent of the dark

matter model used. In addition to this atomic form factor, the observable direct detection signal rate

depends on the velocity distribution of the dark matter particles in the Milky Way halo and the dark
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matter particle model; the dark matter mass and the underlying interaction theory for the relevant

particles.

The technique to detect small electron ionization and excitation signals in direct detection ex-

periments is currently being explored for noble gas targets used by the DarkSide50-, XENON10-

and LUX-collaborations [40–42], and for crystal semiconductor targets used by the SuperCDMS- and

SENSEI-collaborations [43, 44]. In this thesis, three detector targets will be used: argon, xenon and

germanium. The goal of the analysis of dark matter-electron scattering rates is to distinguish between

dark matter that is its own antiparticle and dark matter that has a separate antiparticle – a feature

that could help us understand what dark matter really is.

2.4 Particle/antiparticle nature

What is an antiparticle? An easy visualisation that is common in upper secondary schools is the one

with the paper and the scissors. A white paper represents energy, then a circle is cut out from the

paper to represent the particle. The antiparticle is now the hole in the paper – similar to the circle

in size but different in substance, defined as an absence rather than an existence. When the circle

is reinstated in its original place, the white paper is whole again: the particles have annihilated to

energy. This is of course an oversimplification, but the idea that antiparticles are ”holes” were actually

first proposed by Paul Dirac when he stumbled across the negative energy solutions to his equations

that were to be called antiparticles [45]. This metaphor was however made obsolete by quantum field

theory (QFT), which explains antiparticles as negative energy states of the ordinary particle field.

Since positive energy states correspond to particles moving forward in time, the QFT visualisation of

antiparticles is particles moving backwards in time. How to explain that with a paper and a pair of

scissors is though beyond my imagination.

To be more physical: an antiparticle shares all properties with its particle, except for the fact that all

quantum charges are reversed. It has the opposite electromagnetic charge, the opposite baryon/lepton

number, the opposite colour charge, etc. A particle that is its own antiparticle must therefore be

fundamentally neutral. The neutron is for example not fundamentally neutral, it consists of quarks

with colour charges, and hence has an antiparticle which consists of the corresponding antiquarks. The

photon is on the contrary its own antiparticle: it has no charges whatsoever. There are no known

fermions that are their own antiparticles – although the particle/antiparticle nature of neutrinos are

yet debated and currently probed in experiments [46]. A fermion that is its own antiparticle is a

Majorana particle, named after Ettore Majorana and postulated as an alternative to the traditional

Dirac fermion, to explain the nature of the neutrino.

Dark matter, just like the neutrino, is a particle candidate that could be its own antiparticle – the

electromagnetic neutrality and the lack of interactions are the only fairly established facts we have

regarding the nature of dark matter. In 2016, a test to determine whether dark matter is different
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from its antiparticle was proposed by Queiroz, Rodejohann and Yaguna [4]. The proposition was to

combine the results of three different direct detection experiments, in order to separate the theoretical

predictions for the expected signal rate generated by a Dirac or a Majorana fermion. The reasoning

can however be generalised to scalar or vector dark matter too.

The test is based on spin independent, general interactions between dark matter and nuclei. Hence

the dark matter model considered is the WIMP scenario. The direct detection data is interpreted in the

Majorana framework, and after comparing the rates of three different detector targets an inconsistency

in this interpretation can be established. It is therefore possible to reject the possibility that dark

matter is its own antiparticle, but not to prove this to be true. A crucial part of the discrimination

procedure is the fact that dark matter has distinct couplings to on the one hand the neutrons and on

the other hand the protons of the detector target. If dark matter would couple only to protons or only

to neutrons, discrimination would be impossible.

In this thesis, the test proposed by Queiroz, Rodejohann and Yaguna will be applied within a

light dark matter framework instead, where dark matter scatter of electrons instead of nuclei in direct

detection experiments. In the next chapter, the mathematical framework of dark matter-electron

scattering and the corresponding observable in direct detection experiments based on liquid noble

gases and semiconductors will be presented, as well as the underlying quantum field theory behind the

particle/antiparticle nature of dark matter.
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3 Theoretical framework
The mathematical framework of this project is divided in two distinct parts: dark matter models, and

the scattering process in direct detection. The first part contains the particle physics theory behind the

relevant dark matter models. Assuming spin1
2 -dark matter particles, the mathematical representation

of these are spinor fields. The particle/antiparticle nature is determined by how these fields transform

under charge conjugation: a Dirac particle is turned into its antiparticle under charge conjugation,

whereas a Majorana particle remains the same. This difference leads to a distinction in interaction

cross sections in free space. The cross sections are linked to the scattering event rates, that are explored

in the second part of this section. These are the actual observables that can be measured in direct

detection experiments.

All equations from here on are expressed in natural units, that is, h̄ = c = 1.

3.1 Dark matter models

Two dark matter models are explored in this section: one where the dark matter field couples directly

to electrons, and one where the dark matter-electron interaction is mediated by a photon. It is shown

that the former leads to Dirac and Majorana cross sections that are impossible to experimentally

distinguish from one another, thus the latter is used throughout the project. However, let us begin

with the theory of spinor fields and charge conjugation – the transformation that turns a particle into

its antiparticle.

3.1.1 Dirac fields and charge conjugation

Antiparticles were discovered as naturally arising negative energy solutions to one of the most famous

equations in theoretical physics: the Dirac equation. The Dirac equation is an equation of motion

for free fermions, represented by spinor fields ψ. The following presentation of such spinors and their

properties is based on [47]. A spinor is characterised by its typical transformation under a Lorentz

boost or rotation, and the Dirac equation is originally a classical field equation that manifestly inherits

relativistic invariance. It follows through variation of the action of the Dirac Lagrangian:

LDirac = ψ̄(iγµ∂µ −m)ψ ⇒ (3.1)

0 = (iγµ∂µ −m)ψ. (3.2)

Here, ψ̄ = ψ†γ0 and the γ-matrices fulfill the Dirac algebra

{γµ, γν} = 2gµν . (3.3)
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One explicit realisation of this algebra is the Weyl, or chiral, representation

γ0 =

[
0 1

1 0

]
; γi =

[
0 σi

−σi 0

]
, (3.4)

where σi are the Pauli matrices. The free particle solutions of the Dirac equation (3.2) is naturally

split up into two distinct parts:

ψ(~x) =

us(~p)e−i~p·~x ⇔ positive energy solutions,

vs(~p)e+i~p·~x ⇔ negative energy solutions.
(3.5)

In the above notation, s is a spin index and ~p is the particle momentum. This is the distinction

between particles and antiparticles that arises in the Dirac equation: the positive energy solutions

labelled by the spinor us correspond to the particles; the negative energy solutions labelled by the

spinor vs correspond to antiparticles.

The quantization of the Dirac field is done by imposing the canonical anticommutation relations

{ψa(~x), ψ†b(~y)} = δ(3)(~x− ~y)δab; (3.6)

{ψ†a(~x), ψ†b(~y)} = {ψa(~x), ψb(~y)} = 0. (3.7)

These relations are necessary in order to ensure that the vacuum has only positive-energy excitations,

and they also entail that two identical fermions can not fill the same state, i.e that they obey the Pauli

exclusion principle. The anticommutation relations are fulfilled through the introduction of creation

and annihilation operators a~p, a
†
~p, b~p, b

†
~p, where the a:s act on particles and the b:s on antiparticles.

These operators obey the relations

{ar~p, a
s†
~q } = {br~p, b

s†
~q } = (2π)3δ(3)(~p− ~q)δrs, (3.8)

where r, s are spin indices and ~p, ~q are momentum. The quantized Dirac field is in this notation

ψ(~x) =

∫
d3p

(2π)3

1√
2Ep

∑
s

(
as~pu

s(~p)e−i~p·~x + bs†~p v
s(~p)ei~p·~x

)
; (3.9)

ψ̄(~x) =

∫
d3p

(2π)3

1√
2Ep

∑
s

(
bs~pv̄

s(~p)e−i~p·~x + as†~p ū
s(~p)ei~p·~x

)
. (3.10)

Out of these spinor fields ψ and ψ̄, five bilinears with definite transformation properties under the
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Lorentz group can be formed:

ψ̄ψ, ψ̄γµψ, ψ̄γµγ5ψ, iψ̄γ5ψ, ψ̄σµνψ, (3.11)

where γ5 = iγ0γ1γ2γ3 and σµν = i/2[γµ, γν ]. Hence, only these five bilinears are allowed in a Lorentz

invariant Lagrangian. It is therefore the behaviour of these terms under charge conjugation that will

determine the possible Lagrangians for Dirac fields and Majorana fields. The crucial difference between

the two is that Majorana fields can only have terms that are even under charge conjugation in the

system Lagrangian, whereas Dirac fields can also have odd terms.

Charge conjugation C preserves spin orientation but reverses all charges of the particle, thus turning

it into its antiparticle:

Cas~pC = bs~p, Cbs~pC = as~p. (3.12)

By applying the operator C on the Dirac fields in equations (3.9) and (3.10), the behaviour of the five

bilinears (3.11) under charge conjugation can be determined. In table 1 the result of this is shown [47].

Here the derivative operator ∂µ has also been included.

Table 1: Table over charge conjugation properties of the Dirac field bilinears.

ψ̄ψ iψ̄γ5ψ ψ̄γµψ ψ̄γµγ5ψ ψ̄σµνψ ∂µ
C even even odd even odd even

3.1.2 Dark matter-electron interactions

At leading order in the non-relativistic limit, the most general Lagrangian describing interactions

between fermionic dark matter and electrons in free space, when only the spin-independent parts are

considered, is

LSI = Ceψ̄χψχψ̄eψe + Coψ̄χγµψχψ̄eγ
µψe, (3.13)

where Ce and Co are couplings of dimension [energy−2], ψe is the electron field and ψχ is the dark mat-

ter field. This Lagrangian is the electron analogy to the dark matter-nucleon interaction Lagrangian

presented by Queiroz, Rodejohann and Yaguna, in the 2016 paper that proposes the method to de-

termine the dark matter particle/antiparticle nature used in this thesis [4]. Since the cross section

for any interaction is dominated by the spin-independent contributions, this is a reasonable starting

point. The Lagrangian is split up in two terms: on the one hand, the part which is even under charge

conjugation, depending on Ce, on the other hand, the part which is odd under charge conjugation,

depending on Co. The division is made from the properties of the Dirac bilinears, showed in table 1.
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For Majorana fields, Co must be equal to zero, and for Dirac fields both terms can be present.

