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Decentralized Replication Using CRDTs In Systems with Limited Connection and
Bandwidth
FREDRIK JOHANSSON & ANDRÉ PERZON
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract
Distributed storage systems use replication to deal with problems such as fault tol-
erance, availability of data, lowering latencies and scalability. However, a prominent
problem with distributed systems is how to keep replicas consistent during partition-
ing where ad-hoc solutions have proven to be error prone. For applications that do
not require strict consistency, Conflict-Free Replicated Data Types (CRDTs) can be
used. CRDTs provide a theoretically sound approach to replicating data under the
eventual consistency model. Strict consistency is traded for improved availability,
better response time and support for disconnected operations. Simple mathematical
properties are used to solve inconsistencies between replicas that may occur due to
the eventual consistency.

The State-Based CRDT provides full availability, is commutative, associative and
idempotent making it suitable for applications on unreliable networks. The State-
CRDT sends its whole state straining the network as the state increase. To deal with
the weakness of the State-CRDT, Delta-CRDT was proposed. The Delta-CRDT has
the same properties as the State-CRDT but splits states into deltas, limiting the load
on the network. The Delta-CRDT is more complex to implement than State-CRDT
and is more vulnerable to message loss and requires more communication overhead.
This research aims to examine the viability of replicating data by applying CRDTs
in the same environment as an existing centralized system. The questions answered
in this project are: Can CRDTs be used in a real-life environment with large data
sizes and a low number of updates on a low bandwidth network with connection
losses? Which type of CRDTs are suitable for this environment? How does the
performance of the CRDT systems compare to the existing system? What are the
trade offs between the different types of systems? The metrics used to evaluate
the systems are operation latency, message latency, time to reach consistency, bytes
sent and tolerance to message loss by looking at implemented quality arrays. Testing
was conducted on a virtual network with data collected from a real-life scenario in
which vehicles operating in a mine synchronize their databases through a centralized
system on an unreliable network with low bandwidth.

The results show that the State-Based CRDT system is not viable due to flooding
the network with too many and too large messages. The Delta-State CRDT system
perform better than the existing system in most metrics and is a viable replacement
for the existing system if availability is prioritized.

Keywords: CRDT, Distributed Systems, Centralized, Decentralized, Replication,
Strong Eventual Consistency

v





Acknowledgements
We would like to acknowledge CPAC Systems AB for their support, allowing us to
use their facilities, providing us with the data that made it possible to accomplish
this thesis and treating us as a part of the group from the very start. A special
thanks to Fredrik Thune and Erik Pihl for their time and supervision. We would
also like to thank our supervisor at Chalmers, Philippas Tsigas for his valuable
guidance and feedback throughout the thesis.

Fredrik Johansson & André Perzon
Gothenburg, June 2019

vii





Contents

List of Figures xi

List of Tables xii

List of Source codes xiii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Performance Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . 3
1.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 State of the Art 5
2.1 Replication in Distributed Systems . . . . . . . . . . . . . . . . . . . 5
2.2 Replication with Centralized Management . . . . . . . . . . . . . . . 6
2.3 Replication with Distributed Management . . . . . . . . . . . . . . . 7
2.4 Consistency, Availability, Partitioning;

The CAP Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Consistency Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 Conflict-Free Replicated Data Types . . . . . . . . . . . . . . . . . . 10

2.6.1 State-CRDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6.2 Operation-Based CRDT . . . . . . . . . . . . . . . . . . . . . 12
2.6.3 State-CRDTs with Delta-mutators . . . . . . . . . . . . . . . 13

3 Design and Implementation 15
3.1 Centrally Managed Replication Without

CRDTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 CRDT System Variations . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Software Design Layout . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Merge Operation . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.3 State-based CRDT - State Machine . . . . . . . . . . . . . . . 19
3.2.4 Delta-CRDT with Snapshots - State Machine . . . . . . . . . 19

3.3 Virtual Test Environment - Mininet Network Emulator . . . . . . . . 20
3.4 Network Communication between Replicas . . . . . . . . . . . . . . . 23
3.5 Data Persistence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

ix



Contents

4 Experimental Study 27
4.1 Setup of Virtual Test Environment . . . . . . . . . . . . . . . . . . . 29

4.1.1 Local Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.2 Number of Updates Per Vehicle . . . . . . . . . . . . . . . . . 30
4.1.3 Network Performance . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.4 Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1.5 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Converge Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.1 Reference System Converge Time . . . . . . . . . . . . . . . . 34
4.2.2 Centralized Converge Time . . . . . . . . . . . . . . . . . . . 35
4.2.3 State-CRDT System Converge Time . . . . . . . . . . . . . . 36
4.2.4 Delta-CRDT System Converge Time . . . . . . . . . . . . . . 37

4.3 Message Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 Message Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.5 Bytes Sent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.6 Merge Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.7 Quality Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Discussion 55
5.1 Discussing the Questions Asked for this Project . . . . . . . . . . . . 55

5.1.1 Can CRDTs be used in a real-life environment with large data
sizes and low number of updates on a low bandwidth network? 55

5.1.2 Which type of CRDTs are suitable for this environment? . . . 56
5.1.3 How does the performance of the CRDT systems compare to

the existing system? . . . . . . . . . . . . . . . . . . . . . . . 56
5.1.4 What are the trade-offs between the different types of systems? 56

5.2 This Project’s Delta-CRDT with Snapshots Design . . . . . . . . . . 57
5.3 CRDT Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4.1 Possible CRDT Optimizations . . . . . . . . . . . . . . . . . . 59
5.4.2 Designing Databases to Suit CRDTs . . . . . . . . . . . . . . 60

6 Conclusion 63

Bibliography 67

x



List of Figures

2.1 An illustration of a centralized replication. . . . . . . . . . . . . . . . 7
2.2 Illustration of decentralized replication. . . . . . . . . . . . . . . . . . 7
2.3 Illustration of the CAP theorem, the center is the desired state but

unreachable as stated by Brewer. . . . . . . . . . . . . . . . . . . . . 8
2.4 Example of an eventual consistent system providing old data to client

due to slow propagation of updates. . . . . . . . . . . . . . . . . . . . 10
2.5 Example of integer state with Max merge function converging . . . . 12

3.1 Illustration of the system design for the thread that performs all actions. 16
3.2 Illustration of the system design for the thread that handles connec-

tions from other nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 System software layout of State/Delta-CRDT systems . . . . . . . . . 18
3.4 Flowchart of State-based CRDT . . . . . . . . . . . . . . . . . . . . . 19
3.5 Flowchart of Delta-CRDT . . . . . . . . . . . . . . . . . . . . . . . . 20
3.6 Simple and Linear topologies. . . . . . . . . . . . . . . . . . . . . . . 21
3.7 Torus and Tree topologies. . . . . . . . . . . . . . . . . . . . . . . . . 22
3.8 System design of the Centrally managed system used as of today. . . 22

4.1 The Chepstow quarry, where data has been collected, with the po-
sition of active vehicles marked with vehicle symbols. Picture from
CPAC Systems [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 An illustration of how the local updates are created and perform on
the systems in a consistent manner. . . . . . . . . . . . . . . . . . . . 30

4.3 The basic idea behind the script performing systematic connects/disconnect
on the nodes during the test. . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Size of messages sent by 16 nodes, 5s broadcast interval, 1.35% dis-
connect rate. The boxes include 25-75 percentiles, the whiskers are
max and min with outliers included and the dotted lines represents
mean and solid lines mean. . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5 Size of messages sent by 16 nodes, 5s broadcast interval (except State-
CRDT which has 15 second broadcast rate because of crash during
testing), 5.4% disconnect rate. The boxes include 25-75 percentiles,
the whiskers are max and min with outliers included and the dotted
lines represents mean and solid lines mean. . . . . . . . . . . . . . . . 40

xi



List of Figures

4.6 Latency to receive messages between nodes for systems with 16 nodes
and 5s broadcast interval and 1.35% disconnect rate. The boxes in-
clude 25-75 percentiles, the whiskers are max and min with outliers
included and the dotted lines represents mean and solid lines mean. . 42

4.7 Latency to receive messages between nodes for systems with 16 nodes
and 5s broadcast interval and 5.4% disconnect rate (except State-
CRDT which has 15 second broadcast rate because of crash during
testing). The boxes include 25-75 percentiles, the whiskers are max
and min with outliers included and the dotted lines represents mean
and solid lines mean. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.8 Latency to perform a merge operation in systems with 16 nodes and
5s broadcast interval and 1.35% disconnect rate. The boxes include
25-75percentiles, the whiskers are max and min with outliers included
and the dotted lines represents mean and solid lines mean. . . . . . . 48

4.9 Latency to perform a merge operation in systems with 16 nodes and
5s broadcast interval and 5.4% disconnect rate (except State-CRDT
which has 15 second broadcast rate because of crash during testing).
The boxes include 25-75 percentiles, the whiskers are max and min
with outliers included and the dotted lines represents mean and solid
lines mean. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.10 Quality arrays created by a node where each line is an array of mes-
sages received or not received from other nodes in the system. 1 is
received message while 0 is lost message. State-CRDT system, 16
nodes, 15s broadcast interval, 5.4% disconnect rate. . . . . . . . . . . 52

4.11 Quality arrays created by a node where each line is an array of mes-
sages received or not received from other nodes in the system. 1 is
received message while 0 is lost message. Delta-CRDT system, 16
nodes, 15s broadcast interval, 5.4% disconnect rate. . . . . . . . . . . 53

5.1 Splitting of a large state to gain smaller states to decrease message
sizes before sending across the network. . . . . . . . . . . . . . . . . . 59

xii



List of Tables

2.1 The eight fallacies of distributed systems. . . . . . . . . . . . . . . . . 6

4.1 Results from gathered data about the actions performed. . . . . . . . 30
4.2 Time intervals displaying the number of updates performed by each

node during testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Table of the signal quality from RSSI value. . . . . . . . . . . . . . . 32
4.4 A table of the hardware specifications used during testing . . . . . . . 34
4.5 Table of the different converge times from tests on Reference system. 35
4.6 Converge times gathered during tests with various setting for the

Centralized system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.7 Table of the converge times gathered during tests for the State-CRDT

system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.8 Table of the converge times gathered during tests with various setting

for the Delta-CRDT system. . . . . . . . . . . . . . . . . . . . . . . . 38
4.9 Bytes sent by 16 nodes with 5 seconds broadcast interval and 1.35%

disconnect rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.10 Bytes sent by 16 nodes with 5 seconds broadcast interval and 5.4%

disconnect rate (except State-CRDT which has 15 second broadcast
rate because of the 5 second test crashing during testing). . . . . . . . 46

4.11 Summary of the gathered results from the quality arrays. This is a
representation of the quality array displaying ( the maximum per-
centage of drop messages by a node, maximum number of dropped
messages in sequence by a node). Tests are done with 16 nodes and
15 second broadcast rate for all systems. . . . . . . . . . . . . . . . . 54

xiii



List of Tables

xiv



List of Source Codes

1 Custom created network topology that simulates the simple single
switch topology seen in Figure 3.6b . . . . . . . . . . . . . . . . . . . 21

2 Backend communication on all nodes listening for incoming connections. 24
3 How the systems send data between nodes. . . . . . . . . . . . . . . . 25
4 Code for message reception on nodes. . . . . . . . . . . . . . . . . . . 25
5 Collected connection data. . . . . . . . . . . . . . . . . . . . . . . . . 31

xv



List of Source Codes

xvi



1
Introduction

Distributed storage systems use replication to deal with problems such as fault tol-
erance, availability of data, lowering latencies, scalability and load balancing of large
number of parallel connections. However, a prominent problem with distributed sys-
tems is how to keep replicas consistent as ad-hoc solutions have proven to be error
prone [30]. Conflict-Free Replicated Data Types (CRDTs) provide a theoretically
sound approach for replicating data under the eventual consistency model. This
research aim to examine how different types of CRDTs perform in an environment
where connection and bandwidth is limited and how the different trade offs between
the CRDT types may correlate to the results.

1.1 Background
Keeping replicas in a distributed storage system both consistent and available to
accept new updates is a problem that the CAP-theorem [5] states is impossible
when partitioning is present. As partitioning is not a design choice in a system and
is not possible to be predicted or avoided, networks can disconnect or devices fail for
any reason, it must be taken into account. However, it is possible to mitigate the
CAP-theorem through the use of consistency models. The general concept is that
stronger consistency lowers availability and higher availability lowers consistency
[20]. Depending on the application different consistency models are suitable to find
the proper balance between consistency and availability.

CRDTs use eventual consistency which is a consistency model that allows replicas to
diverge, i.e., to accept new updates without prior synchronization with other repli-
cas, thus providing high availability [15]. They use simple mathematical properties
to solve any inconsistencies that might occur when the replicas perform updates
independently of each other. CRDTs were first implemented in practice for example
collaborative text editing and peer-to-peer computing and then later formalized by
Shapiro et. al. [30], [31]. Both collaborative text editing and peer-to-peer com-
puting value high availability in order to maximize the effective time they can do
operations, i.e, minimize the time they need to wait for synchronization.

1



1. Introduction

1.2 Problem Statement
There is a need to replicate data across multiple databases which are located on
board vehicles over a network where partitioning is expected to be high due to the
environment. When the vehicles are connected to the network the bandwidth and
latency will be limited because of them having 3G connection limiting the amount of
data the system can send to reach consistency. As the vehicles still are operational
during the presence of partitioning there is a demand for high availability in the
system even when there is partitioning on the network.

The vehicles are currently using a centralized replication system which does not
provide full availability but provides consistency in the form of linearizability. By
removing the single point of failure in the centralized system, there is potential to
gain better performance in the environment in which the vehicles are deployed in
addition to higher availability.

CRDTs were designed to provide consistency in systems where small updates are
performed frequently, for example the number of times a song has been played. In
the case of keeping track of how many times a song has been played the amount of
data sent is small since the state consist of integers. When it comes to replication of
databases where each entry has several parameters the amount of data is much larger
and updates are subsequently often less frequent. In such a scenario CRDTs should
not be preferable, especially if the system is using a network with low bandwidth.

Throughout this thesis real-life system, real-life scenario and real-life environment
refers to the scenario described in this problem statement. Real-life is used to differ-
entiate from the virtual systems implemented in this thesis. The questions asked at
the beginning of this project were: Can CRDTs be used in a real-life environment
with large data sizes and a low number of updates on a low bandwidth network with
connection losses? Which type of CRDTs are suitable for this environment? How
does the performance of the CRDT systems compare to the existing system? What
are the trade offs between the different types of systems?

In order to answer the questions a number of metrics will be compared to measure
the performance of each system, these evaluation metrics are explained in Section
1.5. All testing was conducted on a virtual network configured with data collected
from the system in the scenario described in this problem statement.

1.3 Aim
The aim of this research is to examine the viability of replicating data by applying
CRDTs in the same environment as an already existing replication protocol. For
this reason research about the strengths and weaknesses of different CRDTs is done.
Based on this research two different CRDT solutions are created, one basic and one
more advanced. In addition the performance is recorded in different metrics during

2



1. Introduction

run-time to be able to compare the CRDT solutions with the existing solution.

Drawing from the problem statement the following questions are researched:

• Can CRDTs be used in a real-life environment with large data sizes and low
number of updates on a low bandwidth network?

• Which type of CRDTs are suitable for this environment?

• How does the performance of the CRDT systems compare to the existing
system?

• What are the trade-offs between the different types of systems?

The results from this thesis are to be used as guidelines when investigating the
areas where the CRDTs can be used for replication of data in addition to where
they can outperform more common replication protocols as the centralized system
with strong consistency.

