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Thermodynamics and Optical Response of Palladium-Gold Nanoparticles
MAGNUS RAHM
Department of Physics
Chalmers University of Technology

Abstract
Alloyed nanoparticles of palladium (Pd) and gold (Au) are promising candidates
for hydrogen sensing in e.g., cars powered by fuel cells. Specifically, the plasmonic
response of Pd-Au nanoparticles changes upon absorption of hydrogen, enabling
quantitative measurement of the hydrogen partial pressure. The optical proper-
ties of alloyed nanoparticles are not only dependent on the concentration of the
respective element, but also on the atomic ordering. This thesis presents atomistic
simulations as well as first-principles calculations on Pd-Au nanoparticles, where the
former aim at elucidating the thermodynamics, and the latter were conducted to
investigate the optical properties of representative particles. A novel algorithm for
determination of optical nanoparticle shapes, based on Monte Carlo simulations, is
also presented. The atomistic simulations show that Au tends to segregate to the
surface of the nanoparticle, especially at corner and edge sites, while the subsur-
face layer exhibits a Pd excess. The first-principles calculations, specifically density
functional theory (DFT) and time-dependent density functional theory (TDDFT),
show that the electronic oscillations occur almost exclusively on the surface of the
particles, while the interior atoms play an important role in screening of the optical
response. The calculations do not, however, reveal any distinct plasmonic peak in
the optical absorption spectra.

Keywords: palladium, Pd, gold, Au, LSPR, TDDFT, plasmonics, optical absorption,
nanoparticles, nanoalloys
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1
Introduction

In the last decades, nanoparticles have found their way into a multitude of different
applications. As the particle dimensions shrink, properties that are non-existent
on the macroscopic scale start to emerge. A well-known representative of this phe-
nomenon can be observed by shining light on metallic nanoparticles. Gold is then no
longer golden, but could in principle take on any color, depending on the size, shape
and composition of the nanoparticles, or their surrounding medium. The reason for
the change in color is that the electron cloud of the particle oscillates in response
to the light, and at the resonance frequency this leads to a maximum in absorption
and scattering. The resonance is referred to as localized surface plasmon resonance
(LSPR). Its dependency on size, shape, composition and surrounding medium opens
up a pathway to fine-tune the nanoparticles to specific applications. To do so, one
has to understand the influence of the different parameters. Many insights can be
acquired from classical electrodynamics, using experemintally measured dielectric
functions and possibly numerical calculations. For very small particles, however, a
classical approach is bound to fail since quantum mechanical effects will inevitably
appear. Further, in nanoparticles that contain more than one species of atoms, a
classical approach will not be able to resolve the effects that may derive from ordering
of the atoms inside the nanoparticle. To overcome these limitations, first principles
quantum mechanical computations may be used. Specifically, time-dependent den-
sity functional theory (TDDFT) is an outstanding candidate for describing LSPR
from a fundamental, electronic point of view.

This thesis is devoted to computations of plasmonic properties of alloyed nano-
particles of palladium (Pd) and gold (Au). Pd-Au nanoparticles are interesting as
candidates for hydrogen sensing in for instance cars powered with fuel cells. In short,
these particles absorb hydrogen, and thereby their plasmonic properties change [1, 2].
A hydrogen leakage may then be detected from, for example, a shift in the LSPR
frequency, so that catastrophic explosions can be avoided.

The computational approach in this thesis is twofold, with one part describing
the thermodynamics of Pd-Au nanoparticles using classical simulations, and the
other using TDDFT in an attempt to elucidate the plasmonic properties. The aim
is to determine how the reduction in size affects the thermodynamic and structural
properties of Pd-Au nanoparticles, and eventually the impact of these factors on
plasmonic properties. The long-term goal is to use this knowledge for tailoring
optimal Pd-Au hydrogen sensors.

The thesis is structured as follows. Chapter 2 describes LSPR from both a
classical and quantum mechanical perspective, attempting to bridge the conceptual
gap between the two, as well as paving the way for the analysis of TDDFT results.

1



1. Introduction

Chapter 3 describes the computational methods used in the thesis, as well as the
underlying physics. Chapter 4 presents the results from the classical simulations,
aiming for a description of the thermodynamics of Pd-Au nanoparticles. TDDFT
results and optical absorption spectra are in the focus of Chapter 5, and the thesis
is wrapped up in Chapter 6, summarizing the main conclusions and providing an
outlook.
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2
Localized surface
plasmon resonance

The property of small particles to absorb and scatter light in a fashion different
from bulk materials has been known for a long time [3]. This is not surprising since
localized surface plasmon resonance (LSPR) appears as a solution to Maxwell’s
equations in very simple geometries. Describing LSPR on the electronic scale is
however more tedious, and much is still not fully understood. This chapter gives a
brief review of the classical description of LSPR, as well as some considerations on
how to approach the phenomenon quantum mechanically.

2.1 Classical approach
LSPR can in essence be derived by studying a metallic sphere in an oscillating
electric field. The behavior of such a system is closely related to the movement
of the electrons in the sphere. The dielectric function ε is a material property
quantifying the response of the electrons under the influence of an electric field,
and it is consequently necessary to understand the dielectric function in order to
understand LSPR. Hence, this section begins with a glance at the simplest model
of the electronic properties of a metal, the free electron model.

2.1.1 The free electron model
The classical equation of motion for an electron with charge −e and massme subject
to an electric field E and damped in proportion to its velocity, is

meẍ+ γmeẋ = −eE. (2.1)
If an harmonically oscillating electric field is assumed, E = E0e

−iωt, the solution is
given by

x = eE

meω2 + iγmeω
. (2.2)

The displacement of the charge gives rise to a dipole moment,

p = −ex = − e2E

meω2 + iγmeω
. (2.3)

If the density of electrons is n, the polarization field is

P = − ne2

meω2 + iγmeω
E. (2.4)

3



2. Localized surface plasmon resonance

The displacement field D, famous from Maxwell’s macroscopic equations, is thus
given by

D = ε0E + P = ε0

(
1− ne2

(meω2 + iγmeω) ε0

)
E (2.5)

where ε0 is the permittivity of vacuum. The relative permittivity in the free electron
model is thus

εr = 1− ne2

(meω2 + iγmeω) ε0
= 1−

ω2
p

ω2 + iγω
= 1−

ω2
p

ω2 + γ2 + i

[
ω2
pγ

ω(ω2 + γ2)

]
(2.6)

where the so-called plasma frequency

ω2
p = ne2

meε0
(2.7)

has been introduced.

−40
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Free electron model
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Figure 2.1: The real (top) and imaginary (bottom) parts of the relative permittivity of
Au and Pd. Experimental data taken from Ref. 4, the free electron model with an electron
density of 5.9·1022 electrons/cm3, resulting in ωp ≈ 1.4·1016 s−1, and damping γ = 0.01ωp.

It is interesting to see how this model compares to experiment. Figure 2.1 shows
experimental data for the relative permittivity, in comparison with the prediction
provided by Eq. (2.6). Note that the agreement is fairly good for the real part.
For the imaginary part there is only good agreement with Au in the low frequency
regime. For higher frequencies, the free electron model predicts the imaginary part
to go to zero, i.e. the damping to become negligible. Experimental data, however,

4



2. Localized surface plasmon resonance

shows an increase in the imaginary part for frequencies above 2-3 eV. This can be
understood by studying the electronic structure of Au. Au can in a simple picture
be described as a system of 68 core electrons and 11 valence electrons. Ten of the
valence electrons fill the 5d shell. In bulk Au the levels hybridize, forming a d-band.
The remaining valence electron is put in the 6s level, which in bulk hybridizes with
the 6p level, forming an sp-band. In bulk, only the electrons in the sp-band should
be regarded as free. It turns out that the distance between the d-band edge and the
Fermi level is roughly 2 eV [5]. The increase of the imaginary part of the dielectric
function is thus a manifestation of the onset of excitations of electrons from the
d-band to the sp-band. The picture of Au as a sea of free electrons thus breaks
down for frequencies above 2 eV. Further, Pd is seen to have a larger imaginary
part than Au for all frequencies. Pd being an element in the group to the left of
Au in the periodic table, has no valence s electrons Rather the highest level is 4d,
which is filled with 10 electrons. The notion of Pd as a sea of free electrons is thus
questionable, regardless of frequency.

2.1.2 Homogeneous nanoparticles
Having discussed the general features of the dielectric functions of Au and Pd, it is
time to see how they relate to the optical response of nanoparticles of these metals.
Consider a homogeneous spherical body with radius a and dielectric function εs
embedded in a material with dielectric function εm (possibly vacuum in which case
εm = 1), subject to an external electric field E = E0ẑ. The resulting field is given
by solving the Laplace equation

∇2φ = 0 (2.8)
and recovering the field via Etot = −∇φ. By making use of the azimuthal symmetry
and applying proper boundary conditions, the solution can be shown to be [6]

φin = −3εm

εs + 2εm
E0z (2.9)

φout = −E0z + εs − εm

εs + 2εm
E0a

3 cos θ
r2 (2.10)

for the fields inside and outside of the sphere, respectively. Notice that the latter
expression looks exactly like the applied field (the first term) with a superimposed
field from a dipole (the second term). This can be interpreted as the external field
inducing a collective displacement of the electrons in the sphere, effectively turning
the particle into an oscillating dipole. With some rearrangement the induced dipole
can be defined as

p = 4πε0εma
3 εs − εm

εs + 2εm
E = ε0εmαE, (2.11)

where the polarizability was defined,

α = 4πa3 εs − εm

εs + 2εm
. (2.12)

It should be remembered that the dielectric funcion is dependent on the frequency
ω of the field. The above reasoning thus holds only if the field varies so slowly that

5



2. Localized surface plasmon resonance

the external field can be regarded as constant over the whole particle at any given
instant of time, i.e. that the wavelength λ is much longer than the radius a. This is
referred to as the quasistatic approximation.

The induced field is associated with optical absorption. An analysis of the
Poynting vector leads to an expression for the cross-section of absorption [6]

Cabs = 2π
λ
Imα = 8π2a3

λ
Im

[
εs − εm

εs + 2εm

]
. (2.13)

The absorption is thus highly dependent on the dielectric function of the surrounding
medium. In first-principles computations it would usually be vacuum, in which case
εm = 1 and 2π/λ = ω/c, and the absorption simplifies to

Cabs, vacuum = 4πa3ω

c
Im

[
εs − 1
εs + 2

]
. (2.14)

The above expression allows for a resonance at

Re εs(ω) = −2, (2.15)

provided that Im εs(ω) is small. This is referred to as localized surface plasmon
resonance (LSPR).

Figure 2.2 shows the absorption spectra for Au and Pd obtained with Eq.
(2.14). At 2.5 eV, where Re εAu = −2, there is a peak in the Au spectrum. From
Eq. (2.14) it is clear that the prominence of the resonance will be highly dependent
on the imaginary part of εs. Indeed, if Im εs = 0 when Re εs = −2, the absorption
would diverge. Thus, the fact that the plasmon peak for Au is located exactly where
transitions from the d-band start to kick in, means that the peak is embedded in a
part of the spectrum where absorption is also due to excitations of d electrons. For
Pd, the resonant condition Eq. (2.15) is fulfilled at approximately 5.7 eV, but there
the imaginary part of ε is too dominant for a peak to appear.
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Figure 2.2: Absorption spectra for Au (left) and Pd (right) as obtained with Eq. (2.14).
Dielectric functions obtained from Ref. 4.
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2. Localized surface plasmon resonance

It should be mentioned that a spectrum obtained in an experimental measure-
ment typically does not only include absorption but also scattering. The latter can
be derived analytically in the same manner as was done in the case of absorption.
Here, scattering was excluded, since the scaling is different. While the absorption
cross section was seen to scale with the volume of the particle, the scattering scales
with the volume squared [6], and is thus negligible for the very small particles that
can be handled with first principles computations.

2.1.3 The influence of shape
In the previous section, the absorption spectrum was derived for a spherical particle
in a quasistatic field. For more complicated shapes, one would typically have to
employ a numerical approach. An interesting exception, for which analytic solutions
are available, are ellipsoids [7]. Figure 2.3 shows absorption spectra in the special
case of an oblate, i.e. an ellipsoid where the two longer axes are equal. With the field
polarized along these longer axes, the plasmon it redshifted. For Au, this means that
the plasmon is redshifted away from the d-band, whence the intensity of the plasmon
peak increases. For Pd, the redshift implies that the plasmon peak enters the visible
spectrum (where there is also experimental data for the dielectric function).
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Figure 2.3: Absorption spectra for ellipsoidal Au (left) and Pd (right), with aspect ratios
ranging between 0.1 and 1.0. Dielectric functions obtained from Ref. 4.