In a direct detection experiment, the number of detected signal events will depend on the free

interaction cross section between the scattering particles. This cross section, describing the area

perpendicular to the relative particle motion, within which the particles must meet in order to scatter,

is calculated from the Lagrangian [47]. Following [4] but with electron fields instead of nuclei fields,

the cross section for the Majorana case is

σMSI =
4µ2

χ,e

π
C2
e , (3.14)

where µχ,e is the reduced mass of the electron and the dark matter particle. For Dirac fields, particles

would have the same cross section as in the Majorana case but with Ce replaced with CD = 1/2(Ce +

Co), and antiparticles would have Ce replaced with CD̄ = 1/2(Ce − Co). Under the assumption that

particles and antiparticles contribute equally to the cross section, this yields the total cross section

σDSI =
4µ2

χ,e

π

1

2
(C2

D + C2
D̄) =

2µ2
χ,e

π

1

4
(2C2

e + 2C2
o )⇒ (3.15)

σDSI =
µ2
χ,e

π
(C2

e + C2
o ). (3.16)

When comparing the Dirac and Majorana cross sections in equations (3.14) and (3.16), one sees that

they only differ in their coefficients. In fact, the Dirac cross section can be mapped to the Majorana

cross section through the transformation

C2
o → 3C2

e , ⇒ σDSI → σMSI . (3.17)

The couplings Ce and Co are not measurable in themselves, they can only be derived from the ap-

plication of a theoretical particle physics framework to the number of detected scattering events in

an experiment. In such a framework, it will be impossible to separate the scenario where the data

comes from a single Majorana coupling Ce from the one where it comes from the Dirac combination

of Ce and Co. For an infinite number of (Ce, Co)-pairs, the Dirac and Majorana cross section are

indistinguishable.

Hence the conclusion: in a direct detection experiment founded on a theoretical framework governed

by the Lagrangian in equation (3.13), it is impossible to tell whether the dark matter particle has a

distinct antiparticle or not.
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3.1.3 Dark matter-photon interactions

In order to discriminate the Dirac from the Majorana cross sections, one has to look into another

particle physics scenario. The problem with the Lagrangian in equation (3.13) is that the electron

field couples to the dark matter Majorana and Dirac field in a similar way. This problem was already

noticed by [4] in the context of dark matter-nucleus scattering; discrimination between Dirac and

Majorana is only possible if dark matter couples to both protons and neutrons (as described in section

2.4). The problem will therefore persist even in a spin-dependent extension of the theory. To avoid

this, a theoretical framework where the interaction is mediated by another particle can be used.

Kavanaugh, Panci and Ziegler have explored the possible interactions between dark matter particles

and photons in a 2018 paper [3]. Even though dark matter is dark, in the sense that it does not absorb

or emit detectable light, it can still interact with photons. If this interaction is to occur at tree level,

that is when all particle momenta are determined by conservation laws, dark matter needs to have an

electric charge. There are dark matter models which include such a charge, called ”milli-charge” to

emphasise the small size of this compared to the electron charge [48, 49]. The neutrality condition

for dark matter is hence softened to a neutrality facade: the dark matter electric charge is in practice

zero, since it is too small to be detected. However, an electric charge excludes the possibility for dark

matter to be a Majorana fermion, which is why the millicharged theories are not considered here. The

dark matter-photon interactions thus occur at loop level instead of tree level.

Loop level interactions are interactions involving virtual particles with momenta that are not de-

termined by conservation of momentum, hence these uncertain momenta must be integrated over in

the perturbation theory calculations. Loop level dark matter-photon interactions arise from operators

of energy dimension five or higher. For fermionic dark matter, the loop level dark matter-photon

Lagrangian in free space for the Majorana and the Dirac case, given in [3], is

LMγ =
e

16π2

(
C1

2
ψ̄γ5ψ · ∂νFµν

)
; (3.18)

LDγ =
e

16π2

(
C1

2
ψ̄γ5ψ · ∂νFµν +

C2

2
ψ̄σµνψ · Fµν +

C3

2
iψ̄σµνγ5ψ · Fµν

)
. (3.19)

Here C1, C2, C3 are the coupling coefficients, which have dimension [energy]−2, [energy]−1, [energy]−1

respectively, e is the electron charge and Fµν is the electromagnetic Maxwell field. There are additional

terms, but since they are of higher order in energy they have been cut off; only the leading order energy

terms in each scenario are kept.

To get the connection to the electron field ψe, we can rewrite ∂νFµν in terms of currents of electrons,

using the equation of motion in quantum electrodynamics;
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∂νFµν = eψ̄eγ
µψe. (3.20)

Now the matrix elements can be derived for the two Lagrangians in equations (3.18) and (3.19).

The squares of these matrix elements are proportional to the scattering cross sections, encoding the

theoretical framework of free interaction between the dark matter and the Standard Model particle.

These matrix elements are calculated for each term in the Lagrangians by summing over the relevant

quantum mechanical operators, encoding different couplings between the dark matter spin and the

electron spin. The operators are different scalar combinations of the spin vectors, the momentum

~q transferred from the dark matter particle to the electron, and the transverse dark matter-electron

velocity ~v⊥. The transverse velocity is

~v⊥ = ~v − ~q

2µχ,e
−

~k

2me
, (3.21)

where ~k is the momentum of the incoming electron. In the calculation, the last term in the above

expression was however discarded. If it were to be present, the matrix elements would need to be

included in the integral over electron momentum in the scattering rate of a bound electron, which

would complicate things a lot. Therefore, the simplification ~v⊥ ≈ ~v − ~q/(2µχ,e) was made.

The squared matrix elements that describe the interaction between a dark matter particle and

an electron, through loop level photon mediation, are given below for the Dirac and the Majorana

scenario. They are averaged over initial spins and summed over final spin states. In these expressions,

the electron Landé factor ge and the fine structure constant α appear.

|MM
free|2 = C2

18πα
(
q2g2

em
2
χ + 8m2

χm
2
ev

2 − 2q2(mχ +me)
2
)

(3.22)

|MD
free|2 = |MM

free|2 + 32παmχ

[
C2

2

(
8mχm

2
ev

2

q2
− 2(mχ + 2me) + g2

emχ

)
+ C2

3

8mχm
2
e

q2

]
. (3.23)

The crucial difference between the above expressions is not anymore one of mere scaling, but of

dependence on the momentum q, transferred from the dark matter particle to the electron, and dark

matter velocity v. That is,

|MM
free|2 = C2

1 |M1(q, v)|2, (3.24)

|MD
free|2 = C2

1 |M1(q, v)|2 + C2
2 |M2(q, v)|2 + C2

3 |M3(q, v)|2,

where the terms in the equations (3.22) and (3.23) simply have been dubbed |M1|2 and |M1|2, |M2|2, |M3|2

respectively. This difference in q-dependence enables a discrimination between the Dirac and the Ma-
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jorana nature. The two direct detection event rates will depend on q in different ways, hence one or

the other can be a better fit to a set of experimental data. However, if C2 and C3 are zero, the Dirac

particle model turns into the Majorana model. If the potential experimental signals are more compat-

ible with the Majorana model, it is impossible to know whether dark matter actually is Majorana, or

if it is Dirac with C2 = C3 = 0. This means that the Majorana nature of dark matter can never be

proven in this theoretical framework, it can only be dismissed in favour of Dirac.

3.2 Dark matter-electron scattering in direct detection

Neither the coupling constants nor the matrix elements described in the previous section can actually

be measured in an experiment. What is measurable in a direct detection experiment is the number

of signal events, N , for a given exposure ξ = observation time × target mass and signal rate R. R is

calculated from the differential scattering rate dR/dE for different detectable energies E, according to

N = ξR = ξ

∫
dR

dE
dE. (3.25)

This differential scattering rate depends on the atomic structure of the target material, on the un-

derlying dark matter particle model (encoded in the matrix element), and on astronomical properties

of dark matter like the galactic velocity distribution and the density. The goal of this section is to

derive expressions for these different parts of the scattering rate, for liquid noble gas targets as well

as for crystal semiconductor targets. But first, an overview of the kinematics of dark matter-electron

scattering, which motivates the overall use of direct detection experiments for LDM and sets up the

guidelines for the scattering rate derivation.

3.2.1 Kinematics

The scattering process for a Milky Way dark matter particle hitting an electron in the detector target

is shown in figure 2. Here, ~p is the incoming momentum of the dark matter particle, whereas ~p ′ is its

outgoing momentum. The momentum lost by the dark matter particle during the scattering is denoted

~q. In the case of nuclei scattering, the nucleus recoil energy would just be ENR = q2/2mN . For dark

matter-electron scattering however, this simple relation does no longer apply. This is due to the fact

that the bound electron momentum is indefinite. Another difference from the nuclei case is that the

energy deposited to the electron, Ed, is not only the electron recoil energy Er, but also the binding

energy Eb needed to excite the electron from the bound state:

Ed = Eb + Er. (3.26)

The energy of the incoming dark matter particle is however conserved and split up in the outgoing
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Energy level 1

𝑚𝑁

Ԧ𝑝 Ԧ𝑝′ = Ԧ𝑝 − Ԧ𝑞

Ԧ𝑞

𝑚𝑒

𝑚𝐷𝑀 𝑚𝐷𝑀

Energy level 2

Figure 2: The scattering of a dark matter particle with a bound electron. The dark matter transfers
momentum ~q to the target, resulting in a small nuclear recoil and a change in the electron energy. The
electron is either excited to a higher energy level or to an ionized state. The vectors in the picture are
scaled and directed in a non-conservative way, to show the scattering principle.

dark matter particle with momentum ~p ′ = ~p− ~q, the nuclear recoil with momentum ~q, and the energy

deposited to the electron:

p2

2mχ
=
|~p− ~q|2

2mχ
+

q2

2mN
+ Ed. (3.27)

The nuclear recoil (second term on the RHS of equation (3.27)) is very small compared to the other

terms and can therefore be neglected, which gives the following result:

Ed '
~q · ~p
mχ
− q2

2mχ
= ~q · ~v − q2

2mχ
, (3.28)

where ~v as before is the velocity of the incoming dark matter particle. Setting ~q · ~v = qv yields the

limit of the minimum dark matter velocity needed to deposit the energy Ed:

vmin =
Ed
q

+
q

2mχ
. (3.29)

From equation (3.28), one can also estimate the maximum energy that can be deposited to the

electron, in order to see if dark matter particles in the LDM mass range can generate a signal in the
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detectable energy interval. To find the largest possible Ed we need to maximize the energy with respect

to q, besides setting ~q · ~v = qv. This yields qmax = mχv, which for the typical dark matter velocity

v ∼ 10−3 leads to

Ed ≤
mχv

2

2
' 1

2
eV ×

( mχ

MeV

)
. (3.30)

This is clearly more promising than the nuclear recoil energy estimation given in equation (2.7),

which was below experimental thresholds for dark matter masses below ∼ GeV. Germanium has a

bandgap of order ∼ eV, hence signals of this size can be detected [39]. That means dark matter

particles with masses in the MeV-range are detectable. The limits for argon and xenon detectors are a

bit higher, but for the outer shell electrons the binding energies are of order ∼ 10 eV, making masses

down to 20 MeV detectable.

