
Predicting Vehicle Motion and Driver
Intent using Deep Learning
Master’s thesis in Complex Adaptive Systems

JOAKIM ANDERSSON

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

Master’s thesis 2018:EX045

Predicting Vehicle Motion and Driver
Intent using Deep Learning

Joakim Andersson

Department of Electrical Engineering
Division of Systems and Control
Mechatronics research group

Chalmers University of Technology
Gothenburg, Sweden 2018

Predicting Vehicle Motion and Driver Intent using Deep Learning
JOAKIM ANDERSSON

© JOAKIM ANDERSSON, 2018.

Supervisor: Martin Sanfridson, AB Volvo
Examiner: Nikolce Murgovski, Chalmers University of Technology

Master’s Thesis 2018:EX045
Department of Electrical Engineering
Division of Systems and Control
Mechatronics research group
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2018

iv

Predicting Vehicle Motion and Driver Intent using Deep Learning
JOAKIM ANDERSSON
Department of Electrical Engineering
Chalmers University of Technology

Abstract
This thesis investigates the application of Deep Learning and Mixture Models on
the prediction of human drivers in traffic. The chosen approach is a Mixture Density
Network where the Neural Network is composed of Long-Short Term Memory units
and the Mixture Model consists of univariate Gaussian distributions. The model
outputs accelerations for the next four seconds in longitudinal and lateral directions
as well as indicating whether the driver intends to change lane during this time or
not. The results of the motion prediction is promising with a Mean Absolute Error
of around 1 meter after a 4 second prediction. The intention prediction results in
around 75% accuracy in identifying lane change trajectories 1.7 seconds prior to
the lane change and around 95% accuracy 1 second prior to the lane-change. The
conclusion of the study is that in order to accurately predict humans, the model
has to make use of as many variables as possible. However it will not be possible
to fully predict humans by just observing the environment since there are many
unobservable variables affecting the decision-making. One way to take this into
account is to make use of signals humans use to display their intentions, such as
indicator lights.

Keywords: Deep Learning, LSTM, Mixture Density Network, Prediction.

v

Acknowledgements
I want to thank AB Volvo for the opportunity to work on this problem. I would
also like to give a huge thank you to my examinator Nikolce Murgovski and my
supervisor Martin Sanfrison for all their time and valuable feedback I have received
during the thesis.

Joakim Andersson, Gothenburg, May 2018

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Purpose . 2
1.2 Research Questions . 2
1.3 Scope and Limitations . 3

2 Theory 5
2.1 Time-Series . 5
2.2 Artificial Neural Networks . 5

2.2.1 Supervised Learning . 6
2.2.2 Recurrent Neural Networks 7

2.2.2.1 Back Propagation Through Time 7
2.2.2.2 Long Short-Term Memory networks 8

2.2.3 Regularization . 9
2.2.3.1 Bootstrap aggregating 9
2.2.3.2 Dropout . 10
2.2.3.3 Multi-Task Learning 10

2.3 Mixture Gaussian Distribution . 11
2.3.1 Mixture Density Networks . 11

2.3.1.1 Loss function . 12
2.4 Data Analysis . 13

2.4.1 Kalman Filter . 13
2.4.2 Metrics . 14

2.4.2.1 Mean Absolute Error 14
2.4.2.2 Kullback-Leibler Divergence 14

2.4.3 Precision, Recall and F-Score 15

3 Prediction Approach 17
3.1 Data . 17

3.1.1 Filtering . 17
3.2 Network Architecture . 19

3.2.1 Input Features . 19
3.2.2 Motion prediction . 20

3.2.2.1 Univariate Gaussian 21

ix

Contents

3.2.3 Intention prediction . 21
3.2.4 Overview of the models . 21

3.3 Training and Evaluation . 22
3.3.1 Robustness . 22

4 Results 25
4.1 Data Analysis . 25

4.1.1 Acceleration . 25
4.1.2 Correlation . 26
4.1.3 Effect of dropout . 27
4.1.4 Number of distributions in the mixture 27

4.2 Longitudinal prediction . 28
4.2.1 Feature impact and prediction error 30
4.2.2 Robustness . 31

4.3 Lateral Prediction . 33
4.4 Multi-task learning . 35

4.4.1 Driver Intent . 36
4.4.2 Introduction of indicator lights 37

4.5 Worst case model comparisons . 40
4.5.1 Correlation between uncertainty and deviation 40

5 Discussion and Conclusion 43
5.1 Limitation of the Kalman filter . 43
5.2 Limitation of intention prediction . 43
5.3 Single-task vs Multi-task . 44
5.4 Conclusion . 44

Bibliography 47

x

List of Figures

1.1 A possible scenario on a highway with a lane with two possible choices. 2

2.1 A neuron, which takes inputs xi and bias b and produces an output
according to equation (2.1). 6

2.2 A schematic view of a multilayer perceptron with 3 inputs, 2 hidden
layers and 1 output. 6

2.3 A schematic overview of a simple recurrent network unit. The output
is fed as input in the next time-step again. 7

2.4 A recurrent unit can be unfolded in time. 8
2.5 The inner workings of an LSTM block. The dashed lines represent

time delayed connections, recurrent edges. σ and tanh are the sigmoid
and hyperbolic tangent activation functions respectively. 9

2.6 Example of three submodels created by dropout from a fully con-
nected network. 10

2.7 The architecture of a mixture density network. The input vector
is fed into a neural network, which outputs parameters of a mixture
distribution. The parameters are then used to construct a probability
distribution over the possible outcomes. 12

3.1 The considered vehicles when the ego vehicle, the vehicle where the
sensors are located, wants to predict the vehicle in-front. 20

3.2 Architecture for the single-task network. 21
3.3 Architecture for the multi-task network. 22

4.1 Acceleration values extracted from the unfiltered data, the left plot,
and the Kalman-filtered data. The y-axis has a log-scale to visualize
the outliers in both cases. 26
a Unfiltered acceleration . 26
b Kalman-filtered acceleration 26

4.2 Plot showing the correlation between the first target acceleration and
the previous acceleration values. 26

4.3 Impact of the choice of dropout during the training phase. In the
figure three different values of dropout were chosen and run on sub-
set of the training data. The loss function for the mixture density
network is displayed on the y-axis. It is clear that 20% dropout has
a competitive advantage over the other two values. 27

xi

List of Figures

4.4 In the four plots above the networks predicted longitudinal accelera-
tions is displayed alongside the true accelerations of the vehicle. The
two top plots shows two instances where the acceleration has been
successfully predicted. In the bottom left the predicted acceleration
follows the true accelerations closely to start of with but diverges af-
ter about half of the prediction horizon. In the bottom right plot the
predicted acceleration fails to follow the true acceleration. 29

4.5 The validation loss during training for different feature sets in the
longitudinal prediction model. 31

4.6 Figure showing the importance of the history of the vehicles consid-
ered in the prediction. There is a sudden loss in prediction when the
network loses the information in the most recent 5 samples. 32

4.7 Prediction of lateral trajectories involving lane changes. In the left
plot the deviation of the 4 second prediction horizon is plotted against
each timestep leading up to the lane change. The figure to the right
illustrated a situation that starts at -2s and plans until 2s. The error
shown between the two trajectories is the corresponding y-value for
the x-value of -2 in the left plot. The lane change is defined as the
first instance the car passes over into the other lane with the intention
of remaining there. 33

4.8 In the four plots above the networks predicted lateral trajectory is
displayed alongside the true lateral trajectory of the car. The two top
left and the bottom left has identified that a lane change is taking
place in the near future, whereas the network fails to predict the lane
change in the bottom right plot. 35

4.9 Deviation of the lateral prediction trajectory for trajectories involving
a lane change . 36

4.10 The classification accuracy of trajectories involving a lane change. . . 37
4.11 Precision, recall and f1-scores for the intent classifier during classifi-

cation of the lane changing trajectories in the test set. 37
4.12 Comparison of the predicted trajectories with and without indicator

lights in the multi-task model. The deviation is affected by the indi-
cator lights feature as can be seen by the shift in about 0.5 seconds
when the error starts to decline with increased time. 38

4.13 The accuracy of the driver intent prediction with indicator lights as
a feature of the target vehicle. 39

4.14 Precision, recall and f1-scores for the intent classifier during classi-
fication of the lane changing trajectories when the indicator light of
the target vehicle was used as an additional input. 39

4.15 Scatter plots of the predicted mean deviation error and it’s corre-
sponding total uncertainty parameters in the mixture model. The
left plot contains the data from the single-task architecture, and the
right plot is from the multi-task architecture. In both figures the
uncertainty tends to increase slightly as the deviation increases. . . . 41

xii

List of Tables

4.1 The average lowest KL-divergence was calculated on the test set for
three different number of distributions in the mixture model. 27

4.2 Baseline results compared with the single-task model for longitudinal
prediction. 28

4.3 The evaluation of the longitudinal prediction for a different set of
features. The displayed values are the mean absolute errors of the
predicted trajectory from the true trajectory at four different predic-
tion horizons. 30

4.4 Evaluation of the scenarios defined in section 3.3.1 32
4.5 The prediction error over time for longitudinal acceleration prediction 35
4.6 The prediction error over time for longitudinal acceleration prediction

using the multi-task architecture with artificial indicator lights. . . . 39
4.7 The worst case prediction error for the models at the full prediction

horizon, 4s. 40

xiii

List of Tables

xiv

1
Introduction

Humans today spend a large portion of their time travelling; the society as a whole
has grown dependent on transportation, with the average American spending over
300 hours in their car each year [1]. As the time spent in cars increases so does
the accidents since today’s transportation system is far from perfect when it comes
to safety. The World Health Organization (WHO) produced a report on the total
number of fatal accidents during 2015 where they stated that around 1.25 million
people lost their lives in road related accidents throughout the world [2].

