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Abstract

This report is an introduction to quantum computation and quantum information.
We present a two-part theory section followed by data analysis of a transmon qubit.
The first theory part, needed for the analysis, introduces fundamental properties of
qubit states and the Bloch sphere description. The qubit manipulation, interaction
with a electromagnetic field, is then studied in the Rabi model (semi-classical) and the
Jaynes-Cummings model (fully quantized). The second theory part is a qualitative
presentation of the density matrix representation, decoherence (effects of noise) and
read-out, which are useful topics in more advanced analysis.

We also present a summary of qubit realizations, with focus on the superconduct-
ing qubits: charge, phase and transmon.

In the last part of the report, we analyze spectroscopic measurements on a trans-
mon qubit in a cavity resonator, performed at MC2 Chalmers. The data was compared
to the expected behavior from the Jaynes-Cummings Hamiltonian and then the full
Hamiltonian for the transmon. The comparison enabled us to extract the parame-
ters of the transmon. The ratio of the Josephson energy and the charge energy was
determined to be EJ/EC = 34.5644± 0.9456 GHz, which is in the transmon regime.
Furthermore, the coupling strength between the cavity resonator and the qubit was
determined to be 2βeV 0

rms = 0.1301± 0.00095 GHz, with a 68% confidence interval.
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1 Introduction & Objective

Recent development in microtechnology and nanofabrication has allowed accurate con-
struction of electrical circuits in the nanometer range. As the spatial dimension of the
circuits decreases to this regime, quantum effects become apparent. In some applications
these effects are limiting, but for our concerns, they are fundamental properties to be
taken advantage of.

This project has been devoted to the study of one particular realization of a quantum
bit (qubit), the transmon, which is basically a small superconducting circuit placed in a
cavity resonator. The transmon is currently used in research at MC2 Chalmers.

To get familiar with the field of nanoscience and microtechnology, in particularly quan-
tum computing and quantum information, all project participants attended the course
Quantum Informatics (FKA 172) during the first quarter of 2010. As this field of study
was relatively new to us, a major part of our work has consisted of literature studies,
to provide the necessary knowledge. In section 3 and 4 we present the theory retrieved
throughout the course.

At the end of the course, our supervisors provided experimental data from microwave
spectroscopy of a transmon qubit in a cavity resonator. With this data, our task was to
determine energy levels of the system. To do this, we performed simulations using models
discussed during the course Quantum Informatics. The outcome of these simulations is the
highlight of our work, since understanding of the theory is required to implement it into
executable code and evaluate the obtained results. Finally, the simulations were compared
with the experimental data and we could determine the characteristic parameters of the
transmon.

The aim has been to produce a report in the field of quantum computing and quantum
information understandable for a student, who has taken introductory courses in quan-
tum physics, e.g. the undergraduate quantum physics courses in Engineering Physics at
Chalmers. For the student it is necessary to read theory - part I to be able to understand
the work we have done with simulating the transmon. Theory - part II introduces some
concepts vital for further studies in the subject, however these are not used in the data
analysis.
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2 Background

The computer has undergone a tremendous development in recent decades. The develop-
ment has followed Moore’s Law (1965), which states that the number of transistors that
can be placed on an integrated chip has doubled every two years. This has mainly been
done by shrinking the size of transistors, but the circuits are now so small, that quantum
effects begin to interfere.

In 1982, Richard Feynman pointed out the problem with simulating larger quantum sys-
tems using classical computers and suggested a computer based on quantum principles.
A few years later, in 1985, David Deutsch made a significant contribution when he con-
structed the theoretical model of the universal quantum computer. He showed that it
could solve all kinds of problems that a classical computer could solve. Theoretically the
opposite also holds, any algorithm that can run on a quantum computer can be simulated
on a classical computer. However, many phenomena which are fundamental for a quantum
system such as superposition and quantum entanglement do not have any simple equiv-
alent on a classical computer. Because of that, the amount of time and memory needed
to simulate a quantum computer will grow exponentially as the number of quantum bits
increases.

The development of quantum computing and quantum information gained speed, when
in 1995, Peter Shor showed that the problem of finding prime factors of an integer could
be solved efficiently on a quantum computer [1]. This is important because a commonly
used encryption algorithm, RSA, is based on the fact that finding prime factors of large
integers is believed to have no efficient solution on a classical computer [2].

What Feynman theorized about and David Deutsch showed was that quantum computing
enables a more powerful way of doing computations. Instead of doing calculation after
calculation, all possible outcomes can exist in a superposition. In figure 1 we see a simple
example, where ”quantum parallelism” is visualized as checking all positions in a registry
simultaneously.

Figure 1: An example of how a quantum computer can be faster than a classical computer
is the problem to search through an unsorted database. A classical computer (left) has
to evaluate each leaf separatly while a quantum computer (right) can evaluate all leaves
simultaneously as a superposition. Courtesy of [3].

Although quantum physics has been around for roughly a century, there are fundamental
questions as well as practical difficulties with the realization of qubits. The present prob-
lem is to get the qubits to work coherently for more than short periods of time. Thus,
the main obstacle is decoherence, the interaction between the qubit and its environment,
which causes the qubit to lose its quantum characteristics and thus also its ability to
perform quantum computing. However, in just ten years, the timescale in which a qubit
behaves coherently, has increased with three orders of magnitude. Even though quantum
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computers have the potential to become more powerful than their classical counterparts,
the current research is still far from this point.

In 1999, Nakamura et al. induced Rabi oscillations in a single-Cooper-pair box, which
was an important outcome of 20 years of thorough research in superconducting circuits
[4]. In the recent ten years, coherent control and Rabi oscillations have been observed
also in flux qubits and phase qubits [5]. In 2007, Koch et al. suggested a combination
of the charge qubit and the phase qubit, the transmon qubit, which might be a suitable
candidate for quantum computing [6].

Worth mentioning, apart from the qubit application, is that quantum circuits are of great
interest also for research in fundamental physics. With use of these circuits it is possible to
explore interactions at a very fundamental level not previously achievable. Experiments
studying the interaction between an artificial atom in a cavity and a single photon is an
example where the quantum circuits have opened up new experimental regimes.

3
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3 Theory - Part I

The theory presented (both part I and part II) is mainly, but not exclusively, the content of
the course Quantum Informatics. In turn, the course is based on Quantum Computing and
Quantum Information [2] and Introductory Quantum Optics [7]. References are explicitly
displayed, when information and statements used in section 3 and 4 are not retrieved from
either of these two books.

Initially, we introduce quantum two-level systems, bra-ket notation and single qubit dy-
namics, which are necessary to understand the basic properties of a qubit. To visualize
qubit states and qubit operations, the Bloch sphere is then discussed. Thereafter, the
interaction between an artificial atom (a qubit) and the electromagnetic field is described.
First, we consider the Rabi model, which is interaction between a classical field and an
atom. Then, we describe how the electromagnetic field can be quantized, which leads to
a full quantum mechanical description of the interaction. This quantized model is known
as the Jaynes-Cummings model. Arriving at the Jaynes-Cummings Hamiltonian is the
highlight of the theory survey, since we have used it to simulate the energy levels of the
transmon.

The concepts introduced in this section are useful when treating an isolated quantum
system, where the influence of the environment is neglected. To account for more advanced
dynamics such as dissipation, the concepts discussed in section 4 are needed. However,
since we could neglect decoherence in our analysis, the sufficient theory for understanding
the data analysis of the transmon (section 6) is presented in this section.

3.1 Introduction to Quantum Computing

The basic building block in a conventional computer is the logical bit that is either 1 or
0. In the quantum computer the building block is the quantum bit. Classically, it can be
in one of two states, ψ0 or ψ1. However, a fundamental property of quantum mechanical
systems is the superposition of states, which means that any state αψ0 + βψ1 is possible,
with α,β ∈ C such that |α|2 + |β|2 = 1. To perform quantum computing, the dynamics
of the system should be limited to these states. When a measurement is performed, the
wave function collapses and the qubit will be measured to be in either ψ0, with probability
|α|2 or ψ1, with probability |β|2.
A quantum state can be described by a wave function ψ(x,t), where the time evolution
of the state is governed by the time-dependent Schrödinger equation

ih̄∂tψ(x,t) = Ĥψ(x,t).

Ĥ is the Hamiltonian and describes the total energy of the system. From the time-
independent Schrödinger equation

Ĥψn(x,t) = Enψn(x,t)

the eigenstates ψ0, ψ1,... can be obtained. The eigenstates represent energy levels En and
for some quantum mechanical systems, which are potential qubits, it is possible to limit
the dynamics to a two-level system ψ0, ψ1. Then the total wave function can be written

ψ(x,t) = c0(t)ψ0(x) + c1(t)ψ1(x),
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where the dynamics of the system is represented by the time-dependent coefficients. If
the states ψ0 and ψ1 are normalized and orthogonal, the probability to measure one of
the states is given by P0/1(t) = |c0/1(t)|2. The wave function formalism is clear, but when
extending to more energy levels there exists a more practical notation.

The influence from a time-dependent Hamiltonian acting on a the wave function can be
written as

Ĥ(t)ψ(x,t) = Ĥ(t)(c0(t)ψ0(x) + c1(t)ψ1(x))

= c0(t)(h00(t)ψ0(x) + h10(t)ψ1(x)) + c1(t)(h01(t)ψ0(x) + h11(t)ψ1(x)),

where the coefficients hij can be interpreted as matrix elements. This gives an interpreta-

tion of the Hamiltonian as a matrix, Ĥ =

(
h00 h01
h10 h11

)
and the state as a vector ψ =

(
c0
c1

)
,

defining ψ0 as

(
1
0

)
and ψ1 as

(
0
1

)
as the basis for the system. The matrix elements in

Ĥ can be calculated as

hij =

∫
ψ∗
i (x)Ĥ(t)ψj(x)dx.

From linear algebra, we know that any linear operator acting on the system can be
represented by a matrix.

Qubit states are vectors in a two dimensional Hilbert space, spanned by the base vectors.
The explicit matrix notation works for a single qubit but when controlling more qubits, the
size of the matrices is growing exponentially. A N-qubit system requires 2N -dimensional
vectors. Hence the vector notation becomes tedious. The Dirac notation using bra’s and
ket’s provides a more convenient way to represent states.

In Dirac notation the qubit state ψ can be written

|ψ〉 = c0|0〉+ c1|1〉,
where the kets represents the two eigenstates ψ0 and ψ1. The corresponding bra vector
can be written as (|ψ〉)† = (c0|0〉+ c1|1〉)† = c∗0〈0|+ c∗1〈1| = 〈ψ|, which can be interpreted
as taking the transpose and complex conjugate of the state. More details about Dirac
notation can be found in Sakurai [8].

In Dirac notation 〈φ|θ〉 =

∫
φ∗(x)θ(x)dx represents the inner product between |φ〉 and

|θ〉 and can be interpreted as the scalar product between the state vectors. From this

notation it can easily be seen that the base vectors |0〉 =

(
1
0

)
and |1〉 =

(
0
1

)
preserve

the fundamental properties normalization

〈0|0〉 = (
1 0

)(1
0

)
= 1,

orthogonality

〈0|1〉 = (
1 0

)(0
1

)
= 0

and completeness
|0〉〈0|+ |1〉〈1| = 1̂,

5



Quantum computing and quantum information

where 1̂ is the identity operator.

In the general case completeness is written as

∑

i

|i〉〈i| = 1̂,

where i forms an arbitrary basis. Using this condition, an operator X can be represented
as

X =
∑

i

∑

j

|i〉〈i|X|j〉〈j|.

Since i and j are vectors of equal length N the operator matrix will be N×N with i
indicating row and j indicating column as Xij = 〈i|X|j〉. It should now be clear that
qubit states can be represented using either Dirac or vector notation and that operators
can be represented as matrices.

To be noted is the abbreviated notation |φ〉|θ〉 for the tensor product, which should
actually be written as |φ〉 ⊗ |θ〉. A full description of the properties of tensor products
are beyond the scope of this report, however from the matrix representation it has an
easy interpretation as the Kronecker product. For more details about tensor products see
Appendix A.

3.2 The Bloch Sphere

When considering a single qubit, the Bloch sphere is a way to visualize different states
of the system. The Bloch sphere is a unit sphere where qubit states are represented by
points on the surface. The point on the top of the sphere corresponds to the state |0〉
and the bottom to the state |1〉. Generally, the latitude of a point corresponds to the
probability to measure the qubit to be in |0〉 or |1〉. The longitude represents the phase
difference between the terms |0〉 and |1〉 in the state.

Let |ψ〉 = α|0〉+β|1〉 be a qubit state. α and β can be written on polar form, α = rαe
iϕα

β = rβe
iϕβ . This gives

|ψ〉 = rαe
iϕα |0〉+ rβe

iϕβ |1〉 = eiϕα

(
rα|0〉+ rβe

i(ϕβ−ϕα)
)
.

Because of the fact that the overall phase is not observable, we can simplify the expression
for |ψ〉 by discarding the factor eiϕα ,

|ψ′〉 = rα|0〉+ rβe
i(ϕβ−ϕα)|1〉.

Now, the idea is to express |ψ′〉 in terms of spherical coordinates, ϕ and θ. As described
above, the phase difference between the two eigenstates corresponds to ϕ, and thus we put
ϕβ−ϕα = ϕ. The angle θ should correspond to the values of rα and rβ. By normalization,
r2α + r2β = 1. Further, when θ = 0, rα = 1 and rβ = 0 and vice versa when θ = π. This

implies the relation rα = cos θ
2 and rβ = sin θ

2 .

