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Abstract

In LWR cores, multiple fields of physics will need to be tackled. The power level is determined
by the neutron density field, and the generated heat will determine the fuel conditions, which in
turn affect the coolant/moderator flow and thermo-physical conditions. As the neutron cross-
sections depend on both the fuel and moderator conditions, an interdependence between the
neutronics and thermal-hydraulics is found. To perform accurate, high-resolution nuclear reactor
core calculations, it is therefore necessary to couple strategies and methodologies from different
areas of physics.

In this work a finite volume approach is used to perform steady state, coupled calculations
for thermal-hydraulics and neutronics on a shared high-resolution mesh. The thermal-hydraulics
is solved by a standard CFD approach, using the SIMPLE algorithm for the pressure-velocity
coupling together with an energy equation expressed in terms of temperature. The neutronic
cross-sections are pre-calculated using a nuclear Monte Carlo code. The neutronics is added
in to the CFD solver, avoiding any external software coupling, and is discretized according to
standard finite volume approach. The criticality eigenvalue problem is solved by the power
iteration method, which has been added to the CFD solver. To couple the thermal-hydraulics
and neutronics an iterative scheme is proposed. The finite volume solver has been implemented
in OpenFOAM.

The developed direct coupled methodology is applied to a simplified PWR fuel sub-assembly.
The physical dependencies between neutronics and thermal-hydraulics are correctly recovered.
The achieved results suggest that this newly-developed coupling procedure provides an unprecen-
dented level of details and accuracy as compared with standard non-direct coupled calculations.

Keywords: high-fidelity, neutronics, thermal-hydraulics, CFD, multi-physics, coupled determin-
istic modeling, LWR
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Nomenclature

Symbols:

Neutronics

Σa Absorption cross-section [m−1]

Ψ Angular neutron flux [m−2s−1]

Nm Atomic density of a general material m [m−3]

µ Average scattering angle [1]

Hd Downscattering source term [m−3s−1]

γ Energy per fission [J]

Σf Fission cross-section [m−1]

χ Fission neutron spectrum [1]

F Fission source term [m−3s−1]

Σs0 Isotropic scattering cross-section [m−1]

σx Microscopic cross-section for reaction x [m2]

keff Multiplication factor [1]

ν Neutron fission yield [1]

φ Scalar neutron flux [m−2s−1]

PN Power density [Wm−3]

ΣT Total macroscopic cross-section [m−1]

Hu Upscattering source term [m−3s−1]

Thermal-hydraulics

Ψ Compressibility [Pa−1]

ρ Density [kgm−3]

ε Dissipation of turbulent kinetic energy [m2s−3]

ν Frequency [Hz]

g Gravitational acceleration [−9.81ms−2ẑ]
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ϕ Mass flux [kgm−2s−1] (generally ρU)

p Instantaneous pressure [Pa]

u Instantaneous velocity [ms−1]

h Specific enthalpy [J/kg]

cp Specific heat capacity at constant pressure [JK−1kg−1]

τ Stress tensor [Nm−1]

q′′ Surface heat flux [Jm2]

q′′′ Volumetric heat source [Jm3]

T Temperature [K]

K Thermal conductivity [WK−1m−1]

α Thermal diffusivity [m2s]

β Thermal expansion coefficient [K]

k Turbulent kinetic energy [m2s−2]

Pr Turbulent Prandtl number

P Time averaged pressure [Pa]

U Time averaged velocity [ms−1]

Thermal radiation

Ib Black body emission intensity [Wm−2]

G Incident radiative heat flux [Wm−2]

φ Inscattering function [1]

ε Radiation emissivity [1]

I Radiation intensity [Wm−2]

Ka Radiation absorption coefficient [m−1]

Ka Radiation scattering coefficient [m−1]

General

Ω Angular direction

s Direction vector, with length s = |s|

X Example quantity, no physical meaning

m General material notation

χ General reaction notation

r General space coordinate

t General time coordinate
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δij Kroenecker delta

% Under-relaxation factor

V Volume of mesh cell [m3]

Subscripts

overbar Time averaging

Xi i:th component of the tensor X

Xi,j derivative of i:th component of the tensor with respect to the j:th direction of X

3



Abbreviations

BWR Boiling Water Reactors

CFD Computational Fluid Dynamics

HPC High Performance Computing

LWR Light Water Reactor

MOX Mixed oxide

PDE Partial Differential Equation

PWR Pressurized Water Reactors

UOX Uranium oxide
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Chapter 1

Introduction

This first chapter gives an introduction to nuclear energy, the basic concepts of light water
reactors, and the methodology applied to reactor coupled calculations. Moreover the work carried
out in this thesis is outlined, including motivations, objectives and framework.

1.1 Nuclear Power

Electricity production from nuclear power plants is today standing for approximately 14% of
the world’s ever increasing demand for electricity[1]. The addressing of the environmental issues
related to the release of greenhouse gases has led to a renewed interest in nuclear energy[2].
The nuclear renaissance has at late been slowed or put on hold by many countries following the
Fukushima accident[3].

1.1.1 Light Water Reactors

Most of the existing 436 nuclear reactors[4] are Light Water Reactors (LWRs). A LWR is based
on the boiling of natural water through the use of fission of primarily uranium. The steam drives
a turbine, connected to an electric generator, producing electricity to the grid. The variations of
commercial LWR:s is primarily seen in the method used to boil the water.

In the Pressurized Water Reactor (PWR) the thermal-hydraulic state in the core is such that
boiling is not occurring. The boiling is instead happening in a second loop (the secondary side),
in the steam generators. The hot and highly pressurized flow of water in the primary loop,
heated by the nuclear fission, is driven primarily by pumps. An outline can be seen in Fig. 1.1.

In the Boiling Water Reactor (BWR) the water is let boil immediately in the core of the
reactor. Consequently, this is a direct cycle system. The steam produced in the core is let pass a
steam separator and steam dryer to increase the quality of the steam (i.e. reducing the amount
of liquid in the steam), to improve turbine performance and avoid possible issues (e.g. erosion
damage). An outline can be seen in Fig. 1.2. The boiling occurs inhomogeneously, and the
amount of vapor in the steam will increase with increasing axial elevation.

In these kind of nuclear power plants, water is not only the coolant, but it works also as
moderator of the neutrons. When uranium-235 undergoes fission, a number of fast neutrons (i.e.
with relatively high energies) are released. These neutrons can be used to maintain a nuclear
chain reaction, so that power can be produced stationarily. However, since the uranium-235
enrichment in LWR fuel is relatively low, and the uranium-235 fission cross-section with fast
neutrons is much smaller than for thermal neutrons, a moderator is needed to accomplish an
efficient fission rate in the core.
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Figure 1.1: Outline of a PWR. Partly recreated from [5].
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Figure 1.2: Outline of a BWR. Partly recreated from [5, 6].

1.1.2 LWR fuel structure

PWR and BWR nuclear fuel share common characteristics. A rectangular lattice of fuel assem-
blies is placed in the core of the reactor. The fuel assembly in turn consists of a rectangular
lattice of fuel pins. The pins consists of piled pellets of nuclear fuel. An outline of the radial
structure of a typical LWR core can be seen in Fig. 1.3.

The radial length scale of the fuel pin is on the order of 1 cm, whereas the radial length scale
of the fuel bundle is on the order of 10-20 cm (varying among models and BWR and PWR fuel).
The height of the stacked fuel pellets is on the order of 3-4 m. The fuel is centered in the fuel
pin, with a thin surrounding gap consisting of helium when fuel is fresh, and when burned also
gaseous fission products. The gap allows for thermal expansion of the fuel and a free volume for
the gaseous fission products.

The cladding is the first safety barrier of the nuclear fuel, acting as a container for the fuel.
The cladding composition may vary, but usually consists of some zirconium based alloy.
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1.2. BASIC PHYSICS OF A LIGHT WATER REACTOR CORE

Figure 1.3: Outline of the radial structure of simplified LWR rectangular fuel.

1.2 Basic physics of a Light Water Reactor core

In a LWR, neutrons are thermalized in the moderator and induce fissions in the nuclear fuel.
The energy released by fission is transferred from the fuel, through the cladding, to the coolant.
The flow of the coolant removes the heat from the core. Therefore, to study the behavior of
the core, knowledge of neutron kinetics, heat transfer mechanisms, fluid dynamics, among other
phenomena, is essential.

Furthermore, since the neutron density (and, thus, the power) is affected by the fluid condi-
tions and the fluid conditions depend on the power (i.e. the neutron density) it is important to
take in account the interdependence between the different fields of physics. This is summarized
in the schematics in Fig. 1.4.

Fuel 
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Neutron 
density field

Flow 
properties

Power
Fuel tem

perature
Fu

el 
te

m
pe
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tu

re

Water density

Wat
er

 te
m
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re

Figure 1.4: Outline of the interdependence of the different fields of physics in
the nuclear reactor core of a LWR reactor.

1.3 Review of current methodologies for reactor calcula-
tions and motivation of the work

In order to provide realistic simulation of the behavior of a LWR core, the coupling between neu-
tronics and thermal-hydraulics must be modeled. For transient calculations the usual procedure
is to couple a 3D neutronic core simulator (e.g. PARCS[7]) and a 1D thermal-hydraulic system
code (e.g. RELAP5[8]). The coupled transient core and thermal-hydraulic codes methodology
has been applied extensively and successfully, although it can suffer some issues including compu-
tational inefficiency and convergence problems[9]. For steady state core simulations, a simplified
thermal-hydraulic model is often included in the core simulator (e.g. SIMULATE-3[10]). More
details can be found in [11, 12, 13].

Considering the above description it is seen that in none of the outlined computational
methodologies are the different fields of physics directly treated in an explicit, three dimensional
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CHAPTER 1. INTRODUCTION

manner. Reasons for this include:

• computational burden: explicit calculations of full dimensionality of all fields will be more
computationally heavy than performing divided calculations, considering only a part of the
problem and using lower dimensional simplified calculations or correlations for the other
fields.

• historical reasons: the methodologies discussed above were proposed at a stage where the
computational power was much smaller. The problems had to be divided to give feasible
running times. The development during the 1990s was more to the use of workstations and
less to use high performance computers, and this limited the computational power[14].

• methodological reasons: present high performance computing (HPC) is based on massively
parallel computing (see e.g. [15]). The nuclear reactor codes, with their developed method-
ologies, are often aimed to be run on a single CPU, making the extensions to modern HPC
machines more difficult.

• complexity reason: as different fields of physics require different skills the use of multi-
physics has for sure often been limited by few scientists being experts in many fields. The
thermal-hydraulics calculations have developed through the computational fluid dynamics
(CFD), today with little influence from the reactor physics code developers. This naturally
leads to separate methodologies, and difficulty in combining the tools.

Late developments have shown more effort put into the use of super computers for nuclear
engineering calculations, allowing for higher accuracy of the now performed calculations, new
possibilities of better models and new combinations of physics.

An example of an application in which a 1D thermal-hydraulic approximation can be non-
satisfactory is reactor physics calculations for modern BWR fuel assemblies. Previous works
showed that such an approach can give inaccurate results because the radial void fraction dis-
tribution of the moderator can play a non-negligible role[16, 17]. Therefore, the use of CFD
capabilities, allowing a better description of the moderator properties, together with neutronics
looks of particular interest.

In this light, late work has shown examples of external coupling methodologies using com-
mercial CFD-software combined with existing neutronic solvers[18, 19, 20, 21]. External coupling
softwares, exchanging the coupled fields, were in all cases used, limiting the performance and
applicable multi-physics methodologies in the codes.

1.4 Description of this work

The purpose of this work is to analyze the feasibility of implementing a steady-state neutron
diffusion and thermal-hydraulics coupled methodology into an existing CFD tool. Many aspects
of this work are connected to the development of the code itself, aiming to answer:

• What methodology of physics coupling should be applied?

• What is the computational effort?

• What background data and parameters are needed?

Successfully managing to implement such a CFD based code, other questions related to the
developed methodology could be addressed:

• How high-resolution is needed to correctly model the interdependence of the different fields
of physics?

• How strong is the coupling between the different fields of physics?

8



1.5. STRUCTURE OF THE THESIS

• In what kind of applications is such a code beneficial or even necessary?

The methodology developed is based on a computational tool that solves the steady-state
multi-group neutron diffusion equation coupled with a CFD solver for the thermal-hydraulics
that is built from solvers available in the open source CFD software OpenFOAM[22, 23]. The
coupling is internal, so no external software is needed to transfer data from the neutronic field
to the thermal-hydraulic field, and vice versa. The numerical algorithm relies on features (e.g.
computational mesh generation, operator discretization, matrix solvers, etc.) that are also avail-
able in OpenFOAM. Neutron cross-sections are pre-calculated by following a procedure that use
the nuclear Monte Carlo Code SERPENT[24, 25].

To test the developed tool, the case of a simplified fuel assembly under PWR conditions was
studied. Partial fuel assemblies with multiple different pin compositions were tested, with the
size of the system primarily limited by the CPU-usage.

1.5 Structure of the thesis

After this introductory chapter, a detailed account of the theory will follow in Chapter 2. The
methodology developed in this Master of Science thesis project is described in Chapter 3, and
the demonstration of its applicability is illustrated in Chapter 4. Finally, conclusions are drawn
and future work is discussed in Chapter 5.
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Chapter 2

Theory

The methodology studied in this work has at its core a newly developed computational tool
for simulating the coupling between the neutronics and the thermal-hydraulics of a single-phase
flow in a nuclear fuel assembly. This chapter gives the theoretical background on which such a
computational tool is based. First the neutron multi-group neutron diffusion equation is derived
(section 2.1). Then the thermal-hydraulic model is discussed (section 2.2). Finally the coupled
problem is illustrated (section 2.3).