2.1.4 Alloyed nanoparticles
For an alloyed particle, the situation is more complex. The dielectric function would
then have different forms depending on how the atoms mix. If the system is segre-
gated so that there is a spherical core of one species covered by a spherical shell of
another, there still exists an analytic solution [7]:

Cabs, vacuum = 4πa3ω

c
Im

[
(εs − 1)(εc + 2εs) + g(εc − εs)(εm + 2εs)
(εs + 2)(εc + 2εs) + g(2εs − 2)(εc − εs)

]
(2.16)
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2. Localized surface plasmon resonance

where εc and εs are the dielectric functions of core and shell, respectively, and g is the
volume fraction of the core element. Figure 2.4 shows the spectra thus obtained with
g = 0.05 and g = 0.95 with Pd in core and shell respectively, i.e. with 5 vol-% of Pd
put in either the core or the shell. Note that the impact on the spectrum is somewhat
larger with Pd on the surface, as compared to Pd in the core. This observation is
consistent with the common perception of LSPR as a surface phenomenon. Figure
2.16 also contains the absorption spectrum obtained with Eq. (2.14), by mixing the
dielectric functions according to

εmix(ω) = 0.95εAu + 0.05εPd. (2.17)

It is perhaps somewhat surprising that this way of mixing the dielectric functions
affects the absorption spectrum more than putting all Pd on the surface. It is hard
to know, however, how this way of mixing the dielectric functions relates to the
situation in a real Pd-Au alloy.
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Figure 2.4: Absorption spectra close to the plasmon peak for Au, as obtained with Eq.
(2.16). In the core-shell particles, 5 vol-% Pd was added. The red curve was obtained
with a homogeneous sphere, with the dielectric function mixed with 95% Au and 5% Pd.
Dielectric functions obtained from Ref. 4.

2.2 Quantum mechanical approach
While the results of the preceding section are attractive due to their simplicity, it
is important to be aware of their limited range of validity. The results were derived
in the quasistatic limit, where the particle is assumed to be much smaller than the
wavelength. With a larger particle, this condition is of course violated. Nevertheless,
large particles can still be handled analytically with more sophisticated methods,
and a size dependency will appear in the expression for the plasmon peak. In the
other end of the spectrum, however, there is a more severe limitation. For very small
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2. Localized surface plasmon resonance

particles, the dielectric function is no longer well-defined and quantum mechanical
effects appear.

2.2.1 Single-particle and collective excitations
Consider an electron in a state |φi〉 with energy ~ωi, under influence of an electro-
magnetic field with frequency ω. Quantum mechanical intuition tells that it should
be possible to excite the electron to a state |φj〉 with energy ~ωj provided that the
energies match, i.e. that ω = ωj−ωi ≡ ωji. This is not the full story, since energy is
not the only conserved quantity. By first-order time-dependent perturbation theory,
one can show [8] that the cross-section for the transition, with a field polarized along
the z axis, is

Cabs = 4π2α
∑
j

ωji| 〈φj| z |φi〉 |2δ(ω − ωji) (2.18)

where α is the fine structure constant.
Consider now a system of many electrons, where each state |φi〉 is occupied by

fi electrons. Inspired by Eq. (2.18) it is tempting to write the cross section as

Cabs = 4π2α
∑
i,j

ωji| 〈φj|x |φi〉 |2δ(ω − ωji) (1− fi) fj. (2.19)

The occupation numbers factor (1−fi)fj makes sure that excitations are only allowed
from an occupied to a non-occupied state. Equation (2.19) can quite easily be
evaluated with a ground state DFT calculation, using Kohn-Sham states for |φi〉
and |φj〉 (see Chapter 3). As it turns out, however, it does not reproduce the
absorption in a real system. The reason is that no interaction between the electrons is
accounted for in Eq. (2.19) [9]. With interaction, the levels may hybridize such that
a new transition with eigenenergy ~ω is collectively built up by many quasiparticle
transitions that all have ωji < ω. Such an excitation is called a plasmon.

In a quasiparticle description, there will thus be two main categories of ex-
citations, those of single-particle character, and collective ones. Any absorption
spectrum will be a mixture of the two, and the distinction is not always clear. For
small systems, single particle excitations tend to dominate. As the system size
grows, collective excitations become increasingly important, and may start to domi-
nate the spectrum. Really large systems are intractable with today’s first principles
computational methods, and a way to discern plasmonic excitations in a jungle of
single-particle excitations is therefore sought after.

2.2.2 Identifying the plasmon resonance
Several methods to identify plasmonic excitations from a TDDFT calculation have
been proposed. Bernadotte et al. [9] introduced a parameter λ that scales the
interaction between the electrons, and did many calculations with λ ranging from 0
to 1 corresponding to no interaction and full interaction, respectively. The energies
of plasmonic excitations were seen to increase significantly when the interaction was
turned on, as opposed to single-particle excitations that had roughly the same energy
for all values of λ. This approach made the plasmon identification straightforward,
but the method requires multiple expensive calculations on artificial systems.

9



2. Localized surface plasmon resonance

Another approach was proposed by Ma et al. [10]. In first-order perturbation
theory, a time-dependent wavefunction for a single particle may be expressed as

ψi(t) ≈ e−iωitφi + Cj,i(t)e−iωjt = e−iωit
(
φi + Cj,i(t)e−i(ωj−ωi)tφj

)
. (2.20)

They were able to show that the expansion coefficients Cj,i(t) are much more rapidly
varying for plasmonic excitations than for single-particle excitations. The Fourier
transform of Cj,i thus reveals the nature of the excitation. The drawback is that
the method requires storage of lots of data that is usually not saved in a TDDFT
calculation, as well as prior knowledge of the position of the plasmon peak (or
multiple calculations for different energies).

A simpler measure, based on data that is usually available from a TDDFT
calculation, was recently published by Bursi et al. [11]. It is based on observations
on how the induced potential is supposed to behave for plasmonic and non-plasmonic
excitations, and reads

η̃P (ω) =
∫
|
∫
n(r′, ω)|r′ − r|−1 d3r′|2 d3r∫

|n(r, ω)|2 d3r
(2.21)

where n(r, ω) is the Fourier transformed induced charge density, or specifically its
imaginary part. The authors proposed that the value of η̃P (ω) is a measure of the
plasmonic content of a peak at the frequency ω. Note that the inner integral in the
numerator is a convolution between the functions n(r) and 1/|r|. It can therefore
be advantageous to write η̃P in terms of Fourier transforms,

η̃P (ω) =
∫
|4πF−1 {n̂(k, ω)k−2} |2 d3r∫

|n(r, ω)|2 d3r
(2.22)

where F−1 denotes inverse Fourer transform and n̂(k, ω) is the induced density
Fourier transformed into reciprocal space with wave number k. Since the Fourier
transform of 1/|r| is just 4π/k2, the quantity η̃P is essentially a low-pass filter,
assigning more weight to oscillations occurring on a longer spatial scale. The use-
fulness of this so-called plasmonicity index is still to be assessed, but out of the
approaches described here, it is the most readily available, and it has therefore been
implemented in this thesis.
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3
Computational methods

This chapter aims at giving a general introduction to the computational meth-
ods used in this thesis. The methods can be grouped into classical and quantum
mechanical. The former are based on statistical mechanics and its connection to
thermodynamics, and the first part of this chapter is therefore devoted to a review
of this subject, to a large extent inspired by Ref. 12. The second part gives a de-
scription of the classical methods, specifically Molecular Dynamics simulations and
Monte Carlo integration. The third and last part describes density functional theory
and time-dependent density functional theory, which are both used in this thesis for
computations of the optical response of Pd-Au nanoparticles.

3.1 Connection between statistical mechanics and
thermodynamics

Consider a system with N identical particles in a volume V . The state of the system
can be described by specifying the positions r as well as the momenta p of all N
particles in all 3 dimensions. The state can thus be characterized by

(r,p) = (r1, r2, ..., r3N , p1, p2, ..., p3N) (3.1)

and it has energy E, comprising potential as well as kinetic energy. Of course, there
are generally many different states (r,p) with N particles in the volume V that
have the same energy E. We say that there are different microstates corresponding
to the same macrostate (N, V,E).

Now, consider two such systems in thermal contact with each other but oth-
erwise isolated. By thermal contact, we mean that they can exchange energy. In
equilibrium, they will therefore be equally willing to give up energy to each other,
a property we know as temperature. We denote the energies of the systems E1 and
E2, respectively, and the total energy, given by E0 = E1 + E2, is fixed since the
systems are isolated from the outside world. How is the total energy distributed
between E1 and E2 in equilibrium? Guided by the second law of thermodynamics,
we can assume that the distribution will be such that the number of microstates,
denoted Ω0, is maximized. The total number of microstates is the product of the
number of microstates in system 1 and system 2,

Ω0 = Ω1(E1)Ω2(E2) = Ω1(E1)Ω2(E0 − E1) (3.2)

11



3. Computational methods

If we denote Ē1 and Ē2 as the energies leading to maximized Ω0, we have
dΩ0

dE1

∣∣∣∣∣
Ē1

= 0, (3.3)

or if we rewrite the left hand side using Eq. (3.2),
dΩ0

dE1

∣∣∣∣∣
Ē1

= ∂Ω1(E1)
∂E1

∣∣∣∣∣
Ē1

Ω2(Ē2) + Ω1(Ē1)∂Ω2(E2)
∂E2

∣∣∣∣∣
Ē2

∂E2

∂E1
= 0. (3.4)

Since E2 = E0−E1 we have ∂E2/∂E1 = −1 and we can rewrite the above equation,(
∂ ln Ω1(E1)

∂E1

)
Ē1

=
(
∂ ln Ω2(E2)

∂E2

)
Ē2

. (3.5)

Hence, we have that in thermal equilibrium, the quantity
∂ ln Ω(E)

∂E
(3.6)

is the same in both systems. To proceed, we recall that in thermodynamics, tem-
perature can be defined by

1
T

=
(
∂S

∂E

)
N,V

. (3.7)

Comparing (3.6) and (3.7), it is natural to write

S = kB ln Ω (3.8)

where the constant of proportionality kB is referred to as Boltzmann’s constant.
Equation (3.8) establishes a connection between thermodynamics and statistical
mechanics by connecting the macroscopic quantity S and the microscopic quantity
Ω.

3.1.1 The microcanonical ensemble
A completely isolated system is characterized by constant number of particles N ,
constant volume V and constant energy E. The set of all possible microstates having
the same N , V and E is called the microcanonical ensemble. In such a system the
entropy S = kB ln Ω will be maximized. For reasons that will become clear later, we
can introduce the quantity

ρ(s) =

1 if s is a microstate with(N, V,E),
0 otherwise,

(3.9)

and we can write the number of accessible microstates as

Ω =
∑
s

ρ(s) (3.10)

where the sum runs over all microstates s.
Thermodynamically, the entropy can be related to the constant variables N , V

and E by the thermodynamic identity

dE = TdS − pdV + µdN ⇒ dS = 1
T

dE + p

T
dV − µ

T
dN. (3.11)
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3.1.2 The canonical ensemble
Even though the microcanonical ensemble serves a purpose in understanding statis-
tical mechanics, it is generally not realized in experiments. A much more common
situation is that the system under investigation is in thermal contact with the sur-
rounding environment so that its energy may vary. If the surrounding is treated as
a reservoir, so that its temperature stays the same no matter how much energy it re-
ceives or gives away, we obtain the canonical ensemble, which consequently has fixed
(N, V, T ). We may denote the energy of the system E and the energy of the reservoir
Er, and we have E0 = E + Er fixed. Note that, in contrast to the microcanonical
ensemble, we have T fixed while the energy E may vary.

A macrostate is now characterized by the maximum entropy in the system and
reservoir together. The total number of microstates is given by the product of the
number of microstates in the system and in the reservoir,

Stot = kB ln ΩsΩr = kB ln Ωs + kB ln Ωr = Ss + kB ln Ωr (3.12)

where subscript s refers to system and r to reservoir. Since E should be small
compared to E0 we can Taylor expand ln Ωr around E0,

ln Ωr(E0 − E) ≈ ln Ωr(E0) +
(
∂ ln Ωr

∂E ′

)
E′=E0

(Er − E0) ≈ const.− 1
kBT

E, (3.13)

which we may insert into Eq. (3.12),

Stot = Ss − kB
1
kBT

E + const. (3.14)

Maximizing the total entropy is thus the same as minimizing

F = E − TS (3.15)

which is known as the Helmholtz free energy (the subscript s was dropped here).
The free energy is convenient since it does not refer to any quantity related to the
reservoir.

The probability of finding the system in a certain microstate is no longer the
same for all microstates, because by giving up energy to the reservoir, the number
of possible microstates in the reservoir may change. The probability of finding the
system in a certain microstate should therefore be equal to a constant times the
number of microstates in the reservoir,

P ∝ Ωr(Er) = Ωr(E0 − E) (3.16)

and by combining Eq. (3.16) and (3.13) we find

P = C exp
(
− E

kBT

)
. (3.17)

The constant C can be found by requiring that the probabilities sum to 1, and we
have

P = exp(−βE)∑
s exp(−βE) (3.18)
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where β = 1/kBT and the sum runs over all microstates with energy E. The sum

Z =
∑
s

exp(−βE) (3.19)

is referred to as the partition function. We note that it has exactly the same form
as Eq. (3.10), but now with the density

ρ(s) = exp(−βE), (3.20)

often referred to as the Boltzmann factor. We thus have two pairs of quantities that
play equivalent roles in the microcanonical and the canonical ensemble,

S ↔ F and Ω↔ Z (3.21)

and we may, guided by intuition, guess that the relationship S = kB ln Ω also has
an analog,

F = −kBT lnZ (3.22)
which indeed turns out to be true. Equation (3.22) can be regarded as the connection
between thermodynamics and statistical mechanics in the canonical ensemble.