The transformation results in the Bloch sphere, see figure 2, where the point corresponding
to the state |ψ〉 is expressed in spherical coordinates θ and ϕ. After the transformation a

6
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general qubit state on the Bloch sphere can be written as [9]

|ψ′(θ,ϕ)〉 = cos
θ

2
|0〉+ sin

θ

2
eiϕ|1〉, (3.2.1)

0 ≤ θ ≤ π,

0 ≤ ϕ ≤ 2π.

Figure 2: An illustration of the Bloch sphere. Courtesy of [10].

The idea of the Bloch sphere comes from the behaviour of spin 1/2-particles, such as
electrons and many atomic nuclei. The quantum states for the spin of such a particle
forms a two-level system where its state can be written as a superposition of the spin
up and spin down states. In this case, the points on the Bloch sphere correspond to the
direction of the spin. We now consider the Pauli matrices which plays an important role
in this picture, the three Pauli matrices are

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
and σz =

(
1 0
0 −1

)
.

Using the result of equation (3.2.1) it is possible to examine their expectation values

〈σ̂x〉 = 〈ψ′(θ,ϕ)|σx|ψ′(θ,ϕ)〉 = 2 sin
θ

2
cos

θ

2

(eiϕ + e−iϕ)

2
= sin θ cosϕ, (3.2.2a)

〈σ̂y〉 = 〈ψ′(θ,ϕ)|σy|ψ′(θ,ϕ)〉 = 2 sin
θ

2
cos

θ

2

(eiϕ − e−iϕ)

2i
= sin θ sinϕ, (3.2.2b)

〈σ̂z〉 = 〈ψ′(θ,ϕ)|σz|ψ′(θ,ϕ)〉 = cos2
θ

2
− sin2

θ

2
= cos θ, (3.2.2c)

which is nothing more than the state projected on the respective axis of the matrices.
This is important because any two-by-two dimensional matrix can be written in terms
of the Pauli matrices which means that any two-by-two dimensional Hamiltonian can be
expressed as actions on the qubit state vector on the Bloch sphere, by a fictitious magnetic
field.

7
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To perform qubit operations there must be a way to interact with the qubit and it is
convenient to picture the state vector time evolution on the Bloch sphere. In the Hamil-
tonian formalism it is also convenient to write the energy in terms of the scalar product
between the magnetic dipole moment and a fictitious magnetic field. In the presence of
an arbitrary magnetic field B(t), the single qubit Hamiltonian is

Ĥ = −1

2
(Bx(t)σ̂x +By(t)σ̂y +Bz(t)σ̂z), (3.2.3)

and if considering a magnetic field with only a z-component so that B(t) = Bz(t)σ̂z the
calculations are much easier to carry out. The Schrödinger equation for the system is

ih̄

( .
c0 (t)
.
c1 (t)

)
= −1

2
Bz(t)σ̂z

(
c0(t)
c1(t)

)

and these are just two uncoupled differential equations with the solution

(
c0(t)
c1(t)

)
=

(
e

iδ
2 0

0 e−
iδ
2

)(
c0(0)
c1(0)

)
, (3.2.4)

δ =
1

h̄

∫ t

0
dt′Bz(t

′).

Now, writing the time evolution operator

Rz(−δ) =

(
e

iδ
2 0

0 e−
iδ
2

)
,

it is easy to see that
Rz(−δ)|ψ′(θ,ϕ)〉 = |ψ′(θ,ϕ− δ)〉,

which means that a magnetic field along the z-axis has the effect of rotating the state
vector around said axis with the angle −δ. Since the z-axis is chosen arbitrarily it is easy
to see that this applies for all directions; a magnetic field has the effect of rotating the
state vector of the qubit around the axis of the field. In the case of an arbitrary magnetic
field in the n̂ = nxx̂ + nyŷ + nz ẑ direction where |n̂| = 1 the time evolution operator
becomes

Rn̂ = ei
δ
2
(nxσ̂x+nyσ̂y+nz σ̂z) = cos

δ

2
1̂− i sin

δ

2
(nxσ̂x + nyσ̂y + nzσ̂z),

where the last equality comes from simple series expansion of the exponential.

In reality, the energy difference between the two states (|1〉 and |0〉) E1 − E0 = h̄ω0

corresponds to a term −1
2 h̄ω0σ̂z in the Hamiltonian (3.2.3), which can be seen as a strong

fictitious magnetic field in the z-direction. Any qubit state will thus precess quickly
around the z-axis with angular frequency ω0.

Defining the Hamiltonian ∆H describing the dynamics, the Hamiltonian for the qubit is
rewritten to:

Ĥ = −1

2
h̄ω0σ̂z +∆Ĥ.

The description of the dynamics can be simplified by using a coordinate system rotating
along with the precession. This transforms the state vector to

|ψ′〉 = Rz(ω0t)|ψ〉

8
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and the Hamiltonian to
Ĥ ′ = Rz(ω0t)∆ĤRz(−ω0t).

Notice that the term −1
2 h̄ω0σ̂z vanishes, leaving only the dynamics of the system ∆Ĥ.

This transformation is called the rotating frame [3].

3.3 Qubit Manipulation and Atom-field Interactions

In order to perform calculations with qubits, different gates need to be implemented.
According to the Bloch sphere description, two rotations around two non-parallell axes
are required to put the qubit in an arbitrary state. As the vector on the Bloch sphere
precesses around the z-axis due to energy spacing the only additional operation needed
is changing the population. The natural method to do this is to apply small harmonic
perturbations, and was first introduced by Rabi [11] when he worked on nuclear magnetic
resonance.

To describe qubit manipulations, consider a quantum mechanical system of an electron
bound to an atomic nucleus. A qubit can be considered as an artificial atom, though the
calculations in this section regard an electron, the results can also be applied to a qubit.
The Hamiltonian for this system in absence of external fields is

Ĥ0 =
1

2m
p̂2 + V (r), (3.3.1)

where V (r) is the Coulomb potential, r = |r| is the distance between the nucleus and
the electron and p̂ = −ih̄∇ is the momentum operator. When an external electromag-
netic field with the vector potential A(r,t) and the scalar potential φ(r,t) is applied, the
Hamiltonian is changed to [12]

Ĥ(r,t) =
1

2m
[p̂+ eA(r,t)]2 − eφ(r,t) + V (r),

where e is the elementary charge. The electric and the magnetic fields are given by
Maxwell’s equations and can be expressed by the scalar potential φ and the vector po-
tential A as

E(r,t) = −∇φ(r,t)− ∂tA(r,t),

B(r,t) = ∇×A(r,t).

The electromagnetic field is invariant under gauge transformations. When performing
Gauge transformations to a solution in classical electromagnetism, it means that Maxwell’s
equations are still satisfied. The potentials can be rewritten as

φ′(r,t) = φ(r,t)− ∂tχ(r,t), (3.3.2a)

A′(r,t) = A(r,t) +∇χ(r,t), (3.3.2b)

where χ(r,t) is an arbitrary scalar field (see Appendix B for transformation details).

To simplify calculations a definite choice of gauge, namely the Coulomb (also known as
the transverse or radiation) gauge can be used. Applying this ∇ · A = 0 and φ = 0.
Using this, the radiation field is completely described by the vector potential A. With
the transformations given by (3.3.2), the Hamiltonian becomes

Ĥ ′(r,t) =
1

2m
[p̂+ e(A(r,t) +∇χ(r,t))]2 + e∂tχ(r,t) + V (r). (3.3.3)

9
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This expression can be simplified even more using the properties of the vector potential.
Without any charge sources near the atom, the vector potential satisfies the wave equation

∇2A− 1

c
∂2
tA = 0.

The solutions to this equation are plane-waves on the form

A = A0e
i(k·r−ωt) + constant,

where the |k| = 2π/λ is the wave vector of the radiation and λ the wavelength. An
approximation that will simplify calculations is the dipole approximation. If the spatial
extension of the atom, |r| (typically a few Ångströms) is much smaller than the wavelength
λ of the radiation (hundreds of nanometers), thus k · r ¿ 1, the spatial dependence of the
vector potential can be neglected, A(r,t) ' A(t). The arbitrary scalar function can now
be chosen to χ(r,t) = −A(t) · r. This gives

∇χ(r,t) = −A(t),

∂tχ(r,t) = −r · ∂tA(t) = r ·E(t),

where Maxwell’s equations once again are used. Using this choice of χ the Hamiltonian
given by equation (3.3.3) can be simplified

Ĥ ′(r,t) =
1

2m
p̂2 + V (r) + er ·E(t) = Ĥ0 − d̂ ·E(t). (3.3.4)

This Hamiltonian describes the interaction between the applied field and the atom within
the dipole-approximation, where −er = d̂ is called the dipole operator. The dipole oper-
ator is a measure of charge separation and determines how strongly the qubit interacts
with the field within the dipole approximation. This derivation of the Hamiltonian is for-
tunately valid for both classical and quantized electromagnetic fields, because the nature
of the electromagnetic field is not specified.

3.4 The Rabi Model

The Rabi model describes interaction between a classical electromagnetic field and an
atom with two energy levels. This will induce coherent control, i.e it is possible to put the
system in a arbitrary state. The model is labeled as semi-classical, because the nature of
the field is not considered to be quantized, as it would be in fully quantum mechanical
description, section 3.6, but is still useful for a qualitative understanding.

In order to calculate the time-evolution of an atom in an electromagnetic field, it has to be
assumed that the field is near resonance with the atomic state transition. An implication
of the assumption is that the field will induce transitions and perturbation theory can not
describe the time-evolution. Thus, the problem has to be solved more ”exactly”.

The two atomic levels, with different parity, are the ground state |g〉 and the excited state
|e〉. The transition frequency between the two states is

ω0 =
1

h̄
(Ee − Eg).

10
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Then a harmonic electromagnetic field is applied, E(t) = E0 cosωt, with a frequency near
resonance for atomic state transition, |ω − ω0| ¿ ω0 and E0 is the electric field pointing
in an arbitrary direction. The Hamiltonian for the system will be, using equation (3.3.4)

Ĥ = Ĥ0 + V̂0 cosωt, (3.4.1)

where V̂0 = −d̂ ·E0. The state vector of the two-level system can be written as

|ψ〉 = Cg(t)e
iEgt/h̄|g〉+ Ce(t)e

iEet/h̄|e〉.

Then the time-dependent Schrödinger equation with the Hamiltonian from equation (3.4.1)
will give

ih̄∂t|ψ〉 =
(
Ĥ0 + V̂0 cosωt

)
|ψ〉.

Multiplication of both sides with 〈g| and 〈e| gives a system of coupled differential equations
for the amplitudes Cg and Ce

Ċg = − i

h̄
ϑ cosωte−iω0tCe, (3.4.2a)

Ċe = − i

h̄
ϑ cosωteiω0tCg, (3.4.2b)

where ϑ = 〈e|V̂0|g〉. Here we have used that 〈g|V̂0|g〉 = 〈e|V̂0|e〉 = 0 due to parity.
Then equations (3.4.2) can be rewritten by using cosφ = (eiφ + e−iφ)/2, which gives
expressions e±i(ω+ω0)t and e±i(ω−ω0)t. By the initial assumption that the frequency of the
electromagnetic field is near resonance with atomic transition, e±i(ω+ω0)t will oscillate so
fast they will average out on the timescale considered, hence they can be neglected. This
is also called Rotating Wave Approximation [13]. Using this approximation together with
equations (3.4.2) yields

Ċg = − i

2h̄
ϑei(ω−ω0)tCe,

Ċe = − i

2h̄
ϑe−i(ω−ω0)tCg.

This can be solved as a differential equation of order two

C̈e + i(ω − ω0)Ċe +
1

4

ϑ2

h̄2
Ce = 0.

Using initial conditions where Cg(0) = 1 and Ce(0) = 0, i.e. the system is in the ground
state

Ce(t) = −i
ϑ

ΩRh̄
ei∆t/2 sinΩRt/2, (3.4.4a)

Cg(t) = ei∆t/2

[
cosΩRt/2− i

∆

ΩR
sinΩRt/2

]
, (3.4.4b)

where the detuning ∆ = ω0 − ω and the Rabi frequency

ΩR =

√
∆2 +

(
ϑ

h̄

)2

11
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Atomic inversion of the Rabi Model as a function of time and different detuning

 

 

0 MHz
375 MHz
750 MHz

Figure 3: Atomic inversion W (t) = Pe(t)− Pg(t), or minus the projection on z-axis in the
Bloch sphere description induced by Rabi oscillations. W (t) is plotted for different detuning
as a function of the time. The detuning is ∆ = 0,375,750 MHz for the plots in descending
order, i.e smaller amplitude for bigger detuning.

are introduced. The probability for the atom to be in the ground state and excited state
are

Pe(t) = |Ce(t)|2 =
(

ϑ

ΩRh̄
sinΩRt/2

)2

and

Pg(t) = |Cg(t)|2 = (cosΩRt/2)
2 +

(
∆

ΩR
sinΩRt/2

)2

respectively.

It is useful to consider the atomic inversion, or minus the z-projection on the Bloch sphere

W (t) = Pe(t)− Pg(t), (3.4.5)

which is plotted in figure 3, the so called Rabi oscillations for different detuning can be
seen. At exact resonance (∆ = 0), (3.4.5) is reduced to

W (t) = sin2
ϑt

2h̄
− cos2

ϑt

2h̄
= − cos

ϑt

h̄
.