2.1 Neutronics

The aim of this section is to formulate the multi-group neutron diffusion equation and to illustrate
the related assumptions and approximations. Furthermore the cross-sections and the neutron
parameters needed in such an equation will be defined and discussed.

2.1.1 Neutron transport equation

By considerations of the processes involving neutrons in a nuclear reactor core the following
integro-differential transport balance equation can be written[6]:

∂

∂t
n(r,Ω, E, t) + Ω · ∇Ψ(r,Ω, E, t)+ΣT (r, E, t)Ψ(r,Ω, E, t) =∫

(4π)

∫ ∞

0

ΣS(r,Ω
′ → Ω, E′ → E, t)Ψ(r,Ω′, E′, t)dω′dE′+

χ(E)

4π

∫ ∞

0

νΣf (r, E
′, t)Φ(r, E′, t)dE′

(2.1)

where the scalar and angular flux are related by:

Φ(r, E, t) =

∫
(4π)

Ψ(r,Ω′, E, t)dω′ (2.2)

Equation (2.1) is not generally possible to solve analytically. For the steady state limitation of
this thesis work, the time dependence is excluded. The system is instead rewritten using the
effective multiplication factor, keff (i.e. the ratio of the number of neutrons in one generation to
the number of neutrons in the previous one). Defining the neutron current as:

J(r, E, t) =

∫
(4π)

Ω ·Ψ(r,Ω, E, t)dω, (2.3)

11



CHAPTER 2. THEORY

and integrating over the angular space, eq. (2.1) will then become:

∇ · J(r, E) + ΣT (r, E)Φ(r, E) =∫
(4π)

∫
(4π)

∫ ∞

0

ΣS(r,Ω
′ → Ω, E′ → E)Ψ(r,Ω′, E′)dωdω′dE′ +

χ(E)
keff

∫ ∞

0

νΣf (r,E
′)Φ(r, E′)dE′ (2.4)

The effective multiplication factor is to be seen as a renormalizing factor. For keff = 1 the system
is said to be critical. The number of neutrons born by fission and absorbed and leaking are then
at balance. The renormalization of the fission term allows determining the general behavior of
the nuclear reactor without solving the time-dependent problem, eq. (2.1).

The first approximation introduced is to assume that the neutrons are isotropically scattered,
removing the angular dependence such that:

∇ · J(r,E) + ΣT (r,E)Φ(r,E) =∫ ∞

0

Σs0(r,E
′ → E)Φ(r,E′)dE′ + χ(E)

keff

∫ ∞

0

νΣf (r,E
′)Φ(r, E′)dE′ (2.5)

where the approximation of isotropic scattering enters as:

ΣS(r,Ω
′ → Ω, E′ → E) =

Σs0(r, E
′ → E)

4π
(2.6)

Do note that other approaches to solve eq. (2.1) could be utilized, partially or completely,
preserving the angular dependence.

2.1.2 Diffusion approximation

The solution of eq. (2.5) can be obtained by introducing a relation between the scalar neutron
flux (Φ) and the neutron current (J). One possible approximative way to relate the neutron
current and neutron scalar flux is through the use of Fick’s law[6]:

J(r, E) ≈ −D(r, E)∇Φ(r, E) (2.7)

This gives the neutron diffusion equation, i.e.:

−∇ (D(r, E)∇Φ(r, E)) + ΣT (r, E)Φ(r,E) =∫ ∞

0

Σs0(r, E
′ → E)Φ(r, E′)dE′ +

χ(E)

keff

∫ ∞

0

νΣf (r, E
′)Φ(r,E′)dE′ (2.8)

The diffusion coefficient, D, is estimated through transport theory, retaining some degree of
angular dependence, as[6]:

D(r, E) =
1

3 (ΣT (r, E)− µ(r)Σs0(r))
(2.9)

where:

ΣT = Σa +Σs0 (2.10)

Equation (2.8) is an eigenvalue problem in which the effective multiplication factor will corre-
spond to an eigenvalue of the system, and the neutron flux, Φ(r,E) an eigenstate of the system.

In order to solve (2.8) in a computational manner, the energy and space dependence must be
cast to discrete relations.

12



2.1. NEUTRONICS

2.1.3 Discrete energy equation

The energy-dependence is split into a discrete set of energy intervals such that[6]:

[Emin, Emax] =

G∏
g=1

[Eg, Eg−1] (2.11)

with the lowest neutron energy group labeled G and the highest neutron energy group labeled
1. Eq. (2.8) will, in its discrete energy dependence, be:

−∇ (Dg(r)∇Φg(r)) + ΣT,g(r)Φg(r) =
G∑

g′=1

Σs0,g′→g(r)Φg′(r) +
χp
g

keff

G∑
g′=1

νΣf,g′(r)Φg′(r) (2.12)

where, in order to be consistent with eq. (2.8), the multi-group quantities are defined as:

Φg(r) =

∫ Eg−1

Eg

Φ(r,E)dE (2.13)

ΣT,g(r) =

∫ Eg−1

Eg

ΣT (r, E)Φ(r, E)dE∫ Eg−1

Eg

Φ(r, E)dE

(2.14)

[νΣf,g](r) =

∫ Eg−1

Eg

[νΣf ](r, E)Φ(r, E)dE∫ Eg−1

Eg

Φ(r, E)dE

(2.15)

Σs0,g′→g(r) =

∫ g′−1

g′

∫ Eg−1

Eg

Σs0(r, E
′, E)Φ(r, E)dEdE′

∫ Eg−1

Eg

Φ(r, E)dE

(2.16)

χg =

∫ Eg−1

Eg

χ(E)dE (2.17)

Dg =

∫ Eg−1

Eg

D(r, E)||∇ (Φ(r, E)) ||dE∫ Eg−1

Eg

||∇ (Φ(r, E)) ||dE
(2.18)

The last equation can be approximated using eq. (2.9):

Dg(r) =
1

3 (ΣT,g(r)− µg(r)Σs0,g(r))
(2.19)

with:

Σs0,g(r) =
G∑

g′=1

Σs0,g→g′(r) (2.20)

To compute the multi-group neutron flux Φg(r) the quantities (2.14)-(2.18) need to be pre-
determined, either through calculations or measurements.
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2.1.4 Space homogenization

The discrete energy diffusion equation, eq. (2.12), must be discretized in space to give a finite
number of equations to be solved. This can be done in many ways, including finite elements,
finite differences and finite volumes. The last method is the one used in this thesis.

The space is split in I homogeneous cells (volumes), and the diffusion equation (2.12) is
solved for each of these cells, with proper boundary conditions that take in account the flux in
the adjacent volumes. Therefore, the diffusion equation for the generic i-th cell, with i = 1, . . . , I,
can be written:

−∇ (Di,g∇ (Φi,g)) + ΣT,i,gΦi,g =
G∑

g′=1

Σs0,i,g′→gΦi,g′ +
χp
g

keff

G∑
g′=1

νΣf,i,g′Φi,g′ (2.21)

The interdependence between different cells will be found in the discretization of the streaming
operator, ∇. The space dependence will be further discussed in the methodology section (see
section 3.1.2).

2.1.5 Concerning the choice of diffusion approximation

The neutron diffusion methodology is often applied in 3D core calculations, whereas 2D lattice
calculations often utilize neutron transport methodologies, e.g. discrete ordinates method [13],
retaining higher order angular dependence.

The methodology developed and illustrated in this thesis is addressed to study scales that
are comparable with the lattice calculation cases. Nevertheless, the diffusion approximation
was used, primarily, because it is easier to implement as a test of the newly proposed coupling
methodology.

It must be noted that when spatial material heterogeneities are present, eq. (2.7) can give
poor results. It could therefore, in accordance with the small scale of the problem solved, be
beneficial to implement some angular dependent method.

2.1.6 Cross-sections

In order to solve eq. (2.21), the macroscopic discrete cross-sections and the diffusion coefficients
need to be determined. In the continuous space and energy formalism the macroscopic cross-
sections are given by:

Σχ(r, E, t) =

M∑
m=1

σχ,m(E)Nm(r) (2.22)

As shown in eq. (2.22), the macroscopic cross-sections depend on energy, position and time.
These dependencies underlie other dependencies, as:

• on fuel temperature

• on fuel burnout

• on moderator thermal-hydraulic conditions

• on control rod positioning

• on poisoning

Furthermore, as shown in eq. (2.14)-(2.18), for the condensed cross-sections the flux is used as
a weight function. This is somewhat a contradiction since the cross-sections are used to compute
the flux. It is thus necessary to compute the homogenized and condensed cross-sections with a
reasonable approximation of the flux.
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The spatial resolution of the macroscopic cross-sections that is needed for the current work
is relatively high, since the goal is to implement the neutron diffusion equation in a CFD tool
that makes use of a fine spatial mesh for the solution of the thermal-hydraulic equations. The
generation of the macroscopic cross-sections can be achieved with deterministic lattices codes or
with Monte Carlo based codes.

Deterministic lattice codes estimate the macroscopic cross-sections by solving first the flux in
a micro-energy group structure and in a micro-region structure. Then, such a result is condensed
and homogenized via a macro-group structure and a macro-region structure to a final few-group
(typically two-group) cross-sections at fuel assembly level. Therefore, data at the fuel pin level,
that are necessary in this work, are usually not available from calculations performed with existing
lattice codes.

On the other hand, Monte Carlo nuclear codes allow to model problem with arbitrary ge-
ometries and material composition, and the energy dependency can be treated as a continuum.
Thus, energy condensation and spatial homogenization can be derived in a more straightforward
manner. For this reason the Monte Carlo nuclear code SERPENT was chosen to create the
macroscopic cross-sections for the case under study in this thesis. The code has also the advan-
tage to be based on a collision estimator which makes group constants calculations easier than,
for instance, the case of the code MCNP5[26]1.

1In MCNP tally calculations group to group cross-sections are not readily available. An adjusted procedure
was applied to overcome this issue, but it was found inefficient.
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2.2 Thermal-hydraulics

In this section a model for single-phase turbulent flow of a compressible fluid is presented. In
addition, a heat transfer model for solids is discussed. This is focused on the specific case of
applications for nuclear fuel assemblies.

2.2.1 Governing equations

To study the behavior of a fluid flow, conservation equations for mass, momentum and energy
are introduced[27]:

∂ρ

∂t
(r, t) +∇ (ρu) (r, t) = 0 (2.23)

∂(ρu)

∂t
(r, t) +∇ (ρu⊗ u) (r, t) = ∇ · τ(r, t)−∇ (p) (r, t) + ρ(r, t)g (2.24)

∂(ρh)

∂t
(r, t) +∇ · (ρuh)(r, t) = −∇ · q′′(r, t) + q′′′(r, t) + τ(r, t)∇⊗ u(r, t) +∇ · (up)(r, t) (2.25)

For Newtonian fluids, the stress tensor τ can be written as:

τ = µ

(
ui,j + uj,i −

2

3
uk,kδij

)
(2.26)

where the repeated indices imply summing, and the comma partial derivatives.

2.2.2 Time averaging

The above equations model the local instantaneous flow of a fluid, and their solution is very
challenging, both in terms of modeling and computational effort. For practical purposes, an
approach that is used to simplify the problem is to average such equations over proper time
intervals and spatial volumes. However, this procedure introduces a certain degree of approxi-
mation since relatively high-frequency and small scales phenomena are filtered out. The space
averaging is discussed in the methodology section (see section 3.1.2).

The time-average of the conservation equations (2.23)-(2.25) is based on Reynolds decompo-
sition. Accordingly, a general quantity x(r, t) describing one of the properties of the fluid flow
can be considered as composed of a mean value and a fluctuating component, i.e.:

x(t) = X(t) + x′(t) (2.27)

where the averaged part is defined as:

X =

∫ t+δt

t

x(t′)dt′ (2.28)

and the fluctuating part x′(t) has the property:∫ t+δt

t

x′(t′)dt′ = 0 (2.29)

where δt is a time interval suitable to filter out small scale fluctuations, but retaining slower
variations.

Thus the velocity, pressure and enthalpy of a fluid can be expressed as:

u(r, t) = U(r, t) + u′(r, t) (2.30)
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2.2. THERMAL-HYDRAULICS

h(r, t) = H(r, t) + h′(r, t) (2.31)

p(r, t) = P (r, t) + p′(r, t) (2.32)

where u′(r, t), h′(r, t) and p′(r, t) are the fluctuating parts.

Substituting eqs. (2.30)-(2.32) into (2.23)-(2.25) and averaging the resulting equations on the
same time interval [t, t+ δt], a time averaged form of the conservation equations is obtained:

∂ρ

∂t
(r, t) +∇ (ρU) (r, t) = 0 (2.33)

∂(ρU)

∂t
(r, t) +∇ (ϕ⊗ U) (r, t) = ∇ · τ(r, t)−∇ · ρu′ ⊗ u′(r, t)−∇ (P ) (r) + ρ(r, t)g (2.34)

∂(ρH)

∂t
(r, t) +∇ (ϕH) (r, t) =

−∇ · q′′(r, t) + q′′′(r, t) +∇ · (UP )(r, t) +∇ · (u′p′)(r, t)+

τ(r, t)∇⊗ U(r, t)−∇ · (ρuh′) (2.35)

where:

ϕ(r, t) = (ρU)(r, t) (2.36)

Do note that only the fluctuating contributions from velocity, enthalpy and pressure have been
included, assuming the fluctuations in density to be negligible. This can be shown to be valid
for speeds much lower than the speed of sound of the medium[28], which is true for the present
calculations.