Finally, we can make a modification of the thermodynamic identity,

dE − d(TS) = TdS − pdV + µdN − d(TS)
⇒ d(E − TS) = dF = −SdT − pdV + µdN.

(3.23)

3.1.3 The grand and semigrand canonical ensemble
Up to this point, all the systems have had a fixed number of particles. We can
also imagine a system that not only can exchange energy with a reservoir, but also
particles. When the system and reservoir are allowed to exchange energy, they
will have the same temperature in equilibrium. When particles are exchanged, the
quantity that is the same in equilibrium is the chemical potential µ. The grand
canonical ensemble is thus characterized by constant (µ, V, T ). The reasoning in the
previous section can be applied also in this case, and for example we get

d(E − TS − µN) = dΦ = −SdT − pdV −Ndµ (3.24)

where Φ = E−TS−µN usually is referred to as the grand potential. Furthermore,
we have

Φ = −kBT ln Ξ (3.25)
where Ξ is the grand partition function, defined by

Ξ =
∑
s

exp (−β(E −Nµ)) (3.26)

The above ensembles can easily be generalized to a system with two (or more)
kinds of particles, say A and B. In the canonical ensemble we then have constant
(NA, NB, V, T ) and in the grand canonical ensemble constant (µA, µB, V, T ). We
can also define an ensemble that could be regarded as intermediate between the
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canonical and grand canonical. To do so, we fix the total number of particles and
the difference in chemical potential between species A and B, i.e. we have con-
stant (Ntot,∆µ, V, T ). The thermodynamic identity can then be modified as in the
following,

d(E − TS) = −SdT − pdV + µAdNA + µBdNB

= −SdT − pdV − (µB − µA)dNA + µB(dNA + dNB)
= −SdT − pdV −∆µdNA + µBdNtot

(3.27)

and adding d(∆µNA) to both sides we end up with

d(E − TS + ∆µNA) = −SdT − pdV +NAd∆µ+ µBdNtot (3.28)

or equivalently

d(E − TS +Ntotc∆µ) = −SdT − pdV +Ntotcd∆µ+ µBdNtot (3.29)

where c = NA/Ntot is the concentration of species A. By defining a semigrand
potential

Ψ = E − TS +Ntotc∆µ (3.30)
we can write

Ψ = −kBT ln Υ (3.31)
where

Υ =
∑
s

ρ(s) =
∑
s

exp (−β(E +Ntotc∆µ)) . (3.32)

The sum in Eq. (3.32) runs over many states with different concentration c.
To establish a thermodynamic relation between ∆µ and the free energy, one can
rewrite Eq. (3.32) in terms of an integral over all concentrations and the canonical
partition function at a particular concentration [13]

Υ(N, V, T,∆µ) =
∫ 1

0
Z(N, V, T, c) exp (−βNtotc∆µ) dc, (3.33)

where the dependencies of the different ensembles have been written out for clarity.
Now, Eq. (3.22) can be rewritten as Z = exp(−βF ), which inserted into Eq. (3.33)
yields

Υ(N, V, T,∆µ) =
∫ 1

0
exp (−β(F (N, V, T, c) +Ntotc∆µ)) dc. (3.34)

The integrand in Eq. (3.34) defines a concentration distribution in the semigrand
canonical ensemble. The distribution is peaked around the average concentration
〈c〉, where the derivative consequently is zero,

exp (β(−F (N, V, T, c) +Ntotc∆µ))
(
−β∂F (N, V, T, c)

∂c
− βNtot∆µ

)
= 0 (3.35)

so that
∆µ = − 1

Ntot

∂F

∂c
(N, V, T, 〈c〉). (3.36)

Equation (3.36) is useful for calculating the free energy from ∆µ and c, which are
both available in atomistic simulations in the semigrand canonical ensemble.
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3.1.4 The variance-constrained semigrand canonical ensem-
ble

As will be seen in Section 3.2.2, the semigrand canonical ensemble provides means
for convenient simulations of alloys. It does, however, have a main disadvantage.
Consider an alloy with a miscibility gap, i.e. an alloy in which the constituents do
not mix in all proportions. Fig. 3.1a shows the free energy landscape in a fictitious
system of that kind, with the miscibility gap manifested by the central maximum.
The corresponding ∆µ is shown in Fig. 3.1b. Note that a single value of ∆µ maps to
multiple concentrations. By specifying ∆µ, one could therefore in principle end up at
three different concentrations. In a real simulation, one therefore cannot equilibrate
a concentration inside the miscibility gap. Sampling the free energy landscape inside
the miscibility gap is thus impossible within the semigrand canonical ensemble.
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Figure 3.1: General representation of the free energy landscape in an alloy with a misci-
bility gap. Panel (a) shows the fictitious free energy landscape, and (b) the corresponding
free energy derivative, which equals the chemical potential difference ∆µ.

To overcome this limitation, the so-called variance-constrained semigrand canon-
ical ensemble (VC-SGC) has been proposed [14]. In this ensemble, the term Ntotc∆µ
is replaced for a term that does not only drive the concentration, but also constrains
its fluctuations. Specifically, the density function can be expressed as [13]

ρ = exp
[
−β(E + κ̄N(c+ φ̄/2)2)

]
. (3.37)

The VC-SGC ensemble thus introduces the two fixed quantities φ̄ and κ̄, which drive
the concentration and the fluctuation of the concentration, respectively. To see this,
note that when c = −φ̄/2, the second term in the exponential is at a minimum (0).
If c deviates from this value, the excess energy is amplified by κ̄; for a large value of
κ̄ the argument of the exponential will be high, and ρ consequently low. Thus the
density ρ will be maximum at c = −φ/2 and then die off with c as a Gaussian, where
a large κ̄ means more rapidly decreasing ρ. By choosing a sufficiently large value of
κ̄, a choice of φ̄ will hence, in practice, map to one and only one concentration.
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The above mentioned ensembles and their related quantities are gathered in
Table 3.1. The ensembles can also easily be made isobaric by fixing the pressure
and allowing for varying volume.

Table 3.1: Ensembles used or described in the thesis. SGC and VC-SGC are abbreviations
for semigrand canonical and variance-constrained semigrand canonical.

Ensemble Constant Thermodynamic Partition
quantities potential function

Microcanonical N, V,E Entropy S Ω = ∑
s 1

Canonical N, V, T Helmholtz F Z = ∑
s e
−βE

Grand canonical µ, V, T Grand pot. Φ Ξ = ∑
s e
−β(E−Nµ)

SGC ∆µ,Ntot, V, T SG pot. Ψ Υ = ∑
s e
−β(E−Ntotc∆µ)

VC-SGC φ̄, κ̄, Ntot, V, T VC-SGC pot. Θ = ∑
s e
−β(E+κ̄N(c+φ̄/2)2)

3.2 Atomistic modeling
In an experiment we are typically interested in measuring an observable dependent
on the microstate, e.g., temperature or pressure. Such a measurement is never
instantaneous but rather averaged over a time t. During that time, the microstate
will evolve and thereby visit other microstates in the ensemble. If we denote the
observable with f(r(t),p(t)), we may describe the measurement as

f̄ = lim
t→∞

1
t

∫ t

0
f(r(t′),p(t′)) dt′. (3.38)

We may now ask ourselves whether such a measurement can be predicted by
ensemble theory. If we happen to know everything about the ensemble at hand, we
can compute the expectation value of the observable in that ensemble,

〈f〉 =
∫
f(r,p)ρ(r,p) dr dp∫

ρ(r,p) dr dp (3.39)

and one often assumes that
f̄ = 〈f〉 , (3.40)

which is referred to as the ergodic hypothesis.
Atomistic simulations will typically compute observables according to either

Eq. (3.38) or (3.39). The choice of approach should be determined by how efficiently
the respective quantities can be evaluated in the phase space at hand. In this section,
Molecular Dynamics and Monte Carlo simulations are introduced. The former is
essentially a method to simulate Eq. (3.38), while the latter attempts to efficiently
evaluate Eq. (3.39).

3.2.1 Molecular Dynamics simulations
By choosing an initial configuration (r,p) and defining an interatomic potential,
we can use a computer to solve Newton’s equation of motions for large numbers
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of particles. If we allow the system to equilibrate and then conduct a long enough
simulation, we can evaluate observables in the spirit of Eq. (3.38). Such a simu-
lation, however, is usually not fully satisfactory. Since Newton’s equations of mo-
tion conserve energy, a straightforward Molecular Dynamics simulation corresponds
to constant (N, V,E), i.e. it will sample the microcanonical ensemble. Usually,
we would rather want to have constant (N, V, T ) (the canonical ensemble) or even
(N,P, T ) (the isobaric-isothermal ensemble). This can be accomplished by adding
a thermostat and/or barostat to the system. The system is then forced to maintain
a certain temperature and pressure, respectively.

It is important to note that a Molecular Dynamics simulation will resemble a
real system in the sense that energy barriers will severely prevent the system from
attaining all possible configurations. In a system where atoms are more or less
confined to a position in a lattice, such as a metal, the atoms will only rarely change
places. Therefore, in a system where not all atoms are equal, such as an alloy, a
different approach is required.

3.2.2 Monte Carlo integration
The challenge of simulating an alloy can be approached with Monte Carlo simu-
lations. After an initial microstate is chosen, subsequent steps are not determined
through time propagation as in Molecular Dynamics simulations, but rather through
a random walk in phase space. By doing a sufficiently long random walk, all of phase
space is sampled and any computed observable within the Monte Carlo method will
therefore represent an ensemble average in the spirit of Eq. (3.39).

The random walk through phase space is guided by the density function ρ. A
trial step is chosen at random, but the step may be rejected. The probability of
accepting a trial step is given by the ratio of the density function between the trial
state and the current state or 1 if the ratio exceeds one,

P (accept) = min {1, ρ(trial)/ρ(current)} . (3.41)

This scheme is referred to as the Metropolis algorithm [15]. The integral in Eq.
(3.39) is then by no means evaluated from a uniform sampling over phase space but
rather through so-called importance sampling, where the most important parts of
phase space are visited more often.

3.2.3 Atomistic modeling of alloys
Alloys can be studied efficiently by combining Molecular Dynamics and Monte Carlo
simulations. To this end, a Molecular Dynamics simulation is interrupted every few
timesteps for Monte Carlo trial steps, where the identities of randomly selected
atoms are swapped. The swapping can be done in different ways, corresponding to
sampling of different ensembles.

The perhaps most straightforward method is to randomly select two non-
identical atoms, and swap their identities, i.e. in the case of Pd-Au, the Pd becomes
Au and vice versa. The number of each species is thus conserved. The change in
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energy ∆E is calculated, and the acceptance probability is computed from the ratio
of Boltzmann factors,

P = min {1, exp [−β∆E]} . (3.42)

This method samples the canonical ensemble and it is often used for Monte Carlo
simulations of binary alloys. From a computational perspective, however, the canon-
ical ensemble suffers from the disadvantage of being impractical for parallel com-
puting [14].

A different approach is to only choose one atom randomly and change its iden-
tity. The concentration does then change and by fixing a chemical potential differ-
ence ∆µ, we can compute a probability of acceptance from the semigrand canonical
ensemble density functions,

P = min {1, exp [−β (∆E +Ntot∆c∆µ)]} (3.43)

where ∆c is the change in concentration introduced by the trial. ∆µ thus provides a
driving force, driving the system to a certain concentration. This method is suitable
for parallelization, but suffers from a major problem. As stated already in Section
3.1.4, it does not allow for sampling inside a miscibility gap – the simulations would
always end up at a concentration on either side of the gap. This shortcoming can
be overcome with the VC-SGC ensemble and Eq. (3.43) becomes

P = min
{

1, exp
[
−β

(
∆E + κ̄Ntot∆c

(
φ̄+ ∆c+ 2c

))]}
(3.44)

given that we specify φ̄ and κ̄. With a sufficiently high value of κ̄, the system will
also stabilize concentrations inside the miscibility gap.

3.3 Electronic structure modeling
While the atomic configurations in alloyed nanoparticles can be described well with
classical statistical mechanics, the accuracy of the results will be bounded by the
quality of the interatomic potential that is used. Further, atomistic modeling can
not make predictions of the optical response of a nanoparticle. In order to truly
understand the plasmonics of metal nanoparticles, we therefore need to turn to
first-principles methods. This section describes the widespread and well established
electronic structure modeling method density functional theory, used to efficiently
calculate the ground state in a system of many electrons. For the optical response,
the ground state calculation will not be sufficient, and time-dependent density func-
tional theory is introduced. The section is strongly inspired by Ref. 16.