After t = πh̄/ϑ all the atomic population has been transferred to the excited state,
W (πh̄/ϑ) = 1. This is called a π pulse, because on the Bloch sphere, the vector for the
state is rotated by π radians. Using this it is matter of adjusting t to put the atom in an
arbitrary state. For instance, let t = πh̄/2ϑ. This yields

Ce(πh̄/2ϑ) =
i√
2
,

Cg(πh̄/2ϑ) =
1√
2
.

12
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Figure 4: Schematic figure of the one dimensional cavity resonator. In z-direction it has
length L, and infinite length in x- and y-direction.

3.5 Quantization of the Electromagnetic Field

In the previous section the electromagnetic field was classical and lead to a qualitative
understanding of how to change the state of the qubit. But in order to get a fully quantum
mechanical description of the qubit manipulation, the field has to be quantized as well.

Consider a one dimensional cavity, see figure 4, along the z-axis with perfectly conducting
walls at z = 0 and z = L. When having these boundary conditions the electric field
vanishes at the boundaries. Assuming that there are no charges or currents present in the
system, Maxwell’s equations are [14]

∇×E = −∂tB, (3.5.1a)

∇×B = µ0ε0∂tE, (3.5.1b)

∇ ·B = 0, (3.5.1c)

∇ · E = 0. (3.5.1d)

Further assuming that the electric field is polarized along the x-axis and in a single mode,
E(r,t) = exEx(z,t), the solution to (3.5.1) is

Ex(z,t) =

√
2ω2

m

V ε0
q(t) sin(kz), (3.5.2a)

By(z,t) =
(µoε0

k

)√
2ω2

m

V ε0
q̇(t) cos(kz), (3.5.2b)

where ωm = c(mπ/L) is the frequency of the mode and m takes the values m = 1,2, . . .
to satisfy the boundary conditions. The cavity is consequently called a cavity resonator,
as only certain frequencies and wave numbers km = ωm/c forms standing waves. Also in
(3.5.2) there is the effective volume of the cavity V = AcavL, where Acav is the area of

13
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the cavity resonator. The time-dependent factor q(t) of dimension length is introduced
and used later. The magnetic field is polarized in the y-direction, B(r,t) = eyBy(z,t).

Then, writing down the classical field energy, or Hamiltonian H, of the electromagnetic
field gives

H =
1

2

∫
dV

[
ε0E

2(r,t) +
1

µ0
B2(r,t)

]
=

1

2
(q̇2 + ω2q2). (3.5.3)

Now by identifying terms in the Hamiltonian (3.5.3), we can see that it is the classical
harmonic oscillator with unit mass. By introducing canonical variables p = q̇ and q as
momentum and position operators and imposing the canonical commutation relation

[q̂,p̂] = ih̄,

the Hamiltonian (3.5.3) can describe the quantized field. The new operators are Hermitian
and therefore observable, but it is more convenient to introduce the annihilation (â) and
creation (â†) operators

â =
1√

2h̄ωm
(ωmq̂ + ip̂), (3.5.4a)

â† =
1√

2h̄ωm
(ωmq̂ − ip̂). (3.5.4b)

Now the electric and magnetic field (3.5.2) can be rewritten in terms of the new operators
(3.5.4)

Êx(z,t) = ε0(â+ â†) sin(kz), (3.5.5a)

B̂y(z,t) = β0(â− â†) cos(kz), (3.5.5b)

where ε0 =
√
h̄ωm/ε0V and β0 = (µ0/k)

√
ε0h̄ω3

m/V and represents the electric and mag-
netic fields ”per photon” respectively. This is not entirely true and since the expectation
values of these fields are zero, see [7] for details, but are nevertheless useful measures of
the fluctuations of the quantized field. The creation and annihilation operators satisfy
the commutation relation

[â,â†] = 1

and transforms the Hamiltonian (3.5.3) to

Ĥ = h̄ωm

(
â†â+

1

2

)
. (3.5.6)

The eigenstates for this Hamiltonian are the number eigenstates of the harmonic oscillator,
and here represents the number of photons in the cavity, denoted by

|n〉 = (â†)n√
n!

|0〉.

The operators (3.5.4) has the properties:

â†|n〉 =
√
n+ 1 |n+ 1〉, (3.5.7a)

â|n〉 =
√
n |n− 1〉. (3.5.7b)

The term â†â is also known as the number operator n̂, and comes from

â†â|nc〉 = √
nca

†|nc − 1〉 = nc|nc〉 = n̂c|nc〉. (3.5.8)

14
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Although this quantization only holds for the electromagnetic field in a one dimensional
cavity for a single mode, the method for generalizing to higher dimensions and multiple
modes is analogues. The solutions to Maxwell’s equations (3.5.1) will still be on the same
form.

To get the matrix representation of the operators for the quantized field the completeness
relation has to be used and is further developed in section 6.2.

3.6 Jaynes-Cummings Hamiltonian

The Jaynes-Cummings Hamiltonian describes the dynamics of a qubit coupled to an elec-
tromagnetic field just as the Rabi Hamiltonian, see equation (3.4.1). The difference is
that the Jaynes-Cummings model accounts for the quantized nature of the electromag-
netic field. The field is restricted to a cavity resonator, which is essentially just a ”one-
dimensional”waveguide so the derivation in section 3.5 is valid for the Hamiltonian of the
field. Another important restriction is that the qubit is assumed to have only two levels,
|g〉 and |e〉. This simplifies matters and makes it possible to express the Hamiltonian in
terms of Pauli matrices.

The entire Hamiltonian can be broken down in three different parts and be written as

Ĥ = Ĥ0 + ĤF + ĤI , (3.6.1)

where ĤF is the Hamiltonian for the field in the cavity resonator from equation (3.5.6), Ĥ0

is the Hamiltonian for the qubit and ĤI is the interaction between the cavity resonator and
the qubit. The qubit Hamiltonian is the same as in the Rabi model, but the interaction
part of the Hamiltonian becomes rather different. There also appears the new term which
belongs to the field and has no analogue in the Rabi Hamiltonian. In vacuum, i.e. zero
photons in the cavity resonator, the eigenvalue of the number operator is zero and the
remaning term in equation (3.5.6) h̄ω

2 , which is the zero point energy. However, the zero
point energy does not contribute to the dynamics of the system, because the zero-level of
the energy can be chosen arbitrarily, so the Hamiltonian for the electromagnetic field can
be written as

ĤF = h̄ωâ†â, (3.6.2)

if the zero point energy term is dropped.

For the qubit, we can define the zero-level of the energy to be in the middle of |g〉 and |e〉
and the qubit Hamiltonian is written as

Ĥ0 = −1

2
h̄ω0σ̂z. (3.6.3)

This is a big simplification as it approximates the qubit as a general two level system.

In order to write down the interaction Hamiltonian it is convenient to first introduce some
new operators. The atomic transition operators are

σ̂+ = |e〉〈g|,
σ̂− = |g〉〈e| = σ̂†

+. (3.6.4)
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The σ̂+ and σ̂− excites and deexcites the qubit respectively and it is easy to show that

σ̂+|g〉 = |e〉,
σ̂−|e〉 = |g〉.

Under the assumption that the wavelength is much larger than the qubit, the dipole
approximation is valid. The interaction Hamiltonian is then written on the same form as
in equation (3.3.4)

ĤI = −d̂ · Ê = d̂λ(â+ â†), (3.6.5)

where Ê is the electric field as in equation (3.5.5) and λ is defined as the quantity λ =

−
(

h̄ω
ε0V

)1/2
sin(kz). Now consider d̂ = d̂ · e which is the electric dipole moment operator.

With use of the atomic transition operators, d̂ can be simplified. Since by parity 〈g|d̂|g〉 =
〈e|d̂|e〉 = 0 it is possible to write d̂ = d|g〉〈e|+ d∗|e〉〈g| and under the assumption d is real
obtain

d̂ = d(σ̂+ + σ̂−). (3.6.6)

Now defining g = dλ
h̄ , which is the coupling between qubit and cavity resonator and using

this result the interaction Hamiltonian can be written as

ĤI = h̄g(σ̂+ + σ̂−)(â+ â†). (3.6.7)

Now equations (3.6.2),(3.6.3) and (3.6.7) are plugged into equation (3.6.1) to obtain the
total Hamiltonian

Ĥ = h̄ωâ†â︸ ︷︷ ︸
ĤF

− 1

2
h̄ω0σ̂z

︸ ︷︷ ︸
Ĥ0

+ h̄g(σ̂+ + σ̂−)(â+ â†)︸ ︷︷ ︸
ĤI

. (3.6.8)

In order to simplify this expression further, we need to introduce the ”interaction picture”.
In this picture, the eigenstates for the uncoupled Hamiltonian, including their time de-
pendence, are choosen as basis for the state vectors. Note that this means that the only
time dependence for the coefficients comes from the coupling which allows us to isolate the
effect of the coupling from the behavior of the uncoupled system. One downside however,
is that one also has to take into account that the operators are time dependent in this
picture. See [8] for more information. In the interaction picture, the time evolution of the
creation- and annihilation operators as well as the atomic transition operators are given
by

â(t) = â(0)e−iωt,

â†(t) = â†(0)eiωt,
σ̂±(t) = σ̂±(0)e±iω0t.

(3.6.9)

In carrying out the multiplication in the interaction part of the Hamiltonian in equation
(3.6.8), there are four terms:

σ̂+â(t) ∼ ei(ω0−ω)t,

σ̂−â(t)† ∼ e−i(ω0−ω)t,

σ̂+â(t)
† ∼ ei(ω0+ω)t,

σ̂−â(t) ∼ e−i(ω0+ω)t. (3.6.10)
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For a small detuning, i.e. |∆| ¿ ω0,ω, it is valid to apply the RWA. This is the same
method as in the Rabi model but here also note that σ̂+â(t)

† describes the emission of a
photon and an excitation of the qubit and the term σ̂−â(t) describes the absorption of a
photon with the qubit going from the excited to the ground state. Both of these terms
are non-energy conserving.

After the RWA is applied the remaining terms are

Ĥ = h̄ωâ†â− 1

2
h̄ω0σ̂z + h̄g(σ̂+â+ σ̂−â†), (3.6.11)

which is known as the Jaynes-Cummings Hamiltonian and describes the full system of the
qubit coupled to a cavity resonator. The terms σ̂+â and σ̂−â† are the only ones that give
rise to off diagonal elements in the Hamiltonian matrix. This is what causes the coupling
of the energy levels in the system and a characteristic way this is seen is when energy
levels avoid each other. This is commonly referred to as avoided level crossings and is an
indicator for when coupled quantum states have been obtained.

When reading out the state of the qubit, the idea is to measure the resonance frequency
of the cavity, which changes depending on the state of the qubit. Assuming that the qubit
and cavity is a bit off resonance, such that ω, ω0 À |∆| À g, and performing perturbation

expansion in the parameter g2

∆ on equation (3.6.11) gives

Ĥdisp = h̄

(
ω − g2

∆
σ̂z

)
â†â− h̄

2

(
ω0 +

g2

∆

)
σ̂z. (3.6.12)

This is known as the dispersive Jaynes-Cummings Hamiltonian and it is easy to see that
the resonance frequancy depends on the qubit state from the terms with σz which have
expectation values depending on the qubit state.

Looking at equation (3.6.11) it is interesting to examine the atomic inversion to see the
differences between the Jaynes Cummings model and the Rabi model. Consider two
different initial states for the cavity, first a number state, which is just the field constrained
to have a certain number of photons and secondly a coherent state, which is the most
”classical” quantum state because it behaves mostly like the wave interpretation of the
EM field. Figure 5 shows the atomic inversion when the cavity resonator is in a number
state and behaves like the atomic inversion within the Rabi model, compare to figure 3.
This is a bit surprising because a number state is very ”quantum”, the field is quantized
with only a few photons in the cavity resonator.

To the contrary, when the cavity resonator is put in a coherent state, the inversion behaves
like in figure 6 which does not look at all like it did in the Rabi model, figure 3. As seen,
the inversion amplitude is not constant but seems to die out and then revives. This shows
that it is important to take the quantization of the field into account in order to get the
correct description.

Another big difference between the Rabi model and the Jaynes-Cummings model is that
JC model exhibits Rabi oscillations even when the field has zero photons, i.e. n̂|n〉 = 0. In
the Rabi model there always has to be a field present in order to observe this phenomena.
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Figure 5: This is the atomic inversion when the cavity resonator is initially in a number
state. As seen it behaves like in the semiclassical Rabi model (figure 3).
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Figure 6: This is the atomic inversion when the cavity resonator is initially in a coherent
state, where the expected number of photons are 5. This does not behave like in the Rabi
model (figure 3) but it seems to die out around T=10 and then revives again.

4 Theory - Part II

The theory presented in the previous section is sufficient when the influence of environment
is neglected. In this section, we introduce some additional concepts to be able to discuss
decoherence.

First we introduce the density matrix, which is a general representation of quantum states.
With the density matrix notation, we obtain an economic way of describing the influence
of the surrounding environment. A general discussion of decoherence, noise and how to
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read-out a qubit follows and completes the theory. We would like to point out that the
density matrices as well as the theory of noise are important in the field of quantum
computing. However, in our analysis we have not used them, so the theory section part
II is not necessary to understand the data analysis in section 6.

4.1 The Density Matrix - Pure States and Mixed States

To describe decoherence, that is, how qubits are influenced by a noisy environment, three
useful concepts are introduced; pure states, mixed states and density matrices. Quantum
states described by state vectors are said to be pure states. Complete knowledge of not
only the probability amplitudes but also the phase is needed to conclude that a state is
a pure state. On the contrary, quantum states that cannot be described by state vectors
are said to be mixed states. Previous undergraduate courses in quantum mechanics have
only considered pure states.