1.4 Scope
There is no possibility to test the replication protocols on the vehicles directly as they
are in production, instead all testing will be made in an emulated environment. To
be able to reach the goals of the thesis, data is gathered about the behaviour of the
vehicles such as updates performed as well as the quality of the network; bandwidth,
latency and connectivity. This is done to be able to simulate an environment that
is as close to the real-life scenario as possible to gain an accurate performance
validation of the CRDTs.

The performance of the different systems are compared in the following metrics;
total bytes sent, message latency, message size, update latency, converge time and
quality arrays which displays the messages lost where both the total number of lost
messages in addition to the number of consecutive messages lost.

1.5 Performance Evaluation Metrics
Different metrics are used to evaluate the communication times the first is message
latency, the time in milliseconds it takes from that a connection is established until
the entire message has been received. The next metric is the message size which is
the size in bytes of each message a node send to another node. Finally, the bytes
sent is the total amount of bytes each node in the system have sent during a test.

To be able to draw conclusions regarding the processing times two different metrics
are used. Firstly, the merge latency metric is used, the time in milliseconds it takes
from a message, consisting of a state, is received until the receiving node has merged

3



1. Introduction

the state with its own state. Secondly, the message size is also used to evaluate the
processing times as there is a relation between the size of a message (state) and the
message latency.

Finally, the accuracy of a system is measured by looking at the converge time, the
time in seconds it takes for the system to reach convergence, from the start of the
test. The test start at time 0 but systems can not converge before 300 seconds
because the system is still being updated for the first 300 seconds. In addition to
converge time a metric called quality arrays was created to record which messages
were dropped by which node and from that information derive how long time nodes
are out of sync with the rest of the nodes. The quality arrays can be used to compare
how the systems are able to handle different disconnect rate on the network.

1.6 Limitations
Simulations are used instead of real world testing. The cost is simply too high to
do real world testing and would most likely produce new challenges that need to
be overcome for the specific real world setting thus making it unreasonable for the
time frame of this project. The simulated problems the system encounter are loss
of connection (partitioning) and low bandwidth (hardware limitation). Detecting
byzantine or faulty nodes are not dealt with. All nodes will be considered to work
correctly with no other faults than those mentioned above.

The same database structure, that is already present in the centralized solution
operating on the vehicles, will be used for all models. The database on the master
node is a PostgreSQL database and vehicles’ local databases are SQLite databases.
Throughout this thesis only SQLite databases are used as using different databases
might provide skewed results if their performance is not identical. This also enhances
the development time as time is limited. Time will not be spent to try to create
optimized queries, efficient sorting etc.

The limitations for this project are:

• Real world testing
– Will not have access to any vehicles
– Simulations will be used instead

• Byzantine behaviour nodes
– No nodes are malicious
– All nodes send correct messages, e.g., not broken
– Nodes have robust memory in case of a crash

• Database performance
– Efficient sorting, queries etc. will not be considered

4



2
State of the Art

State of the Art covers theory of fundamentals that all designers of distributed sys-
tems must consider in order to create a functional system. Section 2.1 presents the
definition of a distributed system as well as fallacies regarding distributed system
design. The two fundamental types of distributed systems, centralized and decen-
tralized, are explained in Section 2.2 and Section 2.3 respectively.
Section 2.4 explain the CAP-theorem which is an aspect all distributed system
designs must consider in order to perform as intended. Linked to this is the different
consistency models used in distributed systems, explained in Section 2.5.
Section 2.6 provide the theory behind the Conflict-free Replicated Data Types
(CRDTs). They provide strong eventual consistency and are therefore attractive
to distributed system designs where availability is important despite the presence
of partitioning on the network. CRDTs are the main focus of this thesis and are
implemented and tested in two out of three systems.

2.1 Replication in Distributed Systems
The introduction of network communication between different machines in the 60’s
and the continued technological advances during the next decades set the foundation
for the machine-to-machine communication as we know it today [28]. Machine-
to-machine communication provided the ability for machines to coordinate their
work towards a common task by communicating. This gave birth to a new kind of
system, distributed replication systems, or distributed systems for short, are defined
as multiple devices connected via a network cooperating to perform some task [26].
Sabu M. Thampi explains one of the many reason why distributed systems have
grown with the entrance of the information era, Thampi defines in his paper [25]:

"When a handful of powerful computers are linked together and com-
municate with each other, the overall computing power available can be
amazingly vast. Such a system can have a higher performance share than
a single supercomputer."

The structure of such a system can be constructed in two different ways: central-
ized, where one node is the master over a number of slave nodes in the network or
decentralized where all nodes have the same priority. In a centralized system all
communication from the slave nodes are directed towards the master node while in
the decentralized system communication is made between arbitrary nodes. The pros

5



2. State of the Art

and cons of the two approaches will be discussed in Section 2.2 and Section 2.3.

In distributed systems there exist eight fallacies that distributed system designers
often forget to take under consideration and that leads to design flaws that eventually
will appear when the system is in production. The fallacies were first mentioned
back in 1994 by Peter Deutsch, but they are still relevant for designers today. Arnon
Rotem-Gal-Oz summarizes the eight fallacies in his paper [22] and the eight fallacies
can be sen in Table 2.1.

Table 2.1: The eight fallacies of distributed systems.

1. The network is reliable
2. Latency is zero
3. Bandwidth is infinite
4. The network is secure
5. Topology does not change
6. There is one administrator
7. Transport cost is zero
8. The network is homogeneous

Depending on what type of system the designer is looking to create the importance of
each fallacy may differ. A closed system on a local network may always have the same
topology whilst an application on a network with nodes continuously connecting
and disconnecting does not, the topology is changing with each connect/disconnect
(breaking fallacy 5). Another thing to point out is that some fallacies are losing
their importance for designers. As performance and reliability of hardware increases,
failures on a network become less likely [22]. Throughout this project the designs will
not take into consideration point 4, 6 and 8 in Table 2.1 because of the limitations
mentioned in Section 1.6.

2.2 Replication with Centralized Management

A system with a set of replicas P1, P2, ..., Pn where n− 1 replicas are symmetric but
one node is different in terms of possible states and actions is called a centralized
system. Figure 2.1 displays a possible network of five replicas where four out of the
five replicas are symmetric and the middle replica differs from the other replicas.
This is the primary replica and the others are secondary replicas.
Secondary replicas that receive updates do not apply the updates immediately. In-
stead they notify the primary replica that updates have been received and wait for
the main replica to process consequent updates. An example would be when two
secondary replicas receive an update at the same time, notify the primary replica at
the same time and applies the updates in the same order due to the decision made
by the primary replica.
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2. State of the Art

Figure 2.1: An illustration of a centralized replication.

By performing all updates from the secondary nodes on the primary node, the level
of consistency is linearizable and sequentially consistent. It is a simple approach for
solving the problem of concurrent updates on multiple nodes. There are pros and
cons for choosing to build a centralized system, where simplicity is a strong argument
for this kind of system [18]. A weakness in a centralized system is the single point
of failure, all secondary nodes rely on the primary node for updates. If the primary
node never responds with updates to the secondary nodes they can never update
and thus lose their availability and consistency. The system is also faced with the
possible bottleneck of the primary node not having the performance to handle all
requests from the secondary nodes making the whole system not function properly.
If this is the case then it does not matter if the secondary nodes might have enough
performance to handle their tasks if the primary node is the point of congestion.

2.3 Replication with Distributed Management
A system that has decentralized replication consists of a set U containing N nodes.
The nodes can be identical but does not have to be. Each node k ∈ U has a
connection to m ⊆ U nodes as is illustrated in Figure 2.2. The size of subset m for
each node is not a fixed size and may change over time.

Figure 2.2: Illustration of decentralized replication.
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All nodes in the system perform actions to reach a consistent state by communicating
with other nodes. Actions are performed locally and the changes of the state are
communicated to nodes currently in the subset m. The updates made propagate
across the network and reaches all nodes N ∈ U either directly or indirectly if no
node k ∈ U crash or disconnect indefinitely. In this case one could argue that
U = U − k.

In comparison to centralized replication decentralized replication has no single point
of failure, all nodes can continue working if any node k ∈ U disconnects. The advan-
tage of no single point of failure leads to higher complexity for keeping consistency
when replicating data as all nodes must reach consensus. The complexity of the
replication depends on the level of consistency required in the system. Stronger
consistency requires more complex solutions than weak consistency.

2.4 Consistency, Availability, Partitioning;
The CAP Theorem

A problem designers of distributed systems are faced with is the CAP Theorem
[5, 6]. CAP stands for Consistency, Availability and Partitioning. When designing
a distributed system you want the system to have strong consistency, always be
available and still be operational even when the network is partitioned due to any
kind of failure. In the year of 2000, Brewer [5] made a conjecture stating that
it is impossible to provide both consistency and availability when the network is
experiencing partitioning.

Figure 2.3: Illustration of the CAP theorem, the center is the desired state but
unreachable as stated by Brewer.

When a distributed system has geographically long distanced replicas of data and
information is sent between the replicas, network partitioning will be present [23].
What the CAP theorem states is that there are two main options when handling
a system that is in a partitioned state. One of the options is to block all opera-
tions to replicas thus keeping consistency but providing no availability. The other
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is to allow all operations to replicas even though it breaks consistency [8]. However,
choosing between Consistency and Availability is not exclusive, trade offs between
consistency and availability can be made [13], for example reading but not writing
may be allowed or certain data might be changed thus keeping some level of relation
between consistency and availability. An illustration of Brewers conjecture is illus-
trated in Figure 2.3 where it is impossible to reach the area where all three circles
overlap.

Strong consistency is desirable but costly for the system’s performance and it also
block operations thus lowering the availability of the system [20]. A bank transfer
requires stronger consistency, because of the nature of the transaction, than for
example Amazon Dynamo [11] which has sacrificed strong consistency for better
availability.

2.5 Consistency Models

There are different consistency models, linearizability (strong), sequential, casual,
eventual and weak consistency. The order in which they are mentioned corresponds
to the strength of consistency [2]. As mentioned in Section 2.4 which consistency
model a system needs depends on the area the system is to be used in. In this thesis
eventual consistency is the main focus which is a weak consistency model that can
be defined as: if no more updates are performed, all nodes will eventually converge
to the same state within a finite time.

Systems with weaker consistency models provide the ability to perform updates
without the need for consensus and/or synchronization between nodes. This makes
weaker consistency models better at operating in low bandwidth networks prone to
disconnects because of the message complexity needed for synchronization between
nodes [27]. This makes weaker consistency models popular with the growing need
for available and scalable services like the Amazon Dynamo [11] and Facebook’s
Cassandra [21] which both implement eventual consistency.

Applications that use eventual consistency models are able to tolerate an inconsistent
state for periods of time. Updates between different replicas occur rarely and instead
updates are performed on the local replica to maintain availability for the client.
Clients may read old data due to the slow replication of updates as shown in Figure
2.4 where a client deletes (1) the value "cat" from database B, "cat" is then removed
(2), the client then performs a read (3) operation on B and finds it is empty. The
client reads (4) once again but this time from another replica A, this replica returns
the value "cat" as A and B have not yet synchronized (5) their data. The Amazon
shopping cart is a famous real-life example of how this issue can become a problem
[15]. Where items would reappear in clients shopping carts that had been removed
earlier due to receiving "old" data from another replica that had not received the
remove update performed by the client on the original replica where the remove was
performed.
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Figure 2.4: Example of an eventual consistent system providing
old data to client due to slow propagation of updates.

2.6 Conflict-Free Replicated Data Types

Conflict-Free Replicated Data Types (CRDTs) are distributed data types that pro-
vide a theoretically sound approach to enable distributed objects to be eventually
consistent and non ad-hoc [31]. Ad-hoc approaches have previously proven to be
error prone with the anomalies of the Amazon Shopping Cart [11] as a well known
example where removed items in the shopping carts may reappear. Eventual consis-
tency is ensured by CRDTs through the use of simple mathematical properties. As
explained in Section 2.5 eventual consistency allow for a process to execute an opera-
tion without synchronizing with other replicas beforehand thus providing availability
of a replica to clients even in the presence of partitioning.

This thesis will use the same terminology of atoms and objects as defined by Shapiro
et. al. in [31]. They define that an atom is an immutable data type, for example
integers and strings, that can be copied by processes. An object is a mutable, repli-
cated data type that has an identity, a content which can be any number of atoms
or objects, an initial state and an interface consisting of operations. Operations are
called by clients to either acquire data from or modify an object. When a client
update an object the operation is first called from the interface of the object and
then the update is disseminated asynchronously. Two objects with the same identity
located at different nodes are replicas of one another.

There are two types of CRDTs: State-Based CRDTs (referred to as State-CRDTs
in this thesis) and Operation-Based CRDTs [24] with the former being focused on
in this thesis. The two types are explained in Section 2.6.1 and 2.6.2. CRDTs is a
concept that was first implemented in practice in a cooperative text editor software
[14] and then later formalized by Shapiro et. al. [31]. Another practical use of
CRDTs is found in latency tolerant computing. Processes in a distributed computing
system that use CRDTs can maximize the time they spend on actual computation
and lower the amount spent on waiting for synchronization since CRDTs do not use
consensus.
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The strength of CRDTs, providing full availability by not using consensus, is also a
strong limitation of where CRDTs can be used. A trivial case where CRDTs cannot
be used is when consensus is imperative for example with transfers of money in a
bank. Something as simple as division creates trouble when designing a CRDT as
division neither is commutative, associative nor idempotent, properties that a CRDT
must fulfill. CRDTs do, despite full availability, provide strong eventual consistency.
Strong eventual consistency does not guarantee that atoms in an object constitute
coherent information from a human point of view. In the case of collaborative text
editing software the CRDT only eventually guarantee that all writers see the same
text. It does not guarantee that the text is grammatically correct.

2.6.1 State-CRDT
An operation on a State-Based CRDT object occurs directly on the source and is
then disseminated by sending the entire modified state to other replicas. When
another replica receives a state U , it merges its own state A with the received
state, meaning that the set difference (U \ A) is added to A. The merge operation
follows the rules of a join-semilattice and is therefore commutative, associative and
idempotent which are essential properties since State-CRDTs propagate their states
asynchronously.

State-CRDTs are easy to reason about and due to the states that are sent require few
guarantees from the network, if a state is not able to be transferred properly it will be
sent again without interrupting any other functionality. This is why State-CRDTs
can function under extreme partitioning. The simplicity of State-CRDTs comes
with the drawback of unbounded growth. Large states have a negative impact on
the performance of the network especially when scaling the system. A workaround
to this is presented in Section 3.2.4.

A simple example of a State-CRDT, illustrated in Figure 2.5, is the CRDT that solve
inconsistencies by using Max integer operation. The base state all replicas start with
is an integer with value zero. Each replica may increment the integer an arbitrary
number of times. The difference in amount of increments leads to diverging values
on the replicas. Every replica sends its state which in this case is a single integer
to its neighbours. When a replica receives an integer it persists the larger of the
received integer and its local integer. If no further updates are made the replicas
will all converge to the same state, i.e. having the same integer value, after a finite
number of steps.
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Figure 2.5: Example of integer state with Max merge function converging

2.6.2 Operation-Based CRDT
Operation-Based CRDTs (Op-CRDTs), unlike State-CRDTs, requires updates to be
delivered on a reliable channel; updates are delivered in the correct order. Op-
CRDTs are also able to reason about history, giving them more expressive power
while at the same time making them more complex to implement.
The Op-CRDT has three fundamental parts (notation taken from [30]): payload,
query and update which is split into two parts atSource and downstream. The payload
is an operation that is to be executed asynchronously at other replicas while a query
is an operation that does not alter the state of the local source replica. The update
is a function with the first part atSource which is executed if its precondition is
true after evaluating the arguments it takes. It executes entirely at the local replica
atomically and may return calculated results to the caller and/or prepare arguments
for the second part, downstream. Downstream is first triggered if its precondition is
true either by arguments from atSource or by the arguments contained in a payload.
When the downstream has executed all the operations the state of the replica has
been altered and as long as the network delivers all messages in causal order all
replicas will eventually converge into the same state.