The above calculation is only an upper limit based on a specific q-value though. What about the

average transferred momentum? The electron velocity is ve ∼ Zeffα, where Zeff is the effective charge

felt by the electron. For outer shell electrons, Zeff is approximately 1 and ve ∼ α ∼ 10−2. This is one

order of magnitude higher than the typical dark matter velocity of 10−3, and therefore the relative

velocity between the two is dominated by ve. The typical transferred momentum is therefore

qtyp ∼ meve ∼ Zeffαme ' Zeff × 4 keV. (3.31)

Since Zeff is of order 1, qtyp is of order keV.

To estimate what kind of energies are typically deposited to the electron, one can consider the

minimum momentum transfer q required to deposit an energy Ed. For low q, Ed in equation (3.28) is

dominated by the term ~q · ~v. The momentum transfer is then limited by

q ≥ Ed
v
. (3.32)

Hence, the typical momentum transfer will deposit an energy Ed ∼ vqtyp ∼ 10−3 keV, meaning that the

typical deposited energies are of order eV. In order to excite or ionize a bound electron, the deposited

energy must be greater than the binding energy. This leads to the conclusion that mostly outer shell

electrons can cause a detectable signal. The inner shell electrons have binding energies higher than

the typical deposited energies, and will therefore contribute only little to the event rate.

To sum up: for dark matter-electron scattering, the energy deposited to the electron depend both

on the transferred momentum and on the dark matter velocity, and this energy needs to be greater than

the binding energy of the initial electron for a signal to occur. These facts will direct the computation

of the scattering event rates.
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3.2.2 Scattering cross section

The scattering rates in direct detection depend on the cross section σ1→2 for an electron transition

from energy level 1 to 2, induced by a dark matter particle. This rate R1→2 is given by

R1→2 =
ρχ
mχ

∫
d3vgχ(~v)σ1→2vrel, (3.33)

where vrel is the relative velocity between the dark matter particle and the electron, gχ(~v) is the

velocity distribution of dark matter in the Milky Way halo, and ρχ is the dark matter density. The

scattering cross section σ1→2 is derived from the free scattering cross section σfree of χ (~p) + e− (~k)

→ χ (~p ′) + e− (~k ′), which is a standard quantum field theory computation. A transformation from

this to the bound electron case is then made. Dark matter is considered non-relativistic throughout

this process.

The cross section for free scattering, given for example in [47], is

σfree =
1

vrel

∫
d3q

(2π)3

d3k′

(2π)3

1

16E′χEχE
′
eEe

(2π)4δ(Ei − Ef)δ3(~p+ ~k − ~k ′ − ~p ′)|Mfree(q, v)|2, (3.34)

where Ee and E′e are the initial and final electron energy, Eχ and E′χ are the initial and final dark

matter energy, Ei and Ef are the total initial and final energies and Mfree is the matrix element

from the previous section, which is a function of transferred momentum q and dark matter velocity v.

Momentum conservation requires ~q = ~p − ~p ′ = ~k ′ − ~k. The non-relativistic scattering amplitude for

this process is

〈χ~p ′ , e~k ′ |Hint|χ~p, e~k〉 = CMfree(q, v)(2π)3δ3(~p+ ~k − ~k ′ − ~p ′). (3.35)

Here Hint is the interaction Hamiltonian, C is a constant and |χ~p, e~k〉 are plane-wave states.

If the electron is bound to an atom instead of being free, the electron momenta ~k and ~k ′ are

indefinite, and an integration over the phase space needs to be performed. The scattering amplitude

of the electron transition from state 1 to state 2 turns into

〈χ~p ′ , e2|Hint|χ~p, e1〉 =

[∫ √
V d3k′

(2π)3
ψ̃∗2(~k ′) 〈χ~p ′ , e~k ′ |

]
Hint

[∫ √
V d3k

(2π)3
ψ̃1(~k) |χ~p, e~k〉

]
, (3.36)

where ψ̃1 and ψ̃2 are unit normalized wave functions in momentum-space for the initial and final

electron, and V is the space normalization volume. Expanding this expression yields
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〈χ~p ′ , e2|Hint|χ~p, e1〉 = V

∫ ∫
d3k′d3k

(2π)6
ψ̃∗2(~k ′)ψ̃1(~k) 〈χ~p ′ , e~k ′ |Hint|χ~p, e~k〉 (3.37)

= CV

∫ ∫
d3k′d3k

(2π)3
ψ̃∗2(~k ′)ψ̃1(~k)Mfree(q, v)δ3(~k + ~q − ~k ′) (3.38)

= CVMfree(q, v)

∫
d3k

(2π)3
ψ̃∗2(~k + ~q)ψ̃1(~k). (3.39)

The momentum integral in the above expression contains all the information on the bound electron

wave functions, and it is therefore suitable to define it as the atomic form factor f1→2(~q):

f1→2(~q) =

∫
d3k

(2π)3
ψ̃∗2(~k + ~q)ψ̃1(~k) =

∫
d3xψ∗2(~x)ψ1(~x)ei~q·~x, (3.40)

where the last expression is obtained by Fourier transformation. Comparing the scattering amplitudes

for the free electron and the bound electron case, equations (3.35) and (3.39), one sees that the

difference is accounted for by making the replacement

(2π)3δ3(~p+ ~k − ~k ′ − ~p ′)→ V |f1→2(~q)|2. (3.41)

Through this transformation combined with the fact that only one final electron state is considered,

so that V
∫
d3k′/(2π)3 → 1, the free cross section in equation (3.34) turns into the cross section to be

used in direct detection;

σ1→2 =
1

vrel

∫
d3q

(2π)3

1

16E′χEχE
′
eEe

2πδ(Ei − Ef )|Mfree(q, v)|2|f1→2(~q)|2. (3.42)

This expression can however be simplified by expanding the energy expressions. In the non-relativistic

regime,

Ei = mχ +me +
mχv

2

2
+ Ee,1 (3.43)

Ef = mχ +me +
|mχ~v − ~q|2

2mχ
+ Ee,2 (3.44)

Ei − Ef = − q2

2mχ
+ ~v · ~q − Ed, (3.45)

where Ee,1 and Ee,2 are the electron energies at level 1 and 2, and Ed ≡ Ee,2−Ee,1 is the total energy

deposited to the electron. Substituting this into the expression for σ1→2, along with the approximation

of particle energy ∼ particle mass, yields the final cross section

25



3 THEORETICAL FRAMEWORK

σ1→2 =
1

vrel

1

16m2
χm

2
e

∫
d3q

4π2
δ

(
~v · ~q − q2

2mχ
− Ed

)
|Mfree(q, v)|2|f1→2(~q)|2. (3.46)

3.2.3 Scattering rate

We can now plug in equation (3.46) in the scattering rate given in equation (3.33):

R1→2 =
ρχ

16m3
χm

2
e

∫
d3vgχ(~v)

∫
d3q

4π2
δ

(
~v · ~q − q2

2mχ
− Ed

)
|Mfree(q, v)|2|f1→2(~q)|2. (3.47)

The integral over d3v can be used to eliminate the delta function if the velocity distribution is approx-

imated as spherically symmetric from the lab frame. This is however not the case – the signal rate of

a direct detection experiment will depend on the orientation of the target with respect to the galaxy,

which changes as the Earth rotates around the sun [2]. Here, this dependence is ignored in order to

simplify the calculations.

The delta function in equation (3.47) can be rewritten as

δ

(
~v · ~q − q2

2mχ
− Ed

)
= δ

[
qv

(
cos θqv −

1

v

(
q

2mχ
+
Ed
q

))]
=

1

qv
δ
(
cosθqv −

vmin

v

)
, (3.48)

with θqv being the angle between ~v and ~q, and vmin is the minimum dark matter velocity required to

deposit an energy Ed to the electron from equation (3.29). By approximating the velocity integral as

spherically symmetric and substituting gχ(~v) with the average velocity distribution of all solid angles,

gχ(v);

gχ(v) =
1

4π

∫
dΩgχ(~v), (3.49)

the scattering rate now becomes

R1→2 =
ρχ

64π2m3
χm

2
e

∫
d3q

q

∫ 2π

0

dφv

∫
v2dv

gχ(v)

v

∫ 1

−1

d(cos θqv)δ
(

cos θqv −
vmin

v

)
(3.50)

×|Mfree(q, v)|2|f1→2(~q)|2.

When simplified this expression can again be written in terms of the vector valued velocity integral:

R1→2 =
ρχ

128π2m3
χm

2
e

∫
d3q

q
|f1→2(~q)|2

∫
d3v

gχ(~v)

v
|Mfree(q, v)|2Θ(v − vmin), (3.51)

with vmin(q, Ed) = Ed/q + q/(2mχ) and Θ being the Heaviside step function, originating from the

delta function constraining vmin/v < Max[cos θqv] = 1.
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3.2.4 Ionization form factor

The scattering rate given above depends on the atomic form factor, f1→2, defined in equation (3.40).