During the past few years there has been a massive surge towards autonomous
vehicles within the automotive industry. The hype stems from recent years success in
image recognition and perception, allowing computers to, in some scenarios, achieve
super-human performance [3]. However, perception of the environment is not all
that is required to solve the problem of self-driving cars as the car needs to operate
safely in this environment as well.

Achieving full autonomy would not only lead to a lower environmental footprint as
it would allow traffic to flow more freely, but also, and foremost, it would increase
the safety of driving. Some experts in the industry believe that there would be a
drop of up to 80% in the rate of accidents following the introduction of autonomous
vehicles [4, 5].

Self-driving vehicles is something that will engage engineers for many years to come.
Today, however, many vehicles are already equipped with so called Advanced Driver-
Assistance Systems (ADAS) which do not allow full autonomy but they, as the name
suggests, assists human drivers in driving the car.

One of the biggest challenges with both the current ADAS systems and the full
autonomy is the human factor. Self-driving cars and ADAS systems operate in close
proximity to humans, meaning that they need to be able to predict how other human
drivers will behave in order to ensure safe operation. This thesis will research the
prediction of humans in other cars.

1

1. Introduction

1.1 Purpose

Humans are difficult to model and predict since humans are irrational. Furthermore,
no human is another one alike, meaning there are almost endless possible outcomes
in every scenario.

When driving it is almost always necessary to know what the surrounding cars
intend to do in order to ensure safe and energy optimized control of the vehicle.
Take the example illustrated in figure 1.1, if the rear car in the left lane intends to
take the exit on its right, it has to predict how the other cars will behave in order
safely maneuver itself to the exit, if it’s even possible from a safety perspective.

Because of the irrationality of humans and the recent success seen in the field of
deep learning this thesis will take a data driven approach to prediction. The aim of
the thesis is to see to what extent a human driver’s intent and the vehicle motion in
general can be predicted using deep learning. In order to give at least some measure
of how certain the network is, the chosen method is a composition of deep learning
and Gaussian mixture models.

Figure 1.1: A possible scenario on a highway with a lane with two
possible choices.

1.2 Research Questions

The research questions considered in this thesis are

• How well can deep learning predict vehicle motion.

• How well can deep learning predict the intent of the driver.

• How robust is this prediction to noise or incomplete perception of the world.

• Is the model uncertainty useful, that is, does the standard deviation of the
mixture model increase for a bad prediction when compared to a good predic-
tion.

2

1. Introduction

1.3 Scope and Limitations

The prediction of vehicles will take place in a highway setting. The highway has
multiple lanes, a merge and an exit ramp. The thesis will make use of a publicly
available dataset called NGSIM [6]. The data are thus limited to the captured
scenarios within that dataset. The data consist of normal driving, there are no
captured collisions, no data for appearances of foreign objects such as road debris,
etc. Since it is a highway, there are no pedestrians, hitchhikers or other humans
without vehicles present so the predictions are done solely on humans operating
vehicles.

In order to see the bottlenecks of the data driven approach it is assumed during
training that the data can be collected flawlessly, all involved metrics can be col-
lected.

3

1. Introduction

4

2
Theory

2.1 Time-Series

A time series T is defined as an ordered sequence of n real-valued variables

T = {t1, t2, . . . , tn}, ti ∈ R.

By observing an underlying process over time one is usually collecting ordered, uni-
formly spaced in time, real valued observations thus identified as a time series. A
time series can by definition be univariate or multivariate; in the latter case there
are multiple dimensions observed simultaneously [7].

Given a time series T, a subsequence S of T is defined as a series of length m ≤ n
consisting of contiguous observations from T

S = {tk, tk+1, . . . , tk+m−1}

where 1 ≤ k ≤ n−m+ 1.

2.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) are computing systems inspired by the biological
neural networks. One of the most basic ANN structures is the feed-forward network
(FFN). The building block of a modern FFN is a neuron, see Figure 2.1, which takes
several real valued inputs xi, multiplies by some weights wi adds a bias term b and
produces an output as follows

output = g
(∑

wixi + b
)

(2.1)

where g is an activation function. [8]

5

2. Theory

Figure 2.1: A neuron, which takes inputs xi and bias b and produces
an output according to equation (2.1).

The neuron units can be stacked in one or multiple layers; a multilayer perceptron
MLP can be seen in the Figure 2.2, where a FFN with 2 hidden layers is on display.

Figure 2.2: A schematic view of a multilayer perceptron with 3 inputs,
2 hidden layers and 1 output.

2.2.1 Supervised Learning

In machine learning there are different types of learning paradigms. In this section,
the paradigm of supervised learning (SL) will be introduced.

SL is based on labeled data. For each set of inputs there is a desired, known, output.
The training procedure for this type of supervised learning is known as an error-
correction learning algorithm. In the case of MLPs and ANNs in general this is
implemented as a two step procedure, the forward and the backward passes.

1. Forward pass: The network is fed inputs in the training sample and carries
out the feed forward propagation, neuron for neuron until an output is pro-
duced. This output is then used to find the error signal as defined by some
arbitrary loss function.

2. Backward pass: From the error signal each individual parameter’s contribu-
tion to this error is calculated by differentiating the loss function with regard
to each parameter. The error in the output of the network is thus back-

6

2. Theory

propagated throughout the network so that the parameters can be adjusted
accordingly.

2.2.2 Recurrent Neural Networks

A recurrent neural network (RNN) is a type of ANN that differs from the basic FFN
in how the output of a neuron is handled. In RNNs the output is passed forward
in the network simultaneously as it is passed as input to the same neuron again in
the next iteration, see Figure 2.3. The introduction of so called recurrent edges that
connect adjacent time-steps by introducing cycles in a neuron gives the network a
sense of time [9]. This is useful when there is a strong correlation between samples,
such as in sequential time-series of sensor data.

Figure 2.3: A schematic overview of a simple recurrent network unit.
The output is fed as input in the next time-step again.

A more formal view of the simple recurrent network (SRN) unit is that at time t,
Nodes with recurrent edges receive input in two forms, sample input xt and hidden
values ht−1 from the network’s previous state. The output ŷt at time t can be
calculated by the hidden state ht at time t. Specifically the two calculations can be
described by the equations

ht = g(W hxx
t + W hhh

t−1 + bh) (2.2)
yt = g′(W yhh

t + by) (2.3)

where g(x) and g′(x) are activation functions, W hx, W hh and W yh are weights
associated with the input, hidden state and output respectively. The two parameters
bh and by are called biases.

2.2.2.1 Back Propagation Through Time

The recurrent network can be ”unfolded” to a structure looking like a deep feed-
forward network with shared weights between layers, see Figure 2.4. It is now
possible to apply the back-propagation algorithm used in regular FFNs in order to
optimize the network parameters [10].

7

2. Theory

xt x1 x2 x3 xt

...

yt y1 y2 y3 yt

Figure 2.4: A recurrent unit can be unfolded in time.

2.2.2.2 Long Short-Term Memory networks

A problem that arises during training of basic RNNs is the exploding or vanishing
gradient [11][12]. The Long Short-Term Memory (LSTM) architecture was designed
as to avoid these problems [13]. This structure has since been further enhanced
to what is called the vanilla LSTM architecture visualized in Figure 2.5 [14]. In
the figure it is clear that the LSTM is far more complex than the basic SRN unit.
The building blocks of the LSTM are three gates (input, forget, output), block
input, a single cell (the Constant Error Carousel) and an output activation function.
Mathematically the LSTM layer with N units and M inputs can be described as
follows:

• Input weights: Wz, Wi, Wf , Wo ∈ RN×M

• Recurrent weights: Rz, Ri, Rf , Ro ∈ RN×N

• Bias weights: bz, bi, bf , bo ∈ RN

with the update rules

zt = g(W zx
t + Rzy

t−1 + bz)
it = σ(W ix

t + Riy
t−1 + bi)

f t = σ(W fx
t + Rfy

t−1 + bf)
ct = zt � it + ct−1 � f t

ot = σ(W ox
t + Roy

t−1 + bo)
yt = h(ct)� ot

(2.4)

where � defines pointwise multiplication, σ, g and h are point-wise non-linear ac-
tivation functions. The sigmoid function, σ, is used as gate activation, and the
hyperbolic tangent is usually used as the block input and output activation func-
tions, h and g.