In the case of steady state conditions, eqs. (2.33)-(2.35) becomes:

∇ (ρU) (r) = 0 (2.37)

∇ (ϕ⊗ U) (r) = ∇ · τ(r)−∇ · ρu′ ⊗ u′(r)−∇ (P ) (r) + ρ(r)g (2.38)

∇ (ϕH) (r) = −∇·q′′(r)+q′′′(r)+∇·(UP )(r)+∇ · (u′p′)(r)+τ(r, t)∇⊗U(r, t)−∇ · (ρuh′) (2.39)

In eqs. (2.38) and (2.39) it can be seen that the fluctuations in velocity, pressure and enthalpy
affect the momentum and the energy of the fluid. Such contributions are related to the possible
turbulence of the flow.

In order to solve eqs. (2.37)-(2.39) with respect to U,P and H, additional relationships for
the turbulent components, the heat flux q′′ and the volumetric heat source q′′′ are needed2.

As is described in section 2.2.3 the k− ε-model can be used for the turbulent term ∇ρu′ ⊗ u′

in eq. (2.38), whereas the term ∇ρu′h′ in eq. (2.39) can be modeled as a further contribution
of the turbulent flows to the total thermal conductivity. Equation (2.39) contains a second term
due to the fluctuations, i.e. ∇u′p′ that can be assumed to be negligible. Besides, proper models
for the heat flux and the volumetric heat source q′′′ are discussed in subsection 2.2.4.

2The density is determined from thermophysical state function, such that ρ = f(P,H) (see section 4.1).
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2.2.3 Turbulence modeling

Momentum equation

In order to close eq. (2.38), the so called Reynold stress tensor u′ ⊗ u′, or in tensor notation uiuj

needs to be determined. Different models for the Reynold stress tensor are available, and they
can be based on algebraic, one-equation, or two equation approaches[29]. In the present work,
the k − ε two-equation transport model is used.

Thus, in order to relate the velocity fluctuations to the Reynold averaged flow quantities, the
Boussinesq assumption is utilized [29, 28]:

ρu′
iu

′
j = µ

(
Ui,j + Uj,i −

2

3
Uk,kδi,j

)
− 2

3
ρkδi,j (2.40)

Boussinesq assumption introduces the new quantity k, the turbulent kinetic energy, defined by:

k =
1

2
u′

iu′
i (2.41)

This quantity could be evaluated with the following transport equation:

∇ (ρkU) = ∇
(
µt

σk
∇k

)
+ 2µtUi,jUj,i − ρε (2.42)

where ε is the dissipation of turbulent kinetic energy satisfying a second transport equation:

∇ (ρεU) = ∇
(
µt

σε
∇k

)
+ C1ε

ε

k
2µtUi,jUj,i − C2ερ

ε2

k
(2.43)

with:

µt = ρCµ
k2

ε
(2.44)

and where Cx are model constants.

Enthalpy equation

In analogy to the Boussinesq assumption it is assumed that the fluctuating term ρu′h′ is pro-
portional to the gradient of the enthalpy[28]:

−∇ · ρu′h′(r) = ∇ (αt∇h) (2.45)

where αt is the turbulent diffusivity. Such turbulent diffusivity is assumed to behave similarly
to µt, the turbulent dynamic viscosity and it can be calculated as:

αt =
µt

Pr
(2.46)

where Pr is the turbulent Prandtl number. The turbulent diffusivity can be considered an
additional contribution to the thermal diffusivity α, so that an effective diffusivity can be defined
as:

αeff = α+ αt (2.47)

The thermal diffusivity is related to the thermal conductivity K as:

α =
K

ρcp
(2.48)

In a similar manner, one can express the effective thermal conductivity as:

Keff = K +Kt = K + αtρcp = K +
µtρcp
Pr

(2.49)

The thermal conductivity will thus be enhanced by the turbulence of the flow.
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2.2.4 Fluid energy equation

As mentioned above, it is necessary to model the surface heat flux q′′ and the volumetric heat
source q′′′ appearing in eq. (2.39). In this section, it will be seen how it is convenient to arrange
this equation in terms of temperature, instead of enthalpy.

To generally model the surface heat flux q′′, Fourier’s law of conduction is applied, i.e.:

q′′(r) ≈ −K(r, T )∇T (r) (2.50)

For the volumetric heat source in the case of the fluid flows of the nuclear reactor fuel assembly,
the only contribution will come from thermal radiation:

q′′′(r) = q′′′rad(r). (2.51)

The model for the thermal radiation is described below.

Thermal radiation

In the same manner as for the neutron transport theory a general transport equation could be
written for the the radiation intensity, I(ν, r,Ω) [30]:

dI(ν, r, s)

ds
= − (Ka(ν, r) +Ks(ν, r)) I(ν, r, s)+Ka(ν, r)Ib(ν, r, T )+

Ks(ν, r)

4π

∫
4π

I(ν, r, s′)φ(s·s′)dω

(2.52)
The radiative heat flux through a surface with surface normal n is given by:

qr(ν, r) =

∫
(s · n)I(ν, r, s)dω (2.53)

In the current work, the solution of such a problem is obtained from the P1 approximation[6].
According to this approach the radiation intensity is assumed angular independent at any point
in space and eq. (2.53) can be rewritten as:

qr(ν, r) = − 1

3(Ka(r, ν)−Ks(r, ν))− CAKs(r, ν)
∇G(ν, r) (2.54)

where CA is a model constant and the incident radiation intensity, G, is defined by:

G(ν, r) =

∫
I(ν, r, s)dω (2.55)

Substituting eqs. (2.54) and (2.55) in to eq. (2.52), assuming isotropic scattering, and integrating
over the angular space, the following equation can be derived:

−∇
(

1

3(Ka(ν, r)−Ks(ν, r))− CAKs(ν, r)
∇G(ν, r)

)
= Ka(ν, r)(4Eb(ν, r, T )−G(ν, r)) (2.56)

with CA being the linear anisotropy coefficient and Eb defined as:

Eb(ν, r, T ) = πIb(ν, r, T ) (2.57)

The integration of eq. (2.56) over all frequencies, yields the thermal, frequency-independent
model equation:

−∇
(

1

3(Ka(r)−Ks(r))− CAKs(r)
∇G(r)

)
= Ka(r)(4Eb(r, T )−G(r)) (2.58)

where Eb(r, T ) can be modeled as a black-body frequency independent source,

Eb(r, T ) =

∫
Eb(ν, r, T )dν = σSBn

2(r)T 4(r) (2.59)
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with n being the refractive index and σSB is the Stefan-Boltzmann constant. Therefore, eq.
(2.58) gives a transport of energy that must be included in the volumetric heat source of eq.
(2.39), as:

q′′′rad(r, T ) = Ka(r)(G(r)− 4Eb(r, T )) (2.60)

This transport of energy is such that the radiation energy gained by black body radiation corre-
sponds to energy lost in the fluid, and, on the other hand, the radiative energy lost leads to an
increase of fluid enthalpy.

Energy equation in terms of temperature

Inserting eq. (2.60) into eq. (2.39) one can write an energy equation that contains both temper-
ature and enthalpy, i.e.:

∇ (ϕh) = −∇ (αt∇ (h)) +∇ (K∇T ) + U · g +Ka(G− 4Eb(T )) +∇ (Up) (2.61)

where friction forces and the wall frictions are neglected. From this equation it is then possible
to derive an equation in terms of only temperature[6]:

(ρcp(T ))U · ∇T = β(T )U∇P +∇ (Keff(T )∇T ) +Ka(G− 4Eb(T )) (2.62)

2.2.5 Solid temperature equation

The previous equation (2.62), was derived for the conditions of a fluid in the nuclear reactor core.
For the solid regions no mass or momentum conservation equations needs to be considered. The
energy equation for the solids will, written in terms of temperature, be[6]:

ρ(r, T, t)cp(r, T, t)
∂T (r, t)

∂t
= ∇ (K(r, T, t)∇T (r, t)) + q′′′(r, t) (2.63)

The volumetric source q′′′ in the solid is the power released from fission, and is equal to:

q′′′(r, t) = γ

∫ ∞

0

Σf (r, t)Φ(r, t, E)dE (2.64)

or according to a multi-group formalism (see section 2.1.3):

q′′′(r, t) = γ
G∑

g=1

Σf,g(r, t)Φg(r, t) (2.65)

Under steady state conditions eq. (2.63) can be read as:

−∇ (K(r, T )∇T (r)) = γ

G∑
g=1

Σf,g(r)Φg(r) (2.66)

In the case of non-fuel solid material, no fission occurs and thus eq. (2.63) for steady state
problems can be reduced to the form:

−∇(K(r, T )∇T (r)) = 0 (2.67)

Thermal radiation as well as turbulent fluctuations will have negligible effect inside the solid.
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2.3 Coupling between neutronics and thermal-hydraulics

As already mentioned in section 1.2 the neutronic and the thermal-hydraulic fields are strongly
coupled in LWRs, as the same fluid flow is employed to cool the reactor and to moderate neutrons.
This interdependence can be clearly pointed out with the equations presented in this chapter.

Starting from the macroscopic cross-sections discussed in section 2.1.6 and used in eq. (2.21),
one can see that they depend for instance on the energy of the system. Thus, changes in the
density and in the enthalpy of the moderator/coolant fluid (i.e. quantities appearing in the
conservation equations (2.37)-(2.39)) and of the fuel temperature (given by eq. (2.66)) can
impact the macroscopic cross-sections, and, as a consequence, on the neutron flux. On the
other hand, changes in the macroscopic cross-sections and neutron flux are reflected back to the
conservation equations (2.37)-(2.39) via eq. (2.66).

The methodology developed in this work needs to take in account the multiple levels of
coupling and resolve the interdependence between the different fields of physics, and is outlined
in the next chapter.
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Chapter 3

Methodology

As outlined in section 1.4, the goal of this work is to investigate the feasibility of a methodol-
ogy that can be applied to high-resolution, coupled neutron/thermal-hydraulic calculations in a
nuclear fuel assembly. In view of this, a methodology has been developed and follows these steps:

• Discretization of the problem (section 3.1)

– Creation of a computational grid suitable to the problem (subsection 3.1.1)

– Discretization of the equations describing the problem (subsection 3.1.2)

– Definition of the boundary conditions (subsection 3.1.3)

• Generation of the neutron macroscopic parameters (section 3.2)

• Solution of the coupled neutronic/thermal-hydraulic problem (section 3.3)

The first step is necessary to solve numerically the system of equations, and it makes use of
capabilities that are available with and within the open source CFD code OpenFOAM. The
neutron macroscopic cross-sections needed in the neutron equations are generated according to
a procedure that has been established in the current framework, and that employs the nuclear
Monte Carlo code SERPENT. The solution of the multi-physics problem is then achieved with
a newly developed computational tool that integrates a solution scheme for the multi-group
neutron diffusion equation (2.21) together with a CFD solver for the thermal-hydraulic model
derived in section 2.2. The latter is built by combining and modifying properly CFD solvers that
are available, again, in OpenFOAM.

A general overview of the usage of OpenFOAM for the purpose of the current work is found
in Appendix A.

3.1 Discretization of the problem

The equations modeling the physical system and presented in Chapter 2 need to be solved in a
numerical manner. Thus, it is necessary to discretize the equations in the space of the physical
system under study, which is done by splitting the space in computational cells, i.e. forming a
mesh (or grid). Moreover, conditions at the boundary of the system are required.

3.1.1 Computational grid

The generation of the computational grid over which the equations are solved is generally a very
important step in the computations. The structure and the resolution of the mesh will influence
the precision, the accuracy, and the computational time of the calculation. To generate the grid,
the open source platform SALOME[31] has been used. This tool can generate a mesh format
imported by OpenFOAM, and can thus be used by the solver developed in the current work.
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In view of this, real systems (in this case the nuclear reactor core) generally consists of different
material regions and the mesh needs to fit the calculational demands specific to each region. As
a consequence, the computational mesh that models a physical system is usually a combination
of different meshes that are chosen to cover each region in a convenient way. Thus how to couple
the different regions becomes important.

In general the field interdependence between multiple regions could be resolved in two ways:
indirect and direct coupling (see Fig. 3.1). In the first one, the equations of all fields are solved
in each region separately. For fields existing in neighboring regions (for this work: temperature
and neutron density), the coupling between the regions would be resolved iteratively, e.g. using
Neumann-Dirichlet method[32]. In the second approach, a direct coupling scheme could be used,
and the equations resulting from the discretization in each mesh region would then be assembled
in a single ’global’ matrix. Such an approach must specifically address the coupled terms of
neighboring computational cells in different mesh regions.

When multiple material regions are treated, as for the nuclear fuel pin consisting of gap,
moderator, cladding and fuel, the applied equations will vary between the regions. For instance
the temperature equation for the fuel region is given by (2.66), as contrasted by eq. (2.62) used
in the moderator and the gap.

Mesh 1 Mesh 2

DECOUPLED STATE

Coupled boundary

Mesh 1+2

ATTACHED STATE
Figure 3.1: Multiple grid approaches. In the decoupled state separate matrix
systems are solved, and iteratively linked by iteration. In the attached state, a
single matrix system is directly solved for the composed mesh.

The coupled approach has the possible benefit of faster convergence as the region-to-region
iterations are avoided. The solver implemented for this work has therefore been written to utilize
this methodology (which is a feature of the development version OpenFOAM 1.6-ext[33]) for the
temperature equation and the multi-group neutron flux equations. As these fields are solved
for, the system is said to be in attached state. Contrary, when the regional fields, including
turbulence model quantities, velocity and pressure are solved for, the mesh is considered in its
separate parts, denoted as decoupled state.