This form factor will look different for different detectors, since it depends on the electron wave

functions in the target. When the detector target material is a liquid noble gas, like argon or xenon,

the form factor can be calculated by treating the electrons as initially bound in spherical atomic

potentials and ionized to free particle states at asymptotically large radii. The outgoing electrons have

momentum k′ and thus recoil energy Er = k′2/2me. Their wave functions are labeled with k′, l′,m′

where l′ and m′ are angular quantum numbers, and normalized as

〈ψ̃2|ψ̃1〉 ≡ 〈ψ̃k′l′m′ |ψ̃klm〉 = (2π)3δl′lδm′m
1

k2
δ(k − k′). (3.52)

Ionizing an atom can give rise to a wide range of different ionized electron states, all of which must

be taken into account in the scattering rate. Hence, the different angular quantum numbers must be

summed over and the final momentum distribution integrated over. At asymptotically large radii the

ionized electron phase space takes the free spherical-wave form of

∑
l′m′

∫
k′2dk′

(2π)3
=

1

2

∑
l′m′

∫
k′3d lnEr

(2π)3
. (3.53)

Since the argument of the logarithm must be dimensionless, Er is now assumed to be divided by some

reference value in eV, like αme. Besides summing over all final electron states, it is also necessary

to sum over all initially occupied states, since it is possible to ionize electrons from different shells.

These occupied states are labelled with the quantum numbers n, l,m. Inserting these configurations

in equation (3.51), and replacing d3q with the spherical momentum shell 4πq2dq, yields

Rnlm→k′l′m′ =
ρχ

128π2m3
χm

2
e

∑
nlm

∑
k′l′m′

∫
d lnEr

∫
2πqdq

k′3

(2π)3
|fnlm→k′l′m′(~q)|2 (3.54)

×
∫
d3v

gχ(~v)

v
|Mfree(q, v)|2Θ(v − vmin).

It is important to remember that Ed is the total deposited energy, consisting of both the binding

energy Enlb and the electron recoil energy Er.

We can now redefine the ionization form factor for an electron in the (n, l)-shell, thus generating
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the final expression for the ionization scattering rate:

dRion

d lnEr
=

ρχ
128πm3

χm
2
e

∑
nl

∫
qdq|fnlion(k′, q)|2

∫
d3v

gχ(~v)

v
|Mfree(q, v)|2Θ(v − vmin(q, Enlb , Er)), (3.55)

|fnlion(k′, q)|2 =
4k′3

(2π)3

∑
l′

∑
mm′

∣∣∣∣∫ d3xψ̃∗k′l′m′(~x)ψnlm(~x)ei~q·~x
∣∣∣∣2 . (3.56)

In this ionization form factor, an extra factor of 2 has been included to account for the spin degeneracy.

What we need next, is analytic expressions for the wave functions in the above form factor. Fol-

lowing [40], we can express the initial and final electron wave functions as compositions of angular

dependant spherical harmonics Ylm and radial wave functions denoted by R:

ψnlm = Rnl(r)Ylm(θ, φ), ψ̃k′l′m′ = R̃k′l′(r)Yl′m′(θ, φ). (3.57)

To rewrite the ionization form factor in equation (3.56) in terms of spherical harmonics and radial wave

functions we also need to express the exponential in spherical harmonics. These orthogonal harmonic

functions then combine in what is called the Wigner 3j-symbol, an alternative to the Clebsch-Gordan

coefficients that describes the addition of angular momentum in quantum mechanics (in brackets in

the equation below). The final expression for the ionization form factor is

|fnlion(k′, q)|2 =
4k′3

(2π)3

∑
l′

l+l′∑
L=|l−l′|

(2l + 1)(2l′ + 1)(2L+ 1)

[
l l′ L

0 0 0

]2 ∣∣∣∣∫ r2drR̃∗k′l′(r)Rnl(r)jL(qr)

∣∣∣∣2 ,
(3.58)

where jL is a spherical Bessel function. The full derivation of this expression is found in Appendix A.

The initial radial wave functions Rnl are given by Roothaan-Hartree-Fock (RHF) wave functions:

Rnl(r) = a
−3/2
0

∑
j

Cjln
2Z

n′
jl+1/2

jl√
(2n′jl)!

(
r

a0

)n′
jl−1

e−Zjlr/a0 . (3.59)

Here Cjln, Zjl and n′jl are coefficients given by [50] and a0 is the Bohr radius, ensuring that the

ionization form factor is dimensionless. The RHF method is to write the wave functions as finite

superpositions of Slater-type orbitals, where Cjln are orbital expansion coefficients, Zjl are orbital

exponents and n′jl are the principal quantum numbers of the orbitals. These coefficients are tabulated

for each element in [50].

The final electron wave functions are continuum-state solutions to the Schrödinger equation with
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potential −Zeff/r. R̃k′l′(r) is given in [51] as:

R̃k′l′(r) = 4π(2k′r)l
′

∣∣∣Γ(l′ + 1− iZeff

k′a0

)∣∣∣ eπZeff/(2k
′a0)

(2l′ + 1)!
e−ik

′rF1

(
l′ + 1 +

iZeff

ka0
, 2l′ + 2, 2ik′r

)
, (3.60)

where F1 is a hypergeometric function of first order. Zeff is determined through treating Rnl as a

bound state of a pure Coulomb potential −Znleff/r, so that the energy eigenvalue of each nl-shell can

be matched to the RHF eigenvalue. For a shell nl with a binding energy of Enlb eV, Znleff is

13.6
(Znleff)2

n2
= Enlb ⇒ Znleff = n

√
Enlb
13.6

. (3.61)

3.2.5 Crystal form factor

If the detector target is instead a semiconductor crystal, such as germanium or silicon, the electron

wave functions and hence the atomic form factor differ quite a lot from the ionization form factor.

Instead of electrons being ionized in a liquid noble gas, semiconductor electrons are excited from the

valence band to the conduction band. The energy gap separating the occupied valence band from the

unoccupied conduction band sets the threshold on the detectable energy range: in order to give rise

to a signal, the deposited energy to the electron must be greater than this energy gap.

The band structure in the the periodic lattice of a crystal is complicated, and requires some solid

state physics to be accurately described. However, the crystal form factor is derived in a way similar

to the ionization form factor; by summing all possible initial and final electron energy states and

computing the corresponding electron wave functions. I will give an overview of this derivation,

although not as detailed as the one for the ionization form factor. The simple reason for this is that

the crystal form factors will not be calculated numerically in this project, but instead looked up in

tables. The derivation, as well as the tabulated values, are originally made by [39].

In the periodic potential of a semiconductor crystal, electron wave functions are in Bloch form.

This means that all solutions are characterized by the behaviour in the first Brillouin Zone (BZ), the

primitive cell in the reciprocal lattice space. The unit normalized wave function of an electron in a

given energy state, labelled by band index i and wave vector ~k , are

ψi~k(~x) =
1√
V

∑
~G

ui(~k + ~G)ei(
~k+~G)·~x, (3.62)

where V is the volume of the crystal, ui is a periodic function and ~G is the reciprocal lattice vector.

These reciprocal lattice vectors correspond to the potential scattering processes in the crystal. Inserting

this expression in the general form factor equation (3.40), to get the transition from the initial valence

band {i~k} to the final conduction band {i′~k ′}, yields
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|fi~k→i′~k ′ |2 =

∣∣∣∣∣∣
∑
~G~G′

(2π)3δ3(~k + ~q − ~k ′ − ~G′)

V
u∗i (

~k′ + ~G+ ~G′)ui(~k + ~G)

∣∣∣∣∣∣
2

. (3.63)

The delta function in the above expression puts a constraint on the momentum transfer q: q =

|~k ′ + ~G′ − ~k|.
Besides substituting the atomic form factor with |fi~k→i′~k ′ |2 in the scattering rate in equation (3.51),

we need to sum over all possible initial and final states. This is done through integrating over all k:s

and k′:s in the first Brillouin Zone for given energy bands, and summing over all bands i and i′.

The scattering rate of the crystal will then depend on the crystal volume V , which can be written as

V = VcellNcell, where Vcell is the volume of the crystal’s unit cell and Ncell is the number of cells. By

expanding the crystal form factor with delta functions over energy as well, the differential scattering

rate can be written as

dRcrystal

d lnEd
=
ρχNcellα

16πm3
χ

∫
d ln q

Ed
q
|fcrystal(q, Ed)|2

∫
d3v

gχ(~v)

v
|Mfree(q, v)|2Θ(v − vmin(q, Ed)), (3.64)

with |fcrystal(q, Ed)|2 defined as

|fcrystal(q, Ed)|2 =
2π2

αm2
eVcell

∑
ii′

∫
BZ

Vcelld
3k

(2π)3

Vcelld
3k′

(2π)3
δ(Ed − Ei′~k ′ + Ei~k) (3.65)

×
∑
~G′

qδ(q − |~k ′ − ~k + ~G′|)

∣∣∣∣∣∣
∑
~G

u∗i′(
~k ′ + ~G+ ~G′)ui(~k + ~G)

∣∣∣∣∣∣
2

.

3.2.6 Dark matter velocity distribution

We have now gone through the squared matrix element and the form factors building up the scattering

rate. The last piece that needs to be calculated analytically is the dark matter velocity distribution.

The velocity dependant part of the rate is∫
d3v

gχ(~v)

v
|Mfree(q, v)|2Θ(v − vmin), (3.66)

where gχ is the velocity distribution of dark matter particles in the galactic halo surrounding the

Milky Way. |Mfree(q, v)|2 are defined in equations (3.22) and (3.23) for the Majorana and Dirac case

respectively. They consist of a number of terms, either proportional to v2 or without any velocity

dependence. Therefore, two different velocity integrals will appear in the scattering rate:
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1.

∫
d3v

gχ(~v)

v
Θ(v − vmin); (3.67)

2.