Since most operations are not associative, commutative and idempotent by them-
selves reasoning about history must be implemented together with the Op-CRDTs.
This is done either by relying on the network delivering messages containing oper-
ations at most once and in a causal order or by the replica maintaining a history
about which messages have been delivered which would be part of the downstream’s
precondition. Being able to reason about history gives Op-CRDTs more expressive
power while at the same time making them more complex to implement.
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2.6.3 State-CRDTs with Delta-mutators
Delta-CRDTs, proposed by Almeida, Shoker and Baquerro [4], is a solution to the
State-CRDTs’ problem of ineffective dissemination as the states get bigger. Delta-
CRDTs create delta-states that have smaller message sizes by using delta-mutators.
Every local update is first run through the delta-mutator which is a function that
creates the delta-state, only containing new information, which is then applied to
the local replica before being broadcasted to all other nodes over the network.

Delta-states are not idempotent in comparison to the states of State-CRDTs meaning
that reasoning about history similar to Op-CRDTs must be taken into consideration.
When nodes do updates often they create entropy by sending many small delta-states
that are also propagated directly between nodes which may congest the network.
A way to limit this entropy is to accumulate messages up to a threshold which
once reached trigger the sending of the delta-states. Almeida et al. [4] propose two
algorithms for anti-entropy of the delta-states, one basic that sends the whole state
periodically and another that uses unique IDs for each delta-state that are garbage
collected once all nodes have acknowledged a delta-state.
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3
Design and Implementation

In this chapter the designs and implementations of the three systems are presented.
This chapter starts by explaining the designs of the different systems. The first
Section 3.1 being the Reference system which is a Centrally managed system, as
explained in 2.2. Following are the other system designs, Section 3.2, that are
decentralized management systems and use CRDTs to reach consistency.

After the CRDT design Section 3.2 continues explaining the design behind the
merge operation that is a vital part in both of the CRDT systems in Section
3.2.2. The different design variations of the CRDT systems are then further ex-
plained in Section 3.2.3 together with 3.2.4.

In Section 3.3, Virtual Test Environment, the network emulator with its functionality
and usage is presented. This is the environment which the systems will be deployed
to and that in turn has implementation of backend network communication. Section
3.4, Backend Communication, explain different choices of network layer protocols
and why sockets running TCP was deemed the best option.

Real-life scenario and vehicles are in this section referring to those mentioned in the
Problem Statement in Section 1.2. The real-life scenario is emulated by the virtual
network and the vehicles are represented by replicas in the virtual network.

The programming language used was Python. SQLite was used to create and handle
databases. Python was chosen because of its excellent support for both Mininet and
SQLite.

3.1 Centrally Managed Replication Without
CRDTs

The implementation of the Centrally managed system was based on the information
received about the system in use in real life when the thesis started. As mentioned
in section 3.3 the Centrally managed system have N −1 slave nodes and one master
node. The master node in the real-life system is using PostgreSQL though in this
thesis the master node runs SQLite the same way as the slave nodes. By using
the same type of database there was the possibility to reuse the same solutions for
all nodes making implementation faster and easier in addition to giving a fairer
comparison for the CRDT systems as the speed of the database structures should
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not affect the results. A restriction to not focus on database performance was made
before the thesis started and the usage of the same database type aligns with this
restriction.

Figure 3.1: Illustration of the system design for the thread that performs all
actions.

The simulated nodes can perform three different actions to alter the state of the
database, insert, update and delete. All nodes can perform actions but in the
Centrally managed system the master node perform actions immediately. The slave
nodes on the other hand send the actions they receive to the master node which
performs the actions i.e. updates the state, as illustrated in Figure 3.1, the state is
then broadcasted to all slave nodes. When slave nodes receive the state they update
their own state.

Figure 3.2: Illustration of the system design for the thread that handles
connections from other nodes.

The master node repeatedly broadcasts its state to all other nodes. When the
slave nodes continuously merge the received states from the master node they stay
synchronized. If a node loses connection to the network it can still perform updates
even though they will not be seen until the connection to the master node is restored.
Figure 3.2 Illustrates the behaviour of the primary and a secondary node when a
message is received from another node.

3.2 CRDT System Variations
State-Based CRDT systems were determined to be better suited than Operation-
Based CRDT systems in a scenario were connections are unreliable and thus the
order in which messages are received cannot be guaranteed. Shapiro et. al. show
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that it is possible to emulate Operation-Based CRDTs with State-Based CRDTs and
vice versa [30]. This is exactly what would happen if an Operation-Based CRDT
was used since the same information the State-Based CRDT sends would have to
be sent by the Operation-Based CRDT.

For this reason a primitive State-Based CRDT as well as a more advanced and com-
plex version of State-Based CRDT, Delta-CRDT, have been used with corresponding
explanations in 3.2.3 and 3.2.4, respectively. Common aspects of both types are that
access and storage of data which is made via the SQLite databases which support
the operations described in section 3.5. When a node detects a previously unknown
node it creates a copy with the structure (without the data) of its own database
and assigns the newly discovered node’s ID to the new copy. This means that each
node will have a copy of the other nodes’ databases where a database depicts a
node’s state. When a node is merging an atom, a container for the entire state or
a delta-state of another node, it only access the database that the atom is to be
entered in.

We make the following assumptions which are fundamental for the systems to func-
tion:

Assumption 1. Every atom anm can only originate from node Nn

Assumption 2. Entries in a state are discarded if they do not follow sequential
numbers e.g. update ui+1 can only be applied if update ui exist in the database.

Assumption 3. Broken messages are discarded and nodes have robust memory
which survive crashes without being corrupted.

3.2.1 Software Design Layout

The software layout for the State/Delta-CRDT systems can be seen in Figure 3.3.
State/Delta-Topology (Mininet), first box, sets up a virtual network with the
desired number of nodes and the network configuration supplied. On each node a
State/Delta-Backend(server), second box, is started. Each Backend listens for
incoming connections on a certain port, the ability to setup connections to other
Backends for sending messages as well as State/Delta-CRDT, third box, object
which provides utility to converge with other nodes. The State/Delta-CRDT
object has the ability to create new databases, one for each new node, in addition
to all other database actions as querying for the current state, merging state and
delete. All database actions are made using the DbConnect object, fourth box.
The State/Delta-CRDT object has the ability to create new databases, one for
each new node, in addition to all other database actions as quering for the current
state, mergeing state and delete. All database actions are made using the DbConnect
object, fourth box.
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Figure 3.3: System software layout of State/Delta-CRDT systems

3.2.2 Merge Operation
Both State-CRDTs’ state and Delta-CRDTs’ state S are implemented as two grow-
only sets (Y + X), called 2P-sets by Shapiro et. al. [31]. An atom may exist in
either Y or X or both. Grow-only set Y contains all atoms and a grow-only set X,
also called graveyard, contains deleted atoms. Thus, doing Y −X will show all not
deleted atoms. Both sets are represented as tables in the same database.

The CRDT systems use a merge operation to reach convergence across all nodes. Ac-
tions preceding the merge operation differ between State-CRDT and Delta-CRDT,
explained in Section 3.2.3 and 3.2.4, but they both use the merge operation. The
merge operation is using the same principle as the Union in set theory.

The set of nodes A = {N1, ..., Nn}, where n is the total number of nodes in the
network, each node Nk∀k ∈ {1, .., n} has a state Sk. Each Sk has a set of sub-states
Gm∀m ∈ {1, .., n}. The sub-state Gm=k is the local sub-state of node Nk with the
other sub-states Gm 6=k being representations of the local sub-states from other nodes
Nm. The system have reached convergence when ∀Nk, Sk = Sm∀m 6= k.

A node Nk+1 receiving a state Sk from another node applies the merge operation.
The merge operation done by Nk+1 does the following with the received state Sk;
∀G ∈ Sk+1 = ∀G ∈ Sk ∪ ∀G ∈ Sk+1. The sub-states are updated with all the
updates that differ between the received sub-states from Sk and the current sub-
states in Sk+1. When Nk+1 has applied the merge operation it has at least the newest
information in Gk unless local updates has occurred at Nk during message transit
and the processing overhead of the merge operation.

If no more updates occur in the network, no nodes disconnect and the network
delivers all messages then all nodes will eventually convergence to the same state.

18



3. Design and Implementation

3.2.3 State-based CRDT - State Machine
The State-Based CRDT that has been used, is primitive in every sense which is
visualized through the flowchart in Figure 3.4. Nodes make local updates which are
broadcasted periodically, by sending all data the nodes possess to all other nodes,
whenever their timer reaches 0. When broadcasting no consideration is made for if
there’s been new local updates, if a state is yet received by another node or if other
nodes need to be updated.

Figure 3.4: Flowchart of State-based CRDT

The State-Based CRDT utilize the merge operation explained in Section 3.2.2 to
reach convergence on all nodes. The merge operation become more inefficient the
larger the states sent are.

3.2.4 Delta-CRDT with Snapshots - State Machine
The Delta-CRDT designed and implemented in this thesis builds upon the State-
based CRDT explained in 3.2.3. The merge operation is exactly the same while
the differences that makes it more efficient is found with the state snapshots and
calculations of delta-states.

A state snapshot describes the current state of a replica. Each update performed
by a node locally is stored in its own database and each update receives an auto-
incremented key, an integer. The state snapshot consist of the highest incremented
key of each table in each database the node has. Values are mapped to table names
which in turn are mapped to their database in a nested dictionary, i.e., nested hash
table.

The state snapshot, which is considerably smaller than the full state, is broadcasted
to all nodes. Node A that has received a state snapshot from node B creates a state
snapshot of its local databases and calculates a delta snapshotAsnapshoti

−Bsnapshoti
=

δsnapshoti
where i is [1, 2, ..., n] in the snapshot dict. δsnapshot is then used by B to

create the delta-state, containing only entries that A does not have, and send it
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directly to A. A then applies the merge operation, explained in Section 3.2.2, on
the received state.

Figure 3.5: Flowchart of Delta-CRDT

The entropy that Delta-CRDTs create and the subsequent need for garbage collec-
tion, explained in Section 2.6.3, is circumvented by the design of the Delta-CRDT
in this project, seen in Figure 3.5. This is due to the broadcasting of state snapshots
and direct communication of delta-states between nodes, i.e., no states are directly
propagated between nodes thus no need for garbage collection. Furthermore, this
design keeps the idempotent property of the CRDT which the Delta-CRDT pro-
posed by Almeida, Shoker and Baquerro [4] does not. Reasoning about history is
therefore not necessary with this design.

3.3 Virtual Test Environment - Mininet Network
Emulator

Mininet is an emulator that can emulate complex network topologies [19]. The em-
ulated network contains hosts, links, switches and controllers which are the building
blocks of the network structure. Furthermore Mininet has different connection set-
tings within the virtual network which for this project are used to create limitations
in bandwidth and connection in addition to simulate the network partitioning that
occurs in the real life scenario. The simulated partitioning allows for testing the
systems with different levels of connectivity.

Mininet is designed for testing and development and it provides functions for con-
current development. In the setting of the project there is the possibility of hosts
(vehicles) being added to the network dynamically. Mininet is scalable with the
number of hosts that can be added to the topology [19].
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Mininet has different levels of functionality. A command can be written at the com-
mand line to build predefined network topologies within the Mininet software. The
different topologies within Mininet are Tree, Simple, Reversed, Torus and Linear.
Mininet has the possibility for the user to build custom topologies by writing python
scripts to declare the structure of the desired topology.

(a) Linear topology with four hosts and
switches.

(b) Simple topology with nine hosts and
a single switch.

Figure 3.6: Simple and Linear topologies.

1 from mininet.topo import Topo
2 from mininet.net import Mininet
3 from mininet.cli import CLI
4

5 class CustomSingleTopo(Topo):
6 def build(self, no_hosts = 4):
7 hosts = [self.addHost("host%s" % (h+1)) for h in
8 range(no_hosts)]
9 switch = self.addSwitch("Switch1")

10 for host in hosts:
11 self.addLink(host, switch)
12 topos = {'customsingletopo': (lambda: CustomSingleTopo())}
13 singleswitch = CustomSingleTopo(4)
14 network = Mininet(topo=singleswitch)
15 network.start()
16 CLI(network)
17 network.stop()

Source Code 1: Custom created network topology that simulates the simple
single switch topology seen in Figure 3.6b

When designing a custom topology there are four building blocks that can be used;
controllers, switches, hosts and links. The functionality of the building blocks can
be customized by the designer in different ways. For links there is the possibility
to decide bandwidth, percentage of packets lost, maximum packet queue size and
delay in milliseconds stating the time it takes for the packets to go from A to B [19].
On hosts CPU power as well as the number of cores available for hosts to use can
be declared. Switches have the option to choose which transfer protocol and what
type of switch to be used. In addition to all the options available to choose from,
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programming how the building blocks should be connected as well as the amount of
each component can all be decided within the script.
Due to not being able to test the systems on the vehicles in the real-life scenario
this thesis is based on a custom made topology that is similar to the predefined
simple topology that is mentioned in 3.6b in section 2. In the real life scenario the
vehicles are not able to talk directly between themselves so they use a cloud service
to relay messages for them which is illustrated in Figure 3.8. In the virtual network
the cloud is emulated by a switch.

(a) Tree topology with a depth of two
and a fan-out of four.

(b) Torus topology with nine nodes and
hosts.

Figure 3.7: Torus and Tree topologies.

In the Centrally managed system all hosts are not equal, in the real-life system there
is the central host which can be seen in Figure 3.8 named "Cloud". A custom simple
topology was made with N − 1 slave hosts and one master host in the network with
a total of N hosts. The master node represents the central database in this scenario.
All hosts have limited processing power and a connection to the switch with limited
bandwidth that disconnects on predefined times.

Figure 3.8: System design of the Centrally managed system used as of today.
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To achieve this a Python script was written that is made up of two classes, Custom-
Topo and CustomTopology. CustomTopo extends the Topo class from the Mininet
package. In CustomTopo there is a function called build which must exist in the
Topo class as it is run when an object of the Topo class is created. In build the
number of hosts, switches and links in the network topology is defined. Hardware
performance of the hosts like number of cores, how many percent of CPU the host
is allowed to use and IP address is also defined in the script. The number of cores
was set to two, the IP address of the hosts set to "20.1.90.ID" where ID is the ID
number of the host in range of 1, 2, 3, ..., n.

The CustomTopology class sets up the network and the performance of the network.
First an object of CustomTopo is created with the number of desired hosts. Then
the performance of the links is defined followed by the switches. Next all different
settings for the parts are combined with the addition of other settings like IP base
into a network object by using the Mininet class. This object represents the network
and it can be started and shutdown by built in functions.

Once the network is up and running individual hosts (nodes) can be selected in the
network and run programs on them. This is used to run the script containing one of
the different backend solutions that will be compared in this thesis. Once the hosts
are running their backends there is the possibility to start a simple command-line
interface for the network with the CLI() function within Mininet. The command-
line interface enable the possibility to break link connections between the hosts and
the switch by typing certain commands in the CLI. As we want to recreate the
exact same behaviour in all tests we can not write every command individually.
Instead once the hosts are running their backends we start a script that creates the
connection behaviour we want and that provides reliable results for all tests.