To understand the difference between pure and mixed states an example with two ensem-
bles follows. The term ensemble is used for a collection of several qubits. Consider a pure
ensemble, e.g. where the qubits are in an equal superpositions of |0〉 and |1〉. The pure
state

|Ψ0〉 = 1√
2
(|0〉+ |1〉) ,

describes an element in such an ensemble. Then, consider also a mixed ensemble, with the
probability P0/1 = 0.5 to be in either |0〉 or |1〉. A mixed ensemble has classical properties
in the sense that it can be analogously thought of as flipping a coin and observe the
outcome. The mixed ensemble we are considering looks like

{
|0〉, |1〉, |1〉, ... , |0〉, |1〉, |0〉

}
,

where the ensemble contains many qubits, equally many in |0〉 and |1〉. If we pick one
qubit from either of the ensembles and perform a measurement, to determine the state of
the qubit, the measurement will give P0/1 = 0.5 independent of the originating ensemble.
Therefore we try to distinguish the two ensembles by a rotation operation Rz(π/2). After
the rotation the superposed state |Ψ0〉 evolves into |0〉 since

Rz(π/2)|Ψ0(π/2,0)〉 = |Ψ0(0,0)〉 = |0〉,
so a measurement give |0〉 with unit probability. Whereas a rotation on a qubit in the
mixed ensemble, will evolve into equal superpositions. The ensemble will explicitly look
like {

1√
2
(|0〉 − |1〉), 1√

2
(|0〉+ |1〉), ... ,

1√
2
(|0〉 − |1〉)

}
,

then a measurement after the rotation give |0〉 and |1〉 with equal probability P0/1 = 0.5.
The conclusion is that the pure state and the mixed state are not equivalent and to
describe this difference, the density operator and density matrix are introduced.

4.1.1 The Density Operator

The density operator ρ̂ is defined as

ρ̂ =
∑

i

pi|Ψi〉〈Ψi|,
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where pi is the probability to be in state |Ψi〉. Note that the density operator is indepen-
dent of basis. To map the density operator for a qubit onto the density matrix, a basis
for the two-level system has to be chosen. For a complete basis |bi〉, the density matrix is
defined to have the elements

ρkl =
∑

i

pi〈bk|Ψi〉〈Ψi|bl〉, (4.1.1)

which forms a two-by-two matrix

ρ =

[
ρ00 ρ01
ρ10 ρ11

]
.

The probability to find the qubit in a certain state is given by the diagonal elements
ρ00/11, whereas the off-diagonal elements, ρ01/10, give the amount of coherence between
the states.

The expectation value of an operator Ô with matrix elements Okl = 〈bk|Ô|bl〉 are calcu-
lated the following way

〈Ô〉 =
∑

i

pi〈Ψi|Ô|Ψi〉

=
∑

i

pi〈Ψi|
(∑

k

∑

l

|bl〉〈bl|Ô|bk〉〈bk|
)
|Ψi〉

=
∑

i

pi
∑

k

∑

l

〈Ψi|bl〉〈bl|Ô|bk〉〈bk|Ψi〉

=
∑

k

∑

l

(∑

i

pi〈bk|Ψi〉〈Ψi|bl〉
)
〈bl|Ô|bk〉

=
∑

k

∑

l

ρklOlk

=
∑

k

(ρO)kk,

where the last expression is called the trace of ρÔ , which is denoted

〈Ô〉 = Tr(ρ̂Ô) = Tr(Ôρ̂), (4.1.2)

where the last equality Tr(ρ̂Ô) = Tr(Ôρ̂) follows from the symmetry of the summation
in the calculation above. Furthermore, the density matrix is Hermitian, i.e. ρ† = ρ
⇔ ρkl = ρ∗lk, which follows from the definition (4.1.1) and has trace unity, since

Tr(ρ) =
∑

i

pi
∑

k

〈bk|Ψi〉〈Ψi|bk〉

=
∑

i

pi
∑

k

〈Ψi|bk〉〈bk|Ψi〉

=
∑

i

pi〈Ψi|
(∑

k

|bk〉〈bk|
)
|Ψi〉

=
∑

i

pi〈Ψi|Ψi〉 =
∑

i

pi = 1. (4.1.3)
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A pure state can be written as a superposition |Ψ〉, with the corresponding density oper-
ator ρ̂ = |Ψ〉〈Ψ|. For a pure state it is then clear that

ρ̂2 = |Ψ〉〈Ψ|Ψ〉〈Ψ| = |Ψ〉〈Ψ| = ρ̂ ⇒ Tr(ρ̂2) = Tr(ρ̂) = 1,

the trace of the squared density operator equals unity. For a mixed state, an arbitrary
statistical mixture can be expressed as

ρ̂2 =
∑

j

∑

k

pjpk|Ψj〉〈Ψj |Ψk〉〈Ψk|,

and the corresponding calculation of the trace

Tr(ρ̂2) =
∑

i

〈bi|ρ̂2|bi〉

=
∑

i

〈bi|

∑

j

∑

k

pjpk|Ψj〉〈Ψj |Ψk〉〈Ψk|

 |bi〉

=
∑

j

∑

k

pjpk〈Ψj |Ψk〉
(∑

i

〈bi|Ψj〉〈Ψk|bi〉
)

=
∑

j

∑

k

pjpk〈Ψj |Ψk〉
(∑

i

〈Ψk|bi〉〈bi|Ψj〉
)

=
∑

j

∑

k

pjpk〈Ψj |Ψk〉
(
〈Ψk|

(∑

i

|bi〉〈bi|
)
|Ψj〉

)

=
∑

j

∑

k

pjpk|〈Ψj |Ψk〉|2

≤

∑

j

pj




(∑

k

pk

)
= 1,

where the equality holds only if |〈Ψj |Ψk〉|2 = 1 for every pair of states |Ψi〉 and |Ψj〉. This
is possible only if all the |Ψi〉 differ with only an overall phase factor, which can only be
true for a pure state. The conclusion is, by taking the trace of the squared density matrix,
it is possible to distinguish pure states from mixed states

Tr(ρ̂2) = 1 for a pure state, (4.1.4)

Tr(ρ̂2) < 1 for a mixed state. (4.1.5)

4.1.2 Time-evolution of the Density Matrix

The Schrödinger equation ih̄∂t|Ψ(t)〉 = Ĥ|Ψ(t)〉 governs the evolution of the system. Keep
in mind that Ĥ is Hermitian, i.e. Ĥ† = Ĥ. We make use of the Schrödinger equation and
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its Hermitian conjugate to derive

ih̄∂tρ̂(t) = ih̄
∑

k

pk∂t|Ψk(t)〉〈Ψk(t)|

=
∑

k

pk

[(
ih̄∂t|Ψk(t)〉

)
〈Ψk(t)|+ |Ψk(t)〉

(
ih̄∂t〈Ψk(t)|

)]

=
∑

k

pk

[
Ĥ|Ψk(t)〉〈Ψk(t)| − |Ψk(t)〉〈Ψk(t)|Ĥ

]

= Ĥρ̂− ρ̂Ĥ = [Ĥ,ρ̂], (4.1.6)

which is known as the Liouville equation. The time-evolution of the density matrix is
used to derive the equations describing how noise influence the evolution of a quantum
state. If we know the time-evolution operator Û(t), such that |Ψ(t)〉 = Û(t)|Ψ(0)〉 the
impact on the density matrix is simply

ρ̂(t) =
∑

k

pk|Ψk(t)〉〈Ψk(t)|

=
∑

k

pkÛ(t)|Ψk(0)〉〈Ψk(0)|Û †(t)

= Û(t)ρ̂(0)Û †(t).

4.1.3 The Bloch Sphere for Mixed States

Any Hermitian 2×2 matrix can be decomposed into a weighted sum of Pauli and identity
matrices. The density matrix is Hermitian, hence it can be decomposed. An arbitrary
single qubit density matrix can be expressed as

ρ =
1+ r · σ̂

2
=

1+ rxσ̂x + ryσ̂y + ryσ̂y
2

with |r| ≤ 1,

where r = (rx,ry,rz) is the the Bloch vector and σ̂ = (σ̂x,σ̂y,σ̂z). Note that Tr(ρ) = 1,
which is consistent with (4.1.3). From (3.2.2), the expectation values of Pauli matrices
are projections of the qubit state onto the x, y and z-axis respectively. Using the trace
formula (4.1.2) gives

〈σ̂x〉 = Tr(ρσ̂x) = Tr

(
1

2

[
1σ̂x + rxσ̂

2
x + ryσ̂yσ̂x + rzσ̂zσ̂x

])
= Tr

(
1

2
rx1

)
= rx,

using that Tr(σ̂x) = Tr(σ̂y) = Tr(σ̂z) = 0 and also that Tr(σ̂iσ̂j) = 2δij . Due to
symmetry, we conclude that also 〈σ̂y〉 = ry and 〈σ̂z〉 = rz. The length of the Bloch
vector determines the state, a pure state is characterized by |r| = 1 whereas for |r| < 1
it is a mixed state. These requirements follow directly from (4.1.4), (4.1.5) and are easily
verified by a calculation of the trace of the squared density matrix

Tr(ρ2) = Tr

(
1

4

[
12 + 2(rxσ̂x + ryσ̂y + rzσ̂z) + (rxσ̂x + ryσ̂y + rzσ̂z)

2
])

= Tr

(
1 + r2x + r2y + r2z

4
1

)
=

1 + |r|2
2

.

The interpretation of |r|, in order to visualize, is that pure states are on the surface of
the sphere, whilst mixed states are inside.
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4.1.4 Reduced Density Matrix of Composite Systems

A two qubit system is the smallest non-trivial composite system that could be used for
analysis of interactions between qubits. The system can also be used to analyze the
simplest coupling with the environment, i.e. where the environment is another qubit.
Any pure two qubit state can be expressed as

|Ψ〉 = c00|01〉|02〉+ c01|01〉|12〉+ c10|11〉|02〉+ c11|11〉|12〉, (4.1.7)

where the coefficients cij satisfy normalization. The expectation value of an operator
Ô = Ô1 ⊗ 1̂2 acting only on the first qubit is calculated as follows

〈Ψ|Ô|Ψ〉 =
[
c∗00〈01|〈02|+ c∗01〈01|〈12|+ c∗10〈11|〈02|+ c∗11〈11|〈12|

](
Ô1 ⊗ 1̂2

)

[
c00|01〉|02〉+ c01|01〉|12〉+ c10|11〉|02〉+ c11|11〉|12〉

]
.

Performing the multiplication gives 16 terms, with only 8 distinct from zero, due to
orthogonality. We regroup the remaining terms

〈Ψ|Ô|Ψ〉 = 〈01|Ô|01〉(|c00|2 + |c01|2) + 〈01|Ô|11〉(c∗00c10 + c∗01c11)
+ 〈11|Ô|01〉(c∗10c00 + c∗11c01) + 〈11|Ô|11〉(|c10|2 + |c11|2),

and thus, the second qubit is traced out. The construction of the reduced density matrix
ρ1 is straightforward

ρ1 =

[ |c00|2 + |c01|2 c∗10c00 + c∗11c01
c∗00c10 + c∗01c11 |c10|2 + |c11|2

]
. (4.1.8)

It follows that ρ1 is Hermitian, and normalization gives Tr(ρ1) = 1, so the reduced density
matrix is a valid density matrix. The extension of the reduced density matrix to consider
more then one qubit is done analogous to the calculation above using the tensor product.
As we will se in the next section, coupling to a noisy environment, causes the off-diagonal
elements to decay. So, the environment tries to make the density matrix diagonal, in
some basis. This effect is called decoherence and must be limited to perform quantum
computing.

4.2 Decoherence

The main problem with constructing a quantum computer is decoherence. This is when
the exact time evolution of the qubit cannot be controlled so that the qubit state will vary
between different repetitions of the experiment. This means that the state of the qubit
is unknown, which results in that the qubit will have a probability distribution to be in
different states, i.e. a mixed state.

The physical explanation for decoherence is interaction with the environment, for example
when the energy in the system is dissipated. This can be induced by impurities and defects
in the materials or unwanted electromagnetic field interaction. Decoherence will gradually
force superpositions into less coherent states, and the system evolves into unknown states.

In section 4.1 the density matrix was introduced as a way to describe a mixed state.
Even though there are several mixed states that corresponds to one density matrix, it can
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express all measurable information about the qubit state. This makes the density matrix
ideal for describing decoherence.

The time evolution of the density matrix for a single qubit under the influence of noise
can be derived by assuming that it is affected by a Hamiltonian

Ĥ = − h̄ω0

2
σ̂z − δB(t)

2
· σ̂ = − h̄ω0

2
σ̂z − 1

2
[δBx, δBy,δBz] [σ̂x,σ̂y,σ̂z] ,

consisting of a constant energy spacing of h̄ω0 and noise. The last term is expressing a
scalar product of matrices. For a specific noise function δB(t), ρ̇ can be expressed by
the Liouville equation (4.1.6). In reality, the actual function for the noise is by all means
unknown and the time evolution for the reduced density matrix of the qubit is given by
averaging over the noise distribution, tracing out the noise. Using this, the time evolution
of ρ can be expressed in terms of a noise field S(ω), known as the spectral noise density.