∫
vd3vgχ(~v)Θ(v − vmin). (3.68)

In the galactic rest frame, gχ(~v) is approximated by a Maxwell-Boltzmann distribution cut off at

the galactic escape velocity, vesc = 600 km/s:

gχ(~v) =
1

K
e

|~v+~vE |
v2
0 Θ(vesc − |~v + ~vE |). (3.69)

Here vE = 240 km/s is the average Earth velocity relative to the dark matter halo, v0 = 230 km/s is

the typical dark matter velocity and K is a normalization constant determined through the following

constraint: ∫
gχ(~v)d3v = 1. (3.70)

When analytically solving the integrals in equation (3.67) and (3.68) one must consider the different

limits arising from the Heaviside functions. Through expanding the exponential in equation (3.69),

one can write this as a function of v and cos θ, where θ is the angle between the dark matter velocity

and the velocity of the Earth:

gχ(v, cos θ) =
1

K
e−(v2+v2E−2vvE cos θ/v20). (3.71)

The Heaviside function Θ
(
vesc −

√
v2 − 2vvE + v2

E

)
then sets the following constraints:

cos θ < Min [1, η(v)] , ξ(v) ≡ v2
esc − v2 − v2

E

2vvE
; (3.72)

v < vesc + vE , (3.73)

where ξ(v) < 1 for v > vesc − vE . For the first velocity integral (expressed in spherical coordinates),

this entails

∫
v>vmin

vdv

∫
dΩgχ(v, cos θ) = 2π

∫
v>vmin

vdv

∫
d cos θgχ(v, cos θ) (3.74)

= 2π

(∫ vesc−vE

vmin

vdv

∫ 1

−1

d cos θgχ(v, cos θ) +

∫ vesc+vE

vesc−vE
vdv

∫ ξ(v)

−1

d cos θgχ(v, cos θ)

)
. (3.75)

The analytic solutions for these integrals, divided in the two scenarios
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(a) vmin < vesc − vE

(b) vesc − vE < vmin < vesc + vE ,

are

η1 =


v20π

2vEK

(
−4ev

2
esc/v

2
0vE +

√
πv0

[
Erf

(
vmin+vE

v0

)
− Erf

(
vmin−vE

v0

)])
(a);

v20π
2vEK

(
−2ev

2
esc/v

2
0 (vesc − vmin + vE) +

√
πv0

[
Erf

(
vesc
v0

)
− Erf

(
vmin−vE

v0

)])
(b).

(3.76)

For the second integral in equation (3.68), relating to the terms in |Mfree(q, v)|2 ∝ v2, the analytic

solutions are performed in a similar way. The expressions for these solutions, η2, are given in Appendix

A, equation (A.12) and (A.13).

The scattering rates are now fully understood. The differential rates in equations (3.55) and (3.64)

can be integrated over the detectable energy range and multiplied with the exposure to form the

number of expected signal events in an experiment, N exp. This number of expected signal events will

then differ when calculated in a Majorana theoretical framework, where |MM
free|2 is used, in comparison

to a Dirac theoretical framework, where |MD
free|2 is used. In order to draw any conclusions about how

much these two hypotheses will differ, one however needs a statistical analysis where the probabilities

of obtaining a specific number of signals given the two different theories are compared. This will be

presented in the next chapter, after an overview of the numerical calculation of N exp for argon, xenon

and germanium detectors.
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4 Numerics and statistics
Below, the numerical calculation of the scattering rates for ionizing electrons in liquid argon and xenon,

and for exciting electrons to the conduction band of germanium crystals, is explained. Thereafter

the statistical analysis is presented. This analysis is based on background-free likelihood ratios of

experimental data that is Monte Carlo simulated under the Majorana and the Dirac hypotheses, with

Majorana as the null hypothesis. The discrimination significance for rejecting the null hypothesis

was calculated for Dirac-like mock data sets, covering a wide range of the free parameter space. All

calculations were done in Mathematica.

4.1 Numerical calculation of event rates

The number of events in the relevant direct detection experiments were calculated numerically from

equation (3.25), N = ξ
∫
dEdR/dE, with the differential rates dR/dE given in equation (3.55) for

argon and xenon, and in equation (3.64) for germanium. In these expressions, the dark matter density

ρχ appears. This is a quantity that can be determined from astrophysical observations, and in this

thesis a value of ρχ =0.4 GeV/cm3 is used. This is in agreement with for example [39, 40]. The

ionization form factor were calculated for argon, whereas the xenon form factor and the crystal form

factor of germanium were retrieved from [39]. The velocity integral and the squared matrix elements

were calculated analytically and used as input in the numerical calculations of the scattering rate.

4.1.1 Velocity distribution

As described in section 3.2.6, two distinct dark matter velocity integrals appear in the scattering

rates; one for the terms in |Mfree|2 that have no velocity dependence, and one for the terms that are

proportional to v2. The solutions to these integrals are η1 and η2, given in equation (3.76) and (A.12),

(A.13). They depend on the minimal velocity required to deposit an energy Ed to the electron, which

is a function of transferred momentum q and Ed. In figure 3, η1 is plotted as a function of deposited

energy for different momentum transfers and different dark matter masses. A similar plot of η2 is

found in Appendix B, figure 15.

It is clear in these figures that it is only the heavier dark matter particles that can transfer enough

momentum to deposit an energy above ∼ 200 eV. This means that the inner shells of argon and xenon,

which have binding energies above 200 eV, will only contribute to the scattering process if the dark

matter particle has a mass of order GeV or higher. For this reason, only the three top electron shells

for argon and the five top shells for xenon were summed over in the ionization form factors. The shells

and the binding energies are given in table 2. The argon 2p level and the xenon 4s level were included

to ensure that no scattering contributions were lost; they have binding energies above 200 eV.
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4 NUMERICS AND STATISTICS

Figure 3: η1(vmin(q, Ed)) as a function of deposited energy Ed for different dark matter masses and
transferred momenta q. η1 contains all the dark matter velocity information for the terms in |Mfree|2
without velocity dependence. The inner shells of argon and xenon, which have binding energies of ∼
200 eV, only contribute for heavier dark matter particles.

Table 2: Binding energies in eV for the included electron shells of xenon and argon, taken from [40,
52]

.

Argon 2p 3s 3p
248 34.8 16.1

Xenon 4s 4p 4d 5s 5p
214 164 75.6 25.7 12.4

4.1.2 Form factors

The form factors for argon were calculated numerically from equation 3.58,

|fnlion(k′, q)|2 =
4k′3

(2π)3

∑
l′

l+l′∑
L=|l−l′|

(2l + 1)(2l′ + 1)(2L+ 1)

[
l l′ L

0 0 0

]2 ∣∣∣∣∫ r2drR̃∗k′l′(r)Rnl(r)jL(qr)

∣∣∣∣2 ,
with the radial wave functions given by equations (3.59) and (3.60). Since this form factor was

calculated numerically, the integral over r and the sum over final angular quantum number l′ had to

be cut off at appropriate limits. For large radial distances, the form factor approaches 0 since the

initial radial wave function Rnl(r) vanishes. This is shown in figure 4. Therefore, the integral over r

was performed from 0 to 7a0, where a0 is the Bohr radius.

To determine the upper limit of the sum over l′, the convergence of the ionization form factor was

investigated for different cut-offs. This is shown in figure 5, where the ionization form factors for the

3s and 3p level of argon are plotted against the upper limit of l′. The sum was cut off at l′ = 5.
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4 NUMERICS AND STATISTICS

Figure 4: Initial radial wave functions for argon, energy levels 3s and 3p, for different radial distances
from the nuclei. The wave functions approaches 0 for a distance of a few a0:s.

(a) Initial energy level 3p, q =13 keV. (b) Initial energy level 3s, q = 19keV.

Figure 5: The graphs show how the ionization form factor for argon 3s and 3p depends on the cut-off
in the sum over l′. An electron recoil energy of 50 eV was used, and a typical q-value for each energy
level, q = Zeff × 4 keV.

With these cut-offs, the form factors were calculated for the 2p, 3s and 3p level of argon for a range

of values of q and k′, and then interpolated. 50 values of k′ were used, between the corresponding

recoil energies Er = k′2/(2me) of 0.1 eV and 1000 eV. This is in correspondence to the typical size

scale explained in section 3.2.1. For q, 50 values in a range between 1 keV and 800 keV were used.

This was chosen with equation (3.31) in mind, where it is established that typical transferred momenta

are of order keV. In the end, the size of both q and k′ depend on the mass of the dark matter particle:

heavier particles will induce faster electrons. Thus, the ranges of these variables are set to match the

mass scale of light dark matter: from a couple of MeVs to 1 GeV. The form factors for all included

electron shells of argon are plotted in figure 6.
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(a) Form factor dependence on q, for given Er:s. (b) Form factor dependence on Er, for given q:s.

(c) Form factor dependence on q, for given Er:s. (d) Form factor dependence on Er, for given q:s.

(e) Form factor dependence on Er, for given q:s. (f) Form factor dependence on Er, for given q:s.

Figure 6: The graphs show the ionization form factor for argon. (a) and (b) shows the 2p-level, (c) and
(d) the 3s-level, (e) and (f) the 3p-level. The graphs to the left are functions of transferred momentum
q and the ones to the right are functions of recoil energy Er.
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4.1.3 Matrix elements

The part of the scattering rates that enables discrimination between the Dirac and the Majorana

theoretical framework is the modulus square of the matrix elements |MM
free|2 and |MD

free|2, given in

equations (3.22) and (3.23). They are functions of q and dark matter velocity v. |MM
free|2 has one term,

with the coupling coefficient C2
1 as free parameter (besides the dark matter mass), and |MD

free|2 has

three terms, with {C2
1 , C

2
2 , C

2
3} as free parameters. These three parameters have different dimensions:

C2
1 is in [eV−4] and C2

2 , C
2
3 are in [eV−2].

When multiplying the terms of |Mfree(q, v)|2 with the appropriate velocity integrals, described by

η(q, Ed) = {η1, η2}, the result is a function of q only, for a given Ed and mχ. Thus the potential of

distinguishing between Dirac and Majorana dark matter resides in the distinct q-dependence of the

terms corresponding to the three coefficients C2
1 , C2

2 and C2
3 . This q-dependence is shown in figure

7 for different masses and energies. In these graphs, the three curves were obtained through keeping

only one non-zero coefficient Ci=1,2,3 each time.