3.1.2 Discretization of the equations

Given the mesh, the equations need to be discretized for each cell. In this work the finite volume
method is utilized. Accordingly, the equations are integrated over control volumes, given by
the cells of the mesh. In OpenFOAM, subroutines addressed to discretize the several terms and
differential operators appearing in this thesis are available. For instance the general diffusion
term ∇ (Γ∇X) (e.g, see equation (2.21)) can be discretized by a Gauss method. For the purpose
of introducing the applied finite volume methodology and emphasizing the discretization schemes
needed in the case of inhomogeneous Γ, as in the thermal conductivity in eq. (2.62) and (2.66)
and the diffusion coefficient in eq. (2.21), the discretization of such an operator will be given.

Considering the one dimensional mesh in Fig. 3.2 the thermal diffusion term in eq. (2.62)
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w p e

Centre of 
gravity for cell

Xf,e

pX

Figure 3.2: Example mesh in 1D.

integrated over the control volume given for cell p and applying Gauss theorem gives:∫
Vp

∇ (K∇T ) dV =

∫
Sp

K∇T · ndS =
∑

x={e,w}

(K∇T )f,x · nf,xAx (3.1)

where Vp denotes the volume of cell p, Sp denotes the surface of cell p, Ax a surface area, f the
face value and n denotes the unit surface normal. Considering only the first term of the sum
in terms of Fourier’s law, this term gives the heat flux at face e. To estimate the temperature
gradient at the surface an approximate derivative can be formed as:

(∇T )f,e · nf,e ≈
Te − Tp

δp + δe
(3.2)

In the case of a spatially constant thermal conductivity Kf,e = Ke = Kp.
In this manner the integral over the control volume will be discretized in a finite number of

facial terms. The same approach is followed for other terms, utilizing other schemes to perform
interpolation and approximation of gradients. The convective terms, generally ∇ (ρUX) and
example in eq. (2.38), are treated with the Upwind scheme, which is first order accurate. The
interpolations needed to compute e.g. the thermal conductivity at a cell face, as shown above,
are performed using linear interpolation or using the harmonic scheme presented below.

Harmonic interpolation scheme

Reconsidering the case of inhomogeneous thermal conductivity or neutron diffusion coefficient,
as will be the case in this thesis, special care has to be taken to ensure conservation of energy
and neutrons respectively.

In the case of two cells p and e, each with homogeneous thermal conductivity Kp and Ke,
respectively, one can use a conservative interpolation based on a harmonic mean[34]:

Kf,e =

(
1− δe/(δe + δp)

Kp
+

δe/(δe + δp)

Ke

)−1

(3.3)

This is of particular importance when the difference in thermal conductivity is very large, as
in the case of the boundary between e.g. the fuel and the gap.

Furthermore it is seen that the presented harmonic interpolation compensates for non-uniform
meshing, which is used in this work (see section 4.5.2). This scheme was therefore implemented
in OpenFOAM, based on the structure of an existing harmonic interpolation scheme.1.

1The harmonic interpolation is used in the region coupling schemes, but to the knowledge of the author the
case existing corresponds to δe = δp (see Fig. 3.2), i.e. a uniform mesh, wherefore an additional scheme was
implemented.
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3.1.3 Boundary conditions

In order to close the space discretization, boundary conditions must be provided for all calculated
quantities. For all symmetry boundaries a symmetry boundary condition is used, and it is mod-
eled with the OpenFOAM boundary condition symmetryPlane. The thermophysical properties
(ρ, cp,K and µ) are generally updated, and computed as a function of the temperature. The
temperature dependencies for these parameters are presented in section 4.1.

3.2 Group-wise macroscopic cross-sections and nuclear pa-
rameters

The group-wise macroscopic cross-sections and the neutronic diffusion coefficients defined in eqs.
(2.14)-(2.18) are needed to determine the neutron density. To pre-calculate these sets of values,
as discussed in section (2.1.6), the Monte Carlo nuclear code SERPENT is used.

The methodology used in the cross-section generation is based on a SERPENT case with the
geometry of a single 2D fuel pin with reflective boundaries. Each specified material region is
split in one or multiple regions allowing for radial resolution inside each material region. As the
temperature of the material and the density of the moderator will in general vary for varying
reactor power level, it is necessary to create new material specifications for each thermo-physical
state desired. These temperature and density profiles are generally unknown, but the set of
cross-sections evaluated in a first step can be used for reactor core calculations in turn giving
better estimations of temperature and density profiles, iteratively used for new cross-section
calculations. Finally, basic nuclear data (e.g. microscopic cross-sections) are needed, and can be
supplied externally with one of the available nuclear libraries, such as the ENDFB-VII library[35].

Consequently, a series of SERPENT calculations need to be run, where each run gives macro-
scopic data for one of the regions inside one of the materials and corresponding to one thermo-
physical state of interest. Accordingly, the final result is sets of values of group-wise parameters,
given for each of the regions in which the physical system is split, and for temperature and den-
sity values corresponding to each simulated thermo-physical state. In this manner, it is possible
to perform reactor core calculations by extracting from those sets of parameters the actual values
of the group-wise parameters with respect to the position and to the physical conditions of the
system.

To optimize the procedure for the generation of the group-wise cross-sections with SERPENT,
a Python[36] based script was written and applied, and it executes the following steps:

1. Parse configuration file: read the configuration file for the run.

2. Material adjustment: generation of required material properties by com-
bining the data read in the configuration file together with the data from a
file with generic materials.

3. SERPENT input: build one SERPENT input for each geometrical re-
gion and case.

4. Run serpent: calculations with each of the input files are performed.

5. Data extraction: results are extracted from each run and combined in
a MATLAB file.

6. Cross-section generation: output data is processed, and cross-section
sets are prepared in a comma separated format read from OpenFOAM.

Typical SERPENT input files from the script (step 3) can be seen in Appendix C.
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3.3 Solution of the coupled neutronic/thermal-hydraulic
problem

As mentioned before, the core of the methodology is a computational tool that relies on an
integrated algorithm where a CFD solver derived from OpenFOAM solvers is combined with
multi-group neutron diffusion equation.

3.3.1 Thermal-hydraulic CFD solver

OpenFOAM solvers

One of the existing OpenFOAM solvers was modified in order to solve the thermal-hydraulics.
The solver under consideration, buoyantSimpleRadiationFoam, implements the steady-state
laminar or turbulent flow of compressible fluids, including a separate thermal radiation heat
transfer model, as explained in section 2.2. The pressure-velocity coupling in equation eq. (2.38)
is solved by the SIMPLE algorithm. The energy equation is based on enthalpy of the fluid and
includes radiation heat sources as in eq. (2.61).

ENTHALPY EQUATION

VELOCITY EQUATION

PRESSURE EQUATION

Figure 3.3: Overview of the applied methodology in the OpenFOAM solver
buoyantSimpleRadiationFoam.

The general structure of the solver is seen in Fig. 3.3. A momentum predictor step, cor-
responding to eq. (2.38), gives an approximate velocity profile, including the turbulence term,
as modeled by the k − ε model, eqs. (2.42) and (2.43). The second step solves the enthalpy
equation including the radiation heat sources, after which the thermophysical quantities and
the radiation model, eq. (2.55), are updated. Finally, the pressure equation derived from the
momentum equation is solved. An updated velocity profile is used to recompute the k− ε model.
No iterations are used within the thermal-hydraulics methodology.

Modified CFD solver

The OpenFOAM solver presented above has been modified for nuclear reactor core applications
(an overview of the new version can be seen in Fig. 3.4). The enthalpy equation used in
buoyantSimpleRadiationFoam has been removed and replaced by eqs. (2.62) and (2.66) for the
fluid and solid regions respectively. No momentum or mass transfer is applied in the solid regions
and is therefore discarded in these regions.
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TEMPERATURE EQUATION

VELOCITY EQUATION

PRESSURE EQUATION

Fluid regions
Solid regions
Attached state
Decoupled state

Figure 3.4: Overview of the applied methodology to thermal-hydraulics.

The general structure of the solver is unchanged; first a momentum predictor step, second
the energy equation and third the pressure equation. The difference lies in the exchanged energy
equations, including the power released by fission in the fuel regions.

Moreover, multiple connected meshes are used, which is not a standard feature in
buoyantSimpleRadiationFoam2. The velocity and pressure equations are solved with the meshes
in the decoupled state (see the dashed boxes in Fig. 3.4). In the case of this work, this must be
done for the moderator and the gap regions. On the other hand, for the temperature, the mesh is
used in attached state, and each matrix Mr, resulting from the discretization of the temperature
equation in one specific region will be added to a global matrix M .

3.3.2 Implementation of the multi-group neutron diffusion equation

By making use of the general capabilities of equation discretization and solving in OpenFOAM,
an algorithm for the numerical solution of the multi-group neutron diffusion equation in the form
(2.21) was implemented.

Such an algorithm consists of a typical two-step procedure applied to neutronic calcula-
tions[11], and it is shown in Fig. 3.5. First, a solution is achieved for the neutron flux values at
each cell in each neutron energy group. This step corresponds to computing the fission source,

2The basic idea of the coupled calculations is found in the OpenFOAM 1.6-ext specific solver
conjugateHeatTransfer, which exemplifies the use of multiple connected meshes with different physics.
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the up- and downscattering, assembling a system matrix for the attached state problem, which
is finally solved. This is repeated for each energy group, as indicated by the loop over all energy
groups in Fig. 3.5.

Second, the eigenvalue problem for the effective multiplication factor keff is obtained from the
multi-group spatial fluxes. The computed keff is used to correct the fission source term in the
next iteration of the neutronics. The power iteration method was used to solve the eigenvalue
problem, converging to the largest eigenvalue whose eigenvector corresponds to the physical
neutron flux[11].

Given the neutron flux in all groups and regions, the power density in the fuel is recalculated,
as indicated by the last step in Fig. 3.5. In the case of this work, the total power released in the
fuel is a set condition.

<

<

Compute fission source

Compute up and
down scattering

Compute effective
multiplication factor

Formulate attached state
matrix, group by group

Check convergence

Results in new neutron flux

Renormalize and update
power for each cell

Subiterations to resolve energy group dependence

Figure 3.5: Overview of the applied methodology to neutronics.
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3.3.3 Algorithm for the coupled problem

The methodology for the thermal-hydraulic problem as is explained in subsection 3.3.1 and the
methodology for solving the neutronics (see previous subsection) are integrated in the computa-
tional scheme displayed in Fig. 3.6.

Given a guess for the initial conditions of the system, and given a proper set of thermal-
hydraulic and nuclear parameters, the neutron density field is solved as explained above. After
a number of sub-iterations (set as a parameter, mostly sufficient with one or two) on only the
neutronics, the thermal-hydraulics is solved using the updated fuel power profile. After the
momentum predictor step, the temperature equation is solved finally followed by the pressure
equations. One loop in Fig. 3.6 is denoted an outer iteration. The updated energy state of the
system is conditionally used to recompute the nuclear parameters.

In the start of the simulation, the cross-sections are based on the initial guess not updated
until the thermal-hydraulics and the neutronics have reached separately physical values. In
the same manner the temperature equation, dependent on the fuel power, pressure and velocity
profiles, is not solved until the neutronics and the thermal-hydraulics (excluding the temperature
equation) both have physical profiles, occurring after just a few outer iterations.

The decoupled state calculations need to be performed on each relevant material region, giving
multiple calculations as indicated by the dashed line in Fig. 3.6. The neutronics is computed
in attached state (dotted line) but with a loop over the energy groups, giving multiple attached
state calculations (dashed line).
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Figure 3.6: Overview of the applied methodology to solve the complete set of
equations.
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Chapter 4

Application

The computational tool developed and described in Chapter 3 is applied to the case of a simplified
PWR fuel assembly (see the description in section 4.1). The methodology is first verified for a
2D test case (section 4.4), followed by a test for the 3D configuration (section 4.5).

4.1 Description of the fuel assembly

The fuel assembly that is used to verify the methodology is a 5x5 fuel bundle. Since the main
focus of the application is to test the coupled neutronics and thermal-hydraulics scheme, some
convenient simplifications of the design are assumed. The general geometry of the fuel assembly
can be seen in Fig. 4.1, with the dimensions reported in Table 4.1. The general characteristics
of the test system is given in Table 4.2.

Fuel
Gap
Cladding
Water
Symmetry 
boundary

RADIAL

INLET

OUTLET

AXIAL

BOTTOM
REFLECTOR

TOP
REFLECTOR

z

x

y

x

Figure 4.1: 5x5 simplified PWR fuel assembly. Not to scale.
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Table 4.1: Dimensions for PWR 5x5 fuel assembly.

Fuel pin radius 4.1 mm
Cladding inner radius 4.2 mm
Cladding outer radius 4.8 mm

Pitch 12.5 mm
Fuel height 3 m

Bottom reflector height 0.2 m
Top reflector height 0.2 m

Table 4.2: Characteristics of PWR 5x5 fuel assembly.

Fuel UOX or MOX
Moderator Water, 1000 ppm boron

Gap Helium, 0.1 MPa
Cladding Zircaloy-2

The moderator/coolant is borated water, entering at a high pressure and flow rate at the inlet,
flowing upward along the axial direction (see Fig. 4.1). The fuel bundle is open (i.e. there is no
fuel box) and cross flow is allowed within the sub-assembly. Symmetry boundary conditions are
applied at the x-y plane boundaries (indicated by the red color in Fig. 4.1). The simplified model
includes no spacer. The thermophysical data for water that are needed in the calculations are
taken from NIST[37]. As the axial pressure drop for a PWR core channel is small, isobaric data
at a pressure equal to 15.5 MPa (typical value for the primary system of a PWR) is considered.
The dependence of specific heat at constant pressure cp, the density ρ and the laminar thermal
conductivity K can be seen in Fig. 4.2. Do note that subcooled boiling possibly occurring in
the moderator is disregarded.
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Figure 4.2: Water properties temperature dependence.