3.3.1 Density functional theory
Consider a system with N interacting electrons. Density functional theory (DFT)
deals with the problem of solving the Schrödinger equation

Ĥ0ψj(r1, ..., rN) = Ejψj(r1, ..., rN), (3.45)
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where Ĥ0 is the Hamiltonian of the system, ψj are the wave functions with corre-
sponding energy Ej, and ri represents the spatial coordinates of the i-th particle.
A reasonable expression for the Hamiltonian would be

Ĥ0 = −
N∑
i=1

1
2∇

2
i +

N∑
i=1

v(rj) +
N∑

i,j=1, i 6=j
w(|ri − rj|). (3.46)

The first term represents the kinetic energy of the electrons, the second term repre-
sents the potential energy from the ions and the third term represents the interaction
between the electrons. The next step would then be to solve the Schrödinger equa-
tion (3.45), obtaining the wavefunctions ψj and the corresponding energies. The
wavefunction, however, is dependent on 3N spatial coordinates, and the combina-
torics of such a system quickly blows up. It is therefore impractical to solve the
Schrödinger equation for more than two particles. DFT, however, provides an al-
ternative approach in which we, instead of the wavefunctions, can work with the
three-dimensional electron density

n(r) = N
∫

d3r2...
∫

d3rN |ψ(r, r2, ..., rN)|2. (3.47)

The direct approach to calculating n(r) would be to get the electron density from
the Hamiltonian by solving the Schrödinger equation,

v(r)→ Ĥ0 → {ψj} → n(r). (3.48)

The first Hohenberg-Kohn theorem [17] states that there is a one-to-one relation-
ship between the ground state electron density n0(r) and the potential v(r). This
establishes the wave functions as a functional of the ground state density, because
if we know the density, we may in principle reconstruct the potential, which gives
the Hamiltonian, which leads to the wave functions:

n0(r)→ v(r)→ Ĥ0 → {ψj}. (3.49)

This means that any observable can be expressed as a functional of the ground state
density,

O[n0] = 〈ψ[n0]| Ô |ψ[n0]〉 . (3.50)
In particular, this means that the density minimizing the functional

E[n] = 〈ψ[n]| Ĥ0 |ψ[n]〉 (3.51)

really is the ground state density, thanks to the variational principle. This is referred
to as the second Hohenberg-Kohn theorem [17].

The Hohenberg-Kohn theorems are of practical importance only if we can cal-
culate the density without taking the detour in Eq. (3.48). A framework for doing
so was provided by Kohn and Sham [18]. In their formalism, we work with nonin-
teracting electrons and the ground state density is then written as a sum

n0(r) =
N∑
i=1
|φi(r)|2 (3.52)
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where φi are solutions to the Kohn-Sham equation,(
−1

2∇
2 + v′[n](r)

)
φi(r) = εiφi(r). (3.53)

Equation (3.53) has the huge advantage that it is an equation in only 3 spatial
coordinates, as opposed to the original problem having 3N coordinates.

It should be noted that in order for Eq. (3.52) to actually be the ground state
density, the potential v′ in Eq. (3.53) cannot be the same as v in Eq. (3.46). Instead
v′ is defined in such a way that the ground state is recovered through Eq. (3.52).
The problem then comes down to choosing v′ in a clever way. It is usually expressed
as a sum of three different parts,

v′[n](r) = v0(r) + vH[n](r) + vxc[n](r). (3.54)

Here v0(r) is identical to v(r) in Eq. (3.46), i.e. the potential from the ions. The
Coulomb interaction is partly accounted for by vH(r), the Hartree potential, given
by

vH[n](r) =
∫

d3r′
n(r′)
|r − r′|

. (3.55)

What is left is gathered into vxc[n](r), the so-called exchange-correlation functional.
The result of a DFT calculation will be no better than the choice of this functional,
whence a lot of effort has been put into developing accurate exchange-correlation
functionals.

3.3.2 Time-dependent density functional theory
If we want to study dynamic phenomena – such as LSPR – the Schrödinger equation
(3.45) and DFT alone are insufficient. Instead we need to turn to time-dependent
density functional theory (TDDFT) and the time-dependent Schrödinger equation,

Ĥ(t)Ψj(r1, ..., rN , t) = i
∂

∂t
Ψj(r1, ..., rN , t). (3.56)

This is no longer an eigenvalue, but an initial value problem. The solution will thus
be dependent on the initial wavefunction, denoted Ψ0. The Hamiltonian Ĥ(t) can
be expressed in the same way as in Eq. (3.46), except that we need to allow for the
potential v to be dependent on time.

Runge and Gross [19] proved that there exists a one-to-one relationship between
electron density and potential, just as in the time-independent case. Now, however, a
few more conditions have to be fulfilled. Two potentials are considered different only
if they differ by a constant dependent on space (i.e. v(r, t) + c(t) is not considered
different from v(r, t), but v(r, t)+c(r) is). It must also be possible to expand v(r, t)
in a Taylor series around the initial time. Then, for a given initial state Ψ0, a given
density n(r, t) cannot be the result of two different potentials, and a given v(r, t)
can only result in one n(r, t). This provides theoretical support for writing

n0(r, t)→ v(r, t)→ Ĥ0(r, t)→ {ψi(r, t)} (fixed Ψ0). (3.57)
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In a fashion analogous to the time-independent case, we can now write any observ-
able as a functional of the electron density and the initial state,

O[n,Ψ0](t) = 〈Ψ[n,Ψ0](t)| Ô |Ψ[n,Ψ0](t)〉 . (3.58)

Just as in the time-independent case, we still need a way to calculate n0(r, t).
The time-dependent version of the Kohn-Sham equation reads(

−1
2∇

2 + v′[n](r, t)
)
φi(r, t) = i

∂

∂t
φi(r, t) (3.59)

and just as before, v′ is defined so that the density is recovered from the Kohn-Sham
orbitals through

n(r, t) =
N∑
i=1
|φi(r, t)|2. (3.60)

The potential v′ is now not only dependent on the density n but also the initial state
Ψ0 and the initial Kohn-Sham state Φ0. It is usually divided into three parts just
as in the time-independent case,

v′[n,Ψ0,Φ0](r, t) = v0(r, t) + vH[n](r, t) + vxc[n,Ψ0,Φ0](r, t), (3.61)

where v0 is the potential from the ions, vH is the Hartree potential as in Eq. (3.55)
(but with a time-dependent density n), and vxc is the exchange-correlation func-
tional. A good choice of vxc is crucial to get accurate results from a TDDFT cal-
culation. Compared to the time-independent case, vxc could now be a functional of
all previous densities, but very often an adiabatic vxc is chosen, in which case only
the instantaneous density enters the functional. In that case, the same functionals
as in the time-independent case can be used.

3.3.3 The projector augmented wave method
Even though the Kohn-Sham equation (3.59) has the form of a one-electron Schröd-
inger equation and thus is a great simplification of the full many-body problem, it
is still far from trivial to solve. From a numerical perspective, the main problem
is that the wave functions oscillate rapidly close to the ion cores, while they are
much smoother in the interstitial regions. The different behaviors call for different
numerical representations, but luckily there are several methods to overcome this
problem. In this thesis, a DFT code based on the projector augmented wave (PAW)
formalism [20] has been used. Briefly, one works with pseudo wave functions φ̃ that
are related to the Kohn-Sham wave functions by

φ(r, t) = T̂ φ̃(r, t) (3.62)

where the transformation T̂ is defined in such a way that φ̃ is much smoother. The
time-dependent Kohn-Sham equation (3.59) can then be rewritten,[(

−i ∂
∂t

)
T̂ + ĤKS(t)T̂

]
φ̃i(r, t) = 0. (3.63)
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The pseudo-wavefunctions can further be expressed as linear combinations of atomic
orbitals ϕ̃µ centered at the atoms,

φ̃i(r, t) =
∑
µ

Cµi(t)ϕ̃µ(r −Rµ) (3.64)

where the sum runs over all orbitals, centered at each atom.
To propagate the system in time, Eq. (3.64) is inserted into the Kohn-Sham

equation (3.63), and it is multiplied with T̂ † from the left,[
T̂ †
(
−i ∂
∂t

)
T̂ + T̂ †ĤKS(t)T̂

]∑
µ

Cµi(t)ϕ̃µ(r −Rµ) = 0. (3.65)

One can then multiply with ϕ̃∗ν and integrate,

∑
µ

[(
−i∂Cµi(t)

∂t

)
〈ϕ̃ν | T̂ †T̂ |ϕ̃µ〉+ Cµi(t) 〈ϕ̃ν | T̂ †ĤKS(t)T̂ |ϕ̃µ〉

]
= 0. (3.66)

By writing Sνµ = 〈ϕ̃ν | T̂ †T̂ |ϕ̃µ〉 and Hνµ = 〈ϕ̃ν | T̂ †ĤKS(t)T̂ |ϕ̃µ〉, Eq. (3.66) can be
expressed in matrix form,

iS
dC(t)

dt = H(t)C(t), (3.67)

where S is independent of time, H changes in each time step and C is the unknown
coefficient matrix.

3.3.4 Time-propagation and optical absorption
Equation (3.67) can be solved with a semi-implicit Crank-Nicolson method. We step
forward with a timestep ∆t, and in each step we use the discretization

dC(t)
dt ≈ C(t+ ∆t)−C(t)

∆t . (3.68)

The discretized version of Eq. (3.67) is then

iS
C(t+ ∆t)−C(t)

∆t = H(t)1
2 (C(t) + C(t+ ∆t)) (3.69)

or rewritten [
S + i

∆t
2 H(t)

]
C(t+ ∆t) =

[
S− i∆t2 H(t)

]
C(t), (3.70)

which can be solved for C(t + ∆t) with standard linear algebra routines. The
drawback with the form (3.70) is that we had to use H(t). We would be better off
using H at an intermediate timestep. That is possible when Eq. (3.70) is solved,
because we may then calculate H(t+ ∆t) and do the approximation

H(t+ ∆t/2) = H(t) + H(t+ ∆t)
2 . (3.71)
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We can then solve the system[
S + i

∆t
2 H(t+ ∆t/2)

]
C(t+ ∆t) =

[
S− i∆t2 H(t+ ∆t/2)

]
C(t) (3.72)

yielding a presumably more accurate C(t+ ∆t) [21].
With this method, the optical absorption can be found by applying a delta

pulse of electromagnetic field as an external potential at t = 0, and propagate in
time, recording the time evolution of the dipole moment

p(t) =
∫
rn(r, t) d3r. (3.73)

As seen in Chapter 2, the Fourier transform of the dipole moment is related to the
electric field via

p̂(ω) ∝ α(ω)Ê (3.74)

and since the Fourier transform Ê of a delta pulse is just a constant, we have
p̂x(ω) ∝ α(ω), where px is the dipole moment in the direction of the kick. The cross
section of absorption can then be evaluated as

Cabs ∝ ω Im [α(ω)] = ω Im [p̂x(ω)] (3.75)

in accordance with Eq. (2.14).
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4
Thermodynamics of Pd-Au alloys

While the study of homogeneous metals is challenging, the situation is even more
complex in an alloy. In addition to the zoo of questions that surrounds any material,
a study of alloys should take into account the different ways the elements in the
material may be ordered.

This chapter presents the results from atomistic modeling of Pd-Au alloys and
is essentially split into three parts. In the first part, the thermodynamic behavior
of bulk Pd-Au is studied. In nanoparticles, a large proportion of the atoms are
located on surface sites and surface properties of the material are therefore highly
important. Accordingly, the second part deals with flat surfaces. In the third part,
nanoparticles with different sizes and shapes are introduced, with the results from
the bulk and surface part as guidance.

4.1 Computational details

All calculations were performed in the Molecular Dynamics (MD) code LAMMPS
[22] using the Pd-Au EAM potential published by Marchal et al. [23]. The simu-
lations were performed as a hybrid of MD and Monte Carlo (MC) simulations, as
described in Chapter 3. MD simulations were run using a Nòse-Hoover thermostat,
leading to constant temperature, and in the case of bulk samples also with a Nòse-
Hoover barostat imposing zero pressure. The thermo and barostats were used with
damping parameters of 600 and 20 600 timesteps, respectively, and the length of one
timestep was set to 2.5 fs.

With the exception of Section 4.5, the simulations were run in the semigrand
canonical ensemble. Pd-Au has no miscibility gap [24] and by specifying the chemical
potential difference ∆µ, we may therefore expect to end up at one and only one
concentration. The simulations were performed for values of ∆µ ranging from −1.5
to 0.5 eV/atom. ∆µ was swept in sequence, so that the last configuration for one
value of ∆µ was used as input to the simulations at the next value of ∆µ. With this
method equilibration is speeded up significantly, and only the first 1000 MD steps
had to be discarded for each value of ∆µ. In total, the simulations ran at least 104

MD steps for each value of ∆µ. Every 100th MD step, 0.4N trial MC swaps were
carried out, where N is the number of atoms in the simulation.
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4.2 Bulk properties
Bulk simulations were performed with a cell comprising 2048 atoms and periodic
boundary conditions. Table 4.1 summarizes two properties related to bulk Pd and
Au, lattice parameter and cohesive energy. Note that the lattice parameter is slightly
overestimated. The cohesive energy in Pd agrees well with experiment, while the
Au cohesive energy is overestimated. These deviations are consequences of the PBE
functional used for the DFT calculations to which the potential was fit, as pointed
out in Ref. 23.