The expressions for |Mfree|2 are quite complicated, with intricate dependence on the dark matter

mass, and this gives rise to the large difference between the behaviour of the curves in the separate

graphs of figure 7.

4.1.4 Scattering rates and expected events

The last step in the numerical calculation of the differential scattering rates is the integral over trans-

ferred momentum q, that appear both in the case of ionization and in the case of excitation of an

electron. These integrals were performed over the entire momentum region where the form factors

were defined, that is

• 1–800 keV for argon,

• 1.3–200 keV for xenon,

• 0.01–67 keV for germanium.

The band structure of germanium explains the difference in q-intervals in the above list: the possible

momentum transfer is of course bigger when ionizing a bound electron than when exciting it to the

valence band of a crystal. The differential scattering rates for argon, xenon and germanium are shown

in figure 8 as functions of energy.
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4 NUMERICS AND STATISTICS

(a) mχ =10 Mev, Ed =5 eV. (b) mχ =10 Mev, Ed =20 eV.

(c) mχ =50 Mev, Ed =20 eV. (d) mχ =50 Mev, Ed =80 eV.

(e) mχ =200 Mev, Ed =20 eV. (f) mχ =200 Mev, Ed =80 eV.

Figure 7: The graphs show the squared matrix elements |Mfree|2 multiplied with the integrated dark

matter velocity contributions η, as functions of transferred momentum q. The three terms of |Mfree|2
are plotted separately and normalized. C2 = C3 = 0 corresponds to the Majorana amplitude, whereas
the Dirac amplitude is a linear combination of all three terms. The four graphs are calculated for
different masses and deposited energies. The separation of the curves in each graph determines the
chances of discriminating between the Dirac and Majorana hypotheses.
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4 NUMERICS AND STATISTICS

(a) Argon differential rate as function of recoil energy. (b) Xenon differential rate as function of recoil energy.

(c) Germanium differential rate as function of deposited
energy.

Figure 8: Differential scattering rates for the three different detector targets, plotted as functions of
recoil energy Er for the liquid noble gases, and deposited energy Ed for the semiconductor. In the
differential rate, the energy is divided by the reference value αme, yielding lnE dimensionless. All
rates are calculated for mχ =50 MeV and normalized.

These differential rates were then integrated over the kinematically accessible energy region for

a given dark matter mass, in energy bins labelled by i. This was done in Mathematica with the

trapezoidal method. The number of expected events in each energy bin, N exp
i , was retrieved through

multiplying with the exposure ξ;

N exp
i = ξRi =

∫
∆Ei

d lnE
dR

d lnE
. (4.1)

This number of expected events in each energy bin was then used to simulate experimental data,

that is, the number of observed events in each energy bin, Nobs
i . The total number of signal events,

expected or observed, is the sum of all bins: N =
∑
iNi. Together, Nobs

i and N exp
i form the basis of

the statistical analysis, which will be presented below.
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4.2 Statistical analysis

The goal of the statistical analysis is to discriminate between the Dirac and the Majorana theoretical

framework. The measure used is the discrimination significance: the certainty with which one can

reject the Majorana hypothesis for a Dirac-like data set. The data was Monte Carlo simulated, and

the discrimination significance was determined through maximisation of likelihood functions. The

statistical procedure, from likelihood to significance, is described below.

4.2.1 The likelihood method

This analysis is founded on background-free likelihood calculations. The maximum likelihood of ob-

taining a set of data, i.e a number of signal events Nobs, can be calculated for the two hypotheses

HM : Majorana-like dark matter, with free parameters ΘM = (mχ, C1);

HD : Dirac-like dark matter, with free parameters ΘD = (mχ, C1, C2, C3).

The likelihood is defined as the product of the probabilities of observing a number of signal events

Nobs
i in an energy interval i, given the theoretically expected number of events N exp

i :

L(d|Θ) =
∏
i

P (N exp
i (Θ)|Nobs

i ) =
∏
i

N exp
i (Θ)N

obs
i e−N

exp
i (Θ)

Nobs
i !

(4.2)

Here Θ are the free parameters, corresponding either to the Majorana or to the Dirac hypothesis,

and d stands for the set of experimental data, that is, d = {Nobs
i }. If n experiments are combined,

then the total likelihood is the product of the likelihoods for each of the experiments:

L(d|Θ) =

n∏
k

Lk(d|Θ). (4.3)

A test statistic q can be formed through maximising the likelihood functions with respect to the

free parameters for the Majorana and Dirac hypotheses, ΘM and ΘD, respectively.

q(d) = −2 ln
L(d|Θ̂M )

L(d|Θ̂D)
, (4.4)

where Θ̂ are the optimal parameters. Repeating this for a sample of data sets d will yield a distribution

of q-values. Data originating from a Majorana-like dark matter particle will result in one distribution,

fM (q), and data originating from a Dirac-like dark matter particle will result in another distribution

fD(q). The separation of these two distributions determines the discrimination significance.

Thus, both Dirac-like and Majorana-like data sets would need to be created. However, due to the
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fact that the Majorana hypothesis is a special case of the Dirac hypothesis (where C2 = C3 = 0), the

Majorana distribution of the test statistic can actually be derived analytically. It is a so called half

chi-square-distribution, with two degrees of freedom, one for each parameter constraint.

fD(q) = P (q|dDirac) (4.5)

fM (q) =
1

2
χ2

2 (4.6)

This reduced the number of calculations substantially, since the only data sets actually used were

Dirac-like. In lack of any experimental evidence for dark matter, these data sets were Monte Carlo

simulated.

4.2.2 Data simulation

The mock data sets in each energy region were obtained through random sampling from a Poisson

distribution with mean N exp
i . This number of expected events was calculated for a set of benchmark

parameters Θb = {mχ,b, C1,b, C2,b, C3,b}. The Poisson distribution is given by

P (N exp
i (Θb)|Nobs

i ) =
N exp
i (Θb)

Nobs
i e−N

exp
i (Θb)

Nobs
i !

. (4.7)

These benchmark parameters have to be chosen with care, since they are representing the properties

of the dark matter particle captured in the mock experiment. It is important that the total number

of expected events does not exceed the current experimental exclusion limits; if the prediction is much

higher than what is seen in the measurements, then there is likely something wrong with the prediction.

In statistical language, the number of expected signal events must be inside the 90%-confidence

level. This means that 90% of the probability distribution for observing different number of events

given the underlying theory, must be in the unexplored area above the experimentally established

signal. The upper limit N exp
90% corresponding to this demand is obtained through solving the equation

+∞∑
k=(Nobs+1)

P (N exp +Nbg|k) = 0.9 (4.8)

for N exp. Here Nbg is the number of background events in the experiment where Nobs is retrieved

from.

This N exp
90% was calculated for the three scattering rates, using the following values from the

XENON100 2016 results [52]: an exposure ξ = 48kg×477days; number of background events Nbg =6.6

events; number of observed events Nobs =11 events. This resulted in N exp
90% =10.0 events. It is possible
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to predict a number of signal events that exceeds this limit, if the exposure is raised accordingly. To

predict 100 signal events, the exposure would have to be scaled up with a factor of ∼ 10.

The total contribution of the benchmark coupling constants for the mock data sets are constrained

by demanding a 90%-confidence level of N exp for a given exposure. However, the relative contributions

of each coefficient can still vary. The differential scattering rate can be expressed as

dR

d lnE
= C2

1

(
Γ1 +

C2
2

C2
1

Γ2 +
C2

3

C2
1

Γ3

)
, (4.9)

where Γi=1,2,3 contains everything but the coupling constants C2
i=1,2,3. C1 can then be set to generate

a certain number of expected events for the entire energy region, given an exposure. The ratios C2/C1

and C3/C1 can vary infinitely, but since C2 and C3 are of lower energy dimension than C1, the ratios

should be bigger than 1. Once these ratios are chosen, a mock data set can be randomly sampled

from the Poisson distribution. A mock data set for an argon target, with unit coupling ratios and an

exposure corresponding to 100 events fulfilling the current 90%-confidence level, is shown in figure 9.

In the graph, 100 random samples were used.

Figure 9: Mock data set for a direct detection experiment with argon target. The data is obtained
through random variation of a Poisson distribution of mean N exp

i (Θb|Ei) = 7.8. The energy interval
Ei is 3.1–4.7 eV and the benchmark parameters Θb are mχ,b =50 MeV, C2,b/C1,b = C3,b/C1,b = 1 and
C2

1,b = 0.007 (set to generate 100 events in total energy region). The histogram shows the probability

distribution of 100 random samples of observed events Nobs, and the curve is the analytic Poisson
probability distribution.

4.2.3 Discrimination significance

Once the mock data sets are generated, the distributions of q-values for the Dirac and the Majorana

hypothesis can be computed through maximising the likelihood functions. This maximisation was done

with respect to the coupling constants, for fixed dark matter masses. The calculation was performed
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with the NMaximize-function in Mathematica. A global optimisation method based on differential

evolution was chosen, and the optimisation performance was tested for different settings, to ensure

that the global maximum was found.

In this way, the Dirac-like distribution fD(q) was generated. Combined with the analytic distribu-

tion fM (q) representing the Majorana-like dark matter data sets, this leads to a so called p-value. p

is the probability of observing a q-value from a set of Majorana data, that is greater than qmed,D, the

median of fD(q):

p =

∫
qmed,D

fM (q)dq. (4.10)

Hence the p-value is a measure on how separated the two distributions fM and fD are. This is shown

graphically in figure 10, where graph (a) is the probability distribution of q generated from a Dirac-

like mock data set, and graph (b) is the half chi-square distribution of q representing the Majorana

hypothesis.

(a) Probability distribution of 100 randomly generated
q-values from Dirac-like mock germanium data set.