3.4 Network Communication between Replicas
In all the different systems tested in this thesis the communication is done by using
sockets running TCP. Several libraries that would have provided a sufficient back-
end solution were considered, SocketServer, SimpleHTTPServer and Sockets or a
combination of SimpleHTTPServer and SocketServer. SimpleHTTPServer uses the
SocketServer to send its messages and the SocketServer in turn uses Sockets. Based
on the low bandwidth and the high rate of connection loss SimpleHTTPServer was
out-ruled as the extra data added to each message by the HTTP protocol would
increase message size for functionality that was deemed unnecessary for the systems
[7, 10]. The SocketServer and the Sockets were left as options with Sockets being the
better option for the backend core communication as it meant the bare minimum
for the systems.

Each node act as both server and client in the network. In all systems nodes listen for
connections from other nodes and connect to other nodes to send updates or states.
The server part of the node was built by setting up a socket that has been configured
for IPv4 with Transmission Control Protocol (TCP). An IP-address together with
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a port is bound to the socket. When setting these parameters the socket can listen
for incoming connections. A loop was created that checks for incoming connections,
when connections are established threads are created to handle each new connection
to avoid blocking new incoming connections. The code used in all systems created
in this project can be seen in Source Code 2.

1 # AF_INET -> ipv4 and SOCK_STREAM -> tcp
2 sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
3

4 #Starting server
5 sock.bind((IP, PORT))
6

7 # Listening for connections
8 sock.listen(5)
9 while True:

10 # someone connected to the socket
11 connection, connectioninfo = sock.accept()
12

13 # Creates a new thread to handle each connection
14 thread = Thread(target=handleconnection)
15 thread.daemon = True
16 thread.start()

Source Code 2: Backend communication on all nodes listening for incoming
connections.

To be able to send data in an environment where connections may be lost at any time
the recipient must be able to acknowledge if the entire message has been received.
Since it is a stream of data and chunks of data can be sent at different speeds the
receiver does not know how much data it should wait for. To counter this problem
an "end of transmission byte" in the form of a semicolon is appended to the message
which can be seen on line 1 in Source Code 3. Once the data is ready to be sent
the size of the data is saved in order to estimate when all bytes of the message have
been sent. The data is sent by the send function which returns the number of bytes
sent. It transmits as many bytes as possible but there is no guarantee that all bytes
are sent. Therefore after each call to send, the number of sent bytes is saved to
the total bytes sent variable, then continues to send all the bytes that have not yet
been sent. If send returns 0 the connection has been lost and the send attempt is
canceled. This is displayed on line 6-7 in Source Code 3.

24



3. Design and Implementation

1 data = (DATATOSEND+ ";").encode()
2 datasize = len(data)
3 totalsent = 0
4 while totalsent < datasize:
5 sent = sock.send(data[totalsent:])
6 if sent == 0:
7 break
8 totalsent += sent

Source Code 3: How the systems send data between nodes.

As mentioned before the data stream that is sent is ended by a semicolon. The re-
ceiver continuously compares every incoming byte individually to the end statement.
If the received byte is not the end byte nor EMPTY/NULL the byte is appended to
the received message. If the end byte is received the loop is broken and the message
is delivered. The order of the received bytes is maintained thanks to the sockets
using a TCP connection. If an EMPTY/NULL byte is received the connection is
broken and the entire message is dropped. The code for the recipients is illustrated
in Source Code 4.

1 while True:
2 byte = connection.recv(1)
3 byte = byte.decode()
4 if byte == ";":
5 receivedMessage = True
6 break
7 elif byte:
8 data += byte
9 else:

10 break

Source Code 4: Code for message reception on nodes.

3.5 Data Persistence
The databases that nodes use to persist data in the virtual network are SQLite
databases. It has support for Python, has good documentation and is the type of
database that the vehicles in the real life scenario use. The nodes have the exact
same database layout as the vehicles with the exception of foreign keys (relations
between tables). All tables in the database are using a primary key column that is
an auto increment integer called _ID. This means that when an insert is performed
to the table, a value is added which is one value higher than the _ID value of the
last inserted.
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In this thesis the functions the database can perform has been limited, these can be
seen in the API "DbConnect" in Figure 3.3. This API allows both the State/Delta-
CRDT systems and the Centrally managed system to create new databases from a
hard-coded layout, add entries to tables, query the database to get the full state or
desired parts of it, check if entries or databases exist, get snapshots (only used by
Delta-CRDT), delete entries and update entries.

DbConnect contain no decision making, all decisions are done by the systems them-
selves, it just allows the systems to communicate with the database/databases.
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In this chapter the results from the gathered data representing the connectivity of
the network, the behaviour of the vehicles in the real-life system, all seen in Section
4.1, in addition the results from the tests made in the simulation are discussed and
shown. The results are used to determine the performance between the different
implemented systems, Delta-CRDT, State-CRDT and a Centrally managed system
each discussed in Sections 3.2.4, 3.2.3 and 3.1.

A Reference system has been created to be used to compare and draw conclusions on
the performance of the other systems. The Reference system is a centrally managed
system operating in a test environment with perfect conditions. Perfect conditions
in the Mininet network simulator(virtual environment), explained in Section 3.3, is
bandwidth of links set to 1 Gbit/s, a latency of 10ms and there are no connection
loss in the system. The Reference system is ran in the virtual environment with the
same number of nodes as the other systems 8, 13 and 16. The tests for the Reference
system are made to be used as a reference when comparing the performance of the
systems by measured metrics that will be defined in the following paragraph. The
centralized system and the CRDT systems have ran the same test script with the
same predefined settings of number of nodes, broadcast time interval and discon-
nect rate. The Reference system differ by having better bandwidth, latency and a
disconnect rate of 0%.

In Section 4.1 information is given to clarify how the test script was created how the
settings for the virtual nodes and virtual environment were determined based on data
collected from a system in production at CPAC Systems. This is then succeeded by
a section with the specifications of the hardware the virtual environment, systems
and tests were run on.

The following sections present the results of each system of the performance metrics
that were measured. In Section 4.2 the converge time metric’s results are presented.
Converge time is the time it takes in seconds, from the test start, for all nodes in the
system to converge to the same state. The converge time gives a hint of the overall
performance of the system, a high converge time suggest that the system have had
difficulty to handle the load on the network or nodes have not been able to load
with the local calculations. Because of how it is implemented the converge time will
always be ConvergeT ime ≥ TestDuration.
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Section 4.3 presents the message size, the number of bytes sent message from a node
has, metric’s results. The message size can be compared to see how much strain the
system as a whole puts on the network, the bigger messages sent the longer it takes
for the receiver to get the message and thus take up resources on the network. The
message size is measured by the node before sending each message. The message
size has a direct correlation to the size of the state on the nodes for multiple of the
examined systems as the message sometimes is the entirety of the state.

Following Section 4.3 is the message latency metric which is presented in Section
4.4. The message latency is the time it takes from the time a connection is setup
between two nodes until the entire message has been received at the receiving node.
The message latency metric shows the performance of the network. High message
latency times indicate that the network has been flooded with too many and/or
too large messages. There is a direct correlation between the message size and the
message latency if the bandwidth is constant.

Section 4.5 present how many bytes in total was sent during the test. The target of
this metric is to get a more comprehensive view of how much data is being transferred
in the system. The bytes sent provides another dimension to the amount of messages
sent in the system as a whole and how the total amount of bytes is spread between
the nodes in the system. Each time a message is sent the size of that message is
added to the total bytes sent metric. At the end of the test it contains the total
sum of messages sent.

Section 4.6. The merge latency is the time it takes for a node to perform an op-
eration. Operation in this context can either be a received message from another
node, which correlate to a state, or a local update which can be seen as a state
with a single atom. When a state is received by a node it performs a merge opera-
tion, discussed in Section 3.2.2, to update its own state. The merge latency is the
time from a state is received until the merge operation has been completed. This
metric provide information on how the nodes in the systems handle the calculations
required to perform their actions and if they are flooded with operations does this
affect the latency negatively, if so, to what extent.

Finally, in Section 4.7 is discussion on the results of the quality arrays. Quality
arrays is defined as arrays of success or failure of message deliveries from other
nodes. Quality arrays is not a performance metric but rather a way to see that
nodes actually have diverged during the test. In the section it will be discussed
how the different systems diverge and how the nodes reacquire the same state after
diverging.

The results presented and discussed in this section are a selection from the extensive
amount of data generated by the tests. The results are summarized and the focus has
been on the performance of the systems for tests made with 16 nodes as this is the
most demanding setting for the systems, to see all the gathered results from the test
they can be found at: https://github.com/perzonas/exjobb/tree/master/results.
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4.1 Setup of Virtual Test Environment

The test environment consist of a virtual network created with Mininet, explained
in 3.3, in which nodes are running a script that simulates local updates that are
propagated differently by the nodes in each system.

Figure 4.1: The Chepstow quarry, where data has been collected, with the
position of active vehicles marked with vehicle symbols. Picture from CPAC

Systems [1].

The test data and parameters are based on the data produced by vehicles running
in the Chepstow mine, seen in Figure 4.1. In this unreliable environment messages
are dropped because vehicles disconnect from time to time. The data is used to get
as accurate inputs as possible for the systems in addition to the overall accuracy of
the simulation.

4.1.1 Local Updates

For consistent testing and testing the systems in a similar way to the real-life sce-
nario, updates from each node are performed to mimic how the vehicles would receive
them. Every node continuously read a row from its local file where each row repre-
sents an action performed by the vehicle that is to be applied to the local database.
In order for all the updates not be applied at once there is a script that writes to
N local files, N being the number of nodes for the test, at predefined times. This
way the timing of updates can be controlled and all tests will be identical for all the
systems. An illustration of the process is shown in Figure 4.2.
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Figure 4.2: An illustration of how the local updates are created and perform on
the systems in a consistent manner.

4.1.2 Number of Updates Per Vehicle
How much load in terms of updates to put on the systems was based on data
gathered from 13 active vehicles. The data provided the number of actions from
three different time intervals, Short Interval (48h), Medium Interval (1 week) and
Long Interval (3 weeks), each with a different time frame (30min, 1 hour, 3 hours).

The service provided to extract the gathered data did not support the option to go
further into depth i.e. to look at smaller time frames. It did not allows us to see how
the updates were distributed during the time frames available to us. We focused on
three different time intervals, can be seen on the last row of each interval’s result
seen in Table 4.1.

Table 4.1: Results from gathered data about the actions performed.

Short Interval (48h) Results
Average updates per hour 421.888889
Average updates per hour per vehicle 32.452991
Highest number of updates in a 30 min window 737
Medium Interval (1 week)
Average updates per hour 631.938967
Average updates per hour per vehicle 48.610690
Highest number of updates in a 1 hour window 3295
Long Interval (3 weeks)
Average updates per hour 614.625571
Average updates per hour per vehicle 47.278890
Highest number of updates in a 3 hour window 9088

When looking at the results the interval with the highest number of updates in Table
4.1 is used as a guideline when creating the script that performs the local updates,
discussed in Section 4.1.1. If the system is able to handle the higher number of
updates it will be able to handle lower loads as well. Updates are performed in
waves to be as close to real-life as possible, when a vehicle starts working in the
beginning of its shift it does not perform all of its work directly, the work is spread
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across the entirety of the day. Each wave of updates are different to see if the
systems can handle a high number of actions in a short period of time in addition
to lower loads.

Table 4.2: Time intervals displaying the number of updates performed by each
node during testing.

Time (s) 0-50 50-95 95-135 135-170 170-200 200-225 225-245 245-260 260-270 275-280 >280
Updates 5 10 3 3 1 10 3 5 20 15 5

The behaviour of the vehicles in real-life can also be viewed as performed in waves
as they perform their updates at different speeds, a digger loading a dumper truck
performs more frequent updates than a dumper truck transporting material from
point A to point B. The different waves can be seen in Table 4.2, in the end of the
test (245<) more than 50% of the updates are performed to simulate a burst of
updates with almost the same amount of updates as the average updates per hour
in Table 4.1. The behaviour of the local updates should affect the results and thus
provide interesting end results.

4.1.3 Network Performance
To be able to simulate a test environment as close to the real-life vehicles network
data was collected from the vehicles in production. The data, containing network
performance collected from the vehicles were structured as shown in Source Code 5.

1 {
2 "timestamp": "1555579143274",
3 "signalStrength": 18,
4 "networkOperator": "Tele2",
5 "dataStatus": 2,
6 "location": {
7 "longitude": 11.9994135,
8 "latitude": 57.647903
9 }

10 },
11 {
12 "timestamp": "1555579143274",
13 "signalStrength": 99,
14 "networkOperator": "unknown",
15 "dataStatus": -1,
16 "location": {
17 "longitude": 11.9994135,
18 "latitude": 57.647903
19 }
20 }

Source Code 5: Collected connection data.
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The different fields of importance are an epoch timestamp which is the number of
milliseconds from January 1st 1970 and signalStrength, the quality of the connection
in Arbitrary Strength Unit (ASU). There are different ASU values depending on
what kind of signal it is used for, in this case it is GSM (3G) [3]. With GSM (3G),
ASU can have values between 0 and 31 as well as 99 where 99 means that the signal
is undetectable (disconnected). NetworkOperator is ignored as it provides no useful
information in this context. DataStatus displays if the vehicle is connected, 2, or
disconnected, -1. Location is also ignored as only connectivity is of interest but
could be used to find connectivity issues of certain areas.

The signal quality is measured in dBm and for the 3G network it is called Received
Signal Strength Indication (RSSI) [9]. To change the ASU value into an RSSI value
the following formula is used:

2 ∗ ASU − 113 = RSSI[17]

The calculated RSSI value can then be used to gain knowledge about the quality of
the signal. The signal quality is divided into 5 different levels [12], these are shown
in Table 4.3.

Table 4.3: Table of the signal quality from RSSI value.

RSSI QUALITY
<-70dBm Excellent

-70dBm to -85dBm Good
-86dBm to -100dBm Fair

>-100dBm Poor
-110dBm No signal

As the signal quality declines the ability to transfer data is lost faster than the
availability of telephone communications. Already at poor connection quality in
Table 4.3 there is next to no data available [29]. The collected data show the
following results:

• Total number of seconds measured: 6426
• Total number of seconds disconnected: 87
• Total number of seconds connected: 6339
• Downtime percentage: 1.354%
• Number of disconnects: 3
• Average time of disconnect: 29 seconds
• Average time between disconnects: 32min & 8 sec
• Highest signal strength recorded (ASU): 26
• Lowest signal strength recorded (ASU): 1
• Average signal strength (ASU): 16.1325
• Average signal strength in dBm (RSSI): -80.7349
• Average signal strength is classified as: Medium (good voice and data)
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From the results it can be deduced how often and for how long connections should be
removed between hosts, explained further in Section 4.1.4. In addition to this it can
be interpreted that the average quality of the connection is sufficient for providing
both data and voice to the nodes. There is no direct formula to provide the upload
and download speeds for a 3G connection based on the signal strength in either ASU
nor RSSI. To be able to find a bandwidth for the network, the connection speeds
of a 3G connection were analyzed. There are many different possibilities for doing
this depending on the generation of 3G used. It ranges from 0.1 Mbit/s up to 8
Mbit/s in upload speeds and 0.3 Mbit/s to 42 Mbit/s in download speeds [12, 16].
In this case the upload speed is the most important of the two since a node can
not download any more than another node can upload. Thus the upload speed is
setting a limit for the connections. During testing we will be keeping the speed at
1.5 Mbit/s, which is usually the throughput you receive from a 3G network [12]. We
believe this is the correct choice for the scope of this thesis. The average latency
of all the 3G networks in Australia is 150ms [16]. Ken Lo claims that the average
latency for 3G overall is 100ms [12]. Based on this we will perform the test using a
latency of 150ms to simulate bad connectivity and the systems will work even better
with better latencies.