8

2. Theory

σ
f

tanh

σ

σ

tanh

Forget gate

Input gate

Output gate

Block input

Output Recurrent

Recurrent

Recurrent

Recurrent

Recurrent

Input

Input

Input

Input

i

 z

c

o
y

Figure 2.5: The inner workings of an LSTM block. The dashed lines
represent time delayed connections, recurrent edges. σ and tanh are
the sigmoid and hyperbolic tangent activation functions respectively.

2.2.3 Regularization

One of the big challenges in machine learning is how to make a trained model
perform better on unseen samples. Many strategies used in machine learning have
therefore been developed with the intention of making the model perform better on
the test set, sometimes at the expense of increased training error. These strategies
are collectively known as regularization [15].

2.2.3.1 Bootstrap aggregating

Bootstrap aggregating, known as bagging, is a form of regularization where multiple
models are generated from the data. The different versions are generated by making
bootstrap replicates of the dataset and train each model on one of the new datasets.
The models are then aggregated to allow the average of the models to become the
final predicted result [16]. This is the principle behind some of the more successful
machine learning algorithms like random forests [17].

9

2. Theory

2.2.3.2 Dropout

Dropout is a form of regularization that is very common to use in combination
with neural networks. Neural networks are usually expensive to train, which is why
regular bagging is not practical. Dropout can be thought of as an inexpensive way of
combining bagging with neural networks. During the training phase of the network,
with the introduction of dropout, every unit has a probability p of being ”dropped”
from this training round, meaning that the unit and connecting edges is temporarily
removed from the network, creating a new model [18]. Refer to Figure 2.6 for an
example of three submodels created by dropout.

Figure 2.6: Example of three submodels created by dropout from a
fully connected network.

2.2.3.3 Multi-Task Learning

Multi-Task Learning (MTL) is a sub-field in machine learning that aims to do more
than one thing for the same input. By sharing representation between tasks one
enables the model to generalize better, with the limitation that the tasks usually
have to be related to some extent [19]. One example of this could be allowing one
neural network to predict both longitudinal and lateral acceleration from the same
input, where the first few layers in the network are shared between the two tasks,
and then separated into two different layers producing the final outputs.

10

2. Theory

2.3 Mixture Gaussian Distribution

One problem with a regular neural network is that the output does not contain
any measurement of uncertainty. Statistical distributions, however, are designed to
show the probability of the likeliness of one measurement. The Gaussian mixture
distribution is a mixture of Gaussian distributions defined as follows:

p(y|µ1, . . . , µk, σ1, . . . , σk, π1, . . . , πk) =
k∑
i=1

πiN (µi, σ2
j) (2.5)

where µi are the means, σi the variances, πi the mixing proportions (which must be
positive and sum to one) and N a normalized Gaussian distribution [20].

2.3.1 Mixture Density Networks

Mixture density networks (MDNs) integrate the idea of a mixture distribution into
neural networks, creating a network that is less error-prone in cases where the con-
ditional average is too limited to fully map the input-output space [21].

The architecture, displayed in Figure 2.7, works as follows: An input vector is
fed into a neural network. The neural network, outputs parameters of a mixture
distribution which in turn are used to construct a mixture model. The mixture
model gives the conditional probability density for the possible outcomes given the
input vector.

Assuming the conditional probability density can be represented by a mixture model,
the density can be written as

p(t|x) =
k∑
j=1

αj(x)φj(t|x) (2.6)

where αj(x) are called mixing coefficients, and can be regarded as prior probabilities
(conditioned on x) of the target vector t generated from the jth component of the
mixture. The φj(t|x) represent the conditional density of the target vector of the
jth kernel, where the kernel may be any probability distribution [22].

11

2. Theory

Figure 2.7: The architecture of a mixture density network. The in-
put vector is fed into a neural network, which outputs parameters of
a mixture distribution. The parameters are then used to construct a
probability distribution over the possible outcomes.

2.3.1.1 Loss function

A loss function can be constructed by maximizing the likelihood that the mixture
model gave rise to the target values, the likelihood can be written as

L =
n∏
q=1

p(tq,xq) (2.7)

=
n∏
q=1

p(tq|xq)p(xq) (2.8)

(2.9)

where q is a training pattern. It is convenient to instead minimize the negative
logarithm of L. Defining the error function

E = − ln (L)

one may write

E =
∑
q

Eq (2.10)

Eq ∝θ − ln
 k∑
j=1

αj(xq)φj(tq|xq)
 (2.11)

where the last step is discarding constant terms and keeping the terms that are
dependent on the model parameters θ. This loss function can now be used to
optimize the parameters in the neural network model.

12

2. Theory

2.4 Data Analysis

2.4.1 Kalman Filter

Kalman filters are based on discretized linear dynamical systems. A Kalman filter
assumes that the state at time t evolved from the state at time t-1 according to the
equation

xt = F txt−1 + Btut + wt (2.12)

where xt is the state vector, ut is the control signal, F t is the state transition matrix,
Bt is the control input matrix and wt is the process noise vector, assumed to be
Gaussian with mean zero and covariance matrix Qt. The system may also allow
measurements to be performed according to

zt = H txt + vt (2.13)

where H t is the transformation matrix, zt is the vector of measurements and vt is
the vector containing measurement noise, assumed to be Gaussian with mean zero
with covariance matrix Rt. [23] [24]

The Kalman filter is often conceptualized as having two distinct phases, the predict
and the update phases. In the predict phase it uses the state estimate from the
previous iteration to estimate the current state, the a priori state.

x̂t|t−1 = F tx̂t−1|t−1 + Btut

P t|t−1 = F tP t−1|t−1F
T
t + Qt

(2.14)

After the predict phase the a priori, the algorithm updates the a priori state estimate
with the measurement provided for the current time step, this new state is called
the a posteriori state. The update phase performs the following updates.

ŷt = zt −H tx̂t|t−1

St = Rt + H tP t|t−1H
T
t

Kt = P t|t−1H
T
t S−1

t

x̂t|t = x̂t|t−1 + Ktŷt

P t|t = (I −KtH t)P t|t−1(I −KtH t)T + KtRtK
T
t

ŷt|t = zt −H tx̂t|t

(2.15)

13

2. Theory

2.4.2 Metrics

2.4.2.1 Mean Absolute Error

The Mean Absolute Error (MAE) is a measure of difference between two continuous
variables often used to evaluate forecasts of time-series. It is a natural measurement
as it is straightforward and its interpretation is clear, as opposed to the root mean
squared error. MAE is defined mathematically as:

MAE =
∑n
i |yi − ŷi|
n

(2.16)

where yi is the true value, ŷi is the estimated value and n the total number of
variables.

2.4.2.2 Kullback-Leibler Divergence

Kullback-Leibler divergence (KL-Divergence) or relative entropy is a non-symmetric
measurement metric of how much a distribution diverges from another expected
distribution [25]. Specifically the measurement KL(q||p) measures how much infor-
mation would be lost by approximating q with p [26].

KL(q||p) = −
∫
q(Z) ln

(
p(Z)
q(Z)

)
dZ (2.17)

= −
∫
q(Z) ln(p(Z))dZ +

∫
q(Z)q(Z)dZ. (2.18)

This is thus useful for evaluating a model consisting of several distributions since
a low divergence indicates that it most likely would suffice with lower number of
distributions.

When the KL-divergence is between two Gaussian distributions the above formula
simplifies to

KL(q||p) = log σ2

σ1
+ σ2

1 + (µ1 − µ2)2

2σ2
2

− 1
2

(2.19)

Using this formula, it is possible to evaluate how similar the different distributions
in a mixture model are. If the value is low, close to zero, one may assume that the
distribution is unnecessary, as the variable could be simulated from the other distri-
bution alone and by the principle of Occam’s razor, the lower number of distributions
may be preferred [27].

14

2. Theory

2.4.3 Precision, Recall and F-Score

Precision is defined as the ratio of relevant or true positive samples to the total
number of predicted positives, mathematically formulated as

Precision = True Positives
True Positives + False Positives (2.20)

Thus a precision value of 1 indicated that the algorithm didn’t produce any false
positives, meaning that the results from the prediction is very trustworthy.

Recall is a measurement describing the fraction of relevant samples that were re-
trieved, mathematically

Recall = True Positives
True Positives + False Negatives (2.21)

A recall value of 1 means that the algorithm was able to correctly identify all relevant
samples in the data set.

The F1-score of a classification is the harmonic mean of the precision and recall,
specifically it can be described as

F1-Score = 2 · precision · recallprecision + recall (2.22)

An F1-score of 1 means that the classifier has perfect precision and recall for the
measured quantity.