The effects of decoherence can be divided into dephasing and mixing/relaxation. Mixing
is when the probability to measure the qubit in the |0〉 or |1〉 state changes. In time this
will make it impossible to determine which state the qubit originally was in. Since the two
states have different energies, mixing implies that the qubit exchanges energy with the
surroundings. If the temperature of the surroundings is low enough it will not have any
energy to give to the qubit. Consequently, in time, the energy of the qubit will dissipate
to the surroundings, which relaxes the qubit to the ground state. This phenomenon is
called relaxation and in reality it is used to initialize the qubit in the ground state.

Treating the environment quantum mechanically, i.e. placing the qubit in a bath of
harmonic oscillators at thermal equilibrium with temperature T [3], the time-evolution of
the density matrix due to mixing/relaxation is

ρ̇00(t) = −Γ↓ρ00(t) + Γ↑ρ11(t), (4.2.1a)

ρ̇11(t) = Γ↑ρ00(t)− Γ↓ρ11(t). (4.2.1b)

The excitation Γ↑ and relaxation Γ↓ rates of the qubit depend on the spectral noise
density S(ω), around frequencies for qubit transition ω = ±ω0. Their ratio is given by
the Boltzmann distribution Γ↑/Γ↓ = e−h̄ω0/kBT , where h̄ω0 is the energy spacing between
|0〉 and |1〉. The diagonal terms will tend towards some distribution determined by the
temperature T of the system with the characteristic time scale

1

T1
= Γ↓ + Γ↑,

which is called mixing time.

Dephasing comes from an uncertainty in the energy spacing for the qubit. In time,
this will make the qubit lose all its phase information. In the density matrix the phase
information is coded in the off-diagonal elements. When the qubit is affected by dephasing
these will decrease exponentially with the characteristic time scale T2, which is called
dephasing time. T2 can be decomposed into pure dephasing and dephasing induced by
mixing/relaxation

1

T2
=

1

T ∗
2

+
1

2T1
,
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where 1/T ∗
2 ∝ S(ω ≈ 0) is the rate for pure dephasing and is caused by low frequency

noise. Consequently, considering both dephasing induced by mixing and pure dephasing,
the time evolution of the off-diagonal elements can be expressed as

ρ̇rf01(t) = − 1

T2
ρrf01(t), (4.2.2a)

ρ̇rf10(t) = − 1

T2
ρrf10(t), (4.2.2b)

which describes the total effect of dephasing. After sufficiently long time the off-diagonal
elements will vanish and thus dephasing acts to make the density matrix diagonal. The
index rf denotes the rotating frame where the considered system is precessing around the
z-axis in the Bloch with constant velocity, see section 3.2.

A more compact way to describe the time evolution of a single qubit is the Bloch equations:

ṙ = −1

h̄
B× r− 1

T1
(rz − r0z)ẑ−

1

T2
(rxx̂+ ryŷ). (4.2.3)

Here, r0z denotes the steady state, when the qubit is in equilibrium with the environment
and is determined by

r0z =
Γ↓ − Γ↑
Γ↓ + Γ↑

= tanh
h̄ω0

2kBT
.

The Bloch equations describe the motion of the vector on the Bloch sphere corresponding
to the qubit state. In this picture, the qubit is affected by a constant magnetic field B.
Dephasing will act to decrease the x and y components of the vector and thus project the
vector on the z axis while relaxation/mixing will make the z component converge towards
r0z .

Note that (4.2.3) was referred to as the Bloch equations and not the Bloch equation. This
is not a misprint, but rather a confusing convention. The plural refers to the x̂, ŷ and ẑ
components of the equation.

4.3 Reading Out a Quantum Bit

Unless an experiment is set up in such a way before the measurement that the only states
the qubit can end up in are |0〉 or |1〉, only one measurement will not suffice to determine
the original state. The solution is to repeat the experiment and estimate the population,
i.e. the ratio of |0〉 and |1〉. Other information of the state than the population may be
obtained by performing operations on the qubit, turning other states into |0〉 and |1〉.

4.3.1 Back-action

In order to measure the qubit, it needs to be coupled to a detector. Besides the fact
that this will open a channel for the qubit to be affected by the environment, which will
lead to decoherence, an intrinsic property of the measurement process itself is that it will
dephase the qubit.

Let the qubit initially be in the state α|0〉+ β|1〉 and the detector in its initial state |ei〉.
This gives their combined initial state as

|Ψ(t0)〉 = (α|0〉+ β|1〉)|ei〉.
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As the qubit and the detector become coupled, the detector should evolve into different
states depending on the state of the qubit

|Ψ(t)〉 = α|0〉|e0(t)〉+ β|1〉|e1(t)〉.

Now, considering the reduced density matrix for the qubit, tracing out the detector yields

ρred = Trdet

(
(α|0〉|e0(t)〉+ β|1〉|e1(t)〉)(α∗〈0|〈e0(t)|+ β∗〈1|〈e1(t)|)

)

= αα∗Tr (|e0(t)〉〈e0(t)|) |0〉〈0|+ αβ∗Tr (|e0(t)〉〈e1(t)|) |0〉〈1|
+α∗βTr (|e1(t)〉〈e0(t)|) |1〉〈0|+ ββ∗Tr (|e1(t)〉〈e1(t)|) |1〉〈1|

= |α|2〈e0(t)|e0(t)〉|0〉〈0|+ αβ∗〈e1(t)|e0(t)〉|0〉〈1|+ α∗β〈e0(t)|e1(t)〉|1〉〈0|
+|β|2〈e1(t)|e1(t)〉|1〉〈1|

=

( |α|2 αβ∗〈e1(t)|e0(t)〉
α∗β〈e0(t)|e1(t)〉 |β|2

)
.

So both the off-diagonal elements depend on 〈e0|e1〉. To be able to distinguish two quan-
tum states they need to be orthogonal. Thus, for the detector to work, the states |e0(t)〉
and |e1(t)〉 needs to evolve into two orthogonal states which means that the off-diagonal
components of ρred tends to zero and the system becomes dephased.

This measurement-induced dephasing can be expressed by a dephasing rate Γϕ. Denoting
the time needed to measure the qubit as tms, the quantum efficiency for the measurement
can be defined as η = (tmsΓϕ)

−1. This is interesting to consider as a benchmark of the
measurement process. For an ideal measurement the quantum efficiency is 1, however if
the measurement induces additional dephasing the quantum efficiency will be lower.

The derivation above assumes that the detector does not change the population of the
qubit. A measurement process that has this property is called Quantum Nondemolition
(QND). For not perfect QND processes the measurement can induce mixing, i.e. change
in population, which means that |α|2 and |β|2 are affected. This mesurement induced
mixing, is characterized by a time scale T1. To obtain a quality factor of the signal, we
define the signal to noise ratio as

SNR =
T1

tms
,

which for a good readout should be À 1.

4.3.2 Read-Out in Circuit Cavity

The exact read-out process differs between different realizations of qubits. For the trans-
mon qubit coupled to a cavity resonator the cavity frequency will shift a bit depending
on the qubit state. This can be seen in the dispersive Jaynes-Cummings Hamiltonian
(3.6.12), where the resonance frequency of the cavity is given by

ωeff = ω − g2

∆
σz = ω ± g2

∆
, (4.3.1)
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where minus corresponds to a qubit in ground state and plus to the excited state. So, if the
qubit is in the excited state, the cavity resonance frequency will be slightly changed. This
dependence, between the qubit state and cavity resonance frequency, makes the readout
of a transmon fairly uncomplicated.

The cavity resonance frequency can be determined by sending microwaves into the cavity
with a frequency corresponding to one of these resonance frequencies. On resonance, the
probability for the photons in the incoming signal to be absorbed by the cavity (instead
of reflected) is higher and thus it is expected to see a decrease in the reflection coefficient
at this frequency. After enough photons are sent into the cavity the difference in amount
of reflected photons depending on the qubit state will be statistically significant.

Seen from the point of view of the qubit, there will be an uncertainty in the energy
difference between the qubit states due to uncertainty in the number of photons, that has
been in the cavity. This will gradually dephase the qubit.
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5 Qubit Realization

There are many different ideas how to construct qubits. One proposal is to use real atoms
or molecules to store information as nucleus spin or electronic states. Another promising
qubit type is the superconducting qubit.

So far, trapped ion qubits are the qubit type where quantum computing have been most
successful. In 1995, Cirac and Zoller presented a way of making qubits out of ions [15].
The ions are trapped by an electromagnetic field in a vacuum chamber. Lowering the
temperture, information can be stored as electronic states in each ion and operated by
interaction through Coulomb forces between the ions. In 2009, researchers at University
of Innsbruck [16] demonstrated a realization of quantum computation with ”decoherence
free” ion trap qubits [17]. Note that they still have decoherence in the experiment but
they have achieved a great improvement.

Another successful qubit type is NMR, Nuclear Magnetic Resonance, which is a well known
technique among other applications for determine the structure in compounds. In NMR it
is the spins of atomic nuclei which are serving as qubits. Unlike the trapped ion qubit the
NMR qubit is not a single atom but an ensemble of molecules. Operations are performed
by applying magnetic field pulses. This affects the spins coupled by chemical bonds
between atoms. In 2001, a successful implementation of Shor’s algorithm to factorize the
number 15 was made using NMR qubits [18].

Trapped ions and NMR are examles of atomic qubit realizations and are both successful
methods to perform operations. Because of the difficulties in building multi-qubit systems
with atomic qubits another qubit type is suggested, the superconducting qubit.

Superconducting qubits are nanometer-scale superconducting circuits working as artifical
atoms with engineered energy levels. All these superconducting qubits are based on
Josephson junctions, as will be discussed in section 5.1. The ”atoms” can be manipulated
by currents, voltages and microwave photons, which can be used to control the tunneling
of Cooper pairs in the Josephson junctions. Examples of such qubits in addition to the
transmon are charge (figure 10a), phase (figure 10b) and flux qubits. Building a system
of many superconducting qubits, the problem is not the coupling between them, as in
atomic qubit types, but minimizing the coupling to the environment.

The primary problem for all types of qubit realizations is that very few operations can be
performed before the qubit looses its quantum coherence. While the trapped ion qubit
has exhibited relatively long coherence time it is limited by the weak coupling between the
qubits. Operations on qubits, controlling and measuring, requires a good coupling to the
environment. The desired environment includes control and measurement instruments,
but the surroundings also contain noise sources. Consequently coupling is needed but
inevitably leads to decoherence.

An advantage of artifical atoms is that they are more tunable than other systems [19].
Even though they have strong coupling they exhibit good coherence. They also have the
advantage that they are easy to fabricate, as fabricating small chips is a well-established
technique and a process possible to scale up.
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5.1 Josephson Junction

To understand the realization of a superconducting qubit, we need to explain supercon-
ductivity and the Josephson junction. Superconductivity is a phase transition where
paired electrons (Cooper pairs) causes the electrical current to flow through the conduc-
tor without any dissipation. The Josephson junction is a non-linear electrical component
using superconductivity. Because of the low dissipation in superconductors quantum phe-
nomena become observable.

Superconductivity was first observed in 1911 and is characterized by a sudden disappear-
ance of electrical resistivity which occurs at a temperature specific to the material. Briefly,
electrical resistance is caused by electrons colliding with impurities and other defects in
the material and energy dissipation occurs. Under a critical temperature, depending on
the material, the electrons are forced into bound pairs (Cooper Pairs) and establish a
coupling energy. In order to scatter an individual electron the Cooper pair would need to
be broken and to break the pair, the energy in the system has to be larger than the cou-
pling energy. Simply said, the Cooper pairs avoid scattering, which causes the resistivity
to drop to zero [20].

Superconducting qubits consist of standard components such as capacitors, inductors and
also Josephson junctions. It is possible to quantize the circuit [21] by setting up the La-
grange equations (the equations of motion in Lagrangian mechanics [22]) and introducing,
as in section 3.5, canonical variables and imposing quantum commutation rules. From
the Lagrange equations the Hamiltonian can be derived expressing the total energy of the
system. However, this analysis is beyond the scope of this report.

The reason for introducing the Josephson junction is that electrical circuits based solely on
capacitors and inductors are linear resonators, which are quantized to quantum harmonic
oscillators. This obstructs the desired isolation of two energy states as all energy states
are equidistant with separation h̄ω (figure 7). When excitations occur, the system is
easily excited to higher levels than the first excited state. To make the circuit a suitable
two level system we need to modify it and introduce a non-linearity, created by the
Josephson junction, which will make the energy spacing non-equidistant, i.e. introduce
anharmonicity. Thus the ground state |0〉 and and the first excited state |1〉 can be isolated
and therefore used to represent a qubit.

Figure 7: To the left: the quantized harmonic oscillator. To the right: the desired modi-
fication where the transition energy between |0〉 → |1〉 differs from |1〉 → |2〉. By using, for
example, photons with angular frequency ω on resonance with energy difference E1 −E0, the
dynamics can be limited to these two levels, E0 corresponding to the ground state |0〉 and E1

to the first excited state |1〉.

The Josephson Junction consists essentially of two superconducting plates separated by
a thin isolating barrier, see figure 8. Basically, Cooper Pairs in the superconductors are
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tunneling through the junction, and causes the current to have a non-linear dependence
on the phase difference across the junction. This in turn gives rise to the desired an-
harmonicity in the system. The current and the voltage across the Josephson junction
are described by the two Josephson equations [23]. The first (5.1.1) represents the dis-
sipationless current I through the junction, which is also known as the DC Josephson
effect:

I = IC sin(ϕ), (5.1.1)

where ϕ = θ2 − θ1 is the phase difference between the wave functions in each supercon-
ductor. IC is the critical Josephson current, i.e. the maximum dissipationless current
that the junction supports. The second equation (5.1.2), is a relation between the time
derivative of ϕ and the voltage drop V , across the junction

dϕ

dt
=

2π

Φ0
V, (5.1.2)

where Φ0 = h
2e is the flux quantum. This equation is called the AC Josephson effect.