4.1.4 Connectivity
To be able to simulate connectivity loss, a script was made that runs in parallel
with all the hosts and with the local updates script mentioned in Section 4.1.1. This
script changes the status of the links between the hosts and the switch, the switch
simulate the network which all nodes connect to. When the status is changed to off
no packets can be sent across that specific link. The status can be swapped freely at
any time from either on or off. The time a host is disconnected is brief as mentioned
in Section 4.1.3.

Figure 4.3: The basic idea behind the script performing systematic
connects/disconnect on the nodes during the test.

The idea is that a test should be 300 seconds long and with 1.35% disconnect time
that will result in a 4 second disconnect for the entire test. The 4 seconds does not
have to be sequential and can be split up into multiple shorter sequences. In the test
data there were 3 different disconnects all with similar length. To recreate the real
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life scenario 3 disconnects were simulated each lasting for ≈ N/3 seconds, where N
is the the total time a node should be disconnected in seconds. For the real life test
N equals 3. During the test two different disconnect patterns is used. Some nodes
disconnect 3 times and other disconnect 2 times but for longer periods of time. It
is good to have variety in the duration of disconnects as well as longer periods of
downtime. In the real life data the disconnects are not equal and to choose a longer
duration disconnects on some nodes will provide a more interesting result.

The tests will be based on the information gathered from the data. 4 second dis-
connect duration based on the 1.35% will be used as the base case. Additional tests
with increased disconnect duration will be performed to simulate scenarios with
lower connectivity than the connectivity deduced from the gathered data. This is to
see if there are any changes in the performance of the different systems when they
are challenged with lower connectivity.

4.1.5 Hardware
All the tests have been performed on a Lenovo Thinkpad T420. To get a fair
representation of the results a single machine was used for all the tests. Using
multiple machines could have potentially skewed the results for this thesis. The
specifications are shown in Table 4.4.

Table 4.4: A table of the hardware specifications used during testing

LENOVO THINKPAD T420
Processor Intel® Core™ i5-2520M CPU @ 2.50GHz
Memory 8GB DDR3
Storage Samsung MZ7PA 128GB SSD
Operating system Ubuntu 18.04.2 LTS

4.2 Converge Time
In this section the converge time of the systems are presented and discussed. Con-
verge time is the time it takes for the system to converge to the same state on all
nodes from the start of the test. The converge time can not be less then 300 seconds
because of how the test is built, there are local updates being performed for the
first 300 seconds and the system can not converge before all local updates have been
introduced.

4.2.1 Reference System Converge Time
The converge times of the Reference system tests are close to nothing. The test
can not be completed before 300 seconds, as this is the length of the test. In Table
4.5 are the converge times of all the test done with perfect conditions. The results
clearly states that the system converges in less than 0.3 seconds independent of the
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number of nodes and broadcast interval. Table 4.5 also displays 2 patterns, that the
converge time increases with the number of nodes in the system as well as with a
decreasing broadcast interval even if only slightly.

Table 4.5: Table of the different converge times from tests on Reference system.

Number of Nodes Broadcast Interval
5 15 25 35

8 300.0339 300.0163 300.0157 300.0165
13 300.15034 300.0346 300.0357 300.0337
16 300.27895 300.0843 300.0481 300.0882

4.2.2 Centralized Converge Time
The convergence times for the centralized system are shown in Table 4.6. All results
are similar with converge times between 300 to 301 seconds with the exception of
the results from the 16 nodes. The load on the system increases with the size of data
and the number of nodes. For each additional node in the system the total data size
in the system increases in addition to the number of nodes the master node needs
to send its state to when broadcasting.

Table 4.6: Converge times gathered during tests with various setting for the
Centralized system.

broadcast intervalDisconnect rate Number of Nodes 5 15 25 35
4 Seconds/Test, 1.35% 8 300.0313 300.0287 300.0328 300.0303
8 Seconds/Test, 2.7% 8 300.0161 300.0173 300.0168 300.0179
16 Seconds/Test, 5.4% 8 300.0166 300.0209 300.0155 300.0166

4 Seconds/Test, 1.35% 13 300.0679 300.0647 300.0688 300.0651
8 Seconds/Test, 2.7% 13 300.0361 300.0376 300.0371 300.0355
16 Seconds/Test, 5.4% 13 300.0400 300.0354 300.0350 300.0386

4 Seconds/Test, 1.35% 16 335.2897 300.0917 300.0935 300.0958
8 Seconds/Test, 2.7% 16 358.6397 300.0492 300.0511 300.0519
16 Seconds/Test, 5.4% 16 427.7964 300.0621 300.0466 309.4215

The result show that somewhere between 13 and 16 nodes with a 5 second broadcast
interval the system starts having problem to maintain the one second window all
the other test have managed to converge in. The network is getting flooded with
messages slowing down the message latency as discussed in Section 4.4. This affects
the converge time negatively and the test also show that this is effected by the DR of
the systems. A higher DR provides a higher converge time when the network is being
flooded. When the network is not flooded the results are similar independently of
the DR as can be seen in all results with 13 nodes or less. There is one outlier in the
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result which is the 16 nodes with 5.4% DR. Because of the other test with 35 second
broadcast interval being able to converge in < 301seconds, it could be because of
the timing of the broadcast is badly timed or one node lost the last message due to
a disconnect and must wait for the next broadcast.

4.2.3 State-CRDT System Converge Time
The converge time for the State-CRDT system is growing fast with the increase of
nodes as well as the broadcast interval. For 8 nodes the converge time is steady
within 300 < ConvergeT ime < 301, but with 13 nodes results are already showing
worse converge times. Looking at the test with broadcast interval of 5 seconds,
the results are significantly worse, as the converge times range from 1400 to ≈ 3300
seconds, seen in Table 4.7. The network is not able to handle the amount of data sent
between the nodes, all messages are transferred at slower speeds as more message
are sent concurrently. Once the message latency > broadcast interval the network
enters a vicious circle where each following broadcast will only slow the network
down further. In the tests made, slowing down the network also leads to a slow
down of all other actions performed by the nodes as everything is simulated on the
same machine.

Table 4.7: Table of the converge times gathered during tests for the State-CRDT
system.

broadcast intervalDisconnect rate Number of Nodes 5 15 25 35
4 Seconds/Test, 1.35% 8 300.1140 300.1078 300.1079 300.1072
8 Seconds/Test, 2.7% 8 300.1311 300.0535 300.0576 300.0596
16 Seconds/Test, 5.4% 8 300.0593 300.0616 300.0579 300.0573

4 Seconds/Test, 1.35% 13 1953.8584 300.3037 300.3017 300.2878
8 Seconds/Test, 2.7% 13 1407.7268 300.1439 300.1490 300.1684
16 Seconds/Test, 5.4% 13 1400.2475 314.5570 300.1450 300.1416

4 Seconds/Test, 1.35% 16 4798.6765 985.2645 472.7948 300.4186
8 Seconds/Test, 2.7% 16 6001.0533 1171.3792 574.9403 300.2352
16 Seconds/Test, 5.4% 16 >160001 1344.4049 640.9116 343.6800

The broadcast interval has a bigger effect on the converge time than the DR. There
are vast improvements when the broadcast interval is decreased. For example in
the test with 2.7% DR the converge time for 16 nodes starts at 6000 seconds for
the 5 second broadcasts and decrease with each level of broadcast interval down to
300.2352 for the 35 second broadcast interval. That makes it a decrease of 95% in
converge time, the same number is ≈ 96% for the test with 5.4% DR when using
the last gathered value from the test, 16000 seconds, before the computer crashed to
calculate. The reason for the computer crashing is that during the test the system
reaches a point where the message latency is longer than the broadcast interval

1The computer used during testing ran out of memory and crashed
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rate. So for each additional broadcast the network is slowed down and for each
message in transit a new thread is started. With more threads being added than
threads getting killed due to finishing its task, the computer runs out of memory
and crashes. Each times this happened the operative system needed to be repaired.
The connections does not timeout because they are sent at very low speeds and not
broken or lost. We could have implemented a maximum time for the message latency
before dropping the connection on the receiver side, but then the systems might have
stopped working completely as all messages could get dropped if the message latency
would be higher than the threshold. If we would use different thresholds for each
system the results would be skewed and invalid.

Comparing the converge times from the different systems the Reference system does
not have any indication that it reaches any limits with high frequency broadcast
during the 16 node test. The centralized systems starts getting worse converge times
when tested with 16 nodes and a 5 second broadcast. In contrast, the State-CRDT
is getting worse result with 13 nodes and 15 second broadcasts.

4.2.4 Delta-CRDT System Converge Time
The Delta-CRDT system manages to converge within one second for almost all tests
with a broadcast interval of 15 seconds or more. During the two most demanding
tests in DR for this broadcast interval with 16 nodes the system is not able to
converge within one second of 300, shown in Table 4.8. This is an improvement
compared to the State-CRDT system which already had an increased converge time
of 314 seconds when using 13 nodes with 5.4% DR in addition to a converge time of
343 seconds with a 35 second broadcast interval with 16 nodes. The State-CRDT
system gets better results when the broadcast interval is increased and the same can
be seen for the Delta-CRDT system.

When excluding all converge times less than 301 seconds, the Delta-CRDT system
also follow the same pattern as the Centralized and State-CRDT system where a
higher DR increases the converge time of the system if all other parameters remain
unchanged. For most tests the converge time of the Delta-CRDT system and Cen-
tralized system, and all test for the Reference system, are within the time interval
300 ≤ ConvT ime ≤ 301 seconds which is considered acceptable and a good con-
verge time for the system used today. For the 5 seconds broadcast interval the
Delta-CRDT system is having trouble to maintain the converge times of the Cen-
tralized system. Since more data is sent for the Delta-CRDT system the network
gets flooded and slowed down compared to the Centralized system.

Since the Delta-CRDT system with 25 second broadcast interval, for all number
of nodes, have a good converge time this would be a plausible solution to replace
the Centralized system with a higher broadcast interval when only taking converge
time into consideration. Even though the broadcast interval is higher than what the
Centralized system can handle without losing convergence time the machines using
Delta-CRDTs can still be updated equally often or even more so, as they can receive
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Table 4.8: Table of the converge times gathered during tests with various setting
for the Delta-CRDT system.

broadcast intervalDisconnect rate Number of Nodes 5 15 25 35
4 Seconds/Test, 1.35% 8 300.1067 300.1109 300.1079 300.1084
8 Seconds/Test, 2.7% 8 300.0572 300.0564 300.0560 300.0573
16 Seconds/Test, 5.4% 8 308.3991 300.0551 300.0543 300.0540

4 Seconds/Test, 1.35% 13 384.1841 300.3399 300.2772 300.2781
8 Seconds/Test, 2.7% 13 420.1244 300.1711 300.1460 300.1455
16 Seconds/Test 5.4% 13 588.4631 300.1397 300.1426 300.1446

4 Seconds/Test, 1.35% 16 1204.7629 300.5428 300.4104 300.4158
8 Seconds/Test, 2.7% 16 1418.3686 333.5832 300.2087 300.2159
16 Seconds/Test, 5.4% 16 1758.2876 367.1295 300.2191 300.2161

updates from an arbitrary machine and updates can propagate along any path. If
a slave node N in the Centralized system miss a message from the master node M
, due to connectivity issues, it has to wait for the next broadcast from M before
updating its own state. The time N has to wait to receive an update is equal to
broadcastinterval ∗ 2, there is the possibility that the next message may not reach
node N either, giving the time to receive an update if the first message is dropped
≥ broadcastinterval ∗ 2.

For a node N in the Delta-CRDT system that time would be > broadcastinterval
as N does not have to receive the update from node M directly. The update can
take alternative paths, M → K → D → N or M → K → N where M,N,K,D ∈ P
where P is the set of all nodes in the system and M 6= N 6= K 6= D. Another
node may receive the update and the receiving node can then broadcast the new
updated state to the node that missed the original broadcast thus the message can
be received at N after ≤ broadcastinterval ∗ 2.

4.3 Message Size
In this section the message size results measured during testing are shown and
discussed. The message size is the size of each message sent by a node during
the test. The message size metric’s primary use is to see what improvement the
Delta-CRDT provides. As described in the prelude to Chapter 4 the amount of
data generated from the tests is extensive. The results of the message size tests are
therefore presented by comprehensive boxplots as can be seen in Figure 4.4 and 4.5.
All data can be viewed at https://github.com/perzonas/exjobb/tree/master/results.

Both Figure 4.4 and 4.5 present the tests with 16 nodes and 5 seconds broadcast in-
terval. The difference is the disconnect rates which are 1.35% and 5.4% respectively.
The reason for presenting the tests with the most nodes and lowest broadcast inter-
val is because they were the tests the systems struggled the most with. Looking at

38



4. Experimental Study

tests with longer broadcast interval only increases the average and median message
size. This is due to the nodes accumulating more data between the broadcasts as
the data generation is not dependent on the broadcast interval.

Figure 4.4: Size of messages sent by 16 nodes, 5s broadcast interval, 1.35%
disconnect rate. The boxes include 25-75 percentiles, the whiskers are max and min
with outliers included and the dotted lines represents mean and solid lines mean.

The results shown in Figure 4.4 and 4.5 are quite similar. The maximum size of
messages remain the same despite an increase in disconnect ratio. This is expected
since the data that is predefined to be produced in the test is a fixed amount. The
increase in disconnect ratio does however affect the upper quartile of the size of the
messages sent in the Centrally Managed system and the overall message size of the
State-CRDT system. The reason is that the nodes that are disconnected are still
producing data. Therefore, when they reconnect they send the accumulated data
resulting in larger message sizes.

The Delta-CRDT system has the same mean (dotted line) regardless of which discon-
nection rate is being used. The Delta-CRDT system’s nodes does accumulate data
while being disconnected just like the Centrally Managed system and State-CRDT
system. The reason that the Delta-CRDT system’s mean message size remain the
same even though the disconnect rate is increased is because when disconnected,
nodes enable other nodes to send smaller states. The nodes that are disconnected
are not adding to the delta-states that the nodes are sending to each other. Taking
this to an extreme would be when there are only two out of all nodes that are not
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disconnected. These two nodes will send smaller delta-states as these two will only
send whatever new data they are producing. Thus during the time with only two
nodes not disconnected the mean message size will become lower in comparison to
the Centrally Managed system and State-CRDT system which will not lower their
means.

Figure 4.5: Size of messages sent by 16 nodes, 5s broadcast interval (except
State-CRDT which has 15 second broadcast rate because of crash during testing),
5.4% disconnect rate. The boxes include 25-75 percentiles, the whiskers are max

and min with outliers included and the dotted lines represents mean and solid lines
mean.

The mean value of the Delta-CRDT is skewed due to the snapshots that the Delta-
CRDT sends. These snapshots are consistently approximately 3000 bytes in size
regardless of the size of the delta states that the nodes are sending thus lowering
the mean. The same is applicable to the result of the Centrally Managed system
where the slaves send really small messages lowering the mean though not to the
same extent as the Delta-CRDT system. However, in the case of the Centrally
Managed system the messages sent by the slaves are not overhead messages such as
the snapshots the Delta-CRDT system is sending.

The mean for the Delta-CRDTs in Figure 4.4 and 4.5 is outside the box compared
to the other systems where the mean is located within the box. The box of the
Delta-CRDT is very thin around the median due to all the snapshots representing
a large part of the total messages sent. The median is ≈ 3000 bytes and the largest
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25% of the messages range from ≈ 3000 bytes to ≈ 80k bytes and the smallest 25%
range from 180 bytes to ≈ 3000 bytes. The largest 25% of the messages has a ≈ 24
times bigger span compared to the lower 25%. The difference leads to the mean, in
this case, climbing above the median and even outside the box.