Table 4.1: Bulk properties at 0K as obtained with the EAM potential [23], with compar-
ison to experimental values taken from Ref. 25.

Pd Au
Quantity EAM Expt. EAM Expt.
Lattice parameter (Å) 3.97 3.89 4.19 4.08
Cohesive energy (eV) −3.70 −3.89 −2.99 −3.81

It is now interesting to see how the potential energy varies as a function of
concentration. Specifically, we are interested in the mixing energy

Umix = U(c)− cU(1)− (1− c)U(0), (4.1)

which is a measure of the potential energy gained by alloying the two elements. Fig-
ure 4.1(a) shows Umix per atom for different temperatures as obtained with MD/MC.
Umix is negative for all values of c, which indicates that the system is miscible in all
proportions. Figure 4.1(a) also contains energies reported in Ref. 23, obtained with
DFT calculations using the PBE functional. These correspond to the mixing energy
at 0K. PBE apparently predicts a smaller mixing energy than the EAM potential,
which may have some impact on the segregation.

The configuration of atoms in an alloy at finite temperature is determined by
the free energy, defined by

F = U − TS. (4.2)

Equation (4.2) can be viewed as a representation of the competition between energy
and entropy. Mixing two species of atoms increases the entropy of the system and
may thus lead to lower free energy even if the mixing energy is positive. A highly
ordered structure, on the other hand, may be favorable if it leads to substantially
lower potential energy.

The free energy is not directly observable in a MD/MC simulations. The chem-
ical potential difference ∆µ and the concentration c are readily available though. We
may thus use the relationship

∆µ = − 1
Ntot

∂F

∂c
(4.3)

as derived in Chapter 3, and obtain the free energy by integration (here c = NPd/Ntot
and ∆µ = µAu − µPd). Thus we integrate ∆µ to obtain the Helmholtz free energy
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per particle as
∆F (c) = −

∫ c

0
∆µ dc′. (4.4)

We may do the same construction as in Eq. (4.1) to study the mixing free energy,

Fmix = F (c)− cF (1)− (1− c)F (0). (4.5)

The result is shown in Fig. 4.1(c). The difference between the mixing energy and
the mixing free energy is essentially that entropy is added to the latter, so that the
energy wells are deeper and smoother.
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Figure 4.1: Thermodynamics of bulk Pd-Au obtained with MD/MC simulations. (a) Mix-
ing potential energy Umix. The black points represent DFT results obtained with the PBE
functional presented in Ref. 23. (b) Chemical potential difference ∆µ, (c) mixing free
energy ∆Fmix, and (d) entropy of mixing Smix. The dashed black line shows entropy of
ideal mixing, i.e. Eq. (4.8).

The entropy can be calculated by rearranging Eq. (4.2):

S = U − F
T

(4.6)

and the entropy of mixing may be defined in the same manner,

Smix = Umix − Fmix

T
. (4.7)

The entropy thus calculated is shown in Fig. 4.1(d). It is important to note that
the entropy captured in an MD/MC simulation is not only that due to the different
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configurations of Pd and Au but also due to vibrations in the lattice. By defining the
mixing entropy in Eq. (4.7), much of the vibrational entropy is canceled, given the
assumption that the vibrational entropy of the mixed system is close to a weighted
average of the vibrational entropies of the pure systems. Thus, Smix should primarily
contain the configurational entropy.

In Fig. 4.1(d), the calculated entropy of mixing is also compared to the (con-
figurational) entropy of ideal mixing,

Sideal mix = −kB (c ln c+ (1− c) ln(1− c)) , (4.8)

shown with the dashed black line. All calculated curves are below the entropy of
ideal mixing, which is expected; the dashed black line is to be understood as the
maximum possible entropy. As the temperature is raised, the entropies approach
the entropy of ideal mixing. This is also expected since entropy should dominate
over potential energy at high temperatures. Entropies well below the entropy of
ideal mixing can be explained with potential energy; ordering the atoms lowers the
potential energy enough to lower the free energy in spite of the entropic penalty
−TS. The low-entropy regions therefore correspond to concentrations where the
system finds an ordered structure.

4.2.1 Searching for ordered configurations
One of the goals of this thesis is to find out to what extent ordering of the atoms
in an alloyed nanoparticle affects the plasmonic properties. To this end, we need to
compare ordered nanoparticles to nanoparticles with randomly distributed atoms.
In this context, structures with low entropy are particularly interesting. Note that
the low entropy regions in Fig. 4.1(d) correspond to regions in ∆µ with a high slope.
A simple way of searching for ordered structures is thus to search for vertical regions
in ∆µ vs c plots. This is attractive since those plots are straightforwardly obtained
from a Monte Carlo simulation in the semigrand canonical ensemble.

The physical significance of ∆µ can be understood in terms of the concept of
generalized forces and displacements. Specifically the chemical potential difference
∆µ can be regarded as a generalized force driving the concentration, just like a
mechanical force would induce a spatial displacement of an object. Physical intuition
can be obtained by comparing to a spring with a stiffness varying with displacement.

“Usual” quantities “Generalized” quantities
Energy Pot. energy U Free energy F
Force F = −dU

dx ∆µ = − 1
N

dF
dc

Displacement x c

Stiffness dF
dx

d∆µ
dc

An increase in ∆µ results in an increase in concentration, just as an increase
in force increases the extension of the spring. Nevertheless, when pulling the spring,
we are likely to spend more time in the regions with a stiff spring constant. In those
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regions, a large interval in the applied force results in roughly the same displacement.
In analogy, some intervals of chemical potential difference will result in roughly the
same concentration. Those regions are particularly interesting, since they can be
viewed as stable concentrations, where the system is in a preferred configuration.
Those regions are to be found where d∆µ/dc is high. If choosing a ∆µ at random,
it is thus slightly more probable to end up with a concentration in those regions.

How does the chemical potential difference relate to conditions in the labora-
tory? Imagine a solution with free Au and Pd atoms. The chemical potential of
the respective species would then generally increase when its concentration in the
solution is increased. If a nanoparticle is being grown from solution, intuition tells
us that the nanoparticle will primarily contain atoms that are more common in the
solution. In a simple picture we may hence say that a difference in concentration
in the reservoir leads to a difference in chemical potential, which in turn leads to a
certain concentration in the nanoparticle.

4.2.2 Acceptance probability and temperature
The low potential energy in ordered configurations may give rise to computational
issues. Recall that the probability of accepting a trial swap is proportional to
exp [−β(∆E)]. If the simulation has obtained a low-energy ordered configuration,
most trial swap energies ∆E will be quite high, giving a low probability of accepting
a trial swap. Low acceptance probability does, however, mean inefficient sampling,
and the results are thus less reliable. A Monte Carlo simulation must therefore not
be run at a too low temperature. Figure 4.2 shows the acceptance probability in
the MD/MC runs presented in Fig. 4.1. Note the similarities in overall shape of the
curves for acceptance probability and entropy.
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Figure 4.2: Acceptance probabilty in MD/MC simulations of bulk Pd-Au at different
temperatures.

4.3 Surface properties
By creating a slab of material, with surfaces on either side, and periodic boundary
conditions in the lateral directions, surface properties of Pd-Au may be investigated.
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Crystalline materials are anisotropic, at least on the atomic scale, and slicing up the
material therefore leads to different kinds of surfaces depending on the orientation of
the cut. Figure 4.3 shows three typical surfaces of a face-centered cubic (fcc) crystal,
{100}, {111} and {110}, which are the ones studied in this thesis. This section aims
at comparing these surfaces and describing what happens in a Pd-Au alloy when
these surfaces are present. The surface systems were comprised of 25 atomic layers,
with a total of 2450, 3000 and 1750 atoms for {100}, {111} and {110}, respectively.

Figure 4.3: Structure of the fcc surfaces investigated in this thesis, left {100}, middle
{111} and right {110}. Yellow atoms represent the surface layer, blue ones subsurface
layers, and the gray atoms beneath the {111} surface represent the third layer. For the
{100} and {110} surfaces, the atoms of the third layer are situated exactly underneath the
surface atoms.

4.3.1 Surface energies
The potential energies of the slab systems were compared to that of the bulk system,
to obtain the surface energy via the formula

Esurface = Nslab
Eslab/Nslab − Ebulk/Nbulk

A
, (4.9)

where A is the area of the slab exposed to vacuum. Table 4.2 shows the surface
energies for {111}, {100} and {110} surfaces in Pd and Au. The trend is clear;
the {111} is energetically favorable, followed by {100}. The trend agrees with
experiment, but the absolute values are substantially lower. This is not entirely
surprising, since the EAM potential was fitted to DFT calculations based on the
PBE exchange-correlation functional [26], which is known to underestimate surface
energies severely.

Table 4.2: Surface energies for Au and Pd of different surfaces, obtained with the EAM
potential from Ref. 23, and compared to experimental values taken from Ref. 27.

Energy (J/m2)
Pd Au

{111} 1.37 0.76
{100} 1.48 0.82
{110} 1.60 0.92
Exp 2.00 1.50
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4.3.2 Surface segregation and atomic ordering
Since Pd and Au are miscible, a bulk sample in equilibrium will exhibit a homoge-
neous distribution of the two elements. Close to a surface, however, the situation
may be different. Figure 4.4 shows the concentration profile of the slab systems with
the three different surfaces at 300K. The concentration of palladium in the surface
layer is always lower than in the layers beneath. In other words, Au segregates to the
surface. In the layer underneath the surface layer, on the other hand, there is excess
of Pd. The profiles then exhibit an oscillatory behavior for the outermost five or so
layers, before the concentration profile flattens out in the bulk at a concentration
determined by ∆µ. The oscillatory behavior penetrates somewhat deeper in the
{110} slab, but in that system the atomic layers are closer together; with a unit cell
length a the distance between the planes are approximately 0.5a, 0.58a and 0.35a
for {100}, {111} and {110}, respectively. If we thus measure in Ångström rather
than number of atomic layers, the penetration depth is similar in all three cases.

The surface segregation can be analyzed further by studying the surface con-
centration as a function of concentration in the bulk as shown in Fig. 4.5. Clearly,
the surface concentration of Pd is lower than the bulk concentration, as already
noticed in Fig. 4.4. An interesting feature of Fig. 4.5 is the kinks that are present
for low temperatures, especially at 100K, and to some extent also at 300K. For the
{100} surface, the kink appears at a surface concentration of 50%, while for {111},
there is one kink at approximately 33% and one at 67%. This behavior can be un-
derstood from visual inspection of the surface geometry. Figure 4.6 shows snapshots
from MD/MC simulations at the aforementioned concentrations. Clearly, the kinks
correspond to ordered patterns.
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Figure 4.5: Surface concentration of Pd as a function of concentration in the interior of
the slab, for {100}, {111} and {110} surfaces. The bulk concentrations correspond to the
innermost 13 atomic layers. Kinks in the low temperature curves are marked with arrows.

In conclusion, the surface calculations suggest that (i) Au will segregate to
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4. Thermodynamics of Pd-Au alloys

Figure 4.6: Ordered surface configurations correpsonding to the kinks in Fig. 4.5, 50%
Pd at {100} (left), 33% at {111} (middle) and 67% at {111} (left).

the surface and (ii) there will be ordered patterns on the surface, at least for low
temperatures.

4.4 Nanoparticle shapes
Molecular Dynamics simulations usually do not sample all possible shapes a nanopar-
ticle may obtain. Rather, given a reasonable temperature, the shape specified by
the initial configuration of the atoms will typically remain similar during the whole
simulation. Finding the global energy minimum is therefore a difficult task requiring
more sophisticated methods and this section has no intention of being exhaustive
in this regard. Generally, however, nanoparticles are non-equilibrium systems; if
kinetically permitted they do coarsen. The shape of a nanoparticle is thus not only
determined by equilibrium thermodynamics but also by the kinetics of the process
by which they are manufactured. Local minima found in an MD/MC simulation
therefore deserve closer analysis.

In this section, some highly symmetric shapes are introduced by simple phys-
ical reasoning and analytical expressions. Specifically, the discussion will focus on
truncated octahedra, constructed from a perfect fcc lattice, and icosahedra, where
the lattice is slightly distorted.