The fuel rods are placed in the bundle according to a checkerboard pattern of UOX (2%
uranium-235) and MOX (2% plutonium, with isotopic composition typical to bread pluto-
nium[38]). Each fuel rod includes a gap filled with Helium and a Zircaloy-2 cladding, and is
assumed to be homogeneous in the axial direction. In the current case, fresh fuel is assumed.
The UOX thermophysical properties are used also for the MOX fuel, except for the density. Den-
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Figure 4.3: UOX properties temperature dependence.

sity of the UOX, thermal conductivity and specific heat capacity, as functions of temperature, are
displayed in Fig. 4.3[39]. As seen from the figure, the density of UOX is temperature dependent.
Still, such thermal contraction/expansion of the fuel has been neglected in the current work.
Density, thermal conductivity and specific heat capacity of the helium are evaluated at the pres-
sure of 0.1 MPa (i.e. atmospheric pressure), and their dependence with temperature is shown in
Fig. 4.4[37]. Since fresh fuel is modeled, and since only steady state calculations are performed,
no burn-up dependence is included. The exact isotopic compositions used for each material can
be seen in Appendix B. Similarly, the material properties for Zircaloy-2 are evaluated for the
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Figure 4.4: Helium properties temperature dependence.

range of temperature of relevance in the nuclear core calculations. The temperature dependence
for the specific heat capacity and the thermal conductivity is outlined in Fig. 4.5[40].
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Figure 4.5: Zircaloy-2 properties temperature dependence.

4.2 Matrix solvers

Existing OpenFOAM solvers are used to solve the matrices describing the discretized problem.
Details are reported in Table 4.3. In the specific, variations of conjugate gradient solvers are
applied, except for the attached state temperature equations, where a Gauss-Seidel method is
applied in order to avoid numerical instability.

Table 4.3: Summary of solvers used for each field, including typical conver-
gence criteria and under-relaxation (%).

Field Type of solver Conv. criteria % Solver Preconditioner

T Gauss-Seidel 10−5 1.0 smoothSolver GaussSeidel

Φ Stab. biconjugate gradient 10−5 1.0 CG Cholesky

P Precond. biconjugate gradient 10−4 0.3 PCG DIC

G Precond. biconjugate gradient 10−6 1.0 PCG DIC

U Precond. stab. biconjugate gradient 10−4 0.7 PCG DILU

k Precond. stab. biconjugate gradient 10−8 0.7 PCG DILU

ε Precond. stab. biconjugate gradient 10−8 0.7 PCG DILU

As depicted in Fig. 3.6, the solution of the coupled neutronic/thermal-hydraulic problem is
achieved by solving single equations or a subset of equations in separated steps. The quantities
that are determined in one step are then used to solve the equations in other steps. For this type
of iterative schemes it might be necessary to utilize under-relaxation of the solved quantities such
that:

Xnew = Xsolved − (1− %)(Xsolved −Xold) (4.1)

where X i a generic unknown to be determined in the present step. Thus, the updated quantity
(with subscript new) is obtained as a linear combination of the two values estimated at a certain
iteration (solved) and at the previous iteration (old).

The applied under-relaxation factors are presented in Table 4.3. For the neutronics and
the temperature, the presented methodology fully avoids under-relaxation, i.e. % = 1. For the
pressure-velocity coupling, standard values are chosen.
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4.3 Boundary conditions

To close the set of discretized equations all fields will need boundary conditions. A list of the
applied boundary conditions used for each quantity is given in Table 4.4.

Table 4.4: Boundary conditions used for the different fields of the quantities
computed

Field Boundary Type Value Implementation

T
Inlet Constant value 540K fixedValue

Outlet Zero gradient - zeroGradient

Region to region Coupled quantity - regionCouple

Φg

Inlet Constant value 0m−2s−1 fixedValue

Outlet Constant value 0m−2s−1 fixedValue

Region to region Coupled quantity - regionCouple

P
Inlet Zero gradient - zeroGradint

Outlet Constant value 15.5MPa fixedValue

Region to region Zero gradient - zeroGradient

k
Inlet Constant quantity 0.375 m2s−2 fixedValue

Outlet Zero gradient - zeroGradient

Fluid to solid Wall function - zeroGradient

ε
Inlet Constant quantity 12.0 m2s−3 fixedValue

Outlet Zero gradient - zeroGradient

Fluid to solid Wall function - zeroGradient

K Region to region Coupled quantity - regionCouple

Dg Region to region Coupled quantity - regionCouple

U
Inlet Constant value (0, 0, 3)ms−1 fixedValue

Outlet Zero gradient - zeroGradient

Fluid to solid No slip (0, 0, 0)ms−1 fixedValue

G All Marshak - marshakRadiation

4.4 Two-dimensional case

A two-dimensional case related to the fuel assembly described in section 4.1 is studied for carrying
out a first test of the developed tool. This choice has two practical advantages. First, a two-
dimensional problem has one degree of freedom less as compared to the three-dimensional case,
and thus a preliminary verification of the tool can be performed with decreased computational
costs. Second, this step is useful to estimate radial density and radial temperature profiles that
are needed for the generation of the macroscopic cross-sections.

For this purpose, a single UOX fuel rod with the surrounding moderator/coolant is considered.
The system corresponds to an axial cut of the three-dimensional problem. The resulting system is
outlined in Fig. 4.6. Because of the symmetry of the radial section with respect to the centerline
of the fuel (corresponding to the z-direction in Fig. 4.6), calculations are run for a system that is
only one half of the full fuel pin geometry. The radial sizes of all regions and the reflector height
is preserved from the 3D case, whereas the fuel pin height is reduced to 1 m, further optimizing
the computational time.

4.4.1 Computational mesh

The computational mesh covering the 2D system is created with SALOME (see section 3.1.1)
and is displayed in Fig. 4.7. The mesh is graded in radial (r) and axial direction (z), so that
a better resolution can be achieved where the gradients are larger. Radially this corresponds
primarily to the moderator/cladding interface, where a no slip boundary condition is applied
(compare to Table 4.4), and axially it corresponds to the flow widening and narrowing in the
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Figure 4.6: Two-dimensional PWR system. Not to scale.

top and bottom reflector. In total the mesh consists of 1152 elements. In the implementation of
lower dimensional simulations in OpenFOAM the mesh is still consisting of 3D cells, although
only a single layer thick. Consequently the presented mesh, has a thickness of 0.1 mm. Thus,
the computational cells can be considered fully as volumes.
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Figure 4.7: Mesh used for 2D system. The figure has been compressed by a
factor 100 in axial direction
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4.4.2 Two-dimensional neutron macroscopic cross-sections

The macroscopic cross-sections are generated according to the methodology described in section
3.2. In this specific case, the fuel region and the moderator region are divided in four radial sub-
regions each, whereas the gap and the cladding are modeled with only one region each (see Fig.
4.8). The radial temperature is assumed to have a parabolic profile with maximum temperature
in the center of the fuel (corresponding to the fuel symmetry line in Fig. 4.6). The density
profile in the moderator is determined from the temperature (compare to Fig. 4.2). Three
discrete neutron groups were assumed in the simulation.

The geometry for the cross-section generation is the same for both the two-dimensional test
case and the three-dimensional test case (see section 4.5.1). For the two-dimensional case the
cross-sections on the diagonal from the centre of the fuel to a corner was used (corresponding to
the red diagonal lines in Fig. 4.8).

Reflective boundaries

Fuel

Gap
Coolant

Cladding

Material boundary
Region boundary

Symmetry lines

Figure 4.8: Geometry, including regional sub-divisions, for the SERPENT
runs.

4.4.3 Convergence

The final solution is found by the iterative procedure as given in the methodology (section 3.3.3).
As a characterization of the coupling of the neutronics and thermal-hydraulics, the equation
residuals for neutronics and thermal-hydraulic quantities can be seen in Fig. 4.9 for the first 100
iterations and in Fig. 4.10 for all iterations applied.

To resolve the coupling of the system in a smooth manner the neutronics only is solved for
10 iterations. This gives a reasonable power profile in the fuel, without the thermal-hydraulics
feedback, i.e. only based on the initial value of the temperature field. As is seen from Fig.
4.9b, without the thermal-hydraulic feedback it is enough with 10 iterations for the neutronic
equations to converge.

After the first 10 iterations the thermal-hydraulics equations are added, and after another
10 iterations, solving the separate neutronics and thermal-hydraulics problems, updating of the
cross-sections is added. This will close the loop of dependencies and the temperature will thus
have a feedback on the neutronics.

The exact number of iterations skipped in each step is of no larger significance, rather to be
understood in combination with the remaining residuals for the mentioned iteration.

As seen from Fig. 4.9 the initial convergence is fast. Few iterations are needed to decrease
the relative error in the effective multiplication factor below 10−5. After the rapid decrease in
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relative error the convergence slows. Primarily the pressure is slowly converging, lagging behind
the convergence of all other thermal-hydraulic fields. The slow convergence is rather a property
of the methodology used to solve the thermal-hydraulics (the SIMPLE algorithm), than the
coupling of the different physics fields. Possible slow convergence of segregated solver algorithms
like the SIMPLE-algorithm is a known phenomenon[41].

Considering the effective multiplication factor, the initial fast convergence is continued to a
relative error 10−9. As seen from Fig. 4.11 the remaining error as compared to the final converged
value of keff is less than 10−5 in less than 500 iterations. Thus, the effective multiplication factor
has converged much earlier than the thermal-hydraulics. The number of iterations needed to
converge the solution will thus depend on the fields of interest. From the perspective of the
neutronics fewer iterations are needed, whereas to get a precise pressure profile a very large
number of iterations are needed.

For the coupled neutronics/thermal-hydraulics the residual decreasing rate will be limited
by the coupling methodology rather than the convergence of the applied matrix solvers. For
example the initial fast convergence of the neutronics, without thermal-hydraulics feedback, is
very much slowed as the solution of the thermal-hydraulics is added. This is seen from the slope
of the residual curves for all groups of neutron flux in Fig. 4.9, comparing the slope between
iteration 1-10 and 20-40.
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Figure 4.9: Convergence behavior for first 100 iterations for the coupled cal-
culations on 2D mesh. Thermal-hydraulics solved from the tenth iteration and
the cross-sections are updated from the 20th iteration.
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Figure 4.10: Convergence behavior for coupled calculations on 2D mesh.
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Figure 4.11: Relative error in keff compared to converged value.

4.4.4 Results

The results presented in this section are computed with a fuel power density of 24 MW/m3. The
moderator temperature, density, pressure and axial velocity are shown in Fig. 4.13 whereas the
axial dependence of these quantities for r = 8mm (corresponding to a radial position close to the
moderator symmetry line in Fig. 4.6) are shown in Fig. 4.12. The behavior of the moderator
is predicted correctly. Due to the power generated in the fuel region, the temperature of the
upward forced flow increases monotonically; the density decreases; the pressure decreases within
a fraction of a bar along the channel as expected; the axial velocity increases due to the density
change, and it decreases when the fluid reaches the larger volume on the top of the fuel region.
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Figure 4.12: Moderator properties for the coupled problem, 2D calculations,
axial dependence for x = 0.008m corresponding to moderator.

Figure 4.14 shows the neutron flux and the results are reasonable. The fast neutron flux has
a maximum slightly below mid-elevation, whereas the axial thermal neutron flux is peaked in
the top and bottom reflectors as the fast neutron current outward from the fuel is thermalized
(see Fig. 4.14a). As regards the radial profiles, the thermal neutrons increases in the moderator
due to the slowing-down of the fast neutrons (see the full blue line in Fig. 4.14b). On the other
hand the fast neutron density is higher in the fuel, since the fissions release neutrons with high
energy (see the dashed green line in Fig. 4.14b).
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(a) Temperature (b) Density

(c) Pressure (d) Axial velocity

Figure 4.13: Moderator properties for the coupled problem, 2D calculations.
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Figure 4.14: Axial (in moderator at r=8 mm) and radial (at mid-elevation,
z=0.7 m) dependence of the group-wise neutron flux. Intermediate neutron
group excluded in the plots.
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The temperature dependence for the full system, including fuel, gap and cladding, can be
seen in Fig. 4.15. The radial temperature gradient is decreasing from a value of 800 K at the
fuel centerline to less than 600 K in less than 5 mm.

Figure 4.15: Temperature dependence of the full two-dimensional system
(interpolated representation).

4.4.5 Power dependence

The state of the system will depend on the power level in the fuel. When the power level changes,
the temperature of the system changes as well, and this affects the axial and radial neutron flux
via the cross-sections.

In order to estimate cross-sections as realistically as possible within the applied calculational
scheme of a single pin environment (i.e. the fuel pin together with the surrounding moderator),
realistic temperature and density profiles are needed (see section 3.2). For this purpose, the two-
dimensional case discussed above, with the mesh defined in section 4.4.1 is employed to compute
the radial temperature profiles for a set of power densities.

The resulting radial temperature profiles is seen in Fig. 4.16. As seen from the temperature
profiles, the temperature gradient is largest in the gap (radial position 4.1 − 4.2 × 10−3m), as
helium has the lowest thermal conductivity (see section 4.1). The profile in the moderator is
relatively flat, due to the thermal conductivity enhanced by the turbulence of the flow. Further-
more, for higher power densities, the fuel temperature is higher and the moderator density lower,
so that a negative feedback leads to a lower multiplication factor (see Table 4.5).
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Figure 4.16: Radial temperature at axial mid-elevation for varying power
density. Total power in the fuel given by PN.