The most fair comparison of the results of the different systems is the mean. As
previously mentioned the mean of the Delta-CRDT System is skewed due to the
snapshots which are overhead messages. To compensate for the snapshots, which
are approximately half of all the messages sent by the Delta-CRDT system during
the test, the mean should be doubled. This means that the mean of the Delta-CRDT
system is about 15k bytes. Despite this it can be seen that the Delta-CRDT system
perform approximately up to 50% better than the Centrally Managed system and
approximately 4.5 times better than the State-CRDT system.

4.4 Message Latency
The message latency is the time it takes from the time a connection is setup between
two nodes until the entire message has been received at the receiving node. The
message latency metric shows the performance of the network. High message latency
times indicate that the network has been flooded with too many and/or too large
messages. The results from the readings of message latency are discussed in this
section.

The message latency metric is the metric that gives the best overview of the state
of the network. The links in the virtual environment have a constant bandwidth
and the message size has a fixed max size which is the maximum state size. If the
network would not get affected by flooding the Maximum value of all systems that
send messages with the max size would have the same message latency. This is not
the case as seen in Figure 4.6 where the Reference system has a lower Maximum
compared to the Centrally managed system. The State-CRDT system’s Maximum
is greater than that of the Centrally managed system. The reason for the Reference
system having a lower maximum is because of the higher bandwidth for the links
inside the virtual Mininet environment which provides a lower message latency.
The biggest message for the State-CRDT is the same as the biggest message for the
Centrally managed system and they have the same bandwidth during the test yet
the State-CRDT has a Maximum that is ≈ 10 time that of the Centrally managed
system. This is a clear indicator of the load on the network/system as a whole for
the State-CRDT.

Comparing the Minimum, all systems have approximately the same value. The Min-
imum value is either the first broadcast or a local update in the centrally managed
systems. In the beginning of the tests the states are very small, as small as a single
atom, and the network is at this stage cooping with the load. With all systems
having the exact same potential smallest message and a constant bandwidth they
have the same message latency. The Reference system should have a slightly lower
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Figure 4.6: Latency to receive messages between nodes for systems with 16 nodes
and 5s broadcast interval and 1.35% disconnect rate. The boxes include 25-75
percentiles, the whiskers are max and min with outliers included and the dotted

lines represents mean and solid lines mean.

Minimum because of the higher bandwidth during the test, but the size of the mes-
sage is small enough that the difference in message latency is negligible and because
of that all systems have approximately the same Minimum value.

Continuing with the comparison of the Mean value in Figure 4.6. The Delta-CRDT
has the lowest Mean which is unexpected because of the results in Figure 4.4 and
4.5 where the Median of the Reference and Centrally managed system are ≈ 10%
of the Delta-CRDT. For these systems over 50% of their messages sent are smaller
than 300 bytes compared to the ≈ 3000 bytes of the Delta-CRDT and this would
have a positive effect on the Mean message latency. The Mean of the Reference and
Centrally managed system is outside of the box in Figure 4.6 compared to Figure
4.4 which is unexpected as the Mean is higher than the latency of three quarters
of messages sent compared to the Mean message size is less than the last quarter
of sizes seen in Figure 4.4. The State-CRDT as in all previous test are the worst
performing system. It is only the minimum, as discussed above, that is not worse
than the rest of the systems. The broadcasting of the entire state from all nodes
overflow the network and as the state grows the load increases which lead to longer
message latencies.
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Figure 4.7: Latency to receive messages between nodes for systems with 16 nodes
and 5s broadcast interval and 5.4% disconnect rate (except State-CRDT which has
15 second broadcast rate because of crash during testing). The boxes include 25-75
percentiles, the whiskers are max and min with outliers included and the dotted

lines represents mean and solid lines mean.

Looking at the differences between Figure 4.7 and 4.8 the first thing that catches the
eye is the change in Maximum values. For State-CRDT it is decreased by ≈ 85%
while the other two systems have an increase in Maximum. The reason behind
the decrease of State-CRDT is the fact that the broadcast for this test is not the
same in the figures, it is three times slower, 15 seconds, in Figure 4.7 the reason
for this is mentioned in Section 4.2 as no data was able to be collected for the 5
second broadcast. This lowers the number messages in transit on the network which
decreases the latency as seen for the State-CRDT. Delta-CRDT and the Centrally
managed system both have a higher Maximum with increased disconnect rate. The
size of the message have not changed considerably as discussed in Section 4.3, with
the same message sizes and a fixed bandwidth the reason for the higher latencies
are the load on the systems. With higher disconnect rates there are moments with
higher load on the systems which gives a higher Maximum, in Section 4.2 it can be
seen that the disconnect rate also affects the converge time negatively.

Despite having a longer broadcast interval the State-CRDT system is still the worst
performing when looking at the Mean of the systems. The Mean of the Centrally
managed system has increased by ≈ 40%, this is clear as Maximum in addition to
the Median and Q3 has increased. As the test has longer converge time compared
to the test in Figure 4.6 and there are no more local updates being performed from
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the slave nodes, the ratio between broadcasts and local updates change during the
difference in converge time where broadcast represents 100% of the sent message.
The broadcasts are from the master node and they are containing the entire state
which is significantly larger than the local updates of the slave nodes which alter
the results in just the way seen here. The Minimum and Q1 remain unchanged, in
terms of latency, as the lowest 25% of the messages are still local updates but the
broadcasts are a larger part of the total messages sent. The following simplification
of LocalUpdate ≤ BroadcastedState explains why the Mean, Q3 and Median have
increased as seen in Figure 4.7. While the Mean of the Centrally managed system
have increased, for the Delta-CRDT it has decreased by ≈ 1.5% despite having an
increased maximum of ≈ 200%. It looks like the message latency of the Delta-CRDT
system has decreased in all metrics in Figure 4.7 exceptMinimum, remains the same,
and Maximum as discussed earlier. The minimum is close to unchanged as there
is a threshold based on the structure of the messages which makes it impossible
to reach a lower latency. Unlike the Centrally managed system the Delta-CRDT
system changes the message size ratio to become smaller the longer the test operates
as the differences between the nodes decrease with each message received, greatly
simplified, as a node updates its state with the received δ − state. As the local
updates stop the difference between the nodes state decreases and with that the
δ−states decrease making the messages sent smaller and thus decreasing the overall
message latency.

As also mentioned in Section 4.3 the mean is outside of the box in Figure 4.4 and 4.5.
The same can be seen in Figure 4.6 and 4.7. The message latency and the message
size has a clear relationship, which explains why the Delta-CRDTs mean is outside
the box for the message latency as well as for the message size. In addition to the
Delta-CRDT, the Reference system and Centrally Managed system means are also
outside the box. Both of these systems are centralized and the majority of nodes
are slaves which only pass on their local updates which are very small compared to
the messages sent by the master node which is the size of the entire state of the
system at the time the message is sent. As the master node’s messages are much
larger than the majority of the messages, seen by looking at the top whisker of the
box plot, the mean gets right-skewed or as for our vertical box plots the means are
top-skewed.
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4.5 Bytes Sent
The bytes sent is the number of bytes that each node has attempted to send in each
system during the test. It does not take into account that the sent bytes are received
correctly or if the bytes are lost due to a bad connection, they are still added to this
metric. The bytes sent metric measures the amount of data that is needed to be
sent for each system to reach consistency. The results gathered in this metric differ
in magnitude in a way that prevents it from being displayed in a readable manner
with box-plots which is why in this section the different metrics of the box-plots
instead are displayed in a list to make it readable. The results are from tests with
16 nodes and 5 seconds broadcast interval.

There is a clear difference between the centralized and the decentralized systems
which clearly can be seen in all measurements in Table 4.9. The decentralized
systems have more than tenfold the amount of any of the centralized systems in all
measurements except for the Maximum of the Delta-CRDT. The reason for this is
the nature of the decentralized systems, the decentralized system pays the price of
having higher availability by having increasing information sent in the system. A
detailed discussion of this can be found in Section 2.3. The reason for the centralized
systems having such good performance for the bytes sent metric is that only one
node in the system is sending large amounts of data, the master node. This lowers
the availability of the system as a broken connection to the master node makes that
specific node disconnected from the system as a whole.

Table 4.9: Bytes sent by 16 nodes with 5 seconds broadcast interval and 1.35%
disconnect rate.

Reference
System

Centrally
Managed State-CRDT Delta-CRDT

Minimum 18.846k 18,846k 108,571M 23,358M
Quarter 1 18.856k 18,858k 123,030M 25,524M
Median 18.883k 18,906k 173,638M 27,042M
Mean 1.512M 2,425M 170,423M 27,015M

Quarter 3 18.910k 19,155k 208,992M 28,067M
Maximum 38.306M 47,078M 240,695M 31,021M

Looking at Table 4.9 all metrics except the Maximum value are low when comparing
the centralized systems to the decentralized systems. The reason for this is that the
measured value of the master node is the Maximum for the centralized systems.
All the other measurements, except the mean, are values from a slave node. The
slave nodes as discussed earlier only send messages when they have received a local
update and local updates are single atom states that are sent to only the master.
This makes 15 out of the 16 nodes in the test only send local updates and is another
reason why the results of the centralized systems are lower than the decentralized
systems. There is a small difference in the results between the Reference system
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and the Centrally managed system, the Mean of the Centrally managed system is
≈ 60% higher than the Reference system. The reason for the mean being higher
is mainly because of the Maximum being greater, as mentioned the Maximum is
the bytes sent by the master node. The reason for the master node sending more
bytes in the Centrally managed system can be concluded to the results in Section
4.2. The system has a longer converge time which leads to more broadcasts by the
master node. The master node does not have any retry mechanism and therefore a
dropped message will not lead to a greater number of bytes sent.

The State-CRDT is as in all the previous results the worst performing system, seen
in Table 4.9. In the bytes sent metric it is more clear than in any other test. The
mean of the State-CRDT system is more than 100 times greater than the Reference
system which has the best Mean value in terms of performance. The reason for
the great difference is the CRDT system is decentralized and because of how it is
designed. Each node broadcasts its state to all other nodes in the system. Each
node acts as a master node in a centrally managed system, one can see that even
when comparing the Maximum value of the Reference system, which as discussed is
the master node, with the mean value they should be close to similar if the systems
would have the same efficiency. However, as discussed in Section 4.2, the State-
CRDT has a longer converge time which leads to more broadcasts by each node.

Delta-CRDT outperforms State-CRDT in all measured performance metrics. Delta-
CRDT also has a lower spread between the highest and lowest bytes sent by a node.
The Delta-CRDT does not have better performance than the Centrally Managed
systems when looking at any other aspect than the Maximum value. Even though
the Delta-CRDT system had a higher converge time than both central systems, the
master node in both system has more bytes sent compared to the worst-performing
node in the Delta-CRDT despite it broadcasting its state more often. But as the
slave nodes in the centrally managed system sent such a small amount of data
compared to the master the Mean and Median value of the Delta-CRDT is worse.

Table 4.10: Bytes sent by 16 nodes with 5 seconds broadcast interval and 5.4%
disconnect rate (except State-CRDT which has 15 second broadcast rate because of
the 5 second test crashing during testing).

Reference
System

Centrally
Managed State-CRDT Delta-CRDT

Minimum 18.846k 18,844k 52,395M 28,233M
Quarter 1 18.856k 18,861k 76,869M 29,881M
Median 18.883k 18,911k 88,763M 31,092M
Mean 1.512M 3,060M 83,906M 30,884M

Quarter 3 18.910k 19,117k 93,575M 31,877M
Maximum 38.306M 57,742M 99,447M 33,820M
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When comparing the result in Table 4.10 the centralized systems are still outper-
forming the decentralized systems. The Centrally Managed system has an increased
Maximum value with ≈ 20% which in turn has increased the Mean since it can be
seen that the rest of the data are approximately the same values. The slave nodes
send single atom states so their messages are small, thus the effect of a bad connec-
tion is less noticeable compared to the master that broadcasts larger states. There
is also an increase in converge time which indicates more broadcasts by the master
node leading to more bytes sent while the slave nodes maintain the same number of
messages sent because of just sending local updates which are a fixed number that
is the same for all tests.

Continuing by looking at Delta-CRDT system all results have increased compared
to Table 4.9, the main reason for this is the increase in converge time like discussed
above. The Mean still remains ≈ 10 times higher than the Centrally Managed sys-
tem but the difference of Maximum value has increased with ≈ 8M bytes. The
difference of bytes sent for any node in the Delta-CRDT system has increased in
the same manner as the master node in the Centrally Managed system. The Cen-
trally Managed system still has better performance when looking at the Mean and
Median but the Delta-CRDT system has not lost the same amount of performance
when comparing the Mean in Table 4.9 to Table 4.10 which may suggest that at
an unknown disconnect rate, higher than 5.4%, the Delta-CRDT could surpass the
Centrally Managed system.

The results from the State-CRDT system is from a test with a 15 second broadcast
interval unlike the rest of the results which only have 5 second broad cast rate. The
reason for using that test for the State-CRDT system is that data could not be stored
during the test as the computer crashed and the data was lost. The results are not
the desired but they can still be used to get a rough estimation of the performance.
Even with lower broadcast interval the State-CRDT still has the worst performance
in all measurements. The Mean is ≈ 166% higher than Delta-CRDT, and over
26 times higher than the Centrally Managed system. Because of each broadcast
containing the entire state the total bytes sent increase rapidly compared to the
other systems. Combining this with the results of the converge time in Section 4.2
explains why the system has a mean that is much higher than the other systems.
Making a rough estimating what the mean could be if it had the same broadcast
interval as the other systems it would send three times more messages. This would
give a Mean that is three times higher, not taking into account that the network
will be slowed down further, compared to the 15 second broadcast interval system.
Comparing the rough estimation of estimate ≥ 3×Mean and the rest of the systems
it would be ≈ 10 times worse than Delta-CRDT and ≈ 100 times worse than the
Centrally managed system.

To summarize when comparing the mean, which gives a fair image of the perfor-
mance, of the systems it is clear that the decentralized systems perform worse in the
amount of data sent during the tests. Each node in the decentralized system acts as
the master node in the centrally managed systems, more broadcasted states leads
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to higher total bytes sent within the systems. All systems had worse results with a
higher disconnect rate, one definitive reason for this is the increase in converge time
which leads to more broadcasts. The State-CRDT had the worst result out of all,
even when being compared with a broadcast interval three times slower than the
other systems the State-CRDTs perform the worst.

4.6 Merge Latency

The merge latency metric is the time it takes for a node to perform an operation.
Operation is either an external merge between a received state or a local update
and its local state. A local update is a state with a single atom so the system
handles it as a merge. The local updates simulate the machines performing actions
and owing to this their state is updated with a single atom. An important note
is that in the centralized systems the slave nodes do not directly perform the local
updates received locally. When received they are instead being forwarded to the
master node where they are merged and then distributed across slave nodes. As
mentioned before the results displayed in this section is also an outtake of the total
results and are focused on the test with 16 nodes and 5 seconds broadcast interval.

Figure 4.8: Latency to perform a merge operation in systems with 16 nodes and
5s broadcast interval and 1.35% disconnect rate. The boxes include

25-75percentiles, the whiskers are max and min with outliers included and the
dotted lines represents mean and solid lines mean.
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Looking at the results gathered where the disconnect rate is 1.35%, the mean (dotted
line) of the Delta-CRDT system is the lowest of all the systems as seen in Figure
4.8. The Reference system is the only system in this figure that does not have
any disconnects present across its nodes. Despite this it has the second highest
mean merge latency, only system with worse mean is the State-CRDT system. The
State-CRDT system was as expected the worst in mean and it has the highest
merge latency out of all the systems. This is because all nodes in the State-CRDT
system broadcast their entire states with each broadcast which overflows the network
with data which in turn create larger merge operations. Each node receives N − 1
states, assuming no nodes are disconnected, where N is the number of nodes in the
system. Each state requires a merge operation. The reason for the Delta-CRDT
system having the lowest mean is because of the δ-state. The δ-states only contain
information not already possessed by the node that sent the snapshot. Therefore
the δ-states are smaller than the state sent by nodes in the State-CRDT system and
the master node in both centrally managed systems. Thanks to this Delta-CRDTs
have the lowest max value, closest is the Centrally Managed system which is ≈ 3.5
times higher. It shows clearly on the max value as a smaller state requires less
time to merge. This can also be seen in the difference between min and max which
is explained by the difference in state size across the nodes in the system. In the
beginning of the test the states are small and thus making for fast merge latencies.