4.4.1 The truncated octahedron
Pd and Au both adopt an fcc lattice in the ground state. As shown in Section 4.3.1,
{111} surfaces are energetically favorable for fcc. The octahedron shown in Fig.
4.7(a) is based on a bulk fcc crystal and terminated by {111} surfaces only. Because
of the pointy corners, the octahedron still has a fairly high energy. By cutting away
these prominent atoms (Fig. 4.7(b)), the energy per atoms is lowered. By cutting
more and more layers (Fig. 4.7(c)-(d)), the structure gets more rounded, but at
the same time {100} surfaces are created, which are higher in energy than {111}.
By cutting enough layers, the structure becomes a cube with {100} surfaces only.
Ususallty there will be an energy minimum somewhere between the octahedron and
the cube, where there is balance between rounded shape and a large proportion of
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(a) (b) (c)

(d) (e) (f)

Figure 4.7: Examples of geometrical structures studied in the thesis. (a) is an octahedron
and (b)-(e) are constructed by truncating one, two, three and four planes respectively from
each corner of the octahedron. (c) is a regular octahedron, (d) a cuboctahedron and (e) a
cube. (f) is an icosahedron which cannot be derived from an octahedron without distorting
the crystal structure.

{111} surfaces.
The optimal shape can be derived systematically with the so-called Wulff con-

struction. The surface energy can be expressed as

Esurf =
∑
j

γjAj, (4.10)

where the sum runs over all surfaces of the particle, γj is the corresponding surface
energy and Aj the area of the surface. Keeping the volume of the particle constant,
the Gibbs-Wulff theorem states that in the lowest energy shape, the distance from
the center of the particle to a particular surface is proportional to the surface energy
of that surface. For Au and Pd, in which the {100} surface is higher in energy than
the {111} surface, this means that the distance to the {100} surface should be
longer, which is the case for the moderately truncated particles in Fig. 4.8(b)-(c).
Fig 4.8 shows this optimal shape (ignoring {110} surfaces, whose inclusion would
otherwise have truncated the edges slightly). The shapes are very similar for Au and
Pd, and we note that it is very close to being a “regular truncated octahedron” as
shown to the right in Fig. 4.8, i.e. a truncated octahedron where the quadratic and
hexagonical side facets are equilateral. Regular truncated octahedra will therefore
be used as a reference shape, supposedly close to being ideal. They cannot be
constructed with any number of atoms, but rather a set of magic numbers given by

NRTO = 16n3 + 15n2 + 6n+ 1 for n = 1, 2, 3... (4.11)

as may be derived from simple geometrical considerations. The four smallest regular
truncated octahedra thus contain 38, 201, 586 and 1289 atoms.
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Figure 4.8: Shape of optimal truncated octahedron (left) and a 201 atom regular truncated
octahedron (right).

Finally, it should be mentioned that the Wulff construction is not intended for
really small particles, where edge and corner sites as well as strain make sizeable con-
tributions. The above considerations should therefore only be taken as qualitative.
A more elaborate approach will be introduced in Section 4.5.

4.4.2 The icosahedron
A natural question is whether it is possible to construct close-to-spherical particle
with {111} surfaces only. It turns out that the icosahedron, shown in Fig. 4.7(f) is
just that. The icosahedron can be viewed as 20 tetrahedra stacked together with a
common vertex. The price paid is some distortion of the fcc structure, leading to
strain as well as twin boundaries between the constituent tetrahedra. Icosahedra
can be constructed with magic numbers of atoms given by

Nico = 10
3 n

3 + 5n2 + 11
3 n+ 1 for n = 1, 2, 3... (4.12)

corresponding to 13, 55, 147 and 561 atoms for the smallest four icosahedra.
For small particles of some metals, it turns out that the icosahedron is lower

in energy than any truncated octahedron. As a matter of fact, if one starts an
MD simulation at a sufficiently high temperature with a small cuboctahedron of
Pd or Au (such as the one in Fig. 4.7(d)), the system spontaneously transforms
into an icosahedral shape, lowering its energy. In general, the transformation does
not happen by simple relaxation of the structure. Instead a finite temperature
needs to be added, reflecting the existence of an energy barrier between the two
structures. As a first attempt to compute this barrier, the positions for all atoms in
the cuboctahedral and the icosahedral shape was interpolated. To this end, a linear
scaling parameter λ is defined, taking the system from the cuboctahedron to the
icosahedron through

Rintermediate = Rcuboctahedron + λ (Ricosahedron −Rcuboctahedron) , (4.13)
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where R represents the spatial coordinates for all atoms in the particle. We may
then probe the energy landscape by measuring the energy for 0 ≤ λ ≤ 1. The result
is shown in Fig. 4.9. The energies are measured relative to E(λ = 0) and normalized
by the number of atoms in the particle. Note that the height of the barrier increases
with increasing number of atoms, while the energy differences between the two
structures decrease. A cuboctahedron should thus be less and less prone to transform
into an icosahedron with increasing size. It must be stressed though that the linear
interpolation in Eq. (4.13) does not necessarily provide the lowest energy pathway,
and the barriers in Fig. 4.9 should thus only be viewed as qualitative.
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Figure 4.9: Energy landscape along linear interpolation between cuboctahedron and icosa-
hedron. The left and rightmost structures are relaxed cuboctahedra and icosahedra, respec-
tively.

4.4.3 Icosahedra versus regular truncated octahedra
The cuboctahedron is not the truncated octahedron of lowest energy. It is perhaps
more interesting to compare icosahedra to regular truncated octahedra, i.e. trun-
cated octahedra with square and regularly hexagonal faces. Such a comparison is
not entirely straightforward since particles in these shapes generally contain differ-
ent number of atoms – we may construct icosahedra with N = 55, 147, 309, 561...
atoms, but regular truncated octahedra with N = 38, 201, 586... atoms. To compare
these structures, we thus need to make a fit to interpolate between the particle sizes.
To this end, we model the energy as

E = NEcoh +
∑
j

γjAj, (4.14)

where the first term represents the bulk cohesive energy, and the second term involves
the surface energies for different orientations. We note that for a given geometry,
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all areas Aj should scale with the diameter squared or equivalently N2/3. Thus we
may rewrite Eq. (4.14) slightly,

E

N
= Ecoh + 1

N1/3

∑
j

γjkj (4.15)

where the sum ∑
j γjkj is dependent on geometry, but not size. If we plot the energy

per atom as a function of N−1/3 we should hence obtain an at least approximately
linear dependence. Figure 4.10 shows that this is indeed the case, for Pd and Au
as regular truncated octahedra and icosahedra. The slopes, corresponding to the
average surface energies, are slightly larger for the octahedra, which is a consequence
of their {100} surfaces. Note, however, that the icosahedra extrapolated to bulk end
up at an energy slightly higher than the bulk cohesive energy. This excess energy
is related to the energy penalty of the strain and twin boundaries in icosahedra;
for truncated octahedra where the lattice is fcc, the lines extrapolate to the bulk
cohesive energy.
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fits to the points. The inset shows the behavior in the bulk limit (N →∞).

The different behaviors of icosahedra and truncated octahedra result in a
crossover between their energies. Figure 4.11 shows the difference between the
icosahedra and truncated octahedra lines. The difference changes sign at roughly
Nt = 435 and 180 for Pd and Au respectively, indicating that icosahedra are lower
in energy than regular truncated octahedra for particle sizes below Nt.
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Figure 4.11: Difference between energy per atom in regular truncated octahedra and icosa-
hedra. Positive and negative values imply that icosahedra and regular truncated octahedra
are energetically favourable, respectively.

4.5 An algorithm for the determination of opti-
mal particle shapes

As already mentioned, an icosahedron or a regular truncated octahedron cannot be
created with any number of atoms. By relaxing the symmetry requirement slightly,
one could nevertheless imagine an incredible number of different ways to construct
particles similar to icosahedra or regular truncated octahedra. In very much the
same way as all configurations of Pd and Au atoms in an alloy span an enormous
phase space, all possible nanoparticle shapes span a huge “structural phase space”
which we could never sample by brute force. Here, this challenge is attacked with
Monte Carlo integration in the variance-constrained semigrand canonical ensemble.

4.5.1 Computational procedure
The method can be described as follows; instead of modeling an alloy of two different
species of metal atoms, we change one of the species into “ghost atoms” that do not
interact with anything. Clearly, such a system is immiscible – the metal atoms would
rather group together than being spread out in empty space. Thus, as described in
Chapter 3, the semigrand canonical ensemble cannot be used. Instead, we may force
the system to intermediate concentrations, with the use of the variance-constrained
semigrand canonical ensemble. In this way, we can sample many different shapes in
an efficient search for optimal nanoparticles with any number of atoms.

A growth simulation is carried out as follows:
1. A simulation box with non-periodic boundary conditions is defined and filled

with an fcc lattice.
2. In the center of the simulation cell, a small core of Pd or Au atoms is cre-

ated. Then all lattice sites having at least one but not more than 30 Pd/Au
atoms within a distance of 5Å are made “active”, while all the other sites are
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“inactive”. In practice, this means that the atoms close to the surface of the
particle are active, as well as the ghost atoms closest to the particle.

3. The VC-SGC parameters φ̄ and κ̄ are defined and a Monte Carlo run is done:
• Particle swaps, corresponding to particle insertion and deletion, are per-

formed among the active sites, and a trial swap from “ghost” to “metal”
or vice versa is made with a probability given by

min
{

1, exp
[
−β

(
∆E + κ̄Ntot∆c

(
φ̄+ ∆c+ 2c

))]}
,

as described in Chapter 3.
• After N trial swaps an MD step is carried out thermostated to a temper-

ature TMD. The active region is updated and the procedure is repeated.
In these runs, φ̄ was initially set to −2.0 and then subsequently increased in steps
of 10−4 until the particle had grown to the edge of the simulation box. 2000 MC
cycles were performed for each value of φ̄. The constraining parameter κ = βκ̄ was
set to 104 (κ as opposed to κ̄ has the advantage of being temperature independent).
It should be made clear that this algorithm contains two different temperatures,
a Monte Carlo temperature TMC that enters in β = 1/kBTMC, and a Molecular
Dynamics temperature TMD that allows for atomic relaxation. TMC has to be large,
on the order of 1000K, to achieve a decent acceptance probability, while TMD has
to be very small, on the order of nanokelvins, to avoid lattice distortion.

Figure 4.12 shows snapshots from a run for Au. Note that the structures
resemble the structures in Fig. 4.7, even though the present ones are less symmetric
and do not correspond to “magic numbers”.

Au219 Au467 Au845

273 ghost atoms 438 ghost atoms 624 ghost atoms

Figure 4.12: Snapshots from a particle growth run in the VC-SGC ensemble, using Au.
The transparent blue atoms are the active “ghost atoms”.

4.5.2 Results
The algorithm has been applied to pure Pd and Au, using the same EAM potential
that was used for the alloy simulations. Figure 4.13 shows energy per atom relative
to the fits of the regular truncated octahedra data described above, for Pd and Au
respectively, as obtained with the particle growth method. The plots are constructed
out of four runs with different random seeds, and for each number of atoms, the run
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with the lowest energy was chosen for Fig. 4.13. Note that most regular truncated
octahedra are found in at least one of the four runs. Further, these regular truncated
octahedra are indeed among the structures with lowest energy. What is perhaps most
striking is that already for fairly small particles, the energy landscape is quite flat;
the energy penalty of creating a particle that is not fully symmetric is low, less than
5meV per atom compared to the limit representing regular truncated octahedra.
From an experimental perspective, we can thus not expect the size distribution of
an ensemble of nanoparticles to be too localized around certain magic numbers,
but rather fairly polydisperse (even though such a property is highly dependent on
kinetics).
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Figure 4.13: Energy per atom for structures as obtained with the particle growth method
in the VC-SGC ensemble in a perfect fcc lattice at TMC = 1000 K and TMD = 10 nK.
The energies are the lowest values obtained out of four different runs. Energy is measured
relative to a fit of the red squares, representing the energies of regular truncated octahedra.

The small temperature TMD = 10 nK is not enough to overcome the energy bar-
rier separating truncated octahedra and icosahedra. To investigate the icosahedral
energy landscape, particle growth simulations were also carried out in which the
underlying lattice represented a large icosahedron, rather than a perfect fcc lattice.
The results are shown in Fig. 4.14. For Pd, the icosahedral shape is preserved, and
all magic number icosahedra are visited. For Au, however, the particle gets distorted
and ends up sampling low-symmetry clusters at much higher energies. By turning off
the temperature completely, the icosahedral shape is retained, and the system finds
the low-energetic shapes. It does, however, end up slightly above the red squares in
Fig. 4.14d. The reason is that the clusters are not allowed to relax since the MD
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temperature is zero. The higher energy is thus a consequence of the lattice of these
metallic nanoparticles being more and more compressed with decreasing size due to
surface stress, as explained in e.g., Ref. 28.
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Figure 4.14: Energy per atom for icosahedral structures as obtained with the particle
growth method in the VC-SGC ensemble. Energy is measured relative to a fit of the red
squares, representing energy for complete icosahedra.

Figure 4.15: Snapshot from particle growth run with Pd in an icosahedral lattice. The
first atoms in the next shell stick out in the lower right corner.