Table 4.5: Effective multiplication factor, keff , as a function of power density
for the 2D case

Power density, PN [W/m3] Total power [W] keff
8.12e+04 0.1 1.0037
8.12e+05 1 1.0032
8.12e+06 10 1.0002
2.44e+07 30 0.99714
4.06e+07 50 0.99031
5.68e+07 70 0.98475
8.12e+07 100 0.97779

4.4.6 Influence of the computational mesh

The discretization of the equation is based on the finite volume approach, i.e. a spatial homog-
enization is performed for each of the terms appearing in the equations, over each of the cells
within the computational mesh. This procedure is an approximation, and thus an error is intro-
duced. This error depends on the resolution of the selected computational mesh, and, generally,
the smaller the cells, the smaller is the error. A quantitative value of the error introduced for
each field is difficult to obtain. Instead a few key results can be studied, chosen as to represent
the system. These key results are then compared for different mesh resolutions, and used as
estimators of the discretization error, and of the error reduction achieved by mesh refinement
(e.g., see [42]).

In the current case, the results of calculations with five different meshes are compared. These
meshes consist of a different number of cells (see Table 4.6). The structure of the mesh is
equivalent to the basic mesh displayed in Fig. 4.7, which also corresponds to Mesh 2 in Table
4.6. Mesh 1 is the coarsest mesh and Mesh 5 is the finest one. As regards the key parameters
for the evaluation of the discretization error, the effective multiplication factor, keff , the fuel
centerline temperature at mid-elevation and the total outlet enthalpy are considered. It must
be noticed that the prediction of the effective multiplication factor is also influenced by the
numerical procedure used to solve the neutron equation, and that the calculated total enthalpy
depends also on the thermo-physical properties of the system (see section 4.1).

Because these parameters are compound parameters, with multiple dependencies, no standard
mesh convergence estimator is applied. Instead the relative changes of the quantities are discussed
in a qualitative manner, giving a general idea of the importance of the mesh resolution.
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The results obtained by making use of the five meshes are shown in Fig. 4.17 and summarized
in Table 4.7. In this set of calculations, the power density is 24 MW/m3. It can be seen that
the mesh resolution does not affect significantly the effective multiplication factor and the fuel
centerline temperature, but the enthalpy. This outcome suggests that the same computational
mesh for the neutronics and for the thermal-hydraulics is not an optimal choice. As the neutronics
shows a smaller mesh dependence, a more coarse mesh could be used for the neutronics as
compared to the thermal-hydraulics. However, since the neutron fields converges more rapidly
(see discussion in section 4.4.3) the use of a finer mesh also for the neutronics will influence the
total running time to a relatively small extent.

Table 4.6: Characterization of 2D meshes.

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5
Cells 1152 2592 5280 9504 21216
Average volume [m3] 1.07e-09 4.75e-10 2.33e-10 1.30-10 5.81e-11
Relative cell volume 18.42 8.19 4.02 2.23 1.00

Table 4.7: Characterization of 2D meshes, converged results.

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5
keff 0.99839 0.99714 0.99283 0.99574 0.99184
∆H [W] 32.60 30.70 30.44 30.30 30.22
T [K] 827.28 827.03 827.15 827.33 827.45
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Figure 4.17: Relative change in centerline temperature, enthalpy increase and
keff for 2D meshes.
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4.4.7 Modeling of the heat transfer in the gap

Influence from thermal radiation heat transfer

To study the importance of the radiation heat transfer, which is applied in the gap only, two
different cases are compared. The first one is the standard used approach employed in the above
calculations, computed for an emissivity of UOX being 0.83[43], the emissivity of the helium
0.95[44] and emissivity of the gap 0.6[45]. These values are chosen as the largest ones according
to their ranges of uncertainty, so that the radiation heat transfer is not underestimated. In the
second case, the radiation model is excluded, i.e. the radiation heat source is removed from the
temperature equation of the gap (see eq. (2.62)).

The two runs are performed with Mesh 2, but with an increased radial resolution only in the
gap, in such manner that the heat transfer in this region can be evaluated with a higher accuracy.
The power density is of 57 MW/m3. The comparison between the gap temperature calculated
with or without the thermal radiation model is displayed in Fig. 4.18. Furthermore, the change
in the effective multiplication factor is reported in Table 4.8.

Table 4.8: Comparison of keff applying versus disregarding the thermal radi-
ation in the gap.

keff
With 0.98450
Without 0.98447
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Figure 4.18: Comparison of gap temperature including vs not-including the
thermal radiation. Temperature at mid-elevation.

The results show that the radiation heat transfer in the gap has a very small influence,
emphasized both by the temperature profile and the effective multiplication factor. However, it
can be seen that the extra contribution given by the thermal radiation model to the total heat
transfer is taken in account correctly, since the computed fuel and gap temperatures are lower,
as expected.

Influence from convective heat transfer in the gap

In the model of the gap, the importance of the convective heat transfer is also investigated.
Although the gap is a closed volume, the helium is non-stationary because of the temperature
gradients, causing buoyancy effects. The same kind of phenomenon is also present in the moder-
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ator, but it is very small in comparison to the main part of the convection, driven by the velocity
of the forced flow.

To determine the influence of the convective heat transfer gap, the velocity of the helium
is calculated for the case of PN = 57MW/m3, again using Mesh 2 with the increased radial
resolution in the gap. The result is seen in Fig. 4.19. The left part of the figure, referring to
the fuel-gap interface, has a positive velocity, whereas the right part, corresponding to the gap-
cladding side has a negative value. Thus, the calculation shows that the expected circular flow
in the gap due to the decreased density of the heated gas and increased density at the cooling
side, can be captured. However, the magnitude of the velocity field in the gap is very low (e.g.,
compared with the moderator velocity shown in Fig. 4.13d), and, consequently, the heat transfer
from convection is of negligible importance.

Figure 4.19: Axial velocity field in the gap. Geometry compressed by a factor
10000 in axial direction.

Conclusion on gap modeling

The above considerations on the thermal radiation and the convective heat transfer gap point
out that the gap can be modeled with reasonable accuracy as a solid, with the thermo-physical
properties of helium, where the heat transfer occurs by conduction.

4.4.8 Parallelization

The type of coupled calculations presented lead to large matrix systems, comprising a very large
number of computational cells. It is therefore desirable to parallelize the calculations. For this
purpose, the physical system is split properly in a number of sub-systems, solved in parallel, on
multiple distributed memory systems. This is possible with OpenFOAM, using built-in support
for MPI[46].

Procedure

As mentioned above, the physical system must be decomposed, and procedures to perform this
task is available in OpenFOAM. However, special care has to be taken when the coupled equations
in the attached state are treated. An example of a decomposition of two-material region can be
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seen in Fig. 4.20. By applying the simplest decomposition method available in OpenFOAM (i.e.
simple), each material region will be split in equally large chunks distributed on the different
nodes, possibly giving an undesirable boundary between the regions (see (b) in Fig. 4.20). The
equal size decomposition might lead to ill-shaped regions, in turn giving numerical instabilities
for the solution of the matrix on each CPU. To overcome this issue, a decomposition method
based on fixed geometrical planes has been implemented for the purpose of this work. With this
decomposition, the surface between the nodes will consist of fewer cells (as in Fig. 4.20).

The application results in a list of all cells in the attached mesh, and the corresponding node
the cell belongs to. This list is read by the standard decomposition application in OpenFOAM.
In this way the decomposition (c) in Fig. 4.20 is achieved.

a)

c)

b)

Figure 4.20: Decomposition problem: a) overall system; b) equal size decom-
position; c) geometrical decomposition

Performance

The performance of the parallelization will, in general, depend both on the decomposition scheme
and the implementation of the parallelized methodology. To exemplify the parallelization of the
implemented OpenFOAM solver, Mesh 2 with PN=30 W is run for a variable number of CPUs.
The speed up of the parallelized code is defined as:

Speed upX =
Wall clock time, 1 CPU

Wall clock time, X CPUs
(4.2)

where the wall clock time is the real time, whereas the CPU-time would measure the sum of the
time elapsed on each CPU.

The result of such run can be seen in Fig. 4.21. The convergence profile, as exemplified by the
temperature equation convergence, has the same behavior independent of the number of CPUs.
This is expected as the parallelization in OpenFOAM is implemented to exchange shared cell
values at each step of the iterative matrix solvers. The elapsed time is at maximum for a single
processor. It is further seen that the speed up is neither linear with the number of CPUs, nor
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Figure 4.21: Parallelization of 2D coupled problem.

double as fast for 2 CPUs as for a single CPU. The communication between the CPUs brings a
certain overhead cost for the exchange of matrix elements.

Furthermore, as shown in the general convergence behavior for a single CPU, the thermal-
hydraulics will need many outer iterations, going back and forth between velocity/pressure and
temperature, increasing the amount of data sent between the CPUs.

For the computer used1, the results of using 5 and 6 CPUs are more that of hardware char-
acter, than of the code.

4.5 Three-dimensional case

Considering the large amount of input data needed to run calculations for a nuclear fuel assembly
and the complexity of the overall methodology, a script has been written such that the entire
process can be optimized and automatically executed. The script sets up a file structure as
demanded for general OpenFOAM run and the files needed for the specific OpenFOAM applica-
tion solving the nuclear reactor multi-physics problem. Specially for the many boundaries and
boundary conditions arising in a multiple pin run, it is time consuming to manually setup the
case2.

4.5.1 Neutron macroscopic cross-sections for the three-dimensional case

To generate the proper set of macroscopic cross-sections and neutronic parameters for the three-
dimensional fuel assembly, the methodology described in section 3.2 is employed.

Four types of nuclear fuels are studied: UOX enriched with 2% and with 4% uranium-235
and MOX with 2% and with 4% plutonium. The cross-sections are condensed according to a
two energy group structure, i.e. thermal and fast neutrons. The radial temperature and density
profiles estimated in section 4.4.5 (complemented by extra high-temperature runs from the 2D
case) are used for all the four cases, although computed for UOX with 2% uranium-235. As for
the set of cross-sections created for the 2D application, the fuel and the moderator are split in
four radial regions, and the gap and the cladding in a single region (see Fig. 4.8). The generated
2D cross-sections are used for all axial levels in the 3D system, thus assuming the same radial
temperature profile for all axial positions. The total thermal cross-sections for the lowest and
the highest power from section 4.4.5 can be seen in Fig. 4.22.

1All simulations are performed using an Intel R©CoreTMi7-2670QM CPU, with 4 hyper-threaded CPUs at a
frequency of 2.20GHz.

2The file structure for a 5x5 pin problem gives rise to an input structure with more than 3000 files (considering
cross-sections sets of 6 state points).
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Figure 4.22: Comparison of thermal absorption cross-section for low and high
power case.

The variations of the cross-sections along the radial direction arise form the neutron flux
profile that appears as weighting function in eqs. (2.14)-(2.18). Such a neutron flux depends on
the composition of the fuel , e.g. it will differ for UOX with 2% and with 4% uranium-235.

On the other hand, when the two different power levels are compared, it can be seen that
the effect of warmer moderator (i.e. lower density) will lower the total cross-section in the
moderator. Besides, the fuel temperature must be taken in account since it impacts also on the
total cross-sections.

This example points out the need of cross-sections that depends on space, material compo-
sition and the thermophysical state of the material. This is true not only for the total cross-
sections, but all material dependent quantities, including cross-sections, fission neutron yield,
fission neutron spectrum and diffusion coefficient.

It should be noted that the applied temperature profiles are not generally true, but depends,
for instance, on the moderator inlet velocity which affects the axial moderator temperature
distribution. The profiles used and the generated macroscopic cross-sections are rather to be
seen as a best approximation based on the 2D geometry of a single fuel pin environment (i.e., a
fuel pin together with the surrounding moderator).

4.5.2 Computational mesh

For the three-dimensional calculations a hybrid mesh is created, utilizing both structured and
unstructured regions, thus, consisting of both prism and hexahedral shaped elements. The
general radial structure of the mesh is outlined in Fig. 4.23. General characterization data of the
mesh is given in Table 4.9. The axial structure is similar to the axial structure of the 2D mesh,
with refinements close to the flow widening and narrowing. The single pin mesh is repeated in a
lattice structure for the multiple pin runs.

The increased radial resolution in the moderator, close to the cladding wall, is adjusted to fit
the purpose of using unresolved wall functions for the velocity and turbulence profile.

Table 4.9: Characterization of the 3D mesh for a single fuel pin.

Cells 65160
Axial intervals 80
Average volume [m3] 8.15e-09
Max skewness 0.65
Max aspect-ratio 3200
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Figure 4.23: Radial hybrid mesh generated for 3D run of multiple fuel pins.

4.5.3 Results

The results of the calculations performed for the simplified PWR assembly described in section
4.1 with UOX (2% uranium-235) and MOX (2% plutonium), and with a total power equal to 1
MW, are presented in this subsection.

Figure 4.24 presents the temperature distribution of the full system and the power density in
the fuel rods at mid-elevation. The temperature in the MOX pins (Fig. 4.24a) is higher because
of a higher fission cross-section, leading to a higher pin power (Fig. 4.24b).

The different power density in UOX and MOX elements leads also to slightly different mod-
erator temperature (Fig. 4.25), depending on the nearby fuel material. Comparing figures 4.24
and 4.25, the moderator temperature is slightly higher around the MOX fuel pins.

The axial moderator inhomogeneity is displayed in figure 4.26, for a cut along the x-axis,
through the middle row of pins. The moderator is seen to be warmer in the vicinity of the MOX
pin. In general the temperature gradients in the moderator, along the radial direction, are small.