15

2. Theory

16

3
Prediction Approach

3.1 Data

The data used in this thesis comes from the New Generation Simulation (NGSIM)
dataset. NGSIM is publicly available and consists of recorded data from several
highways in the US. Specifically the recording of US-101 in California will be used.
The data is captured by several cameras located above the highway recording infor-
mation of the vehicles on the highway. Each objects coordinate is recorded at each
sample. The sampling rate of the data is 10Hz and the whole recording spans 45
minutes.

3.1.1 Filtering

To extract the accelerations in longitudinal, x, and lateral, y direction at each time
step, the positions will be differentiated in relation to time according to

ẋ = d

dt
x (3.1)

ẏ = d

dt
y (3.2)

ẍ = d

dt
ẋ (3.3)

ÿ = d

dt
ẏ (3.4)

(3.5)

The data was captured by sensors sitting high above the ground overlooking the
highway, so the positional data have some degree of noise. In order to avoid unreal-
istic acceleration values the positions must be filtered. The underlying process is a
dynamic linear system, which means that a Kalman filter can be applied.

To construct the filter the longitudinal and lateral data will be handled separately
to simplify the constructed filters to one dimension.

17

3. Prediction Approach

In section 2.4.1 the different components of a Kalman filter were defined, specifically
F, H, B, R, Q, however, there is no control signal in our case, since the acceleration
is unknown, instead, one may assume that the next state is given by

xt = F xt−1 + Gat (3.6)

xt =
[
x
ẋ

]
(3.7)

where at is an unknown input (normally distributed with mean 0 and standard
deviation σa) and G applies this effect to the state vector with

F =
[
1 ∆t
0 1

]
(3.8)

G =
[

1
2∆t2
∆t

]
(3.9)

(3.10)

thus, the update function, Equation (2.12) may be written as

xt = F xt−1 + wt (3.11)
wt ∼ N (0,Q) (3.12)

Q = GGTσ2
a =

[
1
4∆t4 1

2∆t3
1
2∆t3 ∆t2

]
σ2
a. (3.13)

The measurements are given by Equation (2.13), with

H =
[
1 0

]
and

R = σ2
z

where σz is 2ft and 4ft for lateral and longitudinal positions respectively, as specified
in the dataset. The algorithm is given adequate values for σa, x̂0|0 and P 0|0 after
which the prediction and update formulas in Equations (2.14) (2.12) can be applied
iteratively.

18

3. Prediction Approach

3.2 Network Architecture

From the previous section it is clear that the data is a time series. The correlation
between the samples is well suited for a RNN consisting of LSTM neurons. LSTM
was preferred over other RNN units such as the gated recurrent unit based on
empirical studies on the task at hand. The specific type of LSTM used was the
vanilla LSTM described in Figure 2.5.

The number of layers of LSTMs was three with 512 units in each layer, chosen
to balance performance with computational effort. The performance gained from
adding further layers did not outweigh the increased training time.

3.2.1 Input Features

In order to allow the network to capture the most relevant correlations and features
the network will be fed as much information as possible. However, since the estima-
tion is intended to operate in real-time, on-board a vehicle, the features have to be
observable by the on-board sensors. The input features are as follows:

• Target vehicle

– Longitudinal acceleration

– Lateral acceleration

– Longitudinal velocity

– Lateral velocity

– Vehicle type

– Has right lane

– Has left lane

• Surrounding vehicles

– Delta longitudinal position

– Delta lateral position

– Delta longitudinal velocity

19

3. Prediction Approach

– Delta lateral velocity

The situation is displayed in Figure 3.1. If there is no car in one of the specified
places the corresponding inputs will be filled with artificial data.

Ego Target 2

1
5

4
3

Long

Lat

Figure 3.1: The considered vehicles when the ego vehicle, the vehicle
where the sensors are located, wants to predict the vehicle in-front.

3.2.2 Motion prediction

The motion of vehicles can be described by Newtonian physics. If the network
outputs acceleration along one dimension, ẍ, the motion along that axis can be
calculated according to the equations

ẋt+1 = ẋt + ẍt∆t (3.14)

xt+1 = xt + ẋt∆t+ ẍt∆t2
2 (3.15)

Driving is not black and white, there are many valid decisions at any point in time,
and different humans may choose differently given the same scenario. With this
in mind it is not justifiable outputting a scalar value for the acceleration in the
next time steps. However, there should be a value that is more likely to occur
than others, given a specific driver. This leads us to believe it would be best to
output some sort of Gaussian distribution given a situation. However, there may be
differences between different humans, some may drive more aggressively than others,
which should be captured in the output. The selected approach is a mixture model,
composed by Gaussian distributions. The whole method of motion prediction is
thus an MDN as described in Figure 2.7.

This thesis will evaluate a mixture of univariate Gaussians. The neural network
should output the parameters to these distributions, so in the following section the
MDN layer will be described in more detail.

20

3. Prediction Approach

3.2.2.1 Univariate Gaussian

The equations describing the univariate Gaussian mixtures are shown in equation
(2.5). The weights πi will have a softmax function as they should sum to one, the
means µi will have no activation function as they could theoretically take on any
value and the standard deviation σi will have an exponential activation function to
make sure they are positive. Thus, there are three parameters for each mixture that
the network has to find.

3.2.3 Intention prediction

To capture the intention of the driver there is a need for another layer in parallel
to the motion prediction layer after the LSTM layers. This layer will indicate if the
driver intends to switch lane (and remain there) within the next four seconds. This
task is closely related to the lateral motion prediction, but the complexity of the
output is much lower. The output from this layer should thus be a simple indicator
if it intends to change lane and to the left or right. This is easily represented by
a three state vector with probabilities for each choice. The layer is thus a simple,
fully connected layer with three neurons with the softmax activation function. The
motivation behind this is according to the paradigm of multi-task learning, it may
be possible for the network to generalize better in the case of lane changes if there
is some abstract representation for lane change embedded in the LSTM layers.

3.2.4 Overview of the models

For the one-dimensional prediction, the single-task network, the overview of the
network architecture is shown in Figure 3.2. For the multi-task model, motion and
intent prediction on the same network, the overview can be found in Figure 3.3.

Input Vector

LSTM Layer 2

40 Time samples

512 Units

LSTM Layer 3 512 Units

Fully Connected Layer

Mixture Model Parameters

LSTM Layer 1 512 Units

Figure 3.2: Architecture for the single-task network.

21

3. Prediction Approach

Input Vector

LSTM Layer 2

40 Time samples

512 Units

LSTM Layer 3 512 Units

LSTM Layer 1 512 Units

Fully Connected Layer

Mixture Model Parameters
Lateral acceleration

Fully Connected Layer

Mixture Model Parameters
Longitudinal Acceleration

Fully Connected Layer

Driver Intention Probability

Figure 3.3: Architecture for the multi-task network.

3.3 Training and Evaluation

In order to evaluate the models, the data will be split into three different sets,
training, validation and test set. Training and validation set will be used in the
training process with the training set providing information for the error signal.
The validation set is then used after each training epoch (one epoch is one pass
over all training data) to evaluate whether the network got better in general or if
it is starting to learn the characteristics of the specific training samples, so called
over-fitting. The last set, the test set, is used to evaluate the model performance.

The evaluation metric used is the MAE where the trajectories are generated from
the test set.

For a relative performance measure of the model results will be compared to some
baseline results. The baseline results will be generated using two simple methods,
prediction using constant velocity and constant acceleration for all the trajectories
in the test set. For these cases the predicted trajectory will follow the trajectory
generated from either keeping the last observed velocity or acceleration constant
throughout the prediction horizon.

3.3.1 Robustness

It is not possible to have a full history of every vehicle at all times, e.g. a car
approaching from behind or a car merging onto the highway. Even without full
history one would like to be able to predict that vehicle’s movement in some way.
For this reason it is of interest to look at how the network handles the situation

22

3. Prediction Approach

where the full history is only partially observable. The chosen approach for this is
to approximate the history by allowing the unobserved samples to be equal to the
first observed measurement. The motivation behind this is that it is unlikely that
the velocity increased too much during the unobserved time, and also it allows for
an easy comparison with the constant velocity/acceleration prediction baselines.

Furthermore, in reality perfect recollection of the surroundings is not always possible,
sometimes some vehicles will be unobservable due to it being hidden from the sensors.
The training of the network assumed perfect observability, but it is interesting to
look at how this transfers into situations without perfect data. For this reason
the models will be evaluated with some data being replaced by the artificial values
indicating no vehicle present. More specifically the model will be evaluated for the
following scenarios, refer to Figure 3.1:

I Vehicle 1 missing

II Vehicle 2 missing

III Vehicle 3 missing

IV Vehicle 4 missing

V Vehicle 5 missing

The evaluation of these cases will also give some information on how valuable the
obfuscated information is to the network.