The energy stored in the Josephson junction is obtained by the integral (using (5.1.1) and
(5.1.2)),

∫ t

−∞
I(τ)V (τ)dτ =

h̄IC
2e

∫ t

−∞
sin(ϕ(τ))ϕ̇(τ)dτ = −EJ cos(ϕ(t)), (5.1.3)

where EJ = h̄IC/2e. The right hand side in this equation is called the Josephson energy.
It is frequently used in Hamiltonians when describing the dynamics of the Josephson
junctions.

Figure 8: A Josephson junction. The wave functions describing each condensate overlap
and hence tunneling is enabled. Courtesy of [3].

When adding a Josephson junction parallel to another, a superconducting loop can be cre-
ated. Below, we show that the two Josephson junction can be regarded as one Josephson
junction with a tuneable Josephson energy, depending on the magnetic flux penetrating
the loop. This tunable loop is also called a superconducting quantum interference device
(SQUID), see figure 9.

The two junctions give the resulting current

I = Ic1 sin(ϕ1) + Ic2 sin(ϕ2),

where Ic1 and Ic2 are the critical currents for each Josephson junction. Defining the terms

ϕd =
ϕ1 − ϕ2

2
,
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Figure 9: A circuit diagram of a SQUID where the magnetic field penetrates the loop,
enclosed by the two Josephson Junction.

and

ϕs =
ϕ1 + ϕ2

2
,

the current can be rewritten as

I = Ic1 [sin(ϕs) cos(ϕd) + sin(ϕd) cos(ϕs)]+

+Ic2 [sin(ϕs) cos(ϕd)− sin(ϕd) cos(ϕs)] =

= (Ic1 − Ic2) sin(ϕd) cos(ϕs) + (Ic1 + Ic2) sin(ϕs) cos(ϕd).

Considering two identical junctions, i.e. Ic = Ic1 = Ic2, this is reduced to

I = 2Ic sin(ϕs) cos(ϕd).

According to Tinkham [24], in the presence of a magnetic field Φext the phase over a
Josephson junction, can be replaced by a gauge-invariant phase leading to

cosϕd = ± cos
πΦext

Φ0
.

If defining a positive critical current

Ics = 2Ic

∣∣∣∣cos
(
πΦext

Φ0

)∣∣∣∣ ,

the SQUID can be viewed as a Josephson junction with an equivalent phase, ϕs, and
a critical current tunable by an external magnetic field. Then the current through the
SQUID is

I = Ics(Φext) sin(ϕs).

As in calculating the energy for the single Josephson junction (5.1.3), the energy in the
SQUID can be expressed in similar manner

ES =

∫ t

−∞
2Ic

∣∣∣∣cos
(
πΦext

Φ0

)∣∣∣∣ sin(ϕs)V (τ)dτ = −EJ0

∣∣∣∣cos
(
πΦext

Φ0

)∣∣∣∣
︸ ︷︷ ︸

EJ (Φext)

cosϕs. (5.1.4)

Here EJ(Φext) can be seen as the effective Josephson energy of the SQUID, and is tunable
by the external magnetic field.
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Figure 10: A schematic representation of two superconducting qubits, charge and phase.
As seen, the charge qubit consists of a box connected via a Josephson junction to a reservoir
to the left and via a gate capacitance to a gate voltage to the right. The phase qubit consists
of a current source connected to a SQUID tunable by the magnetic field φ. Courtesy of [19].

Figure 11: A SEM microscopy picture of a Cooper pair box circuit. As seen the island is
connected to the rest of the circuit via two Josephson junctions, a superconducting loop also
called a SQUID [25].

5.2 Charge Qubit

The first charge qubit was introduced by Nakamura et al. 1998 [4]. They showed that
a superconducting island coupled via a Josephson junction to a reservoir could serve as
a two-level system. This two-level system recieved the name Cooper pair box (CPB).
Figure 11 shows a SEM microscopy picture of a Cooper pair box.

Figure 10a shows a circuit diagram of the CPB. The superconducting island (the box) is
coupled to a gate via a capacitance Cg. Controlling the voltage over the gate the number
of Cooper pairs on the island at equilibrium can be set. The qubit state is determined
by the island charge, i.e. the number of Cooper pairs on the island. However, since the
system consists of a large number of electrons the state is determined as the number of
extra Cooper pairs tunneling on and off the island.

The Cooper pairs are induced on the island by the gate voltage as ng =
CgVg

2e , where Cg is
the gate capacitance. ng refers to the charge induced by the gate on the island, in units
of Cooper pairs. To limit the system to two possible states, the gate voltage is controlled
so that ng only takes values between zero and one, i.e. there are either zero or one extra
Cooper pair.

A single electron in the circuit contributes with a charging energy of EC ≈ e2

2CJ
, where
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Figure 12: An energy diagram of the single Cooper pair box [26]. The x-axis represents ng

and the y-axis energy. At ng equal to half integers avoided level crossings are seen. These
points are also called degeneracy points for the CPB.

CJ is the capacitance of the junction. The charge qubit operates in the regime where the
Josephson energy is much smaller than the charging energy, EJ ¿ EC . This means that
the system has a well-defined charge but the phase is uncertain [27]. We thus describe
the dynamics of the CPB in the charge basis |n〉, where n denotes the number of extra
Cooper pairs on the island.

The Cooper pair box Hamiltonian consists of two terms, where the first term represents
the energy added when an extra Cooper pair tunnels to the island and the second term
is energy from the SQUID rewritten from (5.1.4) [6],

Ĥ = 4EC(n̂− ng)
2 − EJ

∞∑
n=−∞

1

2
(|n〉〈n+ 1|+ |n+ 1〉〈n|) , (5.2.1)

here n̂ denotes the number operator in the charge basis n̂|n〉 = n|n〉. A method to
calculate the eigenenergies of the CPB Hamiltonian (equation (5.2.1)) analytically is to
use Mathieu functions [21]. Generally, Mathieu functions can be used in problems with
resonance in forced oscillations.

In figure 12, the energy spectrum for the CPB can be seen. Note that the two energy
lines avoid each other at ng = half integers. These points are called degeneracy points
and descend from the Josephson coupling. The dashed lines in the background indicate
the case when EJ = 0 and in that case the energy levels would cross. At the degeneracy
points the eigenstates of the system are equal superpositions of the neighbouring charge
states.

5.3 Phase Qubit

In comparison to the charge qubit, the phase qubit is operated in the phase regime, i.e.
at a very small charging energy and stronger Josephson coupling, EJ À EC . Thus it
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Figure 13: An energy diagram showing the potential the phase particle lives in and the
energy levels in the potential well [30].

becomes insensitive to charge noise. However, it still is sensitive to magnetic flux, which
makes it tunable [28].

To distinguish the phase qubit from the other superconducting qubits, it should be noticed
that in the phase qubit the information is stored as phase differences across the Josephson
junction [29]. One advantage of the phase qubit compared to the charge and the flux qubit
is that its magnetic and electronic coupling to the environment is weak.

A phase qubit consists of a Josephson junction driven by a constant bias current, see figure
10b. The phase over the Josephson junction can be seen as a fictitious particle oscillating
in a washboard potential, see figure 13. Affected by the bias current the potential tilts
and for a bias current near IC the phase particle can only exist in a few quantized states.
By increasing the bias current even more tunneling effects appears in the potential and
with some probability the particle can tunnel through the potential barrier, which can
be measured as a voltage across the Josephson junction. Since the probability to tunnel
is larger for the excited state than for the ground state, this technique can be used to
determine the state of the qubit.

5.4 Transmon Qubit

The concept of the transmon qubit was first published in 2007 [6] and today both single
and two-qubit operations have been performed. It is a qubit design derived from the
Cooper pair box. However, instead of a single island coupled to a reservoir, the transmon
consists of two superconducting islands coupled through two Josephson junctions isolated
from the rest of the circuit. Another difference is that the transmon operates at a higher
ratio between Josephson energy and charging energy. Considering also flux and phase
qubits, the EJ over EC ratio for the transmon is higher than the flux but lower than
the one for the phase qubit. EJ

EC
is for the transmon between 101 and 106. The increase

in this ratio, as compared to the CPB, leads to a considerable reduction in charge noise
sensitivity, while anharmonicity reduces more slowly and the energy spacing can be kept
non equidistant. Less charge noise leads to smaller influence of gate charge fluctuations.
Despite this modification, the transmon maintains the CPB insensitivity to other noise
sources, like flux and critical current noise [6].
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Figure 14: A transmon qubit capacitively coupled to the voltage source representing a
cavity resonator. To the left the voltage source and to the right the transmon consisting of
two Josephson junctions in a SQUID surrounded by superconducting metal islands. As can
be seen, the islands are shaped as a large interdigitated (”finger”) capacitor. Courtesy of [21].

The two Josephson junctions in the transmon forms a SQUID which makes the Josephson
energy tunable, as in equation (5.1.4), by applying an external magnetic flux. To be able
to perform measurements, the qubit is put into a cavity resonator. Photons can be sent
into this cavity resonator to measure the combined frequency of the system, qubit and
cavity resonator, which makes it possible to determine the state of the qubit.

The effective Hamiltonian of the transmon is the same as the one for the Cooper pair
box, equation (5.2.1). The essential difference between the CPB and the transmon is the
capacitor coupled as a shunting connection to the SQUID [6]. The capacitance is formed
as two large superconducting islands, as can be seen in figure 14. This causes a reduction
in EC which in turn gives a higher EJ

EC
.

Extended from the CPB, the transmon Hamiltonian looks like [6]

Ĥ = 4EC(n̂− ng)
2 − EJ

∞∑
n=−∞

1

2

(
|n〉〈n+ 1|+ |n+ 1〉〈n|

)

︸ ︷︷ ︸
CPB part

+ h̄ωrâ
†â︸ ︷︷ ︸

Field part

+2βeV 0
rmsn̂(â+ â†)︸ ︷︷ ︸

Interaction part

.

(5.4.1)
This can be compared to the Jaynes-Cummings Hamiltonian, equation (3.6.11), they both
consist of three parts, a qubit, field and interaction part. In the transmon Hamiltonian
the first two terms are the qubit energy, the third term is the field energy identical to the
Jaynes-Cummings field dependence and the last term describes the interaction between
the field and the qubit. Here the Hamiltonian is written in the charge basis, it can
also be expressed in the phase basis. In the charge basis, the state |n〉 corresponds to
n Cooper pairs that have tunneled through the junction. ωr represents the resonance
frequency of the cavity resonator. β is a ratio between the gate capacitance and the total
capacitance over the transmon. V 0

rms comes from the coupling between the transmon
and the cavity resonator. The notation implies that it is a root-mean-square value of the
voltage, corresponding to a single photon in the cavity.
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The eigenenergies for the transmon Hamiltonian, equation (5.4.1), can be approximated
in the EC ¿ EJ limit as [6]

Em = −EJ +
√
8EJEC

(
m+

1

2

)
− EC

12
(6m2 + 6m+ 3), (5.4.2)

where m = 0, 1, 2,.... This implies that the transition energy between the zero and the
one state can be calculated as

E1 −E0 =
√
8EJEC −EC .

The transmon is a promising candidate as a qubit scalable up to the level of a usable
quantum computer. According to Johansson (2009) [27] so far the transmon is the super-
conducting qubit with the longest coherence time demonstrated.

5.5 Fabrication

Fabrication of all superconducting qubits are performed in the same way. These qubits
are metallic conductors placed on small chips called substrates. The substrate is often
made of silicon, which is a bad conductor, and at low temperatures even an insulator.
The metal can vary, but aluminium is often used. In order to produce superconducting
circuits with nanometer precision, the qubits have to be fabricated in cleanrooms.

Figure 15: (1) First we see the substrate with one layer of photoresist. (2) A second resistive
layer is sprayed on the photoresist. (3) The resist is exposed through a master mask. (4) The
resist pattern is developed. (5) Next shows the conductor on the substrate and photoresist
deposited. (6) To finish the process, the photoresist is removed and we have a conductor.
Courtesy of [21].

First the chip is covered in a polymer called photoresist (figure 15.1, figure 15.2). To
mark where the conductor should be placed, a mask is made (figure 15.3). The mask is
a map with openings where the conductors are supposed to be. Then the mask is put on
the substrate the photoresist is exposed to UV light (figure 15.4). UV light create marks
in the resist where the conductors will be placed. Afterwards, metal is deposited (figure
15.5) and the photoresist is removed revealing a metal conductor (figure 15.6).

The smaller structures on the chip is made with electron beam lithography. In electron
beam lithography a pattern can be directly written in the photoresist on the substrate.
The stream of electrons is accelerated in an electric field and focused with magnetic lenses.
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To achieve tunneling between two conductors, the metal is allowed to oxidize before the
depositing a second layer. This forms a structure with two metal electrodes separated by
a thin insulating barrier. Tunneling can occur between the two conductors through the
metal oxide.
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6 Data Analysis and Implementations

The experimental data we analyzed were obtained from microwave spectroscopy of a
transmon placed in a cavity resonator. In figure 16 and figure 17 the data is presented.
From now on we refer to figure 16 as dataset 1 and figure 17 as dataset 2. In the experiment
that generated dataset 1, the transmon was tuned, whereas in dataset 2 the resonator was
tuned. The tuning is accomplished by varying the magnetic flux through the SQUIDs.
Since there are two SQUIDs in the circuit, one in the transmon and another one in the
end of the cavity to terminate the resonator, it is possible to tune the qubit and the cavity
resonator independently. By changing the magnetic flux through the terminating SQUID,
the effective length of the cavity can be tuned. Changing the effective length, the length
seen by photons in the cavity, implies tuning the resonance frequency.