As regards the neutronics, the thermal flux has its minimum magnitude in the MOX pins
(figure 4.27a), and the fast flux reaches its maximum in the MOX pins. This is consistent with
what is expected as the largest number of fissions, i.e. the largest number of fast neutrons
released from the fission process, occurs in those pins.

Comparing the power density (figure 4.24b) and the thermal neutron flux (figure 4.27a), it
can be seen that a shielding effect takes place. In fact the power density is higher in the outer
part of the fuel pin, whereas the thermal neutron density decreases approaching the center of
the fuel.

The radial variation of the total thermal cross-sections for the moderator region is shown in
figure 4.28. Such a distribution arises not only because of the spatial density and temperature
distributions of the water. The checkerboard pattern that can be observed, is a result of the
fact that the cross-sections are calculated for a single fuel pin environment only. Thus, there is
no compensation for the surrounding, which leads to the non-physical discontinuous moderator
cross-sections. To avoid this a larger geometry would have to be implemented for the cross-
section generation in the moderator, or an interpolation scheme could be implemented for the
cross-sections in the moderator. The first option would cripple the modularity of the applied
methodology, and the second approach has the disadvantage that it would not be correctly done
without compensating for the flux profiles, again introducing the need for further and larger

50



4.5. THREE-DIMENSIONAL CASE

(a) Temperature distribution (b) Power density distribution

Figure 4.24: Radial temperature and power density distribution at mid-
elevation. Higher temperature and power density in the MOX pins.

Figure 4.25: Radial temperature distribution in the moderator at mid-
elevation.

cross-section calculations.
Radial variations of the cross-sections are also found inside the cell of the same pin. These

variations are not only due to a temperature effect (as the temperature was shown to be almost
constant in figure 4.25), but also due to the difference in neutron flux profiles for different radial
positions as explained in section 4.5.1.
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Figure 4.26: Axial temperature dependence in the moderator for plane
through center of 5x5 lattice.

(a) Thermal flux (b) Fast flux

Figure 4.27: Radial neutron density distributions at mid-elevation.

Figure 4.28: Thermal total cross-section, ΣT,1, radial dependence for mid-
elevation.
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4.5.4 Moderator homogenization

As shown above, the computational tool developed in this work can predict spatial distributions
of the moderator properties within the sub-channels of the fuel assembly. This level of detail
is generally not captured with other approaches, e.g. with thermal-hydraulic system codes for
nuclear reactors.

An example of the error introduced by assuming a homogeneous spatial distribution of the
moderator properties in the fuel assembly is given. This is to be seen as an example of the
possibilities of the high-resolution calculations, and not as an exact comparison to any existing
methodology. In the below example, only the moderator is averaged, thus there is still a non-
constant temperature profile in the fuel, the cladding and the gap.

In order to get a correct axial moderator profile, and, thus, ensuring a correct energy extrac-
tion in the moderator, the methodology is first applied to calculate a converged ’inhomogeneous’
result. The moderator is axially averaged over axial levels of the mesh. The averaging is calcu-
lated using the enthalpy of the moderator such that:

Hj =

∑
i∈j

HiVi∑
i∈j

Vi

(4.3)

where j denotes the axial level in the mesh, and i ∈ j corresponds to all cells in the axial level
j. The calculated average enthalpy, for each axial, level is then converted to temperature. This
calculated temperature is used for updating the cross-sections for the averaged state.

After the homogenization of the moderator, the neutronics is solved again, using nuclear
properties based on the homogeneous conditions. The thermal-hydraulics is not further solved.
Do note that there will still be inhomogeneous conditions in the fuel, cladding and gap, as these
regions are left as for the converged inhomogeneous case.

The radial power density at mid-elevation, for the fuel pins aligned with a diagonal passing
through the center of the fuel assembly (i.e. through a diagonal of MOX fuel pins), for the
homogenized and inhomogeneous moderator is seen in Fig. 4.29. From comparison, it can be
seen that the power density increases in the MOX fuel pins for the homogeneous case. As the
radial temperature variations are small (compare to Fig. 4.25), the relative change from the
moderator averaging will also be small.

Again, this example does not correspond exactly to the case of any commercial or standard
code, but is merely an example of the capability of the high-resolution calculations as applied in
this thesis.
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Figure 4.29: Power profile at mid-elevation, along a diagonal passing through
center fuel pin.
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Chapter 5

Conclusions

In the presented work, a methodology has been designed for high-resolution, steady-state calcu-
lations in which neutronics and thermal-hydraulics of single-phase flow are coupled. This kind of
methods are of particular interest in nuclear reactor applications where more detailed simulations
can be useful for studying better safety options as well as more advanced fuel designs.

5.1 Summary of the methodology

The methodology is based on a newly developed computational tool in which the steady-state
multi-group neutron diffusion equation has been integrated in a CFD solver for the thermal-
hydraulics (chapter 3). The new integrated solver has been built by combining and modifying
capabilities that are available in the open source CFD software OpenFOAM, which allows per-
forming all calculations within the same code, and it is targeted at the specific configuration of
a nuclear fuel assembly. Accordingly, it includes models for heated single phase turbulent flow
of the moderator/coolant and heat transfer in the fuel, in the gap, and in the cladding. Thermo-
physical properties of the materials used in the CFD solver have been incorporated in the form of
temperature dependent models. The numerical algorithm used for the solution of both the neu-
tronic and thermal-hydraulic fields relies on discretization operators and matrix solvers provided
in OpenFOAM, and the computational grid is created with the software SALOME.

Moreover, a procedure that makes use of the nuclear Monte Carlo code SERPENT has been
implemented for generating proper set of macroscopic neutron cross-sections and neutron pa-
rameters that are needed for the coupled calculations.

5.2 Summary of the results

In order to verify the methodology, simulations of a simplified fuel assembly under steady-state
PWR conditions have been performed (chapter 4). First a two-dimensional case, and then the
full three-dimensional case have been analyzed. The results discussed in sections 4.4 and 4.5 are
consistent and show that the methodology has been implemented successfully.

From the two-dimensional case, it can be seen that (section 4.4):

• The simulations of the axial profiles for moderator temperature, density, velocity and pres-
sure drop are coherent;

• The axial neutron flux for the thermal and the fast groups are predicted in a reasonable
manner. For instance, the accumulation of thermal neutrons due to the slowing down of
the fast neutrons that enter in the moderator is captured;

• As expected because of the large gradient, a significant temperature decrease from the
center of the fuel to the periphery is observed;
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• Thermal radiation and convective heat transfer in the gap are negligible;

• An increased power density leads to a lower effective multiplication factor, which is an
expected feedback of the system.

In the case of the three-dimensional fuel assembly, where two different types of nuclear fuel
(UOX and MOX) were placed according to a checkerboard pattern, it has been found that:

• Radial and axial temperature distributions in the fuel and in the moderator are consistent
with the calculated neutronic power;

• Fast and thermal neutron fluxes at the outer region of the fuel pins are reproduced;

• Differences in the calculated power distribution are obtained by comparing the current
calculations and the case in which moderator properties are homogenized.

The procedure for evaluating the macroscopic cross-sections has been tested by comparing
the results for four different nuclear fuels (including UOX with 2% and 4% uranium-235 and
MOX with 2% and 4% plutonium). For instance, as expected, the total thermal macroscopic
cross-sections, along the radial direction, in a fuel pin environment,

• are higher in the MOX fuel than in the UOX region;

• are lower in the moderator region when higher power densities are considered.

Nevertheless, one must bear in mind that the macroscopic cross-sections are prepared for a
single fuel pin environment and no compensation for surroundings was included.

As regards the computational scheme developed in this work, it has been shown that:

• The iterative coupling between the neutronics and the thermal-hydraulics has been proven
functional and stable, utilizing partial convergence of the neutronics and the thermal-
hydraulics (section 4.4.3);

• The computational effort was shown to be considerable, primarily for the solution of the
velocity-pressure coupling. The neutronics needs fewer iterations to reach a satisfying result
(section 4.4.3);

• The integrated scheme for the coupling between neutronics and thermal-hydraulics gives
an efficient management of the data common to the two fields (in comparison with external
coupled schemes, that require external software for data transfer between neutronics and
thermal-hydraulics). Moreover, the internal coupling developed in this work allows also all
the variables to converge in a more coherent manner;

• The solution of all the fields on the same mesh is somewhat inefficient. In fact the neutronics
could generally be solved on a coarser mesh. On the other hand, the thermal-hydraulics
needs much finer meshes for regions of steep gradients, and for sufficient resolution of
solid-fluid boundaries;

• Parallelization of this kind of calculations is potentially advantageous, depending on the
decomposition methods and the hard-ware architecture (section 4.4.8).

5.3 Future work

Future work would primarily focus on the extension of the methodology in such a manner that
more realistic cases can be simulated. For instance, as mentioned in the introduction of the
thesis, this kind of high-resolution simulations can be useful to study nuclear BWR fuel assembly
performances, as radial void fraction distribution can have non-negligible effects. Therefore, two-
phase models should be included. Besides, in order to investigate more realistic fuel assemblies
with spacers, non-uniform fuel rods, etc. more sophisticated models would be necessary.
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The numerical algorithm applied is such that the neutronic and thermal-hydraulic fields are
solved separately with a sparse matrix solver. Consequently, the amount of memory is limited
to one matrix at a time. On the other hand, the development of solution strategies using block
matrices, including many fields in the same (still sparse) matrix system, is attractive since this
approach potentially allows faster convergence between the fields. This approach would however
increase the peak memory.

In addition, as discussed above, the same mesh is used for the two fields. It could be beneficial
to study methods for determining optimal meshes with respect to the neutronics and to the
thermal-hydraulics, and using different meshes for the two fields.
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Appendix A

OpenFOAM overview and usage

This chapter is a brief overview of the basics of OpenFOAM from the perspective of the current
work. The chapter is aimed to introduce the implementation of the thesis work, and to give the
interested reader a glance of the structure and potential use of OpenFOAM.

A.1 OpenFOAM overview

OpenFOAM (Open Field Operation and Manipulation) is a C++ library aimed at solving field
equations[22]. The code consists partly of a general framework for solving partial differential
equations (PDE) in a numerical manner (both using the finite element approach and the finite
volume approach, although only the later has been utilized in this work), and partly of a set of
example solvers. The first part contains all general structures needed to solve the PDEs, among
other including mesh applications, standard boundary conditions, matrix solvers, general physical
models and discretization procedures. The second part includes the OpenFOAM implementa-
tions of many of the standard CFD algorithms, including SIMPLE, PISO and Euler-Lagrangian
solvers.

The library of code is written in an object oriented manner, meaning that relevant entities
like boundary conditions, meshes, physical models (including turbulence and radiation models)
are formulated as separate units. This gives a modular code, allowing new models to be defined
from scratch, or by extending existing models. In this thesis one example of such a structure is
the implemented physical model of temperature dependent parameters (see section 4.1). Two
new thermophysical models have been implemented, one for the fluid regions and one for the
solid regions in the nuclear reactor core, both based on a general basic OpenFOAM module for
thermophysical models.

The use of object orientation within the library also allows a run-time selection of, e.g.,
discretization schemes and boundary conditions. This means that a developed solver could be
used for many different setups and cases, by new choices of the run-time selectable parts, without
the need to rewrite or recompile the code. In this thesis, this is e.g. utilized to come up with
optimal choices of the matrix solvers (see table 4.3).

Another central part of the implementation of OpenFOAM solvers is the mimic of mathe-
matical writing used to specify partial differential equations, which is further discussed in the
implementation of the new solver (section A.2).

The OpenFOAM user interface for specifying and running cases is not based on any graphical
user interface. Instead OpenFOAM case specification is based on a file hierarchy system. This
hierarchy is placed within a root folder, in turn containing subfolders with specification of mesh
and physical models (constant), system specifications like matrix solvers, convergence criteria
and discretization schemes (system) and most often an initial guess of all fields, including bound-
ary conditions, specified in one time step subfolder (e.g 0). An example of the structure used for
the 2D fuel pin application (section 4.4) is seen in figure A.1.
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The input structure lends itself well for scripting. This is in the current work used to test
parameters (like in the parallelization test in section 4.4.8 and the power dependence in section
4.4.5) and to setup cases (as for the script for the 3D application of the 5x5 assembly, briefly
described in section 4.5).

(a) Root (b) Initial guess (c) constant (d) system

Figure A.1: Example of input structure for the solver developed in this thesis.

A.2 Implementation of the new solver

To implement a new solver in OpenFOAM a few general steps will be followed, as outlined below.
In the specific, more steps, e.g. including header files, specifying namespaces etc., are needed.
Such typical procedures are however common for any C++ object oriented code, and thus left
out from the presentation.

1. Initiate mesh and fields: The first step in the implementation is to create the mesh and
the physical fields and models which are to be used in the solver. As described above, these
entities are in general objects.

2. Define PDE: Given the mesh and the fields specified on the mesh, the PDE is specified using
the OpenFOAM equation format. This format includes mathematical differential operators (such
as the Laplacian operator in the case of the temperature equation for the cladding eq. (2.67))
as well as basic arithmetic operations as +,−, /,×[23]. The specified PDE will be discretized
according to the discretization schemes specified in the input file system/fvSchemes. The very
general equation format allows any, not only CFD equations, to be implemented in new solvers.
This is e.g. used for the neutronics equations implemented for the coupled solver (section 3.3.2).

3. Solve PDE The next step is to solve the specified PDE. In the simplest case, this is per-
formed automatically, using the specified matrix solvers (system/fvSolution) applied on the
discretized (sparse) matrix from the previous step.

4. Iteration and convergence control Most solvers will need to be run in an iterative man-
ner, as is e.g. the case with the coupled neutronics and thermal-hydraulics solver in the current
work (section 3.3.3). For steady-state runs, the end of the iteration needs to be specified by
convergence criteria, and for time dependent runs also time-stepping needs to be defined. The
new solver will need to define what structures are to be checked for convergence, e.g. the matrix
residual of one or multiple fields can be used.