23

3. Prediction Approach

24

4
Results

4.1 Data Analysis

4.1.1 Acceleration

During the data exploration in the beginning of the thesis it was noted that the
position data was subject to a relatively large amount of noise. It was not apparent
from visual inspection of the trajectories, but extracting the acceleration between
contiguous time samples made it clear. The raw acceleration data obtained by
differentiation of the postitional data in the data set can be seen in the left plot
in Figure 4.1. As described in section 3.1.1 a Kalman filter was applied to the raw
data with the parameters of the Kalman filter chosen as per the specifications of
the recording cameras. The result is shown in the right plot in Figure 4.1. In the
histogram it is clear that the acceleration data is more reasonable after filtering.
The accelerations are in the interval [−6.5, 4.3]m/s2. However, the majority of the
acceleration lies centered around 0 and it follows a normal distribution.

The most important aspect of the filtration is to make sure that it doesn’t completely
change the trajectory of the vehicle, so the parameter controlling the standard de-
viation of the applied acceleration had to be tuned manually. The tuning was
controlled by a measurement indicating the deviation of the filtered trajectory from
the raw data. This measurement needed to be minimized with the added constraint
of keeping the resulting acceleration values reasonable.

The result of the filtering successfully matches what it intended to do. The data is
much more reasonable without losing the characteristics of the raw data.

25

4. Results

−400 −200 0 200 400
Acceleration [m/s2]

100

101

102

103

104

105

106

Nu
m
be

r o
f s

am
pl
es

Unfiltered Longitudinal Acceleration

(a) Unfiltered acceleration

−6 −4 −2 0 2 4
Acceleration [m/s2]

100

101

102

103

104

Nu
m
be

r o
f s

am
pl
es

Filtered Longitudinal Acceleration

(b) Kalman-filtered acceleration

Figure 4.1: Acceleration values extracted from the unfiltered data, the
left plot, and the Kalman-filtered data. The y-axis has a log-scale to
visualize the outliers in both cases.

4.1.2 Correlation

The correlation between the first target acceleration and the past acceleration values
is plotted in Figure 4.2. The correlation between past values for the longitudinal
acceleration is much more persistent than for the lateral acceleration.

−40 −30 −20 −10 0
Timestep

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
tio

n
Co

ef
fic

ie
nt

Acceleration prediction correlation
Longitudinal Acceleration
Lateral Acceleration

Figure 4.2: Plot showing the correlation between the first target accel-
eration and the previous acceleration values.

26

4. Results

4.1.3 Effect of dropout

To increase model efficiency and prevent over-fitting, dropout was added at each
LSTM layer. To evaluate what the dropout coefficient should be a micro benchmark
was done for a subset of the data. Three values of dropout were tested, none, 20%
and 50%. The result is shown in Figure 4.3. It is clear that 20% performs best and
no dropout performing the worst.

0 20 40 60 80 100
Epoch

−4.8

−4.6

−4.4

−4.2

−4.0

−3.8

−3.6

−3.4

Lo
ss

Impact of dropout
 0% Dropout
20% Dropout
50% Dropout

Figure 4.3: Impact of the choice of dropout during the training phase.
In the figure three different values of dropout were chosen and run on
subset of the training data. The loss function for the mixture density
network is displayed on the y-axis. It is clear that 20% dropout has a
competitive advantage over the other two values.

4.1.4 Number of distributions in the mixture

Using the KL-divergence for Gaussian distributions, Equation (2.19), the number
of distributions in the mixture was evaluated. The result can be seen in the table
below.

Table 4.1: The average lowest KL-divergence was calculated on the
test set for three different number of distributions in the mixture model.

Distributions Average lowest KL-divergence
2 2.61
3 0.2055
4 0.0626

Almost no information is lost if the Gaussian with the least impact were to be
removed in the case of a model of four Gaussians and very little in the case of three

27

4. Results

Gaussians compared to the model with two Gaussians.

Based on the results in the table, the risk of overfitting and the increased computa-
tional effort with multiple distributions, it was decided that the optimal number of
distributions was two.

4.2 Longitudinal prediction

To compare the network’s performance to a baseline the two methods described
previously are evaluated against the test set along with the network. The result of
the evaluation are shown in Table 4.2 below

Table 4.2: Baseline results compared with the single-task model for
longitudinal prediction.

Method Mean absolute error in m at time horizon [s]
1 2 3 4

Constant velocity 0.281± 0.232 1.00± 0.823 2.13± 1.74 3.62± 2.95
Constant acceleration 0.164± 0.137 0.610± 0.508 1.35± 1.13 2.41± 2.00
Single-task model 0.0434± 0.0616 0.223± 0.257 0.549± 0.575 1.05± 1.05

as the table indicates, the constant acceleration baseline performs better than the
constant velocity approach. This indicates that the majority of the data seen in the
test set is not smooth free-flow traffic but rather a dense traffic situation with a lot
of variation in velocities. This makes sense, since the data was recorded during the
morning commute in Los Angeles, notorious for highly congested rush hour traffic.

Relating the performance of the baselines to the correlations displayed in Figure
4.2 one can see the impact of correlation. The first two seconds of prediction with
the constant acceleration model is almost twice as good as the constant velocity
method. This highlights the importance of correlation between the target values and
its history and solidifies why it is a good idea to make use of recurrent connections
when working with time series.

As can be seen in Table 4.2 the baselines are far outperformed by the single-task
architecture. The mean absolute error at the prediction horizon 4 seconds is more
than twice as good for the single-task architecture compared to the constant ac-
celeration baseline and more than three times as good than the constant velocity
baseline.

There is a relatively high uncertainty in the MAE value; this comes from the fact
that there are some cases where the networks prediction diverges quite a bit from
the true trajectory. This will be discussed in more detail later, here it will suffice

28

4. Results

observing that the uncertainty is much lower in the case of the single-task prediction
compared to the baselines, indicating that there are more extreme outliers in the
baseline predictions.

In Figure 4.4 four cases of prediction is displayed, where the two top plots success-
fully predicts the vehicle acceleration, the bottom left plot shows a prediction that is
good up until half of the prediction horizon and the bottom right shows a prediction
that fails to correctly predict the characteristics of the true acceleration trajectory.

Figure 4.4: In the four plots above the networks predicted longitudinal
accelerations is displayed alongside the true accelerations of the vehi-
cle. The two top plots shows two instances where the acceleration has
been successfully predicted. In the bottom left the predicted accelera-
tion follows the true accelerations closely to start of with but diverges
after about half of the prediction horizon. In the bottom right plot the
predicted acceleration fails to follow the true acceleration.

29

4. Results

4.2.1 Feature impact and prediction error

To see how the prediction changes with added features Figure 4.5 and Table 4.3
were generated. Due to the time it took for every training epoch this evaluation was
only done for some of the features (for the relative importance of the surrounding
vehicles see Section 4.2.2). The tested feature sets were the following:

• Set 1

– Acceleration

• Set 2

– Acceleration

– Velocity

• Set 3

– Acceleration

– Velocity

– Headway distance

Table 4.3: The evaluation of the longitudinal prediction for a different set
of features. The displayed values are the mean absolute errors of the
predicted trajectory from the true trajectory at four different prediction
horizons.

Feature Set Mean absolute error in m at time horizon
1s 2s 3s 4s

1 0.0619± 0.0796 0.347± 0.567 0.933± 0.863 1.84± 1.62
2 0.0600± 0.0771 0.338± 0.347 0.911± 0.838 1.80± 1.57
3 0.0561± 0.0720 0.292± 0.301 0.719± 0.668 1.35± 1.20

From the features that were analyzed in this exploration it is clear that the most
influential one, apart from past acceleration values, is headway distance. Which
makes sense from a human perspective. The likelihood that a person starts acceler-
ating is very small if the driver in front is not accelerating, i.e the headway distance
is not increasing.

The velocity feature had a minor but still noticeable impact on the prediction out-
come. This means that the acceleration of a vehicle depends on its velocity. More
explicitly it was found that the vehicle is more likely to accelerate more when the

30

4. Results

velocity is low. This is mainly because busy traffic situations has a higher prob-
ability of allowing a scenario where a driver accelerates from 0 to 20 kph than a
scenario where the driver goes from 70 to 90 kph. Also, lower velocity usually tends
to result in more varying flow of traffic with short increases in velocity whereas a
higher velocity usually has a more stable flow of traffic.

0 20 40 60 80 100
Epochs

−3.5

−3.4

−3.3

−3.2

−3.1

−3.0

−2.9

−2.8

Lo
ss

Validation loss
Acceleration
+ Velocity
+ Headway distance

Figure 4.5: The validation loss during training for different feature sets
in the longitudinal prediction model.

4.2.2 Robustness

To test the robustness of the network, the prediction model was evaluated on the
test set where some history was hidden and thus approximated as the first seen
sample. The importance of the full history was evaluated in Figure 4.6 where the
MAE is calculated as a function of the number of hidden samples.