Looking at the boxes in Figure 4.8 it shows that the Reference system has the lowest
median as well as q3 out of all system, since it is a centrally managed system the
reason for the majority of the operations, > 75%, are below 500 ms compared to
the State-CRDT which has > 75% greater than ≈ 700 ms. This is also reflected
by the low median of the Reference system. The Centrally managed system also
has a lower median than the CRDT systems. Both the Reference system and the
Centrally managed system use the same node network hierarchy which explains these
results. The same number of local merge operations are performed in all systems
but the amount of merge operations with the received states (state merge), which
are always the same or larger than the local merge, differ in the different systems.
In the centrally managed system it is performed N − 1 state merges each broadcast
while in the CRDT systems, which are decentralized systems, (N −1)2 state merges
are performed which leads to a higher median.

The minimum value of all the systems are less than 1 ms, the small difference in
minimum merge latency could be a difference in background load on the system by
the operating system or another background software. The State-CRDT system has
the largest range between the max and min value, followed by the Reference system.
The Centrally managed system has a lower max value than the Reference system
which is unexpected, but comparing the the max values of the CRDT systems in
Figure 4.8 and Figure 4.9 there is a pattern that a higher disconnect rate decreases
the max values of the systems. The reason for this could be that the all parts of
the simulation is done in software. The network and all the local computations by
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Figure 4.9: Latency to perform a merge operation in systems with 16 nodes and
5s broadcast interval and 5.4% disconnect rate (except State-CRDT which has 15
second broadcast rate because of crash during testing). The boxes include 25-75
percentiles, the whiskers are max and min with outliers included and the dotted

lines represents mean and solid lines mean.

nodes are sharing CPU and memory. When a connection disconnects it takes load
of the system which increases the available resources for the rest of the system. This
would also explain the reason that the Reference system has a higher Mean merge
latency than the Centrally managed system.

With the higher disconnect rate seen in Figure 4.9 the biggest change in the results
are the max value of the State-CRDT system. In the test with the lower disconnect
rate the State-CRDT had a Maximum of ≈ 500k and with the higher disconnect
rate in Figure 4.9 that value is ≈ 100k. The reason for the decrease for the State-
CRDT is the same as discussed earlier, the broadcast interval for the State is not 5
seconds but is instead 15 seconds. With the lower number of messages the overall
load on the system is decreased leaving more CPU processing power for merging
which decrease the merge latency as the latency is measured in real time and not in
logical time.

The Centrally managed system has minimal changes in Figure 4.9 compared to
Figure 4.8. All values have increased except the minimum value which remains
approximately the same unlike the CRDT systems which see a decrease in all mea-
surements in the box plot. The difference between the CRDT systems and the
Centrally managed system is that they are of the decentralized replication model.
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They are sending more messages compared to the Centrally managed system which
in theory should slow down the system and flood the network. With higher discon-
nect rate more messages are dropped and that results in a lower load on the system
which gives faster operation speed as the operations are measured in real time when
comparing the same system with higher and lower disconnect rates.

Both Figure 4.8 and 4.9 display mean values that are skewed as in Section 4.3 and
4.4 for the two centralized systems. The Delta-CRDT does not have a skewed mean
for the merge latency metric. The maximum merge latency for the Delta-CRDTs
are the lowest out of all the systems, seen at the top whisker in Figure 4.8 and 4.9.
Because the maximum of the Delta-CRDT is closer to the upper quartile of the box
the mean is within the box. The two centralized systems both have low median and
upper quartile compared to the upper whisker. Because the master node receives
all local updates individually from all the slave nodes it performs a high amount of
merge operations with single atom state which provide a small merge latency. The
slave nodes perform merge operations with the entire states of the system that is
received from the master node. These two factors are the reason for the difference
that is clearly seen in the result in Figure 4.8 for the Reference system. 75% of the
recorded latencies of merge operations for the Reference system are below 200 ms
and the maximum latency measured ≈150k ms. The maximum latency for a merge
operation represents 750 merge operations at the upper quartile for the Reference
system. Because of the nature of the centralized systems the mean for the merge
latency is top skewed.

The order in which the Mean distribution does not alter with higher disconnect rate
as seen in Figure 4.9 compared to Figure 4.8. Delta-CRDTs maintain the lowest
mean, followed by the Centrally managed system, the Reference system, and lastly
the State-CRDT system. The significant change in mean can be seen in the State-
CRDT which has decreased ≈ 50% from ≈ 20k in Figure 4.8 to ≈ 10k seen in
Figure 4.9. The reason for this was discussed earlier with the State-CRDT having
a different broadcast interval in Figure 4.9. The Centrally managed system has a
≈ 15% increased Mean while the Delta-CRDT has a decrease with ≈ 10%. As the
size of the state on the master node grows the time it takes for a slave node to
perform a merge operation increases. With a longer converge time more broadcasts
are performed by the master node and thus the slaves are performing more merge
operations with larger data sets than the average seen in Figure 4.8. The Delta-
CRDT, on the other hand, performs merge operations with the δ-state, with longer
converge time more δ-states are merged, and with each merge, the next δ-state will
decrease in size until it stops receiving δ-states when convergence is reached between
two nodes. With smaller δ-state over time the merge latency also decreases with
longer converge times as is seen in Figure 4.9.

To summarize, State-CRDT does not perform well in the merge latency metric
either, the system sends big states which take too long to merge compared to the
other systems and the system being decentralized is not helping for this metric.
The Reference and the Centrally managed system are merging many small messages
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which provides a lower median than the decentralized systems because the master
node performs merges for every single atom local updates the slave nodes send.
The Delta-CRDT performs the best when considering the Mean, because of the
δ − state ≤ State the merge operations are faster than they would be for a slave
node in a centralized system or any node in the State-CRDT system. Provided this
the Mean for Delta-CRDT is the best in both Figure 4.8 and 4.9.

4.7 Quality Arrays
Quality arrays show the amount of lost messages and which messages are lost in
addition to if messages are lost in sequence or individually. Figure 4.10 and 4.11
show visual representations of which messages a node has either failed to receive
(0) or received (1). Each line represents messages that were received or failed to be
received from a particular node in the network. Each column represent a broadcast
round. The system is either "in sync" if all nodes are in the same state or "out of
sync" if one or more nodes’ states differ.

Figure 4.10: Quality arrays created by a node where each line is an array of
messages received or not received from other nodes in the system. 1 is received
message while 0 is lost message. State-CRDT system, 16 nodes, 15s broadcast

interval, 5.4% disconnect rate.

Since its not reasonable to show all results from all tests the results will be summa-
rized. Unsurprisingly a higher disconnect rate leads to more lost messages through-
out all the tests which in turn leads to the nodes diverging. When looking at the
converge times in for example Table 4.8 in Section 4.2.4 it can be seen that the tests
with 16 nodes, 15 seconds broadcast interval and 2.7% and 5.4% disconnect rate
have increased converge times, 334 and 367 seconds respectively. However, when
studying the quality arrays in Figure 4.11 it can be seen that the node that created
the arrays (top row or node 1) have been trying to send more broadcasts than it
has received from other nodes. This means that these results are again affected of
the network being flooded with too many messages. Another indicator of this can
be seen by looking at the converge time of the tests in Table 4.8 with 16 nodes, 25
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seconds broadcast interval and 2.7% and 5.4% have the normal 300 seconds converge
time. The longer broadcast interval have enabled the network to keep up while the
converge time is unaffected by the disconnect rate.

Figure 4.11: Quality arrays created by a node where each line is an array of
messages received or not received from other nodes in the system. 1 is received
message while 0 is lost message. Delta-CRDT system, 16 nodes, 15s broadcast

interval, 5.4% disconnect rate.

The same applies to Figure 4.10 though in this case the reason the converge times
are longer is because the messages the nodes in the State-CRDT system send are
too large and therefore overloading the network. In both Figure 4.10 and 4.11 it
can be seen that the first column contains a majority of lost messages (0). This is
because this specific node has disconnected during this time and missed all or most
of the first broadcasts from the other nodes in the system.

On a more general note, as the nodes are all sending their messages at the same
time a message not received by a node means that the system is out of sync for
at least one round. The slave nodes in the Centrally Managed system will try to
resend their messages until they succeed so on the master node it will look like all
messages were received without fail. However, if a slave node disconnects it will fail
to receive the states sent by the master node. Furthermore, the other nodes will not
receive any updates from the disconnected slave node. Once the disconnected slave
node reconnects and manages to receive a state it will be in sync with the rest of
the system again after just a single round due to the master node sending the whole
state. This means that it takes one broadcast round for the slave nodes to be back in
sync after a disconnect period has happened. In Table 4.11 the maximum dropped
messages in sequence for the Centrally managed system is 2, with the broadcast rate
of 15 seconds the time for the slave nodes to be back in sync would therefore take
15× 3 = 45 seconds.
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Table 4.11: Summary of the gathered results from the quality arrays. This is
a representation of the quality array displaying ( the maximum percentage of drop
messages by a node, maximum number of dropped messages in sequence by a node).
Tests are done with 16 nodes and 15 second broadcast rate for all systems.

1.54% disconnect rate 5.4% disconnect rate
Centrally managed ( 0.4%, 1 ) ( 6.6%, 2 )
State-CRDT ( 3.7%, 2 ) ( 9.2%, 2 )
Delta-CRDT ( 1.9%, 1 ) ( 12%, 2 )

The State-CRDT system and the Delta-CRDT system also only require a single
round to be in sync if certain criteria are met. The criteria consist of at that least
one node, N , in the system has received messages from all other nodes during a
broadcast round and N is able to send its state during the following broadcast
round to all other nodes M with the following property M 6= N inside the system.
These criteria are in fact the same required for the centrally managed systems as
in the CRDT systems when the node N represents the master node. Expanding on
this reasoning it can be seen that as long as some node in the CRDT systems receive
a state from a node and is able to propagate during the following round the system
will stay in sync. This creates redundancy for when nodes disconnect in the middle
of a broadcast round meaning some nodes not receiving the broadcasted state.

Building on this the results shown in Table 4.11 show the maximum dropped mes-
sages in sequence for the Centrally managed system and the CRDT systems are
two for 5.4%. For the Centrally managed system this would result in the system
being out of sync for 45 seconds, the time for three broadcast rounds to occur. The
CRDT system on the other hand has redundancy as discussed and will because of
this return to a synced state faster than the Centrally managed system as the CRDT
system will be out of sync for ≤ 45 seconds.

One major difference between how the Centrally Managed system and the CRDT
systems diverge is that the nodes in the CRDT systems apply their own updates
to their own states directly. The slave nodes in the Centrally Managed system
require the master node to apply the update. This means that the nodes in the
CRDT systems are more prone to have diverging states thus being out of sync.
However, this is a crucial technicality for the CRDT systems to function as they
are decentralized systems with no single entity to decide on a state such as in the
Centrally Managed system.
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Starting this chapter is Section 5.1 the discussion of the questions that were asked at
the beginning of the project. In Section 5.2 the particular design of the Delta-CRDT
with Snapshots in this project is discussed upon as it differs from the proposed
solution by Almeida, Shoker and Baquero [4]. Following is Section 5.3 where the
main hurdles for CRDT systems are being discussed. Lastly is Section 5.4 which is
thoughts on improvements that can be made in order to boost performance of the
CRDT systems.

5.1 Discussing the Questions Asked for this Project
At the beginning of this project there were questions asked, stated in Section 1.2.
Here we present reflections of the results presented in Chapter 4 based on previously
mentioned questions.

5.1.1 Can CRDTs be used in a real-life environment with
large data sizes and low number of updates on a low
bandwidth network?

Technically the State-CRDT can be used but definitely should not. Looking at the
results from Table 4.9 it can be seen that the State-CRDT sends multiple times more
data than the Centralized system and the Delta-CRDT. The huge amount of data
sent by the State-CRDT together with the broadcast rate is the reason the network
becomes overloaded. The overloaded network results in extreme converge times for
the State-CRDT with some tests never converging at all which can be seen in Table
4.7. Even though there are configurations that allow the State-CRDT to converge
with reasonable times, the ever growing states of the State-CRDT will eventually
cause these configurations to also overload the network.
The Delta-CRDT is a viable option as its performance wise far superior to the State-
CRDT and is also better than the Centralized system on all metrics except total
bytes sent and converge time. The complexity of the Delta-CRDT is higher than the
State-CRDT. However, the Delta-CRDT in this project uses snapshots which keeps
the difference in complexity compared to the State-CRDT to a minimum. This is
expanded upon in both Section 5.1.4 and 5.2.
Despite the Delta-CRDT having better performance than the Centralized system
currently in use in the particular real-life scenario this thesis is based upon it would
not perform better in practice. This is because the vehicles in the real-life scenario
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does not have vehicle-to-vehicle (V2V) communication. Using CRDTs would not
provide an improvement, especially as all communication goes through an offsite
cloud. CRDTs together with V2V communication would create redundancy and
create ways for data to propagate even to vehicles that are not connected to the
cellular network. If the cloud service becomes unavailable the replicas will not
converge until the cloud service is running again even if CRDTs are in use.

The propagation of data via V2V communication would be preferable in a setting
where a cellular network does not cover everywhere. For example, if a vehicle is
stationary in a place where there is no connection to the cellular network CRDTs in
combination with V2V communication would be ideal. The stationary machine can
operate freely while mobile vehicles that occasionally are connected to the network
or other vehicles can propagate new information to the stationary vehicle when they
get in range of V2V communication.

5.1.2 Which type of CRDTs are suitable for this environ-
ment?

Of the two different fundamental types of CRDTs, operation-based and state-based,
the operation-based CRDT was rejected during the research stage of the project
which is explained in Section 3.2. The sub-types of state-based CRDTs, in this
project called State-CRDT (explained in Section 2.6) and Delta-CRDT (explained
in Section 3.2.4), are both technically viable. However, considering the performance
only the Delta-CRDT is actually viable following the reasoning in Section 5.1.1.

5.1.3 How does the performance of the CRDT systems com-
pare to the existing system?

This is presented in detail for each tested metric in the corresponding subsection in
Chapter 4. The State-CRDT is as expected the worst system and floods the network
with its many and large messages. The converge times in Table 4.7 clearly display
how bad the State-CRDT performs compared to the Centralized system depicted in
Table 4.6. The Delta-CRDT shows impressive means in all metrics except the total
number of bytes which is an effect of it being a decentralized system. Furthermore,
the converge time of the Delta-CRDT, Table 4.8, is worse than the Centralized
system. The Delta-CRDT has improved availability compared to the Centralized
system at the cost of longer convergence time. This is as mentioned further presented
in Chapter 4.

5.1.4 What are the trade-offs between the different types of
systems?

As always with distributed systems there are trade-offs to be made in the system as
discussed in Section 2.4. The Centralized system sacrifice availability for simplicity
in implementation and low communication cost. CRDTs focuses on high availability
but at the cost of communication cost. It is clear that the CRDT systems send
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more data compared to the Centralized system by looking at Table 4.9 and 4.10,
but they are decentralized and have higher availability by allowing local updates to
always be performed on the system despite not having connection. Furthermore,
by being decentralized it does not have the single point of failure that is present in
the Centralized system. If the master node disconnects in the Centralized system
no local updates can be added to the state, in addition no slaves would receive any
updates from the master node and thus gain no new information about what has
happened in the system.