The experiments were performed in a low temperature lab in MC2, with the circuit placed
in a cryostat, which in short is a freezer able to operate in the mK range. The equipment
is put in a cryostat for two reasons: to reach the superconducting temperature regime
and to reduce effects of thermal noise. The measurement is performed by connecting a
coaxial cable to the cavity, sweeping a suitable frequency range (∼4-6GHz) and recording
the reflection coefficient Γ of the system. When there is a frequency match between the
applied field and the transition energies of the system, the energy radiated into the circuit
will be absorbed and the magnitude of the reflection |Γ| decreases, see figure 18.

The color scale in both datasets corresponds to the magnitude of the reflection |Γ|. The
characteristic curves and splittings show the transition frequencies of the system. In both
datasets, avoided level crossings are visible. Avoided level crossings occur when the qubit
and the cavity resonator go into resonance. That is, when the detuning is decreased, the
energy levels corresponding to the qubit and the cavity resonator respectively are expected
to intersect, but instead they are repelled. This is due to the coupling between the
cavity resonator and the transmon, which in the Jaynes-Cummings Hamiltonian (equation
(3.6.11)) is determined by g.

To be able to use the experimental data for quantitative analysis, the interesting energy
levels had to be extracted from the datasets. The datasets were divided into vertical slices,
where each slice correspond to a specific magnetic flux. Then, for each fixed magnetic
flux, a Lorentzian was fitted to determine the frequency. A vertical slice and the plotted
data is shown in figure 18, where the two magnitude drops correspond to the two curves.

To automate the work of extracting the frequencies, we wrote a script that performed
this procedure automatically. The script was written in the data analysis program Igor
Pro. Around the level crossings, near the end of each curve, the signal-to-noise ratio
is bad and the script did not produce satisfying results. Hence, near the ends we had
to do it manually and by visual inspection determine the frequency. In dataset 1, the
signal-to-noise ratio was not a big concern, since the manually processed slice and plot
revealed a distinguishable peak. However, in dataset 2 where four levels are visible, only
two of them could yield distinguishable peaks using the slice and plot process. To be able
to extract any data from the faint levels, we did a complete visual inspection and used a
photo editor to enhance the contrast.
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Figure 16: The magnitude of Γ as a function of induced magnetic flux. Note that the
magnetic flux has a linear dependence of the inducing current, leading to unknown current
units on the x-axis. However, this does not affect the analysis, see section 6.5. The top
figure is raw data, where an avoided level crossing is visible. The figure below is the extracted
frequency obtained after data reduction. The dashed lines correspond to the uncoupled energy
levels of the transmon (steep dashed line) and the cavity resonator (horizontal dashed line).
We refer to the measurement data in this image as dataset 1.
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Figure 17: The magnitude of Γ as a function of induced magnetic flux. Note that the
magnetic flux has a linear dependence of the inducing current, leading to unknown current
units on the x-axis. However, this does not change the analysis, see section 6.5. The flux
tunes the cavity and not the qubit, on the contrary to the experiment shown in figure 16. As
the cavity and the qubit go into resonance the characteristic avoided level crossings are visible.
The two faint levels in between the two distinct levels (the uppermost and lowermost level),
correspond to higher excitations. Above is the raw data and below the extracted frequency
obtained after data reduction. We refer to the measurement data in this image as dataset 2.
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Figure 18: A vertical slice of |Γ| (top), the data from that slice plotted as a function of
frequency (bottom). The two magnitude drops correspond to the desired frequencies.
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6.1 Simulation of a Two-level System in Matlab

Section 3.6 contains a derivation of a Hamiltonian for a general qubit in a two-level
approximation, that is equation (3.6.11). This does not account for the physical realization
of the qubit but just approximates the qubit as a general two-level system. With the
Hamiltonian in equation (3.6.11) and the approximate energy difference in the transmon
qubit, using equation (5.4.2) together with (5.1.4), we get

Ĥ = h̄ωrâ
†â− 1

2

(√
8EJ0

∣∣∣∣cos
(
π
Φ

Φ0

)∣∣∣∣EC −EC

)
σ̂z + h̄g(σ̂+â+ σ̂−â†), (6.1.1)

which is the Hamiltonian used in this section. It is now possible to insert values for the
parameters EJ0, EC , g and ωr and then calculate the eigenvalues of the Hamiltonian. In
order to do this we wrote a short Matlabscript, which calculated the eigenvalues of the
Hamiltonian in equation (6.1.1). We choose parameter values that were similar to those
of the measured device and the numerical values used to obtain figure 19 are

ωr

2π
= 5.6 GHz,

g

2π
= 0.2 GHz,

EJ0

EC
= 100,

EJ0EC

h2
= 5.8 GHz2. (6.1.2)

In this simulation the values of ωr and g are determined from looking at figure 16; ωr is
the frequency were the avoided level crossing occurs (the horizontal dashed line) and g is
determined from the minimum of the separation of the energy levels. The minimum of
the separation is roughly equal to g

π .
EJ0
EC

was initially set to 100 (transmon regime) as
an educated guess and then some trial and error fitting followed to get a picture like the
one in figure 16.

With the current choice of Hamiltonian, we are limited to only two levels for the qubit but
it is possible to choose the number of photon states n for the cavity resonator. We found
that the lowest eigenvalues did not change for values of n ≥ 5. In the left of figure 19, the
entire spectrum of the lowest eigenvalues is displayed and many avoided level crossings
are visible. In the right of figure 19, there is an enlargement of the lowest energy splitting
and it is easy to see the resemblance between it and figure 16.

The calculations that were done in this section are all based on the Jaynes-Cummings
Hamiltonian in equation (6.1.1) and make a qualitative picture of the transmon qubit.

6.2 Extensions of the Jaynes-Cummings Model

To make a more quantitative model than we did in section 6.1, we need to examine the
physical realization of the transmon qubit. In this section, we work with the Hamiltonian
in equation (5.4.1), which is derived from the Lagrangian of the circuit diagram of the
system. In the transmon qubit, the ratio EJ

EC
is large and we see that the off-diagonal
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Figure 19: The figure on the left shows the full view of the entire set of calculated energy
levels of the transmon qubit within the approximation of equation (6.1.1). The figure on the
right is an enlargement of the lowest energy splitting of the left figure. The parameters are
set to make the levels correspond roughly to figure 16 and we see that we are able to produce
energy splittings which look similar.

elements of the Hamiltonian matrix become large in the charge basis. This makes the
charge basis a worse choice of basis than in the CPB case.

The Hamiltonian matrix is infinitely large because it takes into account an unlimited
number of Cooper pairs and photons. However, to numerically calculate the eigenenergies
of the system, we can only consider a finite number of Cooper pairs and photons, i.e. the
Hamiltonian is truncated. It turns out to be convenient to work in the charge basis, since
the higher charge states contribute less and less to the eigenenergies. It is possible to
simply calculate the eigenenergies with larger and larger Hamiltonian matrices until they
converge. We have then found a suitable level of truncation.

From equation (5.4.1), the Hamiltonian of the transmon together with the cavity can be
written explicitly with all tensor products (see appendix A for details) as

Ĥtc = 4EC(n̂q − ng)
2

︸ ︷︷ ︸
ĤCPB1

⊗1̂− EJ

∞∑
nq=−∞

1

2
(|nq〉〈nq + 1|+ |nq + 1〉〈nq|)

︸ ︷︷ ︸
ĤCPB2

⊗1̂+

+1̂⊗ h̄ωrâ
†â︸ ︷︷ ︸

Ĥcavity

+2βeV 0
rmsn̂q ⊗ (â† + â)︸ ︷︷ ︸
Ĥinteraction

, (6.2.1)

where 1̂ is the identity matrix. To numerically calculate the eigenvalues of the Hamiltonian
we have to write it on matrix form.

The first two terms in equation (6.2.1) are the Hamiltonian of the CPB. The number
states for the CPB Hamiltonian are the base vectors in the charge basis |nq〉, expressing
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nq extra Cooper pairs on one of the islands and is written as

|nq〉 =




...
0
1
0
...




, 〈nq| =
(
. . . 0 1 0 . . . ,

)
(6.2.2)

where the number 1 is in the nq position in the array, which is of infinite length.

The charge basis forms a complete set (see section 3.1),

∞∑
nq=−∞

|nq〉〈nq| = 1̂. (6.2.3)

ĤCPB1 in (6.2.1) contains the n̂q operator, whose eigenvalues in the charge basis denote
the number of extra Cooper pairs on the island, n̂q|nq〉 = nq|nq〉. Thus the first term can
be expressed as

ĤCPB1 = 4EC(n̂q − ng)
2 · 1̂ =

∞∑
nq=−∞

4EC(nq − ng)
2|nq〉〈nq| (6.2.4)

and hence gives the matrix representation:

4EC




. . .
...

... . . .
...

... ···
. . . (−nq − ng)

2 0 . . . 0 0 . . .
. . . 0 (−nq + 1− ng)

2 . . . 0 0 . . .
...

...
...

. . .
...

...
...

. . . 0 0 . . . (nq − 1− ng)
2 0 . . .

. . . 0 0 . . . 0 (nq − ng)
2 . . .

···
...

... . . .
...

...
. . .




.

(6.2.5)
ĤCPB2 in the Hamiltonian (6.2.1) is already defined in the charge basis, and thus gives

EJ

2

∞∑
nq=−∞

(|nq〉〈nq + 1|+ |nq + 1〉〈nq|) = EJ

2




. . .
...

...
... . . .

...
...

... ···
. . . 0 1 0 . . . 0 0 0 . . .
. . . 1 0 1 . . . 0 0 0 . . .

. . . 0 1 0
. . . 0 0 0 . . .

...
...

...
. . .

. . .
. . .

...
...

...

. . . 0 0 0
. . . 0 1 0 . . .

. . . 0 0 0 . . . 1 0 1 . . .

. . . 0 0 0 . . . 0 1 0 . . .

···
...

...
... . . .

...
...

...
. . .




.

(6.2.6)
Moreover, to obtain the matrix representation for the Hamiltonian describing the photons
in the cavity, Ĥcavity, the same method is applied as for the CPB Hamiltonian. The
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number states |nc〉 express the number of photons in the cavity resonator and are defined
similarly to (6.2.2), but cannot take negative values, i.e. negative number of photons
in the cavity. The basis is thus |nc〉 = [0 . . . 0 1 0 . . . ] and it forms a complete set
as the charge basis (6.2.3). Then the annihilation and creation operators gives the off-
diagonal matrix elements in the Hamiltonian for the field. Remembering equations (3.5.7),
â|nc〉 = √

nc|nc− 1〉 and â†|nc〉 =
√
nc + 1|nc+1〉 and using the completeness relation for

|nc〉, the creation operator is

â†·
∞∑

nc=0

|nc〉〈nc|
︸ ︷︷ ︸

=1̂

=
∞∑

nc=0

√
nc + 1|nc+1〉〈nc| =




0 0 0 0 . . . 0 . . .√
1 0 0 0 . . . 0 . . .

0
√
2 0 0 . . . 0 . . .

0 0
√
3 0 . . . 0 . . .

...
...

...
. . .

. . .
... . . .

0 0 0 . . .
√
nc + 1 0 . . .

...
...

...
...

...
. . .

. . .




and the annihilation operator is

â · 1̂ =
∞∑

nc=0

√
nc|nc − 1〉〈nc| =




0
√
1 0 0 . . . 0 . . .

0 0
√
2 0 . . . 0 . . .

0 0 0
√
3 . . . 0 . . .

0 0 0 0
. . .

... . . .
...

...
...

...
. . .

√
nc . . .

0 0 0 0 . . . 0
. . .

...
...

...
...

...
...

. . .




.

In analogy with previous equations, the number operator nc (see eq.(3.5.8)) is in its matrix
representation:

n̂c · 1̂ =

∞∑

nc=0

nc|nc〉〈nc| =




0 0 0 0 . . . 0 . . .
0 1 0 0 . . . 0 . . .
0 0 2 0 . . . 0 . . .
0 0 0 3 . . . 0 . . .
...

...
...

...
. . .

... . . .
0 0 0 0 . . . nc . . .
...

...
...

...
...

...
. . .




. (6.2.7)

The last term in the Hamiltonian (6.2.1), Ĥinteraction = 2βeV 0
rmsn̂q(â

† + â) is the coupling
between the cavity and the qubit. Using for respective basis the completeness relation,
the coupling term is the tensor product



n̂q

∞∑
nq=−∞

|nq〉〈nq|
︸ ︷︷ ︸

=1̂




⊗



(â† + â)

∞∑

nc=0

|nc〉〈nc|
︸ ︷︷ ︸

=1̂




=
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=




. . .
... . . .

... ···

. . . −nq




0
√
1 0 . . .√

1 0
√
2 . . .

0
√
2 0

. . .
...

...
. . .

. . .




. . . 0 . . .

...
...

. . .
...

...

. . . 0 . . . nq




0
√
1 0 . . .√

1 0
√
2 . . .

0
√
2 0

. . .
...

...
. . .

. . .




. . .

···
... . . .

...
. . .




.