In the figure there is a clear decrease in accuracy as more and more samples get
obfuscated. Looking at how the error increases with more hidden samples one sees
that there is a significant increase in steepness towards the last 5 samples, 35-40 on
the x-axis. This means that these last 5 samples (the most recent ones) have a much
more significant importance in the prediction and not having these will result in a
quick deterioration of the prediction. This relative importance can be explained
by looking at the correlation graph in Figure 4.2. In this graph we see that the
correlation for the last 5 samples of the longitudinal acceleration is all above 0.9,
which is very correlated and thus provides very much information to the network.

We can also note that even in the case where the network is only able to observe
one sample, it beats both the baselines. This highlights the power of a data driven
approach where many variables are observed simultaneously and each contributes
towards some objective that may appear uncorrelated.

31

4. Results

0 5 10 15 20 25 30 35 40
Hidden samples

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

De
vi
at
io
n
[m

]

Importance of History
1 Second
2 Seconds
3 Seconds
4 Seconds

Figure 4.6: Figure showing the importance of the history of the vehicles
considered in the prediction. There is a sudden loss in prediction when
the network loses the information in the most recent 5 samples.

To continue the feature impact evaluation and discussion, we use the result presented
in Table 4.4. The values presented here is of no real use other than as a relative
measurement of importance of the features obscured in the scenario, because the
network was trained on cases where all information was available and didn’t have
any obscured data in the training process, meaning that the result is very bad for
the average case when obscuring one or multiple vehicles in the surrounding.

Table 4.4: Evaluation of the scenarios defined in section 3.3.1

Scenario Mean Absolute Error [m]
I 3.44
II 12.9
III 5.70
IV 4.47
V 6.40

If we look at the table, we see that the largest MAE is achieved in scenario II, which
is when the vehicle in-front is obscured. This ties back into our initial evaluation of
the individual features, where the headway distance had a large contribution to the
end result. So this is in accordance with our expectations.

The second most important vehicle, according to this evaluation, is the car to the
back left. This car is the most important car when merging onto the highway or
passing the vehicle in front on their left as we need to make sure we have a gap
that we can squeeze in by controlling our longitudinal motion in accordance to that
vehicle before making any lateral controls.

32

4. Results

The third most important vehicle is the front right vehicle, which is the vehicle you
would most likely consider the most important one when making a merge to the
right and taking the exit lane. People in the right lane tend to have a lower speed
than you, which would cause you to base your speed on the car on your front right
over the back right car.

The remaining two vehicles do have an impact, but it’s relatively small compared
to the vehicle in-front.

4.3 Lateral Prediction

The evaluation of the lateral predictions was done slightly differently from the longi-
tudinal model. Since the coordinate system used in this thesis is the one displayed in
Figure 3.1 which follows the curvature of the road, the most interesting trajectories
are the ones that involves lane changes. The result is presented in Figure 4.7. In
the left plot the vehicle’s current position in time before the lane change is shown
on the x-axis, the y-axis shows the final error of the predicted trajectory. The right
plot shows the overview of a vehicle positioned 2 seconds before the lane change
with the prediction spanning to 2 seconds after the lane change.

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
Time before lane change [s]

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

M
ea

n
de

vi
at

io
n

[m
]

T = 0T = -2s T = -1s

Error

True Trajectory

Predicted Trajectory

Figure 4.7: Prediction of lateral trajectories involving lane changes. In
the left plot the deviation of the 4 second prediction horizon is plotted
against each timestep leading up to the lane change. The figure to the
right illustrated a situation that starts at -2s and plans until 2s. The error
shown between the two trajectories is the corresponding y-value for the
x-value of -2 in the left plot. The lane change is defined as the first
instance the car passes over into the other lane with the intention of
remaining there.

We see that as the time increases towards 0 (the instance at which the vehicle
starts crossing over into the next lane) the error starts to increase. Specifically the

33

4. Results

increase starts at 6 seconds prior to the lane-change (-6 on the x-axis). This means
that there are some vehicles that will start to move towards the adjacent lane 2
seconds prior to the lane-change (since the prediction lasts 4 seconds) and that the
network fails to predict these instances. From this one may conclude that predicting
a lane-change more than two seconds before it happens is difficult, as there are no
explicit movement indicating a lane-change before this point in time.

The point at which the increasing trend is reversed happens around 2.5 seconds
prior to the lane-change (-2.5 in the figure), where the error starts decreasing with
increased time. What this means is that more than 50% of the lane-changing tra-
jectories have been identified at this point and the network predicts the lateral
movement of the vehicles correctly in the majority of the cases.

As time increases from -2.5 towards 0, the error decreases, indicating that more and
more lane change trajectories are identified by the network between these points in
time.

In the Figure 4.8 there are four different cases of prediction of lane-changing trajec-
tories on display. In the top two and the bottom left plots, the network successfully
predicts that there will be lateral movement towards the adjacent lane. In the bot-
tom right plot the network does not identify that the vehicle will change lane. The
difference between the successful and the failed predictions is the speed at which
the lane-change takes place. This was a common denominator between most failed
predictions, the lane-change was an aggressive transition towards the adjacent lane.

34

4. Results

1 2 3 4
Time [s]

−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

0.00
La

te
ra
l p

os
iti
on

 [m
]

Lateral prediction
True trajectory
Predicted trajectory

1 2 3 4
Time [s]

0.0

0.2

0.4

0.6

La
te
ra
l p

os
iti
on

 [m
]

Lateral prediction
True trajectory
Predicted trajectory

1 2 3 4
Time [s]

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

La
te
ra
l p

os
iti
on

 [m
]

Lateral prediction

True trajectory
Predicted trajectory

1 2 3 4
Time [s]

−3

−2

−1

0

La
te
ra
l p

os
iti
on

 [m
]

Lateral prediction

True trajectory
Predicted trajectory

Figure 4.8: In the four plots above the networks predicted lateral trajec-
tory is displayed alongside the true lateral trajectory of the car. The two
top left and the bottom left has identified that a lane change is taking
place in the near future, whereas the network fails to predict the lane
change in the bottom right plot.

4.4 Multi-task learning

The longitudinal result of the multi-task architecture is similar to the single-task
architecture and can be seen in Table 4.5. There is a slight advantage to the multi-
task model when compared to the results of the single-task model presented in Table
4.3.

Table 4.5: The prediction error over time for longitudinal acceleration
prediction

Architecture Mean absolute error in m at time horizon [s]
1 2 3 4

Multi-Task 0.0418± 0.0599 0.216± 0.245 0.530± 0.548 1.03± 1.02

35

4. Results

The lateral prediction is evaluated on the lane changing trajectories in the same
manner as before, the result is plotted in Figure 4.9. The structure is very similar
to what was shown in Figure 4.7 and the conclusion is that the single-task and
multi-task models are equivalent in terms of lateral prediction.

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
Time before lane change [s]

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
M
ea

n
de

vi
at
io
n
[m

]

Figure 4.9: Deviation of the lateral prediction trajectory for trajectories
involving a lane change

4.4.1 Driver Intent

To evaluate the performance of the intent classifier, it was evaluated on the lane-
changing trajectories in the test set. The accuracy of the performance is shown in
Figure 4.10, the predictions are matched with the classification metrics shown in
Figure 4.11.

The result of the intent-prediction follows what we could read from the lateral
evaluation. From Figure 4.7 it was concluded that the network had identified roughly
50% of the lane-changing trajectories at 2.5 seconds prior to the lane-change. If we
compare this conclusion to the result of the intention prediction in Figure 4.10 we
see that at 2.5 seconds before the lane-change the accuracy is around 50%. The
accuracy increases until roughly 1 second prior the lane-change, where the accuracy
stabilizes at around 95%.

In Figure 4.11 more detailed information is displayed on the predictions. For exam-
ple, we can see that the precision of the predictions is high at all time, even at low
accuracy, meaning that the network is conservative with giving out a label indicat-
ing intent of lane-change. However, there is a significant difference between left and
right lane changes, where the right lane-change seem to be more difficult to identify
compared to the left lane-changes. This may be explained by the fact that the data

36

4. Results

include a merge lane, meaning that all vehicles observed in this lane, identifiable by
the features Has left lane and Has right lane both being zero, will eventually make a
left lane-change. Another reason why lane-changes to the right may be more difficult
is because there is an exit lane as well. Since the drivers are human, it is likely that
the exit lane comes as a surprise to some of the drivers, meaning that they make
very sudden lane-changes to the right, without much planning.

-4 -3 -2 -1
Time before lane change [s]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Figure 4.10: The classification accuracy of trajectories involving a lane
change.

-4 -3 -2 -1
Seconds before lane change

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Metrics for left lane changes

Precision
Recall
F1-score

-4 -3 -2 -1
Seconds before lane change

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Metrics for right lane changes

Precision
Recall
F1-score

Figure 4.11: Precision, recall and f1-scores for the intent classifier dur-
ing classification of the lane changing trajectories in the test set.