There are trade-offs between the State-CRDT and the Delta-CRDT as well. The
State-CRDT is more robust to losses compared to the Delta-CRDT but it is far more
demanding in communication. The Delta-CRDT send a higher amount of messages
back and forth by sending snapshots combined with δ-states which increases the
chances to drop a update from another node. If either the snapshot or the response
is lost the entire process is dropped as the implementation does not re-send any
dropped messages which is further discussed in Section 5.3. Looking at the number
of dropped messages in Table 4.11 Delta-CRDT has the highest number of dropped
messages at highest disconnect rates (5.4%) on the network. In no test it has been
seen any node miss three or more messages in a row for any system. Taking this
in consideration combined with the data about the converge time of the Delta- and
State-CRDT depicted in Table 4.8 and 4.7 it is clear that the weakness of the State-
CRDT does not outweigh the weakness of the Delta-CRDT. The Delta-CRDT still
function as intended despite the higher disconnect rates, the losses does not affect
the performance in the same manner as the communication cost does for the State-
CRDT at higher disconnect rates.

The focus was in the real-life scenario to increase the availability within the system.
As discussed in Section 5.1.1 the vehicles did not have the ability to use V2V com-
munication which mitigates the point of using a decentralized system instead of a
centralized system. Considering that there were no hardware limitations and the
vehicles actually had V2V communications the Delta-CRDT would be an option if
the availability of the system was higher valued than consistency. The Delta-CRDT
as mentioned eventually converge, not as fast as the Centralized system, but it con-
verges for all tests independently of disconnect rates and provide higher availability
by always being operational even without connection on top of not having a single
point of failure.

5.2 This Project’s Delta-CRDT with Snapshots
Design

In the solutions that Almeida, Shoker and Baquero propose, previously explained
in Section 3.2.4, in their paper [4], the δ-mutators they use produce delta-states
whenever local updates are made which are then broadcasted either instantly or
accumulated and sent as a group. States that are received are directly propagated to
other nodes. This propagation requires nodes to reason about history and creates the
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need for garbage collection of messages. By utilizing state snapshots there will only
be information being transmitted over the network that nodes do not posses with the
exception of two or more replicas are at the same state. When Astate = Bstate and
both receive a state snapshot from a node C it will result in δsnapshotA

= δsnapshotB
.

C will receive the same delta-state twice. Furthermore, since a state snapshot may
result in an empty delta-state nothing has to be sent at all, keeping the load on the
network to a minimum and allowing other services to use more of the network.

The use of snapshots does however still increase the complexity of the Delta-CRDT.
While reasoning about history and garbage collection is not needed there is added
complexity through the calculation of what is to be included in the delta-state when
a snapshot has been received. Due to the simple database structure used in this
project calculating the delta-state is simple. If the database structure has relations
between entries and tables the calculation immediately becomes much more complex.
Although not implemented in this project, the snapshots have further potential to
be used to measure the level of congestion on the network in addition too lowering
the amount of data being sent. By adding a timestamp to the snapshot the receiving
node can easily see how long it took for the snapshot to be sent and subsequently
determine if sending a delta-state should be delayed.

5.3 CRDT Implications
As the CRDT systems use grow-only sets, to keep complexity low, the total amount
of data that is being sent between nodes, even with the Delta-CRDT system, puts
more strain on the network compared to the Centralized system. The amount of
data that the CRDT systems send grows with the size of the states. The Centralized
system sends either just a single update or as the master node, sends its entire
database to slave nodes, similar to the State-based CRDT, though in this case there
is only one node. If the state of each replica is not continuously reset or minimized
the performance of the system will diminish as the states grow leading to more and
more messages being lost due to the unreliable network.

The risk of losing connection while trying to send a message increases with the
message size assuming that the bandwidth remains constant. The slave nodes in the
Centralized system will try to resend the same message multiple times if the message
is lost. This is done because if the message is never received at the master node
that update will never be added to the state of the system. For the other systems,
including the slave nodes of the Centralized system, the order of messages received
does not prevent convergence. State-based CRDT and Delta-CRDT performs a non
order dependent merge, explained in section 3.2.3. The slave nodes does an update
similar to State-CRDT which is also order independent. All order independent action
messages sent are not re-sent in case of a connection loss. The next message sent
will be the new state which, if it is a different state, always contains the previous
state. This was a design choice, we felt that there were no point in re-sending an
"old" state. The other option would be to retry until the state is sent which would
take up resources.
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The bottleneck created because of the network for State-CRDTs should be consid-
erate and outweigh the efficiency of the merge. Because of this we did not expect
that the performance of the State-CRDT would be anywhere near the Centralized
system. The results show exactly what we anticipated, when implemented in a set-
ting where the states are big the State-CRDT perform badly. They perform better
at simple tasks as counters.

5.4 Future Work

5.4.1 Possible CRDT Optimizations
There are several improvements that can be made on both the State-based CRDT
and the Delta-CRDT in order to reduce the congestion on the network, shorten
merge time as well as optimize how data is propagated on the network.

A potential optimization to decrease message size for State-and Delta-CRDTs and to
reduce the number of dropped messages are to split the state up into different smaller
states. As each node has the state of all the other nodes in separate databases. When
the sending node queries its databases to get its full state, it will instead send the
query from each individual database combined with empty states from the rest,
Figure 5.1 shows an illustrating of how the state can be split. The receiving node
will perform a merge in the same way without any modifications or failure.

Figure 5.1: Splitting of a large state to gain smaller states to decrease message
sizes before sending across the network.

In terms of performance we believe this state priority would give a performance
increase in terms of number of message lost due to connection loss and the time
it takes to deliver a message. As shown in Figure 5.1 a demonstration of how a
combined state containing 4 different nodes states could be split up into 4 smaller
states that can be sent across the network to gain higher success rate of delivery.

To add a form of prioritization of what data to replicate each node can save the last
state it broadcasted. The next state to be sent is then compared to the saved state
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to see which sub state, of the ones mentioned above and illustrated in Figure 5.1,
have the most new updates. The sub states are then sent in the order of which sub
state had received the most updates since the last broadcast i.e. the most urgent
update.

By keeping the last sent state you get a way of prioritizing which information is
most urgent to send. A drawback of the implemented system is that the sender is
not keeping track of which message is dropped and what destination that message
had. The CRDT systems simply broadcast their states and hopes the messages are
received. By looking for changes between the last state sent and the present state
there is the possibility that the priority of states are miss calculated due to the fact
that the node does not know which states the receiver have received earlier. If the
system is designed to keep track of what message is dropped to which node, the
system could save one last state sent for each node and only update that state when
it knows the message has been received.

Another improvement for the CRDT systems were thought of when looking at the
results where the network often got congested where the number of nodes and the
broadcast rate were the big factors to the congestion. Systems where the number
of nodes is unpredictable will make it hard to find a good balance between how
often nodes should broadcast their states or snapshots to not congest the network
while also not having replicas diverge too much leading to longer merge times. A
solution to this, with inspiration taken from how TCP works, would be for the
nodes to dynamically change how often they broadcast by checking how congested
the network is. When there is congestion the broadcast rate would decrease until
there is less congestion.

5.4.2 Designing Databases to Suit CRDTs
The design choice of having a database for every node on all nodes, meaning that
there are N2 databases in the system where N is the number of nodes, gave way
to snapshots being able to be used and acted as a performance improvement but
also created quite a bizarre scenario where nodes would possess data that couldn’t
be used. The reason behind this was relations between the tables in the original
structure. A node A could want to make an update that should have a relation to
an entry in a table in a database AB that A possess. Because of the rule that A
only is allowed to make updates to AA and there not being any functionality for
cross database relations this would result in A knowing something which it is not
allowed to use. To resolve this would require an immense increase of complexity
when merging in order not to break the rules and thus the system.

The performance improvement of having multiple databases on each node is because
this results in multiple grow-only sets (one database is a set). When merging a state
each entry need only be checked against one set instead of N sets i.e. having all
information in one database. Multiple databases together with the structure of
the states being sent between nodes would allow to safely operate the merge in
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parallel with one thread for each database this taking advantage of modern multi-
core processors.

Designing the CRDTs at the same time as the database structure opens up for
making the CRDTs have the best performance possible. In this thesis we received
a database structure not designed for the usage of CRDTs, as the goal of the thesis
was to try the systems on a real-life environment we tried to make the CRDTs fit
the database instead of creating a database to fit the CRDTs, this was very time
consuming and ended up slowing down the progress of the implementation. If we
would redo the project we would create the CRDT system and then make a new
database to fit the CRDT system based on the columns in the old database.
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This research aimed to examine the viability of replicating data by applying CRDTs
in the same environment as an already existing centralized system by answering the
following questions: Can CRDTs be used in a real-life environment with large data
sizes and a low number of updates on a low bandwidth network with connection
losses? Which type of CRDTs are suitable for this environment? How does the
performance of the CRDT systems compare to the existing system?

State-CRDT was the best type of CRDT in an environment with un-
reliable network. Two different types of CRDTs were studied, State-based and
Operation-based. After considering the data in the real-life system the decision
was made to use a State-Based CRDT design. The decision was made because
an Operation-Based CRDT would only emulate the State-CRDT and also requires
messages to be delivered in correct order. Due to the network being highly unstable
this not be guaranteed and thus was not an option for this environment.

Delta-CRDT as a complement to State-CRDT after gathered real-life
data present weakness for State-CRDT. In order to test the CRDT systems
in a simulated version of the real-life scenario, connectivity and data about oper-
ation frequency was collected from vehicles operating inside the Chepstow quarry.
The gathered data was used to create a virtual network topology with connectivity
issues and limited bandwidth similar to the real-life scenario. Furthermore, a script
was created mimicking the behaviour of the vehicles operations to gain accurate
behaviour for the systems. Evaluation of the performance of the systems was made
by measuring the following; message latency, merge latency, converge time, bytes
sent, message size and quality arrays. However, as the amount of data was large it
was predicted that State-CRDTs would not be sufficient. Therefore, a Delta-State
CRDT was created to mitigate the weakness of the State-Based CRDT’s, which is
large state sizes.

The State-CRDT system present shortcomings in all metrics and should
not be considered a valid replacement to the Centralized system in this
scenario. As expected before viewing the results State-CRDTs does not perform
well where the state grows quickly in size compared to the other systems. State-
CRDTs sends the entire state with each message, Figure 4.4, which in turn puts
heavy load on the network and higher message latencies as seen in Figure 4.6. Send-
ing entire states also effect the merge latency of the system shown in Figure 4.8,
as each merge operation checks all elements in the received state for changes. One
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flaw in the Reference system is the lack of availability, a problem that the State-
CRDTs solves but at the cost of sending more messages and as mentioned above,
large messages affects the total bytes sent in the system negatively as seen in Figure
4.9. The effect of the State-CRDTs being inferior to the Centralized system in all
measurement is clearly seen when comparing the converge times in 4.7 and 4.6. To
conclude the performance of the State-CRDTs it is lesser than the Centralized sys-
tem in the order of it not being applicable in this scenario and maintaining desired
functionality.

The Delta-CRDT performed better than the Centralized system in most
of the metrics with the exception of converge time and total bytes sent.
The Delta-CRDTs has the property of sending snapshots with the least amount of
information possible to inform other nodes of its current state and then only sending
the required information to reach convergence unlike the State-CRDT. With that
said the Delta-CRDT outperforms the State-CRDT system in all metrics by quite
a margin as seen in Figures 4.8, 4.6, 4.4, and in Table 4.9 and 4.8. Compared
to the Centralized system the Delta-CRDT shows both pros and cons. Because
of the δ-states and the snapshots the average message size of the Delta-CRDT is
lower (< 50%) than that of the Centralized system, despite the Centralized system
having a lower median message size as depicted in Figure 4.4. In similar fashion
the mean message latency have the same relation for the Delta-CRDT in relation to
the Centralized system (< 50%) as illustrated in Figure 4.6. Which is as expected
as there is a correlation between these metrics as discussed in Section 4.6. Even
though the Delta-CRDT has on average smaller message sizes compared to the
Centralized system the total bytes sent is significantly higher for the Delta-CRDT
as evidenced in Table 4.9, this is one of the sacrifices the decentralized systems make
to be able to maintain high availability by sending more messages which explains
the higher total bytes for both CRDT systems compared to the Centralized system.
The merge latency of the Delta-CRDT only takes into account the δ-states, it does
not include snapshots unlike the other metrics, when a snapshot is received the
merge operation is not performed. Despite the snapshots not being included in the
result the Delta-CRDT still surpasses the Centralized system in mean merge latency
as detailed in Figure 4.8. The Centralized system maintain a lower median also in
this metric because the nature of the Centralized system where all slaves send their
local updates, single atom states, to the master which merges these states. With
such good results for the Delta-CRDT compared to the Centralized system it was
very unexpected to see the results in the converge time metric. The Delta-CRDT
system has ≈ 1000% longer converge time than the Centralized system for the test
with the highest disconnect rate and highest number of nodes as seen in Table 4.8
and 4.6, when excluding the 300 seconds the local updates are being performed. To
summarize the performance of the Delta-CRDT, the Delta-CRDT has great mean
values in merge latency, message latency and message size compared to the other
systems but under perform when it comes to the time it takes to converge and the
total amount of data sent.
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Delta-CRDT gets better merge and message latency means with higher
disconnect rates while the other systems display higher means for all
metrics. When testing the systems with different disconnect rates, there was a
clear pattern across all the different systems, higher disconnect rate lead to higher
means in all metrics in addition to longer converge times. However, the Delta-CRDT
system did not show higher means for merge and message latency. The reason for
the Delta-CRDT displaying better mean for these metric are the longer converge
time combined with the δ-states. This is due to the δ-states are smaller the less
divergence there is between the nodes. As the local updates stop occurring after
a fixed amount of time the divergence shrinks the longer the test continues, thus
without local updates that make the states diverge the δ-state will shrink over time
and provide better merge and message latency in a unique way for the Delta-CRDT
compared to the other systems.

To conclude, If availability is essential in the system the Delta-CRDT
could replace the current Centralized system unlike the State-CRDT
which does not maintain enough performance. As always with distributed
systems there are trade-offs depending on which kind of system you choose to im-
plement as discussed in Section 2.4. The results show that CRDTs can be applied
to this real-life environment but with great limitations for the State-CRDT system
seen in Figure 4.7 and 4.9. Looking at the converge time in Table 4.7 it is clear that
the State-CRDT system is not a viable option as the test could not be completed
with the most stressful environment settings compared to the rest of the systems.
The Delta-CRDT system is able to converge for all tests as seen in Table 4.8. The
performance of the Delta-CRDTs is proven to be able to maintain performance com-
pared to the Centralized system in most metrics even at higher disconnect rate this
can be seen in Figure 4.7, 4.9 and 4.5. Higher disconnect rate is a weakness of the
Delta-CRDT compared to the State-CRDT as there are more messages sent that can
be lost but the Delta-CRDT instead has better communication cost, as evidenced
in Table 4.10. The flaw of the CRDT systems is the time of inconsistency (converge
time) that is the trade-off for availability further discussed in Section 5.1.4, in Table
4.8 we can see that for all tests independently Delta-CRDT reach convergence. To be
able to answer the question if Delta-CRDT can replace the existing system one must
first decide if availability or consistency is most crucial. If availability is required
Delta-CRDT can replace the current system and the system will always eventually
converge, but if convergence is crucial the current system should be considered the
best option even if the Delta-CRDT eventually converge.
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