(6.2.8)
Now with all terms in the Hamiltonian (6.2.1) defined as matrices, the energy eigenvalues
are simply the eigenvalues of the matrix, which can be obtained by diagonalization.

6.3 Implementing in Matlab

In order to nummerically calculate the eigenenergies of the Hamiltonian (5.4.1) we wrote a
function in Matlab. The full program can be seen in Appendix C. The function takes the
parameters EC , EJ , ωr and 2βeV 0

rms and returns the energy-levels for the Hamiltonian.
To simplify, all parameters including eigenenergies are given in GHz.

That leaves the parameter ng in the Hamiltonian. For a transmon, the exact value of ng

should not affect the energies of the system. However, it should be chosen such that there
are roughly as many charge states over and under ng.

The program first calculates the truncated Hamiltonian matrix. Constructing this in
Matlab from equations (6.2.5), (6.2.6), (6.2.7) and (6.2.8) is trivial; the diagonal matrices
is constructed by diag, and the Kronecker tensor product of pair of matrices is calculated
by kron. When the Hamiltonian matrix is constructed, its eigenenergies are calculated by
eig.

The program was made such that the number of charge states for the transmon and
photon states in the cavity resonator that the program takes into account can vary. After
some experimenting we found that the energies of the lowest eigenstates had converged
at ntrans = 15 and nphotons = 5. This yield a Hamiltonian with size 75 × 75. Since
this program will be used to fit the parameters of the two datasets it is crucial that it
runs sufficiently fast. This makes 15 charge states for the transmon and 5 states for the
resonator a good compromise.

6.4 Verification with the Cooper Pair Box

In order to verify that our simulation program, extendedJaynesCummings.m (Appendix
C), was accurate, a comparison with the theoretical behavior of Cooper pair box was done.
The simulation program was set to one cavity state, i.e. zero photons in the cavity, making
the last two terms in the transmon Hamiltonian (equation (5.4.1)) zero. This corresponds
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Figure 20: The graphs are representing energy eigenvalues for different ratios between the
Josephson energy and the charging energy. In the left corner the ratio is 0.1, the next has
EJ = EC , the second row has the ratios 10 and 50. The blue are the numerical values and
the red dots are the analytical values. As seen, the numerical and calculated values agree.

to the Cooper pair box (Hamiltonian in equation (5.2.1)). The Schrödinger equation for
the CPB is a Mathieu equation [21][31]. We can therefore use Matheiu-characteristics in
Mathematica to solve the CPB problem analytically. Both wave functions and eigenen-
ergies can be evaluated but we were only interested in the eigenenergies.

Results from the two methods are featured in figure 20 for four different values of the
ratio EJ over EC . It can be noticed that for a higher value of this ratio, the energy
levels become flatter and the gap between different levels grows. It shows also that
extendedJaynesCummings.m (blue lines) and the analytical method (red dots) resulted
in identical values and that extendedJaynesCummings.m works properly for the Cooper
pair box.

6.5 Fitting of Parameters

6.5.1 Modelling Dataset 1

In the first dataset the cavity resonator is held at a relatively constant frequency while
the transmon is tuned by a current x, inducing a magnetic flux through the SQUID in the
transmon. Ideally, this current should not affect the cavity resonator. In reality however,
we have to take into account that some magnetic flux has leaked into the SQUID in the
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resonator. In the small interval of the first avoided level crossing, it should suffice to
assume that the resonance frequency depends linearly on x.

Because of stray magnetic fields, zero current does not necessarily correspond to zero
magnetic flux. The magnetic flux should however depend on the current as Φ/Φ0 = kx+m.
Visually estimated from the full measurement that dataset 1 comes from, the transition
energy of the transmon is periodic with a period of 15 “current units” and assumes its
maximal value for x = −2 “current units”.

Thus, the parameters in the Hamiltonian (5.4.1) should depend on x as

EC , 2βeV
0
rms constant,

EJ = EJ0| cosπ(x+ 2)/15|,
ωr = ωr0 + x · ωrslope. (6.5.1)

For each value of x, we can use extendedJaynesCummings.m (see Appendix C) to calculate
the energy levels of the system. The two curves in the dataset should correspond to the
two lowest transitions from the ground state; adding one photon in the cavity resonator
and exciting the transmon to the first excited level or superpositions thereof. Because of
this, the lower curve in dataset 1 (figure 16) corresponds to the transition E1 − E0 and
the upper curve should correspond to the transition E2 − E0.

6.5.2 Modelling Dataset 2

In this dataset the cavity resonator is tuned while the energies for the transmon are con-
stant. This means that all parameters corresponding to the transmon, EC , EJ , 2βeV

0
ems

are constant.

The frequency of the cavity resonator as a function of the magnetic flux is given in [32]
as

ωr =
2πf0

1 + l/| cos(πΦ/Φ0)| , (6.5.2)

where l = .05 was given by our supervisors together with the dataset.

As for the transmon, the magnetic flux controlling the resonance frequency of the cavity
resonator should depend linearly on the current, x, i.e. Φ/Φ0 = k′x+m′. Though these
additional parameters are needed to make a good fit, their exact values are not of interest
since they are specific to the dataset.

After putting some typical values for the parameters in extendedJaynesCummings.m it is
apparent which transitions correspond to each curve in the data. From the lowest curve
to the highest curve in figure 17 these transitions are E1 − E0, E4 − E1, E5 − E2 and
E2 − E0.

6.6 Results

Using the models above to describe the two datasets, we estimated the parameters in these
models by minimizing the sum of squares of the residuals (errors) between our theoretical
curves and the experimental values. The results for both datasets are shown in table 1.
Further, the least square fits are shown in figure 21, 22 and 23.
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Figure 21: Fitted curves compared to the data in figure 16.

Figure 22: Fitted curves compared to the data in figure 17.
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Figure 23: Enlargement of figure 22, where we see the avoided level crossing.

We choose to estimate EJEC and EJ
EC

instead of using the values of EJ and EC directly.
The reason for this is that EJEC is strongly correlated to the energy difference between
the ground state and first excited state for the transmon, which is clearly visible in both
datasets. The parameter EJ

EC
describes the anharmonicity of the transmon and is harder

to determine since the transition to higher transmon states is not directly visible in any
dataset. However, in the second dataset the two faint lines depend on the anharmonicity
which should allow us to determine this ratio.

To get confidence intervals for the parameters we used a χ2-test. This defines a 68%
confidence interval for each parameter as the interval where the parameter can be chosen
such that that

χ2 =
∑

i

(y(xi)− yi)
2

σ2
i

(6.6.1)

differs by at most one from its lowest value [33]. The sample variance, σ2
i , was estimated

as the sum of squares of the residuals for the best fit divided by N − k, the number of
data points minus the number of parameters.

Using the extracted parameters from dataset 2, an energy diagram of the measured system
can be constructed. This can be seen in figure 24. As a comparison, the corresponding
energy diagram without the coupling is shown in figure 25. From these, we can identify
the different energy transitions and see the effects of the coupling.

50



Quantum computing and quantum information

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

0

2

4

6

8

10

12

E
/h

 (
G

H
z)

Magnetic flux φ/φ
0

E
2

E
4

E
5

E
1

E
3

E
0

Figure 24: Energy diagram for the coupled transmon and cavity resonator where the
resonator frequency is tuned by a magnetic flux. The four arrows in the diagram shows the
observed transitions in dataset 2.

51



Quantum computing and quantum information

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

0

2

4

6

8

10

12

E
/h

 (
G

H
z)

Magnetic flux φ/φ
0

|e
2
〉 |0〉

|g〉 |1〉

|e
1
〉 |0〉

|g〉 |0〉

|g〉 |2〉

|e
1
〉 |1〉

Figure 25: Energy diagram for the transmon and cavity resonator without the coupling
term. |g〉 denotes the ground state, |en〉 the n:th excited state for the transmon and |m〉 the
number of photons in the cavity. The resonator frequency is tuned by a magnetic flux. Note
that, at each point where two energies cross, the coupling (see figure 24) will act to make the
curves repel and they will gradually turn into each other.
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Table 1: Extracted parameters from dataset 1 and 2, given with 68% confidence interval.

Dataset 1 Dataset 2

2βeV 0
rms/h 0.125± 0.040 (GHz) 2βeV 0

rms/h 0.1301± 0.00095 (GHz)
EJ0 · EC/h

2 6.024± 0.357 (GHz)2 EJ · EC/h
2 3.9465± 0.0075 (GHz)2

EJ0/EC 150± 100 - EJ/EC 34.5644± 0.9456 -
ωr/2π 5.60775± 0.00095 (GHz) f0 5.8953± 0.0006 (GHz)

7 Discussion

For being a thesis in the field of quantum computers it has covered next to none of the
applications. For example one could look in to the algorithm part, where we find quan-
tum teleportation, Shor’s algorithm and quantum error correction. Shor’s algorithm for
factorizing numbers, Grover’s search algorithm and simulating quantum systems are, at
present, the only really useful algorithms were quantum computers outperforms classical
computers. The reason for not considering these applications is that today the supercon-
ducting qubit technology is far from implementing useful algorithms.

In the beginning the project was unspecified and we were allowed to choose what we
wanted to do within the field of quantum computation and quantum information. We
chose a combined project of literature studies and data analysis. In retrospect, some of
the literature studies that we did, we were unable to implement in the data analysis. If we
had focused more on the appropriate theory we would have been able to either do more
complex derivations and/or more data analysis. Another option would have been to do a
complete literature study and extend Theory - Part II.

The uncertainties, on the parameters we extracted, have large discrepancies between the
two datasets even though the datasets come from the same qubit. The values on the
parameters themselves also differ because the devices are tuned in different ways for the
two measurements. The only parameter not tuned is 2βeV 0

rms and it can be seen in table 1
that it agrees between the two datasets. We can see from the parameter fitting in dataset 1
that it is underconstrained, because it only shows the two lowest transitions in the system.
A concern about dataset 1 is that in equation (6.5.1) there are two parameters that have
been visually estimated and the uncertainty in these values are not accounted for in the
final error analysis. This is largely due to our inexperience concerning error analysis in
general. Even though the concerns in dataset 1, it worked out well to fit the theories to
both datasets, which shows that our ”extended” model is an accurate approximation of
the cavity-qubit behavior.

The main problem in quantum computing at present is the decoherence times. It is now
possible to construct relatively ”good” single qubits, but there is a problem with getting
them to work together as they need to be doing in a processor. At present ∼ 10 qubits
have been successfully coupled and to be able surpass current classical computers ∼ 40
qubits need to be coupled.

What is the future of quantum computation using superconducting qubits then? Since
macroscopic quantum coherence was shown, the progress in research has been immense,
improving decoherence times from ∼ 1 ns to ∼ 10 µs in just ten years. As mentioned
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in the introduction, the superconducting qubit is a promising candidate for a quantum
computer, but there are still technological obstacles. Mainly the decoherence times need
to be improved but also the read-out needs to be more accurate.

The question really is whether superconducting qubits will be usable to perform quantum
computation or not. Today, there is no answer; there are too many issues left [34]. Of
course time will tell, but the general consensus within the research community is that
superconducting qubits are at least a very promising candidate. One thing is certain, it
will not go unnoticed.
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Göran!
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Appendix

Appendix A Tensor Product

A and B are two 2 by 2 dimensional complex valued matrices

A =

(
a11 a12
a21 a22

)
,

B =

(
b11 b12
b21 b22

)
.

The tensor product is then defined as

A⊗B =



a11

(
b11 b12
b21 b22

)
a12

(
b11 b12
b21 b22

)

a21

(
b11 b12
b21 b22

)
a22

(
b11 b12
b21 b22

)


 =




a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22


 .

Tensor product is equivalent for higher dimensions. Another handy equality is

(A⊗B)(|ψ1〉 ⊗ |ψ2〉) = (A|ψ1〉)⊗ (B|ψ2〉).

The tensor product is a way to combine two vector spaces into a larger one. This is used
to understand multiparticle systems. It can also be referred to as the Kronecker product
[35]. Usually tensor products are not explicit marked in quantum physics.
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Appendix B Gauge Transformation for the Electromagnetic
Field

From Maxwells equations, [14], the electric and the magnetic field can be expressed as

E = −∇V − ∂tA,

B = ∇×A.

Now if A undergoes the transformation

A −→ A+∇χ.

The magnetic field B will remain the same

B = ∇×A = ∇× (A+∇χ) =

= ∇×A+∇×∇χ = ∇×A,

because the curl of the gradient of any scalar field will vanish. In order to leave E
unaffected, one have to make the following transformation

E = −∇V − ∂tA = −∇V − ∂t (A+∇χ) =

= −∇ (V + ∂tχ)− ∂tA.

The necessary transformation is hence

V −→ V − ∂tχ.
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Appendix C extendedJaynesCummings.m

function Etot = extendedJaynesCummings(EJ, EC, Eres, g);

nresonator = 5; % Number of states to account for

ntransmon = 15;

ng = floor(ntrans/2);

Htot = kron(...

4*EC*diag( ((0:ntransmon-1)-ng).^2 )...

-EJ/2*(diag(ones(ntransmon-1,1),1)+diag(ones(ntransmon-1,1),-1))...

,...

eye(nresonator)...

)...

+...

Eres*kron(...

eye(ntransmon)...

,...

diag(0:nresonator-1)

)...

+...

g*kron(...

diag( 0:ntransmon-1)...

,...

diag(sqrt(1:nresonator-1),1)+diag(sqrt(1:nresonator-1),-1)...

);

Etot = eig(Htot);

Etot = Etot-Etot(1);
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