(b) Analytic probability distribution fM corresponding
to Majorana-like mock data sets. The p-value is the
blue shaded area to the right of qmed,D

Figure 10: Calculation of p-value. p is the probability of observing a q-value from a set of Majorana
data, that is greater than the median of fD(q), which is marked in both graphs. Graph (a) shows
the random variation of fD(q) made from Dirac-like mock data sets, and graph (b) shows the analytic
probability distribution fM (q) that substitutes the Majorana-like mock data sets. The p-value is the
filled area in graph (b).

When translating the probability p to a Gaussian distribution G(x) of mean 0 and standard devia-

tion 1, a discrimination significance z can be obtained. The discrimination significance is the distance

from the peak of the normal distribution to the vertical line that separates the probability p from

1 − p. It is the quantile corresponding to the probability 1 − p, calculated through the inverse of the

cumulative distribution function Φ that sums up all the probabilities in a given distribution:
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Φ(z) =

∫ z

−∞
dxG(x) = (1− p) ⇒ z = Φ−1(1− p). (4.11)

Figure 11 shows the z-value graphically.

Figure 11: The discrimination significance z is the distance from the mean of the normal distribution
to the contour of the probability p. The blue shaded area to the right of z is the p-value from figure
10.

If the Gaussian distribution has standard deviation 1, the discrimination significance z can be

interpreted in terms of standard deviations. It is a measure of how unlikely it is to find a Dirac-like

dark matter signal, if the Majorana hypothesis is true. A high discrimination significance corresponds

to a rejection of the Majorana hypothesis: if a potential experimental data set of the future is alike

to the Dirac-simulated data, then the Majorana nature can be discarded based on this test. If the

experimental data is instead alike to Majorana-simulated data, it will be impossible to draw any

conclusions about the particle/antiparticle nature. All this is of course provided that the rest of

the theoretical framework resembles reality – for instance, that dark matter interacts with photons

according to this particle model.

The discrimination significance was calculated for a range of different Dirac benchmark parameters

for each of the three mock experimental targets, to cover as many as possible of the dark matter

particle alternatives, within the given theoretical framework. The results of this are shown in the

following chapter.
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5 Results
One major result of this study is a purely theoretical one: the fact that dark matter-electron scattering

processes ruled by the general, spin independent Lagrangian of equation (3.13),

LSI = Ceψ̄χψχψ̄eψe + Coψ̄χγµψχψ̄eγ
µψe,

entail no possibility to distinguish between Dirac and Majorana dark matter in a direct detection

experiment. This was shown in section 3.1.2, by a comparison of the Dirac and Majorana cross

sections derived from the above Lagrangian. It turned out that the Dirac cross section can always

be mapped to the Majorana cross section, making it impossible to separate the two for a given set of

experimental data. Discrimination between Dirac and Majorana dark matter is however possible for

photon mediated interactions.

5.1 Coupling parameter grid

In the dark matter-photon framework, the discrimination significance was calculated for argon, xenon

and germanium targets. A large part of the parameter space for each experimental setup was explored.

The benchmark masses used were 10 MeV, 50 MeV and 200 MeV, and the benchmark coupling constant

ratios C3/C1 and C2/C1 were varied for each mass. C1 was set to generate 100 expected events in

total, for an exposure about ten times as high as the current 48kg×477 days exposure of XENON100.

This exposure was fixed to fulfil the 90%-confidence level of the number of signal events. The variation

of the coupling constant ratios was made with a parameter grid covering six orders of magnitude for

each ratio, starting from 1 and rising.

The result of this is shown in figure 12 for mχ =10 MeV, figure 13 for mχ =50 MeV, and figure

14 for mχ =200 MeV. In these graphs, a common colour scheme is used. The white parts of the

graphs correspond to infinite discrimination significances. Since all calculations were done numerically

in Mathematica, these values are simply higher than the available computational precision. The points

on the grid where this occurs correspond to very high C2
3/C

2
1 -ratios.

For a dark matter mass of 10 MeV, shown in figure 12, the argon target does not yield any

significance above four standard deviations, and the germanium and xenon targets have quite broad

regions with high significance. For the benchmark mass 50 MeV, figure 13 shows that the discrimination

prospects for argon and xenon targets are quite similar, whereas the prospects for germanium targets

differ. For the liquid noble gases, a large part of the parameter space yields a significance < 2, but

the significance reaches arbitrary high values in the corners of the parameter grid. On the contrary,

a large part of the parameter space accessible for germanium targets yields a significance of a couple

of standard deviations, but the maximum significance is lower than for argon and xenon. Finally, for
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mχ =200 MeV, in figure 14, germanium still has a broad region of medium high significance and argon

a narrow region of high significance, but xenon only has a narrow region of medium significance.

(a) Argon target, mχ =10 MeV. (b) Germanium target, mχ =10 MeV.

(c) Xenon target, mχ =10 MeV.

Figure 12: The graphs show the discrimination significance for rejection of the Majorana hypothesis
given Dirac-like mock data sets, with dark matter mass mχ =10 MeV and different parameter ratios
C2

3/C
2
1 and C2

2/C
2
1 . C1 is set to generate in total 100 events in each experiment, which corresponds to

the 90%-confidence level signal for an exposure ten times as much as the current XENON100 value.
The four graphs differ in experimental setups. The colour scheme for all graphs is shown in the up
right corner.
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(a) Argon target, mχ =50 MeV. (b) Germanium target, mχ =50 MeV.

(c) Xenon target, mχ =50 MeV.

Figure 13: The graphs show the discrimination significance for rejection of the Majorana hypothesis
given Dirac-like mock data sets, with dark matter mass mχ =50 MeV and different parameter ratios
C2

3/C
2
1 and C2

2/C
2
1 . C1 is set to generate in total 100 events in each experiment, which corresponds to

the 90%-confidence level signal for an exposure ten times as much as the current XENON100 value.
The four graphs differ in experimental setups. The colour scheme for all graphs is shown in the up
right corner. The white parts of the graphs represent an infinite discrimination significance.
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(a) Argon target, mχ =200 MeV. (b) Germanium target, mχ =200 MeV.

(c) Xenon target, mχ =200 MeV.

Figure 14: The graphs show the discrimination significance for rejection of the Majorana hypothesis
given Dirac-like mock data sets, with dark matter mass mχ =200 MeV and different parameter ratios
C2

3/C
2
1 and C2

2/C
2
1 . C1 is set to generate in total 100 events in each experiment, which corresponds to

the 90%-confidence level signal for an exposure ten times as much as the current XENON100 value.
The four graphs differ in experimental setups. The colour scheme for all graphs is shown in the up
right corner. The white parts of the graphs represent an infinite discrimination significance.
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5.2 Number of random samples

In the parameter grid calculations, the mock data sets, from which fD was created, consisted of 20

random samples. The number of samples was chosen mainly to save computing time. For a fixed

set of benchmark parameters, the discrimination significance was calculated 20 times to check the

variation between the randomly sampled data sets. The result of this is shown in table 3. The

standard deviation of the significance diminishes with larger data sets, but this statistical uncertainty

was traded off against computing time.

Sample size Mean(z) Std(z)
20 5.00 0.23
50 4.95 0.13
100 4.98 0.06

Table 3: Mean value and standard deviation (Std) of the discrimination significance z calculated 20
times with the same benchmark parameters. The number of random samples used in each calculation
were varied, to investigate the statistical uncertainty in small data sets.
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6 Discussion
The discrimination significance of rejecting the Majorana hypothesis differs between the three types

of detector targets, as well as between the benchmark dark matter masses. The reason for these

differences is to be found in the kinematically available energy and momentum ranges for the different

targets. Since the discrimination procedure relies on the distinct q-dependence of the Dirac and

Majorana scattering amplitudes, the discrimination significance will depend on the region of transferred

momentum where scattering events can be detected. This is tightly bound to the observable electron

energy region.

Germanium detectors have a lower detectable energy region than argon and xenon detectors do,

due to the low band gap of semiconductor materials. This means that germanium detectors are more

sensitive to lighter dark matter masses, as explained in section 3.2.1. The germanium form factors also

fall off fast with deposited energies, making the high-momentum part of the spectrum unavailable [39].

Looking at figure 7, where the q-dependence of the separate scattering amplitude terms are shown,

this means that only the separation between the curves for lower q-values (below ∼70 keV) contributes

to the germanium discrimination significance. For argon and xenon, the entire q-range contributes.

For mχ =10 MeV, the entire scattering amplitude is below the germanium threshold, and it is also

for this benchmark mass that the germanium significance reaches its maximum value (see figure 12

(b)). Argon, on the contrary, has very low significances for this mass. With a top shell binding energy

of 16 eV, this mass is close to the low-energy detection threshold for argon. It is also clear from figure 7

(b) that the separation of the Dirac and Majorana squared matrix elements is quite small for Ed = 20,

which would be accessible to argon detectors. Xenon, which has a top shell binding energy of 12 eV,

performs better with this light mass.

For the higher masses, the q-regions that are kinematically unavailable for germanium suppresses

its maximum significance, since the largest separation between the scattering amplitude terms appear

in the high q-end of the spectrum. Thus the highest significance values are found with argon (and

for mχ =50 MeV also xenon) targets. These high values are though restricted to narrow coupling

parameter regions (See figure 13 (a), (c) and 14 (a)). This might be explained by the crossing of the

curves in figure 7 – including the entire q-region at first leads to cancellation of the Dirac and Majorana

differences, although the best discrimination outlooks await in the end of the spectrum. The cut-off

in q for germanium targets results in broader regions with medium high significance: the cancellation

does not occur, but the highest significances are out of reach.

The discrimination significance for all three targets are highly dependent on the ratio C3/C1, but

not on C2/C1. This might be explained partly by figure 7, which show larger separation between the

C3- and C1-curves than between the C2- and C1-curve, and partly on the numerical suppression of C2

due to the dependence on v2 (see equation (3.23)).
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To sum up, the results are highly dependent on the kinematically available energy region of the

target material, but rejection of the Majorana hypothesis in favour of the Dirac hypothesis is possible

in some parts of the coupling constant parameter space. These favourable regions are however hard

to determine generally, since the scattering amplitudes have intricate dependencies on both the dark

matter mass and the transferred momentum. The original discrimination procedure, which was created

in a WIMP dark matter-nuclei scattering context [4], resulted in a significance only slightly dependent

on the dark matter mass and restricted to a certain parameter region; one where there is partial

cancellation between neutron and proton contributions to the total cross section. In the theoretical

framework used here it is rather ”the more, the merrier” – the larger the ratio of Dirac coupling

parameters and Majorana coupling parameters, the higher discrimination significance can be obtained.