4.4.2 Introduction of indicator lights

The result from including a simulated indicator light in the prediction model is
shown in the lateral lane change trajectories in Figure 4.12. In the figure it is clear

37

4. Results

that the indicator light has an effect on the prediction. There is a noticeable shift
of about 0.5 seconds between when the increasing error trend is reversed, from 2.5
seconds prior the lane-change without indicator lights to about 3 seconds with the
lights.

This result follows what we expect. The indicator signals were derived from a
normal distribution centered around 3 seconds before the lane-change, this means,
from the definition of the normal distribution, that about 50% of the trajectories
should have have turned on their indicator lights at this point in time. This was
what we concluded from the figure and is further reinforced in Figure 4.13. In this
figure we see that the number of indicator lights reaches 50% just after three seconds
prior to the lane-change, just as expected.

As we can see in Figure 4.13 the prediction accuracy follows the curve of the distri-
bution of indicator lights. This means that the network has found the correlation
between the indicator light and the intent. More importantly, the network has al-
most always a higher accuracy than the indicator light distribution, meaning that
the network does not solely rely on the indicators, it complements its basis for
prediction with other information it receives from the environment.

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
Time before lane change [s]

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

M
ea

n
de

vi
at
io
n
[m

]

Without indicators
With indicators

Figure 4.12: Comparison of the predicted trajectories with and without
indicator lights in the multi-task model. The deviation is affected by the
indicator lights feature as can be seen by the shift in about 0.5 seconds
when the error starts to decline with increased time.

38

4. Results

-4 -3 -2 -1
Time before lane change [s]

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Prediction w/o lights
Prediction w lights
Indicator lights

Figure 4.13: The accuracy of the driver intent prediction with indicator
lights as a feature of the target vehicle.

-4 -3 -2 -1
Seconds before lane change

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Metrics for left lane changes with indicators

Precision
Recall
F1-score

-4 -3 -2 -1
Seconds before lane change

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Metrics for right lane changes with indicators

Precision
Recall
F1-score

Figure 4.14: Precision, recall and f1-scores for the intent classifier dur-
ing classification of the lane changing trajectories when the indicator
light of the target vehicle was used as an additional input.

The introduction of indicator lights also affected the longitudinal predictions, as
shown in the table below.

Table 4.6: The prediction error over time for longitudinal acceleration
prediction using the multi-task architecture with artificial indicator lights.

Architecture Mean absolute error in m at time horizon [s]
1 2 3 4

MTL Indicators 0.0404± 0.0585 0.207± 0.244 0.509± 0.544 0.977± 0.986

When compared to the result of both the single-task and the multi-task architec-

39

4. Results

tures, there is a noticeable increase in accuracy in the longitudinal accuracy. If the
intentions of a driver are easier to predict, the motion prediction will also have a
positive impact.

4.5 Worst case model comparisons

The two models for longitudinal prediction is compared for three different types of
trajectories. The upper 5 percentile for the trajectories yielding the highest devia-
tion, highest acceleration/deceleration, and the highest jerk. These different subsets
are then compared in the table below

Table 4.7: The worst case prediction error for the models at the full
prediction horizon, 4s.

Trajectories Metric Constant Accel Single-task Multi-task

Deviation

Mean 7.90 4.15 4.04
25% 6.77 3.34 3.27
50% 7.43 3.76 3.66
75% 8.54 4.53 4.39
max 26.8 21.5 23.0

Acceleration

Mean 7.20 2.07 2.05
25% 5.81 0.68 0.70
50% 7.01 1.51 1.52
75% 8.40 2.93 2.88
max 26.8 21.5 23.0

Jerk

Mean 2.95 1.71 1.70
25% 1.08 0.59 0.59
50% 2.26 1.26 1.27
75% 4.02 2.29 2.28
max 26.8 21.5 23.0

Total 0 7 10

as we can see, the result of the single and multi-task architectures are very close, with
a slight advantage to the multi-task architecture. More importantly, the baseline
results of the constant acceleration are outperformed in all cases evaluated.

4.5.1 Correlation between uncertainty and deviation

To correlate the prediction with the model’s own uncertainty measurement the scat-
ter plots in Figure 4.15 were produced. In the plots the prediction error is displayed
on the x-axis and the sum of the standard deviation of the model is shown on the

40

4. Results

y-axis. It is hard to establish that there is a correlation between the total sum of
the standard deviations and the actual error in the prediction. However, we can see
the increasing trend if we specifically choose to look at the minimum uncertainty
for each value along the x-axis. From this we can conclude that there probably is
a correlation, but it is drowned in noise. One possible explanation for this is that
the network is trained to predict the acceleration whereas the results are evaluated
on positions. It is possible that the uncertainty measurement gets drowned in noise
during this transition.

Figure 4.15: Scatter plots of the predicted mean deviation error and it’s
corresponding total uncertainty parameters in the mixture model. The
left plot contains the data from the single-task architecture, and the right
plot is from the multi-task architecture. In both figures the uncertainty
tends to increase slightly as the deviation increases.

41

4. Results

42

5
Discussion and Conclusion

5.1 Limitation of the Kalman filter

The Kalman filter is in itself a predictor, and one might wonder why there is a need
for a neural network. The reason behind this is because although it is possible to do
multi-step prediction with a Kalman filter there is a limit to how far this prediction
extends with reasonable accuracy. A multi-step prediction done solely by a Kalman
filter was found to be accurate up until 10-15 timesteps after which the predictions
diverged and the full 40 timesteps prediction ended up being worse than constant
velocity inference. This is where the data driven approach comes into play as it
is possible to observe almost an infinite number of variables which all may affect
the driver, whereas the Kalman filter relies solely on the physical movement of the
vehicle.

A Kalman filter is still useful during the inference as the input to the network is
eventually captured on the fly by on-board sensors, which all have some degree of
noise. A Kalman filter can thus be used to filtrate this data according to the one-
step prediction of the system to allow realistic acceleration and velocity values to
be extracted to the prediction unit just as in this thesis.

5.2 Limitation of intention prediction

The intention prediction was quite accurate and it was possible to identify most
vehicles before they switched lane, however, it was not possible to identify all ve-
hicles without indicator lights. This is one of the limitations of predicting humans.
Humans are not possible to predict in all cases, there will always be edge cases that
will not be covered in the data or unobservable variables influencing the decision.
This is why a 95 % percent accuracy is very good.

One of the potential variables that could be observed and have a noticeable effect on
the accuracy is the indicator light of the vehicle in question. This was also shown by

43

5. Discussion and Conclusion

introducing artificial lights with the outcome that we could identify close to 100% of
the vehicle one second prior to the lane change. In the real world, this won’t really
be the case, as not everyone is going to use the indicator lights before changing
lane, however, we should be able to see a noticeable increase in accuracy with this
addition in real scenarios.

5.3 Single-task vs Multi-task

The result of the two models turned out to be fairly equal, with the multi-task model
having a slightly better performance in the longitudinal evaluation.

One interesting difference between the two architectures was the speed of conver-
gence. The results for the longitudinal single-task predictions were generated on a
model that had been trained for 138 epochs compared to 104 epochs for the multi-
task model. The reason for this speed difference may be that by introducing three
different tasks the network learns a more useful abstract representation quicker as
a more task-specific representation, a local minimum in the optimization, gets pun-
ished by the other tasks.

From the evaluation of the two architectures, there are two main reasons why the
multi-task architecture is preferred over a single task one. The first reason is because
the multi-task architecture allowed for a faster convergence in the training. The
second reason is because it allows for a great reduction in total compute needed
in the inference step as one forward pass allows for prediction of three different
variables as opposed to only one with the single-task.

5.4 Conclusion

This thesis studied the application of deep learning on the problem of predicting
irrational behaviours in human drivers. From the result one may conclude that
achieving perfect prediction is near impossible, as capturing all parameters that
form the basis for a human decision is not feasible. However, it was shown that
a data driven approach where reasonable data, such as environmental observations
of surrounding vehicles, outperforms simplistic prediction models, i.e. the constant
velocity/acceleration, in the evaluated scenarios.

The longitudinal prediction is performing well in the average case where the simplis-
tic models fail, i.e. in congested and dense traffic conditions. The average prediction
error was around one meter after a full four second prediction horizon. Even in the
worst cases there is valuable information to be learned from the prediction, since
compared to the simplistic models the error of the network is less, meaning that the

44

5. Discussion and Conclusion

network captures the tendency of most trajectories but to a varying degree.

The lateral prediction gets complemented by the intention prediction, where the
intention does not necessarily improve the lateral performance, however the intention
prediction is easier to interpret from a human perspective. The accuracy of the
intention prediction increases rather linearly from 35% at three seconds before the
lane change to around 95% at one second prior to the lane change.