The general structure is not fully applicable for all situations, e.g. not in the coupled problem,
where coupled matrices are used, as discussed in section 3.3.3. Still, it can give an idea of the
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potential versatility of OpenFOAM, and the way new problems can be specified within the
framework, avoiding new code for common steps, such as the discretization, matrix solvers, etc.

Except for the implementation of new solvers, new physics will often need new physical models
used by the solver. An example of this is the implemented cross-section model, using the sets of
cross-sections pre-calculated by SERPENT (see section 3.2).
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Materials

B.1 Serpent material compositions

The isotopes are identified by atomic number (XX) and mass number (YYY) as XXYYY. The
atomic fraction or mass fraction entered in Serpent must not be normalized.

Table B.1: Isotopic composition of gap, moderator and cladding

(a) Isotopic composition of helium used in

the gap (ρ = −1 × 10−3g · cm−3).

Isotope Atomic fraction
08016 1.0

(b) Isotopic composition of borated
water used for moderator (ρ varied).
Amount of boron corresponds to 1000
ppm of natural boron

Isotope Mass fraction
1001 1.120977e-01
8016 8.879023e-01
5010 1.990000e-04
5011 8.010000e-04

(c) Isotopic composition of Zircaloy-2,
98.5% natural zirconium and 1.5% nat-
ural tin, with ρ = 6.6g · cm−3 [40]

Isotope Mass fraction
50112 1.455000e-04
50114 9.900000e-05
50115 5.100000e-05
50116 2.181000e-03
50117 1.152000e-03
50118 3.633000e-03
50119 1.288500e-03
50120 4.887000e-03
50122 6.945000e-04
50124 8.685000e-04
40090 5.067825e-01
40091 1.105170e-01
40092 1.689275e-01
40094 1.711930e-01
40096 2.758000e-02
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Table B.2: Isotopic compositions of UOX and MOX fuels. Same density,
ρ = 10.3g ·cm−3, used for all fuels. Plutonium isotopic composition corresponds
to reactor-grade plutonium[38].

(a) UOX fuel with 2% enrichment.

Isotope Atomic fraction
92235 8.510638e-05
92238 4.117647e-03
8016 8.405507e-03

(b) UOX fuel with 4% enrichment.

Isotope Atomic fraction
92235 1.702128e-04
92238 4.033613e-03
8016 8.407652e-03

(c) MOX fuel with 4% enrichment.

Isotope Atomic fraction
94238 2.268908e-06
94239 4.686192e-05
94240 2.158333e-05
94241 6.721992e-06
94242 6.033058e-06
92235 2.919149e-05
92238 4.088824e-03
8016 8.402968e-03

(d) MOX fuel with 4% enrichment.

Isotope Atomic fraction
94238 4.537815e-06
94239 9.372385e-05
94240 4.316667e-05
94241 1.344398e-05
94242 1.206612e-05
92235 2.859574e-05
92238 4.005378e-03
8016 8.401825e-03
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Appendix C

Code

C.1 Serpent

Example input file for Serpent generated by XSER

% −−− Basic settings :
set title ”Uniform temp− Region 0”
set acelib ”/home/ k l a s /Program/Serpent / xsdata / endfb7/ kr j s e rpen t end fb7 20120123 ”
set bc 2
set sym 8
set pop 5000 500 20
set nfg 3 6 .250 e−07 1 .000 e−02

% −−− Include materials file ( with adjusted temperatures )
include ” . . / . . / mate r i a l /mat . t e s t . ad justed ” % −−− Surfaces :
surf 0 cyl 0 .000 0 .000 2 .050 e−01
surf 1 cyl 0 .000 0 .000 2 .899 e−01
surf 2 cyl 0 .000 0 .000 3 .551 e−01
surf 3 cyl 0 .000 0 .000 4 .100 e−01
surf 4 cyl 0 .000 0 .000 4 .200 e−01
surf 5 cyl 0 .000 0 .000 4 .800 e−01
surf 6 cyl 0 .000 0 .000 5 .162 e−01
surf 7 cyl 0 .000 0 .000 5 .525 e−01
surf 8 cyl 0 .000 0 .000 5 .887 e−01
surf 9 sqc 0 .000 0 .000 6 .250 e−01

%% −−− Cells :

%% Regions NOT f o r group constants
cell 1 11 void −0
cell 3 11 MOXT540 . 00 0 −1
cell 5 11 MOXT540 . 00 1 −2
cell 7 11 MOXT540 . 00 2 −3
cell 9 11 airT540 . 00 3 −4
cell 11 11 claddingT540 . 00 4 −5
cell 13 11 waterT540 . 00 D0 . 77 5 −6
cell 15 11 waterT540 . 00 D0 . 77 6 −7
cell 17 11 waterT540 . 00 D0 . 77 7 −8
cell 19 11 waterT540 . 00 D0 . 77 8 −9
cell 21 11 outside 9
cell 22 12 outside 9

%% Regions f o r group constants
cell 2 12 MOXT540 . 00 −0
cell 4 12 void 0 −1
cell 6 12 void 1 −2
cell 8 12 void 2 −3
cell 10 12 void 3 −4
cell 12 12 void 4 −5
cell 14 12 void 5 −6
cell 16 12 void 6 −7
cell 18 12 void 7 −8
cell 20 12 void 8 −9
set gcu 12
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%% Fill universe 10 with wanted region and surrounding
cell 23 10 fill 12 −0
cell 24 10 fill 11 0
cell 25 0 fill 10 −9
cell 26 0 outside 9

Listing C.1: Example of a Serpent input file generated by XSER

Example material file for Serpent generated by XSER

%−−− Temperature adjusted material
mat MOXT540 . 00 −10.3 tmp 540.00
94238.03 c 2.26891 e−06
94239.03 c 4.68619 e−05
94240.03 c 2.15833 e−05
94241.03 c 6.72199 e−06
94242.03 c 6.03306 e−06
92235.03 c 1.04255 e−05
92238.03 c 4.10735 e−03
8016.03 c 8.40249 e−03

%−−− Temperature adjusted material
mat airT540 . 00 −1e−3 tmp 540.00

8016.03 c 1.00000 e+00

%−−− Temperature adjusted material
mat claddingT540 . 00 4.004642 E−02 tmp 540.00
40090.03 c 3.95500 e−02
26056.03 c 1.38300 e−04
24052.03 c 7.07200 e−05
8016.03 c 2.87400 e−04

%−−− Temperature adjusted material
mat waterT540 . 00 D0 . 77 −0.770 moder lwtr550 . 00 1001 tmp 540.00

1001.03 c 4.72400 e−02
5010.03 c 8.64100 e−06
5011.03 c 3.46900 e−05
8016.03 c 2.36200 e−02

therm lwtr550 . 00 lwe7 . 10 t

%−−− Temperature adjusted material
mat MOXT560 . 00 −10.3 tmp 560.00
94238.03 c 2.26891 e−06
94239.03 c 4.68619 e−05
94240.03 c 2.15833 e−05
94241.03 c 6.72199 e−06
94242.03 c 6.03306 e−06
92235.03 c 1.04255 e−05
92238.03 c 4.10735 e−03
8016.03 c 8.40249 e−03

%−−− Temperature adjusted material
mat airT560 . 00 −1e−3 tmp 560.00

8016.03 c 1.00000 e+00

%−−− Temperature adjusted material
mat claddingT560 . 00 4.004642 E−02 tmp 560.00
40090.03 c 3.95500 e−02
26056.03 c 1.38300 e−04
24052.03 c 7.07200 e−05
8016.03 c 2.87400 e−04

%−−− Temperature adjusted material
mat waterT560 . 00 D0 . 75 −0.752 moder lwtr550 . 00 1001 tmp 560.00

1001.03 c 4.72400 e−02
5010.03 c 8.64100 e−06
5011.03 c 3.46900 e−05
8016.03 c 2.36200 e−02

%−−− Temperature adjusted material
mat MOXT900 . 00 −10.3 tmp 900.00
94238.09 c 2.26891 e−06
94239.09 c 4.68619 e−05
94240.09 c 2.15833 e−05
94241.09 c 6.72199 e−06
94242.09 c 6.03306 e−06
92235.09 c 1.04255 e−05
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92238.09 c 4.10735 e−03
8016.09 c 8.40249 e−03

%−−− Temperature adjusted material
mat airT650 . 00 −1e−3 tmp 650.00

8016.06 c 1.00000 e+00

%−−− Temperature adjusted material
mat claddingT600 . 00 4.004642 E−02 tmp 600.00
40090.06 c 3.95500 e−02
26056.06 c 1.38300 e−04
24052.06 c 7.07200 e−05
8016.06 c 2.87400 e−04

%−−− Temperature adjusted material
mat waterT570 . 00 D0 . 73 −0.732 moder lwtr550 . 00 1001 tmp 570.00

1001.03 c 4.72400 e−02
5010.03 c 8.64100 e−06
5011.03 c 3.46900 e−05
8016.03 c 2.36200 e−02

%−−− Temperature adjusted material
mat MOXT1000 . 00 −10.3 tmp 1000.00
94238.09 c 2.26891 e−06
94239.09 c 4.68619 e−05
94240.09 c 2.15833 e−05
94241.09 c 6.72199 e−06
94242.09 c 6.03306 e−06
92235.09 c 1.04255 e−05
92238.09 c 4.10735 e−03
8016.09 c 8.40249 e−03

%−−− Temperature adjusted material
mat airT900 . 00 −1e−3 tmp 900.00

8016.09 c 1.00000 e+00

%−−− Temperature adjusted material
mat claddingT700 . 00 4.004642 E−02 tmp 700.00
40090.06 c 3.95500 e−02
26056.06 c 1.38300 e−04
24052.06 c 7.07200 e−05
8016.06 c 2.87400 e−04

%−−− Temperature adjusted material
mat waterT580 . 00 D0 . 71 −0.712 moder lwtr600 . 00 1001 tmp 580.00

1001.03 c 4.72400 e−02
5010.03 c 8.64100 e−06
5011.03 c 3.46900 e−05
8016.03 c 2.36200 e−02

therm lwtr600 . 00 lwe7 . 12 t

%−−− Temperature adjusted material
mat MOXT1200 . 00 −10.3 tmp 1200.00
94238.12 c 2.26891 e−06
94239.12 c 4.68619 e−05
94240.12 c 2.15833 e−05
94241.12 c 6.72199 e−06
94242.12 c 6.03306 e−06
92235.12 c 1.04255 e−05
92238.12 c 4.10735 e−03
8016.12 c 8.40249 e−03

%−−− Temperature adjusted material
mat airT950 . 00 −1e−3 tmp 950.00

8016.09 c 1.00000 e+00

%−−− Temperature adjusted material
mat claddingT740 . 00 4.004642 E−02 tmp 740.00
40090.06 c 3.95500 e−02
26056.06 c 1.38300 e−04
24052.06 c 7.07200 e−05
8016.06 c 2.87400 e−04

%−−− Temperature adjusted material
mat waterT590 . 00 D0 . 69 −0.688 moder lwtr600 . 00 1001 tmp 590.00

1001.03 c 4.72400 e−02
5010.03 c 8.64100 e−06
5011.03 c 3.46900 e−05
8016.03 c 2.36200 e−02
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%−−− Temperature adjusted material
mat MOXT1500 . 00 −10.3 tmp 1500.00
94238.15 c 2.26891 e−06
94239.15 c 4.68619 e−05
94240.15 c 2.15833 e−05
94241.15 c 6.72199 e−06
94242.15 c 6.03306 e−06
92235.15 c 1.04255 e−05
92238.15 c 4.10735 e−03
8016.15 c 8.40249 e−03

%−−− Temperature adjusted material
mat airT1000 . 00 −1e−3 tmp 1000.00

8016.09 c 1.00000 e+00

%−−− Temperature adjusted material
mat claddingT800 . 00 4.004642 E−02 tmp 800.00
40090.06 c 3.95500 e−02
26056.06 c 1.38300 e−04
24052.06 c 7.07200 e−05
8016.06 c 2.87400 e−04

%−−− Temperature adjusted material
mat waterT600 . 00 D0 . 66 −0.661 moder lwtr600 . 00 1001 tmp 600.00

1001.06 c 4.72400 e−02
5010.06 c 8.64100 e−06
5011.06 c 3.46900 e−05
8016.06 c 2.36200 e−02

%−−− Temperature adjusted material
mat MOXT1800 . 00 −10.3 tmp 1800.00
94238.18 c 2.26891 e−06
94239.18 c 4.68619 e−05
94240.18 c 2.15833 e−05
94241.18 c 6.72199 e−06
94242.18 c 6.03306 e−06
92235.18 c 1.04255 e−05
92238.18 c 4.10735 e−03
8016.18 c 8.40249 e−03

%−−− Temperature adjusted material
mat airT1300 . 00 −1e−3 tmp 1300.00

8016.12 c 1.00000 e+00

%−−− Temperature adjusted material
mat claddingT1100 . 00 4.004642 E−02 tmp 1100.00
40090.09 c 3.95500 e−02
26056.09 c 1.38300 e−04
24052.09 c 7.07200 e−05
8016.09 c 2.87400 e−04

%−−− Temperature adjusted material
mat waterT620 . 00 D0 . 59 −0.594 moder lwtr600 . 00 1001 tmp 620.00

1001.06 c 4.72400 e−02
5010.06 c 8.64100 e−06
5011.06 c 3.46900 e−05
8016.06 c 2.36200 e−02

Listing C.2: Example of a Serpent material file generated by XSER
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