It is interesting to note that structures in between magic icosahedra are associ-
ated with a much higher energy penalty than in Fig. 4.13, where a perfect fcc lattice
was used. The barriers should be understood as the excess energies of having an
incomplete shell surrounding the particle. This is depicted in Fig. 4.15, where an
incomplete shell sticks out from the particle in the lower right corner. Creating an
incomplete shell is inevitably associated with highly energetic steps on the surface.
The situation can be compared to particles obtained on a perfect fcc lattice, for
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instance those in Fig. 4.12, where the particle may retain a rounded, stepless shape,
by getting slightly elongated. The size distribution of an ensemble of icosahedral
particles can thus be expected to be more localized at the magic numbers.

4.6 Pd-Au nanoparticles
The computational method used for bulk and surface systems is now directed to-
wards some low-energetic particle shapes identified in Section 4.4. The focus will
be on regular truncated octahedra and icosahedra comprising less than about 1300
atoms, corresponding to diameters of less than roughly 3 nm.

Figure 4.16 shows the chemical potential difference as a function of concentra-
tion for icosahedra and regular truncated octahedra for sizes up to 1289 atoms. For
the smallest clusters, we can easily identify regions where the slope is very large,
indicating ordered configurations. For larger particles, however, the picture is less
clear – the curves become more and more featureless.
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Figure 4.16: Chemical potential difference versus concentration at 300K for (a) regular
truncated octahedra and (b) icosahedra.

From studying the trajectories of the small particles, it becomes clear that
the system adopts certain ordered configurations in the vertical intervals. These
configurations are shown in Fig. 4.17 for the 38 atom regular truncated octahedron
and the 55 atom icosahedron. Note that they are consistent with the predictions
from the surface calculations with excess Au on the surface, and if the surface is not
completely Au, there are structures reminiscent of the honeycomb patterns in Fig.
4.5.

For larger particles, the trajectories do not immediately reveal any clear pre-
ferred configurations. Nevertheless, some sites are of course more likely to be oc-
cupied by Au and some by Pd. This situation can be quantified by measuring the
number of snapshots a certain site is occupied by an Au atom compared to the total
number of timesteps (at a certain ∆µ). The result is visualized in Fig. 4.18 for reg-
ular truncated octahedra with 201, 586 and 1289 atoms. Note that there is always
more Au on the surface than elsewhere in the particle, and that there is always more

42



4. Thermodynamics of Pd-Au alloys

−1.2

−0.8

−0.4

0.0

0 20 40 60 80 100

Au Pd
∆

µ
 (

e
V

/a
to

m
)

Pd concentration (%)

(a)

−1.2

−0.8

−0.4

0.0

0 20 40 60 80 100

Au Pd

Pd concentration (%)

(b)

Figure 4.17: Chemical potential difference versus concentration at 300K for (a) 38 atom
regular truncated octahedron and (b) 55 atom icosahedron. The green rectangles indicate
the vertical regions, corresponding to the ordered configurations shown besides.

Pd underneath the surface. Further, corner and edge sites are particularly likely to
be Au, an observation that might be of importance in e.g., catalysis.

4.6.1 Annealing
One of the aims of this thesis is to examine the impact of order on the plasmonic
properties of nanoalloys. To this end, particles that are both ordered and thermo-
dynamically stable are particularly interesting. The indefiniteness of some of the
atoms in large particles, manifested by gray atoms in Fig. 4.18, prevents us from
finding such particles by just looking at the trajectories. As was shown in Section
4.2, however, lower temperatures may reveal ordered configurations. Would it be a
good idea to run the Monte Carlo simulations at lower temperature? The problem
with doing so is that the acceptance probability might be so low that the sampling
becomes inefficient and the relevant configurations are missed.

To overcome this problem, simulations were run in what may be described as
an annealing procedure. Simulations were started at 500 K, where the acceptance
probability is quite high, and then the temperature was lowered in steps of 5K, to
20K. 30 000 MD timesteps were run at each temperature. The chemical potential
difference ∆µ was kept fixed throughout the annealing. In principle, this should
freeze the particle into a configuration obtained without bias towards a chosen initial
configuration.

This method has previously been used to map the size-dependent phase dia-
grams of Pt-Rh nanoparticles [29]. The Pt-Rh simulations suggested that the system
never ends up at certain concentrations at low temperatures, regardless of ∆µ, but
instead forms certain ordered phases. Figure 4.19 shows an attempt to a similar
analysis with a 201 atoms regular truncated octahedron of Pd-Au. Some concen-
trations attract trajectories from a fairly wide range of ∆µ values, but perhaps
not strong enough to talk about “phases” in the strict sense. Still, the “attract-
ing concentrations” turn out to very often be highly symmetric, usually retaining
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Figure 4.18: Average concentration at each site in regular truncated octahedra of different
sizes, for ∆µ ranging from −1.2 to 0.0 eV/atom. White means 100% Au, and black 100%
Pd. Each particle is showed from above (lower) and sliced thorugh its center (upper).

the octahedral symmetry. Figure 4.20 shows four structures that were found to be
particularly stable.

4.6.2 Verification of the potential
The results presented in this chapter are entirely dependent on the accuracy of
the EAM potential. This issue may be addressed by comparing the mixing energy
in Pd-Au nanoparticles as obtained with the EAM potential and with DFT, in
this case the PBE exchange-correlation functional and an atomic orbital basis set
(for details, see the next chapter). The results are presented in Fig. 4.21. The
potential seems to overestimate the mixing energy slightly, as was seen also in the
bulk case. Note also that the potential overestimates the mixing energy more for the
ordered configurations than random ones, indicating that the potential may make
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Figure 4.19: Tracjectories from annealing in the semigrand canonical ensemble. The
lines correspond to annealing at different fixed ∆µ. The orange triangles indicate the
positions of ordered particles shown in Fig. 4.20.

the nanoparticles too prone to attain ordered structures compared to PBE-DFT.

4.7 Summary
The most important results with implications for the calculation or interpretation
of optical properties of Pd-Au nanoparticles can be summarized as follows:

• Au segregates to the surface, in particular to corner and edge sites;
• The subsurface layer has excess of Pd, and the distribution of Pd and Au

becomes homogeneous further into the core;
• The icosahedral shape is lower in energy than truncated octahedra for small

particles (less than a few hundred atoms), while the situation is reversed for
large particles;

• Highly symmetric particles come in certain magic numbers, but the energy
landscape between the particles is quite flat if the symmetry requirement is
relaxed;

• For small particles (. 100 atoms), ordered configurations can easily be found
all the way up to room temperature. For larger particles (& 100 atoms) lower
temperatures are needed.

If LSPR is indeed a surface phenomenon, the composition of the surface should be of
outstanding importance. Thus, the by far most important result from this chapter
is the segregation of Au to the surface.
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Figure 4.20: Ordered structures found by annealing 201 atom regular truncated octahedra,
sliced through center (upper row) and seen from above (lower). The labels indicate chemical
composition and concentration of Pd.
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Figure 4.21: Potential energy of mixing for (a) 55 atom icosahedron and (b) 201 atom
regular truncated octahedron as obtained with the EAM potential and with DFT using the
PBE exhange-correlation functional and an atomic orbital basis set.
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5
Optical response

of Pd-Au nanoparticles

The optical response of any material is closely related to the electronic structure.
Classical atomistic calculations, as those presented in the previous chapter, are thus
insufficient for elucidating the plasmonic properties pf Pd-Au nanoparticles. This
chapter presents the results of first-principles calculations on some of the thermody-
namically stable Pd-Au nanoparticles described in the previous chapter as well as
Pd and Au in bulk.

The calculations can be divided into two major parts, (time-independent) den-
sity functional theory (DFT) and time-dependent density functional theory (TDDFT).
The former yields the ground state of the system, providing important information
such as the density of states. The ground state wavefunction is also used to initialize
TDDFT calculations, where the system is subject to a sudden electromagnetic kick,
after which the electronic structure is allowed to propagate in time, revealing the
optical response of the particle. All calculations presented here were performed in
the GPAW code [30, 31].

5.1 Electronic structure in bulk
Even though nanoparticles have electronic properties that differ significantly from
the bulk, there is of course some correlation between the two. To get some prelim-
inary insights, bulk calculations were carried out for pure Pd and Au. The setup
consisted of one atom and periodic boundary conditions. The Brillouin zone of the
primitive cell was sampled with 20 k-points in each direction and a plane wave basis
set with a cutoff energy of 400 eV was used. Two exchange-correlation functionals
based on the generalized gradient approximation (GGA) were employed, PBE [26]
and GLLBSC [32, 33]. The lattice parameter was chosen by running multiple calcu-
lations with the PBE functional and finding the minimum in energy, which turned
out to be 3.940Å for Pd and 4.173Å for Au.

The resulting band structure and density of states are shown in Fig. 5.1. As was
briefly mentioned in Chapter 2, the nature of the plasmon peak is highly dependent
on its energy compared to the distance between the Fermi level and the d-band.
From Fig. 5.1 we note that Pd and Au are fundamentally different with respect to
the position of the d-band. While the upper edge of the d-band of Pd lies at the
Fermi level, so that d electrons can be excited to s and p states already for very low
energies, there is a distance of about 2 eV from the d-band edge to the Fermi level
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Figure 5.1: Band structure of Pd and Au in bulk, and corresponding density of states.
The band structures were obtained with the GLLBSC functional, but the density of states
is shown for both GLLBSC and PBE. The energies are measured relative to the Fermi
levels (marked with the dashed gray line).

for Au. This is consistent with the observations made in connection to the dielectric
function in Chapter 2. This paves the way for a sharper plasmon peak in Au as
compared to Pd, provided that it is lower in energy than about 2-3 eV.

The PBE and GLLBSC functionals give very similar results. Notice, however,
that the d-band for Au is shifted between the two functionals. In particular, the
distance between the d-band edge and the Fermi level is about 0.3 eV larger with
the GLLBSC functional. In this respect, the GLLBSC functional agrees better with
experiment, at least for Au [5].

5.1.1 Lattice parameter
It is a well-known fact that PBE tends to overestimate the lattice parameter. Indeed,
the lattice parameters obtained with PBE (3.940Å for Pd and 4.173Å for Au) are
larger than experimental values (3.89 and 4.08Å [25]). Since the structures were
relaxed with PBE, the particles can be expected to be slightly larger than what
they would have been in real life. This does of course have some impact on the
calculated absorption spectra. Figure 5.2 shows the density of states calculated
with different lattice parameters. Making the lattice parameter smaller broadens
the d-band slightly, but the shape remains the same, and more importantly the
upper edge stays in the same place. It thus seems unlikely that the overestimation
of the lattice parameter has a large impact on the absorption spectra.

5.2 Computational approach to nanoparticles
When going from bulk to nanoparticles, the DFT approach has to be changed
slightly. The plane wave basis set used for bulk requires a periodic system and
is thus not optimal for a finite system. For nanoparticles, an atomic orbital basis set
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is more suitable. Linear combination of atomic orbitals (LCAO) in time-propagation
TDDFT mode has recently been implemented in GPAW [21]. The computational
efficiency is very sensitive to the choice of basis set. For TDDFT calculations, this is
perhaps even more crucial since electrons may get excited to otherwise unoccupied
orbitals. The basis sets are constructed as products of radial functions and spherical
harmonics [34],

ϕnlm(r) = Rnl(r)Ylm(r̂). (5.1)

In the present calculations, two radial functions Rnl(r) were included for each (nl).
The basis functions should correspond to the valence states of the atoms and, in
addition to the highest occupied states, the lowest unoccupied states need to be in-
cluded. For Pd this means that there will be two radial functions each for 4d, 5s and
5p, and for Au two each for 5d, 6s and 6p. Each level (nl) comes with 2l+1 spherical
harmonics, meaning that there are 2 ·1 + 2 ·3 + 2 ·5 = 18 basis functions ϕnlm(r) for
each atom. This can be compared to dividing the computational regime into a grid,
in which case 18 grid points “per atom” would be equivalent to a grid spacing of
roughly 1Å, which represents a very coarse grid (suitable values are typically about
0.2Å and below). LCAO can thus speed up the computations significantly, but the
results will be dependent on the quality of the basis set. Figure 5.3 compares the
density of states of pure Pd and Au as 55 atom icosahedra obtained with LCAO
and grid-based calculations with the grid spacing 0.3Å. The densities are in good
agreement, suggesting that the basis set provides a sufficiently accurate description.

The Hamiltonian matrix is still computed on a real space grid and to this end
a grid spacing 3.0Å was used. A vacuum region of 5Å between the atom cores and
the simulation cell box face was used. Making the grid spacing denser and adding
more vacuum had no significant impact on the results.

Near the Fermi level, the eigenenergies are degenerate or close to being degen-
erate, and in order to converge the self-consistency loop the occupations have to be
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Figure 5.3: Density of states close to to the Fermi level in icosahedral Pd55 and Au55,
as obtained with LCAO and grid-based calculations.

smeared. Here, Fermi-Dirac smearing with a temperature of 0.05 eV was used. The
GLLBSC functional was employed in all calculations, unless stated otherwise. The
TDDFT calculations were propagated for 2000 timesteps of 10 as each. A shorter
timestep or longer propagation had no significant impact on the absorption spectra.