The two architectures evaluated in this thesis turned out to be fairly equal in terms
of performance, with a slightly better performance seen in the multi-task model.
The real gain from using the multi-task model is the gain in saved compute power,
both during training and during inference.

One of the reasons for choosing the mixture density model was the uncertainty
parameters in the mixture model. As it turned out, it is not easy to make the
neural network learn to correctly output a value for the uncertainty measure that
accurately describes if the network is certain about the predicted trajectory in the
evaluation of the network. It was difficult finding a correlation between the standard
deviation of the distributions in the mixture model and the mean absolute error.
This is partly due to the task at hand and partly due to the neural network. The
task is so complex, there is no way to define what specific actions are correct at any
point in time, as there are multiple correct actions, which is why the uncertainty
might be large at any time and not just in the cases where the prediction is bad.
The data are also part of the problem, as the network just learns what is present
in the data, hopefully it generalizes pretty good from the available data, but there
will always be situations where the human does not behave according to previous
observations. This is one drawback of using neural networks.

As a final conclusion, even if producing a self-aware, in terms of uncertainty of its
output, turned out to be difficult, the advantages of using a data driven approach
outperforms the negatives. I see that the future of this type of prediction, where the
target is inherently irrational and difficult to predict, will have some sort of data
driven element to it. The field of machine learning and deep learning in particular
is quickly evolving with new state-of-the-art results and methods being developed
every week. This in combination with more and more data being recorded means
that data driven approaches will become better and better, when and if the limit
will be reached, only time will tell.

45

5. Discussion and Conclusion

46

Bibliography

[1] Traffic Safety, AAA Foundation for: American driving survey, 2015 – 2016.
2017.

[2] Organisation, World Health: Global status report on road safety 2015. 2015.

[3] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun: Delving deep
into rectifiers: Surpassing human-level performance on imagenet classification.
CoRR, abs/1502.01852, 2015. http://arxiv.org/abs/1502.01852.

[4] Keeney, Tasha: Mobility-as-a-service: Why self-driving cars could
change everything. October 2017. http://research.ark-invest.com/
self-driving-cars-white-paper.

[5] Schwarting, Wilko, Javier Alonso-Mora, and Daniela Rus: Planning and
decision-making for autonomous vehicles. Annual Review of Control,
Robotics, and Autonomous Systems, 1(1), 2018. https://doi.org/10.1146/
annurev-control-060117-105157.

[6] U.S Department of Transportation: Next Generation Simulation (NGSIM)
Vehicle Trajectories. https://data.transportation.gov/Automobiles/
Next-Generation-Simulation-NGSIM-Vehicle-Trajector/8ect-6jqj,
2017. Online; accessed 30 January 2018.

[7] Esling, Philippe and Carlos Agon: Time-series data mining. 45:12, November
2012.

[8] Nielsen, Michael A.: Neural Networks and Deep Learning. Determination Press,
2015.

[9] Lipton, Zachary Chase: A critical review of recurrent neural networks for se-
quence learning. CoRR, abs/1506.00019, 2015. http://arxiv.org/abs/1506.
00019.

[10] Werbos, P. J.: Backpropagation through time: what it does and how to do it.
Proceedings of the IEEE, 78(10):1550–1560, Oct 1990, ISSN 0018-9219.

47

http://arxiv.org/abs/1502.01852
http://research.ark-invest.com/self-driving-cars-white-paper
http://research.ark-invest.com/self-driving-cars-white-paper
https://doi.org/10.1146/annurev-control-060117-105157
https://doi.org/10.1146/annurev-control-060117-105157
https://data.transportation.gov/Automobiles/Next-Generation-Simulation-NGSIM-Vehicle-Trajector/8ect-6jqj
https://data.transportation.gov/Automobiles/Next-Generation-Simulation-NGSIM-Vehicle-Trajector/8ect-6jqj
http://arxiv.org/abs/1506.00019
http://arxiv.org/abs/1506.00019

Bibliography

[11] Bengio, Y., P. Simard, and P. Frasconi: Learning long-term dependencies with
gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2):157–
166, Mar 1994, ISSN 1045-9227.

[12] Pascanu, Razvan, Tomas Mikolov, and Yoshua Bengio: On the difficulty of
training recurrent neural networks. CoRR, abs/1211.5063, 2012. http://
arxiv.org/abs/1211.5063.

[13] Hochreiter, Sepp and Jürgen Schmidhuber: Long short-term memory. Neural
Comput., 9(8):1735–1780, November 1997, ISSN 0899-7667. http://dx.doi.
org/10.1162/neco.1997.9.8.1735.

[14] Greff, Klaus, Rupesh Kumar Srivastava, Jan Koutník, Bas R. Steunebrink, and
Jürgen Schmidhuber: LSTM: A search space odyssey. CoRR, abs/1503.04069,
2015. http://arxiv.org/abs/1503.04069.

[15] Goodfellow, Ian, Yoshua Bengio, and Aaron Courville: Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[16] Breiman, Leo: Bagging predictors. Mach. Learn., 24(2):123–140, August 1996,
ISSN 0885-6125. http://dx.doi.org/10.1023/A:1018054314350.

[17] Statistics, Leo Breiman and Leo Breiman: Random forests. In Machine Learn-
ing, pages 5–32, 2001.

[18] Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov: Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Research, 15:1929–1958, 2014.
http://jmlr.org/papers/v15/srivastava14a.html.

[19] Ruder, Sebastian: An overview of multi-task learning in deep neural networks.
CoRR, abs/1706.05098, 2017. http://arxiv.org/abs/1706.05098.

[20] Rasmussen, Carl Edward: The infinite gaussian mixture model. In Solla, S. A.,
T. K. Leen, and K. Müller (editors): Advances in Neural Information Processing
Systems 12, pages 554–560. MIT Press, 2000. http://papers.nips.cc/paper/
1745-the-infinite-gaussian-mixture-model.pdf.

[21] Zen, Heiga and Andrew Senior: Deep mixture density networks for acoustic mod-
eling in statistical parametric speech synthesis. In Proceedings of the IEEE In-
ternational Conference on Acoustics, Speech, and Signal Processing (ICASSP),
pages 3872–3876, 2014.

[22] M. Bishop, Christopher: Mixture density networks. U.K., Tech. Rep.
NCRG/4288, January 1994.

48

http://arxiv.org/abs/1211.5063
http://arxiv.org/abs/1211.5063
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1503.04069
http://www.deeplearningbook.org
http://dx.doi.org/10.1023/A:1018054314350
http://jmlr.org/papers/v15/srivastava14a.html
http://arxiv.org/abs/1706.05098
http://papers.nips.cc/paper/1745-the-infinite-gaussian-mixture-model.pdf
http://papers.nips.cc/paper/1745-the-infinite-gaussian-mixture-model.pdf

Bibliography

[23] Kalman, Rudolf: A new approach to linear filtering and prediction problems.
82:35–45, January 1960.

[24] Faragher, R.: Understanding the basis of the kalman filter via a simple and in-
tuitive derivation [lecture notes]. IEEE Signal Processing Magazine, 29(5):128–
132, Sept 2012, ISSN 1053-5888.

[25] Kullback, S. and R. A. Leibler: On information and sufficiency. Ann.
Math. Statist., 22(1):79–86, March 1951. https://doi.org/10.1214/aoms/
1177729694.

[26] Bishop, Christopher M.: Pattern Recognition and Machine Learning (Informa-
tion Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2006, ISBN 0387310738.

[27] Allison, L.: Normal, gaussian. http://allisons.org/ll/MML/KL/Normal/.

49

https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
http://allisons.org/ll/MML/KL/Normal/

Bibliography

50

	List of Figures
	List of Tables
	Introduction
	Purpose
	Research Questions
	Scope and Limitations

	Theory
	Time-Series
	Artificial Neural Networks
	Supervised Learning
	Recurrent Neural Networks
	Back Propagation Through Time
	Long Short-Term Memory networks

	Regularization
	Bootstrap aggregating
	Dropout
	Multi-Task Learning

	Mixture Gaussian Distribution
	Mixture Density Networks
	Loss function

	Data Analysis
	Kalman Filter
	Metrics
	Mean Absolute Error
	Kullback-Leibler Divergence

	Precision, Recall and F-Score

	Prediction Approach
	Data
	Filtering

	Network Architecture
	Input Features
	Motion prediction
	Univariate Gaussian

	Intention prediction
	Overview of the models

	Training and Evaluation
	Robustness

	Results
	Data Analysis
	Acceleration
	Correlation
	Effect of dropout
	Number of distributions in the mixture

	Longitudinal prediction
	Feature impact and prediction error
	Robustness

	Lateral Prediction
	Multi-task learning
	Driver Intent
	Introduction of indicator lights

	Worst case model comparisons
	Correlation between uncertainty and deviation

	Discussion and Conclusion
	Limitation of the Kalman filter
	Limitation of intention prediction
	Single-task vs Multi-task
	Conclusion

	Bibliography