It can, as we have seen, reach infinity.

There are of course many uncertainties in this investigation. The most major ones are the following:

• The astrophysical input: The velocity distribution and the local dark matter density are as-

trophysical inputs in this thesis, and as such they contribute to the overall uncertainty. The

density value ρχ =0.4 GeV/cm3 is the current standard in dark matter research; it has theoret-

ical endorsement (see for example [53]), with estimated deviations of only a few percents. The

Maxwell-Boltzmann velocity distribution has received some critique [54], but is nonetheless also

the standard approach. However, in this thesis, both the time and the directional dependence

of the velocity distribution are neglected. This could alter the scattering rates significantly, see

[55] for a quantitative estimation.

• The atomic form factors: For argon and xenon, the form factors were calculated from continuum-

state solutions to the Schrödinger equation, which according to [40] has better agreement for outer

shell electrons than the alternative plane-wave approximation. Still, this is an approximation

of the actual bound wave functions. The germanium form factors were taken from [39], who

conclude their results to be accurate at the few percents level.

• The transverse velocity approximation: The squared matrix elements used in this thesis were

derived by neglecting the dark matter-electron transverse velocity dependence on electron mo-

mentum. This approximation is not really motivated by anything else than the mathematical

simplicity it entails – moreover, the implications for the scattering rates are unknown. It was

however not feasible to do otherwise, within the scope of this project.

• The statistical analysis: The statistical analysis is based on a median discrimination significance,

obtained through maximisation of background-free likelihoods. Since the likelihood is multi-

modal, a Bayesian analysis, focusing not on the maximum but on the overall distribution of the

likelihood, could have rendered a more productive result. Furthermore, the influence of back-

ground signals on the observed events could have been taken into account. This approximation is
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however not crucial, since the total number of events considered here are well above the current

experimental signals. But the statistical analysis could be improved by increasing the number

of random samples, which, according to table 3, diminishes the statistical uncertainty. This

uncertainty, originating from the low number of samples used in the parameter grid calculations,

could for example be the reason for the seemingly random yellow fields in figure 12 (b).

In a more general perspective, this entire discrimination procedure is based on the three following

assumptions: 1. That a dark matter signal is found in direct detection experiments; 2. That this signal

origins from Dirac-like dark matter, otherwise discrimination is impossible; 3. That the theoretical

framework used in this work actually models reality – that is, that dark matter is in the sub-GeV mass

region, that it interacts with electrons through the dark matter-photon Lagrangian given in equation

(3.19), and that particles and antiparticles contribute equally to the Dirac scattering amplitude. If any

of these three conditions are unfulfilled, the prospects of determining the particle/antiparticle nature

of dark matter presented here are no longer relevant.
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7 Conclusions
In this thesis, the prospects for discrimination between Dirac and Majorana dark matter, interacting

with electrons in direct detection experiments with argon, xenon and germanium targets, has been

studied. It was shown that scattering processes ruled by the most general Lagrangian, the electron

analogy of the dark matter-nuclei Lagrangian used in the original discrimination test made by [4], yields

Dirac and Majorana cross sections that are indistinguishable. Therefore, no discrimination based on

direct detection is possible in that theoretical framework.

If dark matter instead scatters off detector target electrons through loop level photon interactions,

rejection of a Majorana hypothesis given Dirac-like dark matter signals is possible. A large part of the

coupling constant parameter space was explored in this framework, for a couple of sub-GeV dark matter

masses. It was found that germanium detectors yield discrimination significances above four standard

deviations in a broad parameter region, whereas argon and xenon detectors yield corresponding values

in a narrow region of very high Dirac to Majorana coupling constant ratios. The discrimination

significance is highly dependent on the kinematically available energy region of the detector target.

It is concluded that discrimination between Dirac and Majorana dark matter is theoretically possible

in the foreseeable future, given that direct detection signals of Dirac-like dark matter are found, and

that the theoretical framework used here is a viable model of reality. This study could be continued

by analysing the combination of several experiments, and by extending the analysis to other dark

matter masses and other experimental setups, both other direct detection targets and other detection

techniques. In a broader perspective, this could help guide the optimisation of next generation light

dark matter direct detection experiments, and this specific research could serve as an incentive to cover

other parts of the interaction parameter space of dark matter-electron scattering, in the grand quest

of exploring the particle nature of dark matter.
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A Mathematical derivations
In this section, a more detailed derivation of the ionization form factor from section 3.2.4 is presented,

as well as the expressions for the velocity integral solutions η2 from section 3.2.6.

A.1 Ionization form factor

The definition of the ionization form factor was given in equation (3.56):

|fnlion(k′, q)|2 =
4k′3

(2π)3

∑
l′

∑
mm′

∣∣∣∣∫ d3xψ̃∗k′l′m′(~x)ψnlm(~x)ei~q·~x
∣∣∣∣2 . (A.1)

The electron wave functions are rewritten in spherical harmonics Ylm and radial wave functions ac-

cording to

ψnlm = Rnl(r)Ylm(θ, φ), ψ̃k′l′m′ = R̃k′l′(r)Yl′m′(θ, φ). (A.2)

The exponential in the form factor integral is also rewritten as a sum over spherical harmonics;

ei~q·~r = 4π

∞∑
L=0

L∑
M=−L

iLjL(qr)YLM (θq, φq)Y
∗
LM (θ, φ). (A.3)

Here jL(qr) is a spherical Bessel function of order L. Through making use of the mathematical identity∫
Ylm(θ, φ)Yl′m′(θ, φ)YLM (θ, φ) sin θ dθ dφ

=

√
(2l + 1)(2l′ + 1)(2L+ 1)

4π

(
l l′ L

0 0 0

)(
l l′ L

m m′ M

)
,

(A.4)

where the terms in the brackets are Wigner 3j-symbols, the integral over the three spherical harmonics

depending on θ and φ can be rewritten as:

|fnlion(k′, q)|2 =
4k′3

(2π)3
(4π)2

∑
l′

∣∣∣∣∫ r2drR̃∗k′l′(r)Rnl(r)jL(qr)

∣∣∣∣2 l+l′∑
L=|l−l′|

∑
mm′M

|YLM (θq, φq)|2

× (2l + 1)(2l′ + 1)(2L+ 1)

4π

[
l l′ L

0 0 0

]2 [
l l′ L

m m′ −M

]2

(A.5)
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The sums over m,m′ and M are performed using the following identities:

∑
mm′

(L+ 1)

[
l l′ L

m m′ −M

]2

= 1, (A.6)

L∑
M=−L

Y ∗LM (θq, φq)YLM (θq, φq) =
2L+ 1

4π
, (A.7)

which yields the final expression for the ionization form factor:

|fnlion(k′, q)|2 =
4k′3

(2π)3

∑
l′

l+l′∑
L=|l−l′|

(2l + 1)(2l′ + 1)(2L+ 1)

[
l l′ L

0 0 0

]2 ∣∣∣∣∫ r2drR̃∗k′l′(r)Rnl(r)jL(qr)

∣∣∣∣2 .
(A.8)

This is the expression that appears in equation (3.58).

A.2 Solutions of velocity integrals

The second part of the velocity integral in the differential scattering rate, the one that corresponds to

the terms in the scattering amplitude that are proportional to v2, is

2π

(∫ vesc−vE

vmin

v3dv

∫ 1

−1

d cos θgχ(v, cos θ) +

∫ vesc+vE

vesc−vE
v3dv

∫ ξ(v)

−1

d cos θgχ(v, cos θ)

)
, (A.9)

with

gχ(v, cos θ) =
1

K
e−(v2+v2E−2vvE cos θ/v20), (A.10)

and

ξ(v) ≡ v2
esc − v2 − v2

E

2vvE
. (A.11)

The solution to equation (A.9) is called η2 and it is divided in the two cases:

(a) vmin < vesc − vE

(b) vesc − vE < vmin < vesc + vE .

η2 is given by
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η
(a)
2 =

πv2
0

12KvE
− 8(ev

2
esc/v

2
0vE(3v2

0 + v2
E + 3v2

esc) + 6e−(vE+vmin)2/v20v2
0 (A.12)

×(vE + 2vEe
4vEvmin/v

2
0 − vmin) + 6e−(vE−vmin)2/v20v2

0(vmin − vE)

+3
√
πv0(v2

0 + 2vE)×
(

Erf

(
vE + vmin

v0

)
− Erfc

(
vE − vmin

v0

)
+ 1

)
)

η
(b)
2 =

πv2
0

12KvE
(ev

2
esc/v

2
0 (−4(ve + vesc)3 − 6v2

0(2vE + vesc) + 4v3
min) (A.13)

+3
√
πv0(v2

0 + 2v2
E)

(
Erf

(
vesc

v0

)
+ Erf

(
vE − vmin

v0

))
+6e−(vE−vmin)2/v20v2

0(vE + vmin)).

B Numerical analysis
In figure 15, η2 from equations (A.12) and (A.13) is plotted as a function of energy deposited to the

electron in the scattering process, for a few fixed dark matter masses and transferred momenta. η2

applies for the terms in the scattering amplitude that are proportional to v2. Compared to figure

3, showing the velocity integral η1 that applies for rest of the terms in the scattering amplitude, the

behaviour is quite similar. Only higher dark matter masses can induce a scattering process with high

energies.

Figure 15: η2(vmin(q, Ed)) as a function of deposited energy Ed for different dark matter masses
and transferred momenta q. η2 contains all the dark matter velocity information for the terms in
|Mfree|2 ∝ v2.
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[23] J. Amaré et al. “First results on dark matter annual modulation from ANAIS-112 experiment”.

In: (2019). arXiv: 1903.03973 [astro-ph.IM].

[24] E. Aprile et al. “Dark Matter Search Results from a One Ton-Year Exposure of XENON1T”. In:

Phys. Rev. Lett. 121.11 (2018), p. 111302. arXiv: 1805.12562 [astro-ph.CO].
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