5.3 The 55 atom icosahedron
DFT and TDDFT calculations were performed on six different 55 atoms icosahedra
identified in Chapter 4; pure Pd, pure Au, the football-ordered Au12Pd43 and onion-
ordered Au43Pd12 (shown in Fig. 4.17), as well as randomly ordered icosahedra with
the same concentrations as the latter two. The density of states for these particles,
as obtained with DFT, is shown in Fig. 5.4. Note that the position of the d-band
in the pure clusters is similar to that in the bulk. The clusters with intermediate
concentrations exhibit intermediate behavior, with the d-band shifting from the Au
position to the Pd position as the concentration of Pd is increased. Further, note
that the clusters with random configuration have a more smeared density of states
compared to the ordered ones. This is not entirely surprising, since a random cluster
is likely to have 55 unique atoms, while many atoms are equivalent by symmetry
in an ordered cluster. Where many atoms are equivalent, there will also be many
equivalent states, thus collectively building up major peaks in the density of states.
These peaks will be smeared when the atoms have different neighbors, as in the case
of the random cluster.

Absorption spectra obtained with TDDFT are shown in Fig. 5.5. The spectra
have many peaks, but one should not at this point ascribe these to plasmonic behav-
ior as they might as well be related to single-particle excitations. Indeed, between
2 and 3 eV where the Au plasmon peak is expected to emerge, there is very little
absorption. The non-existence of a plasmon peak in Au55 is consistent with previous
work [35]. Note that the smeared impression of the random clusters as compared to
the ordered structures, is exhibited also in the absorption spectrum. Figure 5.5 also
contains absorption spectra for Au55 and Pd55 obtained with the PBE functional.
Note that they are very different from the GLLBSC results, highlighting the fact
that the exchange-correlation functional has to be chosen carefully.

50



5. Optical response of Pd-Au nanoparticles

D
e

n
s
it
y
 o

f 
s
ta

te
s
 (

s
ta

te
s
/e

V
)

d band sp band

Pd55 Au55

Au12Pd43 (random)Au12Pd43 (ordered)

Energy (eV)

−8 −6 −4 −2 0 2 4

Au43Pd12 (random)

Energy (eV)

−8 −6 −4 −2 0 2 4

Au43Pd12 (ordered)

Figure 5.4: Density of states for 55 atom icosahedra with different concentrations, rep-
resenting ordered as well as randomized elemental distributions. Energy scale is relative
to the respective Fermi level, marked with the dotted black line.

A
b

s
o

rp
ti
o

n
 c

ro
s
s
 s

e
c
ti
o

n
 (

a
rb

. 
u

n
it
s
)

Energy (eV)

0

5

10

15

20

 0  1  2  3  4  5  6  7  8

Pd55

5

10

15

20 Au12Pd43

Ordered Random PBE

5

10

15

20 Au42Pd12

5

15

25

35
Au55

Figure 5.5: Absorption spectra for 55 atom icosahedra. The blue and red lines, corre-
sponding to ordered and randomly distributed clusters, were obtained with the GLLBSC
functional.

51



5. Optical response of Pd-Au nanoparticles

5.4 The 201 atom regular truncated octahedron

DFT as well as TDDFT calculations with 201 atom regular truncated octahedra
(RTO) were carried out using pure Pd, pure Au, and the four structures shown in
Fig. 4.20, as well as randomly ordered RTOs with the same concentrations. The
Au32Pd169 system did not converge in the ground state calculations and is therefore
excluded in what follows.

The resulting densities of states are shown in Fig. 5.6. They are similar to
the densities in 55 atoms icosahedra but less concentrated to individual peaks, thus
looking more similar to the bulk density of states.
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Figure 5.6: Density of states for 201 atoms regular truncated octahedra with different
concentrations, ordered and in random configuration. Energy scale is relative to the re-
spective Fermi level, marked with the dotted black.

Figure 5.7 shows absorption spectra obtained for the 201 atom RTOs. Unfortu-
nately, they do not reveal much structure. What were believed to be singe-particle
excitations in the 55 atom icosahedron spectrum, are now smeared out into a more
or less continuous spectrum, similar for all concentrations. It is apparent that these
absorption spectra alone are not sufficient for explaining any phenomena related to
LSPR.
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5.4.1 Induced density

It is instructive to visualize the induced electron density in the particle. To do so,
we may consider the Fourier transform of the time-dependent density n(r, t),

n̂(r, ω) =
∫ tmax

0
[n(r, t)− n(r, 0)] eiωte−ηt dt (5.2)

where n(r, t) is recorded throughout the TDDFT run from t = 0 to tmax. The
factor e−ηt is a window function serving to suppress the frequency components that
enter from the sudden cutoff at tmax. The result is visualized in Fig. 5.8 for Pd201
and Au201. Obviously, the charge is very much localized at the surface. This is
not surprising; it is a well-known result from electrostatics that free charges in a
conductor will end up at the surface to screen the electric field within the conductor.
Note, however, that there is some pronounced charge oscillations also in the interior
of the particle, especially at high frequencies. This is not expected from a strict
application of the free electron model. These oscillations are essentially oriented in
the opposite direction compared to the charge oscillations on the surface, and thus
act to screen the field originating from there.
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5.4.2 The atomic density matrix
The usage of atomic orbitals as basis set for the TDDFT calculations provides a
natural way of decomposing the absorption spectrum for further analysis. From an
atomic orbital point of view, the oscillation of the dipole moment is a result of the
electrons oscillating between different orbitals, leading to variations in the dipole
moment over time. The atomic density matrix

Da
l1l2 =

∑
i

fi
〈
p̃al1

∣∣∣ ψ̃i〉 〈ψ̃i∣∣∣ p̃al2〉 (5.3)

contains much of the information of interest. Here, a is an atom index, so that we
have one matrix Dl1l2 for each atom in the system. The indices l1 and l2 refer to the
basis states with corresponding projector function p̃, and ψ̃i are the pseudo wave
functions, with corresponding occupation fi.

The matrices Da
l1l2 may be used to ascribe the charge oscillations to different

transitions. In Chapter 2, the plasmon resonance was derived as the frequency where
the free electrons are in resonance with the electric field. In the case of Au, it is
the s electrons that should be regarded as free, since energetically they are closest
to the Fermi level. Furthermore since the 6p level is very close to 6s, these levels
hybridize. Hence, we may treat s and p electrons on an equal footing. Further, in
Chapter 2 the d electrons were seen to be more closely related to damping. It is thus
likely that any plasmonic excitation in Au will be more striking if the d electrons
are neglected. Thus, we sum Da

l1l2 into two groups based on the angular momentum
quantum numbers,

D̂a
sp ≡

∑
l1 and l2 /∈d

D̂a
l1l2 and D̂a

d ≡
∑

l1 or l2∈d
D̂a
l1l2 (5.4)
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where D̂ denotes the Fourier transformed quantity. Equation (5.4) now enables one
to assess the relative importance of the different atoms. Figure 5.9 shows the result
for Au201, with (a) and (b) corresponding to D̂a

sp and D̂a
d respectively. It is once

again striking that excitations within the sp-band happen almost exclusively on the
surface, and in particular on the surface atoms that are are on the end of the particle
with respect to the kick direction (the red curves). For d electrons, the excitations
are more equally distributed between surface atoms and bulk atoms. It is thus likely
that the charge oscillations inside the particle, observed in Fig. 5.8, can be ascribed
to d electrons.

It is interesting to note in Fig. 5.10(a) that there is a peak between 2 and 4 eV,
which is where the Au plasmon peak is expected to be (as described in Chapter
2). Whether this peak can be characterized as a plasmon is however still an open
question.
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Figure 5.9: Imaginary part of Fourier transform of atomic transition density matrix
elements for Au201 (RTO). The transition densities are summed over (a) transitions within
the sp band, and (b) transitions involving the d band. Each line corresponds to one atom,
and the color coding is given by the inset depiction of the particle. The system was kicked
in the direction perpendicular to the red faces.

The localization to the surface holds regardless of Pd concentration and order-
ing. In Fig. 5.10 the quantities D̂a

sp have been summed according to the position
of the atom a. This analysis demonstrates that the contribution from atoms in the
interior of the particle is very small. Nevertheless, the bulk atoms still have a large
impact on what happens in the sp-band. For the ordered Au165Pd36 and Au140Pd61
structures, all Pd atoms are in the interior of the particle while the surface consists
exclusively of Au atoms. Still, the red curves in Fig. 5.10 differ substantially be-
tween these structures and Au201. In particular, note that the plasmon candidate
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peaks between 2 and 4 eV die off rapidly. The surface atoms also exhibit a similar
behavior for ordered and random particles, even though these surfaces have com-
pletely different composition. The subsurface atoms thus have a large impact on the
plasmon resonance in Pd-Au nanoparticles, even if the oscillations are localized at
the surface. This has previously been observed also in small clusters of Ag-Cu [35]
and Ag-Pt [36].
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Figure 5.10: Imaginary part of Fourier transform of atomic density matrix elements for
201 atoms RTO, summed over atoms according to the color scheme depicted in the inset.
The red labels indicate the composition among the red atoms. The dashed blue lines are
the absorption spectra, i.e. the same spectra as in Fig. 5.7, here included for comparison.
The curves are normalized by the number of atoms included in the sum. All scales are
equal in magnitude.

5.4.3 The plasmonicity index
The plasmonicity index η̃P described in Section 2.2.2, proposed in Ref. 11 as a tool
for characterization of the plasmonic content of absorption peaks, has been evaluated
for the Au201 and Pd201 clusters. The result is shown in Fig. 5.11. At frequencies
between roughly 1 and 5 eV, the Au curve is indeed exaggerated compared to the
absorption spectrum, but no clear peak can be identified. The plasmonicity index
is relatively high also at frequencies where the absorption is low. Against this back-
ground, any attempt to discuss plasmonic behavior with basis in the plasmonicity
index is doomed to fail. Whether this is a result of the weak plasmons in Au201 and
Pd201 or a shortcoming of the plasmonicity index is a question for the future.
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the same absorption spectra as in Fig. 5.7.

5.5 Summary
The computations on optical properties of Pd-Au nanoparticles can be summarized
as follows:

• The absorption spectra reveal no clear plasmonic peak;
• The analysis tools applied in this thesis are not sufficient to discuss plasmonic

behavior in the systems studied here;
• The electronic oscillations are almost exclusively taking place on the surface

of the particles, but subsurface atoms still seem to have a substantial impact
on the electronic response on the surface;

• Interior atoms play a role in screening of the optical response from excitations
in the d-band.
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6
Conclusions

In this thesis, atomistic and first principles electronic structure calculations have
been carried out to investigate the thermodynamics and optical properties of Pd-Au
nanoparticles. The atomistic simulations predicted unambiguously that Au segre-
gates to the surface of the nanoparticles, especially to corner and edge sites. It
was also shown using a particle construction algorithm in the variance-constrained
semigrand canonical ensemble that, in addition to highly symmetric magic number
particles such as icosahedra and regular truncated octahedra, there exist slightly
less symmetric low-energetic particles for any number of atoms, as long as the par-
ticles are sufficiently large (more than a few hundred atoms). Highly ordered Pd-Au
clusters were identified for particle with up to 201 atoms, and these were used for
TDDFT calculations of optical properties. The optical absorption spectra for these
particles turned out to be quite flat, with no clear plasmon resonances. More elab-
orate attempts to analyze the results indicated that some plasmonic behavior may
be involved, but the results are inconclusive. It was shown that the electronic oscil-
lations to a very high degree take place on the surface of the nanoparticles, but also
that interior atoms play an important role, partly in screening by excitations of d
electrons, but also in affecting the sp-band at the surface.

The results are not sufficient for making predictions or explain plasmonic prop-
erties of Pd-Au nanoparticles. To do so, it would either be necessary to have a
distinct plasmon peak in the absorption spectra or a more sophisticated approach
to analyze plasmonic content in the current spectra. It should be remembered,
however, that no distinct plasmon peak in the visible spectrum can be expected in
small, close-to-spherical Pd-Au nanoparticles; the peak is weak also in experimental
data [37]. Increasing the size of the particles might reveal some information, but
other modifications of the computational setup should be considered as well. As
was shown in Chapter 2, the shape of the particles has a profound impact especially
on the Au peak. In fact, the Pd-Au experiments [2] motivating this study do not
only involve much larger particles, but are actually performed on nanodisks excited
along the long axis, thus taking advantage of this shape effect. A distinct plas-
mon peak has indeed been observed in TDDFT calculations on small Au nanorods
[38]. A study of non-spherical particles could even be made thermodynamically well-
motivated by conjunction with the particle construction algorithm, which actually
predicts elongated particles for some sizes.

The unclear plasmon peak of Pd-Au makes it a troublesome model system for
plasmonic response in metallic nanoparticles. For future studies, it might be fruitful
to include for instance silver, which exhibits a conspicuous plasmon peak already
for very small particles [39]. A system with silver may thus provide a benchmark
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for the analysis tools, facilitating further studies of Pd-Au.
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